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Abstract

Checking whether a system of linear equations is consistent is a basic computational problem with
ubiquitous applications. When dealing with inconsistent systems, one may seek an assignment that minimizes
the number of unsatisfied equations. This problem is NP-hard and UGC-hard to approximate within any
constant even for two-variable equations over the two-element field. We study this problem from the point
of view of parameterized complexity, with the parameter being the number of unsatisfied equations. We
consider equations defined over Euclidean domains—a family of commutative rings that generalize finite and
infinite fields including the rationals, the ring of integers and many other structures. We show that if every
equation contains at most two variables, the problem is fixed-parameter tractable. This generalizes many
eminent graph separation problems such as Bipartization, Multiway Cut and Multicut parameterized by the
size of the cutset. To complement this, we show that the problem is W[1]-hard when three or more variables
are allowed in an equation, as well as for many commutative rings that are not Euclidean domains. On the
technical side, we introduce the notion of important balanced subgraphs, generalizing important separators
of Marx [Theor. Comput. Sci. 2006] to the setting of biased graphs. Furthermore, we use recent results
on parameterized MinCSP [Kim et al., SODA 2021] to efficiently solve a generalization of Multicut with
disjunctive cut requests.

1 Introduction

Algorithms for systems of linear equations have been studied since ancient times [16]. As H̊astad [19] aptly
remarks, for computer science “[t]his problem is in many regards as basic as satisfiability”. Well-known methods
like Gaussian elimination can recognize and solve consistent systems of equations. However, these methods are not
well suited for dealing with inconsistent systems. In the optimization version of the problem called MaxLin one
seeks an assignment maximizing the number of satisfied equations. In its dual, called MinLin, the objective is to
minimize the number of unsatisfied equations. Both MaxLin and MinLin remain NP-hard in severely restricted
settings, which has motivated an extensive study of approximation algorithms for these problems. However,
the problems resist approximation within reasonable bounds: in particular, MinLin over the two-element field
restricted to equations with at most two variables is not approximable within any constant factor under the Unique
Games Conjecture (UGC)—in fact, it has been suggested that constant-factor inappoximability of this version
of MinLin may be equivalent to UGC (see Definition 3 in [27] and the following discussion). This motivates
exploring other approaches to resolving inconsistent systems.

Crowston et al. [9] initiated the study of the parameterized complexity of MinLin with the parameter k being
the number of unsatisfied equations. They focused on systems over the two-element field and proved that when
every equation has at most two variables, the problem admits a O∗(2k) 1 algorithm, while allowing three or more
variables in an equation leads to W[1]-hardness. This rules out the existence of an algorithm for this problem
running in O∗(f(k)) time for any computable function f under the standard assumption FPT ̸= W[1]. In this
paper we substantially extend the study of the parameterized complexity of MinLin by considering equations
over commutative rings. Thus, we study Euclidean domains, which include the finite fields Fq, infinite fields such
as the rationals Q, the ring of integers Z, the Gaussian integers Z[i], the ring of polynomials F[x] over a field F
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Problem Solution Method Reduces to

Bipartization [37] in 2004 Iterative compression Min-2-Lin(F2)
q-Multiway Cut [33] in 2006 Important separators (IS) Min-2-Lin(Fq)
Multiway Cut [33] in 2006 Important separators Min-2-Lin(Q)
Multicut [4], [35]† in 2011 †Random sampling of IS Min-2-Lin(Z)

Table 1: Graph separation problems related to Min-2-Lin.

and many more structures. Perhaps unsurprisingly, we show that with three or more variables per equation, the
problem over Euclidean domains is W[1]-hard (in fact, the hardness proof only uses coefficients 0, 1 and −1, so
the result holds for equations over any abelian group). On the other hand, Min-2-Lin, where each equation
has two variables, turns out to be much more interesting: the problem is fixed-parameter tractable for every
effective Euclidean domain, i.e. those that admit representations such that the basic operations are polynomial-
time computable and multiplication is well behaved (see Property 4.1 for details). Note that asking about the
parameterized complexity of Min-2-Lin over a domain only makes sense if the problem of checking consistency
of a system is not NP-hard (otherwise, the problem is intractable even for k = 0). This is where the effectiveness
of Euclidean domains becomes important. To the best of our knowledge, there are no published algorithms for
solving systems of equations over Euclidean domains in the literature even for the special case with at most two
variables per equation. Thus, we develop methods for checking consistency of such systems in Section 4. These
methods form the underpinning of our fpt algorithm for Min-2-Lin over Euclidean domains.

Background. We start with a few basic definitions. Let D = (D; +, ·) denote a commutative ring. An expression
c1 · x1 + · · ·+ cr · xr = c is a (linear) equation over D if c1, . . . , cr, c ∈ D and x1, . . . , xr are variables with domain
D. Let S denote a set (or equivalently a system) of equations over D. We let V (S) denote the variables appearing
in S, and we say that S is consistent if there is an assignment φ : V (S) → D that satisfies all equations in S.
An instance of the computational problem r-Lin(D) is a system S of equations in r variables over D, and the
question is whether S is consistent. To assign positive integer weights to the elements of any set Y , we use a
weight function w : Y → N+ and write w(X) for any subset X ⊆ Y as a shorthand for

∑
e∈X w(e). The following

is the main computational problem in this paper.

Min-r-Lin(D)

Instance: An instance S of r-Lin(D), a weight function w : S → N+ and an integer k.
Parameter: k.
Question: Is there a set Z ⊆ S such that S − Z is consistent and w(Z) ≤ k?

Crowston et al. [9] studied the problem Min-r-Lin(F2) and proved that Min-2-Lin(F2) is in FPT. However,
their methods do not seem sufficient to solve Min-2-Lin over structures larger than F2. As a possible
explanation and additional motivation, we note that Min-2-Lin over F2, Fq, Q and Z generalize well-known
graph separation problems that have served as milestones for the development of parameterized algorithms: these
are Bipartization, q-Terminal Multiway Cut, (General) Multiway Cut and Multicut, respectively
(see Table 1 for a short summary of progress).

In Bipartization, given a graph G and an integer k, the goal is to remove at most k edges from the graph to
make it bipartite. To reduce to Min-2-Lin(F2), create a variable for every vertex and add an equation x− y = 1
for every edge {x, y} in G. The parameterized complexity status of this problem was resolved by Reed et al. [37]
using the newly introduced method of iterative compression, which has since become a common opening of fpt
algorithms including those presented in this paper (see Chapter 4 in [10] for many more examples).

In q-Terminal Multiway Cut, given a graph G, a set of q vertices t1, . . . , tq called terminals, and an integer
k, the goal is to remove at most k edges from G to separate the terminals into distinct connected components.
The problem is in P for q = 2 and NP-hard for q ≥ 3. The reduction to Min-2-Lin(Fq) works by introducing an
equality x = y for every edge {x, y} in G, and assigning a distinct field element αi to every terminal ti by adding
equation ti = αi with weight k + 1 (prohibiting its deletion). Note that the construction above does not work if
there are more than q terminals. This limitation does not arise over infinite fields, so Min-2-Lin(Q) generalizes
Multiway Cut with arbitrarily many terminals. Marx [33] presented the first fpt algorithm for Multiway Cut,
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Figure 1: A permutation of {0, 1, 2, 3, 4} not expressible as a linear equation.

which is based on important separators. This work was followed by a string of improvements [5, 42] including the
approach based on linear programming [12, 17] that is especially relevant to our work.

In Multicut, given an graph G, a set of m cut requests (s1, t1), . . . , (sm, tm), and an integer k, the goal is to
remove at most k edges from G to separate si from ti for all i. This problem clearly generalizes Multiway Cut:
a reduction may introduce a request for every pair of terminals. In turn, Min-2-Lin(Z) generalizes it as follows:
add an equation x = y for every edge {x, y} in G; then, for every pair of terminals (si, ti), introduce two new
variables s′i and t′i, and add two equations si = pis

′
i and ti = pit

′
i +1 with weight k+1, where pi is the ith prime

number. Clearly, no path connecting si and ti may exist in a consistent subset of equations, since this would
imply a contradiction (different remainders modulo pi). Moreover, if all cut requests are fulfilled, a satisfying
assignment can be obtained by applying the Chinese Remainder Theorem in each component. The parameterized
complexity status of Multicut was resolved simultaneously by Bousquet et al. [4] and Marx and Razgon [35].
The latter introduced the method of random sampling of important separators, also known as shadow removal.

Another problem related to Min-2-Lin is Unique Label Cover (ULC) [6, 22, 26]. In ULC over an alphabet
Σ, the input is a set of constraints of the form π(x) = y, where x and y are variables and π is a permutation of Σ.
Constraints are consistent if there is an assignment of values from Σ to the variables that satisfy all constraints.
The question is whether the input set can be made consistent by removing at most k constraints. ULC lies at
the heart of the Unique Games Conjecture. In the realm of parameterized complexity, it is known that ULC
is fixed-parameter tractable when parameterized by k + |Σ|, but W[1]-hard when parameterized by k alone. To
connect this problem with Min-2-Lin, consider for example a field F and an equation ax+ by = c with a, b, c ∈ F.
For every value of y there is exactly one value of x that satisfies this equation. Thus, any equation is equivalent
to a permutation constraint over F, and ULC generalizes Min-2-Lin(F). As an immediate consequence, observe
that Min-2-Lin(Fq) is in FPT for all finite fields Fq, and can be solved in O∗(q2k) time using the best known
algorithm for ULC [22, 23]. On the other hand, ULC is strictly more general than Min-2-Lin(F): Consider
Σ = {0, 1, 2, 3, 4} and a permutation π mapping (0, 1, 2, 3, 4) to (1, 0, 3, 2, 4) (see Figure 1). It is easy to see that
no linear equation over F5 defines this permutation.

Results. We prove that Min-2-Lin(D), where D is an efficient Euclidean domain, is fixed-parameter tractable.
For the special case when D is a field, we provide a faster O∗(2O(k log k)) algorithm. Furthermore, if D is a finite,
q-element field, we provide a O∗((2q)k) algorithm improving upon the O∗(q2k) upper bound obtained by reduction
to ULC. To complement the results, we show that Min-3-Lin(D) is W[1]-hard (ruling out the existence of fpt
algorithms for Min-r-Lin(D) when r ≥ 3) and we show that Min-2-Lin(K) is W[1]-hard for certain commutative
rings K that are not Euclidean domains. For example, the hardness result holds if K is isomorphic to the direct
product of nontrivial rings (such as the ring Z/6Z of integers modulo 6).

Important balanced subgraphs. Our main technical contribution is the notion of important balanced subgraphs,
which is a substantial generalisation of the important separators of Marx [33]. We believe that they can be applied
to other problems as well, so we give a general explanation. Consider a parameterized deletion problem where
the input consists of an edge-weighted graph G, an integer k, and a polynomial-time membership oracle to a
family F of minimal forbidden subgraphs of G that we call obstructions. A (sub)graph of G is balanced if it
does not contain any obstructions. The goal is to find a set of edges of total weight at most k that intersects all
obstructions in F . This objective is dual to finding a maximum-weight balanced subgraph of G. For example,
in Bipartization a graph is balanced if it is bipartite, and the set of obstructions consists of all odd cycles.
Wahlström [40] presented a general method based on LP-branching for solving this problem in fpt time when the
obstructions F are a family of cycles with the theta property. This property can roughly be defined as follows: if
a chordal path P is added to a cycle C from F , then at least one of the smaller cycles formed by P and C is also
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Figure 2: An example of a theta graph.

in F . For illustration, consider the theta graph in Figure 2: here C = x1x2x3x4 is a cycle and x2x4 is a chordal
path that cuts it into two smaller cycles C1 = x2x1x4 and C2 = x2x3x4. If C is in the family, then either C1 or
C2 is in the family. For instance, the set of all odd cycles in a graph has the theta property since any chordal
path added to an odd cycle forms an odd and an even cycle. Alternatively, the problem can be defined in terms
of biased graphs. A biased graph is a pair (G,B) where G is a graph and B is a set of simple cycles in G such that
the complement of B has the theta property; cycles outside B are referred to as the unbalanced cycles in (G,B).
Biased graphs are encountered, for instance, in matroid theory [43]. The problem is then to find a set of k edges
that intersects every unbalanced cycle in (G,B). In the case of Graph Bipartization, the set B contains all
even cycles.

It is instructive to approach this global problem by instead considering a local version where a single root
vertex x is distinguished, and the goal is to remove edges of total weight at most k to make the connected
component of x balanced. For a balanced subgraph H of G, define c(H) as the cost of carving H out of G i.e.
the sum of weights on all edges between V (H) and V (G) \ V (H) plus the weights of edges in the subgraph of
G induced by V (H) that are not in H. To solve the global problem, we can choose a root, enumerate solutions
to the local problem i.e. balanced subgraphs of cost at most k that include x, and solve the remaining part
recursively (possibly with some branching to guess the intersection of the local and global solutions). The caveat
is that the number of balanced subgraphs of cost at most k does not have to be bounded by any function of
k. To overcome this obstacle, we need another observation: if there are two balanced subgraphs H1 and H2

such that c(H2) ≥ c(H1) and V (H2) ⊆ V (H1), then H1 is clearly a better choice than H2 both in terms of cost
and in the amount of “work” left in the remaining graph. If the conditions above hold for H1 and H2, we say
that H1 dominates H2. See Figure 3 for an illustration. Formally, we want to compute a set H of important
balanced subgraphs defined analogously to the important separators: for any balanced subgraph H ′ including x
of cost at most k, there is a subgraph H ∈ H such that V (H ′) ⊆ V (H) and c(H ′) ≥ c(H). In other words,
the balanced subgraphs in H are Pareto efficient balanced subgraphs in terms of maximizing the set of covered
vertices and minimizing the weight. However, note that the number of incomparable solutions is not bounded in
k. For example, if the input consists of a single, unbalanced cycle Cn on n vertices, then we may output a single
important balanced subgraph H, with V (H) = V (Cn) and c(H) = 1, but there are n incomparable solutions
with these parameters, produced by deleting any one edge of the cycle. We handle this by proving that there is a
dominating family H of important balanced subgraphs such that |H| ≤ 4k and every balanced subgraph of G is
dominated by some member of H. Moreover, there is an fpt algorithm that computes H by branching based on
the optimum of the half-integral LP-relaxation of the local problem.

We note that important balanced subgraphs strictly generalize important separators: given a graph and two
subsets of vertices, one can recover important separators by computing a dominating family of important balanced
subgraphs—see Example 2.3 for further details. In fact, the bounds achieved are identical: using the important
balanced subgraph framework to enumerate important separators yields at most 4k important separators of
cost at most k, and they can be enumerated in O∗(4k) time, both of which match the bounds for important
separators [5, 33]. Moreover, the increased generality is crucial for our algorithms, since the cost of carving out
a subgraph includes both the cost of a separator and a transversal of unbalanced cycles reachable from the root
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after separation. Thus, important balanced subgraphs can be used for graph separation problems in a more
general sense than simply enumerating graph cuts, e.g. for computing transversals of obstruction families with
the theta property. As we show in what follows, removing a family of obstructions is a key step in our Min-2-Lin
algorithms.

Let us illustrate important balanced subgraphs using a few examples.

• Consider the biased graph (G,B) defined above, where B contains the set of even cycles. Then a balanced
subgraph of (G,B) is precisely a bipartite graph, and our result outputs connected bipartite subgraphs
containing the root vertex x.

• More generally, a group-labelled graph is a graph G in which every oriented edge of G is assigned a group
label γ from a group Γ so that for any edge {u, v} ∈ E(G), the labels observe γ(uv) = γ(vu)−1. Let a cycle
C = (v1, . . . , vn) be balanced if the product γ(v1v2)γ(v2v3) . . . γ(vnv1) of the group labels of the edges of C
is the identity element of Γ. This forms a biased graph (G,B) where B is the class of balanced cycles in G.
Thus the important balanced subgraph theorem can be used to, for example, output connected subgraphs
where every cycle has a length which is a multiple of b for some b ∈ N. This holds even if Γ is non-abelian.

• As a special case of the previous example, consider the Subset Feedback Edge Set problem. In this
problem, the input is a graph G with a set of special edges F ⊆ E(G), and the goal is to find a set of edges
X ⊆ E(G) such that no edge of F is contained in a cycle in G − X. It is easy to observe that the class
of cycles intersecting F has the theta property (and in fact, can be captured as the unbalanced cycles in a
group-labelled graph). Then a subgraph H of G is balanced if any edge of F ∩ E(H) is a bridge in H.

For more examples, see Wahlström [40] and Zaslavsky [43].
From a technical perspective, the result follows from a refined analysis of the LP formulation of Wahlström [40]

for the problem of computing a minimum (vertex) transversal for the set of unbalanced cycles. Wahlström showed
that this can be solved in O∗(4k) time, given oracle access to B, where k is the solution size. The result works
in two parts. First, consider the rooted case outlined above, where the input additionally distinguishes a root
vertex x ∈ V (G) and the task is to find a balanced subgraph of minimum cost, rooted in x. Wahlström provided
a half-integral LP-relaxation for this problem, and showed that it can be used to guide a branching process for
an fpt algorithm computing a min-cost rooted balanced subgraph. Second, the LP-relaxation is shown to have
some powerful persistence properties (see Section 2), that allow the solution from the rooted case to be reused
in solving the general problem. We reformulate and simplify these results for the edge deletion case. We find
that the extremal (“furthest”, or important) optima to the LP are described by a rooted, connected, balanced
subgraph H of G, where edges of value 1 in the LP are deleted edges within V (H), and the half-integral edges
are the edges leaving H, i.e. with precisely one endpoint in V (H). Furthermore, every balanced subgraph H ′ of
G with x ∈ V (H ′) can be “improved” so that V (H) ⊆ V (H ′) without increasing c(H ′) (and such that the edges
of value 1 in the LP are not contained in E(H ′)). The dominating family of important balanced subgraphs of
(G,B) rooted in x can then be obtained by branching over the status of the half-integral edges leaving V (H), in
an analysis similar to that of Chen et al. [5] for the bound 4k on the number of important separators.

Min-2-Lin Algorithms for Fields. In short, our fpt algorithms are based on three steps: compression, cleaning,
and cutting. Given an instance (S,wS , k) of Min-2-Lin, we first use iterative compression to compute a slightly
suboptimal “solution” X. In the cleaning step we consider the primal graph of S i.e. the graph with vertices for
variables of S and edges for equations, and produce a dominating family of important balanced subgraphs around
a subset of vertices in V (X). Finally, the problem reduces to computing a cut in the cleaned graph that fulfills
certain requirements.

For a basic example, consider Min-2-Lin(Q) i.e. Min-2-Lin over the field of rationals. Every such instance
can be viewed as a graph where an edge connecting two variables is labelled by an equation from S ranging over
these two variables. Observe that any acyclic instance (with respect to the underlying primal graph) of 2-Lin(Q)
is consistent, since we can pick an arbitrary variable, assign any value to it, and then propagate to the remaining
variables according to the equations labelling the edges. Thus, any inconsistency in an instance of Min-2-Lin(Q)
is due to cycles. By standard linear algebra, a cycle may have zero, one, or infinitely many satisfying assignments—
we call such cycles inconsistent, non-identity or identity, respectively. If an instance contains only identity cycles,
we call it flexible, and observe that, similarly to acyclic instances, all flexible instances are consistent. This follows
from propagating a value in the same way as above.

Copyright © 2023
Copyright for this paper is retained by the authors



(a) Subgraph H1. (b) Subgraph H2. (c) Subgraph H3.

Figure 3: Examples of rooted balanced subgraphs of the same graph. The root is the leftmost vertex, balanced
cycles are even cycles, and all edges have unit weight. Red dashed edges are deleted, and the orange area covers
all vertices reachable from the root. The cost of H1 is 4, while the cost of H2 and H3 is 5. Subgraph H1 is
incomparable with H2 and H3 since it has lower cost but V (H1) is a strict subset of V (H2) and V (H3). On the
other hand, H2 is dominated by H3 since V (H2) ⊊ V (H3) while they have the same cost.

By iterative compression, we may assume that we have an over-sized solution X at our disposal i.e. a set of
equations of total weight k+1 such that S−X is consistent. In the special case when S−X is not only consistent
but flexible, a solution to the instance is a minimum cut Z in S −X that separates vertices V (X) into distinct
connected components according to some partition. Since |V (X)| ≤ 2k+2, we can enumerate partitions of V (X)
in fpt time, and compute a minimum cut Z using the algorithm for Multiway Cut. In the general case when
S −X is not flexible, we assume that X is minimal and hence every connected component of S −X contains a
non-identity cycle. This implies that S − X admits a unique satisfying assignment φX (otherwise, there is an
edge in X connecting a flexible component with another component of S − X, and the equation labelling that
edge can be added back to S −X without causing inconsistency). Let φZ be the assignment that satisfies S −Z.
We guess which variables in V (X) have the same value in φX and φZ and which do not. Let T ⊆ V (X) be the
subset of variables that receive different values under these assignments. The key observation is that the change
propagates i.e. every variable reachable T in S − Z has a different value under φX and φZ . Since non-identity
cycles in S −X admit a unique satisfying assignment (which is φX), none of them can remain in S − Z and be
reachable from T . We show that the set of non-identity cycles in S −X has the theta property. This allows us
to use the method of important balanced subgraphs to get rid of non-identity cycles reachable from the changing
terminals T . More specifically, in one of the branches we obtain a set F of size at most k such that the connected
components of T in S− (X ∪F ) are free from non-identity cycles and thus flexible. Moreover, all variables in the
remaining components have the same value in φX and φZ . Thus, we can concentrate on the flexible part of the
cleaned instance and use the partition-guessing and cutting idea outlined above. We remark that the reduction to
the flexible case is analogous to the shadow removal process of Marx and Razgon [35], but works in O∗(4k) time

instead of O∗(2k
3

) (later improved to O∗(2k
2

) in [7]) time required by random sampling of important separators.
We also note that essentially the same algorithm work for Min-2-Lin(F), where F is a field.

Min-2-Lin Algorithms for Euclidean Domains. Let us now consider the general Min-2-Lin(D) problem
where D is a Euclidean domain. Euclidean domains are less restricted than fields and they consequently capture a
wider and more multifaceted range of problems. There are many examples of interesting Euclidean domains that
are not fields; the two prime examples are probably the ring of integers Z and the rings of univariate polynomials
F[x] where the coefficients are members of some field F. Important differences between fields and Euclidean
domains become apparent even when considering simple structures such as the ring of integers. While in the case
of fields all obstructions to consistency of 2-Lin(F) instances are cycles, in Euclidean domains paths may also be
obstructions. For example, consider the following system of equations over Z: {y−2x = 1, y−2z = 0}. While both
equations have integer satisfying assignments (e.g. (y, x) 7→ (1, 0) and (y, z) 7→ (2, 1), respectively), they are not
simultaneously satisfiable: the equation obtained by cancelling out y is 2x−2z = 1 and it has no integer solutions.
This complicates the handling of Euclidean domains in algorithms. Another issue is that 2-Lin(D) is less studied
for Euclidean domains where, in contrast, Gaussian elimination has been known for centuries and solves r-Lin(F)
for every r in polynomial time. Polynomial-time algorithms are known for r-Lin(Z) and r-Lin(F[x]) [24, 25]
for every r, but to the best of our knowledge, there are no general algorithms for arbitrary Euclidean domains
described in the literature, even for the simpler 2-Lin(D) problem. This forces us to develop methods for checking
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consistency of 2-Lin(D) instances to be used in our Min-2-Lin algorithms. In short, Min-2-Lin(D) is intrinsically
a more complicated problem and this is reflected in the more complicated fpt algorithm.

We show that after taking similar steps to those in the Min-2-Lin(Q) algorithm (iterative compression, and
cleaning by the method of important balanced subgraphs), the solution is again a certain cut in the cleaned
graph. However, this time it is not sufficient to partition T into connected components, but we additionally need
to break some paths that have no solutions in D. The latter requirements can be expressed as certain disjunctive
cut request for the non-terminals. The requests are of the form ({x, s}, {y, t}), where s and t are terminals, and
the cut is required to either separate x from s or y from t. We refer to Section 3.2 for the formal definition of the
problem. These cut requests are used to deal with inconsistent paths. More concretely, we can check whether the
path going from x to s, then from s to t, and finally from t to y is inconsistent in D, and then add the cut request
for it. By iterative compression, the optimal solution is disjoint from X, so the part of this path between s and t
cannot be cut. Computing all cut requests requires polynomial time: we consider every pair of terminals s, t and
non-terminals x, y, and add a corresponding cut request if necessary. To compute a separator that satisfies such
disjunctive requests in fpt time, we reduce the cut problem to a special case of the MinCSP parameterized by the
solution cost. Kim et al. [28, 29] solve this MinCSP using the recently introduced technique of flow augmentation.

Further related work. Group Feedback Edge Set (GFES) is a problem that is usually defined in terms of
labelled graphs, but can also be defined in terms of equation systems as follows. The input is a system of group
equations of the form x · γ = y over a group Γ, where x and y are variables, γ ∈ Γ is a constant and · is the
composition operation in Γ. The question is whether the system can be made consistent by removing at most k
equations. More commonly, the input is represented as a group-labelled graph, as defined above; i.e., an oriented
graph G where every oriented edge xy ∈ E(G) is assigned a group label γ = γ(xy) ∈ Γ, and where the reverse
direction of the edge has label γ(yx) = γ(xy)−1. Such a system of equations is consistent if and only if every cycle
of the underlying undirected graph of G is consistent, hence GFES can equivalently be defined as finding a set of
at most k edges which hits every inconsistent (i.e., unbalanced) cycle in G. The vertex-deletion variant, Group
Feedback Vertex Set (GFVS), is defined accordingly and generalizes GFES. GFES and GFVS parameterized
by k generalize many well-studied problems in parameterized complexity such as Feedback Vertex Set, Subset
Feedback Vertex/Edge Set, Multiway Cut andOdd Cycle Transversal. Guillemot [17] was the first to
study GFVS in terms of parameterized complexity, and showed FPT algorithms parameterized by k+ |Γ|. Cygan
et al. [11] showed GFVS to be FPT parameterized by k alone, even when the group is given only implicitly by
an oracle supporting group operations. Iwata et al. [22] showed a faster algorithm, solving GFVS in time O∗(4k)
using an LP-branching approach, also in the oracle model.

For comparison with Min-2-Lin, note that equations x · γ = y are equivalent to equations x · α = y · β for
constants α, β ∈ Γ (taking γ = βα−1). Hence GFES corresponds roughly to the special case of Min-2-Lin(F)
where F is a field, the instance is homogeneous, and with the additional restriction that no variable is allowed to
take the zero value from F. (Indeed, handling the set of variables taking the value 0 is a significant part of our
algorithm for Min-2-Lin(F) over a field F.) The case of Min-2-Lin(D) over general Euclidean domains D, or even
over the integers, is more complex by comparison, since multiplication in Euclidean domains is not guaranteed to
form a group.

Guillemot [17] was also among the first to use half-integral LP-relaxations as a tool for constructing fixed-
parameter algorithms. The method was refined by Cygan et al. [12] who used it to solve Multiway Cut in
time O∗(2k) and Almost 2-SAT in time O∗(4k). The latter was further improved by Lokshtanov et al. [32]
to O∗(2.3146k). Iwata et al. [22] generalized the approach using tools from constraint satisfaction problems to
provide O∗(4k)-time algorithms for a range of problems, including GFVS as noted above. Iwata et al. [23] later
improved this to linear time O∗(4k)-time algorithms for an important subclass of these problems, by providing a
fast combinatorial solution to the LP-relaxation. Wahlström [40] generalized the GFVS-results of Iwata et al. [22]
further to the setting of biased graphs, via the Biased Graph Cleaning problem.

Göke et al. [15] considered the parameterized complexity of problems of resolving linear systems of equalities
and inequalities under a mix of parameters, showing W[1]-hardness and FPT results (see also Bérczi et al. [3]).

Roadmap. The remainder of the paper is structured as follows. In Section 2 we describe the LP-based approach
to parameterized deletion problems, define important balanced subgraphs and develop the fpt algorithm producing
a dominating family of important balanced subgraphs. Section 3 contains fpt algorithms for the graph separation
problems used in the Min-2-Lin algorithms. In Sections 4 and 5 we present the general algorithm for Euclidean
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domains and faster algorithms for fields, respectively. Section 6 is devoted to W[1]-hardness results. We finish off
in Section 7, summarizing and discussing the results, open questions and possible directions for future work.

Preliminaries and notation. We assume familiarity with the basics of graph theory, linear and abstract
algebra, and combinatorial optimization. The necessary material can be found in, for instance, the textbooks by
Diestel [13], Artin [1], and Schrijver [38], respectively.

We use the following graph-theoretic terminology in what follows. Let G be an undirected graph. We
write V (G) and E(G) to denote the vertices and edges of G, respectively. For every vertex v ∈ V (G), let
the neighbourhood of v in G denoted by NG(v) be the set {u ∈ V (G) | {u, v} ∈ E(G)} and the closed
neighbourhood NG[v] = NG(v) ∪ {v}. We extend this notion to sets of vertices S ⊆ V (G) in the natural way:
NG(S) = (

⋃
v∈S NG(v)) \ S. If U ⊆ V (G), then the subgraph of G induced by U is the graph G′ with V (G′) = U

and E(G′) = {{v, w} | v, w ∈ U and {v, w} ∈ E(G)}. We denote this graph by G[U ]. If Z is a subset of edges
in G, we write G− Z to denote the graph G′ with V (G′) = V (G) and E(G′) = E(G) \ Z. For X,Y ⊆ V (G), an
(X,Y )-cut is a subset of edges Z such that G− Z does not contain a path with one endpoint in X and another
in Y . When X,Y are singleton sets X = {x} and Y = {y}, we simplify the notation and write xy-cut instead of
(X,Y )-cut.

2 Graph Cleaning

We will now consider one of the cornerstones in our algorithms for Min-2-Lin: graph cleaning. The framework
we present is intimately connected with biased graphs. These are combinatorial objects of importance especially
to matroid theory [43]. To introduce biased graphs, we recall that a theta graph is a collection of three vertex-
disjoint paths with shared endpoints—see Figure 2 for an illustration. A biased graph is a pair (G,B) where G
is an undirected graph and B ⊆ 2E(G) is a set of cycles in G (referred to as the balanced cycles of G) with the
property that if two cycles C,C ′ ∈ B form a theta graph, then the third cycle of C ∪C ′ is also in B. We refer to a
set of cycles B with this property as linear. An example of two cycles forming a theta graph is given in Figure 2
with C following x1 → x2 → x4 → x1 and C ′ following x2 → x3 → x4 → x2. Given a biased graph (G,B), we
always assume that B is defined via a membership oracle that takes as input a cycle C (provided as an edge set)
and tests whether C ∈ B.

The most basic biased graph cleaning problem is the following.

Biased Graph Cleaning (BGC)

Instance: A biased graph (G,B) and an integer k.
Question: Is there a set X ⊆ V (G) such that |X| ≤ k and all cycles in G − X are

balanced, i.e. members of B.

We will consider an LP-relaxation of BGC and its rooted variant in Section 2.1. Results based on this LP-
relaxation will then be used in Section 2.2 where we present fpt algorithms for various biased graph cleaning
problems. These results are directly used in our single-exponential time algorithm for Min-2-Lin over finite
fields (Section 5.4). Inspired by these kinds of problems and their solution structure, we introduce the concept
of important balanced subgraphs in Section 2.3. Our main result shows that we can efficiently compute a small
family of important balanced subgraphs such that every other balanced subgraph is dominated by a member in
the set. This forms an important step of our later fpt algorithms for Min-2-Lin over Euclidean domains.

2.1 LP-relaxation for Rooted Biased Graph Cleaning Previous work by Wahlström [40] shows that BGC
has an fpt algorithm running in O∗(4k) time. The algorithm is based around a particular LP-relaxation. The
workhorse of this result is the following rooted variant of BGC. Note that we have extended the problem with
vertex weights.

Rooted Biased Graph Cleaning (RBGC)

Instance: A biased graph (G,B), a vertex-weight function w : V (G) → N, a vertex
v0 ∈ V (G), and an integer k.

Question: Is there a set X ⊆ V (G) such that w(X) ≤ k, v0 ̸∈ X, and all cycles in the
connected component of v0 in G−X are balanced.
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We will now review the LP-relaxation that underlies the fpt algorithms for BGC and RBGC. Note that both
BGC and RBGC can be defined in terms of seeking a set of vertices X that intersects a class of obstructions. In
BGC, the obstructions are simply all unbalanced cycles of (G,B). In RBGC, we can define a class of obstructions
consisting of the combination (P,C) of an unbalanced cycle C and a (possibly empty) path P connecting C to
v0. Such a rooted unbalanced cycle is referred to as a balloon [40]. Then we see that a set X ⊆ V (G) is a solution
to an instance I = ((G,B), w, v0, k) of RBGC if and only if X intersects every balloon (where the balloons are
implicitly rooted in v0).

A balloon (P,C) can obviously be decomposed into two paths: for any v ∈ V (C) \ V (P ), (P,C) is the union
of two paths P1, P2 from v0 to v. The LP-relaxation of an RBGC instance I = ((G,B), v0, w, k) is then defined as
follows. Let x ∈ [0, 1]V (G) be an assignment, and for a path P define x(P ) =

∑
v∈V (P ) x(v). The LP-relaxation

of I has objective

min
∑

v∈V (G)

w(v)x(v)

subject to the constraints x(v0) = 0, x(v) ≥ 0 for every v ∈ V (G) \ {v0} and

x(P1) + x(P2) ≥ 1

for every balloon (P,C) decomposed into two paths P1 and P2. Wahlström [40] showed several properties of
this LP. First, an optimal solution can be found in polynomial time, given access to a membership oracle for B.
Second, it is half-integral i.e. the LP always has an optimum x∗ ∈ {0, 1/2, 1}V (G). Finally, it is persistent in the
sense that there is an optimal solution X ⊆ E(G) such that if x∗(v) = 1 then v ∈ X (and for certain vertices v
with x∗(v) = 0 we can conclude v /∈ X).

More precisely, we have the following. The support of an LP-solution x is the set supp(x) = {v ∈ V (G) |
x(v) > 0}. Let I = ((G,B), v0, w, k) be an instance of RBGC and let x = V1 +

1
2V1/2 be a half-integral optimum

to the LP-relaxation of I, i.e. x(v) = 1 for v ∈ V1, x(v) = 1/2 for v ∈ V1/2 and x(v) = 0 otherwise. Let
VR(x) ⊆ V (G) be the set of vertices connected to v0 in G − supp(x). Then x is an extremal LP-optimum if
VR(x) is maximal among all LP-optima x. If x is a half-integral extremal LP-optimum for I, then there is an
optimal solution X ⊆ V (G) to I such that V1(x) ⊆ X and VR(x) ∩X = ∅. Via these properties, we can design
an fpt-algorithm for RBGC by a branch-and-bound approach over the LP [40].

In fact, an even stronger, more technical property holds, which we will need in what follows. Let G be an
undirected graph with vertex weights w : V (G) → N. For a set U ⊆ V (G), we let w(U) =

∑
v∈U w(v).

Lemma 2.1. (Wahlström [40, Lemma 6]) Let x = V1 + 1
2V1/2 be a half-integral extremal LP-optimum for a

RBGC instance I = ((G,B), w, v0, k) with vertex weights w : V (G) → N and let VR(x) be defined as above. Let
S ⊆ V (G) be a vertex set with v0 ∈ S such that G[S] is balanced and connected. Then we can find a replacement
solution that grows the closed neighbourhood NG[S] to NG[S ∪ VR(x)] without paying a larger cost for deleting
vertices. More formally, there is a set of vertices S+ and a set S′ ⊆ S+ such that G[S′] is balanced and the
following hold.

1. S+ = NG[S ∪ VR(x)];

2. NG[S
′] ⊆ S+;

3. VR(x) ⊆ S′;

4. V1(x) ⊆ (S+ \ S′);

5. w(S+ \ S′) ≤ w(NG(S)).

2.2 Biased Graph Cleaning In this section we consider further variants of biased graph cleaning problems.
Our goal is to show that the vertex-weighted extension of Biased Graph Cleaning and the edge version of
Rooted Biased Graph Cleaning (RBGCE) both admit fpt-algorithms. These results are standard, but they
are needed for later results in the paper.

We begin by noting that RBGC is in FPT, using the same LP-branching algorithm as in the unweighted
case [40].
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Proposition 2.1. (Wahlström [40, Theorem 1]) RBGC admits an fpt-algorithm with run-time O∗(2k) as-
suming that B is given by a polynomial-time membership oracle.

Proof. [Proof sketch] Let I = ((G,B), w, v0, k) be an instance of RBGC, where (G,B) is a biased graph, w is
a set of vertex weights on G, v0 ∈ V (G) is the root vertex and k ∈ N is the deletion budget. We note that
the algorithm for the unweighted case [40, Lemma 8] also applies in the presence of integer weights. We use
the slightly more careful version of the extended preprint [31]. Let W =

∑
v∈V (G) w(v), and assume k < W , as

otherwise the instance is trivial. For a vertex v ∈ V (G), we say fix v = 0 to refer to setting a weight w(v) = 2W ,
and fix v = 1 to refer to setting w(v) = 0. Let x∗ be a half-integral extremal LP-optimum as in Lemma 2.1;
such an optimum can be computed efficiently in a greedy manner [31]. Let λ be the cost of x∗. If λ > k, then
we reject the instance. Otherwise λ < W and as x∗ is half-integral, if we have fixed v = 0, then we must have
x∗(v) = 0. Furthermore, if λ < k/2, then supp(x∗) is an integral solution of cost at most k. Now, as in [31], we
either find an integral LP-optimum, or we find a half-integral vertex v ∈ supp(x∗) such that x∗(v) = 1/2, fixing
v = 0 increases the LP-optimum cost, and w(v) > 0. Then we can recursively branch on fixing v = 0, and on
fixing v = 1 and decreasing k by w(v). In the former case λ increases by at least 1/2 since the LP is half-integral,
and k is unchanged. In the latter case λ decreases by w(v)/2, but k decreases by w(v). Hence the value of k − λ
decreases by at least 1/2 in both branches. It follows that an exhaustive branching takes O∗(22(k−λ)) time, and
since λ ≥ k/2 initially, this is O∗(2k).

Next, we consider the edge deletion version of the problem, Rooted Biased Graph Cleaning Edge
(RBGCE), which is defined similarly to RBGC except that the solution is an edge set, not a vertex set, and where
the input comes with edge weights w instead of vertex weights. By a standard reduction, this problem is also in
FPT.

Proposition 2.2. RBGCE admits an fpt-algorithm with run-time O∗(2k) assuming that B is given by a
polynomial-time membership oracle.

Proof. Let I = ((G,B), w, v0, k) be an instance of RBGCE. We provide a polynomial-time and parameter
preserving reduction to RBGC, which together with Proposition 2.1 shows the proposition. The instance
I ′ = ((G′,B′), w′, v′0, k

′) of RBGC is obtained from I as follows. We set k′ = k. The graph G′ is obtained
from G by subdividing every edge of G exactly once. We set the weight w′ of every original vertex to k + 1 and
the weight of every new (subdividing) vertex xe, subdividing an edge e, to w′(xe) = w(e). Finally, we let B′ be
the set of all cycles C in G′ such that the cycle obtained from C after reversing the subdivision is in B. This
completes the construction of I ′, which can clearly be achieved in polynomial-time and is parameter preserving.
It remains to show that I is a yes-instance if and only if I ′ is a yes-instance.

Towards showing the forward direction, let X ⊆ E(G) be a solution for I and let X ′ ⊆ V (G′) be the set of
vertices used for subdividing the edges in X. We claim that X ′ is a solution for I ′. Suppose for contradiction
that this is not the case. Then, there is a cycle C ′ in G′−X ′ reachable from v0 with C ′ /∈ B′. But then, the cycle
C obtained from C ′ after reversing the subdivision of all edges is also in G −X and reachable from v0. Finally,
because C ′ /∈ B′, we obtain that C /∈ B, contradicting our assumption that X is a solution of I.

Towards showing the reverse direction, let X ′ ⊆ V (G′) be a solution for I ′. Then, because the weight of
every original vertex is k + 1, X ′ only contains vertices used for the subdivision of edges of G. We claim that
the set X containing all edges of G whose corresponding vertex in G′ is in X ′ is a solution for I. Suppose for
contradiction that this is not the case and there is a cycle C in G−X reachable from v0 with C /∈ B. Let C ′ be
the corresponding cycle in G′, i.e. C ′ is obtained from C after subdividing each edge of C. Then, C ′ is also in
G′ −X ′ because X ′ does not contain any (original) vertex of C. Moreover, C ′ is reachable from v0 and C ′ /∈ B′,
a contradiction to our assumption that X ′ is a solution for I ′.

On a side note, we observe that the standard, non-rooted versions of the problems RBGC and RBGCE are
in FPT. The result follows from same procedure as in the original paper [40], building on Prop. 2.1 and 2.2.

Proposition 2.3. The non-rooted variants of RBGC and RBGCE both admit an fpt-algorithm with run-time
O∗(4k) assuming that B is given by a polynomial-time membership oracle.
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2.3 Important Balanced Subgraphs Important separators are a central concept in fpt algorithms for graph
separation problems that was originally defined by Marx [33]. Let G be an undirected graph, and let X,Y ⊂ V (G)
be disjoint sets of vertices. For an (X,Y )-cut C ⊆ V (G), let R(X,C) be the set of vertices reachable from X
in G − C. Then C is an important (X,Y )-separator if, for every (X,Y )-cut C ′ such that |C ′| ≤ |C| and
R(X,C) ⊆ R(X,C ′), we have C ′ = C. In other words, for any (X,Y )-cut C ′ such that R(X,C) ⊊ R(X,C ′)
we must have |C ′| > |C|. Marx showed that for any graph G and sets X,Y , there are at most f(k) distinct
important separators C with |C| ≤ k [33], and this bound was later improved to f(k) = 4k (see [10]). The same
bound applies to both undirected and directed graphs, and by using standard reductions it also applies to edge
cuts. Important separators are a key component in many fpt algorithms, including the algorithms for Multiway
Cut [33] and Multicut [35] (see Cygan et al. [10] for more applications).

We show a new result on the solution structure of RBGCE that generalizes important separators for undirected
edge cuts. We first note that the number of (in some sense) incomparable solutions to RBGCE is not bounded
in k. Indeed, if C is an unbalanced cycle on n vertices, then deleting any one edge of C is a minimal solution,
and there is no clear order of preference between these solutions. On the other hand, it turns out that a result in
the style of important separators does hold in terms of vertex sets of balanced connected subgraphs of a biased
graph.

Let us introduce some terminology. Let (G,B) be a biased graph and let w : E(G) → Z be a set of edge
weights. Let H be a subgraph of G. Let δG(X) for X ⊆ V (G) denote the set of edges in G with precisely one
endpoint in X, and for F ⊆ E(G) we denote w(F ) =

∑
e∈F w(e). We then define the cost of H as the cost of the

edges in G incident with V (H) but not present in H i.e.

cG(H) = w(E(G[V (H)]) \ E(H)) + w(δG(V (H))).

We refer to (E(G[V (H)]) \ E(H)) ∪ δG(V (H)) as the deleted edges of H.

Let H and H ′ be balanced subgraphs (with respect to B) of G. We say that H ′ dominates H if V (H) ⊆ V (H ′)
and cG(H) ≥ cG(H

′), and that H ′ strictly dominates H if at least one of these two inequalities is strict.
Analogously to important separators, we refer toH as an important balanced subgraph in (G,B) ifH is a connected,
balanced subgraph of G and no balanced subgraph H ′ of G strictly dominates H. We refer the reader to Figure 3
for an illustration. Note by Lemma 2.2 that we may assume here that H ′ is also connected. Importantly, observe
that if H is dominated by H ′, then H might not be a subgraph of H ′. In the example of a single unbalanced
cycle C, the subgraphs C − {e} for e ∈ E(C) all mutually dominate each other, although not strictly.

Let G := G(G,B, k, v0) be the family of connected balanced subgraphs in (G,B) that contain v0 and have
cost at most k. A subset H ⊆ G is a dominating family for G if for any H ∈ G there is a subgraph H ′ ∈ H that
dominates H. We show the following result.

Theorem 2.1. (Dominating family of important balanced subgraph) Let (G,B) be a biased graph with
positive integer edge weights w, let v0 ∈ V (G) and let k be an integer. Let G := G(G,B, k, v0) be the family of
connected balanced subgraphs in (G,B) that contain v0 and have cost at most k. Then, in O∗(4k) time we can
compute a dominating family H for G such that |H| ≤ 4k. Furthermore, every member of H is an important
balanced subgraph of (G,B).

Before we present our proof of Theorem 2.1, we illustrate that important biased subgraphs are indeed a
generalisation of important separators.

Example. Let G be an undirected graph and s, t ∈ V (G) be distinguished vertices. Note that since we are
considering edge cuts, the assumption that s and t are single vertices (as opposed to disjoint vertex sets X and
Y ) can be made without loss of generality. Now, add two vertices z, z′ and three edges e1 = {t, z}, e2 = {z, z′},
e3 = {t, z′}. Let G′ be the resulting graph, and let B be the set containing all cycles except Ct = {e1, e2, e3}.
Note that B trivially defines a linear class, so (G′,B) is a biased graph. Finally, set edge weights w(ei) = k + 1,
for i ∈ {1, 2, 3}, and w(e) = 1 for every other edge e ∈ E(G), and use v0 = s as the root vertex. Then a connected
subgraph H of G′ with s ∈ V (H) and of cost at most k is balanced if and only if t /∈ V (H) (since breaking the
unbalanced cycle Ct would exceed the budget). Hence H is a connected, balanced subgraph of G′ with s ∈ V (H)
and of cost at most k if and only if the set of deleted edges C of H contains an st-cut in G. Furthermore, in such
a case V (H) = R({s}, C). We see that the important (s, t)-separators in G of cost at most k directly correspond
to the deleted edges of important balanced subgraphs H of G′ with s ∈ V (H) and of cost at most k.
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We proceed to prove Theorem 2.1; this occupies the rest of the subsection. We first note that we may assume
that strictly dominating subgraphs are connected.

Lemma 2.2. Assume that G is a connected undirected graph that has no zero-weight edges. Let H be a connected
balanced subgraph of G. If there is a balanced graph H ′ that strictly dominates H, then there is also a connected
balanced graph H ′ that strictly dominates H. Furthermore, if H ′ is of minimum cost among all balanced graphs
that dominate H, then H ′ is connected.

Proof. Assume that there exists a balanced subgraph H ′ of G that strictly dominates H, and let H ′ be chosen
to minimize cG(H

′) among all such subgraphs H ′. Suppose that H ′ is not connected, and first suppose that H ′

contains a connected component C such that C ∩ V (H) = ∅. Then H ′ − C is balanced, cG(H
′ − C) < cG(H

′)
since G is connected, and V (H) ⊆ V (H ′−C). Hence H ′−C also dominates H, and would be the preferred choice
over H ′. Hence we proceed assuming that every connected component of H ′ intersects V (H). Now let e ∈ E(H)
be an edge connecting distinct connected components in H ′. Such an edge clearly exists, e.g. follow a path in H
whose endpoints lie in distinct components of H ′. Then adding e to H ′ yields another balanced subgraph H ′′,
since no cycle passes through e in H ′′. Then cG(H

′′) < cG(H
′) and H ′′ dominates H; hence by choice of H ′, no

such edge can exist. We conclude that H ′ is connected.

For the proof of Theorem 2.1, we begin by adapting the LP-relaxation for RBGC and Lemma 2.1 to the
edge-deletion version RBGCE. More precisely, the LP-relaxation for RBGC and Lemma 2.1 are both defined in
terms of a solution space x ∈ {0, 1/2, 1}V (G) of half-integral relaxed solutions over the vertex set of a graph. We
give a natural reduction from RBGCE to RBGC, and as a consequence construct half-integral optimal solutions
x∗ ∈ {0, 1/2, 1}E(G) to the edge-deletion version of the problem. We also observe the following persistence
properties of such a solution x∗, as a simplification of Lemma 2.1. We refer to these solutions as the LP-relaxation
of RBGCE (indeed, they are a projection of the solutions to the LP-relaxation of the RBGC-instance resulting
from the reduction, so they correspond to an LP over variables E(G)).

Lemma 2.3. Let I = ((G,B), v0, k) be an instance of RBGCE. In polynomial time, we can compute a half-integral
extremal optimum x∗ = X1 +

1
2X1/2 of the LP-relaxation of I such that the following holds. Let X = X1 ∪X1/2

be the support of x∗, X ⊆ E(G). Let GR be the subgraph consisting of edges reachable from v0 in G−X. Let H
be any connected balanced subgraph of G with v0 ∈ V (H). Then there is a balanced subgraph H ′ of G on vertex
set V (GR) ∪ V (H) such that GR is a subgraph of H ′, cG(H

′) ≤ cG(H), and X1 ∩ E(H ′) = ∅.
In particular, unless V (GR) ⊆ V (H), there is a graph H ′ that strictly dominates H and has V (GR) ⊆ V (H ′).

Proof. Let (G′,B′) be the biased graph obtained from (G,B) by subdividing every edge e ∈ E(G) by a new vertex
ze. Here, B′ contains a cycle C ′ if and only if it is a subdivision of a cycle C ∈ B. Apply Lemma 2.1 to (G′,B′)
giving every vertex v ∈ V (G) weight w(v) = 2w(E(G)) + 1 and the subdividing vertices weight 1. For an edge
e ∈ E(G), we say that the vertex ze which subdivides e in G′ represents e in G′. For a subgraph G0 of G, let
V ′(G0) ⊆ V (G′) contain the copy in G′ of every vertex v ∈ V (G0) as well as the vertex ze subdividing e for every
edge e ∈ E(G0). Note that V ′ maps connected, respectively balanced subgraphs of G to vertex sets S such that
G′[S] is connected, respectively balanced. Consider the vertex sets S = V ′(H) and R = V ′(GR).

Since G′[S] is balanced and connected, Lemma 2.1 provides sets S′, S+ ⊆ V (G′), where R ⊆ S′, NG′ [S′] ⊆ S+

and S+ = NG′ [S ∪ R]. Let H ′ be the subgraph of G defined by S′, i.e. V (H ′) = S′ ∩ V (G) and e ∈ E(H ′) for
e ∈ E(G) if and only if the vertex subdividing e is contained in S′. We claim that V (H ′) = V (H) ∪ V (GR). In
one direction, V (H ′) ⊆ V (H) ∪ V (GR), since S′ ⊆ S+ = NG′ [S ∪ R] and every vertex of NG′(S ∪ R) represents
an edge in G. In the other direction, we claim V (H) ∪ V (GR) ⊆ S′. Indeed, V (GR) ∪ V (H) ⊆ S+ = NG′ [S ∪R],
and if there were a vertex v ∈ V (G)∩ (S+ \S′), then the cost of S+ \S would exceed w(NG′(S)) = cG(H). Thus
V (H ′) = V (GR) ∪ V (H). Furthermore H ′ is balanced, since any unbalanced cycle in H ′ would correspond to an
unbalanced cycle in G′[S′].

Next, we note that GR is a subgraph of H ′ since R = V ′(GR) ⊆ S′. Finally, cG(H
′) ≤ w(S+ \ S′) ≤

w(NG′(S)) = cG(H), and X1 ∩ E(H ′) = ∅, since the vertices subdividing X1 are contained in S+ \ S′.
For the last part, let H ′ be the subgraph produced above from GR and H. Then H ′ is balanced,

cG(H
′) ≤ cG(H), and V (H ′) = V (GR) ∪ V (H) is a strict superset of V (H).
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We show one more property of the LP-relaxation. Recall that the constraints of the LP are written as
x(P1) + x(P2) ≥ 1 for every balloon B = (P,C) decomposed into two paths P1 and P2. Equivalently, for every
balloon B = (P,C), there is a constraint where the edges of P have coefficient 2, and the edges of C have coefficient
1. The constraint for B = (P,C) is tight if equality holds in the constraint. By so-called slackness conditions, it
is known that for any LP optimum x∗ and any edge e in the support of x∗ there is a tight constraint involving e,
i.e. a balloon B = (P,C) with e ∈ E(B) such that the constraint for B is tight.

Lemma 2.4. Let x∗ = X1 + 1
2X1/2 be a half-integral extremal optimum computed in Lemma 2.3. Let X =

X1∪X1/2, let GR be the subgraph corresponding to the connected component of v0 in G−X, and let VR = V (GR).
Then X1 = E(G[VR]) \ E(GR) and X1/2 = δG(VR).

Proof. For the first item, let e ∈ X1. By the slackness conditions, there must be a tight constraint in the LP
which contains e. By inspection of the constraints, this implies that there is a balloon Be = (P,C) rooted in v0
such that e is contained in Be. Since x∗(e) = 1, it may only appear with coefficient 1 in the summation of the
constraint, hence e ∈ C. Moreover, we have x∗(e′) = 0 for every edge e′ ∈ P ∪C \ {e}. Then Be − e is contained
in GR. Similarly, let e ∈ X1/2 and assume towards a contradiction that e is spanned by GR, i.e. e ⊆ VR. Let
Be = (P,C) be a balloon with e ∈ E(Be) such that the corresponding constraint is tight. There are two cases.
First suppose that e occurs in the path P of Be. Since e occurs with coefficient 2 in the constraint corresponding
to Be, for every other edge e′ ∈ E(Be) we must have x∗(e′) = 0. But since e ⊆ VR, this implies that every vertex
of Be is in VR. In particular, there is a path from v0 to C entirely contained in GR, and considering a shortest
such path we find a path P ′ that is internally disjoint from C. This produces a balloon B′

e = (P ′, C) disjoint
from X, which is a contradiction. Next, suppose that e ∈ E(C). Note that by tightness, V (C) ⊆ VR. Indeed, by
tightness C intersects precisely two edges of X1/2 and none of X1, and since e /∈ δG(VR) by assumption, it follows
that both edges of E(C) ∩X are spanned by GR, i.e. V (C) ⊆ VR. Then C \X1/2 splits into two paths P1 and
P2, where one of them may be edgeless but both consist entirely of vertices of VR. Let P ′ be a shortest path in
GR from P1 to P2. Then P ′ forms a chordal path for the unbalanced cycle C, hence results in at least one new
unbalanced cycle C ′ of weight 1/2 in x∗. Furthermore, there is a path P ′′ contained in GR forming a balloon
B′

e = (P ′′, C ′) of weight 1/2 in x∗, which is a contradiction to x∗ being an LP solution. Hence X1/2 = δG(VR).

We can now show the main result.

Proof. [Proof of Theorem 2.1] We assume that G is connected, or otherwise restrict our attention to the connected
component of G containing the vertex v0. Furthermore, by assumption the edge weights of G are positive. Hence
Lemma 2.2 applies. Now, recall that G denotes the family of all connected, balanced subgraphs in (G,B) that
contain v0 and have cost at most k and let H′ ⊆ G be all subgraphs H ∈ G that are not strictly dominated by
any member of G. We observe that every member of H′ is important. Indeed, let H ∈ G and assume that there is
a balanced subgraph H ′ of (G,B) that dominates H. Choose H ′ to minimize cG(H

′). Then by Lemma 2.2 H ′ is
connected. Furthermore cG(H

′) ≤ cG(H) ≤ k and v0 ∈ V (H) ⊆ V (H ′). Thus H ′ ∈ G. Thus any subgraph H of
(G,B) that is “domination maximal” within G is important in (G,B), and we can focus on computing a dominating
family H ⊆ G.

For this, we present a branching procedure over the LP-optimum. Let a branching state be defined by a tuple
(E0, E1) where E0, E1 ⊆ E(G) are disjoint edge sets. For a branching state B = (E0, E1), we let LPe(B) denote
the LP on the graph G − E1, with edge weights modified so that w(e) = 2k + 1 for every e ∈ E0. Intuitively,
edges in E0 can be thought of as undeletable while edges in E1 as deleted. We let B∗ denote the half-integral
solution to LPe(B) and let GB denote the corresponding subgraph of G, i.e. GB is the connected component of
G− (E1 ∪ supp (B∗)) containing v0. Let us consider the following branching procedure.

1. Let B = (E0, E1) be a branching state that initially is set to (∅, ∅).

2. Let B∗ = X1 +
1
2X1/2 and let X = X1 ∪X1/2 be its support. Let k′ be the cost of B∗.

3. If |E1|+ k′ > k, then abort the branch without output.

4. If X1/2 = ∅, output GB as a potential solution and abort the branch.
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5. Otherwise, initialize a new branching state B′ = (E′
0, E

′
1) with E′

0 = E0 ∪ E(GB) and E′
1 = E1 ∪X1.

6. Let e ∈ X1/2 be a half-integral edge and branch recursively on the two states B1 = (E′
0 ∪ {e}, E′

1) and
B2 = (E′

0, E
′
1 ∪ {e}).

We will show that for any balanced, connected subgraph H of G with cG(H) ≤ k, at least one of the produced
subgraphs GB dominates H. Towards this, we need some support claims about the branching process.

Claim 2.1.1. In every branching state B = (E0, E1) encountered by the algorithm, the edge set E0 forms a
balanced connected subgraph of G rooted in v0.

Proof of claim: We choose to interpret the initial empty edge set as the subgraph of G containing the root v0 and
no edges or any further vertices. The claim now holds by induction from the root. Note that there are two places
where the E0-part of a branching state is modified. First, let B = (E0, E1) be a branching state and let B∗ be
the half-integral optimum of LPe(B) used by the algorithm. Assume that the cost of B∗ is at most k′ = k− |E1|
as otherwise no further branching state is produced. By assumption, E0 forms a connected subgraph of G, and
every edge of E0 has cost 2k + 1 in LPe(B). Hence B∗(e) = 0 for every e ∈ E0, and E0 ⊆ E(GB). Thus in the
new branching state B′ = (E′

0, E
′
1) we in fact have E′

0 = E(GB) which is a connected, balanced, rooted subgraph
of G by construction. Otherwise, assume that a new state is formed as B′ = (E0 ∪ {e}, E1) for some edge e
that is half integral in LPe(B). Then by Lemma 2.4, e is an edge leaving GB , hence E′

0 = E(GB) ∪ {e} forms a
connected subgraph. Finally, we note that E′

0 is balanced, since otherwise there would exist an unbalanced cycle
C in E′

0 using the edge e, but since e is leaving GB , e is a pendant edge in E′
0. ⋄

Claim 2.1.2. In every branching state B = (E0, E1) encountered by the algorithm, every edge of E1 has at least
one endpoint in V (E0).

Proof of claim: Shown by induction. In the initial state (∅, ∅), it holds vacuously. Thereafter, the E1-part of a
branching state is modified in two ways. First, let B = (E0, E1) be a branching state and let B∗ = X1+

1
2X1/2 be

the optimum of LPe(B). Let GB be the corresponding subgraph of G and let B′ = (E′
0, E

′
1) be the new resulting

branching state. Then E′
1 = E1 ∪X1, edges of E1 intersect V (E0) ⊆ V (E′

0) by assumption, and edges of X1 are
spanned by E(GB) ⊆ E′

0 by Lemma 2.4. Otherwise, we have a modification E′
1 = E1 ∪ {e} for some e ∈ X1/2,

where e intersects V (E0) by Lemma 2.4. ⋄
We say that H is compatible with a branching state B = (E0, E1) if E0 ⊆ E(H) and E1 ∩ E(H) = ∅. Note

that it follows that every edge of E1 is deleted in H; indeed, by Claim 2.1.2 every edge of E1 intersects V (H), and
every edge intersecting V (H) not present in H is deleted in H. Also say that H is domination compatible with
B if there is a balanced, connected subgraph H ′ of G rooted in v0 such that H ′ dominates H and is compatible
with B. Note that if H is domination compatible with a leaf state in the branching tree, then the subgraph
Gi produced in this state dominates H. Indeed, let B(E0, E1) be the leaf branching state, and Gi = GB . By
assumption there is a graph H ′ dominating H, compatible with B. Then δG(GB) ⊆ E1, and E1 ∩ E(H ′) = ∅.
Furthermore E(GB) = E0 ⊆ E(H ′). Hence V (H ′) = V (GB), and the cost of GB is optimal among all such
graphs by the integrality of the LP solution Le(B).

We can now prove by induction that for every balanced, connected subgraph H of G rooted in v0 with
cG(H) ≤ k, the branching process will produce at least one balanced subgraph Gi that dominates H. We claim
by induction that for every level ℓ of the branching tree, either such a graph Gi has been produced at a preceding
level or there is a state on level ℓ domination compatible with H.

In the root node, we have the initial branching state (∅, ∅), where we can choose H ′ = H. Inductively, first
assume that B = (E0, E1) is a branching state domination compatible with H via a graph H ′ dominating H, and
let B∗ = X1 +

1
2X1/2 be the optimum of LPe(B). Let B′ = (E′

0, E
′
1) be the new resulting branching state. We

will show that H ′ is domination compatible with B′, hence the same holds for H.
Recall that LPe(B) is defined in the subgraph G′ := G − E1. Let GB be the subgraph of G′ corresponding

to the optimum B∗. By Lemma 2.3 there is a balanced subgraph H ′′ of G′ that dominates H ′ in G′, such that
GB is a subgraph of H ′′ and X1 ∩ E(H ′′) = ∅. We need to show that E′

0 ⊆ E(H ′′), that E′
1 ∩ E(H ′′) = ∅, that

cG(H
′′) ≤ cG(H

′), and that V (H ′′) ⊇ V (H ′). It then follows that H ′′ dominates H ′ in G and is compatible with
B′.
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For the first, as before we have E0 ⊆ E(GB) by construction so E′
0 = E0 ∪ E(GB) = E(GB) ⊆ E(H ′′).

For the second, since H ′′ is a subgraph of G − E1 disjoint from X1, we have E′
1 ∩ E(H ′′) = ∅. For the

cost, we have cG′(H ′′) ≤ cG′(H ′) by Lemma 2.3. As noted above, every edge of E1 is deleted in H ′; hence
cG′(H ′) = cG(H

′) − |E1|. Similarly, since every edge of E1 intersects V (E′
0) by Claim 2.1.2 and E′

0 ⊆ E(H ′′),
every edge of E′

1 is deleted in H ′′ with respect to G. Thus cG(H
′′) = cG′(H ′′)− |E1| ≤ cG′(H ′)− |E1| = cG(H

′).
Finally, V (H ′′) ⊇ V (H ′) by Lemma 2.3. Thus H ′ is domination compatible with B′.

The only remaining step to consider is when a branching state is modified as B = (E0, E1) 7→ (E0∪{e}, E1) or
(E0, E1) 7→ (E0, E1 ∪ {e}) for some edge e that is half-integral in LPe(B). However, by assumption there exists a
subgraph H ′ that dominates H and is compatible with B. Then either e ∈ E(H ′) or e /∈ E(H ′), and precisely one
of the two new branching states is compatible with H ′. Furthermore, by comparing Lemma 2.4 to the definition
of the cost function cG(H

′), it is clear that the cost of the resulting state does not exceed cG(H
′) ≤ cG(H) ≤ k.

Hence by induction, there is a leaf in the branching tree which is domination compatible with H.
Finally, we claim that the whole process produces at most 4k outputs and can consequently be performed in

O∗(4k) time. To see this, we use an approach that is similar to the one used in [40]. Consider the value of the
“LP gap” k − (|E1|+ k′) computed in some node of the branching tree corresponding to the above computation.
Clearly, this value is initially at most k, and if it is negative in a node, then that branch of the computation is
aborted. We claim that furthermore, this gap decreases by at least 1/2 from a branching state B to both of its
children B1 and B2. In the branching state B1, B

∗
1 is also a valid solution to the state B, and in the branching

state B2, B
∗
2 becomes a valid solution to the state B if we modify the value of e to xe = 1. In both cases, we

get a valid LP solution to the state B. We claim that these solutions cannot be optima for LPe(B). On the one
hand, if E0 7→ E0 ∪ {e} then the set of reachable vertices V (GB) increases strictly. Since the extremal solution
B∗ is chosen so that this set is maximal among all LP-optima, the result cannot be an LP-optimum. On the
other hand, if E1 7→ E1 ∪ {e} and the resulting branching state produces an optimal solution for LPe(B), then
by Lemma 2.4 the endpoints of e must be spanned by the resulting set E′

0 ⊇ E0, which again contradicts the
choice of V (GB) as maximal. Thus, the cost of these solutions is greater than the cost of B∗. Since the cost is
half-integral (given integral edge weights), this difference is at least 1/2. Hence the entire branching process will
finish at depth at most 2k, producing at most 22k outputs.

3 Graph Partitioning

As discussed in the introduction, the general strategy for our fpt algorithms aims to reduceMin-2-Lin over various
domains to graph partitioning problems. In this section we develop algorithms for two problems—Partition
Cut and Pair Partition Cut—which arise in the study of Min-2-Lin over fields and Euclidean domains,
respectively.

3.1 Partition Cut A partition P of a finite set N is a family of pairwise disjoint subsets B1, . . . , Bm of N
such that

⋃m
i=1 Bi = N . For any x, y ∈ N , we write P(x) = P(y) if x and y appear in the same subset of P, while

P(x) ̸= P(y) if they appear in distinct subsets. If P ′ is a partition of N such that P ′(x) = P ′(y) =⇒ P(x) = P(y)
for all x, y ∈ N , then we say that P ′ refines P. All partitions of a finite set can be enumerated in O(1) amortized
time per partition [21].

Let G be an undirected graph, T be a subset of its vertices called terminals, and P be a partition of T . A
subset of edges X in G is a P-cut if no component of G−X contains terminals from more than one subset of P.
Consider the following graph separation problem:

Partition Cut

Instance: An undirected graph G with positive integer edge weights wG : E(G) → N+,
a set of terminals T ⊆ V (G), a partition P of T , and an integer k.

Parameter: k.
Question: Is there a P-cut in G of total weight at most k?

We may view this problem in the light of multiway cuts.
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(Edge) Multiway Cut

Instance: An undirected graph G with positive integer edge weights wG : E(G) → N+,
a set of vertices (terminals) T ⊆ V (G) and an integer k.

Parameter: k.
Question: Is there a set of edges X ⊆ E(G) of total weight at most k such that every

component of G−X contains at most one vertex from T?

One way to formulate the goal of the solution X in Partition Cut is to ensure the partition of terminals
into connected components of G−X refines P. Thus, Multiway Cut is a special case of this problem where
every subset of P is a singleton i.e. X needs to separate all terminals. In fact, we can reduce from Partition
Cut to Multiway Cut and thus show that Partition Cut is in FPT.

Proposition 3.1. (Cygan et al. [12]) Multiway Cut is solvable in O∗(2k) time. If a solution exists, then
the algorithm computes it in this time.

Lemma 3.1. Partition Cut is solvable in O∗(2k) time. If a solution exists, then the algorithm computes it in
this time.

Proof. Let (G,wG, T,P, k) be an instance of Partition Cut, where P = {B1, . . . , Bm}. For every i ∈ [m],
introduce a superterminal vertex si and connect all terminals in Bi to si with edges of weight k + 1. Let the
resulting graph be G′, the weight function wG′ , and the set of superterminals be S = {s1, . . . , sm}. Then the
instance of Multiway Cut is (G′, wG′ , S, k). Correctness of the reduction follows by noting that a cut in G′ is
a solution only if it partitions superterminals into distinct connected components. Since edges connecting any
s ∈ S to any t ∈ T have weight k + 1, they cannot be included in the solution. Hence, terminals are partitioned
according to P as well. The reduction runs in polynomial time and the parameter is unchanged so we obtain the
desired running time via Proposition 3.1.

3.2 Pair Partition Cut For Min-2-Lin over arbitrary Euclidean domains, our reduction leads to a more
general graph separation problem. Given a graph G with a set of terminals T ⊆ V (G), a (disjunctive) pair cut
request is a tuple ({s, u}, {t, v}) where s, t ∈ T and u, v ∈ V (G). A cut X ⊆ E(G) fulfills ({s, u}, {t, v}) if G−X
does not contain an {s, u}-path or a {t, v}-path.

Pair Partition Cut

Instance: An undirected graph G with positive integer edge weights wG : E(G) → N+,
a set of vertices (terminals) T ⊆ V (G), a partition P of T , a set F of pair
cut requests, and an integer k.

Parameter: k.
Question: Is there a P-cut X ⊆ E(G) of total weight at most k that fulfills every pair

cut request in F?

We prove that this problem is in FPT by casting it into the constraint satisfaction framework. A constraint
satisfaction problem (CSP) is defined by a constraint language Γ, which is a set of relation over a domain D.
A relation of arity r is a subset of Dr. An instance I = (V,C) of CSP(Γ) is a set of variables V and a set of
constraints C of the form R(v1, . . . , vr), where R ∈ Γ is a relation of arity r. The instance I is consistent if it
admits an assignment φ : V (C) → D that satisfied every constraint in C i.e. (φ(v1), . . . , φ(vr)) ∈ R holds for all
constraints. In the parameterized version MinCSP(Γ) the input is an instance I = (V,C) of CSP(Γ) together
with a weight function wC : C → N+ and the parameter k ∈ N+, and the goal is to check whether there is a
subset X ⊆ C of equations with total weight at most k such that (V,C \X) is consistent.

For the intuition behind the reduction, consider an instance of Pair Partition Cut with a solution X.
Assume without loss of generality that G is connected. Since X contains at most k edges, removing X splits G
into at most k+ 1 connected components. Enumerate connected components of G−X with integers from 0 to k
so that terminals from subset Bi of P are in the ith connected component. This is possible since X is a P-cut.
We define a function ϕ : V (G) → {0, . . . , k} such that ϕ(x) = i whenever x belongs to ith component of G−X.
Then for every pair cut request ({s, u}, {t, v}) with s ∈ Bi and t ∈ Bj , we either have ϕ(u) ̸= i or ϕ(v) ̸= j. This
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reasoning suggests that all requirements of Pair Partition Cut can be encoded using the following constraint
language Γk with domain {0, . . . , k} and relations:

• unary relations (x = i) for all 0 ≤ i ≤ k,

• binary equality relation (x = y), and

• binary relation (x ̸= i) ∨ (y ̸= j) for all 1 ≤ i, j ≤ k.

To solve CSP(Γk), we define another constraint language Γ′
k with domain {0, 1} and relations:

• (x = 0), (x = 1),

• Rk(x1, y1, . . . , xk, yk) ≡
∧

1≤i≤k(xi = yi) ∧
∧

1≤i<j≤k(¬xi ∨ ¬xj),

• (¬x ∨ ¬y).

Theorem 3.1. (Section 5.7 in [28]) The problem MinCSP(Γ′
d) is fpt parameterized by ℓ = d + c where c is

total solution cost.

The running time of MinCSP(Γ′
k) is significant even though it is fpt with parameter ℓ. It is not given

explicitly by Kim et al. [29], but works out to 2ℓ
b

where b ≥ 12 [28, Lemma 6.14]. Since this is greater than any
other running time contribution in this paper, we treat this as a function T (ℓ) and give our other running time
bounds (where appropriate) in terms of T (ℓ).

While there is a directed reduction from Pair Partition Cut to MinCSP(Γ′
k), we regard the following

two-step reduction clearer and more readable, and the intermediate problem being an interesting example of a
fixed-parameter tractable MinCSP.

Theorem 3.2. Pair Partition Cut is in FPT.

Proof. First, we spell out the reduction from Pair Partition Cut to MinCSP(Γk). Given an instance
(G,wG, T,P,F , k) of Pair Partition Cut, we construct an instance ((V,C), w, k) of MinCSP(Γk). Let
V = V (G) denote the set of variables. We define the set of constraints C and the weight function w as follows.
Enumerate subsets in P as B1, . . . , Bm and for every subset Bi, add the constraints (t = i) for all t ∈ Bi of weight
k + 1. For every edge {u, v} ∈ E(G), add the constraint (u = v) of weight wG({u, v}). Finally, for every pair cut
request ({u, s}, {v, t}) in F with s ∈ Bi and t ∈ Bj , add the constraint (u ̸= i)∨ (v ̸= j) of weight k+ 1. Clearly,
the reduction can be carried out in polynomial time. A solution X to ((V,C), w, k) may only contain equality
equations because every other constraint is assigned weight k + 1, and {{u, v} ∈ E(G) | (u = v) ∈ X} is a P-cut
in G that fulfills F . To obtain a solution to ((V,C), w, k) from a solution to the Pair Partition Cut instance,
one may follow the same steps in the opposite direction.

We continue by reducing MinCSP(Γk) to MinCSP(Γ′
k). Given an instance I = ((V,C), w, k) of the former

problem, we produce an equivalent instance I ′ = ((V ′, C ′), w′, k) of the latter, while keeping the parameter
unchanged. To this end, introduce variables v(i) for every v ∈ V and i ∈ {1, . . . , k}. Intuitively, setting v(i) = 1
corresponds to assigning value i to v, while setting v(i) = 0 for all i ∈ {1, . . . , k} corresponds to assigning 0 to
v. To ensure that v(i) = 1 for at most one value of i, add constraints (¬v(i) ∨ ¬v(j)) of weight k + 1 for all
1 ≤ i < j ≤ k. Every constraint c in C is replaced by constraints in C ′ of the same weight as follows:

1. if c is t = i for i ∈ {1, . . . , k}, then add t(i) = 1 to C ′,

2. if c is t = 0, then add t(i) = 0 for all i ∈ {1, . . . , k} to C ′, each of weight w(c),

3. if c is (u = v), then add Rk(u
(1), v(1), . . . , u(k), v(k)) to C ′, and

4. if c is (s ̸= i) ∨ (t ̸= j), then add (¬s(i) ∨ ¬t(j)) to C ′.

This concludes the reduction.
Suppose ϕ is an assignment to (V,C). Define ϕ′ by letting ϕ′(v(i)) = 1 if ϕ(v) = i for some i ≥ 1, and

ϕ(v(i)) = 0 otherwise. By construction, ϕ and ϕ′ leave constraints of the same total weight unsatisfied. Hence, if
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the set of constraints unsatisfied by ϕ is a solution to I, then the set of constraints unsatisfied by ϕ′ is a solution
to I ′. The same argument works in the opposite direction: given an assignment ρ′ to (V ′, C ′), define assignment
ρ to (V,C) by letting ρ(v) = i if ρ′(v(i)) = 1 for some i ∈ {1, . . . , k}, and ρ(v) = 0 otherwise. Constraints of the
type (¬v(i) ∨ ¬v(j)) ensure that ρ is well-defined. Moreover, the total weight of constraints unsatisfied by ρ and
ρ′ is the same. Thus, the reduction is correct, and the theorem follows.

4 Algorithm for Euclidean Domains

We let D = (D; +, ·) denote a Euclidean domain throughout this section. Our goal is to present an fpt algorithm
for Min-2-Lin(D). We start by reviewing basic definitions and facts about Euclidean domains in Section 4.1. In
Section 4.2 we develop a polynomial-time algorithm for 2-Lin(D) and prove several useful lemmas along the way,
building an understanding of the problem. We note that polynomial-time algorithms for r-Lin(D) are known for
arbitrary r ∈ N when D is finite [2, Section 6] (in fact, this is true for arbitrary finite rings), the ring of integers [25]
or the ring of univariate polynomials over Q [24]. However, we are unaware of such results for general Euclidean
domains, even when r = 2. The next three sections follow the common steps of compression, cleaning, and
cutting: we simplify the problem by applying iterative compression in Section 4.3, then simplify it even further
by applying the important balanced subgraph machinery in Section 4.4, and finally reduce the resulting problem
to Pair Partition Cut in Section 4.5, giving an overview of the whole algorithm. Finally, in Section 4.6 we
prove correctness of the algorithm and analyze its time complexity.

4.1 Basics of Euclidean Domains A Euclidean domain is an abstract algebraic structure generalizing
properties of the integers. Informally, it is a commutative ring with integer division. Formally, D = (D; +, ·)
is a Euclidean domain if it is an integral domain equipped with a Euclidean function. An integral domain is a
commutative ring of size at least two where the product of any pair of nonzero elements is itself nonzero—that is,
D does not contain a zero divisor. A Euclidean function on D is a function f : D → N0 such that f(0) = 0 and for
any a, b ∈ D where b ̸= 0, there exist q, r ∈ D such that a = bq+ r and f(r) < f(b). One may view q as a quotient
and r as a remainder, and write a ≡ r mod b to denote that r is a remainder of integer division of a by b. All
fields and the ring of integers Z are Euclidean domains; this follows from choosing the Euclidean function to be
f(x) = 1 for all x ̸= 0 and f(x) = |x|, respectively. Further examples include Gaussian integers Z[i], Eisenstein
integers Z[ω] where ω is a primitive non-real cubic root of unity, the ring of polynomials F[x] over a field F, and
many more. When working with Euclidean domains, we assume that they are effective i.e. D admits a reasonable
representation of elements such that basic operations (addition, subtraction, multiplication, computing quotients
and remainders) requires polynomial time in the bit-size of the operands. In addition, we require the following
property. Given an element d ∈ D, let ∥d∥ denote the number of bits required to represent d.

Property 4.1. In an effective ring D, there is a polynomial function p such that ∥d1 ·...·dm∥ ≤ p(∥d1∥+...+∥dn∥)
for arbitrary d1, . . . , dn ∈ D.

This is a natural requirement since otherwise we cannot compute (or even write down) satisfying assignments
to simple consistent instances of 2-Lin(D) like {x1 = d1x2, x2 = d2x3, . . . , xn−1 = dnxn}∪{xn = 1} in polynomial
time, we cannot perform efficient Gaussian elimination etc. In many cases (including all examples of Euclidean
domains given above), p is the identity polynomial i.e. representing the product of elements requires at most as
many bits as representing them individually.

It is important to note that quotients and remainders are not unique in D. For a simple example, consider
D = Z with Euclidean function f(x) = |x|, let a = 9 and b = 4, and note that 9 = 4 · 2 + 1 and 9 = 4 · 3 + (−3).
Since |1| < |4| and |−3| < |4|, both q = 2, r = 1 and q = 3, r = −3 are valid quotient-remainder pairs. However,
if we fix the remainder r, then there is at most one value for q such that a = b · q + r. As a corollary of this
observation, if b divides a (i.e. r = 0), then the result of dividing a by b is unique. In such cases we write a/b
to denote the unique quotient. A unit is an element u of D that admits a multiplicative inverse i.e. there is an
element v of D such that uv = 1. For all a, b ∈ D, a greatest common divisor gcd(a, b) is a maximal (with respect
to f) element of D that divides both a and b. If gcd(a, b) is a unit, then a and b are co-prime. A least common
multiple lcm(a, b) is a minimal (with respect to f) element of D that is divisible by a and b. Observe that while
gcd(a, b) is not unique, all greatest common divisors of a and b are congruent up to multiplication by units: if
g1 and g2 are greatest common divisors of a and b, then there is a unit element u in D such that a = b · u. The
same congruence holds for the least common multiples. As a result, when discussing divisibility we can safely
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abuse notation by writing gcd(a, b) and lcm(a, b) to denote an arbitrary greatest common divisor or least common
multiple of a and b, respectively. An analogue of the extended Euclidean algorithm works in effective Euclidean
domains.

Proposition 4.1. ([39, Theorem 4.10]) An equation ax + by = c with a, b, c ∈ D has a solution in D if and
only if g = gcd(a, b) divides c, and all satisfying assignments are of the form (x0+(b/g) · r, y0− (a/g) · r) for some
fixed x0, y0 ∈ D and arbitrary r ∈ D. Finally, there is a polynomial time algorithm that checks this condition and
computes g, x0, and y0.

In light of Proposition 4.1, we can assume that the instances of Min-2-Lin(D) that we are dealing with do not
contain inconsistent equations (since those can be removed in polynomial time during a preprocessing stage where
the parameter is decreased according to the weight of the equation). Moreover, we may assume that in every
equation ax+ by = c the coefficients a and b are co-prime (since we may divide all coefficients by a gcd(a, b)). By
further preprocessing, we may assume that equations of the form 0 · x+ 0 · y = 0 do not appear in the instances:
since they are satisfied by any assignment, they can be removed in advance without affecting the parameter.

We use the following distributive property of gcd and lcm:

Proposition 4.2. Let D be a Euclidean domain and let a1, . . . , an, b ∈ D. Then every
lcm(gcd(a1, b), . . . , gcd(an, b)) is congruent to every gcd(lcm(a1, . . . , an), b) up to multiplication by a unit
element.

A proof of this statement for D = Z and n = 2 is a common exercise in number theory and algebra
textbooks (see e.g. Exercise 23ε in [8] or Exercise III.3 in [30]). A proof can be found in [41]. It generalizes
in a straightforward way to all Euclidean domains and all n ∈ N+ by noting that the elements of a Euclidean
domain admit unique factorization up to multiplication by units.

4.2 2-Lin over Euclidean Domains The main goal of this section is to present a polynomial-time algorithm
for 2-Lin(D). Our approach exploits a particular graph (known as the primal or Gaifman graph) that describes the
structure of 2-Lin(D) instances. Thus, we begin by presenting algorithms for various graphs such as paths, stars,
and acyclic graphs, where we use a result that resembles the Chinese Remainder Theorem (Lemma 4.3). Then
we extend these results to flexible instances, which can be viewed as a generalization of acyclic instances. Finally,
we use the algorithm for flexible instances as the basis for a polynomial-time algorithm that checks consistency of
general 2-Lin(D) instances (Lemma 4.5). A useful simplification in our proofs is provided by homogenization—a
procedure that transforms the solution space while preserving the primal graph of the instance (Lemma 4.1).
This technique will be used frequently in this and following sections.

Let S be an instance of 2-Lin(D). We associate a primal graph with S: vertices of this graph correspond to
the variables in V (S), and two vertices x and y are connected by an edge if S contains an equation over x and
y. We can think of an instance of 2-Lin(D) as a graph with edges {x, y} labelled by equations over x and y. We
may (without loss of generality) assume that the graph does not have self-loops by introducing a zero variable z0
and an auxiliary variable z′0, adding equations z′0+z0 = 0 and z′0−z0 = 0, and replacing single-variable equations
ax = b with ax−z0 = b. Thus, we assume that the zero variable z0 is available in every instance of 2-Lin(D), and
in Min-2-Lin(D) equations z′0+ z0 = 0 and z′0− z0 = 0 are given weight k+1. We use graph-related terminology
(such as connectedness, paths, cycles etc.) to describe the structure of S while having the primal graph in mind.

One useful trick to simplify consistent instances of 2-Lin(D) is homogenization. An equation ax + by = c is
homogeneous if c = 0 and an instance of 2-Lin(D) is homogeneous if every equation in the instance is homogeneous.
Note that any such system is consistent since it is satisfied by the all-zero assignment. We show that by applying
an invertible affine transformation to the solution space, we can turn every consistent instance S of 2-Lin(D) into
a homogeneous system with the same primal graph. Define a mapping Φ that acts on every variable x ∈ V (S)
by setting x 7→ axx

′ + bx for some ax, bx ∈ D. We refer to Φ as a variable substitution for S, and write Φ(S) to
denote the instance of 2-Lin(D) obtained by substituting every variable x with axx

′+ bx. A variable substitution
is homogenizing if Φ(S) is homogeneous.

Lemma 4.1. Every consistent instance of 2-Lin(D) admits a homogenizing variable substitution.

Proof. Let S be an instance of 2-Lin(D) satisfied by assignment φ. Define Φ as x 7→ x′ + φ(x) for all x ∈ V (S).
Note that Φ is reversible by subtracting φ(x). Consider an equation ax+by = c in S. Note that aφ(x)+bφ(y) = c
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since φ satisfies the equation. Its counterpart in Φ(S) is a(x′ + φ(x)) + b(y′ + φ(y)) = c, which simplifies
to ax′ + by′ = 0. The right hand side in the obtained equation is 0. Thus, the variable substitution Φ is
homogenizing.

Now consider a path P of length ℓ − 1 connecting variables x and y in S i.e. a system of ℓ − 1 equations
over ℓ distinct variables p1, . . . , pℓ, where x = p1 and y = pℓ, with one equation relating pi and pi+1 for all
i ∈ {1, . . . , ℓ−1}. If ℓ = 2, then P contains a single equation. Otherwise, we may eliminate intermediate variables
to obtain an equation over x and y by recursively picking the first two equations in P , say, ap1 + bp2 = c and
a′p2 + b′p3 = c′, and taking their linear combination a′(ap1 + bp2)− b(a′p2 + b′p3) = a′c− bc′, which simplifies to
(a′a)p1 − (b′b)p3 = a′c − bc′. We say that P implies the final equation over x and y obtained after eliminating
all intermediate variables. This equation is denoted by eP . For example, let P be a path with two equations over
Z: x − 2z = 2 and z − y = 1. The equation implied by P is obtained by eliminating z so it is x − 2y = 4. The
following observation implies that variable elimination is safe.

Observation 4.1. Every assignment that satisfies P also satisfies eP .

We say that an instance S of 2-Lin(D) is flexible if for every pair of variables x, y ∈ V (S), every {x, y}-path in
S implies equivalent equations on x and y, i.e. equations with the same set of satisfying assignments. Otherwise,
we say that S is rigid. If S is flexible, we write exy(S) to denote the equation implied by the {x, y}-paths in S. A
simple example of flexible instances are acyclic instances. In the following lemma, we present a simple criterion
for checking the consistency of such instances. We start with a useful observation. For a flexible instance S and
any x ∈ V (S), we define the instance star(S, x) = {exy(S) | y ∈ V (S) \ {x}} of 2-Lin(D).

Lemma 4.2. Let S be a connected, acyclic instance of 2-Lin(D). For any x ∈ V (S), S and star(S, x) have the
same set of satisfying assignments.

Proof. By Observation 4.1, an assignment that satisfies S also satisfies the equations implied by the paths in
S. Consequently, it satisfies star(S, x) for any x. Now, suppose φ is a satisfying assignment to star(S, x) and
consider an equation e ∈ S over variables y and z. It suffices to show that φ satisfies e. Clearly, this holds if
y = x since then e ∈ star(S, x). Otherwise, by the construction of equations implied by the paths, the equation e
can be written as a linear combination of exy(S) and exz(S). Since these two equations are present in star(S, x),
φ satisfies them, and hence also satisfies e.

We can now present the consistency criterion.

Lemma 4.3. An acyclic instance of 2-Lin(D) is consistent if and only if it does not contain an inconsistent path.

Proof. One direction of the proof follows by Observation 4.1: existence of an inconsistent path implies
inconsistency of the whole system. For the opposite direction we proceed by induction on the number of equations.
If a system contains only one equation, then the claims follow by Proposition 4.1. Now consider a system S with
n+ 1 equations where every path is consistent. If S contains more than one component, then the lemma follows
by induction in each component. If S is connected (i.e. S is a tree), then pick a leaf z of S and assume x is
the neighbour of z in S. By induction, the subtree S′ := S[V (S) \ {z}] without z is consistent, so Lemma 4.1
applies and there is a homogenizing substitution Φ to S′. Note that when Φ is applied to S, all equations except
(possibly) the one involving x and z are homogenized.

Assume the variables in V (S)\{x, z} are y1, . . . , yn. Then the equation exyi
(Φ(S′)) can be written as aix = biyi

for some co-prime ai, bi ∈ D. Let B = lcm(b1, . . . , bn). An assignment satisfying Φ(S′) can be obtained by setting
x 7→ B · r and yi 7→ ai(B/bi) · r for any r ∈ D. The assignment clearly satisfies star(Φ(S′), x) so Lemma 4.2
implies that it also satisfies Φ(S′).

We now obtain an assignment for all equations in S. Let the equation over x and z in Φ(S) be

(4.1) a · x+ b · z = c.

Since it is consistent, we may assume that a and b are co-prime by Proposition 4.1. We claim that the following
holds by consistency of all paths in Φ(S).
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Claim 4.3.1. gcd(b, bi) divides c for all i ∈ {1, . . . , n}.

Proof of claim: Consider ezyi(Φ(S)). Since the {z, yi}-path in Φ(S) goes through x, the equation can be obtained
by cancelling out x from ax+ bz = c and aix = biyi. Thus, we get

(4.2) abi · yi + aib · z = aic.

Assume without loss of generality that a and ai are co-prime (otherwise divide all coefficients by gcd(a, ai)). By
assumption, Equation (4.2) is consistent and, by Proposition 4.1, gcd(abi, aib) divides aic. Note further that the
pairs (a, b), (ai, bi) and (a, ai) are co-prime. Hence, gcd(abi, aib) = gcd(b, bi). Since ai, bi are co-prime, gcd(b, bi)
does not divide ai and it only divides c. ⋄

To find a solution to the system S, substitute in B ·r instead of x into Equation 4.1 obtaining aB ·r+b ·z = c,
where r is a fresh variable. We claim that this equation is consistent. By Proposition 4.1, it suffices to show
that gcd(aB, b) divides c. First, note that since a, b are co-prime, an element is a gcd(aB, b) if and only if it is a
gcd(B, b). Now, let gcd(b, bi) be gi. By the definition of B and Proposition 4.2, every gcd(B, b) and lcm(g1, . . . , gn)
are congruent up to multiplication by units. Claim 4.3.1 implies that gi divides c for all i ∈ {1, . . . , n}, so by
the definition of lcm, lcm(g1, . . . , gn) also divides c. Thus, by choosing an appropriate value for r, we obtain an
assignment that satisfies Equation 4.1 and Φ(S′) simultaneously. Hence, the assignment satisfies Φ(S), and the
lemma follows by applying the inverse variable substitution Φ−1.

As an aside, a corollary of this lemma is that Min-2-Lin(D) on acyclic instances is in FPT, since the problem
can be reduced to solving (the edge-deletion variant of) Multicut on trees [18], where endpoints of every
inconsistent path form a cut request. We also have the following algorithmic corollary.

Corollary 4.1. There is a polynomial-time algorithm that checks whether an acyclic instance of 2-Lin(D) is
consistent, and if so, computes a satisfying assignment.

Proof. Let S be an acyclic instance of 2-Lin(D) and let d1, . . . , dn be the coefficients appearing in S. The
proof of Lemma 4.3 is constructive – it produces a concrete satisfying assignment to S. The running time for
constructing this solution is polynomial in Cn, where n is the number of equations in the system and C is the
maximum bit-size of an element from D computed during the course of the algorithm. By Property 4.1, we have
C ≤ ∥d1 · ... · dn∥ ≤ p(∥d1∥+ ...+ ∥dn∥) ≤ p(∥S∥), where ∥S∥ is the bit-size of S. We conclude that the algorithm
runs in polynomial time.

The results for acyclic instances extend to flexible instances by considering spanning forests.

Lemma 4.4. A flexible instance S of 2-Lin(D) is consistent if and only if it contains no inconsistent path.
Moreover, if S is connected, then S and star(S, x) have the same set of satisfying assignments for every x ∈ V (S).

Proof. Let S be a flexible instance of 2-Lin(D) and let T be a spanning forest of S. We claim that S and T have
the same set of satisfying assignments, and then the lemma holds by Lemma 4.2 and Lemma 4.3. First, note that
any assignment satisfying S also satisfies T since it is a subinstance of S. On the other hand, let φ be a satisfying
assignment for T , and consider an equation e in S \ T with variables x, y. It suffices to show that φ satisfies e.
Since S is flexible, e is equivalent to exy(S). Furthermore, T is a spanning forest, so it contains a path connecting
x and y, and the path implies an equation equivalent to exy(S) and e. Hence, φ satisfies e and the lemma holds.

Analogously to Corollary 4.1, we have the following algorithmic result.

Corollary 4.2. There is a polynomial-time algorithm that checks whether a flexible instance of 2-Lin(D) is
consistent, and if so, computes a satisfying assignment.

Lemma 4.4 suggests an fpt algorithm for solving Min-2-Lin(D) for flexible instances: find a spanning forest
and reduce to Multicut by adding endpoints of every inconsistent path in the forest as a cut request. This is
also an important stepping stone towards checking consistency of any instance of 2-Lin(D). We provide a full
algorithm below.
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Lemma 4.5. There is a polynomial-time algorithm that checks whether an instance of 2-Lin(D) is consistent, and
if so, computes a satisfying assignment.

Proof. Let S be an instance of 2-Lin(D). Without loss of generality, assume that it is connected, and compute
a spanning tree T . We proceed by checking whether S is flexible or not. To do so, we consider the equations
e ∈ S − T . Assume that e equals a1x+ b1y = c1 and let exy(T ) equal a2x+ b2y = c2. We want to check whether
these two equations are equivalent. To do so, we multiply the first one with a2, the second one with a1, compute
their difference and obtain (b1a2 − a1b2)y = c1a2 − a1c2. For conciseness, let A = b1a2 − a1b2, B = c1a2 − a1c2,
and consider four cases:

• If A = 0 and B ̸= 0, then Ay = B is inconsistent.

• If A = 0 and B = 0, then Ay = B is satisfied by assigning any value to y.

• If A ̸= 0 and A does not divide B, then Ay = B is inconsistent.

• If A ̸= 0 and A divides B, then Ay = B is only satisfied by setting y to B/A.

If Ay = B is inconsistent, then no assignment can satisfy both e and exy(T ), hence S is inconsistent. If A = B = 0,
then e and exy(T ) are equivalent, and we proceed to the next equation in S − T . Finally, if Ay = B has only one
satisfying assignment (namely y 7→ B/A), we assign this value to y and propagate to the rest of the instance, and
then check whether the obtained assignment satisfies every equation. Thus, the only case we need to consider
further is when S is flexible. This case is handled by Corollary 4.2 and this concludes the proof.

4.3 Iterative Compression We reduce Min-2-Lin(D) to a simpler problem by combining homogenization
with iterative compression. The latter method uses a compression routine that takes a problem instance together
with a solution as an input, and either calculates a smaller solution or verifies that the provided one has minimum
size. An optimal solution is then computed by iteratively building up the instance while improving the solution
at each step. If the compression routine runs in fpt time, then the whole algorithm also runs in fpt time. A more
comprehensive treatment of the method can be found in [10, Chapter 4]. We use it to provide a reduction from
Min-2-Lin(D) to the following problem:

Disjoint Min-2-Lin(D) (DML(D))

Instance: An instance S of 2-Lin(D) with positive integer equation weights wS : S →
N+, an inclusion-wise minimal set X ⊆ S such that S −X is homogeneous,
and an integer k such that wS(X) ≤ k + 1.

Parameter: k.
Question: Is there a set Z ⊆ S −X of weight at most k such that S − Z is consistent?

Lemma 4.6. If DML(D) is solvable in O∗(f(k)) time, then Min-2-Lin(D) is solvable in O∗(2kf(k)) time.

Proof. Let I = (S,wS , k) be an instance of Min-2-Lin(D). In this context it is simpler to view equations as a
multiset S′ where every equation e ∈ S is present with multiplicity wS(e). Then by iterative compression, we
may assume that apart from the input I, we also have access to a multiset X such that |X| = k + 1 and S′ −X
is consistent.

Suppose Z is an optimal solution to S′. To reduce to DML(D), we branch on the possible intersections
Y = X ∩Z of the incoming solution with the optimal solution. Since there are 2|X| = 2k+1 options, the branching
step requires fpt time. For every guess Y , consider the multisets S′ − Y and X − Y , and convert them into sets
SY and XY , respectively, defining the weight function wY so that wY (e) for all equations e is the multiplicity of
e in SY . Note that by definition SY −XY is consistent, so we may apply a homogenizing variable substitution
to it by Lemma 4.1. Finally, set the parameter to kY = k − |Y |. We obtain an instance (SY , wY , kY , XY ) of
DML(D). If this instance has a solution, then combining that solution with Y yields a solution to the instance I of
Min-2-Lin(D). On the other hand, if there is no solution for any option Y , then by exhaustion I is a no-instance.
Since we branch in 2k+1 directions, and in each branch we solve an instance of DML(D) with parameter bounded
from above by k, we obtain the total running time of O∗(2kf(k)).
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4.4 Graph Cleaning for Euclidean Domains Lemma 4.4 provides us with a good idea of how to solve
Min-2-Lin(D) restricted to acyclic and flexible instances. To approach the general solution, we now need to
consider cycles that make instances rigid. If a consistent cycle is flexible, we say that it is an identity cycle.
If a consistent cycle is consistent, but not flexible, then it is a non-identity cycle. There is an alternative
characterization of identity and non-identity cycles in terms of the number of satisfying assignments.

Lemma 4.7. A consistent cycle in 2-Lin(D) is identity if and only if it admits more than one satisfying
assignment, while a consistent cycle is non-identity if and only if it admits a unique satisfying assignment.

Proof. Let C be a consistent instance of 2-Lin(D) that is a cycle. By Lemma 4.1, we may assume without loss of
generality that C is homogeneous. Then, C is satisfied by the all-zero assignment. To prove the lemma it suffices
to show that C admits a non-zero assignment if and only if it is identity.

On the one hand, suppose that C is an identity cycle. Pick an arbitrary equation e ∈ C. Note that
P := C \ {e} is a path. Let |P | = m and assume that the equations on P are aixi = bixi+1 for i ∈ {1, . . . ,m},
where ai, bi ∈ D \ {0} and xi is a variable. We define the assignment φ using a particular product construction:
set φ(x1) = b1 · b2 · ... · bm, and φ(xi+1) = (φ(xi)/bi) · ai for all i ∈ {1, . . . ,m}. In other words, the value φ(xi+1)
is obtained from φ(xi) by replacing the factor bi in the product by ai. Consequently, φ(xm+1) = a1 · a2 · ... · am.
Since all coefficients ai, bi are nonzero, φ is a nonzero assignment and it is easy to verify that φ satisfies P . By
Observation 4.1, it also satisfies the implied equation eP . Since equations e and eP are equivalent, assignment φ
satisfies e and, therefore, it satisfies P ∪ {e} = C.

On the other hand, suppose that C is a non-identity cycle. By definition, there are variables x, y ∈ V (C)
such that the {x, y}-paths P1 and P2 forming C imply two non-equivalent equations a1x = b1y and a2x = b2y,
respectively. Multiplying the first equation by a2 and the second by a1, we obtain the same coefficient in front of
x. Since the equations are not equivalent, the coefficients in front of y must differ i.e. b1a2 ̸= a1b2. Hence, any
assignment satisfying C also satisfies (b1a2 − a1b2) · y = 0, which can only be satisfied by setting y to 0. The zero
value propagates to all remaining variables, so C is only satisfied by the all-zero assignment.

The following results allows us to use the graph cleaning machinery to remove non-identity cycles.

Lemma 4.8. Let GS be the primal graph of a consistent instance S of 2-Lin(D) and BS be the set of identity
cycles in S. Then (GS ,BS) is a biased graph.

Proof. By Lemma 4.1, it suffices to consider a homogeneous instance S. We want to verify that theta property
holds for the family of unbalanced cycles in (GS ,BS). To this end, let P , Q, R be three internally vertex-disjoint
{x, y}-paths in GS , and assume P ∪R is a non-identity cycle. We claim that equations eP and eR are inequivalent.
Then equation eQ cannot be equivalent to both eP and eR. This implies that either P ∪Q or Q∪R is non-identity,
and the lemma follows.

To prove the claim, assume towards contradiction that equations eP and eR are equivalent, and eP is ax = by.
Using the product construction from the proof of Lemma 4.7, define nonzero assignments φP and φR satisfying
all equations in P and R, respectively. Note that by Observation 4.1, they also satisfy ax = by i.e.

a · φP (x) = b · φP (y),(4.3)

a · φR(x) = b · φR(y).(4.4)

Therefore, after multiplying (4.3) by φR(x) and (4.4) by φP (x), we obtain:

a · φP (x) · φR(x) = b · φP (y) · φR(x),(4.5)

a · φR(x) · φP (x) = b · φR(y) · φP (x).(4.6)

Since the right hand sides of (4.5) and (4.6) are equal, we may equate the left hand sides and thus obtain

φP (y) · φR(x) = φR(y) · φP (x).

This equation allows us to define a nonzero assignment φPR that satisfies P ∪ R by scaling φP and φR so that
they agree on the values of x and y, namely let

φPR(z) =

{
φP (z) · φR(x) if z ∈ P,

φR(z) · φP (x) if z ∈ R.
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Since P ∪ R admits the nonzero satisfying assignment φPR, it is identity by Lemma 4.7 and we arrive at a
contradiction.

By Lemma 4.6, Min-2-Lin(D) reduces to DML(D) in fpt time. Let I = (S,wS , X, k) be an instance of the
latter problem. Note that S − X is consistent, so all cycles in it are either identity or non-identity. To apply
graph cleaning, we construct a rooted graph for I as follows.

Definition 4.1. Let I = (S,wS , X, k) be an instance of DML(D). The rooted graph for I is a biased graph
(GI ,BI) defined as follows. The vertex set of GI is the set of the variables of S −X extended with a fresh root
vertex s. The edge set contains all edges in the primal graph of S −X (with the corresponding weights given by
wS) together with an edge of weight 1 from s to every vertex in V (X). Moreover, let BI ⊆ 2E(GI) be the set of
identity cycles in S −X.

Observe that the family of cycles BI above admits a polynomial-time oracle e.g. by checking for every pair
of vertices whether two paths connecting them on the cycle imply the same equation.

Lemma 4.9. (GI ,BI) is a biased graph.

Proof. Consider a cycle in GI that is outside of BI . Such a cycle either contains the root vertex s or is non-identity
in S −X. Adding a chordal path to a cycle of the first kind creates two cycles at least one of which also contains
s. For the cycles of the second kind, invoke Lemma 4.8.

The following is an immediate algorithmic consequence of Theorem 2.1 and Lemma 4.9.

Observation 4.2. Let q be a positive integer and let G := G(GI ,BI , q, s) be the family of connected balanced
subgraphs in (GI ,BI) rooted in s with cost at most q. Then, in time O∗(4q) we can compute a dominating family
H for G of size at most 4q.

Now we characterize yes-instances of Min-2-Lin(D). To this end, let Z be an optimal solution to I disjoint
from X, and φ be an assignment satisfying S − Z. The variables in V (S) are partitioned into two sets by φ:
V0 = {v ∈ V (S) | φ(v) = 0} and V∅ = {v ∈ V (S) | φ(v) ̸= 0}, i.e. those assigned zero and non-zero values,
respectively.

Lemma 4.10. Let K ⊆ V (S) be a connected component of S − (X ∪ Z).

1. Either K ⊆ V0 or K ⊆ V∅.

2. If K ⊆ V∅, then (S − (X ∪ Z))[K] is flexible.

3. If K ∩ V (X) = ∅, we may assume without loss of generality that K ⊆ V0.

Proof. First, note that S −X is homogeneous, and so is the subset of equations in S − (X ∪ Z) induced by K.
Statement 1 follows by observing that if one variable is assigned zero in a two-variable homogeneous system,
then every connected variable must be assigned zero as well. For statement 2, note that if K is rigid, it can
only be satisfied by the all-zero assignment. Finally, for statement 3, if K ∩ V (X) = ∅, then K also induces a
homogeneous connected component in S − Z, which can be satisfies by the all-zero assignment independently of
all other variables.

We now introduce the zero-free subgraph H∅ of the rooted graph (GI ,BI).

Definition 4.2. Let I = (S,wS , X, k) be an instance of DML(D), Z be an optimal solution of I, φ be a satisfying
assignment of S − Z, and (GI ,BI) be the rooted graph for I. Then, the zero-free subgraph H∅ := H∅(I, Z, φ) of
GI (with distinguished vertex s) is defined as follows. Let V (H∅) = V∅ ∪ {s}. Add every edge from (GI − Z)[V∅]
to E(H∅). Finally, for each zero-free component K of S − (X ∪ Z), pick one vertex x ∈ K ∩ V (X) (which exists
by Lemma 4.10) and add the edge {s, x} to E(H∅).

Lemma 4.11. H∅ is a connected balanced subgraph of (GI ,BI), and cGI
(H∅) ≤ 3k + 1.
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V (X ∪ F )

C1 C2 C3 C4

z0

Figure 4: An illustration of the auxiliary instance HP = H(S,X, F,P). Here, C1, . . . , C4 are all components of
S′ = S − (X ∪ F ) with C3 and C4 being the only rigid components. Black circular vertices represent the vertices
of the primal graph of HP , i.e. the terminals in V (X ∪ F ). Moreover, edges in light grey represent (possible)
edges in X ∪ F and black edges represent constraints added to HP , more specifically, black edges inside C1 and
C2 represent the constraints exy(S

′) and black edges incident with z represent the constraints x − z0 = 0 and
x+ z0 = 0. The dotted vertical lines within the rectangle for V (X ∪ F ) give the partition P of V (X ∪ F ), which
is a refinement of the partition P ′ given by the components C1 . . . , C4.

Proof. Note that by construction, H∅ contains edges from GI − Z and edges connecting s to V (X) which are
also present in GI , hence it is a subgraph of GI . H∅ is clearly connected through the vertex s. To see that all
cycles in H∅ are balanced, consider a zero-free component K in S − (X ∪ Z). By Lemma 4.10, (S − (X ∪ Z))[K]
is flexible so H∅[K] is a balanced subgraph of (GI ,BI) whenever K is zero-free. Finally, the vertex s has exactly
one neighbour in each component K with V (X)∩K = ∅, so H∅ does not contain any new cycle going through s.

The cost of H∅ in GI is cGI
(H∅) = |Z| + |V (X)| − k∅, where k∅ is the number of zero-free components in

S − (X ∪ Z). Since 1 ≤ |Z| ≤ k, |V (X)| = 2k + 2, and k∅ ≥ 1, we have that cGI
(H∅) ≤ 3k + 1.

4.5 Algorithm for Min-2-Lin over Euclidean Domains In the end of this section we will present our
fpt algorithm for Min-2-Lin(D). By Lemma 4.6, it suffices to prove that DML(D) is in FPT. To this end, let
(S,wS , X, k) be an instance of DML(D), Z be a minimum solution, and φZ be a satisfying assignment to S − Z.
Further, assume F ⊆ S − (X ∪ Z) is a set of equations such that every rigid component of S′ := S − (X ∪ F ) is
zero under φZ . We call vertices in V (X ∪ F ) terminals, and refer to F as a cleaning set with respect to φZ . We
will later show how to obtain a cleaning set using Observation 4.2.

Let P ′ be the partition of terminals into connected components of S′ i.e. P ′(x) = P ′(y) if and only if x and
y are in the same connected component of S′. For every partition P that refines P ′, we describe the construction
of an auxiliary instance HP = H(S,X, F,P) of 2-Lin(D) that is used in the algorithm (see Figure 4 for an
illustration). HP contains all variables in V (X ∪ F ) plus an additional zero variable z0. Moreover, HP contains
all equations in X ∪ F plus the following additional equations:

• For every terminal x that is in a rigid component of S′, the equations x− z0 = 0 and x+ z0 = 0.

• For every pair of terminals x, y such that P(x) = P(y) and x, y appear in a flexible component of S′, the
equation exy(S

′).

This completes the construction of HP . We distinguish between different kinds of terminals: terminals appearing
in rigid components of HP are called determined, while those appearing in flexible components are called
undetermined. Note that all terminals appearing in the connected component of zero variable z0 are determined
since equations connecting z0 and z′0 form a non-identity cycle. We call them zero-determined terminals. Observe
further that not all determined terminals have to be zero-determined as HP may contain rigid components apart
from the one including z0.

If Z is a solution to (S,wS , X, k) and PZ is the partition of terminals into connected components of S′ − Z,
then, intuitively, HPZ

serves as the “projection” of S − Z onto the terminals i.e. it encapsulates all constraints
in S − Z between the pairs of terminals. This intuition is formalized below.
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Lemma 4.12. Let (S,wS , X, k) be an instance of DML(D), Z be a solution, and φZ be a satisfying assignment
to S − Z. Let F ⊆ S − (X ∪ Z) be a cleaning set with respect to φZ , and PZ be the partition of V (X ∪ F ) into
connected components of S′ − Z, where S′ := S − (X ∪ F ). Then the following statements hold:

1. HPZ
is consistent.

2. If a terminal x ∈ V (X ∪ F ) is determined, then φ(x) = φZ(x) for every satisfying assignment φ of HPZ
.

Proof. Statement 1. We show that the assignment φ obtained from φZ after setting φ(z0) = 0 for the zero variable
z0 satisfies HPZ

. To this end, let e be an equation of HPZ
. If e ∈ X ∪ F , then e ∈ S − Z and φ satisfies e.

If e contains z0, then e is equal to x − z0 = 0 or x + z0 = 0, where x is contained in a rigid component of S′.
Because F is a cleaning set with respect to φZ , it holds that φ(x) = φZ(x) = 0 and therefore e is satisfied by φ.
Otherwise, e is equal to exy(S

′) for some terminals x and y with PZ(x) = PZ(y) that appear together in some
flexible component K of S′. Because PZ(x) = PZ(y) and K is flexible, it holds that exy(S

′ − Z) is equivalent to
exy(S

′) and e, and therefore φ satisfies e.
Statement 2. If x is a zero-determined terminal, then φ(x) = 0 for every satisfying assignment φ to HPZ

.
Moreover, φZ(x) = 0 since x is in a rigid component of S′ and F is a cleaning set. On the other hand, if x is not
zero-determined, then by construction of HPZ

, x is contained in an equivalent non-identity cycle in S − Z, so φ
and φZ agree on all terminals in these cycles. Therefore, in both cases we have φ(x) = φZ(x).

Lemma 4.12.1 suggests that the algorithm for DML(D) can start by guessing the partition P of the terminals
and checking whether HP is consistent. If yes, then a P-cut Y in S′ of size k can be computed in fpt time (or we
can correctly report that no such cut exists). However, S−Y is not necessarily consistent. The reason is that some
paths of equations in S − Y may be inconsistent. Thus, the cut needs to fulfil an additional set of requirements
to ensure that it is a solution. The key insight for computing these requirements is that all paths avoiding X are
homogeneous (hence they imply consistent equations satisfied by setting all variables to zero), so it is sufficient
to take care of the paths containing a variable from V (X). Then there are two kinds of inconsistent paths: those
confined to a component connecting a terminal and a non-terminal and those connecting two non-terminals in
different components using at least one equation from X. We show that these requirements can be handled using
Pair Partition Cut. For this we will construct the set FP = F(S,X, F,P) of pair cut requests one needs to
fulfil as follows. Let φH be a satisfying assignment to HP . Then, the set FP = F(S,X, F,P) of pair cut request
contains the following pairs. For every determined terminal x that is in a flexible component K of S′, consider
every non-terminal v in K and compute exv(S

′). Plug in φH(x) for x into the equation exv(S
′). If there is no

value for v that satisfies the equation, then add ({x, v}, {x, v}) to FP .
Now, for every flexible component K of HP , consider every pair of terminals x, y ∈ K such that P(x) ̸= P(y).

Note that x and y are undetermined. Let K ′
1 and K ′

2 be the (not necessarily distinct) components of S′ that
contain x and y, respectively. Note that S′[K ′

1] and S′[K ′
2] are flexible (otherwise, by construction of HP , variables

x and y would form non-identity cycles with z0). For every pair of non-terminals u ∈ K ′
1 and v ∈ K ′

2, compute
eux(S

′[K ′
1]), exy(HP [K]), eyv(S

′[K ′
2]), and let euv be the equation implied by composing them (i.e. treating them

as parts of a path, and computing the implied equation). If euv has no solution, then add ({u, x}, {y, v}) to FP .
This concludes the definition of FP .

The algorithm for DML(D) can now be summarized as follows. Let I = (S,wS , X, k) be an instance of
DML(D).

1. Construct the rooted graph (GI ,BI) for I as described in Definition 4.1. Assume that s is the root of
(GI ,BI).

2. Let G := G(GI ,BI , k, s) be the family of connected balanced subgraphs in (GI ,BI) rooted in s with cost at
most 3k + 1. Compute a dominating family H for G using Observation 4.2.

3. For every H ∈ H, let FH be the set of deleted edges excluding those incident to s. Guess the intersection
FZ with a solution, i.e. for every FZ ⊆ FH with wS(FZ) ≤ k, do the following. Let I ′ = (S′, wS , X, k′) be
the instance obtained from I by removing all edges in FZ from S and decreasing k by the weight of FZ .
Let F = FH \ FZ , T = V (X ∪ F ), S′′ = S′ − (X ∪ F ), and P ′ be the partition of T in S′′. Then, for every
partition P that refines P ′, proceed as follows:
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(a) Construct the auxiliary instance HP = H(S′, X, F,P) of 2-Lin(D) as described above.

(b) Use Lemma 4.5 to decide whether HP is consistent and if so to compute a satisfying assignment φH for
HP . If HP is inconsistent, then disregard the current partition P and continue with the next partition.

(c) Use φH to construct the set FP = F(S′, X, F,P) of pair cut requests as described above. Let IP be
the instance (S′′, wS , T,P,FP , k) of Pair Partition Cut.

(d) Use Theorem 3.2 to solve IP . If IP has a solution Y , then use Lemma 4.5 to check whether S′ − Y is
consistent. If so, output Y ∪FZ as the solution for DML(D), otherwise disregard the current partition
P and continue with the next partition.

4. If no solution was output at Step 3d, then reject.

4.6 Correctness Proof and Complexity Analysis We will now prove that the algorithm presented in
Section 4.5 is correct and we will analyze its time complexity. The correctness proof is based on an auxiliary
result (Lemma 4.14) that show the connection between the cleaned DML(D) instance and the Pair Partition
Cut instances that are computed in step 3 of the algorithm. The proof of Lemma 4.14 is simplified with the aid
of the following lemma.

Lemma 4.13. Let (S,wS , X, k) be an instance of DML(D) with solution Z and let φZ be a satisfying assignment
of S − Z. Let F ⊆ S − (X ∪ Z) be a cleaning set with respect to φZ , and PZ be the partition of V (X ∪ F ) into
connected components of S′ − Z, where S′ = S − (X ∪ F ). Then Z is a PZ-cut in S′ that fulfills FPZ

.

Proof. Clearly, Z is a PZ-cut. Suppose now for a contradiction that Z does not fulfil FPZ
. First consider the

case that Z does not fulfil a cut request ({x, v}, {x, v}) in FPZ
, where x is a determined terminal. Because of

Lemma 4.12.1, we know that HPZ
is consistent. Let φH be a satisfying assignment to HPZ

and let K contain
the connected component of S′ that contains x and v. By Lemma 4.12.2, φH(x) = φZ(x). Since Z does not
separate x and v in S′, at least one path implying the equation exv(S

′[K]) persists in S−Z. However, due to the
construction of FPZ

this implies that φZ does not satisfy exv(S
′[K]) and this contradicts our assumption that

S − Z is consistent.
Now consider the only remaining case that Z does not fulfil a cut request ({u, x}, {y, v}) in FPZ

, where x
and y are undetermined terminals. Let K ′

1 and K ′
2 be the connected components of S′ such that {u, x} ⊆ K ′

1

and {y, v} ⊆ K ′
2. Further, let K be the connected component of HPZ

that contains x and y. Since Z does
not disconnect u, x or y, v in S′, a path implying eux(S

′[K ′
1]) and a path implying eyv(S

′[K ′
2]) persist in S − Z.

Moreover, by the construction of HPZ
, a path implying exy(HPZ

[K]) exists in S−Z. Finally, the construction of
FPZ

ensures that the composition of these equations does not have a solution in D. We conclude that S − Z is
inconsistent and this leads to a contradiction.

Lemma 4.14. Let I = (S,wS , X, k) be an instance of DML(D) with solution Z and let φZ be a satisfying
assignment of S − Z. Let F ⊆ S − (X ∪ Z) be a cleaning set with respect to φZ , and let PZ be the partition of
V (X ∪ F ) into connected components of S′ − Z, where S′ = S − (X ∪ F ). Then every minimum PZ-cut Y in S′

that fulfills FPZ
is a solution to I.

Proof. We know that HPZ
is consistent by Lemma 4.12.1 and we let φH denote a satisfying assignment. We

construct an assignment φY based on φH and prove that φY satisfies S′′ := S′ − Y , considering one connected
component of S′′ at a time. Then we show that φY also satisfies X ∪ F , and conclude that it satisfies S − Y .

First note that every connected component of S′′ is a subset of a component of S′. If a variable v appears
in a rigid component of S′, then let φY (v) = 0. If v appears in a component that does not contain any terminal,
then let φY (v) = 0. Note that all equations in S − X are homogeneous so φY satisfies all equations inside the
components of S′′ considered so far.

Now consider a flexible component K of S′′ that contains a determined terminal x. Set φY (x) = φH(x).
Since Y fulfills FPZ

, for every v ∈ K the equation exv(S
′′) has a solution where x 7→ φH(x). Therefore, we can

extend φY , by assigning every variable v ∈ K with v ̸= x to the unique value satisfying exv(S
′′) if x is set to

φY (x). It follows that φY satisfies star(K,x), which due to Lemma 4.4 implies that φY satisfies S′′[K].
All remaining variables appear in flexible components of S′′ that only contain undetermined terminals. Let

U be the set of all vertices appearing in these components.
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Claim 4.14.1. (S − Y )[U ] is flexible and consistent.

Proof of claim: Towards showing that (S − Y )[U ] is flexible, first note that S′′[U ] is flexible. Moreover,
HPZ

[U ∩ V (X ∪ F )] is also flexible, since all terminals in U are undetermined. Thus, (S − Y )[U ] does not
contain any non-identity cycle avoiding X ∪ F . Furthermore, if there were a non-identity cycle in (S − Y )[U ]
intersecting X ∪ F , then by construction there would also be such a cycle in HPZ

[U ∩ V (X ∪ F )], which would
be a contradiction. Hence, (S − Y )[U ] cannot contain a non-identity cycle and it is indeed flexible.

We now show that (S − Y )[U ] is consistent. Because (S − Y )[U ] is flexible, we obtain from Lemma 4.4 that
it suffices to show that (S − Y )[U ] contains no inconsistent path. Suppose for a contradiction that (S − Y )[U ]
contains an inconsistent path P between say u and v. We know that S−X is consistent so we can assume that P
intersects X. Let x ∈ V (X ∪ F ) and y ∈ V (X ∪ F ) be the closest terminals to u and v on P , respectively. Then,
the equation eux(P ) is equivalent to eux(S

′) and similarly the equation eyv(P ) is equivalent to eyv(S
′). Moreover,

an equation equivalent to the equation exy(P ) is implied by the {x, y}-paths in HPZ
due to the construction of

HPZ
. Therefore, if P is inconsistent, then so is the equation obtained by combining eux(S

′), exy(P ), and eyv(S
′),

which implies that ({x, u}, {y, v}) is a pair cut request in FPZ
. But this contradicts our assumption that P is in

(S − Y )[U ] because Y fulfills FPZ
and therefore intersects P . ⋄

Using the claim above, we can now extend φY to U using any satisfying assignment φU of (S − Y )[U ] by
setting φY (u) = φU (u) for all u ∈ U . We show that φY obtained in this manner satisfies not only X ∪F but also
HPZ

.

Claim 4.14.2. The assignment φY satisfies HPZ
.

Proof of claim: Let K be a connected component of HPZ
. If z0 ∈ K, then φH(v) = 0 for all v ∈ K. By the

construction of HPZ
, K \ {z0} is a subset of a rigid component of S′ so φY (v) = 0 for all v ∈ K. If z0 /∈ K and K

is rigid, then K only contains determined terminals and it follows that φY agrees with φH on K by construction.
Finally, if K is flexible, then consider arbitrary x, y ∈ K. By the construction of HPZ

, there is a path in (S−Y )[U ]
that implies exy(HPZ

[K]). Hence, φY satisfies exy(HPZ
[K]) for all x, y ∈ K. We have thus exhausted all cases

and the claim holds. ⋄
We have shown that φY satisfies both S′′ = S′ − Y and X ∪ F ⊆ HPZ

. Therefore, S − Y is consistent and it
only remains to show that |Y | ≤ k. Lemma 4.13 implies that Z is a PZ-cut in S′ that fulfills FPZ

. Moreover, Z
is a solution of I so |Z| ≤ k. It follows that if Y is a minimum such PZ-cut, then |Y | ≤ k and Y is a solution of
I.

We are now ready to prove correctness and to provide the time complexity analysis of the algorithm. For
the analysis of the run-time, we will use Q(k) to denote the run-time dependency on the parameter k for the
algorithm for Pair Partition Cut, i.e. O∗(Q(k)) is the run-time for the algorithm for Pair Partition Cut
given in Theorem 3.2. This makes it clear that the main bottleneck for our algorithm is the underlying algorithm
for Pair Partition Cut.

Theorem 4.1. Min-2-Lin(D) is in FPT and can be solved in time O∗(kO(k)Q(k)).

Proof. We start by analyzing the algorithm for DML(D) presented in Section 4.5. Let I = (S,ws, X, k) be an
arbitrary instance of DML(D). We show that the algorithm accepts if and only if I is a yes-instance. The forward
direction is simple because if the algorithm returns a solution Y , then |Y | ≤ k and S − Y is consistent because of
Step 3d of the algorithm.

Towards showing the reverse direction, suppose that I is a yes-instance having a solution Z. Let φZ be a
satisfying assignment of S − Z and define V0 and V∅ accordingly. Let H∅ denote the zero-free subgraph of GI as
given in Definition 4.2. By Lemma 4.11, H∅ is balanced, connected, and cGI

(H∅) ≤ 3k + 1. Because the family
H that is computed in Step 2 of the algorithm is a dominating family for G, there is an (important) balanced
subgraph H ∈ H that dominates H∅. Moreover, because H ∈ H, H is considered by the algorithm in Step 3.

Let FH be the corresponding set of deleted edges in GI − {s}, let FZ = FH ∩ Z, and let F = FH \ FZ . Let
I ′ = (S′, wS , X, k′) be the instance obtained from I by removing all edges in FZ from S and decreasing k by the
weight of FZ . Note that I has a solution if and only if I ′ has a solution. Moreover, note that F is considered
by the algorithm because the algorithm considers all subsets of FZ of FH of weight at most k in Step 3. Let
T = V (X ∪ F ), S′′ = S′ − (X ∪ F ) and let P ′ be the partition of T in S′′. Let PZ be the partition of T in

Copyright © 2023
Copyright for this paper is retained by the authors



S′′ − Z. Then, because the algorithm considers all refinements of P ′, it also considers the partition PZ . Finally,
note that F is a cleaning set with respect to φZ in S′. This is because V∅ ⊆ V (H∅) ⊆ V (H) and all components
in S′′[V (GI) \ {s}] are flexible. Hence, all variables in the rigid components of S′′ are assigned zero values by φZ .
Therefore, Z \ FZ , φZ , PZ , and F satisfy all conditions of Lemma 4.12.1 for the instance I ′, which implies that
HPZ

is consistent. Moreover, Z \ FZ , φZ , PZ , and F also satisfy all conditions of Lemma 4.14 on the instance I ′

and therefore every PZ-cut Y in S′′ that fulfills FPZ
is a solution for I ′. Therefore, the set Y ∪ FZ returned by

the algorithm in Step 3d is a solution for I.
We continue by analyzing the run-time of the algorithm. The algorithm starts by computing a dominating

family H of G := G(GI ,BI , k, s) of size at most 43k+1 in time O∗(43k+1) using Observation 4.2. Let H ∈ H and
let FH be the set of deleted edges for H excluding those incident with s. Then, for every FH , the algorithm
considers at most 2|FH | ≤ 23k+1 (because cGI

(H) ≤ 3k + 1) subsets FZ and computes the updated instance
I ′ = (S′, wS , X, k′) in Step 3 in polynomial-time. Let F = FH \ FZ , S

′′ = S′ − (X ∪ F ), T = V (X ∪ F ), and let
P ′ be the partition of T = V (X ∪ F ) in S′′. The algorithm then enumerates all refinements P of P ′. Because
the number of such refinements P is at most |T ||T | ≤ (4k)4k, this can be achieved in time O((4k)4k). For each P,
the algorithm then constructs HP = H(S′, X, F,P) in polynomial-time and decides whether HP is consistent in
polynomial time using Lemma 4.5. If HP is not consistent, the algorithm stops, otherwise it constructs the set of
pair-cut requests FP = F(S′, X, F,P) and the instance IP of Pair Partition Cut in polynomial-time. Finally,
the algorithm solves IP = (S′′, wS , T,P,F , k) using Theorem 3.2 in fpt-time with respect to k′ ≤ k, i.e. in time
O∗(Q(k)). Therefore, the total time required by the algorithm is at most

O∗(43k+123k+1(4k)4kQ(k)) = O∗(kO(k)Q(k))

which shows that DML(D) is fpt with respect to k. By Lemma 4.6, there is another factor of 2k in the running
time of the algorithm for Min-2-Lin(D), which is dominated by kO(k), so asymptotically we obtain the same
running time for Min-2-Lin(D).

5 Faster Algorithm for Fields

Let F be an effective field. In this section we present improved fpt algorithms for Min-2-Lin(F)—an O∗(kO(k))
time algorithm for arbitrary fields and an O∗((2p)k) time algorithm for finite p-element fields. The improvements
use the nicer structural properties of fields, mainly the fact that every nonzero element has a multiplicative
inverse. Section 5.1 demonstrates how Min-2-Lin(F) differs from the more general Min-2-Lin over Euclidean
domains and several useful observations are derived from this. In Section 5.2, we present the algorithm for fields
and continue in Section 5.3 by proving its correctness and analysing its running time. Finally, we present a faster
algorithm for Min-2-Lin over finite fields in Section 5.4.

5.1 2-Lin over Fields Since the quotient of any two nonzero elements is an element of the field F, instances
of 2-Lin(F) enjoy rather pleasant properties that do not necessarily hold in arbitrary Euclidean domains. First,
note that any single equation ax + by = c over F is consistent unless a = b = 0 and c ̸= 0. By preprocessing,
we may assume that such equations do not occur in our instances. Hence, we may assume that all paths in our
instances are consistent. This implies the following via Lemmas 4.2 and 4.3.

Corollary 5.1. Every flexible instance S of 2-Lin(F) is consistent. Moreover, for any variable z ∈ V (S) and
any element d in F, there is an assignment that satisfies S and sets z to d.

Flexible instances have another useful property. We call a variable substitution Φ equalising if every equation
in Φ(S) is equality, i.e. it has the form x = y.

Lemma 5.1. Every flexible instance of 2-Lin(F) admits an equalising variable substitution.

Proof. Let S be a connected flexible instance of 2-Lin(F). The instance S is consistent by Corollary 5.1 so
Lemma 4.1 allows us to assume that S is homogeneous. We may additionally assume (by division of field
elements) that every equation is of the form x = ay for some a ∈ F. Pick an arbitrary variable z ∈ V (S) and
construct a spanning tree T ⊆ S rooted in z. Define a variable substitution Φ by x 7→ axx

′, where x = axz is the
equation exz(S). Note that this map is reversible since division is available in F. Clearly, Φ(S) is homogeneous.
Moreover, equation ex′,z′(Φ(S)) is axx

′ = axz
′ which simplifies x′ = z′. We conclude that every equation in Φ(S)

is equality.

Copyright © 2023
Copyright for this paper is retained by the authors



Yet another consequence of division in F is the following lemma that allows us to remove a factor of 2O(k)

from the time complexity of iterative compression.

Lemma 5.2. If DML(F) is solvable in O∗(f(k)) time, then Min-2-Lin(F) is solvable in O∗(f(k)) time.

Proof. Given an instance (S,wS , k) of Min-2-Lin(D), apply (equation) subdivision to it: for every equation e of
the form ax+ by = c in the instance, introduce a new variable ze and replace the original equation by a subdivided
pair of equations Pe = {x = ze, aze + by = c}. Both equations in the pair are assigned the same weight as the
original one.

Clearly, any minimal solution only needs to contain one equation from each subdivided pair. Hence, the
resulting instance has a solution of weight k if and only if the original instance has one. Moreover, when applying
iterative compression to (S,wS , k) and having a suboptimal but minimal solution X at hand, we may safely
assume that the optimal solution Z to the instance is disjoint from X (e.g. if X and Z need to separate the same
pair of original variables, they may choose different equations from the subdivided pair). Hence, there is no need
to branch on the intersection of X and Z and the instance can be solved directly by passing it to the DML(F)
algorithm.

5.2 Algorithm for Min-2-Lin over Fields Let I = (S,ws, X, k) be an instance of DML(F). By Lemma 4.6, it
suffices to construct an fpt algorithm for the latter problem. The opening of the algorithm is equation subdivision
which allows for speeding up iterative compression by Lemma 5.2. In fact, we apply subdivision twice to replace
every equation with three new ones, i.e. two fresh variables z1 and z2 are introduced and ax+ by = c is replaced
by {x = z1, z1 = z2, az2 + by = c}. This allows us to avoid several branching steps—more details are given after
the algorithm description. Then we construct the rooted graph (GI ,BI) and compute a dominating family of
important balanced subgraphs to obtain a cleaning set F . In contrast to the algorithm for Euclidean domains,
the following steps are simplified by the additional structure of fields. In the iterative compression step, it is
ensured that the solution is disjoint from X ∪ F simply by using subdivision as in Lemma 5.2. The cutting
step is simplified even more dramatically: it turns out that guessing the correct partition of the terminals P and
computing a minimum P-cut is sufficient since there are no inconsistent paths in the instances of 2-Lin(F). We
claim that the following algorithm solves the instance I = (S,wS , k,X) of DML(F) in O∗(2O(k log k)) time.

1. Apply equation subdivision (like in Lemma 5.2) twice to (S,wS , k) so that every equation is divided into
three equations.

2. Construct the rooted graph (GI ,BI) for I as described in Definition 4.1. Assume that s is the root.

3. Let G := G(GI ,BI , k, s) be the family of connected balanced subgraphs in (GI ,BI) rooted in s with cost at
most 3k + 1. Compute a dominating family H for G using Observation 4.2.

4. For every H ∈ H, let FH be the set of deleted edges excluding those incident to s. For each partition P of
V (X ∪FH), check if there is a P-cut Y in S− (X ∪FH) of size at most k using Lemma 3.1. If Y exists and
S − Y is consistent, then output Y . Otherwise continue with the next partition.

5. If no solution was output in the previous step, then reject I.

The double subdivision in step 1 allows us to assume that an optimal solution Z, the set X, and the current
cleaning set FH are pairwise disjoint. We can thus avoid branching on their intersections (analogously to how
the iterative compression algorithm for fields presented in Lemma 5.2 avoids the branching step in the general
compression algorithm from Lemma 4.6).

5.3 Correctness Proof and Complexity Analysis We start with a lemma that will help us prove correctness
of the algorithm. This lemma can be viewed as an analogue of Lemma 4.14 but its proof is noticeably different.

Lemma 5.3. Let I = (S,wS , X, k) be an instance of DML(F) with solution Z and let φZ be a satisfying assignment
of S − Z. Let F ⊆ S − (X ∪ Z) be a cleaning set with respect to φZ , and let P be the partition of V (X ∪ F )
into connected components of S′ − Z, where S′ = S − (X ∪ F ). Then every minimum P-cut in S′ is a minimum
solution for (S,wS , X, k).
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Proof. Let K be a component of S′ which does not contain any non-identity cycles. Then K is flexible, and
by Lemma 5.1, we can perform a substitution Φ(S) on S such that K becomes equalised (i.e. all equations of
Φ(S)[K] except those in X ∪F are equalities). Perform this substitution for all flexible components K of S′, and
let φF be the updated satisfying assignment to S−Z. Observe that φ−1(0) = φ−1

F (0) since S−X is homogeneous.
As before, we refer to the vertices of V (X ∪ F ) as terminals. Consider a set B ∈ P. Lemma 4.10 implies that if
one variable in B is assigned the zero value, then all variables in B are assigned the zero value by φF . On the
other hand, if no variable in B is assigned zero value, then, by variable substitution, all paths connecting variables
in B imply equalities between all variables in B. Hence, φF is constant on every B ∈ P and every connected
component of S′ − Z.

Now, let Y be a minimum P-cut. We show that Y is a solution by constructing an assignment φY that
satisfies S − Y . Let φY (v) = φF (v) for any terminal v ∈ V (X ∪ F ), propagate values so that every connected
component of S′ − Y takes the same value on every vertex, and set φY (v) = 0 for any vertex v in a connected
component of S′ − Y without terminals. We note that φY is well-defined. Indeed, if u and v are terminals such
that φF (u) ̸= φF (v), then u and v are in different parts of P. Since Y is a P-cut, no component of S′−Y contains
both u and v.

Consider an arbitrary equation e ∈ S−Y . If e ∈ X∪F , then φY matches φF on e. Since e /∈ Z by assumption,
this implies that φY satisfies e. Next, assume that e is in a flexible connected component K of S′. We know that
e /∈ X ∪F and e is equality so by construction both variables of e take the same value in φY . Finally, assume that
e appears in a rigid component K of S′. By assumption, φF assigns zero to K. Assume first that there exists a
path P in S′ − Y connecting e to a terminal v. Then necessarily P is contained in K and φY (v) = φ(v) = 0. If
no such path exists, then the variables in e take the value zero by default. In both cases, the variables in e are
assigned zero and e is satisfied by φY . This exhausts the cases and shows that Y is a solution.

Since Y is a minimum-weight P-cut and Z is a P-cut by definition, we conclude that Y is an optimal solution.

Now we are ready to present the correctness proof and the analysis of the running time of the algorithm.

Theorem 5.1. Min-2-Lin(F) can be solved in in O∗(2O(k log k)) time.

Proof. By Lemma 5.2, it suffices to analyze the algorithm for DML(D) that was presented at the end of Section 5.2.
Let I = (S,ws, X, k) be an arbitrary instance of this problem. We show that the algorithm accepts if and only
if I is a yes-instance. For the forward direction, note that if the algorithm finds a solution Y , then |Y | ≤ k and
S − Y is consistent because of Step 4 of the algorithm.

Towards showing the reverse direction, suppose that I is a yes-instance and Z is an optimal solution. Let φ
be an assignment satisfying S − Z, and define V0 and V∅ as in Section 4.4 i.e. V0 = {v ∈ V (S) | φ(v) = 0} and
V∅ = {v ∈ V (S) | φ(v) ̸= 0}. Let H∅ denote the zero-free subgraph of GI (see Definition 4.2). By Lemma 4.11, the
subgraph H∅ is balanced and connected, and cG(H∅) ≤ 3k + 1. Hence, there is an important balanced subgraph
H ∈ H considered by the algorithm in line 4 that dominates H∅. Let FH be the corresponding set of deleted
edges in GI − {s} and let PZ be the partition of the terminals T = V (X ∪ FH) into connected components
of S − (X ∪ Z). The algorithm exhaustively considers all possible partitions P of T and tries to compute a
minimum P-cut in S′ := S − (X ∪FH). We wish to apply Lemma 5.3 to prove that such a cut exists so we verify
that the preconditions of the lemma are met. By subdividing equations into three parts in the first step of the
algorithm, we can assume without loss of generality that X, FH and Z are pairwise disjoint. Further, we note
that V∅ ⊆ V (H∅) ⊆ V (H) and all components in S′[V (H) \ {s}] are flexible. Hence, all variables in the rigid
components of S′ are assigned zero values by φ, the set FH is indeed a cleaning set with respect to φZ , and the
lemma applies. We conclude that the algorithm accepts the instance I.

We continue by analysing the time complexity of the algorithm. Using Observation 4.2, the algorithm
computes a dominating family H of G of size at most 43k+1 in time O∗(4O(k)). Let H ∈ H and let FH be
corresponding set of deleted edges excluding those incident to vertex s. Note that cGI

(H) ≤ 3k+ 1. For each H,
every partition P of V (X ∪FH) is computed in line 4. Recall that |X| = k+1 and |FH | ≤ 3k+1 by Lemma 4.11
so |V (X ∪ FH)| ≤ 4k and the enumeration of partitions requires O∗((4k)O(4k)) time. Computing the P-cut
requires at most O∗(24k) time by Lemma 3.1 and the total running time is

O∗(4O(k)) +O∗(4O(k)) · O∗((4k)O(4k)) · O∗(24k) ∈ O∗(2O(k·log k)).
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5.4 Even Faster Algorithm for Finite Fields Let Fp be a finite p-element field with p ≥ 3. For
Min-2-Lin(F2) a O∗(1.977k) time algorithm can be obtained using the approach of [36]. Every finite field
obviously has an effective representation so we assume without loss of generality that Fp is effective. Wedderburn’s
Little Theorem (see, for instance, [20]) implies that if D is a finite Euclidean domain, then D is a field. Hence,
the results in this section cover Min-2-Lin for every finite Euclidean domain. As mentioned in the introduction,
Min-2-Lin(Fp) is a special case of ULC with a finite alphabet, so it can be solved in O∗(p2k) time by the
currently best algorithm for ULC [22]. In this section we present a faster algorithm for Min-2-Lin(Fp) that runs
in O∗((2p)k) time. By equation subdivision and Lemma 5.2, the problem can be reduced to polynomially many
instances of DML(Fp). Let (S,ws, X, k) be an instance of the latter problem. The key to improved running time
of our algorithm is the fact that X has at most pk satisfying assignments, and an optimal assignment to S must
extend one of these assignments. Suppose α : V (X) → Fp is an assignment that satisfies X. Then the problem
can be solved by checking whether S −X admits an assignment that extends α and leaves unsatisfied equations
of total weight at most k. A reduction to RBGCE allows us to answer this question in O∗(2k) time. The reader
should note that this approach avoids using the method of important balanced subgraphs.

We continue with some definitions. Given an instance S of 2-Lin(D), a subset of equations X such that
S−X is consistent, and an assignment α satisfying X, we define Sα as follows: start with all equations of S−X,
introduce two new variables s and t, and add equations x = s · α(x) of weight k + 1 for all x ∈ V (X) where
α(x) ̸= 0, and x = t of weight k + 1 for all x ∈ V (X) where α(x) = 0. Finally, add two more variables t′, t′′ and
equations t′ = γt, t′′ = t′, t = t′′ each of weight k + 1, where γ is any element in Fp \ {0, 1}. We refer to Sα as
the restriction of S to α. Note that Sα is homogeneous by construction. Furthermore, setting s to 1 and t to 0
implies that the variables in V (X) are assigned the values in accordance with α. Let Gα be the primal graph of
Sα and define Bα to be the family of identity cycles in Sα. Since all equations in Sα are homogeneous, we can
view it as a group-labelled graph with the group being F∗

p i.e. the multiplicative group of the field. Hence, we
immediately obtain the following.

Lemma 5.4. ([43]) (Gα,Bα) is a biased graph.

Clearly, there is a polynomial time algorithm that checks whether a cycle is identity since we can multiply all
labels along the cycle and check whether the result equals identity. Now we are ready to prove the theorem.

Theorem 5.2. Min-2-Lin(Fp), where Fp is a finite p-element field with p ≥ 3, is in FPT and solvable in
O∗((2p)k) time.

Proof. By equation subdivision and Lemma 5.2, we can focus on DML(Fp). Let (S,wS , k,X) be an instance of this
problem. Pick one variable from each equation in X and place them into a set U . Note that |U | ≤ |X| ≤ k + 1.
Enumerate assignments α : U → Fp. For each α, propagate the values from the variables in U to V (X) \ U
according to the equations of X. If no conflict arises, i.e. if α satisfies X, then construct the restriction Sα of S
to α. Recall that Gα is the primal graph of Sα. In the following we identify the edges of Gα and the equations
of Sα.

Claim 5.2.1. Suppose there exists Z ⊆ Sα such that
∑

e∈Z wS(e) ≤ k, and an assignment φ that satisfies Sα−Z
and sets φ(s) = 1 and φ(t) = 0. Then (Gα,Bα, s, k) is a yes-instance of RBGCE.

Proof of claim: We claim that Z is a solution for (Gα,Bα, s, k). Suppose for a contradiction that this is not
the case, i.e. there is a non-identity cycle C /∈ Bα that is reachable from s in Gα − Z. There are two cases.
If s /∈ V (C), then since Sα is homogeneous, C is only satisfied by the all-zero assignment. But φ(s) = 1 and
the nonzero value propagates to C, which contradicts Sα − Z being satisfied by φ. Otherwise, let P be the path
resulting from deleting s from C. Let x1 and x2 be the endpoints of P . Let β be the result of multiplying the edge
labels of P from x1 to x2. Since C is non-identity, α(x1) · β ̸= α(x2). Then, P is a path in Sα − Z incompatible
with setting φ(x1) = α(x1) and φ(x2) = α(x2), which is again a contradiction. ⋄

Claim 5.2.2. Suppose there exists a subset Z of edges of Gα such that the connected component of the vertex s
in Gα − Z is balanced. Then Sα − Z admits a satisfying assignment φ such that φ(s) = 1 and φ(t) = 0.
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Proof of claim: Let H be the connected component of s in Gα − Z. Since edges connecting t, t′, t′′ form a high-
weight non-identity cycle, t /∈ V (H). Since every cycle of H is identity, H viewed as a subset of Sα is flexible.
Then in particular there is a satisfying assignment φ to H setting φ(s) = 1 by Corollary 5.1. For every variable
v not in H we can safely set φ(v) = 0 since Sα is homogeneous. Then φ satisfies Sα − Z and sets φ(s) = 1 and
φ(t) = 0. ⋄

Together, Claims 5.2.1 and 5.2.2 imply that the assignment α can be extended to S so that it leaves equations
of total weight at most k unsatisfied if and only if (Gα,Bα, s, k) is a yes-instance of RBGCE. Note that the
algorithm considers all satisfying assignments to X so by exhaustion (S,wS , k,X) is a yes-instance if and only
if the algorithm finds a suitable assignment α. There are pk+1 candidates for α. Computing the instance
(Gα,Bα, s, k) requires polynomial time and RBGCE can be solved in O∗(2k) time by Proposition 2.2 so the total
running time is O∗((2p)k).

6 Hardness Results

Let D = (D; +, ·) be a commutative ring. The reduction from Multicut presented in the introduction shows
that Min-r-Lin(D) is NP-hard (for r ≥ 2), and it rules out the possibility that our fixed-parameter tractable
algorithms can be improved to polynomial-time algorithms. In Section 6.1, we show W[1]-hardness for r ≥ 3
whenever (D; +) is an abelian group with at least two elements. This result consequently covers all (commutative
and non-commutative) rings except the trivial zero ring. We continue in Section 6.2 by studying Min-2-Lin(D)
for commutative rings D that contain a zero divisor (i.e. an element α ̸= 0 such that there exists an element
β ̸= 0 and α ·β = 0). We show that Min-2-Lin(D) is W[1]-hard for many such structures. We note that hardness
results for certain special cases have appeared earlier in the literature—for instance, Crowston et al. [9] prove
W[1]-hardness for Min-3-Lin(F2).

For proving the hardness results, we use parameterized reductions (or fpt-reductions). Consider two
parameterized problems L1, L2 ⊆ Σ∗ × N. A mapping P : Σ∗ × N → Σ∗ × N is a parameterized reduction
from L1 to L2 if

(1) (x, k) ∈ L1 if and only if P ((x, k)) ∈ L2,

(2) the mapping can be computed in f(k) · nO(1) time for some computable function f , and

(3) there is a computable function g : N → N such that for all (x, k) ∈ Σ∗ × N, if (x′, k′) = P ((x, k)), then
k′ ≤ g(k).

The class W[1] contains all problems that are fpt-reducible to Independent Set parameterized by the
solution size, i.e. the number of vertices in the independent set. Showing W[1]-hardness (by an fpt-reduction) for
a problem rules out the existence of an fpt algorithm under the standard assumption that FPT ̸= W[1].

6.1 Three Variables per Equation Let G = (D; +) denote an arbitrary abelian group. An expression
x1 + · · · + xr = c is an equation over G if c ∈ D and x1, . . . , xr are either variables or inverted variables with
domain D. We say that it is an r-variable equation if it contains at most r distinct variables. We consider the
following group-based variant of the Min-r-Lin(D) problem.

Min-r-Lin(G)

Instance: A system S of equations over G, a weight function w : S → N+, and an
integer k.

Parameter: k.
Question: Is there a set Z ⊆ S such that S − Z is consistent and w(Z) ≤ k?

The crux of the proof is essentially the same as the W[1]-hardness proof for Odd Set presented in Theorem
13.31 of [10, Section 13.6.3], however many details are different. The reduction is based on the following W[1]-hard
problem [14, Lemma 1].
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Multicoloured Clique

Instance: A graph G = (V,E) with vertices partitioned into k colour classes V1, . . . , Vk.
Parameter: k.
Question: Does G contain a clique with exactly one vertex from each Vi, 1 ≤ i ≤ k?

Theorem 6.1. Let G = (D; +) denote a group with at least two elements. Then, Min-r-Lin(G) is W[1]-hard for
any r ≥ 3 even if all equations have weight 1.

Proof. The reduction is presented in two steps: given an arbitrary instance (G, k, (V1, . . . , Vk)) ofMulticoloured
Clique, we first compute an instance (S,w, k′) of Min-s-Lin(G) where s = |V (G)| + |E(G)|, and then we
transform this instance into an instance of Min-3-Lin(G) with unit weights. We let 0 denote the identity element
in G and let 1 be any non-identity element.

Step 1. Consider the arbitrarily chosen instance (G, k, (V1, . . . , Vk)) of Multicoloured Clique. We will now
reduce it to an instance of Min-s-Lin(G). We let Eij denote the set of edges in E(G) with one endpoint in Vi

and another in Vj , and we let Eijv be the subset of Eij containing all edges incident to a vertex v. We define an
instance (S,w, k′) of Min-s-Lin(G) as follows. Introduce variables xv for all v ∈ V (G) and ye for all e ∈ E(G).
Set the parameter k′ = k +

(
k
2

)
. Let S contain the following equations:

(1) xv = 0 for all v ∈ V (G).

(2) ye = 0 for all e ∈ E(G).

(3)
∑

v∈Vi
xv = 1 for all 1 ≤ i ≤ k.

(4)
∑

e∈Eij
ye = 1 for all 1 ≤ i < j ≤ k.

(5)
∑

u∈Vj\{v} xu +
∑

e∈Eijv
ye = 1 for all v ∈ V (G).

The equations in (3)–(5) are assigned weight k + 1, while all others are given unit weight. Thus, only equations
in (1) and (2) may appear in a solution to (S,w, k′). Observe that the equations in (1)–(4) imply that exactly one
variable in {xv | v ∈ Vi} for each 1 ≤ i ≤ k and exactly one variable in {ye | e ∈ Eij} for each pair 1 ≤ i < j ≤ k

may be set to 1 since the budget k +
(
k
2

)
is tight.

Now consider the equations in (5). Intuitively, for any variable v ∈ Vi, the corresponding equation implies that
either xv is set to 0 or at least one ye for an edge e incident to v is set to 1. Formally, let φ be an assignment that
does not satisfy k′ constraints in S. If φ(xv) = 1, then φ(xu) = 0 for all u ∈ Vi \{v}. Hence,

∑
u∈Vj\{v} φ(xu) = 0

and φ(y{v,w}) = 1 for some w ∈ Vj . Moreover, φ(ye) = 0 for all edges e ∈ Eij \{v, w}. In the equation for w in (5)
we have

∑
e∈Eijw

ye = 1. Hence, φ(u) = 0 for all u ∈ Vj \ {w}, and φ(w) = 1. On the other hand, if φ(xv) = 0,

then there is exactly one u ∈ Vi \ {v} such that φ(xu) = 1 so φ(ye) = 0 for all edges e ∈ E(G) incident to v. We
conclude that the reduction is correct and it can clearly be carried out in polynomial time.

Step 2. We continue by transforming the instance (S,w, k′) into an instance of Min-3-Lin(G) with unit weights.
Consider an equation

∑r
i=1 vi = 1 in S. We first show how to make it undeletable without assigning it the weight

k + 1. To this end, introduce variables v
(j)
i for all 1 ≤ i ≤ r and 1 ≤ j ≤ k + 2. Create a system of equations S′

by adding equations
∑r

i=1 v
(j)
i = 1 for all j and equations v

(j)
i − v

(j′)
i = 0 for all i and all j < j′. We claim that

any assignment that does not set v
(1)
i , . . . , v

(k+2)
i to the same value does not satisfy at least k + 1 constraints.

Suppose an assignment sets ℓ copies of the variable to one value and k+2− ℓ remaining copies to another. Then
at least (k + 2− ℓ)ℓ equations are not satisfied by the assignment. For 1 ≤ ℓ ≤ k, this quantity is minimized by
ℓ = 1 and it equals k + 1. Thus, any assignment that does not satisfy at most k constraints also satisfies S′.

Finally, we show how to reduce the number of variables in each equation to at most three. Again, consider
an equation of the form

∑r
i=1 vi = 1. Introduce auxiliary variables ai for i ∈ {1, . . . , r} and replace the equation

with the following system: 
v1 + (−ai) = 0,

ai + vi+1 + (−ai+1) = 0 for i ∈ {1, . . . , r − 1}
ar + vr = 1
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where each equations is given weight 1. Observe that the sum of all equations above telescopes and the auxiliary
variables cancel out, leaving exactly the equation

∑r
i=1 vi = 1. Hence, an assignment that satisfies all equations

in the system also satisfies the original equation. Moreover, any assignment φ that does not satisfy the original
equation can be extended to the auxiliary variables to satisfy all but one equation by setting φ(v1) = φ(a1) and
φ(vi+1) = φ(ai) + φ(vi) for all i ∈ {1, . . . , r − 1}. Hence, replacing every long equation in this way reduces the
initial instance to an instance of Min-3-Lin(G) with unit weights.

6.2 Rings with Zero Divisors Recall that a Euclidean domain cannot contain a zero divisor. Next, we give
examples of commutative rings K with zero divisors such that Min-2-Lin(K) is W[1]-hard. Our starting point is
the following problem, which has previously been used as a source of W[1]-hardness for MinCSP problems [29, 34].

Paired Min Cut

Instance: A graph G, vertices s, t ∈ V (G), and an integer k, where the st-max flow in

G is 2k; a set of disjoint edge pairs C ⊆
(
E(G)

2

)
Parameter: k
Question: Is there an st-mincut X ⊆ E which is the union of k pairs from C?

We will consider a restricted variant of Paired Min Cut in the following. We say that an instance of Paired
Min Cut is split if the following statements hold.

1. There are two induced subgraphsG1 = G[U1] andG2 = G[U2] ofG such that U1∪U2 = V (G), U1∩U2 = {s, t}
and G− {s, t} is the disjoint union of G1 − {s, t} and G2 − {s, t}

2. For every pair {e1, e2} ∈ C, one edge lies in G1 and the other lies in G2

Lemma 6.1. Paired Min Cut is W[1]-hard, even for split instances.

Proof. It is well known that Paired Min Cut is W[1]-hard in its standard form [29, 34]. We show that we can
also impose the split property. Thus, let I = (G, s, t, k, C) be an arbitrary instance of Paired Min Cut. We
construct an instance I ′ = (G′, s, t, k′, C ′) of Paired Min Cut where I ′ is split and k′ = 4k.

Create two graphs G1 and G2 on disjoint vertex sets, each a copy of G, and let G′ be their union. For every
edge e = {u, v} in G′, introduce a new vertex xe and the two edges e′ = {u, xe} and e′′ = {xe, v}. For an edge or
vertex z of G and i ∈ {1, 2}, let zi denote the copy of z in Gi. For every pair p = {e, f} in C, place the four pairs

{e1, e2}, {e′1, f2}, {f1, e′2}, {f ′
1, f

′
2}

in C ′ (thereby keeping the pairs in C ′ disjoint). Finally, identify s1 with s2 as s and t1 with t2 as t. This finishes
the description of our output I ′ = (G′, s, t, k′, C ′). Note that G′ is split, and that the st-max flow in G′ is 8k = 2k′.

We show that I is a yes-instance if and only if I ′ is a yes-instance. First, let X ⊆ E(G) be a solution to I.
Let X ′ = {e1, e′1, e2, e′2 | e ∈ X}. Then X ′ is the union of precisely four pairs for every pair in X, and it is clear
that X ′ is an st-cut.

On the other hand, assume that I ′ has a solution X ′ = X ′
1 ∪X ′

2 (where X ′
i ⊆ E(Gi), i ∈ {1, 2}). We claim

that X ′
1 and X ′

2 represent the same edge set X in G. By assumption, X ′ partitions into edge pairs, and since
the st-max flow in G is 2k′, X ′ must be an st-min cut. In particular, by the structure of the pairs, for every
e ∈ E(G), X ′ contains e if and only if it contains e′, and therefore also the other endpoint of the pair p′ ∈ C ′

containing the respective edge. Hence for every edge e represented in X ′ there must be a pair {e, f} ∈ C such
that all four pairs {e1, f1} × {e2, f2} are represented in X ′. Hence

X = {e ∈ E(G) | {e1, e′1, e2, e′2} ⊆ X ′}.

defines a set of 2k edges in G, which partitions into pairs from C. Furthermore, X is an st-cut, since X ′
1 is an

st-cut in G1 and G1 was created as a copy of G.

We now show a general W[1]-hardness result for Min-2-Lin(K).

Theorem 6.2. Let K = (K; +, ·) be a commutative ring with additive neutral element 0. If there are elements
α1, α2 ∈ K such that α2

1 ̸= 0, α2
2 ̸= 0, and α1 · α2 = 0, then Min-2-Lin(K) is W[1]-hard.
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Figure 5: System of equations obtained from a pair of edges p = {e1, e2} where ei = {ui, vi} in the fpt reduction
from Paired Min Cut. Edges e1 and e2 are illustrated by dashed lines, while the equations are illustrated by
solid lines with labels describing equations between connected variables.

Proof. We reduce from an arbitrary split instance of Paired Min Cut. Let I = (G, s, t, k, C) be the input
instance and let G = G1 ∪G2 = G[U1] ∪G[U2] form the split. Divide the source s into two vertices s1, s2 where
NG({si}) = NG({s}) ∩ Ui for i ∈ {1, 2}, but keep the sink t intact. We compute an instance of Min-2-Lin(K)
as follows. Introduce one variable for every vertex in the resulting graph and initially turn every edge {u, v} into
an equation u = v of weight k + 1. Force s1 = α1, s2 = α2 and t = 0 by equations of weight k + 1 each. Finally,
for every pair p ∈ C, say p = {e1, e2} where ei ⊆ Ui for i ∈ {1, 2}, do the following. Remove the equations
corresponding to the edges in p. Create two new variables xp, yp. Let e1 = {u1, v1} and e2 = {u2, v2}. Create
equations

α1 · u1 = α1 · xp,

α2 · u2 = α2 · xp,

α1 · yp = α1 · v1,
α2 · yp = α2 · v2

of weight k+1 each, and an equation xp = yp of weight 1. See Figure 5 for an illustration. Perform this for every
pair in C. Let S be the resulting set of equations. We claim that S has a solution of cost at most k if and only if
I is a yes-instance.

On the one hand, let X ⊆ E(G) be the union of k pairs of edges, and let X ′ = {xp = yp | p ∈ C and p ⊆ X}.
We claim that S − X ′ is satisfiable. For a vertex v ∈ Ui, set v = αi if v is reachable from s in G − X, and
v = 0 otherwise. Consider a pair of vertices xp, yp for p ∈ C, and suppose that the assignment above cannot be
consistently extended to xp and yp. Then this implies that there is an edge ei = {u, v} ∈ p such that u, v ∈ Ui

and αi · u ̸= αi · v. Since the value assigned to u and v is either 0 or αi, we have u ̸= v. This implies that ei
crosses the cut in G−X, contradicting our assumption that ei /∈ X. Hence, S −X ′ is satisfiable.

On the other hand, suppose that there is a solution where equations of cost at most k are not satisfied, and
let X ′ be the set of these equations. Then clearly every equation in X ′ is of the form xp = yp for some pair
p ∈ C. Let X ⊆ C be the union of edges participating in these pairs. We claim that X is an st-cut. Assume
to the contrary that G −X contains a path P from s to t. Then that path corresponds to a chain of equations
in S, from si to t (i ∈ {1, 2}), where every edge {u, v} of the path corresponds to either an equation u = v or a
chain of equations αiu = αix, x = y, αiy = αiv, where every equation in the chain is satisfied. Since α2

i ̸= 0, we
have αi · si ̸= αi · 0 so every variable on the path is assigned a non-zero value. This contradicts that S −X ′ is
satisfiable since t = 0.

We illustrate Theorem 6.2 with an example. The direct product of two rings K1 = (K1; +1, ·1) and
K2 = (K2; +2, ·2) is denoted K1 × K2 = (K; +, ·). Its domain R consists of the ordered pairs {(d1, d2) | d1 ∈
K1, d2 ∈ K2} and the operations are defined coordinate-wise: (d1, d2) + (d′1, d

′
2) = (d1 +1 d′1, d2 +2 d′2) and

(d1, d2) · (d′1, d′2) = (d1 ·1 d′1, d2 ·2 d′2). We claim that whenever K = K1 × K2 and K1,K2 are commutative
rings that are not zero rings, then Min-2-Lin(K) is W[1]-hard. To see this, let 01 ∈ K1, 02 ∈ K2 denote the
additive identities and 11 ∈ K1, 12 ∈ K2 denote the multiplicative identities. By setting α1 = (01, 12) and
α2 = (11, 02), Theorem 6.2 is applicable and Min-2-Lin(K) is W[1]-hard. This argument can easily be extended
to products of several commutative rings. The ring Z/mZ (i.e. the ring based on standard arithmetic modulo m)

Copyright © 2023
Copyright for this paper is retained by the authors



is isomorphic to a direct product of non-trivial commutative rings whenever m is not a prime power. For example,
Z/6Z ∼= Z/2Z×Z/3Z. Hence, Min-2-Lin(Z/6Z) and more generally Min-2-Lin(Z/mZ) where m is not a prime
power is W[1]-hard.

7 Conclusions and Discussion

We have proved thatMin-2-Lin(D) is fixed-parameter tractable (with parameter k being the number of unsatisfied
equations) when D is an efficient Euclidean domain. We additionally proved that Min-r-Lin(D) is W[1]-hard
when r ≥ 3 and this result holds for all rings. Furthermore, we demonstrated that there exist commutative rings
K (that are not Euclidean domains) such that Min-2-Lin(K) is W[1]-hard.

The borderline between fixed-parameter tractable and W[1]-hard Min-2-Lin problems is not clear, and this
is true even for finite commutative rings. Wedderburn’s Little Theorem (see, for instance, [20] for a proof) states
that if K is a finite ring, then either (1) K is a field (and Min-2-Lin(K) is in FPT) or (2) K contains zero
divisors. We know that there are K with zero divisors such that Min-2-Lin(K) is W[1]-hard, but it is an open
question whether the problem is always W[1]-hard when K contains zero divisors, even in the finite case. A
concrete question is the following: what is the parameterized complexity of Min-2-Lin(Z/4Z) or more generally
Min-2-Lin(Z/pnZ) where p is a prime and n ≥ 2? Resolving these cases would give us a complete understanding
of Min-2-Lin(Z/mZ) for every m. However, there are still many open cases left, even for small commutative
rings. A noticeable example is the four-element commutative ring F2[x]/(x

2 + x) whose elements can be viewed
as arrays (

x 0
y x

)
with x, y ∈ F2.

We suspect that our fixed-parameter tractable algorithm for Min-2-Lin over Euclidean domains can be
improved with respect to running time. The slowest part in it is solving the Pair Partition Cut problem.
We solve this problem via a reduction to a finite-domain MinCSP problem that is solved by flow augmentation,
but there may be alternative ways of doing this. However, as the problem is a strict generalization of (Edge)
Multicut, a running time of, say, O∗(2O(k log k)) or better would be a significant challenge. There is also room
for improvements in the Min-2-Lin algorithms for fields. Consider our O∗(2O(k log k)) time algorithm for arbitrary
fields. After iterative compression and cleaning, the problem reduces to the following:

2-Lin(F) Compatibility

Instance: Two instances S1, S2 of 2-Lin(F) and an integer k such that V (S1) ⊆ V (S2),
|S1| ≤ 3k, and S2 only contains equalities.

Parameter: k.
Question: Is there a set Z ⊆ S2 such that |Z| ≤ k and (S1 ∪ S2)− Z is consistent?

This problem is the bottleneck for our Min-2-Lin(F) algorithm, since it is the only part that requires more than
single-exponential time. Can it be solved in single-exponential time in k? For the finite field Fp with p elements
we show that Min-2-Lin(Fp) can be solved in O∗((2p)k) time. Is there an O∗(ck) algorithm for Min-2-Lin(Fp),
where c is a universal constant that does not depend on p? Or is there at least a constant d < 2 such that
Min-2-Lin(Fp) is solvable in O∗((dp)k) time?

Another more general question is about the utility of the method of important balanced subgraphs. Important
separators are a key component of many classical fpt algorithms for graph separation problems, and important
balanced subgraphs appear to be a significant, and unexpected, generalization of them. It would be interesting
to see more applications of the method. We have used it to avoid random sampling of important separators,
speeding up our Min-2-Lin algorithm for fields from O∗(2O(k3)) to O∗(2O(k log k)), and simplifying the algorithm
for Euclidean domains. What other problems can be solved using this method? Can we use it to obtain
simpler algorithms or improve upper bounds for other parameterized deletion problems? Other questions include
generalizations or improvements on the method of important balanced subgraphs itself. We have provided the
result only for edge deletion problems; is there an equivalent statement for vertex deletion? Furthermore, the
polynomial factor in the running time of the algorithm producing a dominating family is significant, since it
comes from solving an LP given only oracle access to the constraints. However, the optima computed by the LP
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are extremal half-integral solutions with an inherent structure that can probably be exploited. A combinatorial
method for computing such optima could substantially improve the polynomial factor. Such a result was developed
in the algorithm for 0/1/all CSPs by Iwata et al. [23], where a previous method based on half-integral LP-
relaxations was replaced by a linear-time combinatorial solver. Can a similar method be developed for the
Rooted Biased Graph Cleaning problem, perhaps for special cases such as biased graphs coming from
group-labelled graphs or the biased graphs used in the Min-2-Lin(D) algorithm?
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