
Fixed-parameter tractability of Directed Multicut with
three terminal pairs parameterized by the size of the cutset:

twin-width meets flow-augmentation∗

Meike Hatzel† Lars Jaffke‡ Paloma T. Lima§ Tomáš Masařík¶

Marcin Pilipczuk‖ Roohani Sharma∗∗ Manuel Sorge††

Abstract

We show fixed-parameter tractability of the Directed Multicut problem with three
terminal pairs (with a randomized algorithm). This problem, given a directed graph G,
pairs of vertices (called terminals) (s1, t1), (s2, t2), and (s3, t3), and an integer k, asks to
find a set of at most k non-terminal vertices in G that intersect all s1t1-paths, all s2t2-
paths, and all s3t3-paths. The parameterized complexity of this case has been open since
Chitnis, Cygan, Hajiaghayi, and Marx proved fixed-parameter tractability of the 2-terminal-
pairs case at SODA 2012, and Pilipczuk and Wahlström proved the W[1]-hardness of the
4-terminal-pairs case at SODA 2016.

On the technical side, we use two recent developments in parameterized algorithms. Using
the technique of directed flow-augmentation [Kim, Kratsch, Pilipczuk, Wahlström, STOC
2022] we cast the problem as a CSP problem with few variables and constraints over a large
ordered domain. We observe that this problem can be in turn encoded as an FO model-
checking task over a structure consisting of a few 0-1 matrices. We look at this problem
through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim,
Thomassé, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona
de Mendes, Simon, Thomassé, Toruńczyk, STOC 2022] the said FO model-checking task can
be done in FPT time if the said matrices have bounded grid rank. To complete the proof,
we show an irrelevant vertex rule: If any of the matrices in the said encoding has a large
grid minor, a vertex corresponding to the “middle” box in the grid minor can be proclaimed
irrelevant — not contained in the sought solution — and thus reduced.

∗The research leading to the results presented in this paper was partially carried out during the Parameterized
Algorithms Retreat of the University of Warsaw, PARUW 2022, held in Będlewo in April 2022. This research is
a part of projects that have received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme Grant Agreement 714704 (TM, MP) and 648527
(MH), from the Alexander von Humboldt Foundation (MS), from the Research Council of Norway (LJ), and by
a fellowship within the IFI programme of the German Academic Exchange Service (DAAD) (MH).

†National Institute of Informatics, Tokyo, Japan. meikehatzel@nii.ac.jp
‡University of Bergen, Norway. lars.jaffke@uib.no
§IT University of Copenhagen, Denmark. palt@itu.dk
¶University of Warsaw, Poland. masarik@mimuw.edu.pl
‖University of Warsaw, Poland. m.pilipczuk@mimuw.edu.pl

∗∗Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.
rsharma@mpi-inf.mpg.de

††TU Wien, Austria. manuel.sorge@ac.tuwien.ac.at

ar
X

iv
:2

20
7.

07
42

5v
1

 [
cs

.D
S]

 1
5

Ju
l 2

02
2

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Twin-width . 6
2.2 (Permutation) CSP . 6
2.3 Flow-augmentation . 7

3 Permutation CSP with bounded twin-width 8

4 Three-terminal-pair Directed Multicut is fixed-parameter tractable 10

5 Irrelevant vertex rule—Proof of Lemma 4.8 16

6 Shadow removal 18

7 Harvesting soybeans 22
7.1 Back to the edge-deletion regime . 22
7.2 Initial setup . 24
7.3 Initial steps . 25
7.4 Base case . 25
7.5 Small ` case . 26
7.6 Large ` case . 26

8 Two-terminal-pair Weighted Directed Multicut is W[1]-hard 27

A Hardness of arbitrary CSPs with permutation constraints 33

B Twin-width to grid-rank 34

1 Introduction

Parameterized complexity studies the existence of fixed-parameter algorithms: algorithms with
running time bound by f(k) · nc, where n is the size of the input, c is an arbitrary constant,
f is an arbitrary computable function, and k is the parameter, which is a selected secondary
measure of the input that is intended to reflect the hardness of the instance.

Graph separation problems yield a class of combinatorial problems where the goal is to
find a small vertex or edge set in the given graph that satisfies some separation requirements.
For example, Multiway Cut equips the input graph G with a set T ⊆ V (G) of terminals
and asks to cut all paths between any two distinct terminals, whereas Subset Feedback
Vertex Set equips the input graph G with a set R ⊆ V (G) of red vertices and asks to cut all
cycles that contain at least one red vertex. The study of graph separation problems, with the
cardinality of the sought cut as the natural choice of the parameter, has been one of the more vivid
areas of parameterized complexity in the recent 15 years. A number of interesting algorithmic
techniques emerged: important separators [21, 5], applications of matroid techniques [18, 19],
shadow removal [9, 24], randomized contractions [6, 11], LP-guided branching [12, 13, 14], and
treewidth reduction [23], among others.

The progress somewhat stalled around 5 years ago in the following state: we understood the
complexity of the main bulk of graph separation problems in undirected graphs, mostly thanks
to the wide variety of algorithmic techniques therein. However, in directed graphs, a number of
questions remained widely open.

The Multicut problem is, given a graph G and a family T of pairs of vertices (called
terminals), to delete a minimum number of non-terminal vertices so that for every terminal pair
(s, t) ∈ T , there is no path from s to t in the remaining graph. The parameterized complexity
of this problem in undirected graphs, after being a long standing open problem for a while,
has been resolved around 2010 independently by two groups of researchers [24, 4]. In directed
graphs, the problem in full generality was quickly observed to be W[1]-hard [24]. However,
some restrictions turned out to be tractable: the case of directed acyclic graphs [17], Directed
Multiway Cut, where we are given just a set of terminals and we ask to cut all paths between
every pair of distinct terminals, or Directed Multicut with two terminal pairs [9]. Observe
that the one-terminal-pair case is just the classic Minimum Cut problem. In 2015, Pilipczuk
and Wahlström [25] provided a hardness reduction for the four-terminal-pairs case, leaving the
three-terminal-pairs case open until now.

Directed Multicut with three terminal pairs was by far not the only open problem left
in the parameterized complexity of directed graph separation problems. Other open problems
included the notoriously difficult Chain SAT problem [7] and most of the problems in the
weighted setting. Here, the deletable objects (edges or vertices) have integer weights, and the
question is to find a solution of cardinality at most k and minimum total weight (where k is
the given parameter). One of the reasons for such a state of affairs was a lack of algorithmic
techniques in directed graphs: Among all the aforementioned tools in undirected graphs, only
important separators and shadow removal generalize to directed graphs [9, 8].

Very recently, at STOC 2022, a new algorithmic technique for cut problems in directed graphs
has been presented by Kim, Kratsch, Pilipczuk, and Wahlström [15], namely flow-augmentation.
This new technique led to fixed-parameter algorithms for Chain SAT and numerous weighted
versions of graph separation problems. In this work, we use it to answer the question of the
parameterized complexity of Directed Multicut with three terminal pairs positively.

Theorem 1.1. Directed Multicut with three terminal pairs is fixed-parameter tractable when
parameterized by the size of the cutset (with a randomized algorithm).

Flow-augmentation alone is by far not enough to show Theorem 1.1. In the basic usage, the
main tool of directed flow-augmentation [15] can be stated as follows:

1

Theorem 1.2. There exists a polynomial-time randomized algorithm that, given a directed
graph G, two distinguished vertices s, t ∈ V (G), and an integer k, outputs a set A ⊆ V (G)×V (G)
(called augmentation edges) such that for every minimal edge st-cut Z of cardinality at most k,
with probability 2−O(k4 log k) the cut Z becomes a minimum edge st-cut in G+A.

Here, G+A is the graph obtained from G by adding the arcs in A. That is, with good prob-
ability, the added arcs A not only do not break the edge cut Z (that is, connect the s-side of the
cut to the t-side), but also increase the connectivity of the graph so that Z becomes a minimum-
cardinality cut. We remark that all randomization in Theorem 1.1 comes from Theorem 1.2.
That is, if Theorem 1.2 were deterministic, so would be the algorithm of Theorem 1.1.

The following point of view on Theorem 1.2 turns out to be particularly useful. Let G be a
directed graph, s, t ∈ V (G), and let k be the size of a minimum edge st-cut. How does the space
of all minimum edge st-cuts look like? Let P be any maximum st-flow, seen as a collection of k
edge-disjoint paths from s to t. Any minimum edge st-cut contains exactly one edge from each
path in P . Furthermore, for every P1, P2 ∈ P and every u1 ∈ V (P1), u2 ∈ V (P2), if G contains a
path Q from u1 to u2 that does not contain any edge of P, then any minimum edge st-cut cannot
contain an edge of P1 after u1 and an edge of P2 before u2 at the same time. This motivates
the following CSP formulation. Every path P ∈ P becomes a variable x(P) with domain E(P),
ordered naturally along P . For every tuple (P1, P2, u1, u2) as above (i.e., P1, P2 ∈ P, u1 ∈ V (P1),
u2 ∈ V (P2), G contains a path from u1 to u2 that does not contain any edge of P), we introduce
a constraint (x(P1) ≤ u1) ∨ (x(P2) ≥ u2), where the inequalities have the natural meaning of
being before/after the corresponding vertex along the corresponding path. It is relatively easy
to see that the space of all feasible solutions to such a CSP instance is exactly the space of all
minimum edge st-cuts in G. In this light, Theorem 1.2 can be understood as follows: we can
subsample the space of all minimal edge st-cuts in G of cardinality at most k, so that every cut
is sampled with good probability (i.e., 2−O(k4 log k)) and the subsampled set can be described by
the aforementioned CSP instance.

A meticulous reader may observe that flow-augmentation speaks about edge cuts while Di-
rected Multicut asks for a vertex cut. However, in directed graphs there are standard
reductions between these two variants of the problem. Thus, the above framework of a CSP
formulation can be easily adapted to minimal vertex st-cuts of cardinality at most k (where s
and t are undeletable).

In the context of Directed Multicut with three terminal pairs, we can use flow-augmenta-
tion as follows. Let S be an inclusion-wise minimal solution to an input instance (G, k, (si, ti)i=1,2,3).
Clearly, S = S1 ∪ S2 ∪ S3 where Si is a minimal vertex siti-cut. Hence, we can apply flow-
augmentation separately to (G, k, (si, ti)) for i = 1, 2, 3, obtaining a set of augmentation edges Ai.
With good probability, for every i = 1, 2, 3 the set Si becomes a minimum vertex st-cut in G+Ai.
Let Pi be a maximum (vertex-capacitated) siti-flow in G+Ai and consider the aforementioned
CSP formulation with variables {xi(P) | P ∈ Pi} and sets of constraints Ci.

The crux of the difficulty of Directed Multicut lies in the fact that the sets Si may not
be pairwise disjoint; in a sense, we can save on reusing some vertices in S to separate multiple
terminal pairs. In the CSP regime, it means that for some i, j ∈ {1, 2, 3} and P ∈ Pi and Q ∈ Pj ,
the variables xi(P) and xj(Q) describe the same vertex of S. Note that there is only 2O(k log k)

options of which pairs of variables describe the same vertex; we can exhaustively guess the set K
of all pairs (i, j, P,Q) as above. Every (i, j, P,Q) ∈ K induces a constraint that xi(P) and xj(Q)
is the same vertex; in the CSP language, this is a permutation constraint, denoted henceforth
C(i, j, P,Q), between a subset of the domain of xi(P) and a subset of the domain of xj(Q).

It is important to observe that — assuming the flow-augmentation steps were successful and
in the branching step we made the correct choice of which variables describe the same vertex —
the final CSP instance is an equivalent reformulation of the original Directed Multicut in-
stance. That is, every solution to the obtained CSP instance gives a set of non-terminal vertices

2

that cuts all paths from si to ti for i = 1, 2, 3. The coincidences guessed in the branching step
determine the cardinality of the obtained cut, and we can terminate all branches that lead to
cuts larger than k. Furthermore, every inclusion-wise minimal solution to the original Directed
Multicut instance that is compliant with the flow-augmentation and branching steps yields a
feasible solution to the obtained CSP instance. Thus, it “only” remains to solve the obtained
CSP instance.

To this end, we need to understand how complex the permutation constraints C(i, j, P,Q)
can be. Note that the number of variables is small — bounded by 3k — but the domains
can be as large as |V (G)|. A reader experienced in W[1]-hardness reductions may notice at
this point that the complexity of the permutation constraints is crucial: If one allows arbitrary
permutation constraints (and constraints of the form (x ≤ a) ∨ (y ≥ b) for constants a, b and
variables x, y, as in the encoding of the space of all minimum cuts), one can easily provide a
W[1]-hardness reduction for the parameterization by the number of variables via the edge-choice
gadgets (cf. [10] and Appendix A).

Here a recent major milestone in parameterized complexity comes into play: twin-width.
Introduced by Bonnet, Kim, Thomassé, and Watrigant in 2020 [3], this structural complexity
measure of graphs and, more generally, binary structures has turned out to explain and provide
a number of fixed-parameter tractability results. Most importantly, a recent work from STOC
2022 [2] provides a fixed-parameter algorithm for FO model checking on ordered structures of
bounded twin-width and provides a neat characterization under which conditions a 0-1 matrix
gives bounded twin-width in the encoding.

In our case, the crucial notion is the one of a grid minor of a matrix.1 Let A be a 0-1 matrix
of dimension n × m. An ` × ` grid minor consists of two sequences of indices 0 = i0 < i1 <
i2 < . . . < i` = n and 0 = j0 < j1 < j2 < . . . j` = m such that for every 1 ≤ α, β ≤ `, there is
at least one cell A[i, j] with value 1 for some indices i, j with iα−1 < i ≤ iα and jβ−1 < j ≤ jβ .
The value ` is often referred to as the size of the grid minor. One can deduce from the results of
Bonnet et al. [2] the following statement: Our CSP formulation is FPT when parameterized by
the number of variables, the number of permutation constraints, and the maximum size of a grid
minor of the matrices of the permutation constraints. Hence, our task boils down to providing
a bound on the size of a grid minor in our permutation constraints C(i, j, P,Q).2

To this end and to complete our proof, we prove the following irrelevant-vertex rule: There
exists an integer ` depending only on k such that if some constraint C(i, j, P,Q) has grid minor of
size at least `, then a vertex corresponding to a 1 in the “middle cell” of the grid minor (i.e., A[i, j]
for id`/2e−1 < i ≤ id`/2e, jd`/2e−1 < j ≤ jd`/2e) is irrelevant, that is, any so-called shadowless solu-
tion to the input Directed Multicut instance does not contain the said vertex. Hence, such a
vertex can be reduced in a standard manner (and the analysis of the CSP formulation restarted).

The notion of a shadowless solution comes from the technique of shadow removal, pivotal
for the fixed-parameter algorithms for Directed Multiway Cut [9] and Directed Subset
Feedback Vertex Set [8]. In the context of Directed Multicut, a solution Z is shadowless
if for every non-terminal vertex v /∈ Z, the graph G − Z features a path from v to one of the
terminals ti and a path from one of the terminals sj to v (note that necessarily the t-terminal
and the s-terminal have distinct indices). In short, the shadow-removal technique [9, 8] allows
us to focus on the following task: Given a Directed Multicut instance (G, k, (si, ti)i=1,2,3),
find any solution if there exists a shadowless solution (i.e., the algorithm is allowed to fail if
there is a solution, but not a shadowless one).

1Note that this is an entirely different concept to a grid minor of a graph.
2The reader experienced in W[1]-hardness reductions may recall at this point the reduction showing W[1]-

hardness parameterized by the number of variables for CSPs with permutation constraints: The permutations used
therein for the edge-choice gadgets are of the form π : {0, 1, . . . , n2−1} → {0, 1, . . . , n2−1}, with π(xn+y) = yn+x
for 0 ≤ x, y < n. These are exactly the permutations with largest possible grid minors of their associated
permutation matrices.

3

This last part of the proof — the irrelevant-vertex rule — is the only part of the proof that
crucially relies on the fact that we are dealing with only three terminal pairs. In fact, it is
inspired by the reduction for four terminal pairs [25] and our study why this reduction fails for
three terminal pairs.

The irrelevant-vertex rule also requires us to look into the details of flow-augmentation (Theo-
rem 1.2) and extract some extra properties of this tool. In short, we need to capture the following
intuition: A sequence of deletable edges along the same flow path P ∈ P in the maximum flow
P in G+ A is in some sense sequentially positioned in the graph, so one can usually reach any
later edge from an earlier one. This is not strictly true as stated above, but we prove a variant
of this statement in Section 7.

One can ask if the proof of the irrelevant-vertex rule crucially needs the assumption of the
solution being shadowless. In particular, the usage of shadow removal makes our algorithm
inherently unweighted (the shadow-removal step involves a greedy argument that completely
breaks down in the presence of weights). We complement our main result by proving (Sec-
tion 8) that Weighted Directed Multicut is W[1]-hard even with two terminal pairs, so
the shadow-removal step seems necessary.

Theorem 1.3. Weighted Directed Multicut, parameterized by the cardinality of the cut-
set, is W[1]-hard even with two terminal pairs.

We remark that the one-terminal-pair case of Weighted Directed Multicut, or Bi-
objective st-cut, is proved to be FPT in [15] as one of the basic exemplary usages of flow-
augmentation.

Since we rely on the whole meta-algorithmic toolbox of twin-width of [3], we cannot state an
explicit dependency on the parameter in the running time bound of our algorithm. Relatedly, we
would like to remark that the concept of encoding an instance at hand into a CSP instance with
a number of variables that is bounded by a function of the parameter, but over large ordered
domains, appeared also recently in the FPT algorithm for Optimal Discretization [16]. The
encoding there also uses an unbounded number of constraints of the form (x ≤ a)∨ (y ≥ b) and
a bounded-in-parameter number of permutation constraints. However, the main effort in the
proof in [16] lies in showing that the used permutation constraints have very simple structure
(they are called in [16] segment reversions); in particular, one can observe that their permutation
matrices do not contain a grid minor of size 3. As a result, in [16] the authors are able to design
an explicit FPT algorithm for the obtained CSP instance (with an explicit single-exponential
running time bound). Although using twin-width meta-algorithms prevents us from stating an
explicit running time bound, it allows to claim fixed-parameter tractability of a much wider range
of CSP instances: Permutations of bounded grid minor in their permutation matrices is a much
wider class than the aforementioned segment reversions. We believe the presented framework of
casting a problem into a small number of variables with unbounded ordered domains, bound by
permutation constraints, and using twin-width toolbox to solve it, has a wider future potential
in parameterized complexity.

Organization. After brief preliminaries, where in particular we state the shadow-removal tool
and the extended version of flow-augmentation, we proceed to the main proof (of Theorem 1.1).
Section 3 introduces the twin-width toolbox and shows fixed-parameter tractability of CSP in-
stances with permutations only containing bounded grid minors. Section 4 contains the main
proof, deferring the proof of the irrelevant-vertex rule to Section 5. Section 6 contains a (stan-
dard) proof of the used shadow-removal statement, while Section 7 contains a proof of the used
extension of flow-augmentation. Finally, the proof of Theorem 1.3 can be found in Section 8.

4

Acknowledgements. The research leading to the results presented in this paper was partially
carried out during the Parameterized Algorithms Retreat of the University of Warsaw, PARUW
2022, held in Będlewo in April 2022. We acknowledge insightful discussions with the twin-width
experts at Będlewo: Édouard Bonnet, Jakub Gajarský, and Michał Pilipczuk, as well as later
discussions with Szymon Toruńczyk.

2 Preliminaries

Let G be a directed graph. We use edge and arc interchangably for the directed edges of G. For
two vertices u, v ∈ V (G), we say that u reaches v or v is reachable from u if there exists a directed
path from u to v in G. A path starting in a vertex u and ending in a vertex v is also called a
uv-path. Let e be a (directed) edge. Then s(e) (t(e)) is start (target) of e. Analogously, we use
s(P) (resp. t(P)) for first (resp. last) vertex of a path P . For s, t ∈ V (G), a set S ⊆ E(G) is an
st-cut if t is not reachable from s in G−S and, similarly, a set S ⊆ V (G)\{s, t} is an st-separator
if t is not reachable from s in G−S. In the latter, by G−S we denote the subgraph of G induced
by V (G) \ S. Throughout the paper we use [k] as shorthand for the integer set {1, 2, . . . , k}.

In this work, an instance of Directed Multicut (3-DMC for short) is a tuple (G, k,
(si, ti)i∈[3], V

∞) consisting of a directed graph G, six distinguished vertices s1, s2, s3, t1, t2, t3 ∈
V (G), called terminals, an integer k, and a vertex subset V∞ ⊆ V (G), called undeletable ver-
tices. We sometimes denote the set of terminals as T = {s1, s2, s3, t1, t2, t3}. We require T ⊆ V∞.
A solution is a set S of non-terminal vertices of G such that S∩V∞ = ∅ and for every i = 1, 2, 3
the vertex ti is not reachable from the vertex si in G − S. Directed Multicut asks for a
solution of cardinality at most k.

For an instance (G, k, (si, ti)i=1,2,3, V
∞) and a non-terminal vertex v, by bypassing v we mean

the following operation. First, for every edge (u, v) ∈ E(G) and every edge (v, w) ∈ E(G), we
add an edge (u,w) if it is not already present in the graph. Finally, we delete the vertex v. For
a set X of nonterminal vertices, by bypassing X we mean bypassing vertices of X in arbitrary
order; note that the result does not depend on the order. The following lemma is immediate and
shows that bypassing is a good way to reduce vertices that are provably not in the sought solution.

Lemma 2.1 (Chitnis et al. [8], Lemma 3.11). Let G be a directed graph and let C ⊆ V (G). Let
G′ be obtained from G after bypassing C and let S ⊆ V (G) \ C. For any a, b ∈ V (G) \ (C ∪ S),
G− S has an ab-path if and only if G′ − S has an ab-path.

Shadows and shadow removal. Given an instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC and a

set X ⊆ V (G)\V∞, a vertex v ∈ V (G)\(X∪V∞) is in the forward shadow of X if v is reachable
from neither s1, s2, nor s3 in G−X. Symmetrically, v is in the reverse shadow of X if neither t1,
t2, nor t3 is reachable from v in G−X. The set of vertices in the forward shadow of X in G, is
denoted by fG(X) and the set of vertices in the reverse shadow of X in G, is denoted by rG(X).
The vertex v is in the shadow of X if it is in the forward shadow or the reverse shadow of X. A
set X is shadowless if no vertex is in its shadow, that is, if rG(X) ∪ fG(X) = ∅.

The following statement encapsulates the shadow removal technique in the context of Di-
rected Multicut. Though it follows directly from [9, 8], we provide a formal proof in Section 6
for the sake of completeness.

Theorem 2.2. Given an instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC, there is an algorithm that

runs in time 2O(k2 log k)nO(1), and outputs a family Z of subsets of V (G) \ V∞ such that |Z| =
2O(k2 log k) log2 n and, if the input instance is a Yes-instance, then there exists Z ∈ Z such that
(G′, k, (si, ti)i∈[3], V

∞ \ Z) is a Yes-instance that admits a shadowless solution of cardinality at
most k, where G′ is the result of bypassing Z in G.

5

2.1 Twin-width

Next, we state the definition of twin-width as introduced by Bonnet et al. [3]. They make use of
the concept of a trigraph G, which consists of a vertex set V (G), and two disjoint edge sets, one
containing black edges E(G) and the other containing red edges R(G). In particular, every graph
G is a trigraph with only black edges and R(G) being empty. Let G be a trigraph. We say that
we contract two vertices u, v ∈ V (G) if we merge them into a single vertex w, and then possibly
color the edges incident to the new vertex w. Every existing edge wz remains black if and only
if uz and vz were previously black edges. All other edges incident to w are colored in red. A
contraction sequence of an n-vertex (tri)graph G is a sequence of trigraphs G = Gn, . . . , G1 = K1

such that Gi is obtained from Gi+1 by contracting two vertices. A contraction sequence is called
a d-sequence if all trigraphs in it have red degree at most d. The twin-width of G, denoted by
tww(G), is the minimum integer d such that G admits a d-sequence.

Now we turn to matrices. Here, our main proxy to the twin-width are so-called rank-k
divisions and the grid rank of the matrix which are closely related to twin-width graph parameter,
see Bonnet et al. [2]. Let M be a 0-1 matrix. A division D of M is a pair (DR,DC), where DR
and DC are partitions of the rows and columns into intervals of consecutive rows and intervals
of consecutive columns, respectively. A k-division is a division with |DR| = |DC | = k. If
(DR,DC) is a division, DR = (R1, R2, . . .) and DC = (C1, C2, . . .), then for each pair Ri, Cj ,
the (contiguous) submatrix of Ri ∩ Cj is called the (i, j)-cell of D. A rank-k division of M is
a k-division D of M such that each cell of D contains at least k distinct rows and at least k
distinct columns, or, equivalently, has combinatorial rank at least k. The maximum integer k
such that M admits a rank-k division is called the grid rank of M , denoted by gr(M). A k-grid
minor of M is a k-division D of M such that each cell of D contains at least one 1; note that
any rank-k division of M for k ≥ 2 is necessarily a k-grid minor, too.

Let G be a graph and ≺ be a linear order on V (G). We denote by Adj≺(G) the adjacency
matrix of G where rows and columns are ordered according to ≺. We use the following.

Theorem 2.3 (Bonnet et al. [2]). There is a computable function f : N → N such that the
following hold. Let G be a graph.

• For any total order ≺ of V (G), if gr(Adj≺(G)) ≤ k, then tww(G) ≤ f(k).
• If tww(G) ≤ k, then there is a total order ≺ of V (G) such that gr(Adj≺(G)) ≤ f(k).

Lemma 2.4 (Bonnet et al. [1]). There is a computable function f : N→ N such that the following
holds. Let V be a set of vertices, let ≺ be a linear order on V , and let G1 and G2 be two graphs
on the vertex set V . If gr(Adj≺(Gi)) ≤ k for all i ∈ [2], then gr(Adj≺(G1 ∪G2)) ≤ f(k).

The following theorem can be deduced from the arguments of [3], but is not stated there
explicitly; for completeness, we provide a proof in Appendix B.

Theorem 2.5. There is a computable function f with f(k) = 2O(k log k) such that the following
holds. There is an algorithm that, given a 0-1 matrix A, in f(k)nO(1) time either

• finds a k-grid minor in A, or
• certifies that gr(A) ≤ f(k).

2.2 (Permutation) CSP

An instance of a constraint satisfaction problem (CSP) is a triple (X,D, C), whereX = {x1, . . . , xn}
is a set of variables, D = {D1, . . . , Dn} a set of domains, and each C ∈ C a constraint. A con-
straint C is an aC-tuple (xa1 , . . . , xaC) of variables and a relation R(C) ⊆ Da1 × . . . × DaC .
A valuation α assigns to each xi a value α(xi) ∈ Di. A constraint C ∈ C is satisfied by α if
(α(xa1), . . . , α(xaC)) ∈ R(C). Valuation α satisfies (X,D, C) if it satisfies all constraints.

6

Let (D1,≤1) and (D2,≤2) be finite totally ordered sets. We need two types of relations in
D1 × D2. A relation R ⊆ D1 × D2 is called downwards-closed if for every (x1, x2) ∈ R and
every x′1 ≤1 x1 and x′2 ≤2 x2 it holds that (x′1, x

′
2) ∈ R. Let X1 ⊆ D1 and X2 ⊆ D2 with

|X1| = |X2| and let π : X1 → X2 be a bijection. We refer to the relation {(x, π(x)) | x ∈ X1}
as the permutation constraint π. We denote by Adj(π) the 0-1 matrix of dimension |D1| × |D2|
associated with π as follows. The rows and columns one-to-one correspond to D1 and D2,
respectively, following the orders ≤1 and ≤2. The entry associated with (x, y) ∈ D1×D2 equals
1 if and only if x ∈ D1 and y = π(x). We deal with CSPs of the following form.

Definition 2.6. A Twin-width-w Permutation CSP instance consists of variables x1, . . . , xk
with domains (D1,≤1), . . ., (Dk,≤k), where for all i ∈ [k], (Di,≤i) is a totally ordered set, and
each constraint is, for some i 6= j, either

• a downwards-closed relation R ⊆ Di ×Dj, or
• a permutation constraint π : Xi → Xj where Xi ⊆ Di and Xj ⊆ Dj.

Furthermore, for each permutation constraint π, we have that gr(Adj(π)) ≤ w.

2.3 Flow-augmentation

Because the shadow removal technique is much easier to phrase and use in the vertex-deletion
regime, we need to adjust flow-augmentation [15] from edge deletions to vertex deletions. This
is pretty straightforward via the standard reductions between edge- and vertex-deletion regimes
in directed graphs. More importantly, we need to squeeze an extra connectivity property out of
flow-augmentation, which we formalize below as soybeans. We present here only the necessary
definitions and the main statement that is used in the algorithm; its proof is deferred to Section 7.

Let G be a directed graph with two distinguished vertices s, t ∈ V (G). The vertices of G are
partitioned into deletable vertices and undeletable vertices; s and t are undeletable. A (vertex-
based) st-flow is a collection of st-paths that do not share a deletable vertex; the number of paths
is the value of the flow. We use λG(s, t) for the maximum possible value of an st-flow; a flow of
value λG(s, t) is an st-maxflow. As a convention we say that, ifG contains an st-path consisting of
undeletable vertices only, then the flow containing such a path has value +∞ and λG(s, t) = +∞.

A set Z of deletable vertices is an st-separation if there is no path from s to t in G − Z.
An st-separation Z is minimal if no proper subset of Z is an st-separation and minimum (or
st-mincut) if it has minimum possible cardinality. By Menger’s theorem, if λG(s, t) < +∞ then
the size of every st-mincut is exactly λG(s, t) and there are no st-separations if λG(s, t) = +∞.
We drop the subscript if the graph G is clear from the context.

We say that a set of arcs A ⊆ V (G)× V (G) is compatible with a minimal st-separation Z if
the following holds: for every v ∈ V (G), there is a path from s to v in G−Z if and only if there
is a path from s to v in (G + A) − Z. The pair (A,P) is compatible with Z if A is compatible
with Z and P is an st-maxflow in G+A.

A soybean in G is an unordered pair of walks that have the same starting vertex and the
same ending vertex. We do not require the walks to be disjoint in any sense; in particular,
a pair consisting of the same walk twice is always a soybean. Two soybeans PQ and P ′Q′

are vertex-disjoint if (V (P) ∪ V (Q)) ∩ (V (P ′) ∪ V (Q′)) = ∅. For two sets of vertices or edges
C,D ⊆ V (G) ∪ E(G), a soybean PQ is a CD-soybean if one walk of PQ contains an edge or a
vertex of C and the other walk of PQ contains an edge or a vertex of D. For a path P and two
disjoint sets C,D ⊆ V (P)∪E(P), we say that C and D are interlaced on P if |C| = |D| = q for
some integer q, C can be enumerated as c1, . . . , cq, D can be enumerated as d1, . . . , dq, and the
order of these vertices and edges along P is c1, d1, c2, d2, . . . , cq, dq.

Theorem 2.7. There exist computable functions c : N → N and q : N ×N → N such that the
following holds.

7

There exists a polynomial-time randomized algorithm that, given a directed graph G (with
possibly some vertices marked as undeletable), vertices s, t ∈ V (G), and an integer k, returns an
arc set A ⊆ V (G)×V (G) and an st-maxflow P̂ in G+A such that for every minimal st-separator
Z of size at most k, with probability 2−O(k4 log k), the tuple (A, P̂) is compatible with Z.

Additionally, the algorithm returns a partition B of the deletable vertices of
⋃
P∈P̂ V (P) into

at most c(k) sets such that for every P ∈ P̂, every integer p ∈ N, every B ∈ B and every two
disjoint sets C,D of size at least q(k, p), consisting of vertices of B ∩ V (P) that are interlaced
on P , the graph G contains a family of p pairwise vertex-disjoint CD-soybeans.

Finally, one can take c and q such that c(k) = 2O(k3 log k) and q(k, p) = 2O(k3 log(kp)).

3 Permutation CSP with bounded twin-width

In this section we show the following.

Theorem 3.1. Twin-width-w Permutation CSP parameterized by the number of constraints
plus w is fixed-parameter tractable.

Proof. We transform the given Twin-width-w Permutation CSP instance I into an ordered,
vertex- and edge-colored graph G whose twin-width only depends on w and the number of con-
straints in I. We then give an FO-formula φ such that G |= φ if and only if I is satisfiable. We
can then apply the FO model checking algorithm on (ordered) graphs that runs in FPT time
when parameterized by the twin-width of the input graph plus the length of the formula [2, 3].

We denote the variables of I by x1, . . . , xk, by R the set of downwards-closed constraints
of I, and by Π the set of permutation constraints of I. For each i ∈ [k], let di1, . . . , dini denote
the elements of Di, ordered according to ≤i. For each i ∈ [k], we introduce into G a set Vi of
ni vertices, colored with color i and denoted (and ordered) as vi1, . . . , vini . We reuse the symbols
“≤i” to denote the ordering of the vertices in Vi in the FO-formula. At the heart of our FO-
formula φ is an existential guess of one vertex per Vi, and choosing vij for j ∈ [ni] corresponds
to setting the variable xi to dij . The vertex colors are [k], and encode membership in the Vi’s.
We assume we have predicates col(y) = i for a vertex variable y and i ∈ [k] that verify whether
the vertex assigned to y has color i (which in turn means that y ∈ Vi). The existential guess is:

φ∃ ≡ ∃y1 . . . ∃yk
∧

i∈[k]
col(yi) = i

Encoding the constraints in (G,φ). Next we add edges to the graph G and color them
using the constraints R ∪ Π of I as colors, thus indicating why an edge was added to G. Sim-
ilarly to above, we assume that we have predicates col(e) = C where C ∈ R ∪ Π, that verify
whether the edge assigned to e has color C. Let R ∈ R be a downwards-closed constraint with
R ⊆ Di × Dj . For each (dia, d

j
b) ∈ R such that there is no (a′, b′) ∈ [ni] × [nj] \ {(a, b)} with

a′ ≥ a, b′ ≥ b, and (dia′ , d
j
b′) ∈ R, we add the edge viav

j
b colored R to G. Note that the edges

with color R form a matching, and that they mark the “boundary” of the relation R, in the
following sense. For each (dia, d

j
b) ∈ Di × Dj , we have that (dia, d

j
b) ∈ R if and only if there is

an edge (via′ , v
j
b′) with a′ ≥i a, b′ ≥j b, and of color R in G. We construct the following part of

φ which checks this condition, and therefore is true if and only if R is satisfied under the value
assignment to x1, . . . , xk corresponding to the choice of the vertices y1, . . . , yk.

φR ≡ ∃e∃zi∃zj
(
col(e) = R ∧

∧
h∈{i,j}

inc(e, zh) ∧ col(zh) = h ∧ yh ≤h zh
)

Now, let π ∈ Π with π : Xi → Xj for some Xi ⊆ Di and Xj ⊆ Dj be a permutation constraint.
Then, for each dia ∈ Xi, we let djb = π(dia), and add the edge viav

j
b colored π to G. Again, the

8

edges with color π form a matching. This finishes the construction of G, and the last building
block of φ is as follows. It checks that whenever yi (resp. yj) is incident with some edge col-
ored π, that the other endpoint of that edge is chosen to be yj (resp. yi). This part of the formula
evaluates to true if and only if the permutation constraint π is satisfied under the corresponding
choice of values for the variables of I.

φπ ≡ ∃e (col(e) = π ∧ inc(e, yi) ∧ inc(e, yj)) .

We now obtain φ as
φ ≡ φ∃ ∧

∧
R∈R

φR ∧
∧

π∈Π
φπ.

The correctness of this transformation immediately follows from the description above:

Claim 3.2. I is satisfiable if and only if G |= φ.

It remains to show that the twin-width of G is bounded by a function of w and the num-
ber of constraints in I. To do that, consider the order V1 < V2 < . . . < Vk of V (G),
where each Vi is ordered according to ≤i; denote this order by ≺. We want to show that
gr(Adj≺(G)) ≤ h(w, |R∪Π|), for some computable function h, which implies a desired bound on
the twin-width of G by Theorem 2.3. This can be done by repeated application of Lemma 2.4
over all edge colors of G. All permutation constraints have grid rank at most w by assumption,
so it remains to show that the grid rank of downwards-closed constraints is bounded as well.
Before we do so, we observe one minor technical detail.

Claim 3.3. Let (V,≺) be an ordered set of vertices and let Xi and Xj be disjoint consecutive
subsets of V . Let G be a graph on the vertex set V that only has edges between Xi and Xj. For
each k ≥ 1, if gr(Adj≺(G)) ≥ k + 2, then gr(Adj≺(G)[Xi, Xj]) ≥ k.

Proof. Let M = Adj≺(G), Mi,j = M [Xi, Xj], and Mj,i = M [Xj , Xi]. Let D = (DR,DC) be a
rank-(k + 2) division of M . Since outside of Mi,j and Mj,i, M is all-0, for either Mi,j or Mj,i,
we may assume (up to renaming i and j) that every cell of D intersects Mi,j . This implies that
k2 cells of D are entirely contained in Mi,j . Since each such cell has combinatorial rank at least
k + 2, this gives a rank-k division of Mi,j .

Claim 3.4. Let R ∈ R be a downwards-closed constraint, let ER ⊆ E(G) be the set of edges
colored R in G, and let GR = (V (G), ER). Then, gr(Adj≺(GR)) ≤ 3.

Proof. Let i, j ∈ [k] be such that R ⊆ Di × Dj , and let Mi,j = Adj≺(GR)[Vi, Vj]. Suppose for
a contradiction that there is a rank-2 division of Mi,j with row intervals (R1, R2) and column
intervals (C1, C2). Since each cell of this division has combinatorial rank at least 2, we know that
each such cell contains at least one 1. Let e1 = u1v1 be the edge corresponding to the 1 in R1∩C1,
and let e2 = u2v2 be the edge corresponding to the 1 in R2∩C2, where u1, u2 ∈ Vi and v1, v2 ∈ Vj .
But then, u1 <i u2 and v1 <j v2, which means that the above construction would not have added
the edge e1 with color R. This implies that gr(Mi,j) ≤ 1, so by Claim 3.3, gr(Adj≺(GR)) ≤ 3.

Claim 3.5. There is a computable function h : N×N→ N, such that tww(G) ≤ h(w, |R ∪Π|).

Proof. For each C ∈ R ∪ Π, let EC ⊆ E(G) denote the set of edges colored C, and let
GC = (V (G), EC). Then, E = {EC | C ∈ R∪Π} is a partition of E(G). Recall that ≺ is a linear
order on V (G) which lets V1 < V2 < . . . < Vk, and for each i ∈ [k], coincides with ≤i on Vi.
By the assumption of the theorem, and Claim 3.4, we have that gr(Adj≺(GC)) ≤ max{3, w}
for all C. Since E is a partition of the edge set of G, we can repeatedly apply Lemma 2.4 to
conclude that gr(Adj≺(G)) ≤ h′(w, |R ∪ Π|) for some computable function h′. Theorem 2.3 in
turn implies that tww(G) ≤ h(w, |R ∪Π|) for some computable function h.

9

We can now run the FO model checking algorithm [2, 3] on (G,φ) and return the same
answer. Note that by [2], we can compute a contraction sequence of G whose twin-width is
bounded by a computable function of tww(G) in FPT time parameterized by tww(G), using the
ordering ≺. Correctness follows from Claim 3.2, and by Claim 3.5 the twin-width of G only
depends on w and the number of constraints s in I. It is clear that the length of φ can be upper
bounded by a function of k and s, and since we can assume that k ≤ s, the length of φ can
be upper bounded by a function of s alone. The algorithm of [2, 3] is fixed-parameter tractable
in tww(G) + |φ|, which in our application translates to an FPT-algorithm for Twin-width-w
Permutation CSP parameterized by w + s, as desired.

We would like to remark that Theorem 3.1 generalizes the fixed-parameter tractability result
of another type of CSP, called Forest CSP [16]. Moreover, if we drop the twin-width of
the permutation constraints as part of the parameter, then the resulting Permutation CSP
problem parameterized by the number of constraints is W[1]-hard (see Appendix A).

4 Three-terminal-pair Directed Multicut is fixed-parameter
tractable

This section is dedicated to proving the main theorem of this paper:

Theorem 1.1. Directed Multicut with three terminal pairs is fixed-parameter tractable when
parameterized by the size of the cutset (with a randomized algorithm).

To prove Theorem 1.1, we show how to reduce 3-DMC to Permutation CSP such that the
twin-width of each constraint is bounded by some function of the desired separator size k. One
main ingredient in this reduction is the flow-augmentation technique explained in Section 2.3.
The outline is as follows. We first perform flow-augmentation for each of the terminal pairs,
giving us an augmented graph and a flow of value k for each terminal pair. If there is a solution S,
then with large-enough probability S is preserved as a separator after the augmentation steps.
The solution thus corresponds to a selection of vertices, one for each of the obtained flow paths.
To obtain a reduction to Permutation CSP, the idea is then to introduce one variable x for
each flow path P where the domain of x is the set of vertices on P . A set of straightforward
constraints ensures that the vertices selected by the variables form a separator for each terminal
pair. One crux with this approach is how to ensure that the variables introduced for flow paths
between different terminal pairs select vertices in a consistent way. We note that, after trying
all possibilities of the possible overlaps of selected vertices, the consistency requirement can be
modelled as a permutation constraint, we also call these consistency constraints. In this way, we
obtain an instance of Permutation CSP with O(k2) constraints. However, as mentioned in
Section 3, Permutation CSP in general is W[1]-hard with respect to the number of constraints.
Thus, we need more work to obtain Theorem 1.1. We show how to ensure that the obtained
constraints are simple, in the sense that they have low twin-width, crucially leveraging our
improved version of flow-augmentation from Section 2.3. We then apply the algorithm from
Section 3 for solving Permutation CSP instances of low twin-width.

For use in the remainder of the section, fix an instance (G, (si, ti)i∈[3], k) of 3-DMC. We show
how to solve this instance in fixed-parameter time with large-enough probability. The algorithm
is partitioned into four main steps; they are reflected in the structure of the remainder of this
section, also see Figure 1 for an illustration. The first step is the shadow-removal technique,
which ensures in fixed-parameter time that each vertex is reachable from some terminal and
reaches some terminal. We crucially use this property when bounding the twin-width later on.
The second step is using flow-augmentation and reducing to Permutation CSP. The third

10

I

☼

shadow removal

Theorem 2.2
ensure that there
is a solution with-
out shadow

I ′

Ð

I ′ +A
P1,P2,P3

flow augmentation and CSP

Theorem 2.7

constructing
constraints

ρij – consistency
Rij,j′ – downwards-

closed
πi,i

′

j,j′ – permutation

C2

Þ

tww reduction

bounded
tww

Lemma 4.8
find a vertex that
is in no solution
and remove it
from the domain C′2

�

solve CSP

Theorem 3.1
S

Figure 1: This flowchart gives an overview on the structure of the algorithm and where the
results from the other sections are used.

step is to reduce the twin-width of the constraints in the Permutation CSP instance. Finally,
we solve the Permutation CSP instance using the algorithm from Section 3.

Shadow removal. The first step in the algorithm is to remove vertices from the graph in
order to ensure that if there is a solution, then there is also one without a shadow. Recall
the definition of being shadowless from Section 2 and recall Theorem 2.2 which we restate for
convenience below and prove in Section 6.

Theorem 2.2. Given an instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC, there is an algorithm that

runs in time 2O(k2 log k)nO(1), and outputs a family Z of subsets of V (G) \ V∞ such that |Z| =
2O(k2 log k) log2 n and, if the input instance is a Yes-instance, then there exists Z ∈ Z such that
(G′, k, (si, ti)i∈[3], V

∞ \ Z) is a Yes-instance that admits a shadowless solution of cardinality at
most k, where G′ is the result of bypassing Z in G.

We apply the algorithm of Theorem 2.2, yielding the family Z. We then iterate over all
instances of 3-DMC resulting from bypassing a set Z ∈ Z in the input graph G. For each such
constructed instance we continue with the remainder of the algorithm as described below. For
simplicity, we call the instance of the current iteration (G, k, (si, ti)i∈[3], V

∞). Note that, from
now on, it is enough to find a shadowless solution. This is not immediately relevant, but we
crucially use this property when bounding the twin-width later on.

Flow-augmentation and reduction to Permutation CSP. We continue with the reduc-
tion to Permutation CSP, however, without at first bounding the twin-width of all constraints.
(Recall that the definition of Permutation CSP can be found in Section 2.2 as Definition 2.6.)

Recall that (G, k, (si, ti)i∈[3], V
∞) is the instance of 3-DMC that we are working on. The

reduction to Permutation CSP works as follows. For each terminal pair (si, ti), i ∈ [3], run
the algorithm from Theorem 2.7 with input s = si, t = ti, the graph G, and k. We obtain a
triple (Ai,Pi,Bi) consisting of an arc set Ai ⊆ V (G)× V (G), an siti-maxflow Pi in G+Ai, and
a partition Bi of the deletable arcs on Pi. For each Pi let ki be its flow value and fix an arbitrary
ordering P i1, P i2, . . . , P iki of the paths in Pi. Note that not necessarily ki ≤ k, but this is the case
if Ai is in a sense compatible with a solution, see the notion of safe augmentation below. Hence,
at this point if for some i ∈ [3] we have ki > k we stop and return a failure symbol. Otherwise
we continue and denote Gi := G+Ai.

In order to define a Permutation CSP instance, for each i ∈ [3] and j ∈ [ki] we introduce
a variable xij with domain Di

j := V (P ij) \ ({si, ti} ∪ V∞) and a variable x′ij with domain D′ij :=

V (P ij) \ ({si, ti} ∪ V∞). The ordering ≤ij of Di
j corresponds to a traversal of the path P ij from

si to ti and the ordering ≤′ij of D′ij corresponds to a traversal of the path P ij from ti to si.
(Intuitively, xij and x′ij always choose the same vertex, but we need both orderings of their

11

Pj

Pj′

≤j

≤j′
≤′j

≤′j′

u x

vy
(x, y) /∈ Rj,j′

Pj

Pj′

≤j

≤j′
≤′j

≤′j′

x′ x

y y′

(x, y) ∈ Rj,j′ ⇒ (x′, y′) ∈ Rj,j′

Figure 2: The downwards-closed constraints introduced into the Permutation CSP in-
stance C1. All identifiers ≤,≤′, R, P to be understood with an index i.

domain in order to define downwards-closed constraints below.) Below we let X denote the set
of variables xij and X

′ the set of variables x′ij .
As to the constraints, first, for each i ∈ [3] and j ∈ [ki] we introduce a permutation con-

straint ρij : Di
j → D′ij that ensures that xij and x′ij are the same, that is, for each u ∈ Di

j let
ρij(u) = u.

Next, we define the constraints that ensure that for each i ∈ [3] the vertices selected by the
variables form an siti-separator. For each i ∈ [3] and each pair of variables xij ∈ X, x′ij′ ∈ X ′

introduce a constraint Rij,j′ ⊆ Di
j ×D′ij′ as follows; refer to Figure 2 for an illustration. At first,

put Rij,j′ = Di
j×D′ij′ . Then, for each u ∈ V (P ij) and v ∈ V (P ij′) such that there is a path Q in Gi

from u to v such that Q is internally vertex-disjoint from each path P ij ∈ Pi, remove from Rij,j′

all pairs (x, y) such that u ≤ij x and v ≤′ij′ y. (This means that u occurs before x on path P ij and
v occurs after y on path P ij′ . Intuitively, no solution may choose x and y because Q bypasses
the corresponding vertex set, showing it is not a separator. Note that the path Q may consist
of a single edge and that one of its endpoints may be si or ti.) This finishes the description of
the constraint Rij,j′ . (Note that not necessarily Rij,j′ = Rij′,j .) Note that if (x, y) ∈ Rij,j′ and
x′ ≤j x and y′ ≤′j′ y then (x′, y′) ∈ Rij,j′ : Otherwise, at the point where we have removed (x′, y′)

from Rij,j′ in the above construction, say due to some pair (u, v), we have u ≤j x′ ≤j x and
v ≤′j y′ ≤′j y and thus we would have removed (x, y) as well, a contradiction. Thus, Rij,j′ is
downwards-closed.

We add further constraints to the Permutation CSP instance below. But first we ob-
serve that already at this point, every solution to the 3-DMC instance (G, k, (si, ti)i∈[3], V

∞)
induces a solution for the Permutation CSP instance and every solution to the Permuta-
tion CSP instance induces three separators between the three terminal pairs. Let C1 denote
the Permutation CSP instance constructed so far, that is,

C1 = (X ∪X ′, (Di
j ,≤ij , D′ij ,≤′ij)i∈[3],j∈[ki], (ρ

i
j)i∈[3],j∈[ki], (R

i
j,j′)i∈[3],j,j′∈[ki]).

Observe that we can construct C1 in polynomial time because the algorithm of Theorem 2.7
12

runs in polynomial time and the paths underlying the construction of Rij,j′ can be computed in
polynomial time.

For proving the soundness of the algorithm, we need the following definition. Let S be a
solution to (G, k, (si, ti)i∈[3], V

∞). Define the event safely augmented (wrt. S) as the intersection
of the three events Ei, i ∈ [3], that state that there exists a minimal siti-separator Si that is
contained in S such that (Ai,Pi) is compatible with Si. We also say that the Si are the witnesses
to having safely augmented. Note that, if we have safely augmented, then the flow value ki of
each Pi is at most k. In order to prove soundness, we make use of the following two statements.

Lemma 4.1. Let S be an arbitrary fixed solution to (G, k, (si, ti)i∈[3], V
∞). Then with probability

at least 2−O(k4 log k) we have safely augmented wrt. S.

Proof. Let Si, i ∈ [3], be a minimal siti separator (in G) contained in S. The three events Ei are
independent from each other. They each have probability lower bounded by the probability of
the event that (Ai,Pi) is compatible with Si. By Theorem 2.7 they thus each have probability
at least 2−O(k4 log k), which implies the desired bound.

Lemma 4.2. Assume we have safely augmented and let Si, i ∈ [3], be witnesses to that fact.
Then, for each i ∈ [3] and for each j ∈ [ki] we have |V (P ij) ∩ Si| = 1. Define the mapping φ by
defining φ(xij) and φ(x′ij) both as the single vertex in V (P ij) ∩ Si for each i ∈ [3] and j ∈ [ki].
Then φ is a solution to the Permutation CSP instance C1.

Proof. Fix i ∈ [3]. Since we have safely augmented, (Ai,Pi) is compatible with Si. Thus Pi is
an siti-maxflow of value |Si|, showing that for each j ∈ [ki] we have |V (P ij)∩Si| = 1. We define
φ(xij), φ(x′ij) as specified in the statement. Clearly the permutation constraints ρij are satisfied.
Assume towards a contradiction that some downwards-closed constraint Rij,j′ is not satisfied.
Thus, at some point in the construction of Rij,j′ we have removed (φ(xij), φ(x′ij′)) from Rij,j′ , say
due to some path Q from the vertex u ∈ V (P ij) to the vertex v ∈ V (P ij′). By the construction of
Rij,j′ , we have u ≤ij φ(xij) and v ≤′ij φ(x′ij′). We construct an siti-path Q′ in Gi by following P ij
from si to u, then adding Q, and finally following P ij′ from v to ti. Observe that V (Q′)∩Si = ∅.
Since Ai is compatible with Si, this implies that there is an siti-path in G, a contradiction to
the fact that Si is an siti-separator.

In order to prove completeness, we need the following.

Lemma 4.3. If φ is a solution to the Permutation CSP instance C1, then for each i ∈ [3] the
set {φ(xij) | j ∈ [ki]} is an siti-separator in G.

Proof. Fix i ∈ [3] and let Si = {φ(xij) | j ∈ [ki]}. We show that Si is an siti-separator in Gi.
Since Gi is a supergraph of G the statement then follows. For a contradiction, assume that there
is an siti-path Q in Gi−Si. Observe that Q has at least one internal vertex that is contained in
a path P ij ; otherwise, P i would not be an siti-maxflow in Gi. Divide Q into segments Q1, Q2, . . .
such that each segment is of maximal length with respect to not having an internal vertex of a
path P ij , j ∈ [ki]. That is, the endpoints of the segments are either si, ti, or an internal vertex of
a path P ij . Label each segment Qp by a label in {−,+}×{−,+} as follows. Let u, v be the first
and the last vertex of Qp, respectively, and observe that one of them occurs as internal vertex
on a path in Pi. The first part of the label of Qp is − if u = si or if u occurs on a path P ij before
φ(xij); otherwise the first part of the label is +. The second part of the label is + if v = ti or
if v occurs on a path P ij′ after φ(xij′); otherwise the second part of the label is −. Note that,
since Q is an siti-path, there is at least one segment with label (−,+), say segment Qp. Let
u, v be the first and the last vertex of Qp, respectively. Without loss of generality, by symmetry,
assume that u 6= si, that is, u appears as internal vertex on a path in Pi, say P ij . If v appears as

13

internal vertex on a path in Pi then let P ij′ be that path; otherwise take P ij′ to be an arbitrary
path in Pi different from P ij . By construction of Qp, we have u ≤ij φ(xij) and v ≤′ij φ(x′ij′). But
then, by construction of Rij,j′ we would have removed (φ(xij), φ(x′ij)) from Rij,j′ due to the path
Qp, a contradiction. Thus, indeed Si is an siti-separator in Gi.

Next, we aim to add the consistency constraints between variables mentioned in the outline
above. To this end, we iterate over all possibilities of variables being assigned to the same vertex.
More precisely, we iterate over all of the 2O(k log k) partitions X of the variable set X into at
most k parts of size at most three such that no part contains two variables xi· , xi

′
· with i = i′.

(Intuitively, these capture all possibilities because no two paths in Pi share a vertex and thus
no cluster of pairwise equal variables exceeds size three.) We call this the consistency iteration.

Next, for each pair of variables xij , x
i′
j′ in the same part in X , restrict their domains to the

set of shared vertices of P ij and P i
′
j′ , that is, replace both Di

j and Di′
j′ by their intersection

Di
j ∩ Di′

j′ . Perform analogous restrictions to the domains of the variables x′ij , x
′i′
j′ . Omit the

thereby invalidated bindings from the constraints ρij and R
i
j,j′ .

Finally, we introduce the permutation constraints enforcing the guessed consistency relation
represented by X . For every pair of variables xij , x

i′
j′ contained in same part of X , we introduce

the constraint πi,i
′

j,j′ : D
i
j → Di′

j′ mapping each u ∈ Di
j as πi,i

′

j,j′(u) = u ∈ Di′
j′ . This concludes the

description of the reduction to Permutation CSP. Let C2 denote the resulting Permutation
CSP instance

(X ∪X ′, (Di
j ,≤ij , D′ij ,≤′ij)i∈[3],j∈[ki], (ρ

i
j)i∈[3],j∈[k], (R

i
j,j′)i∈[3],j,j′∈[ki], (π

i,i′

j,j′)i 6=i′∈[3],j∈[ki],j′∈[ki′]
).

Note that iterating over all possibilities for X can be done in 2O(k log k) time and thus constructing
all the instances C2 takes 2O(k log k) · nO(1) time.

We can now extend Lemmas 4.2 and 4.3 to C2. To this end, let S be a solution to (G, k,
(si, ti)i∈[3], V

∞) and assume we have safely augmented with witnesses Si. We say that X complies
(with S and the witnesses Si) if for each pair i, i′ ∈ [3], each j ∈ [ki], and j′ ∈ [ki′] we have that
V (P ij) ∩ Si = V (P i

′
j′) ∩ Si′ if xij and xi

′
j′ are both contained in the same part of X .

Lemma 4.4. Let S be a solution to (G, k, (si, ti)i∈[3], V
∞) and assume we have safely augmented

with witnesses Si. Then, one of the partitions considered in the consistency iteration complies.

Proof. Since we have safely augmented and by Lemma 4.2, we have |V (P ij) ∩ Si| = 1 for each
i ∈ [3] and for each j ∈ [ki]. For every vertex v ∈ S define a set of variables Xv := {xij |
V (P ij) ∩ Si = {v}}, which yields a complying partition X := {Xv | v ∈ S} of X. To see that
X is considered in the consistency iteration observe that |X | ≤ k. Furthermore, for each i ∈ [3]
there are no two variables xij , x

i
j′ in the same part in X , which proves the claim.

Lemma 4.5. Let S be a solution to (G, k, (si, ti)i∈[3], V
∞), assume we have safely augmented

with witnesses Si and assume that X complies. Then, we have |V (P ij) ∩ Si| = 1 for each i ∈ [3]

and for each j ∈ [ki]. Define the mapping φ by defining φ(xij) and φ(x′ij) both as the single vertex
in V (P ij) ∩ Si for every i ∈ [3] and j ∈ [ki]. Then, φ is a solution to the Permutation CSP
instance C2.

Proof. By Lemma 4.2, |V (P ij)∩ Si| = 1 and the mapping φ satisfies all constraints ρij and R
i
j,j′ .

It remains to show that the values of φ have not been removed from the domains and that the
permutation constraints πi,i

′

j,j′ are satisfied.
For the claim about the domains, fix some variable xij . Towards a contradiction, assume that

φ(xij) was removed in the domain-restriction step. Then, there is some other variable xi′j′ that is

14

in the same part of X such that φ(xij) /∈ Di′
j′ . In other words, V (P ij) ∩ Si 6= V (P i

′
j′) ∩ Si′ . Since

X complies, xij and x
i′
j′ are in different parts in X , a contradiction.

In order to show that the permutation constraints are satisfied, fix some constraint πi,i
′

j,j′ .

By construction of πi,i
′

j,j′ , variables x
i
j and xi

′
j′ are in the same part of X . Since X complies,

V (P ij) ∩ Si = V (P i
′
j′) ∩ Si′ . Thus, by definition of φ we have φ(xij) = φ(xi

′
j′), that is, πi,i

′

j,j′ is
satisfied.

Finally, we prove that solutions to C2 yield solutions to our 3-DMC instance.

Lemma 4.6. If φ is a solution to the Permutation CSP instance C2, then the set {φ(xij) |
i ∈ [3], j ∈ [ki]} is a solution to (G, k, (si, ti)i∈[3], V

∞).

Proof. Let S = {φ(xij) | i ∈ [3], j ∈ [ki]} and for each i ∈ [3] let Si = {φ(xij) | j ∈ [ki]}. Note
that S = S1 ∪ S2 ∪ S3. In comparison to C1, instance C2 contains only smaller domains and
more constraints. Thus, the conclusion of Lemma 4.3 still holds for C2. Hence, each Si is an
siti-separator in G. Thus it remains to show that |S| ≤ k. For this, observe that, due to the
constraints πi,i

′

j,j′ , we have that for each part Y ∈ X all the variables in Y have the same value.
Since |X | ≤ k by construction of X it follows that |S| ≤ k, as required.

We now continue working with C2; first reducing the twin-width of its constraints and then
applying the algorithm from Section 3.

Twin-width reduction by irrelevant vertices. We next show how to bound the twin-
width of the constraints in C2. First, observe that the twin-width of the constraints ρij is already
bounded. Recall the definition of grid rank gr from Section 3.

Lemma 4.7. For each i ∈ [3] and j ∈ [ki] we have gr(Adj(ρij)) ≤ 1.

Proof. Let M = Adj(ρij). Observe that M is an anti-diagonal matrix. Each cell of M with at
least two distinct rows or columns thus contains an entry of the anti-diagonal. Consider the
upper-left cell C in a rank-k division of M . For a contradiction, assume that k ≥ 2. Then, C
contains an entry of the anti-diagonal. Consider the cell C ′ that is south east of C. Cell C ′

contains only zero entries, a contradiction.

The crucial constraints are the constraints πi,i
′

j,j′ and they are indeed a priori not of bounded
twin-width. However, using an irrelevant vertex argument, we can bound their twin-width.

Lemma 4.8. There exists a computable function h : N → N and an algorithm that, given
an instance (G, k, (si, ti)i∈[3], V

∞), the constraint πi,i
′

j,j′ in C2 for i, i′ ∈ [3] distinct, j ∈ [ki],
and j′ ∈ [ki′] and the augmented paths P ij , P

i′
j′ together with the partitions Bi and Bi′ (from

Theorem 2.7), certifies that gr(Adj(πi,i
′

j,j′)) ≤ h(k) or finds a vertex v ∈ Di
j ∩Di′

j′ such that there
is no shadowless solution S with v ∈ S and:

• all vertices before v on P ij do not reach ti and all vertices after v on P ij are not reachable
from si in G− S;

• all vertices before v on P i′j′ do not reach ti′ and all vertices after v on P i′j′ are not reachable
from si′ in G− S.

Moreover, the algorithm runs in fixed-parameter time with respect to k.

The proof is given in Section 5.
Note that if the instance is safely augmented and X complies with S, then P ij contains a

unique vertex of Si, P i
′
j′ contains a unique vertex of Si′ , and this is the same vertex. Lemma 4.8

15

returns v that is guaranteed not to be the said vertex, so we can remove it from the domains of
the variables corresponding to P ij and P i′j′ . Formally, we use Lemma 4.8 as follows. We iterate
over all consistency constraints. That is, for each i, i′ ∈ [3], j ∈ [ki], and j′ ∈ [ki′], we consider
the constraint πi,i

′

j,j′ in C2. We iteratively apply the algorithm of Lemma 4.8 to it. If it returns
a vertex v, then we remove v from both the domains Di

j and Di′
j′ of x

i
j and xi′j′ , and repeat. If

it returns that the grid rank is at most h(k), we continue to the next constraint. Since we may
drop at most n vertices from a domain, this eventually leads to an empty domain for a variable,
that is, a no-instance, or a situation in which for every constraint πi,i

′

j,j′ in C2 the matrix has grid
rank bounded by h(k). In the latter case, we apply Theorem 3.1 to solve C2 in fixed-parameter
time with respect to k.

We are now able to prove Theorem 1.1.

Theorem 1.1. Directed Multicut with three terminal pairs is fixed-parameter tractable when
parameterized by the size of the cutset (with a randomized algorithm).

Proof. We claim that the algorithm described in this section solves (G, k, (si, ti)i∈[3], V
∞) in

fixed-parameter time with respect to k with large-enough probability. By the arguments given
throughout the section, the algorithm indeed runs in fixed-parameter time. If the algorithm
returns a vertex set S, then S is a solution to (G, k, (si, ti)i∈[3], V

∞) by Lemma 4.6.
Assume now that there is a solution S to (G, k, (si, ti)i∈[3], V

∞). By Theorem 2.2, we may
assume that S is shadowless. By Lemma 4.1, with probability at least 2−O(k4 log k) the algorithm
safely augmented with respect to S. By Lemma 4.4, one of the considered X complies with S.
Thus, by Lemma 4.6, the Permutation CSP instance C2 has a solution. By Lemma 4.8, C2

maintains having a solution even after removing the vertices computed in Lemma 4.8 from the
respective domains. Thus, the algorithm of Theorem 3.1 returns a solution, as required.

5 Irrelevant vertex rule—Proof of Lemma 4.8

In this section, we give a tool that reduces the complexity of complicated permutation constraints
in C2. In fact, we argue that due to the shadow removal (as described in Section 6) and an
improved version of the flow augmentation (Theorem 7.2), we obtain the following. If the
permutation constraint has a high grid rank (gr), then we can explicitly find a vertex v that
cannot play the role of the solution vertex in the given permutation constraint.

First, we provide some very brief intuition. Shadow removal grants us some additional
information about the reachability relation with respect to the terminals: For example, if some
vertex cannot be reached from s1 and s2 after removal of a shadowless solution S, then it must
be reachable from s3. Symmetrically, if a vertex cannot reach t1 and t2, it has to reach t3. Using
the large grid rank, this additional reachability can be easily extended first along flow path P i′j′
and then along flow path P ij , which gives a forbidden path s3t3-path. However, this does not
prove the existence of such an s3t3-path in the original graph, as the flow paths might contain
augmented edges. Therefore, we make use of the improved flow augmentation (Theorem 7.2) in
order to still reach a contradiction. In particular, if S satisfies the additional assumption stated
in Lemma 4.8 (which still follows from the flow augmentation), the soybeans (introduced in
Section 2.3) provide the needed connectivity without using the augmented edges. Unfortunately,
their structure is (and has to be; see Section 7) a bit more complicated than just a simple path,
but using additional shadow removal arguments, we are able to derive the existence of an s3t3-
path and therefore, the desired contradiction.

Note one more complication: The soybeans may use vertices in other flow paths, but as they
are vertex disjoint, at most k of them can intersect S, so if we set the threshold high enough,
we still reach the contradiction.

16

Lemma 4.8. There exists a computable function h : N → N and an algorithm that, given
an instance (G, k, (si, ti)i∈[3], V

∞), the constraint πi,i
′

j,j′ in C2 for i, i′ ∈ [3] distinct, j ∈ [ki],
and j′ ∈ [ki′] and the augmented paths P ij , P

i′
j′ together with the partitions Bi and Bi′ (from

Theorem 2.7), certifies that gr(Adj(πi,i
′

j,j′)) ≤ h(k) or finds a vertex v ∈ Di
j ∩Di′

j′ such that there
is no shadowless solution S with v ∈ S and:

• all vertices before v on P ij do not reach ti and all vertices after v on P ij are not reachable
from si in G− S;

• all vertices before v on P i′j′ do not reach ti′ and all vertices after v on P i′j′ are not reachable
from si′ in G− S.

Moreover, the algorithm runs in fixed-parameter time with respect to k.

Proof. For simplicity, denote Pj = P ij and Pj′ = P i
′
j′ . Without loss of generality suppose that

i = 1 and i′ = 2.
For a (sub)matrix A of Adj(π1,2

j,j′), we refer to the vertices that correspond to domains of A as
the vertices corresponding to A. Note that whenever there is a 1 in the (sub)matrix A, it means
that the corresponding two domain values are, in fact, the same vertex in G.

Recall functions c and q of Theorem 2.7. We set ζ := 2q(k, q(k, k+ 1) + 1 + k) + 1. Let ρ be
the bipartite Ramsey number for (c(k))2 colors and a monochromatic biclique of size 2ζ; that
is, every edge coloring of Kρ,ρ with (c(k))2 colors contains a monochromatic copy of K2ζ,2ζ . We
apply Theorem 2.5 to Adj(π1,2

j,j′) and ρ to either obtain that gr(Adj(π1,2
j,j′)) is bounded by 2O(ρ log ρ)

(and a computable function of k), or obtain an ρ-division of Adj(π1,2
j,j′) that has at least one 1 in

every cell. In the first case, we return that gr(Adj(π1,2
j,j′)) is bounded by a computable function

of k, in the second case we proceed further; we leverage the obtained ρ-division to obtain the
desired irrelevant vertex v.

We fix one such entry with value 1 for every (p, q)-cell of the said division, which corresponds
to a vertex, and call it the (p, q)-representative. For every cell (p, q), we color it with a pair
(B1, B2), where for ι = 1, 2 the set Bι ∈ Bι is the set containing the (p, q)-representative in the
application of Theorem 2.7 for the pair sι, tι. Clearly, there are at most (c(k))2 colors. By the
choice of ρ, there is a coarser 2ζ-division of Adj(π1,2

j,j′) such that we can choose a representative
in every cell of this division such that all representatives are of the same color (B1, B2). In
what follows, we only work with the latter division and representatives and hence use the name
(p, q)-representative for them. For a (sub)matrix A of Adj(π1,2

j,j′), we say representatives for the
set of all (p, q)-representatives within A.

We choose v as the (ζ, ζ)-representative. Now, towards a contradiction, suppose that v ∈ S
and v splits Pj and Pj′ as in the lemma statement.

This split in particular applies to the representatives. The first part of Pj (resp. Pj′) contains
the vertices not reaching t1 (resp. t2) up to the cell index i = ζ−1 (resp. j = ζ−1) and the second
part contains vertices not reachable from s1 (resp. s2) in G−S. Based on the above, we split the
cells of the matrix Adj(π1,2

j,j′) into four quadrants and take submatrices consisting only of their
representatives: At12, At1s2, At2s1, and As12, where the subscript indicates the non-reachability
of the quadrant. More formally, At12 consists of the (p, q)-representatives for 1 ≤ p, q ≤ ζ−1 (and
they do not reach t1 nor t2 in G−S), At1s2 consists of the (p, q)-representatives for 1 ≤ p ≤ ζ−1
and ζ + 1 ≤ q ≤ 2ζ (and they do not reach t1 and are not reachable from s2 in G − S), At2s1
consists of the (p, q)-representatives for 1 ≤ q ≤ ζ−1 and ζ+ 1 ≤ p ≤ 2ζ (and they do not reach
t2 and are not reachable from s1 in G−S), and finally As12 consists of the (p, q)-representatives
for ζ + 1 ≤ p, q ≤ 2ζ (and they are not reachable from s1 nor s2 in G− S).

As S is shadowless thus all vertices in At12 have to reach t3 and all vertices in As12 have
to be reachable from s3 in G − S. In order to make use of the soybeans given by the flow-
augmentation (Theorem 2.7) we need to define suitable interlaced sets. Let ξo be the vertices
of Pj′ corresponding to (p, q)-representatives of As12 for every odd p ≥ ζ + 1 and any one fixed

17

q ≥ ζ + 1, and let ξe be the set of vertices of Pj′ corresponding to (p, q)-representatives of At1s2
for every even p ≥ ζ + 1 and q := p − ζ. It follows that ξo and ξe form interlaced sets on path
Pj′ of size

bζ/2c = b(2q(k, q(k, k + 1) + 1 + k) + 1)/2c ≥ q(k, q(k, k + 1) + 1 + k).

Hence we obtain q(k, k+ 1) + 1 + k ξo, ξe-soybeans by Theorem 2.7 (note that the interlaced
sets are within one set B2 ∈ B2). Let Q1Q2 be one of these ξoξe-soybean that does not intersect
S. Pick two vertices v1 ∈ ξo and v2 ∈ ξe. As v1 corresponds to a vertex of As12, vertex v1 is
not reachable from s1 and s2 in G− S. As Q1Q2 is disjoint with the solution S, s(Q1Q2) is not
reachable from s1 nor s2 in G−S. Since S is shadowless, s(Q1Q2) is reachable from s3 in G−S.
Again as Q1Q2 is disjoint with the solution S, v2 is reachable from s3 in G− S.

For an illustration, consider the left part of Figure 3. Some of the ξo, ξe-soybeans may
intersect S, but as they are pairwise vertex disjoint, at most k of them can. Hence, the above
properties hold for q(k, k + 1) + 1 of them. We restrict the submatrix At1s2 only to entries in
ξe that correspond to ξo, ξe-soybeans that are disjoint from S. We call the resulting submatrix
A′t1s2. Observe that A′t1s2 has at least q(k, k + 1) + 1 columns with at least one 1.

Now, we construct another pair of interlaced sets. Let χ1 be the set of vertices that are
contained in ξe and that correspond to the soybeans selected in the previous step (i.e., to the
representatives in A′t1s2, except for the last one on the path Pj). Note that by our previous
construction, for (p, q)-representatives in χ1, all values of q are pairwise different and of the
same parity. For every (p, q)-representative in χ1, we insert into χ2 a (p′, q′)-representative of
At12 for q′ = q+1 and any fixed p ≤ ζ−1. It follows that χ1, χ2 are interlaced sets on path Pj of
size q(k, k+1), and they are within the same set B1 ∈ B1. (We removed the last representative in
χ1 as it could be the in the (p, ζ−2)-cell of Adj(π1,2

j,j′) for some p ≥ ζ+1.) Hence we obtain k+1
vertex-disjoint χ1, χ2-soybeans by Theorem 2.7. At most k of them can intersect S. Therefore
let Q3Q4 be one χ1, χ2-soybean that does not. We know that v3 ∈ Q3 ∩χ1 is reachable by s3 in
G− S by the arguments in the previous paragraph.

We know that v4 ∈ Q4 ∩ At12 does not reach t1 nor t2 in G − S. Hence, t(Q3Q4) does not
reach t1 nor t2. Since S is shadowless, t(Q3Q4) reaches t3 in G − S. Since Q3Q4 is disjoint
with the solution, v3 reaches t3 in G− S. This is the desired contradiction, see the right part of
Figure 3 for this case.

6 Shadow removal

In this section, we prove Theorem 2.2. Recall that (G, k, (si, ti)i∈[3], V
∞) is an instance of 3-

DMC. A set W ⊆ V (G) is called thin if for every v ∈ W , v 6∈ rG(W \ v). For two sets
A,B ⊆ V (G) such that A ∩ B = ∅, an (A,B)-separator is a set S ⊆ V (G) \ (A ∪ B) such that
G−S has no path from any vertex of A to any vertex of B. Let R+

G(A) be the set of vertices that
are reachable from some vertex of A in G. An (A,B)-important separator is an inclusionwise
minimal set S ⊆ V (G) \ (A ∪ B) such that G − S has no path from A to B and there is no
(A,B)-separator S′ such that |S′| ≤ |S| and R+

G−S(A) ⊂ R+
G−S′(A). To prove Theorem 2.2,

we use the tool of random sampling of important separators from [24, 9, 8], presented in its
derandomized form and in the form that is convenient for us to use, as Proposition 6.1.

Proposition 6.1 (Theorem 3.18 by Chitnis et al. [8]). Given an instance (G, k, (si, ti)i∈[3], V
∞),

there is a deterministic algorithm that runs in time 2O(k2) · nO(1) and outputs a family Z ⊆
2V (G)\V∞ of size 2O(k2) log n such that the following holds. Let W ⊆ V (G) be a thin set of size
at most k and let Y ⊆ V (G) such that for each v ∈ Y , there is an important (v, T)-separator
W ′ ⊆W . For every such pair (W,Y), there exists Z ∈ Z such that Z ∩W = ∅ and Y ⊆ Z.

18

P
j

P
j′

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1 1
11

1

1

1

1 1

1

1

1

1
1

1

1

1

1
1

1

1

1 1 1
1111

1

1

1

1

v

A
t1
s2

s 1
t 1

s 2

t 2

A
t1
2

A
t2
s1

A
s1
2

∈
ξ o

∈
ξ o

∈
ξ e

R
ea
ch
ab

le
fr
om

s 3
!

s(
Q

1
Q

2
)

t(
Q

1
Q

2
)

R
ea
ch
ab
le
fr
om

s 3
.

ξ o
ξ e
-s
oy
b
ea
n

Q
1Q

2

P
j

P
j′

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1 1
11

1

1

1

1 1

1

1

1

1
1

1

1

1

1
1

1

1

1 1 1
1111

1

1

1

1

v

A
t1
s2

s 1
t 1

s 2 t 2

A
t1
2

A
t2
s1

A
s1
2

∈
χ
1

R
ea
ch
es
t 3
.

R
ea
ch
ab

le
fr
om

s 3
!

∈
χ
2

C
on
n
ec
ts

s 3
an
d
t 3

�

t(
Q

3
Q

4
)

s(
Q

3
Q

4
)

χ
1χ

2-
so
yb

ea
n

Q
3Q

4

F
ig
ur
e
3:

T
he

le
ft

pa
rt

sh
ow

s
a
ba

si
c
la
yo

ut
of

th
e
m
at
ri
x

A
d
j(
π

1
,2
j,
j′

).
E
ac
h

ce
ll

m
ig
ht

co
nt
ai
n

m
ul
ti
pl
e

1
en
tr
ie
s,

bu
t
w
e
sh
ow

on
ly

th
e

re
pr
es
en
ta
ti
ve
s
in

th
e
pi
ct
ur
e.

T
he

ve
rt
ex

v
is

m
ar
ke
d

by
a
re
d

ci
rc
le
.

T
he

su
bm

at
ri
ce
s
A
t1

2
,
A
t1
s2
,
A
t2
s1
,
an

d
A
s1

2
ha

ve
a
lig

ht
-g
re
en

ba
ck
gr
ou

nd
.
T
he

in
te
rl
ac
ed

se
ts
ξ o

an
d
ξ e

on
P
j′

ar
e
m
ar
ke
d
in

bl
ue

an
d
or
an

ge
.
O
ne

ξ o
ξ e
-s
oy
be

an
is

de
pi
ct
ed

us
in
g
do

tt
ed

lin
es
.
If

su
ch

a
so
yb

ea
n
do

es
no

t
in
te
rs
ec
t
S
,
w
e
de
ri
ve

th
e
co
nc

lu
si
on

s
st
at
ed

in
re
d.

T
he

ri
gh

t
pa

rt
sh
ow

s
th
e
in
te
rl
ac
ed

se
ts
χ

1
(m

ar
ke
d
or
an

ge
)
an

d
χ

2
(m

ar
ke
d
pu

rp
le
)
on

P
j
.
N
ot
e
th
at

so
m
e
fil
te
ri
ng

st
ep
s
ha

ve
to

ha
pp

en
in

th
e
pr
oo

f,
so

on
ly

ve
rt
ic
es

fo
r
w
hi
ch

w
e
de

ri
ve
d
th
e
co
nc

lu
si
on

(R
ea
ch
ab

le
fr
om

s 3
!)

ar
e
pa

rt
of
χ

1
.
O
ne

χ
1
χ

2
-s
oy
be

an
is

de
pi
ct
ed

us
in
g
do

tt
ed

lin
es
.
If

su
ch

a
χ

1
χ

2
-s
oy
be

an
do

es
no

t
in
te
rs
ec
t
S
,
w
e
de

ri
ve

th
e
co
nc
lu
si
on

s
st
at
ed

in
re
d
an

d,
th
er
ef
or
e,

a
co
nt
ra
di
ct
io
n.

19

The idea is to use Proposition 6.1 to find a family of sets such that at least one of the sets in
this collection contains the reverse and forward shadow of some solution, but does not contain
the corresponding solution. We apply Proposition 6.1 in two steps: first to cover the reverse
shadow of a solution and then to also cover its forward shadow. To apply Proposition 6.1 where
the set W corresponds to some solution and the set Y corresponds to the reverse shadow of W ,
one needs to guarantee that there is a solution W and its reverse shadow Y that satisfies the
properties of Proposition 6.1. In order to prove this, we define shadow-maximal solutions (as
in [9, 8]).

Definition 6.2 (Shadow-maximal solution). Let I = (G, k, (si, ti)i∈[3], V
∞) be an instance of

3-DMC. An inclusion-wise minimal solution S for I is called a shadow-maximal solution if
rG(S) ∪ fG(S) ∪ S is inclusion-wise maximal among all minimal solutions S.

A shadow-maximal solution S is called a best shadow-maximal solution, if it is shadow-
maximal and amongst all shadow-maximal solutions |rG(S)| is maximum.

We now show in Lemmas 6.3 and 6.4 that if W is a best shadow-maximal solution and
Y = rG(W), then W and Y satisfy the properties of Proposition 6.1.

Lemma 6.3. Every minimal solution of the instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC is thin.

Proof. Let W be a minimal solution of the instance (G, k, (si, ti)i∈[3], V
∞). We show that if

v ∈W and v ∈ rG(W ′) for someW ′ ⊆W , thenW \v is also a solution for (G, k, (si, ti)i∈[3], V
∞),

contradicting the minimality of W . Towards this, if W \ v is not a solution, then there exists
an siti-path in G− (W \ v) that contains v. This implies the existence of a vti-path, call it P ,
in G − (W \ v). Since v ∈ rG(W ′), P must contain a vertex of W ′ ⊆ W \ v, which yields a
contradiction.

Lemma 6.4. Let (G, k, (si, ti)i∈[3], V
∞) be an instance of 3-DMC and let S be a shadow-

maximal solution. Then, either for every v ∈ rG(S), there exists Sv ⊆ S such that Sv is
a (v, {t1, t2, t3})-important separator, or there exists another shadow-maximal solution S′ such
that rG(S) ⊂ rG(S′).

Proof. Fix v ∈ rG(S). Then S is a (v, {t1, t2, t3})-separator in G. Let Sv ⊆ S be a minimal
(v, {t1, t2, t3})-separator. If Sv is an important (v, {t1, t2, t3})-separator then we are done. Oth-
erwise there exists a minimal (v, {t1, t2, t3})-separator S′v such that |S′v| ≤ |Sv| and R+

G−Sv(v) ⊂
R+
G−S′v

(v). Let S′ = (S \ Sv) ∪ S′v. Clearly |S′| ≤ |S| since |S′v| ≤ |Sv|. Also, since S′v 6= Sv,
we have S \ S′ 6= ∅. We now show that S′ is a solution such that (rG(S) ∪ fG(S) ∪ S) ⊆
(rG(S′) ∪ fG(S′) ∪ S′) and rG(S) ⊂ rG(S′), which proves the lemma.

Claim 6.5. rG(S) ∪ (S \ S′) ⊆ rG(S′).

Proof. We first show that if x ∈ S \ S′(= Sv \ S′v), then x ∈ rG(S′). Suppose not (that
is x 6∈ rG(S′)). Then there exists an (x, {t1, t2, t3})-path in G − S′. Since Sv is a minimal
(v, {t1, t2, t3})-separator and x ∈ Sv, there exists a (v, {t1, t2, t3})-path that intersects Sv exactly
at x. Let P denote the vx-subpath of this path. Then V (P) \ x ⊆ R+

G−Sv(v). Since S′v is a
(v, {t1, t2, t3})-important separator and x 6∈ S′v, V (P) ⊆ R+

G−S′v
(v). Thus, there is a vx-path in

G− S′. This, together with the (x, {t1, t2, t3})-path in G− S′, implies a (v, {t1, t2, t3})-path in
G− S′. Since S′v ⊆ S′ and S′v is a (v, {t1, t2, t3})-separator, this is not possible.

Now suppose, for the sake of contradiction, that x ∈ rG(S) but x 6∈ rG(S′). Consider an
(x, {t1, t2, t3})-path P in G − S′. Then there exists y ∈ V (P) such that y ∈ S \ S′. From
the claim in the previous paragraph, y ∈ rG(S′). Thus, there exists a vertex of S′ on the
(y, {t1, t2, t3})-subpath of P , which is a contradiction.

20

From Claim 6.5 and since |S \ S′| ≥ 1, rG(S) ⊂ rG(S′). We now show that S′ is a solution
for the instance (G, k, (si, ti)i∈[3], V

∞).

Claim 6.6. S′ is a solution for the instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC.

Proof. For the sake of contradiction, say S′ is not a solution. Then there exists an siti-path in
G− S′ that uses a vertex x ∈ Sv \ S′v. In particular, there exists an xti-path in G− S′, that is
x 6∈ rG(S′). Since Sv \ S′v = S \ S′, from Claim 6.5, x ∈ rG(S′). This is a contradiction.

Claim 6.7. (rG(S) ∪ fG(S) ∪ S) ⊆ (rG(S′) ∪ fG(S′) ∪ S′).

Proof. From Claim 6.5, (rG(S)∪S) ⊆ (rG(S′)∩S′). We now show that for any v ∈ fG(S)\rG(S),
v ∈ f(S′) ∪ rG(S′). Suppose not. Then there exists an siv-path, say P1, and a vtj-path, say
P2, for some i, j ∈ [3], in G − S′. Since v ∈ fG(S), the path P1 contains a vertex x ∈ S \ S′.
From Claim 6.5, x ∈ rG(S′). But the xv-subpath of P1, together with the vtj-path P2 gives an
xtj-path in G− S′, which is a contradiction because x ∈ rG(S′).

From Claims 6.5 and 6.6 and since |S \ S′| ≥ 1, we have shown that S′ has the properties
stated earlier, which contradict that S is a best shadow-maximal solution.

The following lemma, uses Lemmas 6.3 and 6.4 to show that appropriate applications of
Proposition 6.1 result in a family of sets that cover the shadow of some solution.

Lemma 6.8 (Covering the shadow). There is an algorithm that given an instance I = (G, k,
(si, ti)i∈[3], V

∞) of 3-DMC, in time 2O(k2) · nO(1), outputs a collection Z ⊆ 2V (G)\V∞ of size
2O(k2) log2 n, such that if I is a Yes-instance, then there exists a solution S∗ such that there
exists Z ∈ Z for which Z ∩ S∗ = ∅ and rG(S∗) ∪ fG(S∗) ⊆ Z.

Proof. Let X be the family returned by the algorithm of Proposition 6.1 on the instance I.
Suppose I is a Yes-instance. Fix a best shadow-maximal solution S∗ of I. From Lemmas 6.3
and 6.4 follows that the pair of sets (W,Y) = (S∗, rG(S∗) satisfies the properties of the sets in
Proposition 6.1 on input I. Thus, there exists Zr ∈ X such that Zr ∩ S∗ = ∅ and rG(S∗) ⊆ Zr.

Let ~G be the graph obtained from G after reversing all the edges of G. For each Z ∈ X , create
an instance IZ = (~G, k, (ti, si)i∈[3], V

∞
Z), where V∞Z = V∞ ∪ Z. Let YZ be the family returned

by the algorithm of Proposition 6.1 on input IZ . Then output the family Z = {{Z1∪Z2} : Z1 ∈
X , Z2 ∈ YZ1}. We now show that Z is the desired family. The size bound and the running time
follow from Proposition 6.1.

Observe that S∗ is also a solution for IZr . Further observe that for any set S ⊆ V (G), the
forward shadow of S in G, with respect to {s1, s2, s3} is equal to the reverse shadow of S in
~G with respect to {t1, t2, t3}, and the reverse shadow of S in G, with respect to {t1, t2, t3} is
equal to the forward shadow of S in ~G with respect to {s1, s2, s3}. That is, rG(S) = f ~G(S)
and fG(S) = r ~G(S). In particular, S∗ is a shadow-maximal solution of IZr . We now want to
show that the pair (W,Y) = (S∗, r ~G(S∗)) satisfies the properties of Proposition 6.1 on input
IZr . Towards this we prove the following claim.

Claim 6.9. For each v ∈ r ~G(S∗), there exists an Sv ⊆ S∗ that is a (v, {s1, s2, s3})-important
separator in ~G.

Proof. Suppose the claim does not hold. Then, by Lemma 6.4, there exists a shadow-maximal
solution S′ of IZr such that r ~G(S∗) ⊂ r ~G(S′). Since S∗ is also a shadow-maximal solution
of IZr , we conclude that (r ~G(S∗) ∪ f ~G(S∗) ∪ S∗) = (r ~G(S′) ∪ f ~G(S′) ∪ S′). In particular,
S′ \S∗ ⊆ (r ~G(S∗)∪ f ~G(S∗)∪S∗). That is, for any v ∈ S∗ \S′, either v ∈ r ~G(S∗) or v ∈ f ~G(S∗).

Since f ~G(S∗) = rG(S∗) ⊆ Zr ⊆ V∞Zr and S∗ is a solution of IZr , S∗ ∩ f ~G(S∗) = ∅. If
v ∈ r ~G(S∗), then, since r ~G(S∗) ⊂ r ~G(S′), v ∈ r ~G(S′). This is a contradiction as v ∈ S′ \S∗.

21

Thus from Claim 6.9 and Lemma 6.3 follows that the pair (W,Y) = (S∗, r ~G(S∗)) satisfies
the properties of Proposition 6.1 on input IZr . Thus, there exists Z f ∈ YZr such that Z f∩S∗ = ∅
and fG(S∗) ⊆ Z f. Let Z∗ = Zr ∪ Z f. Then from the above arguments Z∗ ∩ S∗ = ∅ and
(rG(S∗) ∪ fG(S∗)) ⊆ Z∗. Also Z∗ ∈ Z.

Finally we use Lemma 6.8 to prove Theorem 2.2.

Theorem 2.2. Given an instance (G, k, (si, ti)i∈[3], V
∞) of 3-DMC, there is an algorithm that

runs in time 2O(k2 log k)nO(1), and outputs a family Z of subsets of V (G) \ V∞ such that |Z| =
2O(k2 log k) log2 n and, if the input instance is a Yes-instance, then there exists Z ∈ Z such that
(G′, k, (si, ti)i∈[3], V

∞ \ Z) is a Yes-instance that admits a shadowless solution of cardinality at
most k, where G′ is the result of bypassing Z in G.

Proof. Given an instance (G, k, (si, ti)i∈[3],V∞), let Z be the collection returned by Lemma 6.8.
From Lemma 6.8, if I is a Yes-instance, then there exists a solution S and Z ∈ Z such
that Z ∩ S = ∅ and (rG(S) ∪ fG(S)) ⊆ Z. Let G′ be obtained from G by bypassing Z.
From Lemma 2.1, S is also a solution of (G′, k, (si, ti)i∈[3], V

∞ \ Z). We now show that is S
is a shadowless solution of (G′, k, (si, ti)i∈[3],V∞), that is rG′(S) = fG′(S) = ∅. For the sake
of contradiction, say rG′(S) 6= ∅. Let x ∈ rG′(S). In particular, x ∈ V (G′) = V (G) \ Z.
Since x ∈ rG′(S), G′ − S has no (x, {t1, t2, t3})-path. From Lemma 2.1, G − S also has no
(x, {t1, t2, t3})-path, which implies that x ∈ rG(S). This is a contradiction, since then x ∈ Z
and hence x 6∈ V (G′).

7 Harvesting soybeans

This section is devoted to the proof of Theorem 2.7. The proof revisits the whole proof of flow-
augmentation of [15] (recalled below as Theorem 7.1) and extracts the additional information
along the way. Furthermore, we need to slightly revise the behavior of the algorithm in the base
case to ensure the desired properties. This section assumes that the reader is familiar with the
proof of Theorem 7.1 from [15].

7.1 Back to the edge-deletion regime

Since flow-augmentation in [15] is defined on edge-cuts, but Theorem 2.7 is in the vertex-deletion
regime, we first go back to the edge-deletion regime. We need a few more definitions that closely
follow [15].

In the edge-deletion regime, the edges of G can be deletable or undeletable. An (edge-based)
st-flow, in this context, is a collection of st-paths that do not share a deletable edge and an
st-cut is a set of deletable edges that intersects all st-paths. It is always clear from the context
whether we speak about the vertex- or the edge-deletion regime, and hence we reuse names like
st-flow or st-mincut or the notation λG(s, t) for both regimes.

An st-cut Z is a star st-cut if for every (u, v) ∈ Z in the graph G−Z there is a path from s
to u but there is no path from s to v; observe that every minimal st-cut is a star st-cut. For a
star st-cut Z in G, by coreG(Z) ⊆ Z we denote the set of arcs (u, v) ∈ Z such that there exists
a path from v to t in G− Z.

Being compatible is slightly more complicated for star cuts: a set of arcs A ⊆ V (G)× V (G)
is compatible with a star st-cut Z if the set of vertices reachable from s in G−Z and (G+A)−Z
is the same. We also need the notion of a witnessing flow: for a star st-cut Z in G, if core(Z) is
an st-mincut, then an st-maxflow P is a witnessing flow if E(P)∩Z = core(Z). The pair (A,P)
is compatible with Z if A is compatible with Z, coreG+A(Z) is an st-mincut in G+A, and P is
a witnessing flow for Z in G+A. Note that if Z is a minimal st-cut, and A is compatible with

22

Z, then any st-maxflow in G+A is a witnessing flow for Z, but if Z is a star st-cut, the notion
of a witnessing flow is more intricate.

The flow-augmentation technique is represented by the following statement.

Theorem 7.1 (Kim et al. [15]). There exists a polynomial-time algorithm that, given a directed
graph G, vertices s, t ∈ V (G), and an integer k, returns a set A ⊆ V (G) × V (G) and an
st-maxflow P in G + A such that for every star st-cut Z of size at most k, with probability
2−O(k4 log k) the pair (A,P) is compatible with Z.

Most of this section is devoted to the proof of the following edge-deletion variant of Theo-
rem 2.7.

Theorem 7.2. There exist computable functions c : N → N and q : N ×N → N such that the
following holds.

There exists a polynomial-time randomized algorithm that, given a directed graph G, vertices
s, t ∈ V (G), and an integer k, returns a set A ⊆ V (G)× V (G) and an st-maxflow P̂ in G+ A
such that for every star st-cut Z of size at most k, with probability 2−O(k4 log k), the pair (A, P̂)
is compatible with Z.

Additionally, the algorithm returns a partition B of the deletable edges of
⋃
P∈P̂ E(P) into

at most c(k) sets such that for every P ∈ P̂, every integer p ∈ N, every B ∈ B and every two
disjoint sets C,D of size at least q(k, p), consisting of edges of B ∩ E(P) that are interlaced on
P , the graph G contains a family of p pairwise vertex-disjoint CD-soybeans.

Finally, one can take c and q such that c(k) = 2O(k3 log k) and q(k, p) = 2O(k3 log(kp)).

Observe that if P ∩A = ∅, that is, P does not contain any augmentation edge, then one can
simply enumerate C = {c1, . . . , cq} and D = {d1, . . . , dq} for q = q(k, p) along the path P , define
Pi to be the subpath of P from ci to di, and use soybeans {P2iP2i | 1 ≤ i ≤ q/2}. (We skip
every second such soybean in order to make them vertex-disjoint.) However, when P contains
augmentation edges, the situation is more complex, as a soybean cannot use them.

We now formally show that Theorem 7.2 implies Theorem 2.7, restated below:

Theorem 2.7. There exist computable functions c : N → N and q : N ×N → N such that the
following holds.

There exists a polynomial-time randomized algorithm that, given a directed graph G (with
possibly some vertices marked as undeletable), vertices s, t ∈ V (G), and an integer k, returns an
arc set A ⊆ V (G)×V (G) and an st-maxflow P̂ in G+A such that for every minimal st-separator
Z of size at most k, with probability 2−O(k4 log k), the tuple (A, P̂) is compatible with Z.

Additionally, the algorithm returns a partition B of the deletable vertices of
⋃
P∈P̂ V (P) into

at most c(k) sets such that for every P ∈ P̂, every integer p ∈ N, every B ∈ B and every two
disjoint sets C,D of size at least q(k, p), consisting of vertices of B ∩ V (P) that are interlaced
on P , the graph G contains a family of p pairwise vertex-disjoint CD-soybeans.

Finally, one can take c and q such that c(k) = 2O(k3 log k) and q(k, p) = 2O(k3 log(kp)).

Proof. We construct a new graph G′ as follows. For each vertex v ∈ V (G), graph G′ contains two
vertices v1 and v2 and a deletable arc (v1, v2); we call these arcs important. If v is undeletable
or if v = s or v = t, then the arc (v1, v2) is undeletable instead. For each arc (u, v) ∈ A(G),
graph G′ contains an undeletable arc (u2, v1).

We apply Theorem 7.2 to G′, s2, t1, and k, obtaining an arc set A′, an edge-based s2t1-
maxflow P ′ in G′ +A′, and a partition B′ of deletable arcs of P ′.

We now perform the following cleanup step of A′ and P ′. First, for every x, y ∈ V (G′) such
there is a path from x to y in G′ + A′ that uses undeletable arcs only (recall that every arc of
A′ is considered undeletable), we add an undeletable arc (x, y) to A′ if it is not present already

23

in G′+A′. Second, for every P ′ ∈ P ′ and every maximal subpath Q of P ′ that uses undeletable
arcs only and is of length at least 2, we replace Q with only an arc (s(Q), t(Q)) (which is now in
G′ + A′ due to the previous step). Finally, we restrict A′ to contain only arcs that are present
on some flow path in P ′.

Observe that the first step does not change the space of s2t1-cuts in G′ + A′ (as any newly
added arc (x, y) cannot lead from the s-side to the t-side of any s2t1-cut in G′ + A′ due to the
assumed path of undeletable edges from x to y) while P ′ remains an s2t1-maxflow in G′ + A′

throughout the process (as we only reroute the paths through undeletable arcs) and every path
P ′ ∈ P ′ still visits the same deletable arcs, in the same order (so the properties of B′ are
unharmed). The deletion of arcs in A′ in the last step only extends the space of s2t1-cuts in
G′ + A′, so if (A′,P ′) was compatible with some s2t1-cut Z before the process, then it is also
compatible after the process. Furthermore, as the only deletable arcs in G′+A′ are the important
arcs, in the end we have the following property: every (x, y) ∈ A′ is of the form (x, y) = (u2, v1)
for some u, v ∈ V (G).

The above discussion implies that we can obtain the desired result (A,P,B) in the natural
manner: for every (x, y) = (u2, v1) ∈ A′, we add (u, v) to A, for every P ′ ∈ P ′ we add to P a
path P being the path P ′ with all important edges on it contracted, and for every B′ ∈ B′ we
add to B the set B = {v | (v1, v2) ∈ B′}.

Thus, it remains to prove Theorem 7.2. This proof spans the rest of this section.

7.2 Initial setup

The algorithm of Theorem 7.1 first filters out some trivial cases in which A = ∅ can be returned.
In these cases one can take B to be a singleton and construct the desired soybeans as in the
comment after the statement of Theorem 7.2. After treating these trivial cases, the algorithm
of Theorem 7.1 invokes a recursive subroutine.

The recursion has depth strictly less than hmax(k) = O(k3). The input to the recursive call
consists of a graph G with distinguished vertices s, t ∈ V (G), an integer k, an st-flow P, and an
integer κ. The output is a set A ⊆ V (G)×V (G) and an st-maxflow P̂ such that λG+A(s, t) ≥ κ
and for every star st-cut Z with |Z| ≤ k and |core(Z)| ≥ κ, (A, P̂) is compatible with Z with
high probability.

An important insight about the structure of the recursion is that for every recursive call ρ
on a graph G the following holds: For every subcall on a graph G′, G′ − {s, t} is a subgraph of
G − {s, t}. Furthermore, the graphs G′ − {s, t} over all recursive subcalls are pairwise vertex-
disjoint (as subgraphs of G).

Constructing B. Let (A, P̂) be the output of the algorithm of Theorem 7.1 and consider
P ∈ P̂. (We separately partition the deletable edges of E(P) into sets of B, so that every B ∈ B
is contained in E(P) for one P ∈ P̂.) If present, we put at most two deletable edges of E(P)
that are incident with s or t into separate singleton sets of B and do not worry about them
further.

For every vertex v ∈ V (G), we can consider all recursive calls on graphs G′ that contain v.
By the previous observation on the structure of the recursion, these calls form an upward path
in the recursion tree. For every call ρ′ in the recursion whose parent ρ corresponds to the “large
`” case, we assign to e a local signature as follows. The recursive call is applied to a graph Gα

for some α such that Gα − {s, t} is a subgraph of G between the st-mincuts Cbα←−1 and Cbα→+λ,
the edges incident to s and t in Gα correspond to the edges of the two said mincuts, and every
vertex in Gα is reachable from s and reaches t. Pick a path Q1 from s to v in Gα and let i1
be the index of the path of the flow P in the parent call ρ that contains the edge of Cbα←−1

corresponding to the first edge of Q1. Pick a path Q2 from v to t in Gα and let i2 be the index of

24

the path of the flow P in the parent call ρ that contains the edge of Cbα→+λ corresponding to the
last edge of Q2. Then (i1, i2) is the local signature of v at ρ′. The signature of v is the sequence
of all local signatures of v, in the top-to-bottom order in the recursion tree. The signature of
an edge e is the pair consisting of the signatures of its endpoints. Finally, we define B as the
partition of the deletable edges of P̂ according to the path of P̂ they belong to and according
to their signatures. Since there are 2O(hmax(k) log k) = 2O(k3 log k) signatures, |B| ≤ 2O(k3 log k).

Let fp(x) = 1 + 2px, q0(p) = 2p, qi+1(p) = fp(qi(p)) for 0 ≤ i < hmax(k), and q(k, p) =
qhmax(k)(p); recall that hmax(k) = O(k3) is the maximum possible depth of the recursion for a
fixed value of k. We have q(k, p) = 2O(k3 log(kp)). We prove, by the bottom-to-top induction
over the recursion tree, that if the recursive call ρ at depth i applied to a tuple (G, s, t, k,P, κ)
returned (A, P̂), P ∈ P̂, and C and D are two disjoint sets of size qh−i(p) consisting of deletable
edges of E(P) of the same signature that are interlaced on P , then G−{s, t} contains a family of
p pairwise vertex-disjoint CD-soybeans. Here h ≤ hmax(k) is the actual depth of the recursion.

In the subsequent paragraphs we consider different cases the algorithm of Theorem 7.1 can
enter and in each of them prove the desired claim.

7.3 Initial steps

We first investigate the initial preprocessing steps.
These can be split into two types. The first type are leaves of the recursion: when λG(s, t) = 0

and when λ > k. In the first case, the algorithm returns A = ∅ and P̂ = ∅, so there is nothing to
prove. In the second case, the algorithm returns A = {(s, t)} and P̂ consisting of a single path
P along the edge of A, and again there is nothing to prove.

The second type of steps invoke one recursive call ρ′ on a modified graph G′, obtaining
(A′, P̂ ′). Recall that in all cases, G′ − {s, t} is a subgraph of G− {s, t}. The algorithm returns
(A, P̂) that is constructed from (A′, P̂ ′) by setting A to be A′ plus at most 2λ + 1 ≤ 2k + 1
additional edges, all incident with s or t, and P̂ to be P̂ ′ with possibly one additional one-edge
path. The claim is again straightforward as qh−i−1(k, p) ≤ qh−i(k, p) and the requested soybeans
cannot use vertices s nor t.

7.4 Base case

In the base case of the algorithm, P is an st-maxflow and for every i 6= j, i, j ∈ [λ], there is no
path from V (Pi) to V (Pj) in G − {s, t}. This is a place where we need to slightly modify the
behavior of the algorithm of Theorem 7.1.

Let B be the set of all bottleneck edges. For every i ∈ [λ], let (ui,1, vi,1), . . . , (uai , vai) be the
bottleneck edges on Pi, in the order along Pi. Denote vi,0 = s and ui,ai+1 = t. For i ∈ [λ] and
0 ≤ b ≤ ai, let Gi,b be the subgraph of G induced by all vertices that are reachable from vi,b and
from where ui,b+1 is reachable in G − B. Let Gi = {(ui,b, vi,b | 1 ≤ b ≤ ai} ∪

⋃au
b=0Gi,b. Note

that the graphs Gi intersect only in vertices s and t and λGi(s, t) = 1.
For a star st-cut Z of size at most k, let Zi = Z∩E(Gi). The analysis of the base case shows

that Zi is a star st-cut in Gi and coreG(Z) =
⋃
i∈[λ] coreGi(Zi). Furthermore, either coreGi(Zi)

consists of a single bottleneck edge and Zi contains no other bottleneck edge on Pi, or Zi does
not contain any bottleneck edge of Pi at all.

For every i ∈ [λ], we proceed as follows. We guess integers 1 ≤ κi ≤ ki ≤ k such that∑
i∈[λ] κi ≥ κ and

∑
i∈[λ] ki ≤ k. We aim at ki = |Zi| and κi = |coreGi(Zi)|. This happens in

total with probability 2−O(k log k).
If κi = 1, we aim at capturing star st-cuts Zi with coreGi(Zi) consisting of a single bottle-

neck edge. We set Ai = {(vi,b, ui,b+1) | 0 ≤ b ≤ ai} and P ′i to be a path consisting of edges

25

(s, ui,1), (ui,1, vi,1), (vi,1, ui,2), . . . , (ui,ai , vi,ai), (vi,ai , t). The algorithm returns Ai as part of the
set A and P ′i as one of the flow paths in P̂.

For our desired claim, observe that the deletable edges on P ′i are only bottleneck edges.
Thus, given C and D interlaced on P ′i , each of size at least q0(k, p) = 2p, one can construct the
desired soybeans as follows: If c1, c2, . . . , c2p and d1, d2, . . . , d2p are the first 2p edges of C and
D, respectively, and Pi,j is the subpath of Pi from c2j to d2j , then {Pi,jPi,j | j ∈ [p]} is the
desired family of soybeans. So we can put the whole Ai as a single set in B.

If κi > 1, we aim at capturing star st-cuts Zi that do not contain any bottleneck edge on Pi.
Let A◦i be the set of copies of all bottleneck edges on Pi. For every 0 ≤ b ≤ ai, we recurse on
Gi,b with vi,b playing the role of s and ui,b+1 playing the role of t, parameters ki, κi, and a flow
consisting of a single flow path Pi from vi,b to ui,b+1. Let (Ai,b, P̂i,b) be the returned pair. The
returned set A consists of, for every i ∈ [λ], the set Ai = A◦i ∪

⋃ai
b=0Ai,b. The returned set P̂

consists of, for every i ∈ [λ], κi flow paths, combined from flow paths P̂i,b (recall that each P̂i,b
is of size at least κi) concatenated using edges of A◦i .

For our desired claim, consider a returned path P ∈ P̂ and interlaced sets C,D of qh−i(k, p)
deletable edges on P . We have two cases. First, there exists an integer 0 ≤ b ≤ ai such that
Gi,b contains at least qh−i−1(k, p) + 1 edges of C. Then, the path of P̂i,b used to construct P
contains interlaced subsets of C and D of size qh−i−1(k, p). The claim follows from the inductive
hypothesis for the recursive call on Gi,b.

In the second case, there are at least 2p + 1 indices b such that Gi,b contains an edge of C.
Consequently, there are indices b1 ≤ b′1 < b2 ≤ b′2 < b3 ≤ b′3 < . . . < bp ≤ b′p such that for every
j ∈ [p], Gi,bj contains an edge of C and Gi,b′j contains an edge of D. For j ∈ [p], let Qj be a
path from vj,bj to uj,b′j+1 containing an edge of C from Gi,bj and let Q′j be a path from vj,bj to
uj,b′j+1 containing an edge of D from Gi,b′j . Such paths exist by the construction of the graphs
Gi,b. Then, {QjQ′j | j ∈ [p]} is the desired soybean harvest.

7.5 Small ` case

In the small ` case the situation is very similar to the second type of initial steps.
The algorithm always invokes one recursive call, on a graph G′ such that G′ − {s, t} is a

subgraph of G − {s, t}, obtaining (A′, P̂ ′). The returned set A consists of A′ and additional
edges A0 with |A0| ≤ 4λ`big + 2 ≤ 16k3 + 14, all incident with s or t. The returned flow P̂
consists of the paths P̂ ′, possibly with an edge of A0 added at the beginning or end, and possibly
one additional path that contains at most one deletable edge.

Thus, the claim follows directly from the inductive hypothesis for the recursive subcall.

7.6 Large ` case

In the large ` case the situation is quite similar to the base case, but a bit more complex. Let
(G, s, t, k,P, κ) be the input to the recursive call in question.

The algorithm recurses on graphs Gα for all excellent indices α, obtaining pairs (Aα, P̂α)
Observe that in the returned flow P̂, the only deletable edges are those in graphs Gα on paths
P̂α. Fix P ∈ P̂; the path P consists of edges of A and some flow paths from flows P̂α. Assume
that we have interlaced sets C,D of deletable edges on P of the same signature, each of size
qh−i(k, p).

As in the base case, there are two cases. First, there exists α such that C contains at least
qh−i−1(k, p) + 1 edges in Gα. Then, the flowpath P ′ ∈ P̂α contained in P contains interlaced
subsets C ′, D′ of C and D of size qh−i−1(k, p) each. The claim follows from the inductive
hypothesis.

26

In the second case, there are at least 2p+ 1 indices α for which there is an edge of C in Gα.
Thus, there are indices α1 ≤ α′1 < α2 ≤ α′2 < α3 ≤ α′3 < . . . < αp ≤ α′p such that for every
j ∈ [p], there is an edge cj of C in Gαj and an edge dj of D in Gα

′
j .

Recall that all edges of C and D are of the same signature. That is, there are two paths
P 1, P 2 ∈ P such that, for edge e ∈ C∪D, if e lies in Gα then there is a walkW (e) in G from the
head of the edge of E(P 1)∩Cbα←−1 to the tail of the edge of E(P 2)∩Cbα→+λ that contains e and
is completely contained between Cbα←−1 and Cbα→+λ. For every j ∈ [p], letWj be a concatenation
of W (cj) and a subpath of P 2 from the tail of the edge of E(P 2) ∩ C

b
αj
→+λ

to the tail of the
edge of E(P 2)∩C

b
α′
j
→+λ

and let W ′j be a concatenation of and a subpath of P 1 from the head of

the edge of E(P 1) ∩C
b
αj
←−1

to the head of the edge of E(P 1) ∩C
b
α′
j
←−1

and W (dj). (Recall that

αj ≤ α′j .) Then, {WjW
′
j | j ∈ [p]} is the desired soybean family.

8 Two-terminal-pair Weighted Directed Multicut is W[1]-
hard

In the Weighted Directed Multicut problem, the input is a directed graph G, a set
of terminal pairs {(si, ti) : i ∈ [p]}, a weight function on the vertex set wt : V (G) → N and
positive integers k and W . For a subset S ⊆ V (G) we define wt(S) :=

∑
v∈S wt(v). The goal

is to determine whether there exists a set S ⊆ V (G) such that |S| ≤ k, wt(S) ≤ W and G− S
has no siti-path for each i ∈ [p]. In this section, we show that Weighted Directed Multi-
cut is W[1]-hard parameterized by k, even with two terminal-pairs (that is when p = 2). In
fact, we show that it does not admit an f(k) · no(k/ log k) algorithm under the ETH. We denote
this problem with two terminal pairs by 2-Wt-DMC. The hardness proof we provide is essen-
tially a simplification of the reduction given by Pilipczuk and Wahlström [25] for proving the
W[1]-hardness of the Directed Multicut problem with four terminal-pairs. Our reduction es-
sentially demonstrates that the synchronization of some gadgets achieved in the reduction in [25]
using two additional terminal-pairs can also be achieved if the vertices are allowed polynomial
(in the input size) weights. This helps us to eliminate two terminal-pairs in the reduction of [25]
at the cost of adding polynomial weights.

Theorem 8.1. Weighted Directed Multicut is W[1]-hard even for two terminal pairs.
Furthermore, assuming the ETH, the problem cannot be solved in f(k) · no(k/ log k) time, where n
is the number of vertices of the input graph.

To prove Theorem 8.1, we give a reduction from Partitioned Subgraph Isomorphism
(PSI), parameterized by the number of edges in the pattern graph. In the Partitioned Sub-
graph Isomorphism problem, given two undirected graphsG,H such that V (G) =

⊎
i∈V (H) V

i,
the goal is to determine if there exists a homomorphism ξ : V (H)→ V (G) such that ξ(i) ∈ V i

for each i ∈ V (H). This problem has been shown to be W[1]-hard parameterized by |E(H)| by
Marx [22, Corollary 6.3]. In fact, the authors show that there is no f(k) · no(k/ log k) algorithm
for PSI, where k = |E(H)| and n is the number of vertices in the input graph, unless the ETH
fails.

Proof of Theorem 8.1. Let (G,H) be an instance of PSI where V (G) =
⊎
i∈V (H) V

i. Without
loss of generality, let V (H) = {1, . . . , h}, let |V i| = |V j | = n for each i, j ∈ V (H) and assume
that H has no isolated vertices. Let V i = {vi1, . . . , vin}. Let k = |E(H)|, then |V (H)| ≤ 2k
since H has no isolated vertices. We now construct an instance (D, (si, ti)i∈[2], wt, k′,W) of
2-Wt-DMC. Set k′ = 5k + h and W = M(2k(n+ 1) + h) + k, where M = k + 1.

27

xj,i0 xj,i1 xj,ib xj,inx̂j,i1 x̂j,ib x̂j,in

xi,j0

xi,j1

xi,ja

xi,jn

x̂i,j1

x̂i,ja

x̂i,jn

yi,j0

yi,j1

yi,ja

yi,jn

ŷi,j1

ŷi,ja

ŷi,jn

yj,i0 yj,i1 yj,ib yj,inŷj,i0 ŷj,ib ŷj,in

pi,ja,b

s2

t1

s1

t2

Figure 4: An illustration of the construction of the paths Xi,j , Y i,j , Xj,i, Y j,i and the grid P i,j ,
where i < j and n = 5. The brown vertices whose labels have subscript a have weight Ma. The
green vertices whose labels have subscript a have weight M(n+ 1− a). The black vertices have
weight 1 and the white vertices are undeletable. The red, and the blue, highlighted paths are
the s1t1-path, and s2t2-path respectively, that survive after deleting the solution vertices from
Xi,j , Y i,j , Xj,i and Y j,i. The unique common intersection point of the two highlighted paths is
pi,ja,b, which is picked by the solution. The vertices picked by the solution are encircled in red.

28

xi,j0 xi,jnx̂i,j1 x̂i,ja x̂i,jn

zi0 zin

ẑi1 ẑia ẑin

yi,j0 yi,jnŷi,j0 ŷi,ja ŷi,jn

t1 s1

Figure 5: The paths Xi,j , Zi and Y i,j are shown. If the index of a vertex is a, then its weight
is M if it the vertex is blue, Ma if the vertex is brown, M(n+ 1− a) if the vertex is green and
W+1 otherwise. This gadget together with the definition of the target weightW of the solution,
ensures that a solution picks exactly one vertex from each of the three paths. Moreover, the
three vertices chosen from these three paths have the same index.

Construction of D: For each i ∈ V (H), let Zi be the path (zin, ẑ
i
n, z

i
n−1, ẑ

i
n−1, . . . , z

i
1, ẑ

i
1, z

i
0)

on 2n+1 vertices. These paths are called the Z-paths and are added to D. For each ordered pair
(i, j) ∈ V (H)×V (H), such that {i, j} ∈ E(H), letXi,j = (xi,jn , x̂

i,j
n , x

i,j
n−1, x̂

i,j
n−1, . . . , x

i,j
1 , x̂i,j1 , xi,j0)

and Y i,j = (yi,jn , ŷ
i,j
n , y

i,j
n−1, ŷ

i,j
n−1, . . . , y

i,j
1 , ŷi,j1 , yi,j0) be paths on 2n+ 1 vertices each. These paths

are called X-paths and Y-paths, respectively, and are also added to D. For each a ∈ {0, . . . , n},
set wt(zia) = wt(xi,ja) = wt(yi,ja) = W + 1, that is, these vertices are undeletable. Further set
wt(ẑia) = M , wt(x̂i,ja) = Ma and wt(ŷi,ja) = M(n + 1 − a). Observe that wt(x̂i,ja) + wt(ŷi,ja) =
M(n+ 1).

Next, we describe the gadget that synchronizes the vertices that a solution for 2-Wt-
DMC picks from the X-, Y- and Z-paths. For each ordered pair (i, j) ∈ V (H) × V (H) such
that {i, j} ∈ E(H), and for every a ∈ {0, 1, . . . , n}, we add the edges (xi,ja , zia) and (zia, y

i,j
a)

to D (see Figure 5 for an illustration). Further we add two terminal-pairs (s1, t1) and (s2, t2)
together with the following incident edges. For each {i, j} ∈ E(H), such that i < j, the
edges (s1, x

i,j
n), (xi,j0 , t1), (s1, y

i,j
n), (yi,j0 , t1) are added to D. Further the edges (s2, x

j,i
n), (xj,i0 , t2),

(s2, y
j,i
n), (yj,i0 , t2) are added to D. The edges described here ensure that for each (i, j) ∈

V (H) × V (H) such that (i, j) ∈ E(H), there exists an a ∈ {0, 1, . . . , n} such that the solu-
tion for 2-Wt-DMC picks ẑia, x̂

i,j
a , and ŷi,ja

The next gadget ensures that vertices of the 2-Wt-DMC solution in the paths described
above are the map of a valid homomorphism. For every edge {i, j} ∈ E(H) such that i < j, we
add a grid P i,j on the vertex set {pi,ja,b | a, b ∈ {1, . . . , n}} to D. The edge set contains the column
edges {(pi,ja,b, p

i,j
a+1,b) | a ∈ {1, . . . , n − 1}, b ∈ {1, . . . , n}}, and the row edges {(pi,ja,b, p

i,j
a,b+1) | a ∈

{1, . . . , n}, b ∈ {1, . . . , n − 1}}. The weight function of the vertices of this grid is defined as
follows: wt(pi,ja,b) = 1 if (via, v

i
b) ∈ E(G), and wt(pi,ja,b) = W otherwise.

Further we add edges to D connecting the paths Xi,j , Y i,j , Xj,i and Y j,i to P i,j . For every
a ∈ {1, . . . , n}, the following edges are added: (xi,ja , p

i,j
a,1), (pi,ja,n, y

i,j
a−1), (xj,ia , p

i,j
1,a), and (pi,jn,a, y

j,i
a−1).

This finishes the construction of D. See Figure 4 for an illustration of the construction.
We next show that (G,H) is a Yes-instance of PSI if and only if (D, k′, (si, ti)i∈[2], wt,W)

is a Yes-instance of 2-Wt-DMC.

Forward direction. Let φ : V (H) → {1, . . . , n} be a solution to the PSI-instance (G,H),
that is for every {i, j} ∈ E(H), we have (viφ(i), v

j
φ(j)) ∈ E(G). We choose S := {x̂i,jφ(i), ŷ

i,j
φ(i) :

(i, j) ∈ V (H) × V (H) and {i, j} ∈ E(H)} ∪ {ẑiφ(i) : i ∈ V (H)} ∪ {pi,jφ(i),φ(j) : (i, j) ∈ V (H) ×
V (H) and {i, j} ∈ E(H), i < j} and claim that it is a solution to the constructed 2-Wt-DMC-
instance (D, k′, (si, ti)i∈[2], wt,W). Observe that the set S contains a vertex from Zi, Xi,j , Y i,j

and the grid P i,j for every (i, j) ∈ V (H) × V (H) with {i, j} ∈ E(H). Further observe that

29

|S| = 5k + h and wt(S) = M(2k(n + 1) + h) + k since the weight of the vertices on the X- and
Y-paths in S is 2kM(n+ 1), the weight of the vertices of Z-paths in S is Mh and the weight of
the grid vertices in S is k.

We claim that D − S has no s1t1-path and no s2t2-path. Here, we show that D − S has no
s1t1-path. That there is also no s2t2-path follows by symmetric arguments. Observe from the
construction that every (s1, t1) path contains xi,jn or yi,jn , for some i, j, as its first internal vertex.
There are four kinds of s1t1-paths in D. The first one traverses Xi,j fully until xi,j0 (which is an
in-neighbour of t1). The second one traverses Y i,j fully. Both, paths of the first and the second
kind, are hit by S as S contains a vertex from Xi,j and a vertex from Y i,j .

The third kind of s1t1-path traverses some subpath of Xi,j , say until the vertex xi,ja , jumps
to Zi at vertex zia, traverses Zi until say zib where b ≤ a, jumps to Y i,j at vertex yi,jb , and then
traverses Y i,j until yi,j0 . Since x̂i,jφ(i), ŷ

i,j
φ(i), ẑ

i
φ(i) ∈ S, if such a path exists then a ≥ φ(i) and

b ≤ φ(i), thus the yi,jb y
i,j
0 -subpath of Y i,j traversed by such an s1, t1-path contains a vertex of

S, namely ŷi,jφ(i).

The last kind of s1, t1-path passes through the grid Pi,j . Such a path traverses Xi,j until xi,ja ,
jumps to the first column of the grid at the vertex pi,ja,1, traverses the grid P i,j to get to a vertex
pi,jb,n (there are potentially many ways to reach this vertex inside the grid), for some b ≥ a, then
jumps to Y i,j at the vertex yi,jb−1, and then traverses Y i,j until yi,j0 . Since x̂i,jφ(i) ∈ S, if a < φ(i),

the path is hit by S. Since ŷi,jφ(i) ∈ S, if φ(i) < b, the path is hit by S. Otherwise a = b = φ(i). In

this case the s1t1-path under consideration uses exactly the vertices of the pi,jφ(i),ip
i,j
φ(i),n-subpath

of the grid. Since pi,jφ(i),φ(j) ∈ S, this kind of s1t1-path is again hit by S.
Thus, S is a solution of the 2-Wt-DMC-instance (D, k′, (si, ti)i∈[2], wt,W).

Reverse direction. Let S ⊆ V (D) be a solution for the 2-Wt-DMC-instance (D, k′, (si, ti)i∈[2],
wt,W,). We construct a function φ : V (H) → {1, . . . , n} such that for each {i, j} ∈ E(H),
(viφ(i), v

j
φ(j)) ∈ E(G).

Note that, since for every path Xi,j and for every path Y i,j , there is an s1t1-path or an
s2t2-path containing only this path, S contains at least one vertex from each Xi,j and each Y i,j .
Also, since the vertices xi,jn and yi,j0 are undeletable, the set S contains a deletable vertex of
Zi, as otherwise there is an s1t1-path or an s2t2-path starting from xi,jn and then jumping to
the path Zi at the vertex zin, traversing the path Zi until zi0, then jumping to yi,j0 (which is an
in-neighbour of t1).

Fix (i, j) ∈ V (H) × V (H) such that {i, j} ∈ E(H) and i < j. The case when j > i is
symmetric. We eventually show that S intersects Xi,j , Y i,j and Zi, each at exactly one vertex.
Towards this, let a ∈ {1, . . . , n} be the largest index such that x̂i,ja ∈ S, and let b ∈ {1, . . . , n} be
the smallest index such that ŷi,jb ∈ S. We first claim that a ≥ b. Suppose a < b, then consider
the following s1t1-path in G − S. The path first visits xi,jn , traverses Xi,j until reaching xi,ja
(note that none of the vertices on this subpath belong to S so far, either due to the choice of a
or because they are undeletable), jumps to zia (note that this vertex is undeletable), and then
jumps to yi,ja and finally traverses Y i,j until reaching yi,j0 (again, none of the vertices of this
subpath belongs to S either due to the choice of b or because they are undeletable). This is a
contradiction to the fact that S is a solution.

From the above paragraph, wt(S)∩ (Xi,j ∪Y i,j) ≥M ·a+M · (n+1− b) ≥M · (n+1). Note
that if a > b, then wt(S) ∩ (Xi,j ∪ Y i,j) > M · (n+ 1) +M . Thus, if S picks exactly one vertex
from each X-, Y- and Z-paths, then the weight of S restricted to the vertices in these paths is
4kM · (n+ 1) +Mh. Since the total weight of S is 4kM · (n+ 1) +Mh+ k, and the weight of
each vertex on the paths Xi,j , Y i,j or Zi is at least M = k+ 1, we conclude that S indeed picks

30

exactly one vertex from each of the X-, Y- and Z-paths. Moreover, a = b. That is, S ∩Xi,j = x̂i,ja
and S ∩ Y i,j = ŷi,ja .

We now show that S∩Zi = ẑia. Suppose not, then consider the following s1t1-path in G−S.
It first visits xi,jn , traverses Xi,j until reaching xi,ja , jumps to Zi at the vertex zia, traverses Zi

until reaching zia−1 (note that the only deletable vertex on this subpath is ẑia, which by our
assumption is not in S), jumps to the path Y i,j at the vertex yi,ja−1, and then traverses Y i,j until
reaching yi,j0 . Again, this yields a contradiction to S being a solution.

So far, we have concluded that S intersects each of the paths Xi,j , Y i,j and Zi in exactly
one vertex. In fact, there exists a ∈ {1, . . . , n} such that S ∩ Xi,j = x̂i,ja , S ∩ Y i,j = ŷi,ja and
S ∩ Zi = ẑia. Hence, to construct φ, define φ(i) = a.

Fix (i, j) ∈ V (H) × V (H) and i < j. Consider the s1t1-path, we call it P1, that first visits
xi,jn ,then traverses Xi,j until xi,jφ(i), jumps to the first column of the grid P i,j at vertex pi,jφ(i),1,

traverses the path in the φ(i)-th row of P i,j , that is the subpath from (pi,jφ(i),1 to pi,jφ(i),n), jumps

to the path Y i,j at the vertex yi,jφ(i) and then traverses Y i,j until reaching yi,j0 . Similarly, consider

the s2t2-path, we call it P2, that first visits xj,in , traverses the path Xj,i until reaching xj,iφ(j),

jumps to the first row of the grid P i,j at the vertex pi,j1,φ(j) traverses the path in the φ(j)-th

column of P i,j , that is the subpath from pi,j1,φ(j) to p
i,j
n,φ(j), jumps to the path Y j,i at yj,iφ(j)−1 and

then traverses Y j,i until reaching yj,i0 . Observe that the paths P1 and P2 do not intersect any
of the vertices of S that are on some X-, Y- or Z-path. Also, the paths P1 and P2 intersect at
exactly one vertex of the grid Pi,j , which is pi,jφ(i),φ(j). Since S has at most k vertices that are in

none of the X-, Y- or Z-path, S contains at most one vertex from each P i,j . Thus, pi,jφ(i),φ(j) ∈ S.
As wt(S) ≤W , we can deduce from the construction of D that (viφ(i), v

j
φ(j)) ∈ E(G).

References

[1] Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width VIII: delineation and win-wins. CoRR, abs/2204.00722,
2022. arXiv:2204.00722, doi:10.48550/arXiv.2204.00722.

[2] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan
Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In
Stefano Leonardi and Anupam Gupta, editors, Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2022), pages 924–937. ACM, 2022.
doi:10.1145/3519935.3520037.

[3] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/
3486655.

[4] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J.
Comput., 47(1):166–207, 2018. doi:10.1137/140961808.

[5] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

[6] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

31

http://arxiv.org/abs/2204.00722
https://doi.org/10.48550/arXiv.2204.00722
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1137/140961808
https://doi.org/10.1137/15M1032077

[7] Rajesh Chitnis, László Egri, and Dániel Marx. List H-coloring a graph by removing few
vertices. Algorithmica, 78(1):110–146, 2017. doi:10.1007/s00453-016-0139-6.

[8] Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

[9] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM J.
Comput., 42(4):1674–1696, 2013.

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21275-3, doi:10.1007/
978-3-319-21275-3.

[11] Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk,
Saket Saurabh, and Magnus Wahlström. Randomized contractions meet lean decomposi-
tions. ACM Trans. Algorithms, 17(1):6:1–6:30, 2021. doi:10.1145/3426738.

[12] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3, 2013. URL: http://doi.
acm.org/10.1145/2462896.2462899, doi:10.1145/2462896.2462899.

[13] Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61–71, 2011.

[14] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

[15] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. CoRR, abs/2111.03450, 2021. URL: https://arxiv.org/abs/2111.03450,
arXiv:2111.03450.

[16] Stefan Kratsch, Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, and Manuel Sorge. Optimal
discretization is fixed-parameter tractable. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, pages 1702–1719. SIAM, 2021. doi:10.1137/1.9781611976465.103.

[17] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-
parameter tractability of multicut in directed acyclic graphs. SIAM J. Discrete Math.,
29(1):122–144, 2015. URL: http://dx.doi.org/10.1137/120904202, doi:10.1137/
120904202.

[18] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized poly-
nomial kernel for odd cycle transversal. ACM Transactions on Algorithms, 10(4):20, 2014.
URL: http://doi.acm.org/10.1145/2635810, doi:10.1145/2635810.

[19] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

[20] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the stanley-wilf
conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004. doi:10.1016/j.jcta.2004.
04.002.

32

https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1145/2700209
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3426738
http://doi.acm.org/10.1145/2462896.2462899
http://doi.acm.org/10.1145/2462896.2462899
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1137/140962838
https://arxiv.org/abs/2111.03450
http://arxiv.org/abs/2111.03450
https://doi.org/10.1137/1.9781611976465.103
http://dx.doi.org/10.1137/120904202
https://doi.org/10.1137/120904202
https://doi.org/10.1137/120904202
http://doi.acm.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1016/j.jcta.2004.04.002

[21] Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006.

[22] Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

[23] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time
via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013. URL: http:
//doi.acm.org/10.1145/2500119, doi:10.1145/2500119.

[24] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. URL: http://dx.doi.org/
10.1137/110855247, doi:10.1137/110855247.

[25] Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four ter-
minal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

A Hardness of arbitrary CSPs with permutation constraints

In this section we explain in bigger detail the claim from the introduction that without any
control on the complexity of permutation constraints, the obtained CSP instance is W[1]-hard
when parameterized by the number of variables and permutation constraints.

Recall the classic W[1]-hard Multicolored Clique problem: the input consists of an
integer k being the parameter, a graph G, and a partition of V (G) into k independent sets
V1, V2, . . . , Vk; the goal is to find a k-clique in G, which necessarily needs to contain exactly one
vertex from each set Vi. By a padding argument, we can assume |V1| = |V2| = . . . = |Vk| = n.
For each 1 ≤ i ≤ k, enumerate the vertices of Vi as vi,0, vi,1, . . . , vi,n−1.

For every 1 ≤ i ≤ k, create a variable xi with domain {0, 1, . . . , n − 1}; setting the value
xi = a corresponds to choosing a vertex vi,a to our clique. For every 1 ≤ i, j ≤ k, i 6= j, create a
variable yi,j with domain {0, 1, . . . , n−1}×{0, 1, . . . , n−1} ordered lexicographically; setting the
value yi,j = (a, b) corresponds to choosing vertices vi,a and vj,b to our clique. Bind the variables
using the following constraints:

• For every 1 ≤ i, j ≤ k, i 6= j, we express a constraint∧
0≤a,b<n

yi,j = (a, b) =⇒ xi = a

as the following conjunction: ∧
0≤a<n−1

(xi ≤ a) ∨ (yi,j ≥ (a+ 1, 0))

 ∧(∧
1<a<n

(yi,j ≤ (a− 1, n− 1)) ∨ (xi ≥ a)

)
.

• For every 1 ≤ i < j ≤ k, we introduce a permutation constraint

yj,i = π(yi,j),

where π : {0, 1, . . . , n−1}×{0, 1, . . . , n−1} → {0, 1, . . . , n−1}×{0, 1, . . . , n−1} is defined
as π(a, b) = (b, a).

Finally, for every 1 ≤ i < j ≤ k, we restrict the permutation constraint between yi,j and yj,i to
only those values yi,j = (a, b) where vi,avj,b ∈ E(G).

The above is an encoding of the input Multicolored Clique instance a CSP instance with
k+k(k−1) = k2 variables and

(
k
2

)
permutation constraints. Hence, we cannot hope for an FPT

algorithm for our CSP instances, with only the number of variables and permutation constraints
as parameters; we need some structural parameter of the obtained permutation constraints. Note
that the permutation π used above has a grid minor of size n in its permutation matrix.

33

http://doi.acm.org/10.1145/2500119
http://doi.acm.org/10.1145/2500119
https://doi.org/10.1145/2500119
http://dx.doi.org/10.1137/110855247
http://dx.doi.org/10.1137/110855247
https://doi.org/10.1137/110855247
https://doi.org/10.1145/3201775

B Twin-width to grid-rank

Theorem B.1 (Marcus and Tardos [20]). For every integer k, there is some ck ≤ 2O(k log k)

such that every n × m 0-1 matrix A with at least ck max(n,m) 1-entries has a k-grid minor.
Moreover, if it exists, such a grid minor can be found in 2O(k log k)nO(1) time.

Proposition B.2. Let n ≥ 2 and a1, . . . , an be non-negative integers, and let s =
∑n

i=1 ai/n.
Then, there exists an i ∈ [n− 1] such that ai + ai+1 ≤ 4s− 1.

Proof. Suppose for a contradiction that for all i ∈ [n− 1], ai + ai+1 ≥ 4s. First suppose that n
is even. Then,

n∑
i=1

ai = a1 + a2 +
n∑
i=3

ai ≥ 4s+
n∑
i=3

ai ≥ · · · ≥
n

2
4s > ns,

a contradiction. Next suppose that n is odd which means that n ≥ 3. In this case,

n∑
i=1

ai = a1 +
n∑
i=2

ai ≥ a1 +
n− 1

2
4s ≥ 2(n− 1)s = ns

(
2− 2

n

)
> ns,

a contradiction since 2/n < 1.

Proposition B.3. Let A be a 0-1 matrix, let k be a positive integer, and let ck be the constant
from Theorem B.1. One can in 2O(k log k)nO(1) time find either

• a k-grid minor in A, or
• a 4ck-contraction sequence of A, respecting the order of the rows and columns of A.

Proof. We do the following greedily. Assume the number of rows in A is at least the number of
its columns, otherwise we swap the roles of rows and columns. Let o be the average number of
1-entries in each row of A. If o > ck, then by Theorem B.1, we can find a k-grid minor of A
in 2O(k log k)nO(1) time and we are done. Otherwise, o ≤ ck, which implies by Proposition B.2
that A has two consecutive rows which together have at most 4ck ones. We contract these two
rows and repeat. In the following iterations, the error, or red entries are treated like 1s by the
Marcus Tardos theorem. This is because such entries point to the existence of a 1-entry in the
original matrix A which could be used to form a k-grid minor. Note that no row or column ever
exceeds 4ck red entries if the algorithm succeeds to give a contraction sequence.

Theorem 2.5. There is a computable function f with f(k) = 2O(k log k) such that the following
holds. There is an algorithm that, given a 0-1 matrix A, in f(k)nO(1) time either

• finds a k-grid minor in A, or
• certifies that gr(A) ≤ f(k).

Proof. If A does not have a k-grid minor, then by Proposition B.3 there is a 4ck-contraction
sequence of A that respects the order of the rows and columns of A. In the words of [3], this
means that A is 4ck-twin-ordered, and a theorem in [3] asserts that A cannot have a (8ck + 2)-
mixed minor, which in turn implies that gr(A) ≤ (8ck + 2) = 2O(k log k).

34

	1 Introduction
	2 Preliminaries
	2.1 Twin-width
	2.2 (Permutation) CSP
	2.3 Flow-augmentation

	3 Permutation CSP with bounded twin-width
	4 Three-terminal-pair Directed Multicut is fixed-parameter tractable
	5 Irrelevant vertex rule—Proof of lem:tw-red
	6 Shadow removal
	7 Harvesting soybeans
	7.1 Back to the edge-deletion regime
	7.2 Initial setup
	7.3 Initial steps
	7.4 Base case
	7.5 Small case
	7.6 Large case

	8 Two-terminal-pair Weighted Directed Multicut is W[1]-hard
	A Hardness of arbitrary CSPs with permutation constraints
	B Twin-width to grid-rank

