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Abstract. In a seminal paper (Moser and Tardos, JACM’10), Moser and Tardos developed a simple and

powerful algorithm to �nd solutions to combinatorial problems in the variable Lovász Local Lemma (LLL)

se�ing. Kolipaka and Szegedy (Kolipaka and Szegedy, STOC’11) proved that the Moser-Tardos algorithm

is e�cient up to the tight condition of the abstract Lovász Local Lemma, known as Shearer’s bound. A

fundamental problem around LLL is whether the e�cient region of the Moser-Tardos algorithm can be

further extended.

In this paper, we give a positive answer to this problem. We show that the e�cient region of the

Moser-Tardos algorithm goes beyond the Shearer’s bound of the underlying dependency graph, if the

graph is not chordal. Otherwise, the dependency graph is chordal, and it has been shown that Shearer’s

bound exactly characterizes the e�cient region for such graphs (Kolipaka and Szegedy, STOC’11; He, Li,

Liu, Wang and Xia, FOCS’17).

Moreover, we demonstrate that the e�cient region can exceed Shearer’s bound by a constant by

explicitly calculating the gaps on several in�nite la�ices.

�e core of our proof is a new criterion on the e�ciency of the Moser-Tardos algorithm which takes the

intersection between dependent events into consideration. Our criterion is strictly be�er than Shearer’s

bound whenever the intersection exists between dependent events. Meanwhile, if any two dependent

events are mutually exclusive, our criterion becomes the Shearer’s bound, which is known to be tight

in this situation for the Moser-Tardos algorithm (Kolipaka and Szegedy, STOC’11; Guo, Jerrum and Liu,

JACM’19).

1. Introduction

Suppose A = {𝐴1, · · · , 𝐴𝑚} is a set of bad events. If the events are mutually independent, then we

can avoid all of these events simultaneously whenever no event has probability 1. Lovász Local Lemma

(LLL) [EL75], one of the most important probabilistic methods, allows for limited dependency among

the events, but still concludes that all the events can be avoided simultaneously if each individual event

has a bounded probability. In the most general se�ing (a.k.a. abstract LLL), the dependency among A is

characterized by an undirected graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ), called a dependency graph of A, which satis�es

that for any vertex 𝑖 , 𝐴𝑖 is independent of {𝐴 𝑗 : 𝑗 ∉ N𝐺𝐷
(𝑖) ∪ {𝑖}}. Here N𝐺 (𝑖) stands for the set of

neighbors of vertex 𝑖 in a given graph 𝐺 .

We use A ∼ (𝐺𝐷 ,𝒑) to denote that (i)𝐺𝐷 is a dependency graph of A and (ii) the probability vector

of A is 𝒑. Given a graph𝐺𝐷 , de�ne the abstract interior I𝑎 (𝐺𝐷 ) to be the set consisting of all vectors 𝒑

such that P
(
∩𝐴∈A𝐴

)
> 0 for any A ∼ (𝐺𝐷 ,𝒑). In this context, the most frequently used abstract LLL

can be stated as follows:

�eorem 1.1 ([Spe77]). Given any graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and any probability vector 𝒑 ∈ (0, 1]𝑚 , if
there exist real numbers 𝑥1, ..., 𝑥𝑚 ∈ (0, 1) such that 𝑝𝑖 ≤ 𝑥𝑖

∏
𝑗 ∈N𝐺𝐷

(𝑖) (1 − 𝑥 𝑗 ) for any 𝑖 ∈ [𝑚], then
𝒑 ∈ I𝑎 (𝐺𝐷 ).

Shearer [She85] obtained the strongest possible condition for abstract LLL. Let Ind(𝐺𝐷 ) be the set of
all independent sets of an undirected graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and 𝒑 = (𝑝1, · · · , 𝑝𝑚) ∈ (0, 1]𝑚 . For each
𝐼 ∈ Ind(𝐺𝐷 ), de�ne the quantity

𝑞𝐼 (𝐺𝐷 ,𝒑) =
∑︁

𝐽 ∈Ind(𝐺𝐷 ),𝐼 ⊆𝐽
(−1) | 𝐽 |− |𝐼 |

∏
𝑖∈𝐽

𝑝𝑖 .
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𝒑 is called in Shearer’s bound of𝐺𝐷 if 𝑞𝐼 (𝐺𝐷 ,𝒑) > 0 for any 𝐼 ∈ Ind(𝐺𝐷 ). Otherwise we say 𝒑 is beyond
Shearer’s bound of 𝐺𝐷 . Shearer’s result can be stated as follows.

�eorem 1.2 ([She85]). For any graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and any probability vector 𝒑 ∈ (0, 1]𝑚 , 𝒑 ∈
I𝑎 (𝐺𝐷 ) if and only if 𝒑 is in Shearer’s bound of 𝐺𝐷 .

Variable Lovász Local Lemma. Variable Lovász Local Lemma (VLLL) is another quite general and com-

mon se�ing of LLL, which applies to variable-generated event systems. In this se�ing, there is a set

of underlying mutually independent random variables {𝑋1, · · · , 𝑋𝑛}, and each event 𝐴𝑖 can be fully

determined by some variables vbl(𝐴𝑖) of them. �e dependency between events and variables can be

naturally characterized by a bipartite graph 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵), known as the event-variable graph,

such that edge (𝑖, 𝑗) ∈ [𝑚] × [𝑛] exists if and only if 𝑋 𝑗 ∈ vbl(𝐴𝑖).
�e variable se�ing is important, mainly because most applications of LLL have natural underlying

independent variables, such as the satis�ability of CNF formulas[GMSW09, GST16, Moi19a, FGYZ20],

hypergraph coloring [McD97, GLLZ19], and Ramsey numbers[Spe75, Spe77, Har16]. In particular, the

groundbreaking result by Moser and Tardos [MT10] on constructive LLL applies in the variable se�ing.

�ere is a natural choice for the dependency graph of variable-generated systems, called the canonical
dependency graph: two events are adjacent if they share some common variables. Formally, given a

bipartite graph 𝐺𝐵 = (𝑈 ,𝑉 , 𝐸𝐵), its base graph is de�ned as the graph 𝐺𝐷 (𝐺𝐵) = (𝑈 , 𝐸𝐷 ) such that for

any two vertices 𝑢𝑖 , 𝑢 𝑗 ∈ 𝑈 , (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸𝐷 if and only if 𝑢𝑖 and 𝑢 𝑗 share common neighbors in 𝐺𝐵 . If 𝐺𝐵

is the event-variable graph of a variable-generated systemA, then𝐺𝐷 (𝐺𝐵) is the canonical dependency
graph of A.

Given a graph𝐺𝐷 , de�ne the variable interior I𝑣 (𝐺𝐷 ) to be the set consisting of all vectors 𝒑 such that

P
(
∩𝐴∈A𝐴

)
> 0 for any variable-generated event system A ∼ (𝐺𝐷 ,𝒑). Obviously, I𝑣 (𝐺𝐷 ) ⊇ I𝑎 (𝐺𝐷 )

for any 𝐺𝐷 . In contrast with the abstract LLL, the Shearer’s bound (of the canonical dependency graph)

turns out to be not tight for variable-generated systems [HLL
+
17]: the containment is proper if and

only if 𝐺𝐷 is not chordal
1
.

Constructive (variable) Lovász Local Lemma and Moser-Tardos algorithm. �e abstract LLL and the

variable LLL mentioned above are not constructive in that they do not indicate how to e�ciently

�nd an object avoiding all the bad events. In a seminal paper [MT10], Moser and Tardos developed

an amazingly simple e�cient algorithm for variable-generated systems, depicted in Algorithm 1
2
,

and showed that this algorithm terminates quickly under the condition in �eorem 1.1. Following

the Moser-Tardos algorithm (or MT algorithm for short), a large amount of e�ort devoted to con-

structive LLL, including the remarkable works which extend the MT techniques beyond the variable

se�ing [HS14, AIV17, AIK19, AIS19, IS20, HV20]. �e MT algorithm has been applied to many impor-

tant problems, including 𝑘-SAT [GST16], hypergraph coloring [Har16], Hamiltonian cycle [Har16], and

their counting and sampling [GJL19, Moi19a, FGYZ20, FHY21, JPV21, HSW21].

Algorithm 1:Moser-Tardos Algorithm

1 Assign random values to 𝑋1, · · · , 𝑋𝑛 ;

2 while ∃𝑖 ∈ [𝑚] such that 𝐴𝑖 holds do
3 Arbitrarily select one such 𝑖 and resample all variables 𝑋 𝑗 in vbl(𝐴𝑖);
4 Return the current assignment;

Mainly because such a simple algorithm is so powerful and general-purpose, it is one of the most

intriguing and fundamental problems on constructive LLL how powerful the MT algorithm is. Given a

graph 𝐺𝐷 , de�ne the Moser-Tardos interior I𝑀𝑇 (𝐺𝐷 ) to be the set consisting of all vectors 𝒑 such that

the MT algorithm is e�cient for any variable-generated event systemA ∼ (𝐺𝐷 ,𝒑). Clearly, I𝑀𝑇 (𝐺𝐷 ) ⊆
I𝑣 (𝐺𝐷 ) for any𝐺𝐷 . A major line of follow-up works explores I𝑀𝑇 (𝐺𝐷 ) [KSX12, Peg14, KS11, CCS+17].

1
A graph is chordal if it has no induced cycle of length at least four.

2
�roughout the paper, the Moser-Tardos algorithm is allowed to follow arbitrary selection rules.
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�e best known criterion is obtained by Kolipaka and Szegedy [KS11]. �ey extended the MT interior

to the Shearer’s bound. �at is, they showed that I𝑀𝑇 (𝐺𝐷 ) ⊇ I𝑎 (𝐺𝐷 ). As mentioned above, if 𝐺𝐷 is

not chordal, I𝑎 (𝐺𝐷 ) is properly contained in I𝑣 (𝐺𝐷 ), so it is possible to further push I𝑀𝑇 (𝐺𝐷 ) beyond
Shearer’s bound.

In this paper, we concentrate on the following open problem:

Problem 1: does I𝑀𝑇 (𝐺𝐷 ) properly contain I𝑎 (𝐺𝐷 ) for some 𝐺𝐷? If so, for what kind of graph 𝐺𝐷?

Rather than potential applications, our main motivations are the following fundamental problems

around LLL itself:

• �e limitation of the constructive LLL in the variable se�ing. In the most fascinating problems around

LLL, a mysterious conjecture says that there is an algorithm which is e�cient for all variable-

generated systems A if A ∼ (𝐺𝐷 ,𝒑) for some 𝐺𝐷 and 𝒑 ∈ I𝑣 (𝐺𝐷 ) [Sze13]. It would be a small

miracle if the conjecture is true, since if so, one can always construct a solution e�ciently in the

variable se�ing if solutions are guaranteed to exist by the LLL condition. Towards this conjecture,

a good start is to show that I𝑀𝑇 (𝐺𝐷 ) % I𝑎 (𝐺𝐷 ) for some 𝐺𝐷 , as I𝑣 (𝐺𝐷 ) % I𝑎 (𝐺𝐷 ) for 𝐺𝐷 which

is not chordal.

• �e limitation of the MT algorithm. �eMT algorithm is one of the most intriguing topics in modern

algorithm researches, not only because it is very simple and with magic power, but also because

it is closely related to the famous Walksat algorithm for random 𝑘-SAT. A mysterious problem

about the MT algorithm is where is its true limitation [Sze13, CCS
+
17]. It is conjectured that

I𝑀𝑇 (𝐺𝐷 ) = I𝑣 (𝐺𝐷 ) for any 𝐺𝐷 [Sze13]. To prove this conjecture, the �rst step is to give a positive

answer to Problem 1. Moreover, due to the connection between Shearer’s bound and the Repulsive

La�ice Gas model, it is conjectured that essential connection exists between statistical mechanics and
the MT algorithm [Sze13]. Whether I𝑀𝑇 (𝐺𝐷 ) = I𝑎 (𝐺𝐷 ) for each 𝐺𝐷 is critical to this conjecture.

Remark 1.3. To explore the power of the MT algorithm in speci�c applications, one may employ special
structures of the applications, such as the way the variables interact, to obtain sharp bounds rather than in
terms of the canonical dependency graph only. Nevertheless, characterizing the power of the MT algorithm
in terms of the canonical dependency graph is a very fundamental problem and also the focus of the major
line of researches [MT10, Peg14, BFPS11, KS11]. Moreover, a major di�culty to strengthen the guarantees
of the MT algorithm is that the analysis should be valid for all possible variable-generated event systems. It
is not quite surprising to obtain be�er bounds if the event system has further restrictions. To substantially
improve the guarantees of the MT algorithm and provide deep insight about its dynamics, we would rather
focus on the general variable LLL se�ing than employ the special structures in the applications.

We should emphasize that Problem 1 is still quite open! As mentioned before, it has been proved

that the Shearer’s bound is not tight for variable-generated systems [HLL
+
17]. However, this only says

that there is some probability vector 𝒑 beyond the Shearer’s bound such that all variable-generated

event systems A ∼ (𝐺𝐷 ,𝒑) must have a satisfying assignment. It is unclear whether the MT algorithm

can construct such an assignment e�ciently.

It also has been proved that the MT algorithm can still be e�cient even beyond the Shearer’s bound

for some speci�c applications [Har16]. Despite its novel contribution, this result does not provide an
answer to Problem 1. �e result in [Har16] focuses on the event systems with special structures. �us, it

only implies that there is a probability vector 𝒑 beyond the Shearer’s bound such that the MT algorithm

is e�cient for some restricted variable-generated event systems A ∼ (𝐺𝐷 ,𝒑). However, to show

I𝑀𝑇 (𝐺𝐷 ) % I𝑎 (𝐺𝐷 ), one must prove that the MT algorithm is e�cient for all possible event systems,

and this is one major di�culty to resolve Problem 1.

1.1. Results and contributions. We provide a complete answer to Problem 1 (�eorem 1.5): if 𝐺𝐷 is

not chordal, thenI𝑀𝑇 (𝐺𝐷 ) % I𝑎 (𝐺𝐷 ), i.e., the e�cient region of theMT algorithm goes beyond Shearer’s

bound. Otherwise, I𝑀𝑇 (𝐺𝐷 ) = I𝑎 (𝐺𝐷 ), because I𝑎 (𝐺𝐷 ) ⊆ I𝑀𝑇 (𝐺𝐷 ) ⊆ I𝑣 (𝐺𝐷 ) and I𝑣 (𝐺𝐷 ) = I𝑎 (𝐺𝐷 )
for chordal graphs 𝐺𝐷 [HLL

+
17].

�e core of the proof of �eorem 1.5 is a new convergence criterion for the MT algorithm (�eorem

1.6), which may be of independent interest. �is new criterion takes the intersection between dependent

3



events into consideration, and is strictly be�er than Shearer’s bound when there exists a pair of

dependent events which are not mutually exclusive.

1.1.1. Moser-Tardos algorithm: beyond Shearer’s bound. Given a dependency graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and
a probability vector 𝒑 = (𝑝1, 𝑝2, · · · , 𝑝𝑚) ∈ (0, 1)𝑚 , we say that 𝒑 is on the Shearer’s boundary of 𝐺𝐷 if

(1 − 𝜀)𝒑 is in Shearer’s bound and (1 + 𝜀)𝒑 is not for any 𝜀 > 0. A chordless cycle in a graph 𝐺𝐷 is an

induced cycle of length at least 4. A chordal graph is a graph without chordless cycles.

Given two vectors 𝒑 and 𝒒, we say 𝒑 ≤ 𝒒 if the inequality holds entry-wise. Additionally, if the

inequality is strict on at least one entry, we say that 𝒑 < 𝒒.

De�nition 1.4 (Maximum 𝐿1-gap to the Shearer’s bound). Given a dependency graph 𝐺𝐷 and a prob-
ability vector 𝒑 beyond the Shearer’s bound of 𝐺𝐷 , de�ne the maximum 𝐿1-gap from 𝒑 to the Shearer’s
bound of 𝐺𝐷 as

𝑑 (𝒑,𝐺𝐷 ) , arg sup
| |𝒒 | |1

{𝒑 − 𝒒 ∉ I𝑎 (𝐺𝐷 ) : 𝒒 ≤ 𝒑}.

For convenience, we let 𝑑 (𝒑,𝐺𝐷 ) = −1 if 𝒑 is in the Shearer’s bound of 𝐺𝐷 .

Intuitively, 𝑑 (𝒑,𝐺𝐷 ) measures how far 𝒑 is from the Shearer’s bound of 𝐺𝐷 . One can verify that

𝑑 (𝒑,𝐺𝐷 ) < 0 if 𝒑 is in the Shearer’s bound, 𝑑 (𝒑,𝐺𝐷 ) = 0 if 𝒑 is on the Shearer’s boundary, and

𝑑 (𝒑,𝐺𝐷 ) > 0 if 𝒑 is beyond Shearer’s bound but not on the Shearer’s boundary. Now, we are ready to

state our main result.

�eorem 1.5. For any chordal graph 𝐺𝐷 , I𝑀𝑇 (𝐺𝐷 ) = I𝑎 (𝐺𝐷 ), i.e., 𝒑 ∈ I𝑀𝑇 (𝐺𝐷 ) i� 𝑑 (𝒑,𝐺𝐷 ) < 0.
For any graph 𝐺𝐷 which is not chordal, 𝒑 ∈ I𝑀𝑇 (𝐺𝐷 ) if

𝑑 (𝒑,𝐺𝐷 ) <
1

545
·
∑︁
𝑖≤ℓ

|𝐶𝑖 |
(
min
𝑗 ∈𝐶𝑖

𝑝 𝑗
)4 · (max

{
2
∑

𝑗 ∈𝐶𝑖

√
𝑝 𝑗

|𝐶𝑖 |
− 1, 0

})2
for some disjoint chordless cycles 𝐶1,𝐶2, · · · ,𝐶ℓ in 𝐺𝐷 . In particular, there is a probability vector 𝒑 with
𝑑 (𝒑,𝐺𝐷 ) ≥ 2−20𝐾−3 satisfying the above condition, where 𝐾 is the length the shortest chordless cycle. �is
implies that I𝑀𝑇 (𝐺𝐷 ) contains a probability vector 𝒑 with 𝑑 (𝒑,𝐺𝐷 ) ≥ 2−20𝐾−3.

�e intuition of �eorem 1.5 is as follows. �e theorem characterizes the e�cient region of the MT

algorithm with 𝑑 (𝒑,𝐺𝐷 ). It shows that if 𝑑 (𝒑,𝐺𝐷 ) is upper bounded by a non-negative quantity related

to the chordless cycles in 𝐺𝐷 , then the MT algorithm is e�cient. Since I𝑎 (𝐺𝐷 ) is the set of 𝒑 where

𝑑 (𝒑,𝐺𝐷 ) < 0, our criterion is at least as good as Shearer’s bound. Moreover, for each 𝐺𝐷 which is

not chordal, our criterion is strictly be�er: there exists some 𝒑 with 𝑑 (𝒑,𝐺𝐷 ) ≥ 2−20𝐾−3
satisfying

our criterion. Intuitively, �eorem 1.5 implies that chordless cycles in 𝐺𝐷 enhance the power of the MT
algorithm.

We emphasize that�eorem 1.5 provides a complete answer to Problem 1: I𝑀𝑇 (𝐺𝐷 ) properly contains
I𝑎 (𝐺𝐷 ) if and only if 𝐺𝐷 is not chordal.

1.1.2. A new constructive LLL for non-extremal instances. Given a set A of events with dependency

graph 𝐺𝐷 , A is called extremal if all pairs of dependent events are mutually exclusive, and non-
extremal otherwise. Kolipaka and Szegedy [KS11] showed that the MT algorithm is e�cient up to

the Shearer’s bound. In particular, Shearer’s bound is the tight convergence criterion for extremal

instances [KS11, GJL19]. Here, we provide a new convergence criterion (�eorem 1.6) which is a strict

improvement of Kolipaka and Szegedy’s result: this criterion is strictly be�er than Shearer’s bound

when the instance is non-extremal, and becomes Shearer’s bound when the instance is extremal. �is

criterion, named intersection LLL, is the core of our proof of �eorem 1.5.

Let𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) be a canonical dependency graph and 𝒑 = (𝑝1, · · · , 𝑝𝑚) ∈ (0, 1)𝑚 be a probability

vector. LetM = {(𝑖1, 𝑖 ′1), (𝑖2, 𝑖 ′2), · · · } ⊆ 𝐸𝐷 be a matching of 𝐺𝐷 , and 𝜹 = (𝛿𝑖1,𝑖′1, 𝛿𝑖2,𝑖′2, · · · ) ∈ (0, 1) |M |

be another probability vector. We say that an event set A is of the se�ing (𝐺𝐷 ,𝒑,M, 𝜹), and write

A ∼ (𝐺𝐷 ,𝒑,M, 𝜹), ifA ∼ (𝐺𝐷 ,𝒑) and P(𝐴𝑖∩𝐴𝑖′) ≥ 𝛿𝑖,𝑖′ for each pair (𝑖, 𝑖 ′) ∈ M. Given (𝐺𝐷 ,𝒑,M, 𝜹),
4



de�ne 𝒑− ∈ (0, 1)𝑚 as follows:

∀𝑖 ∈ [𝑚] : 𝑝−𝑖 =

{
𝑝𝑖 − 1

17 · 𝛿2
𝑖,𝑖′, if (𝑖, 𝑖 ′) ∈ M for some 𝑖 ′;

𝑝𝑖 , otherwise.

�eorem 1.6 (intersection LLL (informal)). For any A ∼ (𝐺𝐷 ,𝒑,M, 𝜹), MT algorithm terminates
quickly if 𝒑− is in the Shearer’s bound of 𝐺𝐷 .

�e intuition of �eorem 1.6 is as follows. For any matchingM in𝐺𝐷 , if the intersection of events

on each edge (𝑖, 𝑖 ′) inM has a lower bound 𝛿𝑖,𝑖′ , then one can subtract
1
17 · 𝛿

2
𝑖,𝑖′ from the probabilities of

endpoints 𝑖 and 𝑖 ′, and the MT algorithm is guaranteed to be e�cient whenever the reduced probability

vector is in the Shearer’s bound.

Remark 1.7. In many applications of LLL [McD97, GST16, GMSW09, Moi19a, GKPT17], the dependent
bad events naturally intersect with each other. For instance, in a CNF formula, if the common variables in
two clauses are both either positive or negative, then the bad events corresponding to these two clauses are
dependent and intersect with each other. �us our intersection LLL may be capable of improving bounds for
these applications. However, currently the improvement is weak because only the intersections between the
matched events are considered in �eorem 1.6.

Nevertheless, the primary motivation of this work is to explore the power of the MT algorithm in the
general variable LLL se�ing. �is basic problem is very important in itself, besides its potential applications.

1.1.3. Application to la�ices. To illustrate the application of�eorem 1.5, we estimate the e�cient region

of the MT algorithm on some la�ices explicitly. For simplicity, we focus on symmetric probabilities, i.e.,

𝒑 = (𝑝, 𝑝, · · · , 𝑝). Our lower bounds on the gaps between the e�cient region of the MT algorithm and

the Shearer’s bound are summarized in Table 1. For example, when the canonical dependency graph is

the square la�ice, the vector (0.1193, 0.1193, · · · ) is on the Shearer’s boundary, and the MT algorithm

is provably e�cient whenever the probability of each event is at most 0.1193 + 1.858 × 10−22.

Table 1. Summary of lower bounds on the gaps

La�ice Shearer’s bound lower bound on the gaps

Square 0.1193 [GF65, Tod99] 1.858 × 10−22

Hexagonal 0.1547 [Tod99] 2.597 × 10−25

Simple Cubic 0.0744 [Gau67] 7.445 × 10−23

1.2. Technique overview. As mentioned before, the Shearer’s bound is the tight criterion for MT

algorithm on extremal instances. �us in order to show that MT algorithm goes beyond Shearer’s

bound, we need to take advantage of the intersection between dependent events. Speci�cally, �eorem

1.5 immediately follows from two results about non-extremal instances. One is the intersection LLL

criterion (�eorem 1.6), which goes beyond Shearer’s bound whenever there are intersections between

dependent events. �e other result is a lower bound on the amount of intersection between dependent

events for general instances (�eorem 4.1).

1.2.1. Proof overview of �eorem 1.6. Let us �rst remember Kolipaka and Szegedy’s argument [KS11],

which shows that the MT algorithm is e�cient up to the Shearer’s bound. We assume that {𝐴𝑖}𝑚𝑖=1 is
a �xed set of events with dependency graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and probabilities 𝒑 = (𝑝1, · · · , 𝑝𝑚). �e

notion of a witness DAG
3
(abbreviated wdag) is central to their argument. A wdag is a DAG whose each

node 𝑣 has a label 𝐿(𝑣) from [𝑚] and in which two nodes 𝑣 and 𝑣 ′ are connected by an arc if and only if

𝐿(𝑣) = 𝐿(𝑣 ′) or (𝐿(𝑣), 𝐿(𝑣 ′)) ∈ 𝐸𝐷 . With a resampling sequence 𝒔 = 𝑠1, 𝑠2, · · · , 𝑠𝑇 (i.e., MT algorithm

picks the events 𝐴𝑠1, 𝐴𝑠2, · · · , 𝐴𝑠𝑇 for resampling in this order), we associate a wdag 𝐷𝒔 on node set

{𝑣1, · · · , 𝑣𝑇 } as follows: (a) 𝐿(𝑣𝑘 ) = 𝑠𝑘 and (b) there is an arc from 𝑣𝑘 to 𝑣ℓ with 𝑘 < ℓ if and only if either

𝑠𝑘 = 𝑠ℓ or (𝑠𝑘 , 𝑠ℓ ) ∈ 𝐸𝐷 (see an example in Figure 1). We say that a wdag 𝐷 occurs in the resampling

3
In the paper [KS11], the role of witness DAGs was played by “stable set sequences”, but the concepts are essentially the

same: there is a natural bijection between stable set sequences and wdags.
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Figure 1. (a) a dependency graph 𝐺𝐷 ; (b) a resample sequence; (c) the 𝐷𝑠 ; (d) a wdag

occurring in 𝒔.

sequence 𝒔 if there is subset 𝑈 of nodes in 𝐷𝒔 such that 𝐷 is a subgraph of 𝐷𝒔 induced by the nodes

that have a directed path to𝑈 (Figure 1 (d) is an example, where𝑈 = {𝑣4}). An useful observation is

that E[𝑇 ] = ∑
𝐷∈D P𝒔 [𝐷 occurs in 𝒔]. Here, D denotes the set of all single-sink wdags (a.k.a. proper

wdags) of 𝐺𝐷 .

We de�ne the weight of a wdag 𝐷 to be Π𝑣∈𝐷𝑝𝐿 (𝑣) . �e crucial lemma in Kolipaka and Szegedy’s

argument (the idea is from Moser-Tardos analysis) is that the probability of occurrence of a certain

wdag 𝐷 is upper bounded by its weight. �e idea is that we can assume (only for the analysis) that the

MT algorithm has a preprocessing step where it prepares an in�nite number of independent samples

for each variable. �ese independent samples create a table 𝑿 , called the resampling table (see Figure
2 in Section 3.1 for an example). When the MT algorithm decides to resample variable 𝑋 𝑗 , it picks

a new sample of 𝑋 𝑗 from the resampling table. Suppose a certain wdag 𝐷 occurs, then for each of

its events we can determine a particular set of samples in the resampling table that must satisfy the

event, where we say that 𝐷 is consistent with the resampling table 𝑿 and denote it by 𝐷 ∼ 𝑿 . Hence,

P𝒔 [𝐷 occurs in 𝒔] ≤ P𝑿 [𝐷 ∼ 𝑿 ] = Π𝑣∈𝐷𝑝𝐿 (𝑣) .
Finally, they solved beautifully the summation of weights of proper wdags, i.e.,

∑
𝐷∈D Π𝑣∈𝐷𝑝𝐿 (𝑣) ,

which turns out to converge if and only if 𝒑 is in the Shearer’s bound of 𝐺𝐷 .

Viewing �eorem 1.6 as an improvement of Kolipaka and Szegedy’s result, we begin by providing

a tighter upper bound on

∑
𝐷∈D P𝒔 [𝐷 occurs in 𝒔] when the instance is non-extremal (�eorem 3.7).

First, note that for each wdag 𝐷 , there exist selection rules to make P𝒔 [𝐷 occurs in 𝒔] = Π𝑣∈𝐷𝑝𝐿 (𝑣) , so it
is impossible to give a be�er upper bound on P𝒔 [𝐷 occurs in 𝒔] which holds for all selection rules. Our

idea is to group proper wdags, and consider the sum of P𝒔 [𝐷 occurs in 𝒔] over a group. For example,

suppose that 𝐴1 and 𝐴2 are dependent and P[𝐴1 ∩𝐴2] ≥ 𝛿1,2. Let 𝐷1 denote the proper wdag which

consists of only one arc 𝐴1 → 𝐴2, and 𝐷2 denote the proper wdag consisting of only 𝐴2 → 𝐴1. 𝐷1

and 𝐷2 cannot both occur, but they may be both consistent with a given resampling table. So the total

weights of 𝐷1 and 𝐷2 is an overestimate of the probability that 𝐷1 or 𝐷2 occurs. Formally,

P𝒔 [𝐷1 occurs in 𝒔] + P𝒔 [𝐷2 occurs in 𝒔] =P𝒔 [(𝐷1 occurs in 𝒔) ∨ (𝐷2 occurs in 𝒔)]
≤P𝑿 [(𝐷1 ∼ 𝑿 ) ∨ (𝐷2 ∼ 𝑿 )]
=P𝑿 [𝐷1 ∼ 𝑿 ] + P𝑿 [(𝐷2 ∼ 𝑿 ) ∧ (𝐷1 � 𝑿 )]
≤𝑝1𝑝2 + 𝑝1𝑝2 − 𝛿21,2,

where the last inequality is according to the Cauchy–Schwarz inequality (see Proposition 3.3). Impor-

tantly, the upper bound holds for all selection rules.

It is crucial as well as the di�culty that our improvement over the weight of wdags should be

“exponential”: since the quantity

∑
𝐷∈D Π𝑣∈𝐷𝑝−𝐿 (𝑣) converges if and only if 𝒑−

is in the Shearer’s bound,

constant factor or even sub-exponential improvements over

∑
𝐷∈D Π𝑣∈𝐷𝑝𝐿 (𝑣) do not help to show the

desired convergence criterion. Our exponential improvement relies on a delicate grouping and a tricky

random partition of the union of 𝐷 ∼ 𝑿 across wdags.
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We �rst state how we group proper wdags: de�neD(𝑖, 𝑟 ) to be the set of proper wdags whose unique
sink node is labelled with 𝑖 and in which there are exactly 𝑟 nodes labelled with 𝑖 . Noticing that at most

one wdag in D(𝑖, 𝑟 ) can occur, we have that∑︁
𝐷∈D(𝑖,𝑟 )

P𝒔 [𝐷 occurs in 𝒔] =P𝑿


∨
𝐷∈D(𝑖,𝑟 )

(𝐷 occurs)
 ≤ P𝑿


∨

𝐷∈D(𝑖,𝑟 )
(𝐷 ∼ 𝑿 )

 .
Now, we partition the space

∨
𝐷∈D(𝑖,𝑟 ) (𝐷 ∼ 𝑿 ) across wdags inD(𝑖, 𝑟 ). �e notions of reversible arcs

(see De�nition 2.4) and a auxiliary table (see Section 3.1) are two central concepts here. Speci�cally, an

arc𝑢 → 𝑣 in a wdag𝐷 is said reversible, if the directed graph obtained from𝐷 by reversing the direction

of 𝑢 → 𝑣 is also a wdag. �e auxiliary table is a table 𝒀 of independent fair coins corresponding to

directions of reversible arcs. We say a wdag 𝐷 is consistent with (𝑿 , 𝒀 ), denoted by 𝐷 ∼ (𝑿 , 𝒀 ) if (i)
𝐷 ∼ 𝑿 ; and (ii) for each reversible arc whose direction is not consistent with 𝒀 , the wdag obtained by

reversing the arc is not consistent with 𝑿 . �e crucial lemma (Lemma 3.1) shows that for any certain

assignment 𝒚 of the auxiliary table 𝒀 ,
∨

𝐷∈D(𝑖,𝑟 ) (𝐷 ∼ 𝑿 ) = ∨
𝐷∈D(𝑖,𝑟 ) (𝐷 ∼ (𝑿 ,𝒚)). �e point is that

(𝐷 ∼ (𝑿 ,𝒚))’s have much less overlap with each other so that they can be viewed as a “approximate”

partition of the space. By applying union bound, we get

P𝑿


∨

𝐷∈D(𝑖,𝑟 )
(𝐷 ∼ 𝑿 )

 =E𝒀P𝑿


∨

𝐷∈D(𝑖,𝑟 )
(𝐷 ∼ 𝑿 )

 = E𝒀P𝑿


∨

𝐷∈D(𝑖,𝑟 )
(𝐷 ∼ (𝑿 , 𝒀 )


≤E𝒀

∑︁
𝐷∈D(𝑖,𝑟 )

P𝑿 [𝐷 ∼ (𝑿 , 𝒀 )]

=
∑︁

𝐷∈D(𝑖,𝑟 )
E𝒀P𝑿 [𝐷 ∼ (𝑿 , 𝒀 )] .

�en we are able to provide an upper bound on E𝒀P𝑿 [𝐷 ∼ (𝑿 , 𝒀 )] which is “exponentially” smaller

than Π𝑣∈𝐷𝑝𝐿 (𝑣) (Lemma 3.4), and then complete the proof of �eorem 3.7.

�e next step is to show that the tighter upper bound converges when 𝒑−
is in the Shearer’s bound.

For each vertex 𝑖 in the matching M, we “split” vertex 𝑖 into two new connected vertices 𝑖↑ and 𝑖↓. Let
𝐺M

be the resulted dependency graph (see an example in Figure 3). De�ne 𝑝M
𝑖↑

= 𝑝 ′𝑖 and 𝑝
M
𝑖↓

= 𝑝−𝑖 − 𝑝 ′𝑖
(see the de�nition of 𝑝 ′𝑖 in Section 2.3). One can see that (𝐺𝐷 ,𝒑−) and (𝐺M,𝒑M) are essentially the

same: suppose A ∼ (𝐺𝐷 ,𝒑−), then for each 𝑖 ∈ M, we view 𝐴𝑖 as the union of two mutually exclusive

events 𝐴𝑖↑ and 𝐴𝑖↓ whose probabilities are 𝑝
′
𝑖 and 𝑝

− − 𝑝 ′𝑖 respectively. Such a representation of A is of

the se�ing (𝐺M,𝒑M). �us, the sum of weights of proper wdags in the se�ing (𝐺𝐷 ,𝒑−) is equal to
that in the se�ing (𝐺M,𝒑M) (Proposition 3.9). So it su�ces to show that our tighter upper bound is

upper bounded by the sum of weights of proper wdags in the se�ing (𝐺M,𝒑M) (�eorem 3.13). Our

idea is to construct a mapping which maps each 𝐷 ∈ D(𝐺𝐷 ) to a subset of D(𝐺M) and satis�es that:

(a) distinct proper wdags of 𝐺𝐷 are mapped to disjoint subsets of D(𝐺M); and
(b) for each 𝐷 ∈ D(𝐺𝐷 ), the bound in Lemma 3.4 is upper bounded by the sum of weights of proper

wdags over the subset that 𝐷 is mapped to.

We present such a mapping in De�nition 3.11. Conditions (a) and (b) are veri�ed in �eorem 3.12 and

�eorem 3.13 respectively.

�e idea of constructing a mapping between wdags of two dependency graphs may be of independent

interest, and may be applied elsewhere when we wish to show some properties about Shearer’s bound.

1.2.2. Proof overview of �eorem 4.1. �e proof of �eorem 4.1 mainly consists of two parts. First, we

show that there is an elementary event set which approximately achieves the minimum amount of

the intersection between dependent events (Lemma 4.2). Here, we call an event 𝐴𝑖 ∈ A elementary,

if there is a subset 𝑆𝑖𝑗 of the domain of variable 𝑋 𝑗 for each variable in vbl(𝐴) such that 𝐴 happens if

and only if 𝑋 𝑗 ∈ 𝑆𝑖𝑗 for all variables in vbl(𝐴). We call a set A of events elementary if every 𝐴𝑖 ∈ A
is elementary. �en, for elementary event sets, by applying AM-GM inequality, we obtain a lower
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bound on the total amount of overlap on common variables, which further implies a lower bound on

the amount of intersection between dependent events (Lemma 4.5).

1.3. Related works. Beck proposed the �rst constructive LLL, which provides e�cient algorithms for

�nding the perfect object avoiding all “bad” events [Bec91]. His methods were re�ned and improved

by a long line of research [Alo91, MR98, CS00, HSS11]. In a groundbreaking work, Moser and Tardos

proposed a new algorithm, i.e., Algorithm 1, and proved that it �nds such a perfect object under the

condition in �eorem 1.1 in the variable se�ing [MT10]. Pegden [Peg14] proved that the MT algorithm

e�ciently converges even under the condition of the cluster expansion local lemma [BFPS11]. Kolipaka

and Szegedy [KS11] pushed the e�cient region to Shearer’s bound. �e phenomenon that the MT

algorithm can still be e�cient beyond Shearer’s bound was known to exist for sporadic and toy examples
[Har16]. However, such result employs the special structures in the examples and only applies to some
restricted variable-generated event systems A ∼ (𝐺𝐷 ,𝒑). By contrast, the results in this work applies

to all variable-generated event systems.

Besides the line of research exploring the e�cient region of the MT algorithm, there is a large amount

of e�ort devoted to derandomizing or parallelizing the MT algorithm [MT10, CGH13, Har19, BFH
+
16,

Gha16, CPS17, HH17, Har18] and to extending the Moser-Tardos techniques beyond the variable se�ing

[HS14, AI16, HV20, AIV17, AIK19, Mol19, IS20, AIS19].

�ere is a line of works studying the gap between non-constructive VLLL and Shearer’s bound

[KS11, HLL
+
17, Gil19, HLSZ19]. Kolipaka and Szegedy [KS11] obtained the �rst example of gap existence

where the canonical dependency graph is a cycle of length 4. �e paper [HLL
+
17] showed that Shearer’s

bound is not tight for VLLL. More precisely, Shearer’s bound is tight for non-constructive VLLL if and

only if the canonical dependency graph is chordal. �e �rst paper to study quantitatively the gaps

systematically is [HLSZ19], which provides lower bounds on the gap when the canonical dependency

graph containing many chordless cycles.

Erdös and Spencer [ES91] introduced the lopsided-LLL, which extends the results in [EL75] to lop-

sidependency graphs. Lopsided LLL has many interesting applications in combinatorics and theoretical

computer science, such as the𝑘-SAT [GST16], randompermutations [LS07], Hamiltonian cycles [AFR95],

and matchings on the complete graph [LS09]. Shearer’s bound is also the tight condition for the lopsided

LLL [She85].

LLL has a strong connection to sampling. Guo, Jerrum and Liu [GJL19] proved that the MT algorithm

indeed uniformly samples a perfect object if the instance is extremal. For extremal instances, they

developed an algorithm called “partial rejection sampling” which resamples in a parallel fashion,

since the occurring bad events form an independent set in the dependency graph. Actually, a series

of sampling algorithms for speci�c problems are the parallel resampling algorithm running in the

extremal case [GJL19, GJ19, GH20, GJ18]. In a celebrated work, Moitra [Moi19b] introduced a novel

approach that utilizes LLL to sample 𝑘-CNF solutions. �is approach was then extended by several

works [GLLZ19, GGGY20, FGYZ20, FHY20, JPV20, JPV21].

1.4. Organization of the paper. In Section 2, we recall and introduce some de�nitions and notations.

In Section 3, we prove �eorem 1.6. Section 4 is about the proof of �eorem 4.1, which gives a lower

bound on the amount of the intersection between dependent events. In Section 5, we prove �eorem

1.5. In Section 6, we provide a explicit lower bound for the gaps between the e�cient region of MT

algorithm and Shearer’s bound on periodic Euclidean graphs.

2. Preliminaries

Let N = {0, 1, 2, · · · } denote the set of non-negative integers. Let N+ = {1, 2, · · · } denote the set
positive integers. For𝑚 ∈ N+

, we de�ne [𝑚] = {1, · · · ,𝑚}. �roughout this section, we �x a canonical

dependency graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ).

2.1. Witness DAG. If for a given run, MT algorithm picks the events 𝐴𝑠1, 𝐴𝑠2, ..., 𝐴𝑠𝑇 for resampling

in this order, we say that 𝒔 = 𝑠1, 𝑠2..., 𝑠𝑇 is a resample sequence. If the algorithm never �nishes, the

resample sequence is in�nite, and in this case we set 𝑇 = ∞.
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De�nition 2.1 (Witness DAG). We de�ne a witness DAG (abbreviated wdag) of 𝐺𝐷 to be a DAG 𝐷 , in
which each node 𝑣 has a label 𝐿(𝑣) from [𝑚], and which satis�es the additional condition that for all
distinct nodes 𝑣, 𝑣 ′ ∈ 𝐷 there is an arc between 𝑣 and 𝑣 ′ (in either direction) if and only if 𝐿(𝑣) = 𝐿(𝑣 ′) or(
𝐿(𝑣), 𝐿(𝑣 ′)

)
∈ 𝐸𝐷 .

We say 𝐷 is a proper wdag (abbreviated pwdag) if 𝐷 has only one sink node. Let D(𝐺𝐷 ) denote the set
of pwdags of 𝐺𝐷 .

Given a resampling sequence 𝒔 = 𝑠1, 𝑠2, ..., 𝑠𝑇 , we associate a wdag 𝐷𝒔 on the node set {𝑣1, ..., 𝑣𝑇 }
such that (i) 𝐿(𝑣𝑘 ) = 𝑠𝑘 and (ii) 𝑣𝑘 → 𝑣ℓ with 𝑘 < ℓ is as an arc of 𝐷𝒔 if and only if either 𝑠𝑘 = 𝑠ℓ or

(𝑠𝑘 , 𝑠ℓ ) ∈ 𝐸𝐷 . See Figure 1 for an example of 𝐷𝒔 .

Given a wdag 𝐷 and a set𝑈 of nodes of 𝐷 , we de�ne 𝐷 (𝑈 ) to be the induced subgraph on all nodes

which has a directed path to some 𝑢 ∈ 𝑈 . Note that 𝐷 (𝑈 ) is also a wdag. We say that 𝐻 is a pre�x of 𝐷 ,

denoted by 𝐻 E 𝐷 , if 𝐻 = 𝐷 (𝑈 ) for some node set𝑈 .

De�nition 2.2. We say a wdag 𝐷 occurs in a resampling sequence 𝒔 if 𝐷 E 𝐷𝒔 . Let 𝜒𝐷 be the indicator
variable of the event that 𝐷 occurs in 𝒔.

Similar to Lemma 12 in [KS11], we have that 𝑇 =
∑

𝐷∈D(𝐺𝐷 ) 𝜒𝐷 . For 𝑖 ∈ [𝑚] and 𝑟 ∈ N+
, de�ne

D(𝑖, 𝑟 ) to be the set of pwdags whose unique sink node is labelled with 𝑖 and in which there are exactly

𝑟 nodes labelled with 𝑖 . Let 𝜒D(𝑖,𝑟 ) be the indicator variable of the event that there is a 𝐷 ∈ D(𝑖, 𝑟 )
occurring in 𝒔. It is easy to see that only one pwdag inD(𝑖, 𝑟 ) can occur in 𝒔. �us 𝜒D(𝑖,𝑟 ) =

∑
𝐷∈D(𝑖,𝑟 ) 𝜒𝐷 ,

which further implies that

Fact 2.3. 𝑇 =
∑

𝑖∈[𝑚]
∑

𝑟 ∈N+ 𝜒D(𝑖,𝑟 ) .

2.2. Reversible arc. In the rest of this section, we �x a matching M ⊆ 𝐸𝐷 of𝐺𝐷 . Given 𝑖 ∈ [𝑚], with
a slight abuse of notation, we sometimes say 𝑖 ∈ M if there is some 𝑖 ′ ∈ [𝑚] such that (𝑖, 𝑖 ′) ∈ M.

De�nition 2.4 (Reversibility). We say that an arc 𝑢 → 𝑣 is reversible in a wdag 𝐷 if the directed graph
obtained from 𝐷 by reversing the direction of the arc is still a DAG.

Furthermore, we say that 𝑢 → 𝑣 isM-reversible in 𝐷 if 𝑢 → 𝑣 is reversible in 𝐷 and (𝐿(𝑢), 𝐿(𝑣)) ∈ M.

By de�nition, we have the following two observations.

Fact 2.5. 𝑢 → 𝑣 is reversible in 𝐷 if and only if it is the unique path from 𝑢 to 𝑣 in 𝐷 .

Fact 2.6. If 𝑢 → 𝑣 is reversible in a wdag 𝐷 of 𝐺𝐷 , then the directed graph obtained from 𝐷 by reversing
the direction of 𝑢 → 𝑣 is also a wdag of 𝐺𝐷 .

Given a pwdag 𝐷 = (𝑉 , 𝐸, 𝐿), de�ne
V(𝐷) , {𝑣 : ∃𝑢 ∈ 𝑉 such that 𝑢 → 𝑣 or 𝑣 → 𝑢 is M-reversible in 𝐷}

to be the set of nodes participating in reversible arcs, and V(𝐷) , 𝑉 \ V(𝐷). For 𝑖 ∈ [𝑚], de�ne
V(𝐷, 𝑖) , V(𝐷) ∩ {𝑣 : 𝐿(𝑣) = 𝑖}.

2.3. Other notations. Let 𝒑 = (𝑝1, · · · , 𝑝𝑚) ∈ (0, 1]𝑚 and 𝜹 ∈ (0, 1)M be two probability vectors.

Recall that 𝒑− = (𝑝−1 , · · · , 𝑝−𝑚) is de�ned as

∀𝑖 ∈ [𝑚] : 𝑝−𝑖 =

{
𝑝𝑖 −

𝛿2
𝑖,𝑖′
17 if (𝑖, 𝑖 ′) ∈ M for some 𝑖 ′,

𝑝𝑖 otherwise.
(1)

For each 𝑖 ∈ [𝑚] where (𝑖, 𝑖 ′) ∈ M for some 𝑖 ′ ∈ [𝑚], de�ne

𝑐𝑖 ,
𝛿2
𝑖,𝑖′

8𝑝𝑖𝑝𝑖′
and 𝑝 ′𝑖 , 𝑝𝑖 (1 − 𝑐𝑖) = 𝑝𝑖 −

𝛿2
𝑖,𝑖′

8𝑝𝑖′
.

Fact 2.7. 𝑝−𝑖 + 𝑝−
𝑖′ (𝑝−𝑖 − 𝑝 ′𝑖 ) ≥ 𝑝𝑖 for each (𝑖, 𝑖 ′) ∈ M.

9



3. Proof of Theorem 1.6

�e proof of �eorem 1.6 consists of two parts. First, we provide a tighter upper bound on the

complexity of MT algorithm (Section 3.1). �en, we show that the tighter upper bound converges if 𝒑−

is in the Shearer’s bound of 𝐺𝐷 (Section 3.2).

3.1. A tighter upper bound on the complexity of MT algorithm. In this subsection, we prove

�eorem 3.7, which follows from Lemma 3.1 and Lemma 3.4 immediately. We �rst recall and introduce

some concepts and notations.

Resampling Table. One key analytical technique of Moser and Tardos [MT10] is to precompute the

randomness in a resampling table 𝑿 . Speci�cally, we can assume (only for the analysis) that MT

algorithm has a preprocessing step where it draws an in�nite number of independent samples𝑋 1
𝑗 , 𝑋

2
𝑗 , · · ·

for each variable𝑋 𝑗 . �ese independent samples create a table𝑿 = (𝑋𝑘
𝑗 ) 𝑗 ∈[𝑚],𝑘∈N+ , called the resampling

table (see Figure 2). MT algorithm takes that �rst column as the initial assignments of 𝑋1, · · · , 𝑋𝑛 . �en,

when 𝑋 𝑗 is to be resampled, MT algorithm goes right in the row corresponding to 𝑋 𝑗 and picks the

sample.

Consistency with the resampling table. For a wdag 𝐷 , a node 𝑣 , and a variable 𝑋 𝑗 ∈ vbl(𝐴𝐿 (𝑣) ), we de�ne
L(𝐷, 𝑣, 𝑗) , |{𝑢 : there is a directed path from 𝑢 to 𝑣 in 𝐷 and 𝑋 𝑗 ∈ vbl(𝐴𝐿 (𝑢) )}| + 1.

Moreover, let 𝑿𝐷,𝑣 , {𝑋 L(𝐷,𝑣,𝑗)
𝑗

: 𝑋 𝑗 ∈ 𝐴𝐿 (𝑣) }. We say that 𝐷 is consistent with 𝑿 , denoted by 𝐷 ∼ 𝑿 ,

if for each node 𝑣 in 𝐷 , the event 𝐴𝐿 (𝑣) holds on 𝑿𝐷,𝑣 . Intuitively, suppose 𝐷 occurs, then 𝑿𝐷,𝑣 are the

assignments of vbl(𝐴𝐿 (𝑣) ) just before the time that the MT algorithm picks the event corresponding to

𝑣 to resample, hence 𝐴𝐿 (𝑣) must hold on 𝑿𝐷,𝑣 . We sometimes use L(𝑣, 𝑗) and 𝑿𝑣 instead of L(𝐷, 𝑣, 𝑗)
and 𝑿𝐷,𝑣 respectively if 𝐷 is clear from the context. Besides, we use D(𝑖, 𝑟 ) ∼ 𝑿 to denote that there is

some 𝐷 ∈ D(𝑖, 𝑟 ) such that 𝐷 ∼ 𝑿 .

Figure 2. �e le� is a resampling table where there are four variables 𝑋1, · · · , 𝑋4. �e

right is an auxiliary table whereM = {(1, 2), (3, 4), (5, 6), (7, 8)}.

Auxiliary Table. We introduce another central concept in the proof of �eorem 3.7, called the auxiliary

table, which is a table of independent fair coins. Speci�cally, for each pair (𝑖, 𝑖 ′) ∈ M, we draw

an in�nite number of independent fair coins 𝑌 1
𝑖,𝑖′, 𝑌

2
𝑖,𝑖′, · · · , where P(𝑌𝑘

𝑖,𝑖′ = 𝑖) = P(𝑌𝑘
𝑖,𝑖′ = 𝑖 ′) = 1/2.

�ese independent coins form the auxiliary table 𝒀 = (𝑌𝑘
𝑖,𝑖′) (𝑖,𝑖′) ∈M,𝑘∈N+ (see Figure 2). �e auxiliary

table is used to encode directions of M-reversible arcs, according to which we partition the space∨
𝐷∈D(𝑖,𝑟 ) (𝐷 ∼ 𝑿 ).

Consistency with the resampling table and the auxiliary table. We need some notations about reversible

arcs. Suppose 𝐷 has a unique sink node𝑤 and 𝑢 → 𝑣 is reversible in 𝐷 . Let 𝐷 ′
be the DAG obtained

from 𝐷 by reversing the direction of 𝑢 → 𝑣 . We de�ne 𝜑 (𝐷,𝑢, 𝑣) , 𝐷 ′({𝑤}). In other words, 𝜑 (𝐷,𝑢, 𝑣)
is the pre�x of 𝐷 ′

with a unique sink node𝑤 . Given (𝑖, 𝑖 ′) ∈ M and a pwdag 𝐷 , let List(𝐷, 𝑖, 𝑖 ′) denote
the sequence listing all nodes in 𝐷 with labels 𝑖 or 𝑖 ′ in a topological order of 𝐺𝐷

4
. Given a node 𝑣 in 𝐷 ,

if (𝐿(𝑣), 𝑖) ∈ M5
, we de�ne

𝜆(𝑣, 𝐷) , |{𝑢 : (𝑢 → 𝑣 is in 𝐷) ∧ (𝐿(𝑢) ∈ {𝑖, 𝐿(𝑣)})}| + 1

4
It is easy to see that List(𝐷, 𝑖, 𝑖 ′) is well de�ned. �at is, all topological orderings of 𝐷 induce the same List(𝐷, 𝑖, 𝑖 ′).
5
Because M is a matching, there is at most one such 𝑖 .
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to be the order of 𝑣 in List(𝐷, 𝐿(𝑣), 𝑖). For simplicity of notations, we will use 𝜆(𝑣) instead of 𝜆(𝑣, 𝐷) if
𝐷 is clear from the context.

Given a wdag 𝐷 , we say an M-reversible arc 𝑢 → 𝑣 is inconsistent with the auxiliary table 𝒀 if

𝑦
𝜆 (𝑢)
𝐿 (𝑢),𝐿 (𝑣) = 𝐿(𝑣). We say 𝐷 is consistent with (𝑿 , 𝒀 ), denoted by 𝐷 ∼ (𝑿 , 𝒀 ), if (i) 𝐷 ∼ 𝑿 and (ii) for

any M-reversible arc 𝑢 → 𝑣 inconsistent with 𝒚, 𝜑 (𝐷,𝑢, 𝑣) � 𝑿 . We say D(𝑖, 𝑟 ) ∼ (𝑿 , 𝒀 ) if there is
some 𝐷 ∈ D(𝑖, 𝑟 ) such that 𝐷 ∼ (𝑿 , 𝒀 ).

�e intuition of the notion “consistency” is as follows. Suppose𝑢 → 𝑣 in aM-reversible arc in 𝐷 , and

both𝐷 and𝜑 (𝐷,𝑢, 𝑣) are consistent with the resampling table. But𝐷 and𝜑 (𝐷,𝑢, 𝑣) cannot both occur. It
is according to the auxiliary table to which one of𝐷 and𝜑 (𝐷,𝑢, 𝑣) we assign (𝐷 ∼ 𝑿 )∧ (𝜑 (𝐷,𝑢, 𝑣) ∼ 𝑿 ).

Lemma 3.1. For each 𝑖 ∈ [𝑚] and 𝑟 ∈ N+, P𝑿 [D(𝑖, 𝑟 ) ∼ 𝑿 ] = P𝑿 ,𝒀 [D(𝑖, 𝑟 ) ∼ (𝑿 , 𝒀 )].

Proof. Fix an arbitrary assignment 𝒙 of 𝑿 and an arbitrary assignment 𝒚 of 𝒀 . Suppose D(𝑖, 𝑟 ) ∼ 𝒙 ,
i.e, ∃𝐷0 ∈ D(𝑖, 𝑟 ) such that 𝐷 ∼ 𝒙 . We will show that there must exist some 𝐷 ∈ D(𝑖, 𝑟 ) such that

𝐷 ∼ (𝒙,𝒚). �is will imply the conclusion immediately.

We apply the following procedure to �nd such a pwdag 𝐷 ∈ D(𝑖, 𝑟 ).

1 Initially, 𝑘 = 0;

2 while ∃ anM-reversible arc 𝑢𝑘 → 𝑣𝑘 in 𝐷𝑘 inconsistent with 𝒚 such that 𝜑 (𝐷𝑘 , 𝑢𝑘 , 𝑣𝑘 ) ∼ 𝒙 do
3 let 𝐷𝑘+1 := 𝜑 (𝐷𝑘 , 𝑢𝑘 , 𝑣𝑘 ) and 𝑘 := 𝑘 + 1;

4 Return 𝐷𝑘 ;

By induction on 𝑘 , it is easy to check that 𝐷𝑘 ∼ 𝒙 and 𝐷𝑘 ∈ D(𝑖, 𝑟 ) for each 𝑘 . Furthermore, if the

procedure terminates, then in the �nal wdag 𝐷 , for every M-reversible arc 𝑢 → 𝑣 inconsistent with 𝒚,
we have that 𝜑 (𝐷,𝑢, 𝑣) � 𝒙 . So 𝐷 ∼ (𝒙,𝒚). In the following, we will show that the procedure always

terminates, which �nishes the proof.

Note that each 𝐷𝑘 has no more nodes than 𝐷0 and that there are �nite number of wdags in D(𝑖, 𝑟 )
with no more nodes than𝐷0, so it su�ces to prove that each wdag appears at most once in the procedure.

By contradiction, assume 𝐷 𝑗 = 𝐷𝑘 for some 𝑗 ≤ 𝑘 . Recall that 𝑢 𝑗 → 𝑣 𝑗 is reversible in 𝐷 𝑗 and

inconsistent with 𝒚. So 𝑦
𝜆 (𝑣𝑗 ,𝐷 𝑗 )−1
𝐿 (𝑢 𝑗 ),𝐿 (𝑣𝑗 ) = 𝑦

𝜆 (𝑢 𝑗 ,𝐷 𝑗 )
𝐿 (𝑢 𝑗 ),𝐿 (𝑣𝑗 ) = 𝐿(𝑣 𝑗 ).

Let 𝐷ℓ be the last wdag in 𝐷 𝑗+1, · · · , 𝐷𝑘 such that 𝜆(𝑣 𝑗 , 𝐷ℓ ) < 𝜆(𝑣 𝑗 , 𝐷 𝑗 ). Observing that 𝜆(𝑣 𝑗 , 𝐷 𝑗+1) =
𝜆(𝑣 𝑗 , 𝐷 𝑗 ) − 1, we have such 𝐷ℓ must exist. By 𝜆(𝑣 𝑗 , 𝐷𝑘 ) = 𝜆(𝑣 𝑗 , 𝐷 𝑗 ), we have 𝜆(𝑣 𝑗 , 𝐷ℓ ) = 𝜆(𝑣 𝑗 , 𝐷 𝑗 ) − 1,
𝜆(𝑣 𝑗 , 𝐷ℓ+1) = 𝜆(𝑣 𝑗 , 𝐷 𝑗 ). �erefore, 𝜆(𝑣 𝑗 , 𝐷ℓ+1) = 𝜆(𝑣 𝑗 , 𝐷ℓ ) + 1. Combining with that 𝑢ℓ → 𝑣ℓ is the

inconsistent arc in 𝐷ℓ which is reversed in 𝐷ℓ+1, we have 𝑢ℓ = 𝑣 𝑗 , (𝐿(𝑢 𝑗 ), 𝐿(𝑣 𝑗 )) = (𝐿(𝑢ℓ ), 𝐿(𝑣ℓ )) ∈ M
and 𝑦

𝜆 (𝑢ℓ ,𝐷ℓ )
𝐿 (𝑢ℓ ),𝐿 (𝑣ℓ ) = 𝐿(𝑣ℓ ). �us we have 𝐿(𝑣ℓ ) = 𝐿(𝑢 𝑗 ) and 𝑦𝜆 (𝑢ℓ ,𝐷ℓ )

𝐿 (𝑢ℓ ),𝐿 (𝑣ℓ ) = 𝐿(𝑢 𝑗 ). Note that 𝜆(𝑣ℓ , 𝐷ℓ ) =

1 + 𝜆(𝑢ℓ , 𝐷ℓ ) = 1 + 𝜆(𝑣 𝑗 , 𝐷ℓ ). Combining with 𝜆(𝑢 𝑗 , 𝐷 𝑗 ) = 𝜆(𝑣 𝑗 , 𝐷 𝑗 ) − 1, we have 𝜆(𝑢ℓ , 𝐷ℓ ) = 𝜆(𝑢 𝑗 , 𝐷 𝑗 ).
Combining with 𝑦

𝜆 (𝑢ℓ ,𝐷ℓ )
𝐿 (𝑢ℓ ),𝐿 (𝑣ℓ ) = 𝐿(𝑢 𝑗 ), we have 𝑦

𝜆 (𝑢 𝑗 ,𝐷 𝑗 )
𝐿 (𝑢ℓ ),𝐿 (𝑣ℓ ) = 𝐿(𝑢 𝑗 ). �is is contradicted with 𝑦

𝜆 (𝑢 𝑗 ,𝐷 𝑗 )
𝐿 (𝑢 𝑗 ),𝐿 (𝑣𝑗 ) =

𝐿(𝑣 𝑗 ).
�

�e following two propositions will be used in the proof of Lemma 3.4. �e �rst proposition is an

easy observation, and the second one is a direct application of the Cauchy-Schwarz inequality. For the

sake of completeness, we present their proof in the appendix.

Proposition 3.2. Given any wdag 𝐷 , there exists a set P of disjointM-reversible arcs6 such that: for each
𝑖 ∈ M,

|{𝑣 : ∃𝑢 such that 𝑢 → 𝑣 or 𝑣 → 𝑢 is in P} ∩ {𝑣 : 𝐿(𝑣) = 𝑖}| ≥ 1

2
· V(𝐷, 𝑖) .

6
We say two arc 𝑢 → 𝑣 and 𝑢 ′ → 𝑣 ′ are disjoint if their node sets are disjoint, i.e. {𝑢, 𝑣} ∩ {𝑢 ′, 𝑣 ′} = ∅.
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Proposition 3.3. Suppose 𝑋,𝑌 and 𝑍 are three independent random variables, 𝐴 is an event determined
by {𝑋,𝑌 }, and 𝐴′ is an event determined by {𝑌, 𝑍 }. Let 𝑋1, 𝑌1, 𝑌2, 𝑍1 be four independent samples of
𝑋,𝑌,𝑌, 𝑍 , respectively. �en the following holds with probability at most P(𝐴)P(𝐴′) − P(𝐴 ∩𝐴′)2:

• 𝐴 is true on (𝑋1, 𝑌1), 𝐴′ is true on (𝑌2, 𝑍1), and
• either 𝐴 is false on (𝑋1, 𝑌2) or 𝐴′ is false on (𝑌1, 𝑍1).

Now, we are ready to show Lemma 3.4.

Lemma 3.4. For each pwdag 𝐷 ,

P[𝐷 ∼ (𝑿 , 𝒀 )] ≤ ©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬ .
Proof. Let P be the set of disjointM-reversible arcs de�ned in Proposition 3.2. Let 𝑉 (P) denote the
set of nodes which appears in P, and 𝑉 (P) consists of the other nodes. Proposition 3.2 says that for

each 𝑖 ∈ M,

𝑉 (P) ∩ {𝑣 : 𝐿(𝑣) = 𝑖}| ≥ 1

2
· V(𝐷, 𝑖) .

For each 𝑣 ∈ 𝑉 (P), let 𝐵𝑣 denote the event that𝐴𝐿 (𝑣) holds on 𝑿𝑣 . It is easy to see that P[𝐵𝑣] = 𝑝𝐿 (𝑣) .
Besides,

Claim 3.5. If 𝐷 ∼ (𝑿 , 𝒀 ), then 𝐵𝑣 holds for each 𝑣 ∈ 𝑉 (P).

Proof. Note that 𝑿𝑣 are the assignments of vbl(𝐴𝐿 (𝑣) ) just before the time that the MT algorithm picks

the event corresponding to 𝑣 to resample. MT algorithm decides to pick𝐴𝐿 (𝑣) only if𝐴𝐿 (𝑣) holds. Hence
𝐴𝐿 (𝑣) must hold on 𝑿𝑣 . �

Let 𝑢 → 𝑣 be an arc in P, where 𝐿(𝑢) = 𝑖 and 𝐿(𝑣) = 𝑖 ′. �en by the de�nition of P, we have 𝑢 → 𝑣

is reversible in 𝐷 . Let 𝐷 ′
be the wdag obtained by reversing the direction of 𝑢 → 𝑣 in 𝐷 . Recalling the

de�nition of 𝑿𝐷′,𝑣 , one can verify that

𝑿𝐷′,𝑢 :=
{
𝑋 𝑗,L(𝑣,𝑗) : 𝑋 𝑗 ∈ vbl

(
𝐴𝑖

)
∩ vbl

(
𝐴𝑖′

)}
∪

{
𝑋 𝑗,L(𝑢,𝑗) : 𝑋 𝑗 ∈ vbl

(
𝐴𝑖

)
\ vbl

(
𝐴𝑖′

)}
and

𝑿𝐷′,𝑣 :=
{
𝑋 𝑗,L(𝑢,𝑗) : 𝑋 𝑗 ∈ vbl

(
𝐴𝑖

)
∩ vbl

(
𝐴𝑖′

)}
∪

{
𝑋 𝑗,L(𝑣,𝑗) : 𝑋 𝑗 ∈ vbl

(
𝐴𝑖′

)
\ vbl

(
𝐴𝑖

)}
.

For simplicity, let 𝜆 := 𝜆(𝑢, 𝐷). We de�ne 𝐵𝑢,𝑣 to be the event that the following hold:

(a) 𝐴𝑖 holds on 𝑋𝑢 , and 𝐴𝑖′ holds on 𝑋𝑣 ;

(b) If 𝑌 𝜆
𝑖,𝑖′ = 𝑖

′
, then either 𝐴𝑖 is false on 𝑿𝐷′,𝑢 or 𝐴′

𝑖 is false on 𝑿𝐷′,𝑣 .

Conditioned on that 𝑌 𝜆
𝑖,𝑖′ = 𝑖 , 𝐵𝑢,𝑣 happens with probability 𝑝𝑖𝑝𝑖′ . Condition on that 𝑌 𝜆

𝑖,𝑖′ = 𝑖
′
, by using

Proposition 3.3, 𝐵𝑢,𝑣 happens with probability at most 𝑝𝑖𝑝𝑖′ − 𝛿2𝑖,𝑖′ . �us,

P[𝐵𝑢,𝑣] ≤ P[𝑌 𝜆
𝑖,𝑖′ = 𝑖]𝑝𝑖𝑝𝑖′ + P[𝑌 𝜆

𝑖,𝑖′ = 𝑖
′]

(
𝑝𝑖𝑝𝑖′ − 𝛿2𝑖,𝑖′

)
≤ 1

2
· 𝑝𝑖𝑝𝑖′ +

1

2
·
(
𝑝𝑖𝑝𝑖′ − 𝛿2𝑖,𝑖′

)
≤ 𝑝𝑖𝑝𝑖′ (1 − 2𝑐𝑖) (1 − 2𝑐𝑖′) .

Claim 3.6. If 𝐷 ∼ (𝑿 , 𝒀 ), then 𝐵𝑢,𝑣 holds for each 𝑢 → 𝑣 in P.

Proof. Suppose 𝐷 ∼ (𝑿 , 𝒀 ). Similar to the argument in Claim 3.5, we can see that Item (a) holds. In the

following, we show Item (b) holds.

By contradiction, assume 𝑌 𝜆
𝑖,𝑖′ = 𝑖

′
, 𝐴𝑖 holds on 𝑿𝐷′,𝑢 , and 𝐴𝑖′ holds on 𝑿𝐷′,𝑣 . �en, we have 𝑢 → 𝑣

in 𝐷 is inconsistent with 𝒀 and 𝐷 ′ ∼ 𝑿 . �us, 𝜑 (𝐷,𝑢, 𝑣) ∼ 𝑿 since 𝜑 (𝐷,𝑢, 𝑣) is a pre�x of 𝐷 ′
. By

de�nition, we have 𝐷 � (𝑿 , 𝒀 ), a contradiction. �
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Since the events {𝐵𝑣 : 𝑣 ∈ 𝑉 (P)} and {𝐵𝑢,𝑣 : 𝑢 → 𝑣 is in P} depend on distinct entries of 𝑿 and 𝒀 ,
they are mutually independent. �erefore,

P [𝐷 ∼ (𝑿 , 𝒀 )] ≤ P
©­«

⋂
𝑤∈𝑉 (P)

𝐵𝑤
ª®¬
⋂ ( ⋂

𝑢→𝑣 is in P
𝐵𝑢,𝑣

) =
©­«

∏
𝑤∈𝑉 (P)

P(𝐵𝑤)
ª®¬
( ∏
𝑢→𝑣 is in P

P(𝐵𝑢,𝑣)
)

≤ ©­«
∏

𝑤∈𝑉 (P)

𝑝𝐿 (𝑤)
ª®¬
( ∏
𝑢→𝑣 is in P

𝑝𝐿 (𝑢)𝑝𝐿 (𝑣)
(
1 − 2𝑐𝐿 (𝑢)

) (
1 − 2𝑐𝐿 (𝑢)

))

=

( ∏
𝑣 in 𝐷

𝑝𝐿 (𝑣)

)
· ©­«

∏
𝑖∈[𝑚]

(1 − 2𝑐𝑖) |P∩{𝑣:𝐿 (𝑣)=𝑖 } |ª®¬
≤

( ∏
𝑣 in 𝐷

𝑝𝐿 (𝑣)

)
· ©­«

∏
𝑖∈[𝑚]

(1 − 2𝑐𝑖) |V (𝑖) |/2ª®¬ ≤
( ∏
𝑣 in 𝐷

𝑝𝐿 (𝑣)

)
· ©­«

∏
𝑖∈[𝑚]

(1 − 𝑐𝑖) |V (𝑖) |ª®¬
=

©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬ .
�

Now we are ready to prove the main theorem of this subsection.

�eorem 3.7. E[𝑇 ] ≤ ∑
𝐷∈D(𝐺𝐷 )

( ∏
𝑣∈V(𝐷) 𝑝𝐿 (𝑣)

) ( ∏
𝑣∈V(𝐷) 𝑝

′
𝐿 (𝑣)

)
.

Proof. First, according to Lemmas 3.1 and 3.4,

P[𝜒D(𝑖,𝑟 ) ] ≤ P[D(𝑖, 𝑟 ) ∼ 𝑿 ] = P[D(𝑖, 𝑟 ) ∼ (𝑿 , 𝒀 )] ≤
∑︁

𝐷∈D(𝑖,𝑟 )
P[𝐷 ∼ (𝑿 , 𝒀 )]

≤
∑︁

𝐷∈D(𝑖,𝑟 )

©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬ .
�en, by Fact 2.3 and the above inequality, we have

E[𝑇 ] =
∑︁
𝑖∈[𝑚]

∑︁
𝑟 ∈N+
P[𝜒D(𝑖,𝑟 ) ] ≤

∑︁
𝑖∈[𝑚]

∑︁
𝑟 ∈N+

∑︁
𝐷∈D(𝑖,𝑟 )

©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬
≤

∑︁
𝐷∈D(𝐺𝐷 )

©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬ .
�

3.2. Mapping between wdags. In this section, we will prove �eorem 3.13, which provides a upper

bound of E[𝑇 ] in terms of 𝒑−
.

De�nition 3.8 (Homomorphic dependency graph). Given a dependency graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and a
matching M of 𝐺𝐷 , we de�ne a graph 𝐺M = (𝑉M, 𝐸M) homomorphic to 𝐺𝐷 respected to M as follows.

• 𝑉M = [𝑚] \ {𝑖0, 𝑖1 : (𝑖0, 𝑖1) ∈ M} ∪ {𝑖↑0, 𝑖
↓
0, 𝑖

↑
1, 𝑖

↓
1 : (𝑖0, 𝑖1) ∈ M};

• ∀(𝑖0, 𝑖1) ∈ 𝐸𝐷 , each pair of vertices in {𝑖0, 𝑖1, 𝑖↑0, 𝑖
↓
0, 𝑖

↑
1, 𝑖

↓
1} ∩𝑉M are connected in 𝐺M .

Besides, we associate a probability vector 𝒑M with 𝐺M as follows:

∀𝑣 ∈ 𝑉M : 𝑝M𝑣 =


𝑝 ′𝑖 if 𝑣 = 𝑖↑ for some 𝑖 ∈ [𝑚],
𝑝−𝑖 − 𝑝 ′𝑖 if 𝑣 = 𝑖↓ for some 𝑖 ∈ [𝑚],
𝑝−𝑖 otherwise, 𝑣 = 𝑖 for some 𝑖 ∈ [𝑚] .
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Figure 3. (a) a dependency graph 𝐺𝐷 ; (b) the 𝐺
M

whenM = {(2, 3)}.

In fact, (𝐺𝐷 ,𝒑−) and (𝐺M,𝒑M) are essentially the same: suppose A ∼ (𝐺𝐷 ,𝒑−), then for each

𝑖 ∈ M, we view 𝐴𝑖 as the union of two mutually exclusive events 𝐴𝑖↑ ∪𝐴𝑖↓ whose probabilities are 𝑝
′
𝑖

and 𝑝− − 𝑝 ′𝑖 respectively. Such a representation of A is of the se�ing (𝐺M,𝒑M).
We have the following proposition, whose proof can be found in the appendix.

Proposition 3.9.
∑

𝐷′∈D(𝐺M )
∏

𝑣′ in 𝐷′ 𝑝M
𝐿′ (𝑣′) =

∑
𝐷∈D(𝐺𝐷 )

∏
𝑣 in 𝐷 𝑝

−
𝐿 (𝑣) .

Given a pwdag 𝐷 = (𝑉 , 𝐸, 𝐿), recall that V(𝐷) is the set of nodes of M-reversible arcs in 𝐷 . De�ne

ℳ(𝐷) , {𝑣 : 𝐿(𝑣) ∈ M} to be the set of nodes 𝑣 in 𝐷 where 𝐿(𝑣) is contained in an edge in M.

Obviously, V(𝐷) ⊆ ℳ(𝐷). For simplicity of notations, we will omit 𝐷 from the notations if 𝐷 is clear

from the context.

Given a pwdag 𝐷 = (𝑉 , 𝐸, 𝐿), we use 𝒮 = {𝒮1,𝒮2,𝒮3,𝒮4} to represent a partition of ℳ(𝐷) where
V ⊆ 𝒮1 (some of these four sets are possibly empty). Let 𝜓 (𝐷) denote the set consisting of all such

partitions. �e formal de�nition is as follows.

De�nition 3.10 (Partition). Given a pwdag 𝐷 = (𝑉 , 𝐸, 𝐿) of 𝐺𝐷 , de�ne

𝜓 (𝐷) , {{𝒮1,𝒮2,𝒮3,𝒮4} : V ⊆ 𝒮1 and ℳ = 𝒮1 t𝒮2 t𝒮3 t𝒮4}.

Given a wdag 𝐷 , there may be two or more topological ordering of 𝐷 . We �x an arbitrary topological

ordering, and denote it by 𝜋𝐷 . In the following, we de�ne an injection ℎ from {(𝐷,𝒮) : 𝐷 ∈ D(𝐺𝐷 ),𝒮 ∈
𝜓 (𝐷)} to D(𝐺M).

De�nition 3.11. Given a pwdag 𝐷 and𝒮 ∈ 𝜓 (𝐷), de�ne ℎ(𝐷,𝒮) to be a directed graph 𝐷 ′ = (𝑉 ′, 𝐸 ′, 𝐿′)
constructed as follows.

Constructing 𝑉 ′. 𝑉 ′ = 𝑉 ′
1 t 𝑉 ′

2 where |𝑉 ′
1 | = |𝑉 | and |𝑉 ′

2 | = |𝒮3 ∪ 𝒮4 |. For convenience of presentation,
we �x two bijections 𝑓 : 𝑉 → 𝑉 ′

1 and 𝑓 ∗ : 𝒮3 ∪ 𝒮4 → 𝑉 ′
2 to name nodes in 𝑉 ′. In order to distinguish

between nodes in 𝐷 and those in 𝐷 ′, we will always use 𝑢, 𝑣,𝑤 to represent the nodes of 𝐷 and 𝑢 ′, 𝑣 ′,𝑤 ′ to
present the nodes of 𝐷 ′. Given 𝑣 ′ ∈ 𝑉 ′, we use 𝑔(𝑣 ′) to denote the unique node 𝑣 ∈ 𝑉 such that 𝑓 (𝑣) = 𝑣 ′
(if 𝑣 ′ ∈ 𝑉 ′

1 ) or 𝑓
∗(𝑣) = 𝑣 ′ (if 𝑣 ′ ∈ 𝑉 ′

2 ).

Description of 𝐿′. For each node 𝑣 ′ ∈ 𝑉 ′
1 , where 𝑣

′ = 𝑓 (𝑣),

(2) 𝐿′(𝑣 ′) =


(𝐿(𝑣))↑, if 𝑣 ∈ 𝒮1,

(𝐿(𝑣))↓, if 𝑣 ∈ 𝒮2 ∪𝒮3 ∪𝒮4,

𝐿(𝑣), otherwise, 𝑣 ∉ ℳ.

For each node 𝑣 ′ ∈ 𝑉 ′
2 , assuming 𝑣 ∈ 𝒮3 ∪𝒮4 is the node such that 𝑣 ′ = 𝑓 ∗(𝑣) and 𝑖 ∈ [𝑚] is the node such

that ((𝐿(𝑣), 𝑖) ∈ M,

(3) 𝐿′(𝑣 ′) =
{
𝑖↑, if 𝑣 ∈ 𝒮3,

𝑖↓, otherwise, 𝑣 ∈ 𝒮4.

Constructing 𝐸 ′. 𝐸 ′ = 𝐸 ′1 t 𝐸 ′2 where 𝐸 ′1 = {𝑓 ∗(𝑣) → 𝑓 (𝑣) : 𝑣 ∈ 𝒮3 ∪𝒮4} and

𝐸 ′2 = {𝑢 ′ → 𝑣 ′ :
(
(𝐿′(𝑢 ′) = 𝐿′(𝑣 ′)

)
∨

(
(𝐿′(𝑢 ′), 𝐿′(𝑣 ′)) ∈ 𝐸M)

)
∧ (𝑔(𝑢 ′) ≺ 𝑔(𝑣 ′) in 𝜋𝐷 )}.

�eorem 3.12. ℎ(·, ·) is an injection from {(𝐷,𝒮) : 𝐷 ∈ D(𝐺𝐷 ),𝒮 ∈ 𝜓 (𝐷)} to D(𝐺M).
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�e proof of �eorem 3.12 is in the appendix. Now we can prove the main theorem of this subsection.

�eorem 3.13.
∑

𝐷∈D(𝐺𝐷 )

(∏
𝑣∈V(𝐷) 𝑝𝐿 (𝑣)

) (∏
𝑣∈V(𝐷) 𝑝

′
𝐿 (𝑣)

)
≤ ∑

𝐷∈D(𝐺𝐷 )
∏

𝑣 in 𝐷 𝑝
−
𝐿 (𝑣) .

Proof. For each 𝑖 ∈ [𝑚] where (𝑖, 𝑗) ∈ M, let

𝑞1𝑖 , 𝑝
′
𝑖 , 𝑞2𝑖 , 𝑝

−
𝑖 − 𝑝 ′𝑖 , 𝑞3𝑖 , (𝑝−𝑖 − 𝑝 ′𝑖 )𝑝 ′𝑗 , and 𝑞4𝑖 , (𝑝−𝑖 − 𝑝 ′𝑖 ) (𝑝−𝑗 − 𝑝 ′𝑗 ).

According to Fact 2.7, 𝑞1𝑖 + 𝑞2𝑖 + 𝑞3𝑖 + 𝑞4𝑖 = 𝑝−𝑖 + 𝑝−𝑗 (𝑝−𝑖 − 𝑝 ′𝑖 ) ≥ 𝑝𝑖 .

Given 𝐷 = (𝑉 , 𝐸, 𝐿) ∈ D(𝐺𝐷 ) and 𝒮 ∈ 𝜓 (𝐷), let 𝐷 ′ = ℎ(𝐷,𝒮). For each 𝑣 in 𝐷 where (𝐿(𝑣), 𝑗) ∈ M
for some 𝑗 ∈ [𝑚], according to the de�nition of 𝒑M

, (2), and (3), we have that

• if 𝑣 ∈ 𝒮1, then 𝑝
M
𝐿′ (𝑓 (𝑣)) = 𝑝

′
𝐿 (𝑣) = 𝑞

1
𝐿 (𝑣) ;

• if 𝑣 ∈ 𝒮2, then 𝑝
M
𝐿′ (𝑓 (𝑣)) = 𝑝

−
𝐿 (𝑣) − 𝑝

′
𝐿 (𝑣) = 𝑞

2
𝐿 (𝑣) ;

• if 𝑣 ∈ 𝒮3, then 𝑝
M
𝐿′ (𝑓 (𝑣)) · 𝑝

M
𝐿′ (𝑓 ∗ (𝑣)) = (𝑝−

𝐿 (𝑣) − 𝑝
′
𝐿 (𝑣) )𝑝

′
𝑗 = 𝑞

3
𝐿 (𝑣) ;

• if 𝑣 ∈ 𝒮4, then 𝑝
M
𝐿′ (𝑓 (𝑣)) · 𝑝

M
𝐿′ (𝑓 ∗ (𝑣)) = (𝑝−

𝐿 (𝑣) − 𝑝
′
𝐿 (𝑣) ) (𝑝

−
𝑗 − 𝑝 ′𝑗 ) = 𝑞4𝐿 (𝑣) .

Moreover, for each 𝑢 ∈ 𝑉 \ℳ(𝐷) = V(𝐷) \ℳ(𝐷), we have 𝑝M
𝐿′ (𝑓 (𝑣)) = 𝑝𝐿 (𝑣) . �us, for each𝒮 ∈ 𝜓 (𝐷),∏

𝑣′ in ℎ (𝐷,𝒮)
𝑝M
𝐿′ (𝑣′) =

∏
𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈𝒮1

𝑞1
𝐿 (𝑣)

∏
𝑣∈𝒮2

𝑞2
𝐿 (𝑣)

∏
𝑣∈𝒮3

𝑞3
𝐿 (𝑣)

∏
𝑣∈𝒮4

𝑞4
𝐿 (𝑣)

=
∏

𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣)

∏
𝑣∈𝒮1\V

𝑞1
𝐿 (𝑣)

∏
𝑣∈𝒮2

𝑞2
𝐿 (𝑣)

∏
𝑣∈𝒮3

𝑞3
𝐿 (𝑣)

∏
𝑣∈𝒮4

𝑞4
𝐿 (𝑣) .

So ∑︁
𝒮∈𝜓 (𝐷)

∏
𝑣′ in ℎ (𝐷,𝒮)

𝑝M
𝐿′ (𝑣′) =

∑︁
𝒮∈𝜓 (𝐷)

∏
𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣)

∏
𝑣∈𝒮1\V

𝑞1
𝐿 (𝑣)

∏
𝑣∈𝒮2

𝑞2
𝐿 (𝑣)

∏
𝑣∈𝒮3

𝑞3
𝐿 (𝑣)

∏
𝑣∈𝒮4

𝑞4
𝐿 (𝑣)

=
∏

𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣)

∑︁
𝒮∈𝜓 (𝐷)

∏
𝑣∈𝒮1\V

𝑞1
𝐿 (𝑣)

∏
𝑣∈𝒮2

𝑞2
𝐿 (𝑣)

∏
𝑣∈𝒮3

𝑞3
𝐿 (𝑣)

∏
𝑣∈𝒮4

𝑞4
𝐿 (𝑣)

=
∏

𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣)

∏
𝑣∈ℳ\V

(
𝑞1
𝐿 (𝑣) + 𝑞

2
𝐿 (𝑣) + 𝑞

3
𝐿 (𝑣) + 𝑞

4
𝐿 (𝑣)

)
≥

∏
𝑣∈V\ℳ

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣)

∏
𝑣∈ℳ\V

𝑝𝐿 (𝑣)

=
∏
𝑣∈V

𝑝𝐿 (𝑣)
∏
𝑣∈V

𝑝 ′
𝐿 (𝑣) ,

where the third equality is according to the de�nition of𝜓 (𝐷). Finally,∑︁
𝐷∈D(𝐺𝐷 )

©­«
∏

𝑣∈V(𝐷)

𝑝𝐿 (𝑣)
ª®¬ ©­«

∏
𝑣∈V(𝐷)

𝑝 ′
𝐿 (𝑣)

ª®¬ ≤
∑︁

𝐷∈D(𝐺𝐷 )

∑︁
𝒮∈𝜓 (𝐷)

∏
𝑣′ in ℎ (𝐷,𝒮)

𝑝M
𝐿′ (𝑣′) ≤

∑︁
𝐷′∈D(𝐺M )

∏
𝑣 in 𝐷′

𝑝M
𝐿′ (𝑣′)

=
∑︁

𝐷∈D(𝐺𝐷 )

∏
𝑣 in 𝐷

𝑝−
𝐿 (𝑣) ,

where the second inequality is due to �eorem 3.12 and the equality is by Proposition 3.9. �

3.3. Putting all things together. �e following lemma is implicitly proved in [KS11].

Lemma 3.14 ([KS11]). For any undirected graph𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and probability vector 𝒑 ∈ I𝑎 (𝐺𝐷 )/(1+
𝜀), ∑𝑖∈[𝑚]

𝑞{𝑖} (𝐺𝐷 ,𝒑)
𝑞∅ (𝐺𝐷 ,𝒑) ≤ 𝑚/𝜀.

�eorem 1.6 (restated). For any A ∼ (𝐺𝐷 ,𝒑,M, 𝜹), if (1 + 𝜀) · 𝒑− ∈ I𝑎 (𝐺𝐷 ), then the expected number
of resampling steps performed by MT algorithm is most𝑚/𝜀, where𝑚 is the number of events in A.
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Proof. Fix any such A. We have that

E[𝑇 ] ≤
∑︁

𝐷∈D(𝐺𝐷 )

∏
𝑣 in 𝐷

𝑝−
𝐿 (𝑣) ≤

∑
𝑖∈[𝑚] 𝑞 {𝑖 } (𝐺𝐷 ,𝒑−)
𝑞∅ (𝐺𝐷 ,𝒑−) ≤ 𝑚

𝜀
,

where the �rst inequality is by �eorems 3.7 and 3.13, the second inequality is due to �eorem 4

in [KS11], and the last inequality is according to Lemma 3.14. �

4. Lower bound on the amount of intersection

In order to explore how far beyond Shearer’s bound MT algorithm is still e�cient in general, we

provide a lower bound on the amount of intersection between dependent events for general instances

(�eorem 4.1).

We �rst introduce some notations. Given a bipartite graph 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵), we call the vertex
𝑖 ∈ [𝑚] le� vertex and the vertex 𝑗 ∈ [𝑛] right vertex. We call 𝐺𝐵 linear7 if any two le� vertices in [𝑚]
share at most one common neighbor in [𝑛]. Let Δ𝐷 (𝐺𝐵) denote the maximum degree of𝐺𝐷 (𝐺𝐵), and
Δ𝐵 (𝐺𝐵) denote the maximum degree of the le� vertices in 𝐺𝐵 . If 𝐺𝐵 is clear from the context, we may

omit 𝐺𝐵 from these notations. In addition, for a bipartite graph 𝐺 = (𝐿 ⊂ [𝑚], 𝑅, 𝐸) and a probability

vector 𝒑 ∈ (0, 1)𝑚 , we de�ne8

z(𝐺,𝒑) ,

(
min𝑖∈𝐿 𝑝𝑖

)2 · (−| ∪𝑖∈𝐿 N𝐺 (𝑖) | +
∑

𝑖∈𝐿 |N𝐺 (𝑖) | · 𝑝1/ |N𝐺 (𝑖) |
𝑖

)
√︁
|𝐿 | · Δ𝐷 (𝐺) · Δ𝐵 (𝐺)2

.

and z+(𝐺,𝒑) , max{z(𝐺,𝒑), 0}.
We useA ∼ (𝐺𝐵,𝒑) to denote that (i)𝐺𝐵 is an event-variable graph ofA and (ii) the probability vector

ofA is 𝒑. LetM = {(𝑖1, 𝑖 ′1), (𝑖2, 𝑖 ′2), · · · } be a matching of𝐺𝐷 (𝐺𝐵), and 𝜹 = (𝛿𝑖1,𝑖′1, 𝛿𝑖2,𝑖′2, · · · ) ∈ (0, 1) |M |

be another probability vector. We say that an event set A is of the se�ing (𝐺𝐵,𝒑,M, 𝜹), and write

A ∼ (𝐺𝐵,𝒑,M, 𝜹), if A ∼ (𝐺𝐵,𝒑) and P(𝐴𝑖 ∩𝐴𝑖′) ≥ 𝛿𝑖,𝑖′ for each pair (𝑖, 𝑖 ′) ∈ M.

We call an event 𝐴 elementary, if 𝐴 can be wri�en as (𝑋𝑖1 ∈ 𝑆𝑖1) ∧ (𝑋𝑖2 ∈ 𝑆𝑖2) ∧ · · · ∧ (𝑋𝑖𝑘 ∈ 𝑆𝑖𝑘 )
where 𝑆𝑖1, · · · , 𝑆𝑖𝑘 are subsets of the domains of variables. We call an event set A elementary if all

events in A are elementary.

�eorem 4.1. Let 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵) be a bipartite graph, 𝒑 ∈ (0, 1]𝑚 be a probability vector, and
𝐿1, 𝐿2, · · · , 𝐿𝑡 be a collection of disjoint subsets of [𝑚]. For each 𝑘 ∈ [𝑡], let𝐺𝑘 denote the induced subgraph
on 𝐿𝑘 ∪

(
∪𝑖∈𝐿𝑘N𝐺𝐵

(𝑖)
)
and 𝐸𝑘 denote the edge set of 𝐺𝐷 (𝐺𝑘 ). If all 𝐺𝑘 ’s are linear, then the following

holds.
If A ∼ (𝐺𝐵,𝒑), then there is a matching M of 𝐺𝐷 (𝐺𝐵) satisfying that

∑
(𝑖,𝑖′) ∈M∩𝐸𝑘 P(𝐴𝑖 ∩ 𝐴𝑖′)2 ≥

(z+(𝐺𝑘 ,𝒑))2 for any 𝑘 .

�e proof of �eorem 4.1 mainly consists of two parts. First, we show that there is an elementary

event set which approximately achieves the minimum amount of intersection between dependent

events (Lemma 4.2). �en, for elementary event sets, by applying AM-GM inequality, we obtain a lower

bound on the total amount of overlap on common variables, which further implies a lower bound on

the amount of intersection between dependent events (Lemma 4.5).

Lemma 4.2. Let 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵) be a linear bipartite graph, 𝐸𝐷 be the edge set of 𝐺𝐷 (𝐺𝐵), and
𝒑 ∈ (0, 1]𝑚 is a probability vector. Let 𝛾 denote the minimum

∑
(𝑖0,𝑖1) ∈𝐸𝐷 P[𝐴𝑖0 ∩𝐴𝑖1] among all event sets

A = (𝐴1, · · · , 𝐴𝑚) ∼ (𝐺𝐵,𝒑). �en there is an elementary event setA ′ such that
∑

(𝑖0,𝑖1) ∈𝐸𝐷 P[𝐴′
𝑖0
∩𝐴′

𝑖1
] ≤

(Δ𝐵 (𝐺𝐵))2 · 𝛾 .

Proof. For simplicity, we let Δ , Δ𝐵 (𝐺𝐵). Without loss of generality, we assume that each random

variable𝑋𝑖 is uniformly distributed over [0, 1]. LetA ∼ (𝐺𝐵,𝒑) be an event set where
∑

(𝑖0,𝑖1) ∈𝐸𝐷 P[𝐴𝑖∩

7
�e notion is not arbitrary. �e bipartite graph 𝐺𝐵 can be represented by a hypergraph in a natural way: each right

vertex 𝑗 is represented by a node 𝑣 𝑗 in the hypergraph, each le� vertex 𝑖 is represented by a hyperedge 𝑒𝑖 , and 𝑣 𝑗 is in 𝑒𝑖 if and

only if (𝑖, 𝑗) ∈ 𝐸𝐵 . A hypergraph is called linear if any two hyperedges share at most one node.

8
It is possible that z(𝐺,𝒑) < 0.
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𝐴 𝑗 ] = 𝛾 . We will replace 𝐴𝑖 with an elementary 𝐴′
𝑖 one by one for each 𝑖 = 1, 2, · · · ,𝑚, so that the

resulted event set A ′
satis�es

∑
(𝑖0,𝑖1) ∈𝐸𝐷 P[𝐴′

𝑖0
∩𝐴′

𝑖1
] ≤ Δ2 · ∑(𝑖0,𝑖1) ∈𝐸𝐷 P[𝐴𝑖0 ∩𝐴𝑖1] = Δ2 · 𝛾 .

More precisely, �x 𝑖 ∈ [𝑚] and suppose 𝐴1, · · · , 𝐴𝑖−1 have been replaced with elementary events

𝐴′
1, · · · , 𝐴′

𝑖−1 respectively. For simplicity of notations, for any pair 𝑖0 < 𝑖1, we abbreviate P[𝐴𝑖0 ∩𝐴𝑖1],
P[𝐴′

𝑖0
∩𝐴𝑖1] and P[𝐴′

𝑖0
∩𝐴′

𝑖1
] to 𝑝𝑖0,𝑖1 , 𝑝 ′𝑖0,𝑖1 and 𝑝

′′
𝑖0,𝑖1

respectively. Without loss of generality, we assume

𝐴𝑖 depends on variables 𝑋1, 𝑋2, · · · , 𝑋𝑘 . For every 𝑗 ∈ [𝑘], we de�ne

𝑃 𝑗 (𝑥 𝑗 ) :=
∑︁

𝑖0<𝑖,𝑖0∈N𝐺𝐵
( 𝑗)

1

Δ
· P[𝐴′

𝑖0
| 𝑋 𝑗 = 𝑥 𝑗 ] +

∑︁
𝑖0>𝑖,𝑖0∈N𝐺𝐵

( 𝑗)
P[𝐴𝑖0 | 𝑋 𝑗 = 𝑥 𝑗 ] .

for 𝑥 𝑗 ∈ [0, 1]. Without loss of generality, we assume 𝑃 𝑗 (·) is non-decreasing. Let 𝜇 : [0, 1]𝑘 → {0, 1}
be the indicator of 𝐴𝑖 , then ∫

𝑥1, · · · ,𝑥𝑘
𝜇 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘 = P[𝐴𝑖],

For each 𝑗 ∈ [𝑘], let

𝜇 𝑗 (𝑥 𝑗 ) := P[𝐴𝑖 | 𝑋 𝑗 = 𝑥 𝑗 ] =
∫
𝑥1, · · · ,𝑥 𝑗−1,𝑥 𝑗+1, · · · ,𝑥𝑘

𝜇 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥 𝑗−1d𝑥 𝑗+1 · · · d𝑥𝑘 .

Noticing that 𝐺𝐵 is linear (i.e., any two events share at most one common variable), we have∫
𝑥 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗 =
∑︁

𝑖0<𝑖,𝑖0∈N𝐺𝐵
( 𝑗)

𝑝 ′𝑖0,𝑖
Δ

+
∑︁

𝑖0>𝑖,𝑖0∈N𝐺𝐵
( 𝑗)
𝑝𝑖0,𝑖 .(4)

Let 𝐴′
𝑖 be an elementary event such that it happens if and only if (𝑥1, · · · , 𝑥𝑘 ) ∈ [0, 𝑞1] × · · · × [0, 𝑞𝑘 ].

Here 𝑞1, · · · , 𝑞𝑘 is a set of positive real numbers satisfying that

(i) Π𝑘
𝑗=1𝑞 𝑗 = P[𝐴𝑖]. �at is, P[𝐴′

𝑖 ] = P[𝐴𝑖];
(ii)

∫
𝑥1≥𝑞1

𝜇1(𝑥1)d𝑥1 =
∫
𝑥2≥𝑞2

𝜇2(𝑥2)d𝑥2 · · · =
∫
𝑥𝑘 ≥𝑞𝑘

𝜇𝑘 (𝑥𝑘 )d𝑥𝑘 .

Claim 4.3. Such {𝑞1, · · · , 𝑞𝑘 } exists. �us so does 𝐴′
𝑖 .

Proof. We prove a generalized statement in which Π𝑘
𝑗=1𝑞 𝑗 can be required to be an arbitrary number in

[0, 1]. Our proof is by induction on 𝑘 . �e base case when 𝑘 = 1 is trivial. Now we assume that for any

preset 𝑞′ ∈ (0, 1], there exist {𝑞1, · · · , 𝑞𝑘−1} satisfying that
(i) Π𝑘−1

𝑗=1𝑞 𝑗 = 𝑞
′
and

(ii)

∫
𝑥1≥𝑞1

𝜇1(𝑥1)d𝑥1 = · · · =
∫
𝑥𝑘−1≥𝑞𝑘−1

𝜇𝑘−1(𝑥𝑘−1)d𝑥𝑘−1.

Let 𝑓 (𝑞′) denote the minimum

∫
𝑥1≥𝑞1

𝜇1(𝑥1)d𝑥1 among all such {𝑞1, · · · , 𝑞𝑘−1}’s. It is easy to see that

𝑓 (1) = 0 and 𝑓 is continuous and non-increasing.

Fix an arbitrary 𝑞 ∈ [0, 1]. We de�ne𝑔(𝑞′′) :=
∫
𝑥𝑘 ≥𝑞/𝑞′

𝜇𝑘 (𝑥𝑘 )d𝑥𝑘 for 𝑞′′ ∈ [𝑞, 1]. Obviously, 𝑔(𝑞) = 0

and 𝑔 is continuous and non-decreasing. So there must exist a 𝑞∗ ∈ [𝑞, 1] such that 𝑔(𝑞∗) = 𝑓 (𝑞∗). �en

let {𝑞∗1, · · · , 𝑞∗𝑘−1} be a set of positive real numbers where

(i) Π𝑘−1
𝑗=1𝑞

∗
𝑗 = 𝑞

∗
and

(ii) 𝑓 (𝑞∗) =
∫
𝑥1≥𝑞∗1

𝜇1(𝑥1)d𝑥1 = · · · =
∫
𝑥𝑘−1≥𝑞∗𝑘−1

𝜇𝑘−1(𝑥𝑘−1)d𝑥𝑘−1.

Let 𝑞∗
𝑘
= 𝑞/𝑞∗. It is obvious that Π𝑘

𝑗=1𝑞
∗
𝑗 = 𝑞 and 𝑓 (𝑞∗) = 𝑔(𝑞∗) =

∫
𝑥𝑘 ≥𝑞∗𝑘

𝜇𝑘 (𝑥𝑘 )d𝑥𝑘 . �is completes the

induction step. �

Claim 4.4. For every 𝑗 ∈ [𝑘], we have∑︁
𝑖0<𝑖,𝑖0∈N𝐺𝐵

( 𝑗)

𝑝 ′′𝑖0,𝑖
Δ

+
∑︁

𝑖0>𝑖,𝑖0∈N𝐺𝐵
( 𝑗)
𝑝 ′𝑖0,𝑖 ≤

∑︁
𝑖0<𝑖,𝑖0∈N𝐺𝐵

( 𝑗)
𝑝 ′𝑖0,𝑖 + Δ ·

∑︁
𝑖0>𝑖,𝑖0∈N𝐺𝐵

( 𝑗)
𝑝𝑖0,𝑖 .

17



Proof. Let 𝜇𝑖′, 𝜇𝑖∩𝑖′ , and 𝜇𝑖′\𝑖 denote the indicator functions of the events 𝐴′
𝑖 , 𝐴

′
𝑖 ∩ 𝐴𝑖 , and 𝐴

′
𝑖 \ 𝐴𝑖

respectively. Since P[𝐴′
𝑖 ] = P[𝐴𝑖],∫

𝑥1≥𝑞1
𝜇1(𝑥1)d𝑥1+· · ·+

∫
𝑥𝑘 ≥𝑞𝑘

𝜇𝑘 (𝑥𝑘 )d𝑥𝑘 ≥ P[𝐴𝑖\𝐴′
𝑖 ] = P[𝐴′

𝑖\𝐴𝑖] =
∫
𝑥1, · · · ,𝑥𝑘

𝜇𝑖′\𝑖 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘 .

Fix 𝑗 ∈ [𝑘], then ∫
𝑥 𝑗 ≥𝑞 𝑗

𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗 ≥
1

𝑘
·
∫
𝑥1,𝑥2, · · · ,𝑥𝑘

𝜇𝑖′\𝑖 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘 .

Since 𝑃 𝑗 (𝑥 𝑗 ) is non-decreasing and 𝑘 ≤ Δ, we have∫
𝑥 𝑗 ≥𝑞 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗 ≥
1

Δ
·
∫
𝑥1,𝑥2, · · · ,𝑥𝑘

𝑃 𝑗 (𝑥 𝑗 )𝜇𝑖′\𝑖 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘 .

According to Equation 4,∑︁
𝑖0<𝑖,𝑖0∈N𝐺𝐵

( 𝑗)
𝑝 ′𝑖0,𝑖 + Δ ·

∑︁
𝑖0>𝑖,𝑖0∈N𝐺𝐵

( 𝑗)
𝑝𝑖0,𝑖 = Δ ·

∫
𝑥 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗

=Δ ·
∫
𝑥 𝑗 ≥𝑞 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗 + Δ ·
∫
𝑥 𝑗<𝑞 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗

≥Δ ·
∫
𝑥 𝑗 ≥𝑞 𝑗

𝑃 𝑗 (𝑥 𝑗 )𝜇 𝑗 (𝑥 𝑗 )d𝑥 𝑗 + Δ ·
∫
𝑥1, · · · ,𝑥𝑘

𝑃 𝑗 (𝑥 𝑗 )𝜇𝑖∩𝑖′ (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘

≥
∫
𝑥1, · · · ,𝑥𝑘

𝑃 𝑗 (𝑥 𝑗 )𝜇𝑖′\𝑖 (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘 +
∫
𝑥1, · · · ,𝑥𝑘

𝑃 𝑗 (𝑥 𝑗 )𝜇𝑖∩𝑖′ (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘

=

∫
𝑥1, · · · ,𝑥𝑘

𝑃 𝑗 (𝑥 𝑗 )𝜇𝑖′ (𝑥1, · · · , 𝑥𝑘 )d𝑥1 · · · d𝑥𝑘

=
∑︁

𝑖0<𝑖,𝑖0∈N𝐺𝐵
( 𝑗)

P[𝐴′
𝑖0
∩𝐴′

𝑖 ]
Δ

+
∑︁

𝑖0>𝑖,𝑖0∈N𝐺𝐵
( 𝑗)
P[𝐴𝑖0 ∩𝐴′

𝑖 ] .

�is completes the proof. �

From Claim 4.4, we have∑︁
𝑖0<𝑖,𝑖0∈N𝐺𝐷

(𝑖)

𝑝 ′′𝑖0,𝑖
Δ

+
∑︁

𝑖0>𝑖,𝑖0∈N𝐺𝐷
(𝑖)
𝑝 ′𝑖0,𝑖 ≤

∑︁
𝑖0<𝑖,𝑖0∈N𝐺𝐷

(𝑖)
𝑝 ′𝑖0,𝑖 + Δ ·

∑︁
𝑖0>𝑖,𝑖0∈N𝐺𝐷

(𝑖)
𝑝𝑖0,𝑖 ,(5)

By summation over all 𝑖 ∈ [𝑚], we �nish the proof:∑︁
(𝑖0,𝑖) ∈𝐸𝐷

𝑝 ′′𝑖0,𝑖
Δ

≤ Δ ·
∑︁

(𝑖0,𝑖) ∈𝐸𝐷

𝑝𝑖0,𝑖 .

�

Lemma 4.5. Let 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵) be a linear bipartite graph and 𝒑 be a probability vector. �en for
any elementary A = (𝐴1, · · · , 𝐴𝑚) ∼ (𝐺𝐵,𝒑),∑︁

(𝑖0,𝑖1) ∈𝐸𝐷

P
(
𝐴𝑖0 ∩𝐴𝑖1

)
≥
√
𝑚 · Δ𝐷 (𝐺𝐵) · Δ𝐵 (𝐺𝐵)2 · z(𝐺𝐵,𝒑),

where 𝐸𝐷 is the edge set of 𝐺𝐷 (𝐺𝐵)

Proof. For simplicity of notation, we let N stand for N𝐺𝐵
. Without loss of generality, we assume that

each variable 𝑋𝑖 is uniformly distributed over [0, 1]. As A is elementary, each 𝐴𝑖 can be wri�en as∧
𝑗 ∈N(𝑖) [𝑋 𝑗 ∈ 𝑆 𝑗𝑖 ] where 𝑆

𝑗

𝑖
⊂ [0, 1]. Let 𝜇 be the Lebesgue measure.

On one hand, according to the AM–GM inequality,∑︁
𝑖∈[𝑚]

∑︁
𝑗 ∈N(𝑖)

𝜇 (𝑆 𝑗
𝑖
) ≥

∑︁
𝑖∈[𝑚]

|N (𝑖) | ·
(
Π 𝑗 ∈N(𝑖)𝜇 (𝑆 𝑗𝑖 )

)1/ |N(𝑖) |
=

∑︁
𝑖∈[𝑚]

|N (𝑖) | · 𝑝1/ |N(𝑖) |
𝑖

.(6)
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On the other hand,∑︁
𝑖∈[𝑚]

∑︁
𝑗 ∈N(𝑖)

𝜇 (𝑆 𝑗
𝑖
) =

∑︁
𝑗 ∈[𝑛]

∑︁
𝑖∈N(𝑖)

𝜇 (𝑆 𝑗
𝑖
) ≤ 𝑛 +

∑︁
𝑗 ∈[𝑛]

∑︁
𝑖0≠𝑖1∈N( 𝑗)

𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
(7)

By Inequalities 6 and 7 and noticing 𝐺𝐵 is linear, we have that∑︁
(𝑖0,𝑖1) ∈𝐸𝐷

∑︁
𝑗 ∈N(𝑖0)∩N(𝑖1)

𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
=

∑︁
𝑗 ∈[𝑛]

∑︁
𝑖0≠𝑖1∈N( 𝑗)

𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
≥ ©­«

∑︁
𝑖∈[𝑚]

|N (𝑖) | · 𝑝1/ |N(𝑖) |
𝑖

ª®¬ − 𝑛.(8)

Moreover, given any (𝑖0, 𝑖1) ∈ 𝐸𝐷 , where { 𝑗} = N(𝑖) ∩ N (𝑖 ′), we have that

(9)

P(𝐴𝑖0 ∩𝐴𝑖1) ≥ 𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
· ©­«

∏
𝑘∈N(𝑖0)\{ 𝑗 }

𝜇 (𝑆𝑘𝑖0)
ª®¬ · ©­«

∏
𝑘′∈N(𝑖1)\{ 𝑗 }

𝜇 (𝑆𝑘′𝑖1 )
ª®¬

≥ 𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
· 𝑝𝑖0 · 𝑝𝑖1 .

Finally, combining (8) with (9), we concludes that∑︁
(𝑖0,𝑖1) ∈𝐸𝐷

P(𝐴𝑖0 ∩𝐴𝑖1) ≥
∑︁

(𝑖0,𝑖1) ∈𝐸𝐷

∑︁
𝑗 ∈N(𝑖0)∩N(𝑖1)

𝜇

(
𝑆
𝑗

𝑖0
∩ 𝑆 𝑗

𝑖1

)
· 𝑝𝑖0 · 𝑝𝑖1

≥
(
min
𝑖∈[𝑚]

𝑝𝑖

)2 (∑︁
𝑖

|N (𝑖) | · 𝑝1/ |N(𝑖) |
𝑖

− 𝑛
)

=
√
𝑚 · Δ𝐷 (𝐺𝐵) · Δ𝐵 (𝐺𝐵)2 · z(𝐺𝐵,𝒑).

�

�e following lemma is a special case of �eorem 4.1 where 𝑡 = 1 and 𝐿1 = [𝑚]. In fact, �eorem 4.1

is proved by applying Lemma 4.6 to each 𝐺𝑘 separately.

Lemma 4.6. Let 𝐺𝐵 = ( [𝑚], [𝑛], 𝐸𝐵) be a linear bipartite graph and 𝒑 be a probability vector. If
A ∼ (𝐺𝐵,𝒑), then A ∼ (𝐺𝐵,𝒑,M, 𝜹) for some matching M of 𝐺𝐷 (𝐺𝐵) and some 𝜹 ∈ (0, 1) |M |

satisfying that
∑

(𝑖,𝑖′) ∈M 𝛿2
𝑖,𝑖′ ≥

(
z+(𝐺𝐵,𝒑)

)2.
Proof. Given an instance A ∼ (𝐺𝐵,𝒑), we construct such a M greedily as follows.

We maintain two sets 𝐸 and M, which are initialized as 𝐸𝐷 and ∅ respectively. We do the following

iteratively until 𝐸 becomes empty: select a edge (𝑖0, 𝑖1) with maximum P(𝐴𝑖0 ∩𝐴𝑖1) from 𝐸, add (𝑖0, 𝑖1)
to M, and delete all edges connecting 𝑖0 or 𝑖1 from 𝐸 (including (𝑖0, 𝑖1)).

Let Δ𝐷 and Δ𝐵 denote Δ𝐷 (𝐺𝐵) and Δ𝐵 (𝐺𝐵) respectively. In each iteration, at most 2Δ𝐷 edges are

deleted from 𝐸 and for each deleted edge (𝑖, 𝑖 ′), P(𝐴𝑖 ∩𝐴𝑖′)2 ≤ P(𝐴𝑖0 ∩𝐴𝑖1)2. Based on this observation,

it is easy to see that ∑︁
(𝑖0,𝑖1) ∈M

P(𝐴𝑖0 ∩𝐴𝑖1)2 ≥ 1

2Δ𝐷

∑︁
(𝑖,𝑖′) ∈𝐸𝐷

P(𝐴𝑖 ∩𝐴𝑖′)2.(10)

Moreover, according to Lemma 4.2 and 4.5, it has that∑︁
(𝑖,𝑖′) ∈𝐸𝐷

P(𝐴𝑖 ∩𝐴𝑖′)2 ≥ 1

|𝐸𝐷 |
· ©­«

∑︁
(𝑖,𝑖′) ∈𝐸𝐷

P(𝐴𝑖 ∩𝐴𝑖′)
ª®¬
2

≥
𝑚 · Δ2

𝐷
· (z+(𝐺𝐵,𝒑))2

|𝐸𝐷 |
,(11)

By combining Inequality 10 and 11, se�ing 𝛿𝑖,𝑖′ = P(𝐴𝑖 ∩𝐴𝑖′), and noting 2|𝐸𝐷 | ≤ 𝑚Δ𝐷 , we �nish the

proof. �

Proof of �eorem 4.1. For each 𝑘 ∈ [𝑡], by applying Lemma 4.6 to𝐺𝑘 , we have thatA ∼ (𝐺𝐵,𝒑,M𝑘 , 𝜹𝑘 )
for some matching M𝑘 ⊆ 𝐸𝑘 and some 𝜹𝑘 where

∑
(𝑖,𝑖′) ∈M𝑘

𝛿2
𝑖,𝑖′ ≥

(
z+(𝐺𝑘 ,𝒑)

)2
. Note that 𝐸𝑘 ’s are

disjoint with each other, soM1∪M2∪· · ·∪M𝑡 is still a matching. By le�ingM = M1∪M2∪· · ·∪M𝑡

and 𝜹 = (𝜹1, · · · , 𝜹𝑡 ), we conclude the theorem. �
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Remark 4.7. Given a bipartite graph 𝐺 , its simpli�ed graph is de�ned to be obtained from 𝐺 by deleting
all the right nodes which only have one neighbor and combining all the right nodes with the same neighbor
set. Notice that if 𝐺 is linear, so is its simpli�ed graph.

�eorem 4.1 can be slightly generalized: it is su�cient that the simpli�ed graph of 𝐺𝑘 instead of 𝐺𝑘

itself is linear.

5. The Moser-Tardos algorithm is beyond Shearer’s bound

In this section, we prove �eorem 1.5. Given a dependency graph 𝐺𝐷 , a vector 𝒑 and a chordless

cycle 𝐶 in 𝐺𝐷 , de�ne

𝑟 (𝐺𝐷 ,𝒑,𝐶) , |𝐶 | ·
(
min
𝑗 ∈𝐶

𝑝 𝑗
)4 · (2∑

𝑗 ∈𝐶
√
𝑝 𝑗

|𝐶 | − 1

)2
.

and

𝑟+(𝐺𝐷 ,𝒑,𝐶) , |𝐶 | ·
(
min
𝑗 ∈𝐶

𝑝 𝑗
)4 · (max

{
2
∑

𝑗 ∈𝐶
√
𝑝 𝑗

|𝐶 | − 1, 0

})2
.

�en�eorem 1.5 is obvious by Lemmas 5.1 and 5.2.

Lemma 5.1. Given 𝐺𝐷 , 𝒑 and 𝜀 > 0, let 𝐶1,𝐶2, · · · ,𝐶ℓ be any disjoint chordless cycles in 𝐺𝐷 . If

𝑑 ((1 + 𝜀)𝒑,𝐺𝐷 ) <
1

544

∑︁
𝑖≤ℓ

𝑟+(𝐺𝐷 ,𝒑,𝐶𝑖),

then for any variable-generated event system A ∼ (𝐺𝐷 ,𝒑), the expected number of resampling steps
performed by MT algorithm is most𝑚/𝜀.

Proof. Fix such an instance A. De�ne 𝛿𝑖,𝑖′ := P(𝐴𝑖 ∩ 𝐴𝑖′). Let 𝐺𝐵 denote the event-variable graph of

A. Let 𝐺𝑘 denote the induced subgraph of 𝐺𝐵 on 𝐶𝑘 ∪
(
∪𝑖∈𝐶𝑘

N𝐺𝐵
(𝑖)

)
. According to Remark 4.7, it is

lossless to assume 𝐺𝑘 is a cycle of length 2|𝐶𝑘 |. �us we have

(12) z+(𝐺𝑘 ,𝒑) ≥
(
min𝑖∈𝐶𝑘

𝑝𝑖
)2 · (−|𝐶𝑘 | +

∑
𝑖∈𝐿 2

√
𝑝𝑖

)
8
√︁
|𝐶𝑘 |

.

According to �eorem 4.1, there is a matchingM of 𝐺𝐷 such that

∑
(𝑖,𝑖′) ∈M 𝛿2

𝑖,𝑖′ ≥
∑

𝑘≤ℓ (z+(𝐺𝑘 ,𝒑))2.
De�ne 𝒑−

as (1). We have (1 + 𝜀)𝒑− ≤ (1 + 𝜀)𝒑 and

| | (1 + 𝜀)𝒑 − (1 + 𝜀)𝒑− | |1 ≥ ||𝒑 − 𝒑− | |1 ≥ 2

17

∑︁
(𝑖,𝑖′) ∈M

𝛿2𝑖,𝑖′ ≥
2

17

∑︁
𝑘≤ℓ

(
z+(𝐺𝑘 ,𝒑)

)2
.

Combining with (12), we have

| | (1 + 𝜀)𝒑 − (1 + 𝜀)𝒑− | |1 ≥ 1

544

∑︁
𝑖≤ℓ

𝑟+(𝐺𝐷 ,𝒑,𝐶𝑖) > 𝑑 ((1 + 𝜀)𝒑,𝐺𝐷 ),

where the last inequality is by the condition of the lemma. �us by De�nition 1.4, we have (1+𝜀)𝒑−
is in

the Shearer’s bound of 𝐺𝐷 . Combining with �eorem 1.6, we have the expected number of resampling

steps performed by the Moser-Tardos algorithm is most𝑚/𝜀. �

Lemma 5.2. Given 𝐺𝐷 and any chordless cycle 𝐶 in 𝐺𝐷 , there is some probability vector 𝒑 beyond the
Shearer’s bound of 𝐺𝐷 and with

𝑑 (𝒑,𝐺𝐷 ) ≥
1

545
· 𝑟 (𝐺𝐷 ,𝒑,𝐶) > 2−20ℓ−3

such that for any variable-generated event system A ∼ (𝐺𝐷 ,𝒑), the expected number of resampling steps
performed by MT algorithm is most 229 ·𝑚2 · |𝐶 |3.

�e following two lemmas will be used in the proof of Lemma 5.2.

Lemma 5.3. [She85] 𝑞∅ (𝐺𝐷 ,𝒑) = 1 − P(⋃𝐴∈A 𝐴) holds for any extremal instance A ∼ (𝐺𝐷 ,𝒑).
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Lemma 5.4. [She85] Suppose 𝒑 is the Shearer’s bound of 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ). �en for 𝑖 ∈ [𝑚],

𝜕𝑞∅ (𝐺𝐷 ,𝒑)
𝜕𝑝𝑖

= −P ©­«
⋂

𝑗∉N𝐺𝐷
(𝑖)∪{𝑖 }

𝐴 𝑗
ª®¬

holds for any A ∼ (𝐺𝐷 ,𝒑) satisfying that 𝐴𝑖′ ∩𝐴𝑖′′ = ∅ for any (𝑖 ′, 𝑖 ′′) ∈ 𝐸𝐷 where 𝑖 ′, 𝑖 ′′ ≠ 𝑖 .

Proof of Lemma 5.2. Let ℓ = |𝐶 | and 𝝀 =
(
1
4 , · · · ,

1
4 ,

1
4

)
. Let A ∼ (𝐶,𝝀) be an extremal instance de�ned

as follows: A = (𝐴1, · · · , 𝐴ℓ ) is a variable-generated event system fully determined a set of underlying

mutually independent random variables {𝑋1, · · · , 𝑋ℓ }. Moreover, 𝐴𝑖 = [𝑋𝑖 < 1/2] ∧ [𝑋𝑖+1 ≥ 1/2] for
each 𝑖 ∈ [ℓ − 1], and 𝐴ℓ = [𝑋ℓ < 1/2] ∧ [𝑋1 ≥ 1/2]. According to Lemma 5.3,

𝑞∅ (𝐶,𝝀) = P
©­«
⋃
𝑖∈[ℓ ]

𝐴𝑖
ª®¬ =

1

2ℓ−1
.

Besides, according to Lemma 5.4, for any 𝝀′ = ( 14 , · · · ,
1
4 ,

1
4 + 𝜀) in the Shearer’s bound of 𝐶 ,

𝜕𝑞∅ (𝐶,𝝀′)
𝜕𝜆′

ℓ

= −P ©­«
⋂

𝑖∈[2,ℓ−2]
𝐴𝑖

ª®¬ = − ℓ − 2

2ℓ−3
.

�us, for any 𝝀 ≤ 𝝀′ ≤ 𝝀′′ :=
(
1
4 , · · · ,

1
4 ,

1
4 + 1

4(ℓ−1)

)
, we have that

𝑞∅ (𝐶,𝝀′′) = 𝑞∅ (𝐶,𝝀) +
∫ 𝜆′′ℓ

1
4

𝜕𝑞∅ (𝐶,𝝀′)
𝜕𝜆′

ℓ

𝑑𝜆′ℓ >
1

2ℓ−1
− ℓ − 2

ℓ − 1
· 1

2ℓ−1
=

1

ℓ − 1
· 1

2ℓ−1
.

Hence 𝝀′′
is in the Shearer’s bound of 𝐶 . �us, there exists 𝑞 > 0 such that 𝒒 de�ned as follows is on

the Shearer’s boundary of 𝐺𝐷 :

∀𝑖 ∈ [𝑚] : 𝑞𝑖 =


1
4 if 𝑖 ∈ [ℓ − 1],
1
4 + 1

4(ℓ−1) if 𝑖 = ℓ,

𝑞 otherwise.

One can verify that

(13) 𝑟+(𝐺𝐷 , 𝒒,𝐶) = 𝑟 (𝐺𝐷 , 𝒒,𝐶) > ℓ · 1

44
·
(
1

2ℓ2

)2
>

1

210 · ℓ3 .

De�ne

𝑓 (𝛿) = 545 · 𝑑 ((1 + 𝛿)𝒒,𝐺𝐷 ) − 𝑟+(𝐺𝐷 , (1 + 𝛿)𝒒,𝐶) .
One can verify that 𝑓 (0) < 0 because 𝑑 (𝒒,𝐺𝐷 ) = 0 and 𝑟+(𝐺𝐷 , 𝒒,𝐶) > 0. Moreover, let 𝛿 ′ be large
enough such that (1 + 𝛿 ′)𝒒 ∉ I𝑣 (𝐺𝐷 ). One can verify that such 𝛿 ′ must exist. We have 𝑓 (𝛿 ′) ≥ 0. �is

is because otherwise 𝑓 (𝛿 ′) < 0 and then

𝑑 ((1 + 𝛿 ′)𝒒,𝐺𝐷 ) <
1

545
· 𝑟+(𝐺𝐷 , (1 + 𝛿 ′)𝒒,𝐶) .

By following the proof of Lemma 5.1, we have the MT algorithm terminates at (1 + 𝛿 ′)𝒒, which is

contradictory with (1 + 𝛿 ′)𝒒 ∉ I𝑣 (𝐺𝐷 ).
Moreover, 𝑓 (𝛿) is a continuous function of 𝛿 , because 𝑑 ((1 + 𝛿)𝒒,𝐺𝐷 ) and 𝑟+(𝐺𝐷 , (1 + 𝛿)𝒒,𝐶) are

both continuous functions of 𝛿 . Combining with 𝑓 (0) < 0 and 𝑓 (𝛿 ′) > 0, we have there must be a

0 ≤ 𝛿 ≤ 𝛿 ′ such that 𝑓 (𝛿) = 0. Let 𝒑 = (1 + 𝛿)𝒒. By 𝑓 (𝛿) = 0, we have

(14) 𝑑 (𝒑,𝐺𝐷 ) =
1

545
· 𝑟+(𝐺𝐷 ,𝒑,𝐶).

Combining with 𝑟+(𝐺𝐷 ,𝒑,𝐶) = 𝑟 (𝐺𝐷 ,𝒑,𝐶) > 𝑟 (𝐺𝐷 , 𝒒,𝐶) and (13), we have 𝑑 (𝒑,𝐺𝐷 ) > 2−20ℓ−3.
21



Fix a variable-generated event system A ∼ (𝐺𝐷 ,𝒑). De�ne 𝛿𝑖,𝑖′ := P(𝐴𝑖 ∩ 𝐴𝑖′). Let 𝐺𝐵 denote the

event-variable graph of A. Let 𝐺 denote the induced subgraph of 𝐺𝐵 on 𝐶 ∪
(
∪𝑖∈𝐶N𝐺𝐵

(𝑖)
)
. According

to Remark 4.7, it is lossless to assume that 𝐺 is a cycle of length 2|𝐶 |. �us we have

(15) z+(𝐺,𝒑) ≥
(
min𝑖∈𝐶 𝑝𝑖

)2 · (−|𝐶 | + ∑
𝑖∈𝐿 2

√
𝑝𝑖

)
8
√︁
|𝐶 |

.

According to �eorem 4.1, there is a matchingM of𝐺𝐷 such that

∑
(𝑖,𝑖′) ∈M 𝛿2

𝑖,𝑖′ ≥ (z+(𝐺,𝒑))2. De�ne
𝒑−

as (1). We have

| |𝒑 − 𝒑− | |1 ≥ 2

17

∑︁
(𝑖,𝑖′) ∈M

𝛿2𝑖,𝑖′ ≥
2

17

∑︁
𝑘≤ℓ

(
z+(𝐺𝑘 ,𝒑)

)2
.

Combining with (15), we have

| |𝒑 − 𝒑− | |1 ≥ 1

544
· 𝑟+(𝐺𝐷 ,𝒑,𝐶) .

Let

𝜀 ,
1

229 · ℓ3 ·𝑚 .
By (13) we have

𝑚𝜀 ≤ 1

545 · 544 · 210 · ℓ3 ≤
(
1

544
− 1

545

)
𝑟+(𝐺𝐷 , 𝒒,𝐶) ≤

(
1

544
− 1

545

)
𝑟+(𝐺𝐷 ,𝒑,𝐶).

�us we have

| |𝒑 − (1 + 𝜀)𝒑− | |1 > | |𝒑 − 𝒑− | |1 −𝑚𝜀 ≥
𝑟+(𝐺𝐷 ,𝒑,𝐶)

544
−𝑚𝜀 ≥ 𝑟+(𝐺𝐷 ,𝒑,𝐶)

545
≥ 𝑑 (𝒑,𝐺𝐷 ),

where the last inequality is by (14). �us by De�nition 1.4, we have (1 + 𝜀)𝒑−
is in the Shearer’s bound

of 𝐺𝐷 . Combining with �eorem 1.6, we have the expected number of resampling steps performed by

the MT algorithm is most𝑚/𝜀. �

6. Application to periodic Euclidean graphs

In this section, we explicitly calculate the gaps between our new criterion and Shearer’s bound on

periodic Euclidean graphs, including several la�ices that have been studied extensively in physics. It

turns out the e�cient region of MT algorithm can exceed signi�cantly beyond Shearer’s bound.

A periodic Euclidean graph𝐺𝐷 is a graph that is embedded into a Euclidean space naturally and has

a translational unit 𝐺𝑈 in the sense that 𝐺𝐷 can be viewed as the union of periodic translations of 𝐺𝑈 .

For example, a cycle of length 4 is a translational unit of the square la�ice.

Given a dependency graph𝐺𝐷 , it naturally de�nes a bipartite graph𝐺𝐵 (𝐺𝐷 ) as follows. Regard each

edge of 𝐺𝐷 as a variable and each vertex as an event. An event 𝐴 depends on a variable 𝑋 if and only if

the vertex corresponding to 𝐴 is an endpoint of the edge corresponding to 𝑋 .

For simplicity, we only focus on symmetric probabilities, where𝒑 = (𝑝, 𝑝, · · · , 𝑝). Given a dependency
graph 𝐺𝐵 and a vector 𝒑, remember that 𝒑 is on Shearer’s boundary of 𝐺𝐷 if (1 − 𝜀)𝒑 is in Shearer’s

bound and (1 + 𝜀)𝒑 is not for any 𝜀 > 0.
Given a dependency graph 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) and two vertices 𝑖, 𝑖 ′ ∈ [𝑚], we use dist(𝑖, 𝑖 ′) to denote

the distance between 𝑖 and 𝑖 ′ in 𝐺𝐷 . �e following Lemma will be used.

Lemma 6.1. Suppose 𝒑𝑎 = (𝑝𝑎, 𝑝𝑎, · · · , 𝑝𝑎) is on Shearer’s boundary of 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ). For any
probability vector 𝒑 other than 𝒑𝑎 , it is in the Shearer’s bound if there exist 𝐾,𝑑 ∈ N+, S ⊆ 2[𝑚] where
∪𝑆 ∈S = [𝑚], and 𝑓 : S → 2[𝑚] such that the following conditions hold:

(a) for each 𝑖 ∈ [𝑚], there are at most 𝐾 subsets 𝑆 ∈ S such that 𝑓 (𝑆) 3 𝑖 ;
(b) if 𝑓 (𝑆) = 𝑇 , then dist(𝑖, 𝑖 ′) ≤ 𝑑 for each 𝑖 ∈ 𝑆 and 𝑖 ′ ∈ 𝑇 ;
(c) if 𝑓 (𝑆) = 𝑇 , then(

1 − 𝑝𝑎
𝑝𝑎

)𝑑−1
· 𝐾
𝑝𝑎

·
∑︁
𝑖∈𝑆

max{𝑝𝑖 − 𝑝𝑎, 0} ≤
∑︁
𝑖∈𝑇

max{𝑝𝑎 − 𝑝𝑖 , 0}.
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While Lemma 6.1 looks involved, the basic idea is simple: by contradiction, suppose there is such a

vector 𝒑 ′
beyond Shearer’s bound; then we apply Lemma D.1 repeatedly to transfer probability from

one event to another while keeping the probability vector still beyond Shearer’s bound; �nally, the

vector 𝒑 ′
will be changed to a vector strictly below 𝒑, which makes a contradiction to the assumption

that 𝒑 is on the Shearer’s boundary. �e involved part is a transferring scheme which changes 𝒑 ′
to

another probability vector strictly below 𝒑. We leave the proof to the appendix.

�e main result of this section is as follows.

�eorem 6.2. Let 𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 ) be a periodic Euclidean graph with maximum degree Δ, and 𝒑𝑎 =

(𝑝𝑎, · · · , 𝑝𝑎) be the probability vector on Shearer’s boundary of 𝐺𝐷 . Suppose 𝐺𝑈 = (𝑉𝑈 , 𝐸𝑈 ) is a transla-
tional unit of 𝐺𝐷 with diameter 𝐷 . Let

𝑞 ,
𝑝𝐷+2
𝑎

(
z+(𝐺𝐵 (𝐺𝑈 ),𝒑𝑎)

)2
17 · (Δ + 1) · |𝑉 |2 · (1 − 𝑝𝑎)𝐷+1 .

�en for any A ∼ (𝐺𝐵 (𝐺𝐷 ),𝒑) where (1 + 𝜀)𝒑 ≤ (𝑝𝑎 +𝑞, · · · , 𝑝𝑎 +𝑞), the expected number of resampling
steps performed by the MT algorithm is most |𝑉𝐷 |/𝜀.

Proof. Fix any A ∼ (𝐺𝐵 (𝐺𝐷 ),𝒑) where (1 + 𝜀)𝒑 ≤ (𝑝𝑎 + 𝑞, · · · , 𝑝𝑎 + 𝑞). Let 𝛿𝑣0,𝑣1 denote P(𝐴𝑣0 ∩𝐴𝑣1)
for (𝑣0, 𝑣1) ∈ 𝐸𝐷 . We construct a matchingM ⊂ 𝐸𝐷 greedily as follows: we maintain two sets 𝐸 andM,

which are initialized as 𝐸𝐷 and ∅ respectively. We do the following iteratively until 𝐸 becomes empty:

select a edge (𝑣0, 𝑣1) with maximum 𝛿𝑣0,𝑣1 from 𝐸, add (𝑣0, 𝑣1) toM, and delete all edges connecting 𝑣0
or 𝑣1 from 𝐸 (including (𝑣0, 𝑣1)). Let 𝜹 =

(
𝛿𝑣0,𝑣1 : (𝑣0, 𝑣1) ∈ M

)
. �en A ∼ (𝐺𝐵 (𝐺𝐷 ),𝒑,M, 𝜹).

De�ne 𝒑−
as (1). In the remaining part of the proof, we will show that (1 + 𝜀)𝒑−

is in the Shearer’s

bound. �is implies the conclusion immediately by �eorem 1.6.

In fact, it is a direct application of Lemma 6.1 to show that (1 + 𝜀)𝒑−
is in the Shearer’s bound.

To provide more detail, we need some notations. We use 𝑣, 𝑣 ′, 𝑣1, 𝑣2, · · · to represent vertices in 𝐺𝐷 ,

and use 𝑢,𝑢 ′, 𝑢1, 𝑢2, · · · to represent vertices in 𝐺𝑈 . Let 𝐺
1
𝑈
,𝐺2

𝑈
, · · · be the periodic translations of 𝐺𝑈

in 𝐺𝐷 . And we use a surjection
9 ℎ : N+ × 𝑉𝑈 → 𝑉𝐷 to represent how these periodic translations

constitute 𝐺𝐷 : ℎ(𝑘,𝑢) = 𝑣 if the copy of 𝑢 ∈ 𝑉𝑈 in 𝑘-th translation (i.e., 𝐺𝑘
𝑈
) is 𝑣 ∈ 𝑉𝐷 . In particular,

the vertex set of 𝐺𝑘
𝑈
, denoted by 𝑉 𝑘

𝑈
, is {ℎ(𝑘,𝑢) : 𝑢 ∈ 𝑉 }, and the edge set of 𝐺𝑘

𝑈
, denoted by 𝐸𝑘

𝑈
, is

{(ℎ(𝑘,𝑢), ℎ(𝑘,𝑢 ′)) : (𝑢,𝑢 ′) ∈ 𝐸𝑈 }. Besides, let N+(𝑣) := N𝐺𝐷
(𝑣) ∪ {𝑣} for 𝑣 ∈ 𝑉𝐷 . For 𝑉 ⊂ 𝑉𝐷 , let

N+(𝑉 ) := ∪𝑣∈𝑉N+(𝑣). Let𝑇𝑘 := {(𝑣0, 𝑣1) ∈ M : 𝑣0, 𝑣1 ∈ N+(𝐺𝑘
𝑈
)} stand for the pairs inM adjacent to

𝐺𝑘
𝑈
. With some abuse of notation, we sometimes use 𝑣 ∈ 𝑇𝑘 to denote that (𝑣, 𝑣 ′) ∈ 𝑇𝑘 for some 𝑣 ′ ∈ 𝑉𝐷 .
�e following claim says that 𝒑−

is much smaller than 𝒑 even projected on a single translation. Its

proof uses a similar idea to �eorem 4.6 and can be found in the appendix.

Claim 6.3.
∑

(𝑣0,𝑣1) ∈𝑇𝑘 𝛿
2
𝑣0,𝑣1

≥
(
z+(𝐺𝐵 (𝐺𝑈 ),𝒑)

)2 holds for any 𝑘 .
To apply Lemma 6.1, let 𝐾 := (Δ + 1) |𝑉𝑈 |, 𝑑 := 𝐷 + 2, S := {𝑉 1

𝑈
,𝑉 2

𝑈
, · · · }, and 𝑓 (𝑉 𝑘

𝑈
) := 𝑇𝑘 . Based on

Claim 6.3, one can check that all the three conditions in Lemma 6.1 hold (see the appendix for details).

�us, according to Lemma 6.1, (1 + 𝜀)𝒑−
is in Shearer’s bound. �

We apply �eorem 6.2 to three la�ices: square la�ice, Hexagonal la�ice, and simple cubic la�ice.

For square la�ice, we take the 5 × 5 square with 25 vertices as the translational unit. For Hexagonal

la�ice, we take a graph consisting of 19 hexagons as the translational unit, in which there are 3,4,5,4,3

hexagons in the �ve columns, respectively. For simple cubic la�ice, we take the 3 × 3 × 3 cube with 27

vertices as the translational unit. �e explicit gaps are summarized in Table 1. Finally, the lower bounds

for these three la�ices in Table 1 hold for all bipartite graphs with the given canonical dependency

graph, because all such bipartite graphs are essentially the same under the reduction rules de�ned

in [HLL
+
17].

9ℎ is possibly not a injection, as these translations are possibly overlapped with each other.
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Appendix A. Missing Proofs in Section 2

Proof of Proposition 3.2. �e following simple greedy procedure will �nd such a P.

1 Initially, P = ∅;
2 for each (𝑖, 𝑖 ′) ∈ M do
3 for each 𝑘 from 1 to |List(𝐷, 𝑖, 𝑖 ′) | − 1 do
4 if the 𝑘-th node and (𝑘 + 1)-th node in List(𝐷, 𝑖, 𝑖 ′) form a reversible arc then
5 add this arc to P, and 𝑘 := 𝑘 + 2;

6 else
7 𝑘 := 𝑘 + 1;

8 Return P;

Obviously, for each (𝑖, 𝑖 ′) ∈ M, the procedure contains at least half of all reversible arcs 𝑢 → 𝑣 where

{𝐿(𝑢), 𝐿(𝑣)} = {𝑖, 𝑖 ′}, hence at least half of nodes inV(𝐷, 𝑖). �
26



Appendix B. Proof of Proposition 3.9

Given a pwdag 𝐷 = (𝑉 , 𝐸, 𝐿) of 𝐺𝐷 and a Boolean string 𝑹 ∈ {0, 1}ℳ (𝐷)
, de�ne ℎ(𝐷, 𝑹) to be a

directed graph 𝐷 ′ := (𝑉 ′, 𝐸 ′, 𝐿′) where 𝑉 ′ = 𝑉 , 𝐸 ′ = 𝐸, and

∀𝑣 ∈ 𝑉 : 𝐿′(𝑣) =


(𝐿(𝑣))↑, if 𝑣 ∈ ℳ and 𝑅𝑣 = 0;

(𝐿(𝑣))↓, if 𝑣 ∈ ℳ and 𝑅𝑣 = 1;

𝐿(𝑣), otherwise, 𝑣 ∉ ℳ.

It is easy to verify that ℎ(𝐷, 𝑹) is a pwdag of 𝐺M
. Moreover, given any 𝐷 ′ ∈ D(𝐺M), there is one

and only one 𝐷 ∈ D(𝐺𝐷 ) and 𝑹 ∈ {0, 1}ℳ (𝐷)
such that ℎ(𝐷, 𝑹) = 𝐷 ′

. In other words, ℎ is a bijection

between {(𝐷, 𝑹) : 𝐷 ∈ D(𝐺𝐷 ), 𝑹 ∈ {0, 1}ℳ (𝐷) } and D(𝐺M). So∑︁
𝐷′∈D(𝐺M )

∏
𝑣′ in 𝐷′

𝑝M
𝐿′ (𝑣′) =

∑︁
𝐷∈D(𝐺𝐷 )

∑︁
𝑹∈{0,1}ℳ (𝐷 )

∏
𝑣′ in ℎ (𝐷,𝑹)

𝑝M
𝐿′ (𝑣′)

=
∑︁

𝐷∈D(𝐺𝐷 )

∑︁
𝑹∈{0,1}ℳ (𝐷 )

∏
𝑣 in 𝐷

𝑝M
𝐿′ (𝑣)

=
∑︁

𝐷∈D(𝐺𝐷 )

∏
𝑣∉ℳ (𝐷)

𝑝M
𝐿′ (𝑣)

©­«
∑︁

𝑹∈{0,1}ℳ (𝐷 )

∏
𝑣∈ℳ (𝐷)

𝑝M
𝐿′ (𝑣)

ª®¬
=

∑︁
𝐷∈D(𝐺𝐷 )

∏
𝑣∉ℳ (𝐷)

𝑝M
𝐿 (𝑣)

∏
𝑣∈ℳ (𝐷)

(
𝑝M
𝐿 (𝑣)↑ + 𝑝

M
𝐿 (𝑣)↓

)
=

∑︁
𝐷∈D(𝐺𝐷 )

∏
𝑣∉ℳ (𝐷)

𝑝−
𝐿 (𝑣)

∏
𝑣∈ℳ (𝐷)

(
𝑝 ′
𝐿 (𝑣) + 𝑝

−
𝐿 (𝑣) − 𝑝

′
𝐿 (𝑣)

)
=

∑︁
𝐷∈D(𝐺𝐷 )

∏
𝑣 in 𝐷

𝑝−
𝐿 (𝑣) ,

where the second equality is by that 𝑉 = 𝑉 ′
, the forth equality is by the de�nition of 𝐿′, and the ��h

equality is by the de�nition of 𝒑M
.

Appendix C. Proof of Theorem 3.12

We �rst verify that the image of ℎ is a subset of D(𝐺M).

Lemma C.1. For any 𝐷 ∈ D(𝐺𝐷 ) and 𝒮 ∈ 𝜓 (𝐷), ℎ(𝐷,𝒮) ∈ D(𝐺M).

Proof. First, we prove that ℎ(𝐷,𝒮) = (𝑉 ′, 𝐸 ′, 𝐿′) is a DAG. De�ne a total order 𝜋 ′
over the set 𝑉 ′

as

follows: for any two distinct nodes 𝑢 ′, 𝑣 ′ ∈ 𝑉 ′
,

• if 𝑔(𝑢 ′) ≠ 𝑔(𝑣 ′), then 𝑢 ′ ≺ 𝑣 ′ in 𝜋 ′
if and only if 𝑔(𝑢 ′) ≺ 𝑔(𝑣 ′) in 𝜋𝐷 ;

• if 𝑔(𝑢 ′) = 𝑔(𝑣 ′), then 𝑢 ′ ≺ 𝑣 ′ in 𝜋 ′
if and only if 𝑢 ′ = 𝑓 ∗(𝑔(𝑢 ′)) (and then 𝑣 ′ = 𝑓 (𝑔(𝑢 ′))).

One can verify that 𝜋 ′
is a topological order of ℎ(𝐷,𝒮), which means that ℎ(𝐷,𝒮) is a DAG.

Secondly, we prove that ℎ(𝐷,𝒮) is a wdag of𝐺M
. As ℎ(𝐷,𝒮) has been shown to be a DAG, we only

need to verify that: for any two distinct nodes 𝑢 ′, 𝑣 ′ in 𝐷 ′
, there is a arc between 𝑢 ′ and 𝑣 ′ (in either

direction) if and only if either 𝐿′(𝑢 ′) = 𝐿′(𝑣 ′) or (𝐿′(𝑣 ′), 𝐿′(𝑢 ′)) ∈ 𝐸M
.

=⇒: By symmetry, suppose (𝑢 ′ → 𝑣 ′) ∈ 𝐸 ′. If (𝑢 ′ → 𝑣 ′) ∈ 𝐸 ′1, then 𝑢 ′ = 𝑓 ∗(𝑤) and 𝑣 ′ = 𝑓 (𝑤) for
some vertex 𝑤 ∈ 𝒮3 ∪ 𝒮4. �us, by (2) and (3) we have 𝐿′(𝑢 ′) ∈ {𝑖↑, 𝑖↓} and 𝐿′(𝑣 ′) = 𝐿(𝑤)↓ where
(𝐿(𝑤), 𝑖) ∈ M. By (𝐿(𝑤), 𝑖) ∈ M, any two vertices in {(𝐿(𝑤))↑, (𝐿(𝑤))↓, 𝑖↑, 𝑖↓} are connected in 𝐺M

.

In particular, (𝐿′(𝑣 ′), 𝐿′(𝑢 ′)) ∈ 𝐸M
. If (𝑢 ′ → 𝑣 ′) ∈ 𝐸 ′2, we have 𝐿′(𝑢 ′) = 𝐿′(𝑣 ′) or (𝐿′(𝑢 ′), 𝐿′(𝑣 ′)) ∈ 𝐸M

immediately.

⇐=: Suppose 𝑢 ′, 𝑣 ′ ∈ 𝑉 ′
are two distinct nodes where 𝐿′(𝑢 ′) = 𝐿′(𝑣 ′) or (𝐿′(𝑢 ′), 𝐿′(𝑣 ′)) ∈ 𝐸M

. If

𝑔(𝑢 ′) ≠ 𝑔(𝑣 ′), then either 𝑔(𝑢 ′) ≺ 𝑔(𝑣 ′) or 𝑔(𝑣 ′) ≺ 𝑔(𝑢 ′) in 𝜋𝐷 , which implies that either (𝑢 ′ → 𝑣 ′) ∈ 𝐸 ′2
or (𝑣 ′ → 𝑢 ′) ∈ 𝐸 ′2. Otherwise, 𝑔(𝑢 ′) = 𝑔(𝑣 ′). Let 𝑣 := 𝑔(𝑢 ′) = 𝑔(𝑣 ′). By (2) and (3), we have 𝑣 ∈ 𝒮3 ∪𝒮4

and {𝑢 ′, 𝑣 ′} = {𝑓 (𝑣), 𝑓 ∗(𝑣)}. �erefore either 𝑢 ′ → 𝑣 ′ or 𝑣 ′ → 𝑢 ′ is in 𝐸 ′1.
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Finally, one can check that 𝑓 (𝑣) where 𝑣 is the unique sink of 𝐷 is the unique sink of 𝐷 ′
. �is

completes the proof. �

In the rest of this section, we show that ℎ is injective. Given 𝐷 ∈ D(𝐺𝐷 ) and (𝑖, 𝑗) ∈ M, recall that

List(𝐷, 𝑖, 𝑗) is the sequence listing all nodes in 𝐷 ′
labelled with 𝑖 or 𝑗 in the topological order. Similarly,

De�nition C.2. Given 𝐷 ′ = (𝑉 ′, 𝐸 ′, 𝐿′) ∈ D(𝐺M) and (𝑖, 𝑗) ∈ M, we use List′(𝐷 ′, 𝑖, 𝑗) to denote the
unique sequence listing all nodes in 𝐷 ′ with label in {𝑖↑, 𝑖↓, 𝑗 ↑, 𝑗 ↓} in the topological order.

Claims C.3 and C.5 are two properties about List′(𝐷 ′, 𝑖, 𝑗), which will be used to show the injective-

ness of ℎ.

Claim C.3. Suppose 𝐷 ′ = ℎ(𝐷,𝒮) for some 𝐷 ∈ D(𝐺𝐷 ) and 𝒮 ∈ 𝜓 (𝐷). Let (𝑖, 𝑗) ∈ M. �en for any
node 𝑣 ′ in 𝐷 ′,

(a) 𝑣 ′ ∈ List′(𝐷 ′, 𝑖, 𝑗) if and only if 𝑔(𝑣 ′) ∈ List(𝐷, 𝑖, 𝑗);
(b) for any other node𝑢 ′ in𝐷 ′, if𝑔(𝑢 ′) precedes𝑔(𝑣 ′) inList(𝐷, 𝑖, 𝑗), then𝑢 ′ precedes 𝑣 ′ inList′(𝐷 ′, 𝑖, 𝑗);
(c) if 𝑣 ∈ 𝒮3 ∪𝒮4, then 𝑓 (𝑣) is next to 𝑓 ∗(𝑣) in List′(𝐷 ′, 𝑖, 𝑗).

Proof. Part (a) is immediate by De�nition 3.11.

Now, we show Part (b). Suppose 𝑔(𝑢 ′) precedes 𝑔(𝑣 ′) in List(𝐷, 𝑖, 𝑗). �en 𝑔(𝑢 ′) ≺ 𝑔(𝑣 ′) in 𝜋𝐷 .
�us one can check that all the four arcs 𝑓 (𝑔(𝑢 ′)) → 𝑓 (𝑔(𝑣 ′)), 𝑓 ∗(𝑔(𝑢 ′)) → 𝑓 (𝑔(𝑣 ′)), 𝑓 (𝑔(𝑢 ′)) →
𝑓 ∗(𝑔(𝑣 ′)), and 𝑓 ∗(𝑔(𝑢 ′)) → 𝑓 ∗(𝑔(𝑣 ′)) are contained in 𝐸 ′2. In particular, (𝑢 ′ → 𝑣 ′) ∈ 𝐸 ′ as 𝑢 ′ ∈
{𝑓 (𝑔(𝑢 ′)), 𝑓 ∗(𝑔(𝑢 ′))} and 𝑣 ′ ∈ {𝑓 (𝑔(𝑣 ′)), 𝑓 ∗(𝑔(𝑣 ′))}. �is implies that 𝑢 ′ precedes 𝑣 ′ in List′(𝐷 ′, 𝑖, 𝑗).

Finally, we prove Part (c). According to Part (b), 𝑓 (𝑣) and 𝑓 ∗(𝑣) are adjacent in List′(𝐷 ′, 𝑖, 𝑗). Besides,
as there is an arc 𝑓 ∗(𝑣) → 𝑓 (𝑣) in 𝐸 ′1, we conclude that 𝑓 (𝑣) is next to 𝑓 ∗(𝑣) in List′(𝐷 ′, 𝑖, 𝑗).

�

De�nition C.4. For a reversible arc 𝑢 ′ → 𝑣 ′ in 𝐷 ′, we call it (∗, ↓)-reversible in 𝐷 ′ if 𝐿′(𝑢 ′) ∈ {𝑖↑, 𝑖↓}
and 𝐿′(𝑣 ′) = 𝑗 ↓ for some (𝑖, 𝑗) ∈ 𝐸𝐷 .

Claim C.5. Suppose 𝐷 ′ = ℎ(𝐷,𝒮) for some 𝐷 ∈ D(𝐺𝐷 ) and 𝒮 ∈ 𝜓 (𝐷). Let (𝑖, 𝑗) ∈ M. Let 𝑢 ′, 𝑣 ′ be two
nodes in List′(𝐷 ′, 𝑖, 𝑗) where 𝑣 ′ is next to 𝑢 ′. �en 𝑢 ′ ∈ 𝑉 ′

2 if and only if 𝑢 ′ → 𝑣 ′ is (∗, ↓)-reversible in 𝐷 ′

and 𝑣 ′ ∈ 𝑉 ′
1 .

Proof. =⇒: Let 𝑢 := 𝑔(𝑢 ′). Assume 𝑢 ′ ∈ 𝑉 ′
2 , i.e., 𝑢

′ = 𝑓 ∗(𝑢). By De�nition 3.11, 𝑢 ∈ 𝒮3 ∪𝒮4. According

to Part (c) of Claim C.3, as 𝑣 ′ is next to 𝑢 ′, we have 𝑣 ′ = 𝑓 (𝑢) and then 𝑣 ′ ∈ 𝑉 ′
1 .

Now we show that 𝑢 ′ → 𝑣 ′ is (∗, ↓)-reversible. First, by De�nition 3.11, either 𝐿′(𝑢 ′) ∈ {𝑖↑, 𝑖↓} and
𝐿′(𝑣 ′) = 𝑗 ↓, or 𝐿′(𝑢 ′) ∈ { 𝑗 ↑, 𝑗 ↓} and 𝐿′(𝑣 ′) = 𝑖↓. What remains is to show 𝑢 ′ → 𝑣 ′ is reversible, by
Fact 2.5 which is equivalent to show that 𝑓 ∗(𝑢) → 𝑓 (𝑢) is the unique path from 𝑢 ′ to 𝑣 ′ in 𝐷 ′

. By

contradiction, assume that there is a path 𝑓 ∗(𝑢) → 𝑤 ′
1 → · · · → 𝑤 ′

𝑘
→ 𝑓 (𝑢) in 𝐷 ′

where 𝑤 ′
1 ≠ 𝑓 (𝑢)

and 𝑤 ′
𝑘
≠ 𝑓 ∗(𝑢). As 𝑤 ′

1 ≠ 𝑓 (𝑢), we have (𝑓 ∗(𝑢) → 𝑤 ′
1) is not in 𝐸 ′1 and then should be in 𝐸 ′2, which

further implies that 𝑢 ≺ 𝑔(𝑤 ′
1) in 𝜋𝐷 . Similarly, we have 𝑔(𝑤 ′

𝑘
) ≺ 𝑢 in 𝜋𝐷 . So 𝑔(𝑤 ′

𝑘
) ≺ 𝑢 ≺ 𝑔(𝑤 ′

1).
Meanwhile, for each ℓ < 𝑘 , if (𝑤 ′

ℓ → 𝑤 ′
ℓ+1) ∈ 𝐸 ′1, then 𝑔(𝑤 ′

ℓ ) = 𝑔(𝑤 ′
ℓ+1); if (𝑤 ′

ℓ → 𝑤 ′
ℓ+1) ∈ 𝐸 ′2, then

𝑔(𝑤 ′
ℓ ) ≺ 𝑔(𝑤 ′

ℓ+1) in 𝜋𝐷 . So, it always holds that 𝑔(𝑤 ′
ℓ ) 4 𝑔(𝑤 ′

ℓ+1) in 𝜋𝐷 for each ℓ < 𝑘 . In particular,

𝑔(𝑤 ′
1) 4 𝑔(𝑤 ′

𝑘
). A contradiction.

⇐=: Let 𝑢 := 𝑔(𝑢 ′) and 𝑣 := 𝑔(𝑣 ′). Assume 𝑢 ′ ∉ 𝑉 ′
2 and 𝑣 ′ ∈ 𝑉 ′

1 , i.e., 𝑢
′ = 𝑓 (𝑢) and 𝑣 ′ = 𝑓 (𝑣).

Furthermore, assume 𝐿′(𝑣 ′) = 𝑗 ↓, then 𝑣 ∉ 𝒮1 and 𝐿(𝑣) = 𝑗 . We will show that (𝑓 (𝑢) → 𝑓 (𝑣)) is not
reversible.

Note that (𝑓 (𝑢) → 𝑓 (𝑣)) should be in 𝐸 ′2 and then 𝑢 ≺ 𝑣 in 𝜋𝐷 . By 𝐿
′(𝑢 ′) ∈ {𝑖↑, 𝑖↓}, 𝑢 ′ = 𝑓 (𝑢),

and (2), we have 𝐿(𝑢) = 𝑖 . �us, (𝐿(𝑢), 𝐿(𝑣)) = (𝑖, 𝑗) ∈ M ⊆ 𝐸𝐷 . As 𝐷 is a wdag and 𝑢 ≺ 𝑣 in 𝜋𝐷 , the
arc (𝑢 → 𝑣) exists in 𝐷 . Since 𝑣 ∉ 𝒮1, 𝑣 ∉ V , which means that 𝑢 → 𝑣 is not reversible in 𝐷 . According

to Fact 2.5, there is a path 𝑢 = 𝑤1 → 𝑤2 → · · · → 𝑤𝑘 → 𝑤𝑘+1 = 𝑣 from 𝑢 to 𝑣 in 𝐷 other than the arc

𝑢 → 𝑣 , where𝑤ℓ ≺ 𝑤ℓ+1 in 𝜋𝐷 and (𝐿(𝑤ℓ ) = 𝐿(𝑤ℓ+1)) ∨ ((𝐿(𝑤ℓ ), 𝐿(𝑤ℓ+1)) ∈ 𝐸𝐷 ) for each ℓ ∈ [𝑘].
According to the de�nition of 𝐺M

and (2), one can check that (𝑓 (𝑤𝑖) → 𝑓 (𝑤𝑖+1)) ∈ 𝐸 ′2. �erefore

𝑢 ′ = 𝑓 (𝑤1) → 𝑓 (𝑤2) → · · · → 𝑓 (𝑤𝑘 ) → 𝑓 (𝑤𝑘+1) = 𝑣 ′ is a path from 𝑢 ′ to 𝑣 ′ in 𝐷 ′
, which implies that

𝑢 ′ → 𝑓 (𝑣) is not reversible in 𝐷 ′
by Fact 2.5. �
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Having Claims C.3 and C.5, we are ready to show that ℎ is injective.

Lemma C.6. ℎ is injective.

Proof. Fix a 𝐷 = (𝑉 , 𝐸, 𝐿) ∈ D(𝐺𝐷 ) and a 𝒮 ∈ 𝜓 (𝐷). Let 𝐷 ′ = (𝑉 ′, 𝐸 ′, 𝐿′) denote ℎ(𝐷,𝒮). We show

(𝐷,𝒮) can be recovered from 𝐷 ′
, which implies the injectiveness of ℎ.

First, we recover the partition (𝑉 ′
1 ,𝑉

′
2 ). �at is, given a node 𝑢 ′ ∈ 𝑉 ′

, we distinguish whether 𝑢 ′ ∈ 𝑉 ′
1

or 𝑢 ′ ∈ 𝑉 ′
2 . If 𝐿

′(𝑢 ′) ∈ [𝑚] \ M, then 𝑢 ′ ∈ 𝑉 ′
1 according to (2). Otherwise, we have 𝐿′(𝑢 ′) ∈ {𝑖↑, 𝑖↓}

for some (𝑖, 𝑗) ∈ M, hence 𝑢 ′ is in List′(𝐷 ′, 𝑖, 𝑗). Assume the nodes in List′(𝐷, 𝑖, 𝑗) are 𝑣 ′1𝑣 ′2𝑣 ′3 · · · 𝑣 ′𝑘 .
According to Claim C.5, we can see that the following procedure distinguishes whether 𝑣 ′ℓ ∈ 𝑉 ′

1 or

𝑣 ′
𝑘
∈ 𝑉 ′

2 for all 𝑣 ′ℓ ∈ List′(𝐷 ′, 𝑖, 𝑗), including 𝑢 ′.

1 Initially, mark that 𝑣 ′
𝑘
∈ 𝑉 ′

1 , and let ℓ := 𝑘 − 1;

2 while ℓ ≥ 1 do
3 if the arc (𝑣 ′ℓ → 𝑣 ′

ℓ+1) is (∗, ↓)-reversible and 𝑣 ′ℓ+1 ∈ 𝑉 ′
1 then

4 Mark that 𝑣 ′ℓ ∈ 𝑉 ′
2 ;

5 else
6 Mark that 𝑣 ′ℓ ∈ 𝑉 ′

1 ;

7 ℓ := ℓ − 1;

Secondly, we can easily recover 𝐷 = (𝑉 , 𝐸, 𝐿) from 𝐷 ′
and (𝑉 ′

1 ,𝑉
′
2 ). Ignoring labels, it is easy to see

that 𝐷 is exactly the induced subgraph of 𝐷 ′
on 𝑉 ′

1 . By the way, we also get the function 𝑓 : 𝑉 → 𝑉 ′
1 .

For labels, we simply replace each label 𝑖↑ or 𝑖↓ with 𝑖 .
Finally, we recover 𝒮 from 𝐷 ′

, 𝐷 and (𝑉 ′
1 ,𝑉2). �at is, we distinguish which one of {𝒮1,𝒮2,𝒮3,𝒮3}

contains a given node 𝑣 ∈ ℳ(𝐷). Assume 𝐿(𝑣) = 𝑖 and (𝑖, 𝑗) ∈ M. Let 𝑢 ′ be the node previous to 𝑓 (𝑣)
in List′(𝐷, 𝑖, 𝑗). According to Part (c) of Claim C.3, 𝑢 ′ ∈ 𝑉 ′

2 if and only if 𝑣 ∈ 𝒮3∪𝒮4. When 𝑣 ∈ 𝒮3∪𝒮4,

𝑣 ∈ 𝒮3 if 𝐿
′(𝑢 ′) = 𝑗 ↑, and 𝑣 ∈ 𝒮4 if 𝐿

′(𝑢 ′) = 𝑗 ↓. When 𝑣 ∉ 𝒮3 ∪𝒮4, 𝑣 ∈ 𝒮1 if 𝐿
′(𝑣 ′) = 𝑖↑, and 𝑣 ∈ 𝒮2 if

𝐿′(𝑣 ′) = 𝑖↓.
�

Appendix D. Proof of Lemma 6.1

Let 𝒆𝒊 denote the vector whose coordinates are all 0 except the 𝑖-th that equals 1. �e following

lemmas will be used in the proof.

Lemma D.1. [HLSZ19] Let 𝐺𝐷 = ( [𝑚], 𝐸𝐷 ) be a dependency graph and 𝒑 be a probability vector beyond
the Shearer’s bound. Suppose 𝑖, 𝑖1, 𝑖2, · · · , 𝑖𝑘−1, 𝑖 ′ form a shortest path from 𝑖 to 𝑖 ′ in 𝐺𝐷 . �en for any
𝑞 ≤ 𝑝𝑖′ , 𝒑 − 𝑞𝒆𝒊′ +

( ∏
ℓ∈[𝑘−1]

1−𝑝𝑖ℓ
𝑝𝑖ℓ

)
· 1−𝑝𝑖

𝑝𝑖′
· 𝑞𝒆𝒊 is also beyond the Shearer’s bound.

Without loss of generality, we assume that 𝑝𝑖 − 𝑝𝑎 is rational for each 𝑖 ∈ [𝑚]. By contradiction, let

𝒑 be such a vector which is beyond Shearer’s bound. Let 𝑆+ := {𝑖 ∈ [𝑚] : 𝑝𝑖 > 𝑝} and 𝑆− := {𝑖 ∈ [𝑚] :
𝑝𝑖 < 𝑝}. Let Δ𝑝 be a real number such that the following hold:

• For each 𝑖 ∈ 𝑆+, 𝑝𝑖 − 𝑝𝑎 = 𝛾𝑖 · Δ𝑝 for some 𝛾𝑖 ∈ N+
. Intuitively, we cut 𝑝𝑖 − 𝑝𝑎 into 𝛾𝑖 pieces each of

size Δ𝑝 . Besides, we call such pieces positive pieces.
• For each 𝑖 ∈ 𝑆−,

𝑝𝑎 − 𝑝𝑖 = 𝜏𝑖 · 𝐾 ·
(
1 − 𝑝𝑎
𝑝𝑎

)𝑑−1
·
Δ𝑝

𝑝𝑎

for some 𝜏𝑖 ∈ N+
. Intuitively, we cut 𝑝𝑎 − 𝑝𝑖 into 𝜏𝑖 · 𝐾 pieces each of size

(
1−𝑝𝑎
𝑝𝑎

)𝑑−1
· Δ𝑝

𝑝𝑎
. We call

such pieces negative pieces.
We use R := {(𝑖, 𝑟 ) : 𝑖 ∈ 𝑆+, 𝑟 ∈ [𝛾𝑖]} and T , {(𝑖 ′, 𝑡, 𝑘) : 𝑖 ′ ∈ 𝑆−, 𝑡 ∈ [𝜏𝑖′], 𝑘 ∈ [𝐾]} to denote the set of

positive pieces and negative pieces respectively.
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For convenience, let 𝛾𝑖 = 0 if 𝑖 ∉ 𝑆+, and 𝜏𝑖 = 0 if 𝑖 ∉ 𝑆−. �en Condition (c) can be restated as: for

𝑓 (𝑆) = 𝑇 , the positive pieces in 𝑆 are no more than the negative pieces in 𝑇 , i.e.,∑︁
𝑖∈𝑆

𝛾𝑖 ≤
∑︁
𝑖′∈𝑇

𝜏𝑖′ .(16)

�e basic idea of Lemma 6.1 is relatively simple: for each 𝑆 ∈ S, we move positive pieces in 𝑆 to 𝑓 (𝑆)
such that (i) all the positive pieces in 𝑆 are absorbed by the negative pieces in 𝑓 (𝑆) and (ii) the resulted

probability vector is still beyond Shearer’s bound. Finally, all positive pieces will be absorbed, and we

will get a vector strictly smaller than 𝒑. By Lemma D.1, this vector is beyond Shearer’s bound, which

makes a contradiction.

For 𝑖 ′ ∈ [𝑚], remember Condition (a) which says that there are at most 𝐾 subsets 𝑆 ⊂ S such that

𝑖 ′ ∈ 𝑓 (𝑆), and we use 𝑆1
𝑖′, 𝑆

2
𝑖′, · · · to represent these subsets. Let 𝑔 : R → T be a injection mapping each

(𝑖, 𝑟 ) ∈ R to some (𝑖 ′, 𝑡, 𝑘) ∈ T satisfying that (i) 𝑖 ∈ 𝑆𝑘
𝑖′ and (ii)∑︁

𝑖0∈𝑆𝑘𝑖′ ,𝑖0<𝑖

𝛾𝑖0 + 𝑟 =
∑︁

𝑖1∈𝑓 (𝑆𝑘𝑖′ ),𝑖1<𝑖
′

𝜏𝑖1 + 𝑡 .

By (16), one can verify that such mapping 𝑔 exists. In addition, according to Condition (b), if 𝑔(𝑖, 𝑟 ) =
(𝑖 ′, 𝑡, 𝑘), then dist(𝑖, 𝑖 ′) ≤ 𝑑 .

In the following, we will apply Lemma D.1 repeatedly.

Let 𝑔0 be 𝑔, 𝑆0 be 𝑆− and R0 be R. Given an injection 𝑔𝜅 : R → T , 𝑆𝜅 and R𝜅 where dis(𝑖, 𝑗) ≤ 𝑑 if

𝑔𝜅 (𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘), we construct another injection 𝑔𝜅+1 : R → T , 𝑆𝜅+1 and R𝜅+1 as follows. �ere are

two possible cases for 𝑔𝜅 , 𝑆𝜅 and R𝜅 .

(1) there exists 𝑖, 𝑟 , 𝑗, 𝑡, 𝑘 such that (𝑖, 𝑟 ) ∈ R𝜅 , 𝑔𝜅 (𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘) and there is a shortest path between

𝑖 and 𝑗 such that no vertex in 𝑆𝜅 is on the path;

(2) For each 𝑔𝜅 (𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘) where (𝑖, 𝑟 ) ∈ R𝜅 and each shortest path between 𝑖 and 𝑗 , there is a

vertex in 𝑆𝜅 on the path.

For case (1), we let 𝑔𝜅+1 = 𝑔𝜅 , R𝜅+1 = R𝜅 \ {(𝑖, 𝑟 )}, and
𝑆𝜅+1 = { 𝑗 ∈ 𝑆− : there exists 𝑖, 𝑟 , 𝑡, 𝑘 where (𝑖, 𝑟 ) ∈ R𝜅+1 such that 𝑔𝜅+1(𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘)}.

For case (2), there must be (𝑖1, 𝑟1, 𝑗1, 𝑡1, 𝑘1), · · · , (𝑖𝑛, 𝑟𝑛, 𝑗𝑛, 𝑡𝑛, 𝑘𝑛) for some 𝑛 ∈ N+
such that

- (𝑖ℓ , 𝑟ℓ ) ∈ R𝜅 , 𝑗ℓ ∈ 𝑆𝜅 , 𝑔𝜅 (𝑖ℓ , 𝑟ℓ ) = ( 𝑗ℓ , 𝑡ℓ , 𝑘ℓ ) for each ℓ ∈ [𝑛],
- 𝑗ℓ+1 is on a shortest path between 𝑖ℓ and 𝑗ℓ for each ℓ ∈ [𝑛 − 1],
- 𝑗1 is on a shortest path between 𝑖𝑛 and 𝑗𝑛 .

We de�ne the injection 𝐹 (𝑔𝜅) as follows.
𝐹 (𝑔𝜅) (𝑖𝑛, 𝑟𝑛) = ( 𝑗1, 𝑡1, 𝑘1),
𝐹 (𝑔𝜅) (𝑖ℓ , 𝑟ℓ ) = ( 𝑗ℓ+1, 𝑡ℓ+1, 𝑘ℓ+1) for each ℓ ∈ [𝑛 − 1],
𝐹 (𝑔𝜅) (𝑖, 𝑟 ) = 𝑔𝜅 (𝑖, 𝑟 ) for other (𝑖, 𝑟 ) .

One can verify that dis(𝑖, 𝑗) ≤ 𝑑 if 𝐹 (𝑔𝜅) (𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘) and

𝑁 ,
∑︁

(𝑖,𝑟 , 𝑗,𝑡,𝑘):
𝑔𝜅 (𝑖,𝑟 )=( 𝑗,𝑡,𝑘)

dis(𝑖, 𝑗) ≥ 1 +
∑︁

(𝑖,𝑟 , 𝑗,𝑡,𝑘):
𝐹 (𝑔𝜅 ) (𝑖,𝑟 )=( 𝑗,𝑡,𝑘)

dis(𝑖, 𝑗) .

Since 𝑁 is bounded, there must be a constant ℓ ≤ 𝑁 and 𝑖, 𝑟 , 𝑗, 𝑡, 𝑘 such that (𝑖, 𝑟 ) ∈ R𝜅 , 𝐹
ℓ (𝑔𝜅) (𝑖, 𝑟 ) =

( 𝑗, 𝑡, 𝑘) and there is a shortest path between 𝑖 and 𝑗 such that no vertex in 𝑆𝜅 is on the path. Let

𝑔𝜅+1 = 𝐹 ℓ (𝑔𝜅), R𝜅+1 = R𝜅 \ {(𝑖, 𝑟 )} and
𝑆𝜅+1 = { 𝑗 ∈ 𝑆− : there exists 𝑖, 𝑟 , 𝑡, 𝑘 where (𝑖, 𝑟 ) ∈ R𝜅+1 such that 𝑔𝜅+1(𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘)}.

One can verify that in both cases, 𝑔𝜅+1 is an injection from R to T and dis(𝑖, 𝑗) ≤ 𝑑 if 𝑔𝜅+1(𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘).
Let 𝑔′ be 𝑔 |R | . For each ℓ ∈ [|R|], let (𝑖ℓ , 𝑟ℓ ) be the unique element in Rℓ−1 \ Rℓ . Let ( 𝑗ℓ , 𝑡ℓ , 𝑘ℓ ) denote

𝑔′(𝑖ℓ , 𝑟ℓ ). �us, we have

- 𝑔′ is an injection from R to T ,

- dis(𝑖ℓ , 𝑗ℓ ) ≤ 𝑑 for each ℓ ∈ [|R|],
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- there is a shortest path between 𝑖ℓ and 𝑗ℓ such that 𝑗ℓ+1, 𝑗ℓ+2, · · · , 𝑗 |R | ∈ 𝑆ℓ are not on the path.

For each 𝑗 ∈ 𝑆−, de�ne
𝜂 𝑗 = |{(𝑖, 𝑟 ) : 𝑔′(𝑖, 𝑟 ) = ( 𝑗, 𝑡, 𝑘) for some 𝑡 ∈ [𝜏 𝑗 ], 𝑘 ∈ [𝐾]}|.

Because 𝑔′ is an injection, we have 𝜂 𝑗 ≤ 𝜏 𝑗 · 𝐾 . Let

𝒑′′ , 𝒑 ′ +
∑︁
𝑗 ∈𝑆−

(𝐾 · 𝜏 𝑗 − 𝜂 𝑗 ) ·
(
1 − 𝑝
𝑝

)𝑑−1
·
Δ𝑝

𝑝
· 𝒆 𝑗 .

By 𝒑 ′
is beyond Shearer’s bound and 𝜂 𝑗 ≤ 𝐾 · 𝜏 𝑗 for each 𝑗 ∈ 𝑆−, we have 𝒑 ′′

is also beyond Shearer’s

bound. For each ℓ ∈ [0, |R |], let

𝒑ℓ , 𝒑 ′′ − Δ𝑝 ·
( ∑︁
𝜅≤ℓ−1

(
𝒆𝑖𝜅 −

(
1 − 𝑝
𝑝

)𝑑−1
· 1
𝑝
· 𝒆 𝑗𝜅

)
+ 𝒆𝑖ℓ −

(
1 − 𝑝
𝑝

)𝑑−1
· 1

𝑝 + Δ𝑝

· 𝒆 𝑗ℓ

)
.

�en we have the following claim.

Claim D.2. For ℓ ∈ [0, |R |], 𝒑ℓ is beyond Shearer’s bound.

Proof. We prove this claim by induction. Obviously, 𝒑0 is beyond Shearer’s bound. In the following, we

prove that if 𝒑ℓ−1 is beyond Shearer’s bound, then 𝒑ℓ is also beyond Shearer’s bound.

Let

𝒒 , 𝒑 ′′ − Δ𝑝 ·
∑︁

𝜅≤ℓ−1

(
𝒆𝑖𝜅 −

(
1 − 𝑝
𝑝

)𝑑−1
· 1
𝑝
· 𝒆 𝑗𝜅

)
.

Obviously, 𝒒 ≥ 𝒑ℓ−1. By 𝒑ℓ−1 is beyond Shearer’s bound, we have 𝒒 is also beyond Shearer’s bound.

Note that there is a shortest path 𝑖ℓ , 𝑘1, 𝑘2, · · · , 𝑘𝑛, 𝑗ℓ between 𝑖ℓ and 𝑗ℓ such that 𝑗ℓ+1, 𝑗ℓ+2, · · · , 𝑗 |R | are
not on the path. Because 𝒒 is beyond Shearer’s bound, by Lemma D.1, we have

𝒒′ , 𝒒 − Δ𝑝 ·
©­«𝒆𝑖ℓ − ©­«

∏
𝑡 ∈[𝑛]

1 − 𝑞𝑘𝑡
𝑞𝑘𝑡

ª®¬ · 1𝑞𝑖 · 𝒆 𝑗ℓ ª®¬
is also beyond Shearer’s bound. Meanwhile, by (𝑖ℓ , 𝑟ℓ ) ∈ R, we have

𝑞𝑖ℓ = 𝑝
′
𝑖 − Δ𝑝

∑︁
𝜅∈ℓ−1

1(𝑖𝜅 = 𝑖ℓ ) ≥ 𝑝 ′𝑖 − (𝛾𝑖 − 1)Δ𝑝 ≥ 𝑝𝑖 + Δ𝑝 .

For each 𝑡 ∈ [𝑛], if 𝑘𝑡 ∉ 𝑆−, we have 𝑞𝑘𝑡 ≥ 𝑝 . Otherwise, 𝑘𝑡 ∈ 𝑆−, and 𝑘𝑡 ≠ 𝑗𝜅 for each 𝜅 ≥ ℓ . �us, we

have

∑
𝜅∈ℓ−1 1( 𝑗𝜅 = 𝑘𝑡 ) = 𝜂𝑘𝑡 . �erefore,

𝑞𝑘𝑡 = 𝑝
′
𝑘𝑡
+ (𝐾 · 𝜏𝑘𝑡 − 𝜂𝑘𝑡 ) ·

(
1 − 𝑝
𝑝

)𝑑−1
·
Δ𝑝

𝑝
+

∑︁
𝜅∈ℓ−1

1( 𝑗𝜅 = 𝑘𝑡 ) ·
(
1 − 𝑝
𝑝

)𝑑−1
·
Δ𝑝

𝑝

= 𝑝 ′
𝑘𝑡
+ (𝐾 · 𝜏𝑘𝑡 − 𝜂𝑘𝑡 ) ·

(
1 − 𝑝
𝑝

)𝑑−1
·
Δ𝑝

𝑝
+ 𝜂𝑘𝑡 ·

(
1 − 𝑝
𝑝

)𝑑−1
·
Δ𝑝

𝑝
= 𝑝.

By dis(𝑖, 𝑗) ≥ 𝑑, 𝑞𝑖ℓ ≥ 𝑝 + Δ𝑝 and 𝑞𝑘𝑡 ≥ 𝑝 for each 𝑡 ∈ [𝑛], we have

©­«
∏
𝑡 ∈[𝑛]

1 − 𝑞𝑘𝑡
𝑞𝑘𝑡

ª®¬ · 1𝑞𝑖 <

(
1 − 𝑝
𝑝

)𝑑−1
· 1

𝑝 + Δ𝑝

.

�us, by 𝒒′ is beyond Shearer’s bound, we have

𝒑ℓ = 𝒒 − Δ𝑝 ·
(
𝒆𝑖ℓ −

(
1 − 𝑝
𝑝

)𝑑−1
· 1

𝑝 + Δ𝑝

· 𝒆 𝑗ℓ

)
is also beyond Shearer’s bound. �

�us, we have𝒑 |R | is beyond Shearer’s bound. It is easy to verify that𝒑 |R | < 𝒑, which is contradictory
with that 𝒑 is on Shearer’s boundary.
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Appendix E. Missing part in the proof of Theorem 6.2

Proof of Claim 6.3. Observe that for each (𝑣, 𝑣 ′) ∈ 𝐸𝑘
𝑈
, if (𝑣, 𝑣 ′) ∉ M, then one of its neighboring edge

(𝑣0, 𝑣1) is in 𝑇𝑘 and satis�es that 𝛿𝑣,𝑣′ ≤ 𝛿𝑣0,𝑣1 . Here, we say two edges neighboring if they share a

common vertex. Besides, note that each edge has at most 2Δ neighboring edges. So∑︁
(𝑣0,𝑣1) ∈𝑇𝑘

𝛿2𝑣0,𝑣1 ≥ 1

2Δ

∑︁
(𝑣,𝑣′) ∈𝐸𝑘

𝑈

𝛿2𝑣,𝑣′ .(17)

Moreover, according to Lemma 4.2 and 4.5, it has that

∑︁
(𝑣,𝑣′) ∈𝐸𝑘

𝑈

𝛿2𝑣,𝑣′ ≥
1

|𝐸𝑘
𝑈
|
·
©­­«

∑︁
(𝑣,𝑣′) ∈𝐸𝑘

𝑈

𝛿𝑣,𝑣′
ª®®¬
2

≥
|𝑉 𝑘
𝑈
| · Δ2

|𝐸𝑘
𝑈
|

·
(
z+(𝐺𝐵 (𝐺𝐷 ),𝒑)

)2
,(18)

By combining Inequality 17, 18 and the fact that 2|𝐸𝑘
𝑈
| ≤ |𝑉 𝑘

𝑈
|Δ, we �nish the proof. �

Let 𝐾 := (Δ + 1) |𝑉𝑈 |, 𝑑 := 𝐷 + 2, S := {𝑉 1
𝑈
,𝑉 2

𝑈
, · · · }, and 𝑓 (𝑉 𝑘

𝑈
) := 𝑇𝑘 . In the following, we check

that all the three conditions in Lemma 6.1 hold.

Condition (a). �at is, we want to show |{𝑘 : 𝑇𝑘 3 𝑣}| ≤ (Δ + 1) |𝑉𝑈 | for each 𝑣 ∈ 𝑉𝐷 . Observe that if
𝑣 ∈ 𝑇𝑘 , then 𝑣 ∈ N+(𝑉 𝑘

𝑈
). So

|{𝑘 : 𝑇𝑘 3 𝑣}| ≤ |{𝑘 : N+(𝑉 𝑘
𝑈 ) 3 𝑣}| ≤ |{𝑘 : N+(𝑣)∩𝑉 𝑘

𝑈 ≠ ∅}| ≤
∑︁

𝑣′∈N+ (𝑣)
|{𝑘 : 𝑉 𝑘

𝑈 3 𝑣 ′}| ≤ (Δ+1) · |𝑉𝐷 |.

�e last inequality uses the fact that ℎ(𝑘 ′, 𝑢) ≠ ℎ(𝑘,𝑢) if 𝑘 ≠ 𝑘 ′.

Condition (b).�at is, we want to show dist(𝑣, 𝑣 ′) ≤ 𝐷 + 2 for any 𝑣 ∈ 𝑉 𝑘
𝑈
and 𝑣 ′ ∈ 𝑇𝑘 . �is is obvious,

because if 𝑣 ′ ∈ 𝑇𝑘 , then 𝑣 ′ ∈ N+(𝑉 𝑘
𝑈
).

Condition (c).We verify that(
1 − 𝑝𝑎
𝑝𝑎

)𝐷+1
· 𝐾
𝑝𝑎

·
∑︁
𝑖∈𝑆

max{𝑝𝑖 − 𝑝𝑎, 0} ≤
∑︁
𝑖∈𝑇

max{𝑝𝑎 − 𝑝𝑖 , 0}.(19)

On one hand, noting that max{(1 + 𝜀)𝑝−𝑣 − 𝑝𝑎, 0} ≤ max{(1 + 𝜀)𝑝𝑣 − 𝑝𝑎, 0} ≤ 𝑞, we have

L.H.S of (19) ≤
(
1 − 𝑝𝑎
𝑝𝑎

)𝐷+1
· (Δ + 1) |𝑉𝑈 |2

𝑝𝑎
· 𝑞.(20)

On the other hand, observe that

max{𝑝𝑎 − (1 + 𝜀)𝑝−𝑣 , 0} ≥ 𝑝𝑎 − (1 + 𝜀)𝑝−𝑣 = (𝑝𝑎 + 𝑞 − (1 + 𝜀)𝑝−𝑣 ) − 𝑞 ≥ (1 + 𝜀) (𝑝𝑣 − 𝑝−𝑣 ) − 𝑞
≥ (𝑝𝑣 − 𝑝−𝑣 ) − 𝑞,

where the last inequality is due to the assumption that (1 + 𝜀)𝒑 ≤ (𝑝𝑎 + 𝑞, · · · , 𝑝𝑎 + 𝑞). �en

R.H.S of (19) ≥
©­­«
∑︁
𝑣∈𝑉𝑘

𝑈

(𝑝𝑣 − 𝑝−𝑣 )
ª®®¬ − |N+(𝑉 𝑘

𝑈 ) |𝑞 ≥ 2

17

©­«
∑︁

(𝑣0,𝑣1) ∈𝑇𝑘

𝛿2𝑣0,𝑣1
ª®¬ − Δ|𝑉𝑈 |𝑞

≥ 2

17

(
z+(𝐺𝐵 (𝐺𝐷 ),𝒑)

)2 − Δ|𝑉𝑈 |𝑞.(21)

Pu�ing Inequality 20 and 21 together and noting that
1−𝑝𝑎
𝑝𝑎

≥ 1.
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