
ar
X

iv
:2

30
1.

09
33

3v
1

 [
cs

.D
S]

 2
3

Ja
n

20
23

Approximating Knapsack and Partition via Dense Subset Sums

Mingyang Deng ∗

MIT

Ce Jin †

MIT

Xiao Mao ‡

MIT

January 24, 2023

Abstract

Knapsack and Partition are two important additive problems whose fine-grained complexities
in the (1− ε)-approximation setting are not yet settled. In this work, we make progress on both
problems by giving improved algorithms.

• Knapsack can be (1 − ε)-approximated in Õ(n + (1/ε)2.2) time, improving the previous
Õ(n + (1/ε)2.25) by Jin (ICALP’19). There is a known conditional lower bound of (n +
1/ε)2−o(1) based on (min,+)-convolution hypothesis.

• Partition can be (1 − ε)-approximated in Õ(n + (1/ε)1.25) time, improving the previous
Õ(n+(1/ε)1.5) by Bringmann and Nakos (SODA’21). There is a known conditional lower
bound of (1/ε)1−o(1) based on Strong Exponential Time Hypothesis.

Both of our new algorithms apply the additive combinatorial results on dense subset sums by
Galil and Margalit (SICOMP’91), Bringmann and Wellnitz (SODA’21). Such techniques have
not been explored in the context of Knapsack prior to our work. In addition, we design several
new methods to speed up the divide-and-conquer steps which naturally arise in solving additive
problems.

∗dengm@mit.edu
†cejin@mit.edu. Partially supported by NSF Grant CCF-2129139
‡matthew99a@gmail.com

http://arxiv.org/abs/2301.09333v1

1 Introduction

1.1 Background

Knapsack, Subset Sum, and Partition are three fundamental problems in computer science and
mathematical optimization, and are actively being studied in fields such as integer programming
and fine-grained complexity. In the Knapsack problem (sometimes also called 0-1 Knapsack), we
are given a set I of n items where each item i ∈ I has weight wi > 0 and profit pi > 0, as well
as a knapsack capacity W , and we want to choose a subset J ⊆ I satisfying the weight constraint
∑

j∈J wj ≤ W such that the total profit
∑

j∈J pj is maximized. The Subset Sum problem is a
special case of Knapsack, where the weight of an item is always equal to their profit. The Partition
problem is a special case of Subset Sum, where the capacity equals half of the total weight of the
items. In other words, in Partition we want to partition the input items into two parts so that their
sums is as close as possible.

These three problems are well-known to be hard: they appeared in Karp’s original list of 21 NP-
hard problems [Kar72]. To cope with NP-hardness, a natural direction is to study their approxima-
tion algorithms. Given a parameter ε > 0, and an input instance with optimal value OPT, a (1−ε)-
approximation algorithm is required to output a number SOL such that (1−ε)OPT ≤ SOL ≤ OPT.
Fortunately, these three problems are well-known to have fully polynomial-time approximation
schemes (FPTASes), namely (1 − ε)-approximation algorithm that runs in poly(n, 1/ε) time, for
any ε > 0.

There has been a long line of research since the 70’s on getting approximation schemes for
these problems with improved time complexities in terms of n and 1/ε [IK75, Law79, GL79, KP99,
KMPS03, KP04, Rhe15, JK18, Cha18, MWW19, Jin19, BN21, BC22]. On the other hand, recent
advances in fine-grained complexity have pointed out the limit of such improvements, under well-
believed hardness assumptions [CMWW19, KPS17, ABHS19, BN21]. Here, we briefly describe the
most recent results along this line.

• Knapsack: The best known algorithm by Jin [Jin19] runs in Õ(n + ε−2.25) time, and is
based on the previous algorithm of Chan [Cha18] in Õ(n + ε−2.4) time. [CMWW19] and
[KPS17] showed a conditional lower bound of (n+ 1

ε)
2−o(1), based on the (min,+)-convolution

hypothesis.

• Subset Sum: The best known algorithm by Bringmann and Nakos [BN21] runs in Õ(n +

ε−2/2Ω(
√

log(1/ε))) time (improving [KMPS03] by low-order factors). Bringmann and Nakos
[BN21] showed a matching lower bound based on the (min,+)-convolution hypothesis.

• Partition: The first breakthrough by Mucha, Węgrzycki and Włodarczyk [MWW19] gave a
randomized algorithm in Õ(n+1/ε5/3) time. Later, Bringmann and Nakos [BN21] improved it
to deterministic Õ(n+1/ε−3/2) time. Abboud, Bringmann, Hermelin, and Shabtay [ABHS19]
showed that Partition cannot be approximated in poly(n)/ε1−δ time for any δ > 0, under the
Strong Exponential Time Hypothesis.

We can see that the complexity of Subset Sum is already settled, but for Knapsack and Partition
there still remain gaps between the best known algorithms and their conditional lower bounds.

1

1.2 Our Results

In this work, we make progress on this direction, by giving improved approximation schemes for
Knapsack and Partition.

Theorem 1.1. There is a randomized algorithm for (1− ε)-approximating Knapsack with running
time 1

Õ
(

n+ ε−11/5/2Ω(
√

log(1/ε))
)

.

Theorem 1.2. There is a deterministic algorithm for (1−ε)-approximating Partition with running
time

Õ
(

n+ ε−5/4
)

.

1.3 Technical Overview

A useful result in additive combinatorics for many subset sum related problems is the one from by
Galil and Margalit [GM91], which was later improved by Bringmann and Wellnitz [BW21] (based on
results of Sárközy [Sár94]). These combinatorial results reveal structural properties on the set S(X)
of subset sums of a positive integer set X, defined as S(X) := {∑y∈Y y : Y ⊆ X}, in the case when
X is “dense”. Intuitively, it states that if the total number of items is large, then a large portion of
the subset sum can be computed very efficiently, so only a small margin of the sumsets with value
up to some λ needs to be approximated. We apply these combinatorial results to Partition and,
surprisingly, to the “two-dimensional” problem of Knapsack where each item has both weights and
values.

1.3.1 Knapsack

Faster knapsack via dense subset sums Our improved approximation scheme for knapsack
relies on multiple technical components from the previous algorithms by Chan [Cha18] and Jin
[Jin19]. However, one novel key idea that makes our improvement possible is a technique previously
not explored in the context of knapsack algorithms: the additive combinatorics result for dense
subset sum by Galil and Margalit [GM91]. One particular result useful to us roughly says the
following: when X consists of n distinct integers in [ℓ, 2ℓ] for a small enough ℓ ≪ n2, then there
is a long enough interval [λ, (

∑

x∈X x) − λ] that is densely filled with elements in S(X), in the
sense that every two adjacent elements must be very close to each other. A formal version of the
statement is in Lemma 2.6. As we will see, such density statements will be useful in the framework
of Jin [Jin19]. Jin’s approximation algorithm for Knapsack separately deals with items with high
and low efficiency, defined as the profit-to-weight ratio pi/wi. Intuitively, it is not very profitable
to include too many low-efficiency items in the solution. Indeed, after some technical steps, Jin
managed to place an upper bound B on the total profit contributed by low-efficiency items in any
optimal solution, so that it is still correct to only compute the answers for low-efficiency items up
to B (which would take much shorter time than original). The way Jin proved such a bound B
was by a certain greedy exchange argument: given a solution set with too many low-efficiency items
(which occupies a total capacity of WL), remove them and try to fill in the freed up space of WL

using high-efficiency items instead. This would potentially lead to a better solution, contradicting
the optimality of the given solution.

1Throughout this paper, we use Õ(f) to denote O(f · poly log(f)).

2

Naturally, such an exchange is not always profitable, since the high-efficiency items may not be
able to fill up the entire space WL. Jin’s argument accounts for this issue by additionally making
sure that all items have size in an interval [ℓ, 2ℓ], so that the wasted space after the exchange cannot
be larger 2ℓ (otherwise one can always fit in another high-efficiency item). In our new algorithm,
we refine this argument using combinatorial results on dense subset sums: observe that the task of
minimizing the wasted space is equivalent to a subset sum problem on the sizes of high-efficiency
items. By setting up parameters appropriately, we can make sure that the dense subset sum result
applies, leading to a much smaller wasted space.

Having refined this argument, we can improve Jin [Jin19] by putting a stricter upper bound on
the total profit contributed by low-efficiency items, leading to an improved running time.

1.3.2 Partition

Densified divide and conquer There have been many FPTAS algorithms for problems such as
Subset Sum, Partition, Knapsack that employ the technique of divide and conquer, e.g. [Cha18,
Jin19, BN21]. Unlike previous methods, our improvement crucially relies on performing divide-
and-conquer on the sorted list of items. To motivate our idea, we note that in most divide and
conquer based algorithms, the bottleneck to the running time is incurred at the bottom levels, where
we need to merge two sets of answers often with the same complexity of those at the top levels.
However, intuitively, if our list is sorted, at the bottom levels the items have values contained in
a small interval, and hence the sumsets of these items are clustered in several small intervals with
large gaps between them. To exploit this property, instead of using the usual 1D FFT to merge the
sumsets, we “densify” the sumsets and merge them using 2D FFT, so that our running time is only
dependent on the total length of these small intervals.

We note that the idea of 2D-FFT has been employed before to Subset Sum by Koiliaris and Xu
[KX19], but it is used in a different spirit: while we use 2D-FFT to “densify” sumsets, in [KX19] it
is used to bound the size of the solution for each sum.2

Combining with additive combinatorics result The additive combinatorics result for dense
subset sum by Galil and Margalit [GM91] has also been used to an extent in the Õ(n + 1/ε5/3)
algorithm by [MWW19]. In our algorithm we combine this with densified divide and conquer. Note
that λ can be much smaller than the total sum σ of the items, and this would mean that an εσ
additive error is an ε′λ additive error for a much larger ε′ = εσ/λ, so we only need to ensure
(1− ε′)-multiplicative approximation instead of (1− ε) during the computation.

1.4 Paper Organization

We will give useful definitions and lemmas in Section 2. In Section 3 we present our algorithm
for Knapsack. In Section 4 we present our algorithm for Partition. Some standard reductions and
known lemmas from previous works are deferred to appendix.

2In fact, it can be verified that by combining our way of doing 2D-FFT with the other techniques in [KX19] we
can get an alternative deterministic solution for Subset Sum running in Õ(

√
nt) time. It is interesting to see if the

two ways of using 2D-FFT can be combined to improve the running time for Subset Sum deterministically.

3

2 Preliminaries

We write N = {0, 1, 2, . . . } and N
+ = {1, 2, . . . }. For n ∈ N we write [n] = {1, 2, . . . , n}.

2.1 Problem Statements

In the Knapsack problem, the input is a list of n items (p1, w1), . . . , (pn, wn) ∈ N×N together with
a knapsack capacity W ∈ N, and the optimal value is

OPT := max
J⊆[n]

{

∑

j∈J

pj

∣

∣

∣

∑

j∈J

wj ≤ W
}

.

In the easier Partition problem, the input is a list of n integers x1, . . . , xn ∈ N, and the optimal
value is

OPT := max
J⊆[n]

{

∑

j∈J

xj

∣

∣

∣

∑

j∈J

xj ≤
1

2

∑

i∈[n]

xi

}

.

Given a Knapsack (or a Partition) instance and a parameter ε ∈ (0, 1), an (1−ε)-approximation
algorithm is required to output a number SOL such that (1− ε)OPT ≤ SOL ≤ OPT.

In both problems, we can assume n = O(ε−4) and hence log n = O(log ε−1). For larger n,
Lawler’s algorithm [Law79] for Knapsack in O(n log 1

ε + (1ε)
4) time is already near-optimal.

We will sometimes describe algorithms with approximation ratio 1−O(ε) (or 1−ε·poly log(1/ε)),
which can be made 1 − ε by scaling down ε by a constant factor (or a logarithmic factor) at the
beginning.

2.2 Sumsets and Subset Sums

In a multiset A, an element a could appear multiple times (the number of times it appears is the
multiplicity of a in A). We use A ⊎ B to denote union without removing duplicates (i.e., possibly
resulting in a multiset).

For a multiset Y ⊂ N, let Σ(Y) =
∑

y∈Y y denote the sum of its elements (without removing
duplicates).

For a multiset X ⊂ N, let S(X) = {Σ(Y) : Y ⊆ X} be the set of its subset sums, and let
S(X; t) = S(X) ∩ [0, t] be the set of its subset sums up to t.

For a number c and a set X, define c ·X = {cx : x ∈ X}. For two sets X,Y , define their sumset
X + Y = {x+ y : x ∈ X, y ∈ Y }. Given sets X ⊆ [n], Y ⊆ [n], the sumset X + Y can be computed
in O(n log n) time using FFT. This simple fact has a straightforward generalization to 2 dimension,
which we state below.

Lemma 2.1 (2-dimensional FFT, e.g., [Bla10, Chapter 12.8]). Given two sets A1, A2 ⊆ [n]× [m],
one can compute

A1 +A2 :=
{

(x1 + x2, y1 + y2) : (x1, y1) ∈ A1, (x2, y2) ∈ A2

}

in O(nm log(nm)) time deterministically.

4

2.3 Knapsack Problem and Profit functions

In the knapsack problem, assume 0 < wi ≤ W and pi > 0 for every item i. Then a trivial lower
bound of the maximum total profit is maxj pj. At the beginning, we can discard all items i with
pi ≤ ε

n maxj pj, reducing the total profit by at most εmaxj pj, which is only an O(ε) fraction of the
optimal total profit. So we can assume

maxj pj
minj pj

≤ n
ε .

For a set I of items, we use fI to denote its profit function, defined as

fI(x) = max

{

∑

i∈J

pi :
∑

i∈J

wi ≤ x, J ⊆ I

}

over x ∈ [0,+∞). Note that fI is a monotone nondecreasing step function. Adopting the termi-
nology of Chan [Cha18], the complexity of a monotone step function refers to the number of its
steps.

Let I1, I2 be two disjoint subsets of items, and I = I1 ⊎ I2. It is straightforward to see that fI =
fI1⊕fI2 , where ⊕ denotes (max,+)-convolution, defined by (f⊕g)(x) = max0≤x′≤x(f(x

′)+g(x−x′)).

2.4 (1− δ,∆) approximation up to t

Both our algorithms for Knapsack and Partition frequently use the notion of (1−δ,∆)-approximation
up to t. Their definitions are analogous, as stated below.

Definition 2.2 (Approximation for Profit Functions). For functions f̃ , f and real numbers t,∆ ∈
R≥0, δ ∈ [0, 1), we say that f̃ is a (1− δ,∆) approximation of f up to t, if

f̃(w) ≤ f(w)

holds for all w ≥ 0, and
f̃(w) ≥ (1− δ)f(w)−∆

holds whenever f(w) ≤ t, w ≥ 0.

The following notion of approximation will be useful in our Partition algorithm. Similar notions
have been termed as “weak approximation” in the literature [MWW19, BN21], in contrast to “strong
approximation” that would be required for approximating general Subset Sum instances.

Definition 2.3 (Approximation for Integer Sets). For integer sets A,B ⊆ N, and real numbers
t,∆ ∈ R≥0, δ ∈ [0, 1), we say that A is a (1− δ,∆) approximation of B up to t, if

1. for every b ∈ B ∩ [0, t], there exists a ∈ A such that (1− δ)b −∆ ≤ a ≤ b, and,

2. for every a ∈ A, there exists b ∈ B such that (1− δ)b−∆ ≤ a ≤ b.

One can assume A ⊆ N ∩ [0, t] in this case without loss of generality.

For the case of t = +∞, we simply omit the phrase “up to t”.
We also refer to (1,∆) approximation as ∆-additive approximation, and refer to (1 − δ, 0) ap-

proximation as (1− δ)-multiplicative approximation, or simply (1− δ) approximation.
We have the following simple facts regarding approximating merged sumsets and profit functions.

5

Proposition 2.4. For i ∈ {1, 2}, suppose Ai is a (1− δ,∆i) approximation of S(Xi) up to t. Then,
(A1 +A2) ∩ [0, t] is a (1− δ,∆1 +∆2) approximation of S(X1 ⊎X2) up to t.

Proof. For any b ∈ S(X1 ⊎ X2) ∩ [0, t] where b = b1 + b2 for bi ∈ S(Xi) ∩ [0, t] (i ∈ {1, 2}),
there exits ai ∈ Ai such that (1 − δ)bi − ∆i ≤ ai ≤ bi. Hence, a1 + a2 ≤ b1 + b2 = b ≤ t, and
a1 + a2 ≥ (1− δ)b1 −∆1 + (1− δ)b2 −∆2 = (1− δ)b − (∆1 +∆2).

The converse direction can be verified similarly.

The following fact can be proved similarly.

Proposition 2.5. For i ∈ {1, 2}, suppose f̃i is a (1 − δ,∆i) approximation of the profit function
fIi up to t. Then, (f̃1 ⊕ f̃2) is a (1− δ,∆1 +∆2) approximation of fI1⊎I2 up to t.

Following Chan [Cha18] and Jin [Jin19], given a monotone step function f (we sometimes also
call it a profit function, although it might not be equal to the profit function fI of any particular
item set I) with range contained in {0} ∪ [A,B], one can round f down to powers of 1/(1 − ε),
and obtain another profit function f̃ which has complexity only O(ε−1 log(B/A)), and (1 − ε)-
approximates f . In our algorithm we will always have B/A ≤ poly(n/ε), so we may always assume
that the intermediate profit functions computed during our algorithm are monotone step functions
with complexity Õ(ε−1), by incurring (1− ε) approximation factor each time.

2.5 Additive Combinatorics

We need several results on dense subset sums developed by a series of works including [Sár94,
GM91, Lev03, BW21]. The following structural lemma follows from Theorem 4.1 and Theorem 4.2
of Bringmann and Wellnitz [BW21].

Lemma 2.6. Let n distinct positive integers X = {x1, . . . , xn} ⊆ [ℓ, 2ℓ] be given, where ℓ =
o(n2/ log n).

Then, for a universal constant c ≥ 1, for every cℓ2/n ≤ t ≤ Σ(X)/2, there exists t′ ∈ S(X) such
that 0 ≤ t′ − t ≤ 8ℓ/n.

A proof of Lemma 2.6 is included in Appendix B.
The following algorithmic lemma follows from the main theorem of [BW21], and will be used in

our Partition algorithm.

Lemma 2.7 (Follows from [BW21]). Given n distinct positive integers X = {x1, . . . , xn} ⊆ [ℓ, 2ℓ],
there exists λ = Θ̃(ℓ2/n) such that, if λ ≤ Σ(X)/2, then in Õ(n) time we can construct a
deterministic data structure supporting the following query in O(1) time: given L,R such that
λ ≤ L ≤ R ≤ Σ(X)/2, report whether there exists t ∈ [L,R] such that t ∈ S(X).

Remark 2.8. We remark that the main theorem stated in [BW21] only supports querying whether
a given λ ≤ t ≤ Σ(X)/2 is a subset sum. In our application, we require a version supporting range
queries. This is easy to achieve by building an additional prefix sum array in the proof of [BW21,
Theorem 4.6], which supports range sum queries.

6

3 Approximating Knapsack

3.1 Known Lemmas

By known reductions (e.g., [Cha18, Jin19]), we can focus on solving the following cleaner problem,
which already captures the main difficulty of knapsack.

Problem 1. Assume ε ∈ (0, 1/2) and 1/ε ∈ N
+. Given a list I of items (p1, w1), . . . , (pn, wn) with

weights wi ∈ N and profits pi being multiples of ε in the interval [1, 2), compute a profit function
that (1− ε)-approximates fI up to 2/ε.

Lemma 3.1. If for some c ≥ 2, Problem 1 can be solved in Õ(n + 1/εc) time, then (1 − ε)-
approximating Knapsack can also be solved in Õ(n+ 1/εc) time.

Lemma 3.1 will be proved in the appendix.
Based on Chan’s techniques [Cha18], Jin [Jin19] obtained the following lemmas for (1 − ε)-

approximating knapsack up to a small B or when there are few distinct values pi.

Lemma 3.2 (Follows from Lemma 17 of [Jin19]). Given a list I of items (p1, w1), . . . , (pn, wn) with
weights wi ∈ N and profits pi being multiples of ε in the interval [1, 2), one can (1− ε)-approximate

the profit function fI up to B in Õ(n+ ε−2B1/3/2Ω(
√

log(1/ε))) time.

Lemma 3.3 (Follows from Theorem 3 of [Cha18]). Given a list I of items (p1, w1), . . . , (pn, wn) with
weights wi ∈ N and profits pi being multiples of ε in the interval [1, 2), if there are only m distinct

profit values pi, then one can (1−ε)-approximate the profit function fI in Õ(n+ε−3/2m/2Ω(
√

log(1/ε)))
time. 3

The following useful lemma allows us to merge multiple profit functions, which was proved by
Chan using divide-and-conquer and improved algorithms for (min,+)-convolution [BCD+14, Wil14,
CW16].

Lemma 3.4 ([Cha18, Lemma 2(i)]). Let f1, . . . , fm be monotone step functions with total com-
plexity O(n) and ranges contained in {0} ∪ [A,B]. Then we can compute a monotone step func-
tion that has complexity Õ(1ε logB/A) and (1 − O(ε))-approximates f1 ⊕ · · · ⊕ fm, in O(n) +

Õ((1ε)
2m/2Ω(

√
log(1/ε)) logB/A) time.

3.2 Greedy Exchange Argument via Dense Subset Sum

The goal of this section is to prove the following Lemma 3.5. Our algorithm is based on a greedy
exchange argument similar to [Jin19, Lemma 20], but we can obtain better bounds by combining
with number theoretic results on dense subset sums.

Lemma 3.5. Given a list I of n items with pi being multiples of ε in interval [1, 2), and integer

1 ≤ m ≤ n with m = O(1/ε), one can compute in O(n+ ε−11/5/2Ω(
√

log(1/ε))) time a profit function
that (mε)-additively approximates fI up to 2m.

3In the proceedings version of our paper, we incorrectly claimed that the task in Lemma 3.3 can be done in

Õ(n + ε−3/2m3/4/2Ω(
√

log(1/ε))) time. Here, the statement of Lemma 3.3 has been corrected. As a result, several
parameters in Section 3.2 have been adjusted accordingly. This correction did not affect the final time bound of our
main result (Theorem 1.1), since the step that invokes Lemma 3.3 is not a bottleneck in our algorithm.

7

The proof of Lemma 3.5 assumes the following ingredient, which will be proved in later sections
using random partitioning.

Lemma 3.6. Given a list I of n = O(1/ε) items with pi being multiples of ε in interval [1, 2), one

can compute in Õ(n4/5ε−7/5/2Ω(
√

log(1/ε))) time a profit function that (nε)-additively approximates
fI .

Now we proceed to describe the algorithm for Lemma 3.5. Given items (p1, w1), . . . , (pn, wn),
where pi ∈ [1, 2) are multiples of ε, we sort them by non-increasing order of efficiency, p1/w1 ≥
p2/w2 ≥ · · · ≥ pn/wn. Then, we consider prefixes of this sequence of items, and define the following
measure of diversity:

Definition 3.7 (D(i)). For 1 ≤ i ≤ n, let D(i) = minJ C([i]\J), where the minimization is over all
subsets J ⊆ [i] with |J | ≤ 2m, and C([i]\J) denote the number of distinct values in {pj : j ∈ [i]\J}.

We have the following immediate observations about D(i).

Observation 3.8. 1. For all 2 ≤ i ≤ n, 0 ≤ D(i)−D(i− 1) ≤ 1.

2. D(i) (and the minimizer J) can be computed in Õ(i) time by the following greedy algorithm:
Start with all values p1, p2, . . . , pi. Repeat the following up to 2m times: remove the value pj
with the minimum multiplicity, and add j into J .

Now, we set parameter ∆ = ⌊ε−5/8⌋. Define i ∈ {1, 2, . . . , n} to be the maximum such that
D(i) ≤ ∆, which can be found using Observation 3.8 with a binary search in Õ(n) time.

The following lemma is the key component in our proof of Lemma 3.5.

Lemma 3.9 (Greedy Exchange Lemma). Let S ⊆ [n] be any item set with total profit
∑

s∈S ps ≤
2m. Let B := 9cε−1/∆, where c ≥ 1 is the universal constant in Lemma 2.6.

Then, there exists an item set S̃ ⊆ [n], such that the total profit p̃ contributed by items [n] \ [i]
in S̃ satisfies

p̃ :=
∑

s∈S̃∩([n]\[i])

ps ≤ B, (1)

and
∑

s∈S̃

ps ≥ (1− ε)
∑

s∈S

ps, (2)

and
∑

s∈S̃

ws ≤
∑

s∈S

ws. (3)

Proof. If D(i) < ∆, then by the definition of i we have i = n, and we can simply let S̃ = S, since
p̃ = 0 always holds. So in the following we assume D(i) = ∆.

We define S̃ ⊆ [n] as the maximizer of

∑

s∈S̃∩[i]

ps +
∑

s∈S̃∩([n]\[i])

(1− ε)ps

8

among all S̃ satisfying
∑

s∈S̃ ws ≤
∑

s∈S ws and
∑

s∈S̃ ps ≤
∑

s∈S ps. We claim that S̃ satisfies the

properties (1), (2), (3). Observe that (2), (3) immediately follow from the definition of S̃. The main
part is to verify (1).

Suppose for contradiction that (1) does not hold. Then, we can find a subset K ⊆ S̃ ∩ ([n] \ [i])
with total profit p∗ =

∑

k∈K pk ∈ (B,B + 2], which can be obtained by removing items from

S̃ ∩ ([n] \ [i]) (recall that each item has profit in [1, 2)).
Define item set I ′ := [i] \ S̃. Since |S̃| < ∑

s∈S̃ ps/mins∈S̃ ps ≤ ∑

s∈S̃ ps ≤ ∑

s∈S ps ≤ 2m, by
the definition of D(i), we know that {pi : i ∈ I ′} contains at least D(i) = ∆ distinct elements.

We apply Lemma 2.6 on the set of integers X = {pi/ε : i ∈ I ′} ⊆ [1/ε, 2/ε) which contains at
least ∆ distinct integers, where the premise 1/ε = o(∆2/ log ∆) in Lemma 2.6 is satisfied by our
choice of ∆ = ⌊ε−5/8⌋. Lemma 2.6 states that for every t ∈ [cε−2/∆, 0.5∆/ε], there exists t′ ∈ S(X)
such that 0 ≤ t′ − t ≤ 8ε−1/∆. Here we set

t :=
(1− ε)p∗

ε
+

ε−1

∆
,

which satisfies t > p∗(1− ε)/ε > (1− ε)B/ε = (1− ε)(9cε−1/∆)/ε > cε−2/∆, and t < (B + 2)/ε+
ε−1/∆ = 9cε−2/∆ + 2/ε + ε−1/∆ ≤ O(ε−11/8) ≤ 0.5∆/ε. Then the conclusion of Lemma 2.6 says
that there is a subset R ⊆ I ′ of items with total profit p̃ := ε · t′, satisfying

1/∆ ≤ p̃− p∗(1− ε) ≤ 9/∆. (4)

Note that (4) implies

p∗ − p̃ ≥ ε · p∗ − 9/∆

> ε ·B − 9/∆

= ε · 9cε−1/∆− 9/∆

≥ 0.

Recall that R ⊆ I ′ = [i] \ S̃ and K ⊆ S̃ ∩ ([n] \ [i]), which must both be non-empty. Since the
efficiency of items are sorted in non-increasing order, we have minr∈R pr/wr ≥ maxk∈K pk/wk. Now
we define the set of items

S̃′ := (S̃ \K) ∪R.

Then, we have

∑

s∈S̃

ps −
∑

s∈S̃′

ps =
∑

k∈K

pk −
∑

r∈R

pr

= p∗ − p̃

≥ 0,

9

and
∑

s∈S̃

ws −
∑

s∈S̃′

ws =
∑

k∈K

wk −
∑

r∈R

wr

≥
∑

k∈K pk

maxk∈K(pk/wk)
−

∑

r∈R pr

minr∈R(pr/wr)

≥ 1

minr∈R(pr/wr)
·
(

∑

k∈K

pk −
∑

r∈R

pr

)

=
1

minr∈R(pr/wr)
· (p∗ − p̃)

≥ 0.

Hence,
∑

s∈S̃′ ps ≤
∑

s∈S̃ ps and
∑

s∈S̃′ ws ≤
∑

s∈S̃ ws. On the other hand, by (4), we know that

∑

s∈S̃′∩[i]

ps +
∑

s∈S̃′∩([n]\[i])

(1− ε)ps

−

∑

s∈S̃∩[i]

ps +
∑

s∈S̃∩([n]\[i])

(1− ε)ps

=
∑

r∈R

pr −
∑

k∈K

(1− ε)pk

= p̃− (1− ε)p∗

≥ 1/∆ > 0,

contradicting the definition of S̃ being a maximizer.
Hence, we have established that S̃ satisfies (1).

Now we are ready to prove Lemma 3.5.

Proof of Lemma 3.5. Recall that i ∈ {1, 2, . . . , n} is the maximum such that D(i) ≤ ∆, which can
be found using Observation 3.8 with a binary search in Õ(n) time. Let J ⊂ [i] with |J | ≤ 2m be
the minimizer for D(i).

Now, we approximately compute the profit functions fJ , f[i]\J , f[n]\[i] for three item sets J, [i] \
J, [n] \ [i] using different algorithms, described as follows:

1. Use Lemma 3.6 to compute f1 that (2mε)-additively approximates fJ , in O(m
4
5 ε−

7
5/2Ω(

√
log(1/ε))) ≤

O(ε−
11
5 /2Ω(

√
log(1/ε))) time.

2. By definition of i, items in [i]\J have no more than ∆ distinct profit values. Hence we can use
Lemma 3.3 to compute f2 that (1− ε)-approximates f[i]\J , in Õ(∆ε−3/2) = Õ(ε−17/8) time.

3. Use Lemma 3.2 to compute f3 that (1 − ε)-approximates the f[n]\[i] up to B = Θ(ε−1/∆)

(defined in Lemma 3.9), in Õ(B1/3ε−2) ≤ Õ(ε−17/8) time.

Finally, merge the three parts f1, f2, f3 using Lemma 3.4 in Õ(ε−2) time, and return the result.4

4Although the running time of the second and third algorithm is dominated by the first algorithm, a simple
rebalancing of parameters does not seem to yield better complexity, due to various constraints in the parameter
settings for Lemma 3.6.

10

In the third part, the correctness of only computing up to B is justified by Lemma 3.9, which
shows that if we only consider approximating sets with total profit up to 2m, then we can assume
the items in [n] \ [i] only contributes profit at most B (1), at the cost of only incurring an (1 − ε)
approximation factor (2).

To analyze the error, notice that in the first part we incur an additive error of (2mε). In the
second and third part and the final merging step we incur (1 − O(ε)) multiplicative error, which
turns into O(mε) additive error since we only care about approximating up to 2m. Hence the overall
additive error is O(mε), which can be made mε by lowering the value of ε.

Now we show that Lemma 3.5 can be used to solve Problem 1, which is sufficient for proving
Theorem 1.1.

Proof of Theorem 1.1. To solve Problem 1, we divide [1, 2ε−1) into O(log(1/ε)) many intervals
[m, 2m) where m are powers of 2, and use Lemma 3.5 to obtain profit functions achieving mε-additive
approximation up to 2m. Then, taking their pointwise minima yields an (1−O(ε)) approximation.

In the following sections, we will prove Lemma 3.6.

3.3 Approximation using ∆-multiples of small set ∆

We first introduce several additional tools borrowed from previous works that will be used in our
final proof of Lemma 3.6.

Following [Cha18]’s terminology, we say a monotone step function is p-uniform if its function
values are 0, p, 2p, . . . , lp for some l. A p-uniform function is said to be pseudo-concave, if the
differences of consecutive x-breakpoints are nondecreasing from left to right. An example of a p-
uniform and pseudo-concave function is the profit function fI of a set I of items with the same profit
pi = p, which can be exactly computed by simple greedy: the function fI takes values 0, p, 2p, . . . , np,
with x-breakpoints w1, w1 + w2, . . . , w1 + · · ·+ wn, where wi’s are sorted in nondecreasing order.

As in [Cha18] and [Jin19], we will use the method of approximation via ∆-multiples. For a set
∆ of numbers, we say that p is a ∆-multiple if it is a multiple of δ for some δ ∈ ∆. Chan [Cha18]
used the SMAWK algorithm [AKM+87] and suitable rounding to prove the following lemma:

Lemma 3.10 ([Cha18, Lemma 5]). Let f1, . . . , fm be monotone step functions with ranges contained
in [0, B]. Let ∆ ⊂ [δ, 8δ]. If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2] which is
a ∆-multiple, then we can compute a monotone step function that O(|∆|δ)-additively approximates
min{f1 ⊕ · · · ⊕ fm, B} in Õ(Bm/δ) time.

Chan [Cha18] gave a construction of a small set ∆ such that every real number in [1, 2] can be
approximated by a ∆-multiple. Here, we present a more simplified construction.

Lemma 3.11. For parameters 0 < ε < δ < 1/2, let r = ⌈log1+ε(1 + 2δ)⌉ = O(δ/ε), and define
ai = δ(1 + ε)i for 0 ≤ i ≤ r + 1. Let ∆ = {ai} be the set of ai. Then for any t ∈ [1, 2], there is a
multiple of some ai in the range [t, t + 2ε]. Thus, every real number in [1, 2] can be approximated
by a ∆ multiple with O(ε) additive error, where |∆| = r + 2 = O(δ/ε) and all elements in ∆ are
within [δ, 8δ].

11

Proof. Let c be the largest integer such that (t+2ε)/c ≥ a0. Since c is largest, c+1 ≥ (t+2ε)/a0 ≥
1/δ, so (c+1)/c ≤ (1/δ)/(1/δ − 1) = 1+ δ/(1− δ) ≤ 1+2δ ≤ ar+1/a0. Since (t+2ε)/(c+1) < a0,
we know (t + 2ε)/c < ar+1. Let k be the largest integer in [0, r] such that ak ≤ (t + 2ε)/c.
Note ak+1 > (t + 2ε)/c, so ak = ak+1/(1 + ε) ≥ t/c using the fact that t ≤ 2. As a result,
ak ∈ [t/c, (t+ 2ε)/c], thus cak ∈ [t, t+ 2ε].

3.4 Random Partitioning

Assume that n < 1/ε. In the section, we will use random partitioning to prove Lemma 3.6, restated
below.

Lemma 3.6. Given a list I of n = O(1/ε) items with pi being multiples of ε in interval [1, 2), one

can compute in Õ(n4/5ε−7/5/2Ω(
√

log(1/ε))) time a profit function that (nε)-additively approximates
fI .

Proof. Set ∆1 = Θ(
√
n) and ∆0 = Θ(n

7
10 ε

2
52c

√
log(1/ε)) for some small constant c > 0. Assume

that ∆0 is a power of 2 without loss of generality. Note that ∆0 = O(∆1), which follows from
n = O(1/ε).

Claim 3.12. We can partition elements of I into Θ(∆1) groups G1, G2, . . . , Gk, each of size
O(n/∆1), while all elements within group Gi are (1 + ε)-approximated by multiples of pi for some
pi = Θ(∆1ε).

Proof. In Lemma 3.11, plugging in δ = ε∆1, we obtain a set A of size O(∆1) whose elements are of
order Θ(∆1ε), and each item in I can be (1 + ε)-approximated by A-multiples.

We group the elements in I by their divisor in A. We then evenly split groups with size more
than n/∆1 into two until all groups have sizes of at most n/∆1.

From now on, assume that G1, G2, . . . , Gk are groups satisfying conditions in Claim 3.12.
We now randomly partition {1, 2, . . . , k} into ∆0 parts, I1, . . . , I∆0 , by assigning each 1 ≤ i ≤ k

into some Ij(1 ≤ j ≤ ∆0) independently and uniformly. Then, set Xj =
⋃

i∈Ij
Gi for every

1 ≤ j ≤ ∆0. It is easy to see {Xj} is a partition of I.

Claim 3.13. With probability ≥ 3/4, |Ij | = O(∆1/∆0), and hence |Xj | ≤ O(n/∆0).

Proof. By Chernoff bound5, for some large constant c > 0, |Ij | ≥ ck/∆0 happens with probability
at most 1/(4∆0). Thus |Ij | = O(∆1/∆0) holds for all j with probability ≥ 3/4 by union bound.
By Claim 3.12, |Xj | ≤ |Ij|O(n/∆1) = O(m/∆0).

Now assume the event in Claim 3.13 happens.

Claim 3.14. We can approximate
⊕

x∈Xj
fx with additive error O(nε/∆0) for all 1 ≤ j ≤ ∆0 in

Õ(n2ε−1/(∆0∆1)) = Õ(n4/5ε−7/5/2Ω(
√

log(1/ε))) time.

5For independent random variables x1, . . . , xn ∈ {0, 1} and δ > 0, 0 ≤ w1, . . . , wn ≤ 1, let X =
∑n

i=1 wixi and

µ = E[x], then Pr[|x − µ| ≥ δµ] ≤ 2e−δ2µ/3.

12

Proof. Fix a single j. By Claim 3.13,
⊕

x∈Xj
fx is the convolution of O(n/∆0) elements, each

being a multiple of order Θ(∆1ε). By applying Lemma 3.10 with parameters B = O(n/∆0), δ =
Θ(∆1ε), |∆| = |Ij| = O(∆1/∆0), we can approximate

⊕

x∈Xj
fx with additive error O(∆2

1ε/∆0) =

O(nε/∆0) within time Õ((n/∆0)
2/(∆1ε)).

We can do so for all 1 ≤ j ≤ ∆0, with running time Õ(n2/(∆0∆1ε)) = Õ(n4/5ε−7/5/2Ω(
√

log(1/ε))).

Now we can replace
⊕

x∈Xj
fx by the approximation obtained in Claim 3.14, since the total

additive error inflicted will be O(nε/∆0)∆0 = O(nε).
We use divide and conquer to combine the answer of

⊕

x∈Xj
fx. The merge process can be viewed

as a complete binary tree with ∆0 leaves. For S ⊆ {1, 2, . . . ,∆0}, define F (S) =
⊕

x∈∪(s∈S)Xs
fx.

Claim 3.14 allows us to approximate F (S) for all |S| = 1. Now we have the following claim regarding
combining two subtrees S1 and S2.

Claim 3.15. Assume i ≤ log2 ∆0 and |S1| = |S2| = 2i, where S1, S2 ⊆ {1, 2, . . . ,∆0} and
S1 ∩ S2 = ∅. Assume that A1 is an approximation of F (S1) with additive error err1, A2 is an
approximation of F (S2) with additive error err2. Then with probability ≥ 1 − 1/(5∆0), we can
compute an approximation of F (S1 ∪ S2) with additive error err1 + err2 + O(20.9inε/∆0) in time

O(ε−2∆0.5
0 /(∆0.5

1 2Θ(
√

log(1/ε)))).

Proof. Define δi = 20.9inε/∆0. A naive way to approximate F (S1 ∪ S2) is to round each value in
A1 and A2 to a multiple of δi, and then invoke the (min,+) convolution as in Lemma 3.4. In the
following we will show a better method exploiting the fact that {Xi} is a random partition.

Let the global optimal solution be to choose the subset T of items. Define H1 =
⋃

i∈S1
Xi,H2 =

⋃

i∈S2
Xi. Note that the groups G1, . . . , Gk are assigned into X1, . . . ,X∆0 uniformly randomly.

Pick u = Cn
√

2i/(∆1∆0) log n for a large constant C > 0. By Chernoff bound, the probability that
Pr(|∑x∈T∩H1

x−∑x∈T∩H2
x| ≥ u) ≤ 1/(5n).6

Now assume that |∑x∈T∩H1
x−∑x∈T∩H2

x| ≤ u, and we show how to approximate F (S1 ∪S2)
under the assumption. During the (min,+) convolution, we first round the values of F (S1), F (S2)
to multiples of δi. Then we only need to consider the pairs that differ in value by at most u.
We then divide the arrays into blocks with values within a difference of u from each other, and
do (min,+)-convolution between the pairs of blocks with indices differing by at most 1. The
block sizes are at most u/δi = Õ(ε−1∆0.5

0 ∆−0.5
1 /20.4i), so the running time for each (min,+)-

convolution is O(ε−2∆0/(∆12
0.8i2Ω(

√
log(1/ε)))) using Williams’s O(n2/2Ω(

√
log(1/ε)))-time algorithm

for length-n (min,+)-convolution [Wil14]. Since the value in the merged answer is bounded by
Õ(2in/∆0) by Claim 3.13, there are Õ(2in/(∆0u)) min-plus convolutions in total, with total com-

plexity Õ(ε−22in/(∆12
0.8i2Ω(

√
log(1/ε))u)) = O(ε−2∆0.5

0 /(∆0.5
1 2Θ(

√
log(1/ε)))).

Now we conclude the proof by applying Claim 3.15 to the divide and conquer process. Assume
all the ≤ ∆0 many calls to Claim 3.15 yield correct approximations, which happens with success

6We apply Chernoff bound with wj = Rj/(2n/∆1) where Rj =
∑

x∈T∩Gj
x. Now consider S1. We set xj = 1

if j ∈ ∪t∈S1
It and xj = 0 otherwise. Since the partition {It}1≤t≤∆0

is random, the expected value of
∑k

j=1 wjxj

will be Θ(∆12
i/∆0). From Chernoff bound, this value will be u/(4n/∆1) away from expected value with probability

≤ 2eΘ(−(u/(4n/∆1))
2/(∆12

i/∆0)) ≤ 1/(10n). By union bound, both
∑

x∈T∩H2
x and

∑
x∈T∩H1

x will be within difference
u/2 from the expected value with probability ≥ 1− 1/(5n), in which case their difference will be bounded by u.

13

probability ≥ 3/4 by union bound.
To analyze the error term, note that there are O(∆0/2

i) merges of two subtrees with 2i parts
each, where Claim 3.15 inflicts additive error O(20.9inε/∆0) for each such a merge. Thus the total
additive error is bounded by

∑

2i≤∆0
(20.9inε/∆0)(∆0/2

i) = O(nε).
Now we analyze the time complexity. Note that the total complexity for the i-th layer is

O((∆0/2
i) · ε−2∆0.5

0 ∆−0.5
1 /2Ω(

√
log(1/ε)))

= O(ε−2∆1.5
0 ∆−0.5

1 /2Ω(
√

log(1/ε)))

= O(n
4
5 ε−

7
5/2Ω(

√
log(1/ε))).

As there are logarithmically many layers, the total complexity for the divide and conquer part is

O(n
4
5 ε−

7
5/2Ω(

√
log(1/ε))).

Thus our total complexity is O(n
4
5 ε−

7
5/2Ω(

√
log(1/ε))), and with a success probability of ≥ 1/2

(which can be amplified by repetition) by union bound.
A small detail is that when n is so small that n7/10 < ε−2/5, ∆0 < 1 and our reasoning falls

apart. In such cases, one can simply set ∆0 = 1 and the running time still holds.

4 Approximating Partition

In this section, we will solve the following problem.

Problem 2. Assume ε ∈ (0, 1/2) and 1/ε ∈ N
+. Given a set X of n distinct integers in the interval

[1/ε, 2/ε), compute a set A ⊂ N that n-additively approximates S(X).

By a tedious reduction that is heavily based on known techniques, one can show the following.

Lemma 4.1. If for some c ≥ 1, Problem 2 can be solved in Õ(n + 1/εc) time, then (1 − ε)-
approximating Partition can also be solved in Õ(n+ 1/εc) time.

Lemma 4.1 will be proved in the appendix.
Now we proceed to describe our main algorithm for solving Problem 2.
In the following lemma, we merge the approximations of S(X1),S(X2) and obtain an approxi-

mation of S(X1 ⊎X2). When X1,X2 come from a short interval [ℓ, ℓ+ d], we can use densification
via 2D FFT to obtain a speedup over the straightforward algorithm.

Lemma 4.2. Let δ ∈ (0, 1/2), and ℓ, d, t,∆ ∈ N
+ such that d ≤ ℓ ≤ t.

Let X1,X2 ⊆ N
+ ∩ [ℓ, ℓ+ d] be two integer sets. Given A1, A2 ⊂ N as input where for i ∈ {1, 2},

Ai is an (1 − δ) approximation of S(Xi) up to t, one can compute a set A ⊂ N
+ of size |A| ≤ Z

that (1− δ,∆ − 1)-approximates S(X1 ⊎X2) up to t, in Õ(Z + |A1|+ |A2|) time, where

Z ≤ O

(

min

{⌈

t

∆

⌉

,
t

ℓ
·
⌈

td

ℓ∆

⌉})

.

Proof. Let ∆̄ := ⌈∆/2⌉. We will run one of the following two algorithms that minimizes Z.

14

Algorithm 1 (1D FFT). For i ∈ {1, 2}, by rounding the integers in Ai down to multiples of ∆̄,
we obtain set A′

i ⊂ ∆̄ · N that (∆̄ − 1)-additively approximates Ai. Then, since A′
i ⊆ [0, t], their

sumset A′
1 +A′

2 can be computed by FFT in Õ(⌈t/∆̄⌉) ≤ Õ(⌈t/∆⌉) time. Note that A := A′
1 +A′

2

approximates A1 + A2 with additive error at most 2(∆̄ − 1) ≤ ∆ − 1, so A is a (1 − δ,∆ − 1)-
approximation of S(X1 ⊎X2) up to t, due to Proposition 2.4.

Algorithm 2 (Densification with 2D FFT). For every a ∈ Ai, there exists s ∈ S(Xi; t) such
that 0 ≤ s− a ≤ sδ. Note that s is the sum of at most t/ℓ many integers from [ℓ, ℓ+ d], so s can be
expressed as s = kℓ+ b′ for some k ∈ N∩ [0, t/ℓ] and 0 ≤ b′ ≤ dt/ℓ. Hence, a ∈ Ai can be expressed
as a = kℓ + b for some k ∈ N ∩ [0, t/ℓ] and −sδ ≤ b ≤ dt/ℓ. Then, by rounding b down to integer
multiples of ∆̄, we obtain A′

i ⊂ N that (∆̄− 1)-additively approximates Ai, such that every a′ ∈ A′
i

can be expressed as
a′ = kℓ+ j∆̄,

for some k ∈ N ∩ [0, t/ℓ] and j ∈ Z ∩ [−1 − sδ/∆̄, dt/(ℓ∆̄)]. Using this 2-dimensional (k, j) repre-
sentation of A′

i, we can compute A′
1 +A′

2 using 2D FFT (Lemma 2.1): the first dimension has size
O(t/ℓ), and the second dimension has size at most

dt/(ℓ∆̄) + sδ/∆̄ +O(1) ≤ O

(⌈

td

ℓ∆

⌉)

,

where the inequality follows from s ≤ t and an assumption

δ ≤ O(d/ℓ), (5)

which will be justified later. Hence, the running time of this 2D FFT is

Õ

(

t

ℓ
·
⌈

td

ℓ∆

⌉)

.

Similarly to Algorithm 1, one also can show that in this case A := A′
1 + A′

2 is a (1 − δ,∆ − 1)-
approximation of S(X1 ⊎X2) up to t.

To justify assumption (5), observe that if δ ≥ d/(ℓ + d) holds instead, or equivalently, (1 −
δ)(ℓ + d) ≤ ℓ, then one can round every integer in X1,X2 ⊂ [ℓ, ℓ + d] down to exactly ℓ while still
ensuring (1− δ) approximation, and hence immediately obtain an A ⊂ ℓ ·N of size |A| ≤ ⌈t/ℓ⌉ that
(1− δ)-approximates S(X1 ⊎X2) up to t.

We then apply Lemma 4.2 with scaling, and obtain the following lemma that has purely multi-
plicative approximation.

Lemma 4.3. Let δ, δ0 ∈ (0, 1/2), and ℓ, d, T ∈ N
+ such that d ≤ ℓ ≤ T .

Let X1,X2 ⊆ N
+ ∩ [ℓ, ℓ+ d] be two integer sets. Given A1, A2 ⊂ N as input where for i ∈ {1, 2},

Ai is an (1 − δ) approximation of S(Xi) up to T , one can compute a set A ⊂ N
+ of size |A| ≤ Z

that (1− δ − δ0)-approximates S(X1 ⊎X2) up to T , in Õ
(

Z + (|A1|+ |A2|) log(2T/ℓ)
)

time, where

Z ≤ O

(

min

{

log(2T/ℓ)

δ0
,
T

ℓ
·
⌈

d

ℓδ0

⌉})

.

15

Proof. Initialize set A = {0}. We iterate over all r being integer powers of 2 such that ℓ/6 ≤ r ≤ T .
For each r, apply Lemma 4.2 to A1 and A2 with t := 6r and ∆ := ⌈δ0r⌉, and obtain a set
Ar ⊆ N ∩ [0, 6r] that (1 − δ, ⌈δ0r⌉ − 1)-approximates S(X1 ⊎ X2) up to 6r. We then insert all
elements in Ar ∩ [r, 6r] into A. We will show that eventually A is a (1 − δ0 − δ)-approximation of
S(X1 ⊎X2) up to T .

Observe that for every a ∈ Ar ∩ [r, 6r], there exists s ∈ S(X1 ⊎X2) such that a ≤ s and

a ≥ (1− δ)s − (⌈δ0r⌉ − 1)

> (1− δ)s − δ0r

≥ (1− δ − δ0)s,

where the last step follows from s ≥ a ≥ r.
Conversely, for every positive s ∈ S(X1 ⊎ X2;T) (which must satisfy ℓ ≤ s ≤ T), let r be a

power of two such that 3r ≤ s ≤ 6r. Then there exists a ∈ Ar such that a ≤ s ≤ 6r and

a ≥ (1− δ)s − (⌈δ0r⌉ − 1)

≥ (1− δ)s − δ0r

≥ s/2− r/2

≥ r,

so a ∈ Ar ∩ [r, 6r] and hence will be included in A, and similarly as before we have a ≥ (1− δ0− δ)s.
Hence, we have established that A is a (1− δ0 − δ)-approximation of S(X1 ⊎X2) up to T .

It remains to bound the total running time and the size of A. There are O(log(2T/L)) many
iterations of r, where for each r ∈ [ℓ/6, T] with t := 6r and ∆ := ⌈δ0r⌉, Lemma 4.2 gives the upper
bound

Zr ≤ O

(

min

{⌈

t

∆

⌉

,
t

ℓ
·
⌈

td

ℓ∆

⌉})

≤ O

(

min

{⌈

r

δ0r

⌉

,
r

ℓ
·
⌈

rd

ℓδ0r

⌉})

≤ O

(

min

{⌈

1

δ0

⌉

,
r

ℓ
·
⌈

d

ℓδ0

⌉})

.

Hence, summing over all powers of two in the range [ℓ/6, T], we have

Z ≤
∑

r

Zr ≤ O

(

min

{

log(2T/ℓ)

δ0
,
T

ℓ
·
⌈

d

ℓδ0

⌉})

.

Lemma 4.3 implies the following immediate corollary by dropping the upper bound T .

Corollary 4.4. Let δ, δ0 ∈ (0, 1/2), and ℓ, d ∈ N
+ such that d ≤ ℓ.

Let X1,X2 ⊆ N
+∩ [ℓ, ℓ+d] be two integer sets of total size |X1|+ |X2| = n. Given A1, A2 ⊂ N as

input where for i ∈ {1, 2}, Ai is an (1− δ) approximation of S(Xi), one can compute a set A ⊂ N
+

of size |A| ≤ Z that (1− δ0− δ)-approximates S(X1⊎X2), in Õ
(

Z+(|A1|+ |A2|) log n
)

time, where

Z ≤ O

(

min

{

1

δ0
,
nd

ℓδ0
+ n

}

· log n
)

.

16

Proof. Immediately follows from Lemma 4.3 by setting T = n · (ℓ+ d), which is an upper bound on
the largest element of S(X1 ⊎X2).

Now, we apply Corollary 4.4 in a divide-and-conquer fashion, to approximate the subset sums
of X ⊆ N

+ ∩ [ℓ, 2ℓ].

Lemma 4.5. Let δ ∈ (0, 1/2) and ℓ ∈ N
+.

Given an integer set X ⊆ N
+ ∩ [ℓ, 2ℓ] of n integers, one can compute a set A ⊂ N

+ that
(1− δ)-approximates S(X), in Õ(n+

√
n/δ) time.

Proof. Let X = {x1, x2, . . . , xn} where ℓ ≤ x1 < x2 < · · · < xn ≤ 2ℓ. Set δ0 := δ/⌈log2 n⌉.
We will use a divide-and-conquer approach to merge the items of X using Corollary 4.4. Build a

balanced binary tree with n leaf nodes representing the items x1, . . . , xn from left to right. At each
internal node representing x[l..r], we use Corollary 4.4 to merge the results of the two child nodes
(representing x[l..m] and x[m+1..r] respectively, where m = ⌊(l+r)/2⌋), and obtain an approximation
of S({xl, xl+1, . . . , xr}). Finally we obtain an approximation of S(X) at the root node.

The binary tree has ⌈log2 n⌉ levels, where each level of applying Corollary 4.4 worsens the
approximation factor by δ0. Hence, the overall approximation factor of S(X) is 1−δ0·⌈log2 n⌉ = 1−δ
as required.

It remains to bound the total running time of all invocations of Corollary 4.4. Note that in each
invocation, the (|A1|+ |A2|) log n summand in the stated time complexity is always absorbed (up to
log n factors) by the output sizes of the two child nodes, which are in turn bounded by the running
times of these two child invocations. So it suffices to bound the sum of the Z quantity stated in
Corollary 4.4.

We separately bound for each level of the binary tree. At the i-th level (0 ≤ i < ⌈log2 n⌉), there
are at most mi = 2i invocations of Corollary 4.4, where each invocation involves at most ni = ⌈n/2i⌉
items in X. Note that nimi ≤ 2n. Suppose these mi invocations involve x[1..k1], x[k1+1..k2], . . . ,
x[kmi−1+1..n] respectively. Then the j-th invocation has d value (stated in Corollary 4.4) at most
dj ≤ xkj − xkj−1

. Hence, the sum of these d values is at most

mi
∑

j=1

dj ≤
mi
∑

j=1

(xkj − xkj−1
) ≤ xn − x1 ≤ ℓ. (6)

Now we are ready to bound the sum of the Z quantity over the mi invocations at level i
(0 ≤ i < ⌈log2 n⌉). We consider two cases.

• Case 1: ni ≤
√
n.

Then, by Corollary 4.4,

mi
∑

j=1

Zj ≤
mi
∑

j=1

(

nidj
ℓδ0

+ ni

)

· log n

=

(

ni
∑mi

j=1 dj

ℓδ0
+mini

)

· log n

≤
(

ni

δ0
+mini

)

· log n (by (6))

≤ Õ

(√
n

δ0
+ n

)

.

17

• Case 2: ni >
√
n.

Then, mi ≤ 2n/ni < 2
√
n. By Corollary 4.4,

mi
∑

j=1

Zj ≤ mi ·
1

δ0
· log n

≤ Õ(
√
n/δ0).

Hence, in either case we have
∑mi

j=1 Zj ≤ Õ(n+
√
n/δ). Hence, the total running time over all levels

0 ≤ i < ⌈log2 n⌉ is also Õ(n+
√
n/δ).

Finally, we solve Problem 2 by combining Lemma 4.5 with the additive combinatorics results of
[GM91, BW21].

Lemma 4.6. We can solve Problem 2 in Õ
(

n+min{ε−1n1/2, ε−1 + ε−2/n3/2}
)

time, which is at

most Õ(n+ 1/ε5/4) .

Proof. Recall that in Problem 2, for ε > 0 where ℓ = 1/ε is an integer, we are given a set X ⊆
N
+ ∩ [ℓ, 2ℓ) of n distinct integers, and need to compute a set A ⊂ N that n-additively approximates

S(X).
We will choose to run one of the following two algorithms depending on the parameters.

Algorithm 1. Directly apply Lemma 4.5 with δ := ε, in Õ(n+
√
n/ε) time.

When n ≤ Õ(1/ε1/2), the running time of Algorithm 1 is Õ(n+ 1/ε5/4).

Algorithm 2. Let σ = Σ(X), and let λ be the threshold value from Theorem 2.7 satisfying
λ = Θ̃(ℓ2/n). The following algorithm applies when λ ≤ σ/2, which holds in particular when
1/ε ≪ n2.

Initialize A = ∅. We set δ := n/(n+λ), and apply Lemma 4.5 in Õ(n+
√
n/δ) time to compute

a set Aδ that (1 − δ)-approximates S(X). Observe that Aδ ∩ [0, λ] is an n-additive approximation
of S(X) up to λ. Hence, we insert all elements in Aδ ∩ [0, λ] to A.

Then, using the data structure from Lemma 2.7, we compute an n-additive approximation of
S(X) ∩ [λ, σ/2] and insert them into A. To do this, we start from the left endpoint λ of the
interval [λ, σ/2], and each time use binary search (implementable using range queries supported by
Lemma 2.7) to find the next subset sum in the interval, and then jump n steps to the right since

we allow an additive error of n. The time complexity is O(⌈σ/2−λ
n ⌉ · log σ) ≤ Õ(ℓ).

Now we have constructed A that n-additively approximates S(X) up to σ/2. Using the simple
fact that t ∈ Σ(X) if and only if σ − t ∈ Σ(X), we can symmetrically use A to obtain an approx-
imation of the remaining half. Specifically, letting A′ := {σ − a− n : a ∈ A}, it is straightforward
to verify that A ∪A′ is an n-additive approximation of S(X) (up to σ). So we return A ∪A′.

The overall time complexity of Algorithm 2 is

Õ(n+ ℓ+
√
n/δ) ≤ Õ

(

n+ 1/ε +

√
n(n+ λ)

n

)

≤ Õ

(

n+ 1/ε +
1/ε2

n3/2

)

.

When n ≫ 1/ε1/2, the running time is Õ(n+ 1/ε5/4).

18

Combined with the reduction in Lemma 4.1, this proves our main Theorem 1.2.

References

[ABHS19] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-
based lower bounds for subset sum and bicriteria path. In Proceedings of the
30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 41–57, 2019.
doi:10.1137/1.9781611975482.3. 1

[AKM+87] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208,
November 1987. doi:10.1007/BF01840359. 11

[BC22] Karl Bringmann and Alejandro Cassis. Faster knapsack algorithms via bounded
monotone min-plus-convolution. In 49th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229
of LIPIcs, pages 31:1–31:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICALP.2022.31. 1

[BCD+14] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hur-
tado, John Iacono, Stefan Langerman, Mihai Pǎtraşcu, and Perouz Taslakian.
Necklaces, convolutions, and x+y. Algorithmica, 69(2):294–314, June 2014.
doi:10.1007/s00453-012-9734-3. 7

[Bla10] Richard E Blahut. Fast algorithms for signal processing. Cambridge University Press,
2010. 4

[BN21] Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating
subset sum and partition. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages
1797–1815. SIAM, 2021. doi:10.1137/1.9781611976465.108. 1, 3, 5

[BW21] Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset
sum. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1777–1796. SIAM,
2021. doi:10.1137/1.9781611976465.107. 2, 6, 18, 22

[Cha18] Timothy M. Chan. Approximation Schemes for 0-1 Knapsack. In Proceedings
of the 1st Symposium on Simplicity in Algorithms (SOSA), pages 5:1–5:12, 2018.
doi:10.4230/OASIcs.SOSA.2018.5. 1, 2, 3, 5, 6, 7, 11

[CMWW19] Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems
equivalent to (min,+)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, January
2019. doi:10.1145/3293465. 1

[CW16] Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and
more: Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1246–1255, 2016.
doi:10.1137/1.9781611974331.ch87. 7

19

https://doi.org/10.1137/1.9781611975482.3
https://doi.org/10.1007/BF01840359
https://doi.org/10.4230/LIPIcs.ICALP.2022.31
https://doi.org/10.1007/s00453-012-9734-3
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1137/1.9781611976465.107
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1145/3293465
https://doi.org/10.1137/1.9781611974331.ch87

[GL79] George Gens and Eugene Levner. Computational complexity of approximation algo-
rithms for combinatorial problems. In Mathematical Foundations of Computer Science
1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979,
volume 74 of Lecture Notes in Computer Science, pages 292–300. Springer, 1979.
doi:10.1007/3-540-09526-8_26. 1

[GM91] Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense subset-
sum problem. SIAM J. Comput., 20(6):1157–1189, 1991. doi:10.1137/0220072. 2, 3,
6, 18, 22

[IK75] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM (JACM), 22(4):463–468, October
1975. doi:10.1145/321906.321909. 1

[Jin19] Ce Jin. An improved FPTAS for 0-1 knapsack. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.76. 1, 2, 3, 6, 7, 11

[JK18] Klaus Jansen and Stefan E.J. Kraft. A faster fptas for the unbounded
knapsack problem. European Journal of Combinatorics, 68:148 – 174, 2018.
doi:10.1016/j.ejc.2017.07.016. 1

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972. 1

[KMPS03] Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An effi-
cient fully polynomial approximation scheme for the subset-sum problem. J. Comput.
Syst. Sci., 66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0. 1

[KP99] Hans Kellerer and Ulrich Pferschy. A new fully polynomial time approximation scheme
for the knapsack problem. Journal of Combinatorial Optimization, 3(1):59–71, July
1999. doi:10.1023/A:1009813105532. 1

[KP04] Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with
an fptas for the knapsack problem. Journal of Combinatorial Optimization, 8(1):5–11,
March 2004. doi:10.1023/B:JOCO.0000021934.29833.6b. 1

[KPS17] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained
complexity of one-dimensional dynamic programming. In Proceedings of the 44th In-
ternational Colloquium on Automata, Languages, and Programming (ICALP), pages
21:1–21:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.21. 1

[KX19] Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for sub-
set sum. ACM Trans. Algorithms, 15(3):40:1–40:20, June 2019. doi:10.1145/3329863.
3, 24

[Law79] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics
of Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339. 1, 4

20

https://doi.org/10.1007/3-540-09526-8_26
https://doi.org/10.1137/0220072
https://doi.org/10.1145/321906.321909
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.1016/j.ejc.2017.07.016
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.1023/A:1009813105532
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.1145/3329863
https://doi.org/10.1287/moor.4.4.339

[Lev03] Vsevolod F Lev. Blocks and progressions in subset sum sets. ACTA ARITHMETICA-
WARSZAWA-, 106(2):123–142, 2003. 6, 22

[MWW19] Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. A subquadratic ap-
proximation scheme for partition. In Proceedings of the 30th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 70–88, 2019. Full version at
https://arxiv.org/abs/1804.02269v2. doi:10.1137/1.9781611975482.5. 1, 3, 5,
23, 24

[Rhe15] Donguk Rhee. Faster fully polynomial approximation schemes for knapsack prob-
lems. Master’s thesis, Massachusetts Institute of Technology, 2015. URL:
http://hdl.handle.net/1721.1/98564. 1

[Sár94] A. Sárközy. Fine addition theorems, II. Journal of Number Theory, 48(2):197–218,
1994. 2, 6, 22

[Wil14] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 664–673,
2014. doi:10.1145/2591796.2591811. 7, 13

A Know reductions from the Knapsack Problem

Recall that we defined the following simpler problem.

Problem 1. Assume ε ∈ (0, 1/2) and 1/ε ∈ N
+. Given a list I of items (p1, w1), . . . , (pn, wn) with

weights wi ∈ N and profits pi being multiples of ε in the interval [1, 2), compute a profit function
that (1− ε)-approximates fI up to 2/ε.

Lemma 3.1. If for some c ≥ 2, Problem 1 can be solved in Õ(n + 1/εc) time, then (1 − ε)-
approximating Knapsack can also be solved in Õ(n+ 1/εc) time.

Proof. First, we can reduce ε so that 1/ε becomes an integer.
We will restrict the profit values into small intervals, as follows: divide the items into O(log

maxj pj
minj pj

) =

O(log ε−1) groups (see Section 2.3), each containing items with pi ∈ [2j , 2j+1] for some j (which can
be rescaled to [1, 2]). Finally, use the merging lemma Lemma 3.4 to merge the profit functions of
all groups, in Õ(n+ ε−2) overall time.

Now, having restricted the profit values into [1, 2), we can round every profit value to a multiple
of ε, which incurs only (1−O(ε)) approximation factor in total.

Finally, the following greedy lemma takes care of the case with total profit above Ω(ε−1).

Lemma A.1. Suppose pi ∈ [1, 2] for all i ∈ I. For B = Ω(ε−1), the profit function fI can be
approximated with additive error O(εB) in O(n log n) time.

Proof. Simply sort the items in nonincreasing order of efficiency pi/wi, and define the profit function
f̃ resulting from greedy, with function values 0, p1, p1 + p2, . . . , p1 + · · · + pn and x-breakpoints
0, w1, w1+w2, . . . , w1+ · · ·+wn. It clearly approximates fI with an additive error of maxi pi ≤ 2 ≤
O(εB) for B = Ω(ε−1).

This greedy approach achieves (1 − O(ε))-approximation for large profit values. Hence, it is
sufficient to approximate fI up to 2/ε.

21

https://arxiv.org/abs/1804.02269v2
https://doi.org/10.1137/1.9781611975482.5
http://hdl.handle.net/1721.1/98564
https://doi.org/10.1145/2591796.2591811

B Proof of Lemma 2.6

We need several results on dense subset sums developed by a series of works including [Sár94, Lev03,
GM91, BW21]. The following definitions and theorems are from [BW21]. The sets considered here
contain distinct positive integers.

Definition B.1 (Density). A set X ⊂ N
+ is δ-dense if it satisfies |X|2 ≥ δ ·maxX.

Definition B.2 (Almost Divisor). Let X(d) := X ∩ dZ denote the set of all numbers in X that are
divisible by d. Let X(d) := X \X(d) denote the set of all numbers in X not divisible by d. We say
an integer d > 1 is an α-almost divisor of X if |X(d)| ≤ α · Σ(X)/|X|2.

Theorem B.3 ([BW21, Theorem 4.1]). Let δ ≥ 1 and α ≤ δ/16. Given an δ-dense set X of size
n, there exists a positive integer d such that X ′ := X(d)/d is δ-dense and has no α-almost divisor,
and the following additional properties are satisfied:

1. d ≤ 4Σ(X)/|X|2,

2. |X ′| ≥ 0.75|X|,

3. Σ(X ′) ≥ 0.75Σ(X)/d.

Theorem B.4 ([BW21, Theorem 4.2]). Let X be a multi-set and set

Cδ := 1699200 · log(2n) log2(2),
Cα := 42480 · log(2),
Cλ := 169920 · log(2).

If X is Cδ-dense and has no Cα-almost divisor, then for λX := Cλ · (maxX) · Σ(X)/|X|2 we have

(

[λX ,Σ(X)− λX] ∩ Z
)

⊆ S(X).

Now we are ready to prove Lemma 2.6.

Lemma 2.6. Let n distinct positive integers X = {x1, . . . , xn} ⊆ [ℓ, 2ℓ] be given, where ℓ =
o(n2/ log n).

Then, for a universal constant c ≥ 1, for every cℓ2/n ≤ t ≤ Σ(X)/2, there exists t′ ∈ S(X) such
that 0 ≤ t′ − t ≤ 8ℓ/n.

Proof. Let Cδ = Θ(log n), Cα = Θ(1), Cλ = Θ(1) be defined as in Theorem B.4. Then, X is Cδ-
dense since Cδ · ℓ = o(n2). Let d be the positive integer guaranteed by Theorem B.3 such that
X ′ := X(d)/d is Cδ-dense and has no Cα-almost divisor.

Then, by Theorem B.4, for λX′ := Cλ · (maxX ′) · Σ(X ′)/|X ′|2 we have

(

[λX′ ,Σ(X ′)− λX′] ∩ Z
)

⊆ S(X ′).

Since X ′ is Cδ-dense, we have λX′/Σ(X ′) = Cλ · (maxX ′)/|X ′|2 ≤ Cλ/Cδ < 0.1.

22

Now, let λ := d · λX′ . From Property 3 in Theorem B.3, we know that

Σ(X)/2

d
≤ 2

3
Σ(X ′) < Σ(X ′)− λX′ .

Hence, given any λ ≤ t ≤ Σ(X)/2, we have

λX′ ≤ ⌈t/d⌉ ≤ Σ(X ′)− λX′ .

So ⌈t/d⌉ ∈ S(X ′), which implies t′ := d · ⌈t/d⌉ ∈ S(X). From Property 1 in Theorem B.3, we have

0 ≤ t′ − t < d ≤ 4 · |X| · (2ℓ)/|X|2 = 8ℓ/n.

Finally, we upper-bound λ as

λ = d · Cλ · (maxX ′) · Σ(X ′)/|X ′|2

≤ d · Cλ · (maxX ′)2/|X ′|
≤ d · Cλ · (2ℓ/d)2/|X ′|
≤ d · Cλ · (2ℓ/d)2/(0.75n) (by Property 2)

= (16Cλ/3) ·
ℓ2

dn
≤ O(ℓ2/n).

C Known reductions from the Partition Problem

Recall that we defined the following simpler problem.

Problem 2. Assume ε ∈ (0, 1/2) and 1/ε ∈ N
+. Given a set X of n distinct integers in the interval

[1/ε, 2/ε), compute a set A ⊂ N that n-additively approximates S(X).

In the following, we will reduce Partition to this problem.
By a simple greedy argument, we can assume OPT ≥ t/2.

Lemma C.1 (e.g., [MWW19, Lemma 4.3]). One may assume w.l.o.g. that for any Subset Sum
instance OPT ≥ t/2. Otherwise the instance can be solved exactly in Õ(n) time.

Then, we have the following important lemma about (1− ε)-approximating Partition. The key
insight behind this lemma was first observed in [MWW19], indicating that approximating Partition
is much easier than approximating general Subset Sum instances.

Lemma C.2 (c.f. [MWW19]). Let X ⊂ N
+ be a multiset with sum of elements σ = Σ(X), and

let ε ∈ (0, 1/2). Given a set A ⊂ N that εσ/4-additively approximates S(X), one can immediately
solve (1− ε)-approximation Partition on X.

Proof. Recall that t = σ/2, and OPT = max{Σ(Y) : Σ(Y) ≤ t, Y ⊆ X}.
Given A, let a := max{a ∈ A : a ≤ t}. We claim that

(1− ε)OPT ≤ min{a, t(1− ε/2)} ≤ OPT,

which allows us to solve (1− ε)-approximation Partition on X.
We prove this claim by separately considering two cases.

23

• Case 1: a ≤ t(1− ε/2).

By definition of A, there exists s ∈ S(X) such that s−εσ/4 ≤ a ≤ s. We have s ≤ a+εσ/4 ≤
t(1− ε/2)+ εσ/4 = t, so s ∈ S(X; t) and hence OPT ≥ s ≥ a. By Lemma C.1 we can assume
t/2 ≤ OPT ≤ t. Then by definition of A there exists a′ ∈ A such that a′ ≤ OPT ≤ t and
a′ ≥ OPT− εσ/4 ≥ OPT− εOPT. Then, by definition of a, we have a ≥ a′ ≥ (1− ε)OPT.

Hence, we have established

(1− ε)OPT ≤ a = min{a, t(1 − ε/2)} ≤ OPT.

• Case 2: a > t(1− ε/2).

By definition of A, there exists s ∈ S(X) such that s−εσ/4 ≤ a ≤ s. We have s ≤ a+εσ/4 ≤
t+ εσ/4 = t(1 + ε/2), and s ≥ a > t(1− ε/2).

By taking complement, we know σ − s ∈ S(X) as well. Using the crucial fact that t = σ/2,
we see that min{s, σ − s} ∈ S(X; t) and hence OPT ≥ min{s, σ − s}. Then, since s ∈
(t(1− ε/2), t(1 + ε/2)], we have min{s, σ − s} ≥ t(1− ε/2).

Hence, we have established

(1− ε)OPT ≤ t(1− ε/2) = min{a, t(1− ε/2)} ≤ OPT.

Using Lemma C.2, we can solve (1− ε)-approximation Partition by finding an additive approx-
imation of S(X).

We are going to further simplify the input instance X. First we need the following lemma,
which reduces the number of duplicate items in the input, by grouping them into powers of two.
The proof of this lemma appeared in [MWW19], based on an earlier proof of a similar statement
[KX19, Lemma 2.4].

Lemma C.3 ([MWW19, Lemma 4.1]). Given a multiset S of n integers from [t], one can compute
a multiset T in O(n log n) time such that:

• S(S; t) = S(T ; t).

• |T | ≤ |S|.

• No element in T has multiplicity exceeding two.

• For every y ∈ T , there is a corresponding x ∈ S such that y = 2k · x for some k ∈ N.

Now we prove the main lemma.

Lemma 4.1. If for some c ≥ 1, Problem 2 can be solved in Õ(n + 1/εc) time, then (1 − ε)-
approximating Partition can also be solved in Õ(n+ 1/εc) time.

Proof. Let X ⊂ N
+ be the input multiset of the (1− ε)-Partition problem. We can without loss of

generality assume 1/ε is an integer.
Recall that t = σ/2 = Σ(X)/2. We define a multiset Y ⊂ N

+ as follows: for every x ∈ X, round
x down to the nearest integer multiple of ⌈ σ

100n/ε⌉, denoted as y, and insert y into Y if y is nonzero.

24

Since the total incurred additive loss is at most n · (⌈ σ
100n/ε ⌉ − 1) ≤ εσ

100 , we know that S(Y) is an

εσ/100-additive approximation of S(X).
Now, we can without loss of generality assume y ∈ [1/ε, 100n/ε2] ∩ N

+ for all y ∈ Y , since
otherwise we could simply scale all elements in X,Y (as well as σ, t).

Then, define another multiset Z ⊂ N
+ as follows: for every y ∈ Y , round y down to 2k · z0 for

some k ∈ N ∩ [0, log2(100n/ε) + 1] and z0 ∈ N
+ ∩ [100/ε, 200/ε), and insert 2k · z0 into Z. Observe

that, every y ∈ Y incurs a multiplicative error of at most ε/100 after rounding. Hence, S(Z) is
an (1− ε/100) approximation of S(Y). In particular, S(Z) approximates S(Y) with additive error
at most (ε/100) · Σ(Y) ≤ εσ/100. Combined with previous discussion, this means that S(Z) is an
εσ/50-additive approximation of S(X).

Then, we process Z using Lemma C.3, and obtain another set Z ′ ⊂ N
+ so that S(Z ′) =

S(Z), and the multiplicity of any element in Z ′ is at most 2. Moreover, by the fourth property of
Lemma C.3, we still have that every z ∈ Z ′ can be expressed as z = 2k · z0 for some non-negative
integer k ≤ O(log(n/ε)) and integer z0 ∈ N

+ ∩ [100/ε, 200/ε). Now, we can partition Z ′ into
O(log(n/ε)) groups so that each group contains distinct integers from 2k · (N+ ∩ [100/ε, 200/ε)) for
some non-negative integer k ≤ O(log(n/ε)).

Pick a smaller ε′ = Θ
(

ε
log(n/ε)

)

(assuming ε/ε′ ∈ N
+). For each group Z ′

j mentioned above,

we compute a set Aj ⊆ N that approximates S(Z ′
j) with ε′Σ(Z ′

j)/100 additive error. This can be

done as follows: recall that Z ′
j contains distinct integers from 2k · (N+ ∩ [100/ε, 200/ε)); we scale

the integers in Z ′
j to (ε/ε′) · (N+ ∩ [100/ε, 200/ε⌉)) and then invoke the algorithm for Problem 2

which approximates S(Z ′
j) with additive error |Z ′

j| ≤
Σ(Z′

j)

(ε/ε′)·100/ε = ε′Σ(Z ′
j)/100 as desired. The total

running time for these invocations is (up to poly log(n/ε) factors)
∑

j(|Zj |+(100/ε′)c) ≤ Õ(n+1/εc).
Now, using the computed Aj ⊆ N that approximates S(Z ′

j) with ε′Σ(Z ′
j)/100 additive error,

we will compute an approximation of S(Z ′) (recall that Z ′ =
⋃

j Z
′
j is a partition). To do this, we

first round every element in every Aj down to integer multiples of ⌈ε′σ/100⌉, and this rounded A′
j

still approximates S(Z ′
j) with additive error at most ε′Σ(Z ′

j)/100 + ε′σ/100 ≤ ε′σ/50. Finally, we
use FFT to compute the sumset of all these A′

j (there are O(log(n/ε)) of them), and this will be
our approximation of S(Z ′). The accumulated additive error here is at most O(log(n/ε)) · ε′σ/50 ≤
εσ/50, and the running time of these FFTs is O(log(n/ε)) · Õ

(

σ
⌈ε′σ/100⌉

)

≤ Õ(1/ε).

We have obtained an εσ/50-additive approximation of S(Z ′). Previously we established S(Z ′) =
S(Z) and S(Z) is an εσ/50-additive approximation of S(X), so we have obtained an εσ/50-additive
approximation of S(X). By Lemma C.2, this is sufficient for solving (1−ε)-approximation Partition
on X.

The overall running time of this reduction is Õ(n+ 1/εc).

25

	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Technical Overview
	1.3.1 Knapsack
	1.3.2 Partition

	1.4 Paper Organization

	2 Preliminaries
	2.1 Problem Statements
	2.2 Sumsets and Subset Sums
	2.3 Knapsack Problem and Profit functions
	2.4 (1-,) approximation up to t
	2.5 Additive Combinatorics

	3 Approximating Knapsack
	3.1 Known Lemmas
	3.2 Greedy Exchange Argument via Dense Subset Sum
	3.3 Approximation using Delta-multiples of small set Delta
	3.4 Random Partitioning

	4 Approximating Partition
	A Know reductions from the Knapsack Problem
	B Proof of lemma:density
	C Known reductions from the Partition Problem

