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MOSER-TARDOS ALGORITHM: BEYOND SHEARER’S BOUND

KUN HE, QIAN LI, AND XIAOMING SUN

ABSTRACT. In a seminal paper (Moser and Tardos, JACM’10), Moser and Tardos developed a simple and
powerful algorithm to find solutions to combinatorial problems in the variable Lovasz Local Lemma (LLL)
setting. Kolipaka and Szegedy (Kolipaka and Szegedy, STOC’11) proved that the Moser-Tardos algorithm
is efficient up to the tight condition of the abstract Lovasz Local Lemma, known as Shearer’s bound. A
fundamental problem around LLL is whether the efficient region of the Moser-Tardos algorithm can be
further extended.

In this paper, we give a positive answer to this problem. We show that the efficient region of the
Moser-Tardos algorithm goes beyond the Shearer’s bound of the underlying dependency graph, if the
graph is not chordal. Otherwise, the dependency graph is chordal, and it has been shown that Shearer’s
bound exactly characterizes the efficient region for such graphs (Kolipaka and Szegedy, STOC’11; He, Li,
Liu, Wang and Xia, FOCS’17).

Moreover, we demonstrate that the efficient region can exceed Shearer’s bound by a constant by
explicitly calculating the gaps on several infinite lattices.

The core of our proof is a new criterion on the efficiency of the Moser-Tardos algorithm which takes the
intersection between dependent events into consideration. Our criterion is strictly better than Shearer’s
bound whenever the intersection exists between dependent events. Meanwhile, if any two dependent
events are mutually exclusive, our criterion becomes the Shearer’s bound, which is known to be tight
in this situation for the Moser-Tardos algorithm (Kolipaka and Szegedy, STOC’11; Guo, Jerrum and Liu,
JACM’19).

1. INTRODUCTION

Suppose A = {A1,---,An} is a set of bad events. If the events are mutually independent, then we
can avoid all of these events simultaneously whenever no event has probability 1. Lovasz Local Lemma
(LLL) [EL75], one of the most important probabilistic methods, allows for limited dependency among
the events, but still concludes that all the events can be avoided simultaneously if each individual event
has a bounded probability. In the most general setting (a.k.a. abstract LLL), the dependency among A is
characterized by an undirected graph Gp = ([m], Ep), called a dependency graph of A, which satisfies
that for any vertex i, A; is independent of {A; : j ¢ Ng,, (i) U {i}}. Here N (i) stands for the set of
neighbors of vertex i in a given graph G.

We use A ~ (Gp, p) to denote that (i) Gp is a dependency graph of A and (ii) the probability vector
of A is p. Given a graph Gp, define the abstract interior 1,(Gp) to be the set consisting of all vectors p

such that P (ﬂ Ac y{Z) > 0 for any A ~ (Gp, p). In this context, the most frequently used abstract LLL
can be stated as follows:
Theorem 1.1 ([Spe77]). Given any graph Gp = ([m], Ep) and any probability vector p € (0,1]™, if
there exist real numbers x1, ..., X, € (0,1) such that p; < x; HjENGD(i)(l —xj) foranyi € [m], then
p € 1,(Gp).

Shearer [She85] obtained the strongest possible condition for abstract LLL. Let Ind(Gp) be the set of

all independent sets of an undirected graph Gp = ([m], Ep) and p = (p1,- -+, pm) € (0, 1]™. For each
I € Ind(Gp), define the quantity

aGpp = Y, DY ]p

JeInd(Gp),IC] icJ
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p is called in Shearer’s bound of Gp if q;(Gp, p) > 0 for any I € Ind(Gp). Otherwise we say p is beyond
Shearer’s bound of Gp. Shearer’s result can be stated as follows.

Theorem 1.2 ([She85]). For any graph Gp = ([m], Ep) and any probability vector p € (0,1]™, p €
1,(Gp) if and only if p is in Shearer’s bound of Gp.

Variable Lovasz Local Lemma. Variable Lovasz Local Lemma (VLLL) is another quite general and com-
mon setting of LLL, which applies to variable-generated event systems. In this setting, there is a set
of underlying mutually independent random variables {Xi, - - -, X, }, and each event A; can be fully
determined by some variables vbl(A;) of them. The dependency between events and variables can be
naturally characterized by a bipartite graph Gg = ([m], [n], Eg), known as the event-variable graph,
such that edge (i, j) € [m] x [n] exists if and only if X; € vbl(A;).

The variable setting is important, mainly because most applications of LLL have natural underlying
independent variables, such as the satisfiability of CNF formulas| GMSW09, GST16, Moi19a, FGYZ20],
hypergraph coloring [McD97, GLLZ19], and Ramsey numbers[Spe75, Spe77, Har16]. In particular, the
groundbreaking result by Moser and Tardos [MT10] on constructive LLL applies in the variable setting.

There is a natural choice for the dependency graph of variable-generated systems, called the canonical
dependency graph: two events are adjacent if they share some common variables. Formally, given a
bipartite graph Gg = (U, V, Ep), its base graph is defined as the graph Gp(Gg) = (U, Ep) such that for
any two vertices u;, u; € U, (u;, u;) € Ep if and only if u; and u; share common neighbors in Gg. If G
is the event-variable graph of a variable-generated system A, then Gp(Gp) is the canonical dependency
graph of A.

Given a graph Gp, define the variable interior Z,(Gp) to be the set consisting of all vectors p such that

P (ﬂAEﬂZ) > ( for any variable-generated event system A ~ (Gp, p). Obviously, Z,(Gp) 2 Z,(Gp)

for any Gp. In contrast with the abstract LLL, the Shearer’s bound (of the canonical dependency graph)
turns out to be not tight for variable-generated systems [HLL*17]: the containment is proper if and
only if Gp is not chordal’.

Constructive (variable) Lovasz Local Lemma and Moser-Tardos algorithm. The abstract LLL and the
variable LLL mentioned above are not constructive in that they do not indicate how to efficiently
find an object avoiding all the bad events. In a seminal paper [MT10], Moser and Tardos developed
an amazingly simple efficient algorithm for variable-generated systems, depicted in Algorithm 17,
and showed that this algorithm terminates quickly under the condition in Theorem 1.1. Following
the Moser-Tardos algorithm (or MT algorithm for short), a large amount of effort devoted to con-
structive LLL, including the remarkable works which extend the MT techniques beyond the variable
setting [HS14, AIV17, AIK19, AIS19, 1S20, HV20]. The MT algorithm has been applied to many impor-
tant problems, including k-SAT [GST16], hypergraph coloring [Har16], Hamiltonian cycle [Har16], and
their counting and sampling [GJL19, Moil9a, FGYZ20, FHY21, JPV21, HSW21].

Algorithm 1: Moser-Tardos Algorithm

1 Assign random values to X7, - - -, Xp;
2 while 3i € [m] such that A; holds do
3 L Arbitrarily select one such i and resample all variables X; in vbl(A;);

4 Return the current assignment;

Mainly because such a simple algorithm is so powerful and general-purpose, it is one of the most
intriguing and fundamental problems on constructive LLL how powerful the MT algorithm is. Given a
graph Gp, define the Moser-Tardos interior Iy;7(Gp) to be the set consisting of all vectors p such that
the MT algorithm is efficient for any variable-generated event system A ~ (Gp, p). Clearly, Zyr(Gp) C
TI,(Gp) for any Gp. A major line of follow-up works explores 7y (Gp) [KSX12, Peg14, KS11, CCS*17].

1A graph is chordal if it has no induced cycle of length at least four.
2'Ihroughout the paper, the Moser-Tardos algorithm is allowed to follow arbitrary selection rules.
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The best known criterion is obtained by Kolipaka and Szegedy [KS11]. They extended the MT interior
to the Shearer’s bound. That is, they showed that 7y (Gp) 2 Z,(Gp). As mentioned above, if Gp is
not chordal, 7,(Gp) is properly contained in 7,(Gp), so it is possible to further push Zy;r(Gp) beyond
Shearer’s bound.

In this paper, we concentrate on the following open problem:
Problem 1: does Ij7(Gp) properly contain 1,(Gp) for some Gp? If so, for what kind of graph Gp?

Rather than potential applications, our main motivations are the following fundamental problems
around LLL itself:

o The limitation of the constructive LLL in the variable setting. In the most fascinating problems around
LLL, a mysterious conjecture says that there is an algorithm which is efficient for all variable-
generated systems A if A ~ (Gp, p) for some Gp and p € 1,(Gp) [Szel3]. It would be a small
miracle if the conjecture is true, since if so, one can always construct a solution efficiently in the
variable setting if solutions are guaranteed to exist by the LLL condition. Towards this conjecture,
a good start is to show that Jy7(Gp) 2 Z,(Gp) for some Gp, as 7,(Gp) 2 Z,(Gp) for Gp which
is not chordal.

o The limitation of the MT algorithm. The MT algorithm is one of the most intriguing topics in modern
algorithm researches, not only because it is very simple and with magic power, but also because
it is closely related to the famous Walksat algorithm for random k-SAT. A mysterious problem
about the MT algorithm is where is its true limitation [Sze13, CCS*17]. It is conjectured that
Imr(Gp) = Z,(Gp) for any Gp [Szel3]. To prove this conjecture, the first step is to give a positive
answer to Problem 1. Moreover, due to the connection between Shearer’s bound and the Repulsive
Lattice Gas model, it is conjectured that essential connection exists between statistical mechanics and
the MT algorithm [Sze13]. Whether Zj1(Gp) = Z,(Gp) for each Gp is critical to this conjecture.

Remark 1.3. To explore the power of the MT algorithm in specific applications, one may employ special
structures of the applications, such as the way the variables interact, to obtain sharp bounds rather than in
terms of the canonical dependency graph only. Nevertheless, characterizing the power of the MT algorithm
in terms of the canonical dependency graph is a very fundamental problem and also the focus of the major
line of researches [MT10, Peg14, BFPS11, KS11]. Moreover, a major difficulty to strengthen the guarantees
of the MT algorithm is that the analysis should be valid for all possible variable-generated event systems. It
is not quite surprising to obtain better bounds if the event system has further restrictions. To substantially
improve the guarantees of the MT algorithm and provide deep insight about its dynamics, we would rather
focus on the general variable LLL setting than employ the special structures in the applications.

We should emphasize that Problem 1 is still quite open! As mentioned before, it has been proved
that the Shearer’s bound is not tight for variable-generated systems [HLL"17]. However, this only says
that there is some probability vector p beyond the Shearer’s bound such that all variable-generated
event systems A ~ (Gp, p) must have a satisfying assignment. It is unclear whether the MT algorithm
can construct such an assignment efficiently.

It also has been proved that the MT algorithm can still be efficient even beyond the Shearer’s bound
for some specific applications [Har16]. Despite its novel contribution, this result does not provide an
answer to Problem 1. The result in [Har16] focuses on the event systems with special structures. Thus, it
only implies that there is a probability vector p beyond the Shearer’s bound such that the MT algorithm
is efficient for some restricted variable-generated event systems A ~ (Gp, p). However, to show
Imr(Gp) 2 I,(Gp), one must prove that the MT algorithm is efficient for all possible event systems,
and this is one major difficulty to resolve Problem 1.

1.1. Results and contributions. We provide a complete answer to Problem 1 (Theorem 1.5): if Gp is
not chordal, then Zyr(Gp) 2 Z,(Gp), i.e., the efficient region of the MT algorithm goes beyond Shearer’s
bound. Otherwise, Iy (Gp) = 1,(Gp), because 1,(Gp) € Iy7(Gp) € 1,(Gp) and 1,(Gp) = 1,(Gp)
for chordal graphs Gp [HLL*17].
The core of the proof of Theorem 1.5 is a new convergence criterion for the MT algorithm (Theorem
1.6), which may be of independent interest. This new criterion takes the intersection between dependent
3



events into consideration, and is strictly better than Shearer’s bound when there exists a pair of
dependent events which are not mutually exclusive.

1.1.1. Moser-Tardos algorithm: beyond Shearer’s bound. Given a dependency graph Gp = ([m], Ep) and
a probability vector p = (p1,p2,- -, pm) € (0,1)™, we say that p is on the Shearer’s boundary of Gp if
(1 — ¢)p is in Shearer’s bound and (1 + ¢) p is not for any ¢ > 0. A chordless cycle in a graph Gp is an
induced cycle of length at least 4. A chordal graph is a graph without chordless cycles.

Given two vectors p and ¢, we say p < q if the inequality holds entry-wise. Additionally, if the
inequality is strict on at least one entry, we say that p < q.

Definition 1.4 (Maximum L;-gap to the Shearer’s bound). Given a dependency graph Gp and a prob-
ability vector p beyond the Shearer’s bound of Gp, define the maximum L;-gap from p to the Shearer’s
bound of Gp as

d(p,Gp) £ arg |S|Ul|1§> {p—q¢1,(Gp):q < p}.
qli1

For convenience, we let d(p, Gp) = —1 if p is in the Shearer’s bound of Gp.

Intuitively, d(p, Gp) measures how far p is from the Shearer’s bound of Gp. One can verify that
d(p,Gp) < 0if p is in the Shearer’s bound, d(p,Gp) = 0 if p is on the Shearer’s boundary, and
d(p,Gp) > 0if p is beyond Shearer’s bound but not on the Shearer’s boundary. Now, we are ready to
state our main result.

Theorem 1.5. For any chordal graph Gp, Iy1(Gp) = 1,(Gp), i.e, p € Iyr(Gp) iff d(p,Gp) < 0.
For any graph Gp which is not chordal, p € Iy (Gp) if

d(p,Gp) < 515 ; IC,-I(l;IéICIilpj) : (maX{T -10

for some disjoint chordless cycles C1,Ca, - - - ,C; in Gp. In particular, there is a probability vector p with
d(p,Gp) > 272K =3 satisfying the above condition, where K is the length the shortest chordless cycle. This
implies that Tyi7(Gp) contains a probability vector p withd(p,Gp) > 2720K=3,

The intuition of Theorem 1.5 is as follows. The theorem characterizes the efficient region of the MT
algorithm with d(p, Gp). It shows that if d(p, Gp) is upper bounded by a non-negative quantity related
to the chordless cycles in Gp, then the MT algorithm is efficient. Since 7,(Gp) is the set of p where
d(p,Gp) < 0, our criterion is at least as good as Shearer’s bound. Moreover, for each Gp which is
not chordal, our criterion is strictly better: there exists some p with d(p,Gp) > 272K~ satisfying
our criterion. Intuitively, Theorem 1.5 implies that chordless cycles in Gp enhance the power of the MT
algorithm.

We emphasize that Theorem 1.5 provides a complete answer to Problem 1: 77 (Gp) properly contains
1,(Gp) if and only if Gp is not chordal.

1.1.2. A new constructive LLL for non-extremal instances. Given a set A of events with dependency
graph Gp, A is called extremal if all pairs of dependent events are mutually exclusive, and non-
extremal otherwise. Kolipaka and Szegedy [KS11] showed that the MT algorithm is efficient up to
the Shearer’s bound. In particular, Shearer’s bound is the tight convergence criterion for extremal
instances [KS11, GJL19]. Here, we provide a new convergence criterion (Theorem 1.6) which is a strict
improvement of Kolipaka and Szegedy’s result: this criterion is strictly better than Shearer’s bound
when the instance is non-extremal, and becomes Shearer’s bound when the instance is extremal. This
criterion, named intersection LLL, is the core of our proof of Theorem 1.5.

Let Gp = ([m], Ep) be a canonical dependency graph and p = (p1,-- -, pm) € (0, 1) be a probability
vector. Let M = {(i1,]), (i2,i5),- -~} € Ep be a matching of Gp, and 8 = (Jy,,11, 611, - -+ ) € (0, 1M
be another probability vector. We say that an event set A is of the setting (Gp, p, M, §), and write
A ~ (Gp, p, M, 8),if A ~ (Gp, p) andP(A;NAy) > 6 for each pair (i,i") € M. Given (Gp, p, M, §),
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define p~ € (0, 1)™ as follows:

1 2 YY) 27,
Vie[ml: p= {p,— -1 0 (i ).E M for some i’;
Pi, otherwise.
Theorem 1.6 (intersection LLL (informal)). For any A ~ (Gp, p, M, 8), MT algorithm terminates
quickly if p~ is in the Shearer’s bound of Gp.

The intuition of Theorem 1.6 is as follows. For any matching M in Gp, if the intersection of events
on each edge (i,i") in M has a lower bound J; ;7, then one can subtract 1—17 . 52 » from the probabilities of
endpoints i and i’, and the MT algorithm is guaranteed to be efficient whenever the reduced probability
vector is in the Shearer’s bound.

Remark 1.7. In many applications of LLL [McD97, GST16, GMSW09, Moi19a, GKPT17], the dependent
bad events naturally intersect with each other. For instance, in a CNF formula, if the common variables in
two clauses are both either positive or negative, then the bad events corresponding to these two clauses are
dependent and intersect with each other. Thus our intersection LLL may be capable of improving bounds for
these applications. However, currently the improvement is weak because only the intersections between the
matched events are considered in Theorem 1.6.

Nevertheless, the primary motivation of this work is to explore the power of the MT algorithm in the
general variable LLL setting. This basic problem is very important in itself, besides its potential applications.

1.1.3. Application to lattices. To illustrate the application of Theorem 1.5, we estimate the efficient region
of the MT algorithm on some lattices explicitly. For simplicity, we focus on symmetric probabilities, i.e.,
p=(p,p,---,p). Our lower bounds on the gaps between the efficient region of the MT algorithm and
the Shearer’s bound are summarized in Table 1. For example, when the canonical dependency graph is
the square lattice, the vector (0.1193,0.1193, - - -) is on the Shearer’s boundary, and the MT algorithm
is provably efficient whenever the probability of each event is at most 0.1193 + 1.858 x 10722,

TaBLE 1. Summary of lower bounds on the gaps

Lattice Shearer’s bound lower bound on the gaps
Square 0.1193 [GF65, Tod99] 1.858 x 10722
Hexagonal 0.1547 [Tod99] 2.597 x 1072
Simple Cubic 0.0744 [Gau67] 7.445 x 10723

1.2. Technique overview. As mentioned before, the Shearer’s bound is the tight criterion for MT
algorithm on extremal instances. Thus in order to show that MT algorithm goes beyond Shearer’s
bound, we need to take advantage of the intersection between dependent events. Specifically, Theorem
1.5 immediately follows from two results about non-extremal instances. One is the intersection LLL
criterion (Theorem 1.6), which goes beyond Shearer’s bound whenever there are intersections between
dependent events. The other result is a lower bound on the amount of intersection between dependent
events for general instances (Theorem 4.1).

1.2.1. Proof overview of Theorem 1.6. Let us first remember Kolipaka and Szegedy’s argument [KS11],
which shows that the MT algorithm is efficient up to the Shearer’s bound. We assume that {A;}, is
a fixed set of events with dependency graph Gp = ([m], Ep) and probabilities p = (p1,- -, pm)- The
notion of a witness DAG® (abbreviated wdag) is central to their argument. A wdag is a DAG whose each
node v has a label L(v) from [m] and in which two nodes v and v” are connected by an arc if and only if
L(v) = L(v’) or (L(v),L(v")) € Ep. With a resampling sequence s = s1,52,- - - , st (i.e., MT algorithm
picks the events As,, As,, - - - , A, for resampling in this order), we associate a wdag D on node set
{01, --- ,or} as follows: (a) L(vg) = s and (b) there is an arc from v to v, with k < £ if and only if either
Sk = s¢ or (s, s¢) € Ep (see an example in Figure 1). We say that a wdag D occurs in the resampling

3In the paper [KS11], the role of witness DAGs was played by “stable set sequences”, but the concepts are essentially the
same: there is a natural bijection between stable set sequences and wdags.
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FIGURE 1. (a) a dependency graph Gp; (b) a resample sequence; (c) the Ds; (d) a wdag
occurring in s.

sequence s if there is subset U of nodes in D such that D is a subgraph of D induced by the nodes
that have a directed path to U (Figure 1 (d) is an example, where U = {v4}). An useful observation is
that E[T] = Y pep Ps[D occurs in s]. Here, D denotes the set of all single-sink wdags (a.k.a. proper
wdags) of Gp.

We define the weight of a wdag D to be Il,eppy (). The crucial lemma in Kolipaka and Szegedy’s
argument (the idea is from Moser-Tardos analysis) is that the probability of occurrence of a certain
wdag D is upper bounded by its weight. The idea is that we can assume (only for the analysis) that the
MT algorithm has a preprocessing step where it prepares an infinite number of independent samples
for each variable. These independent samples create a table X, called the resampling table (see Figure
2 in Section 3.1 for an example). When the MT algorithm decides to resample variable X, it picks
a new sample of X from the resampling table. Suppose a certain wdag D occurs, then for each of
its events we can determine a particular set of samples in the resampling table that must satisfy the
event, where we say that D is consistent with the resampling table X and denote it by D ~ X. Hence,
Ps[D occurs in s] < Px[D ~ X]| = yeppr(o)-

Finally, they solved beautifully the summation of weights of proper wdags, i.e., 2. pcp HoeppL(0)s
which turns out to converge if and only if p is in the Shearer’s bound of Gp.

Viewing Theorem 1.6 as an improvement of Kolipaka and Szegedy’s result, we begin by providing
a tighter upper bound on } pcp Ps[D occurs in s] when the instance is non-extremal (Theorem 3.7).
First, note that for each wdag D, there exist selection rules to make Ps[D occurs in s] = Ilyeppyr (o), S0 it
is impossible to give a better upper bound on Ps[D occurs in s] which holds for all selection rules. Our
idea is to group proper wdags, and consider the sum of Ps[D occurs in s] over a group. For example,
suppose that A; and Ay are dependent and P[A; N Az] > §12. Let Dy denote the proper wdag which
consists of only one arc A; — Ag, and D7 denote the proper wdag consisting of only Ay — A;. Dy
and Dy cannot both occur, but they may be both consistent with a given resampling table. So the total
weights of Dy and D» is an overestimate of the probability that D; or D2 occurs. Formally,

Ps[D1 occurs in s] + Pg[Ds occurs in s] =Ps[ (D1 occurs in s) V (Dg occurs in s)]
<Px[(D1 ~ X) V (D2 ~ X)]
=Px[D1 ~ X] +Px[(D2 ~ X) A (D1 » X)]

<pip2+pip2 = 87,

where the last inequality is according to the Cauchy—-Schwarz inequality (see Proposition 3.3). Impor-
tantly, the upper bound holds for all selection rules.

It is crucial as well as the difficulty that our improvement over the weight of wdags should be
“exponential”: since the quantity Y, pcp Iye DPy(,) converges if and only if p~ is in the Shearer’s bound,
constant factor or even sub-exponential improvements over }\pc ¢ Hoeppr(») do not help to show the
desired convergence criterion. Our exponential improvement relies on a delicate grouping and a tricky

random partition of the union of D ~ X across wdags.
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We first state how we group proper wdags: define D (i, ) to be the set of proper wdags whose unique
sink node is labelled with i and in which there are exactly r nodes labelled with i. Noticing that at most
one wdag in D(i,r) can occur, we have that

Ps[D occurs in s] =Px \/ (D occurs)| < Px \/ (D~ X)]|.
DeD(ir) DeD(i,r) DeD(i,r)

Now, we partition the space \/ pe g ;) (D ~ X) across wdags in D (i, r). The notions of reversible arcs
(see Definition 2.4) and a auxiliary table (see Section 3.1) are two central concepts here. Specifically, an
arc u — v in a wdag D is said reversible, if the directed graph obtained from D by reversing the direction
of u — v is also a wdag. The auxiliary table is a table Y of independent fair coins corresponding to
directions of reversible arcs. We say a wdag D is consistent with (X,Y), denoted by D ~ (X,Y) if (i)
D ~ X; and (ii) for each reversible arc whose direction is not consistent with Y, the wdag obtained by
reversing the arc is not consistent with X. The crucial lemma (Lemma 3.1) shows that for any certain
assignment y of the auxiliary table Y, \/pcp (i) (D ~ X) = Vpep(ir) (D ~ (X,y)). The point is that
(D ~ (X,y))’s have much less overlap with each other so that they can be viewed as a “approximate”
partition of the space. By applying union bound, we get

Px| \/ (D~X)|=EyPx| \/ D~X)|=EyPx| \/ D~(XY)
DeD(i,r) DeD(i,r) DeD(i,r)

<By Y, Px[D~(X.Y)]
DeD(ir)

= >, EyPx[D~(X.V)].

DeD(i,r)

Then we are able to provide an upper bound on EyPx [D ~ (X,Y)] which is “exponentially” smaller
than ITyeppr (o) (Lemma 3.4), and then complete the proof of Theorem 3.7.
The next step is to show that the tighter upper bound converges when p~ is in the Shearer’s bound.
For each vertex i in the matching M, we “split” vertex i into two new connected vertices i’ and il. Let
M CN oF M _ M _ - ’
G’ be the resulted dependency graph (see an example in Figure 3). Define Py =p; and Py =p; —p;

(see the definition of p; in Section 2.3). One can see that (Gp, p~) and (GM, pM) are essentially the
same: suppose A ~ (Gp, p~), then for each i € M, we view A; as the union of two mutually exclusive
events A,y and A; whose probabilities are p; and p~ — p! respectively. Such a representation of A is of
the setting (GM, pM). Thus, the sum of weights of proper wdags in the setting (Gp, p~) is equal to
that in the setting (GM, pM) (Proposition 3.9). So it suffices to show that our tighter upper bound is
upper bounded by the sum of weights of proper wdags in the setting (GM, p™) (Theorem 3.13). Our
idea is to construct a mapping which maps each D € D(Gp) to a subset of D(G™M) and satisfies that:

(a) distinct proper wdags of Gp are mapped to disjoint subsets of D(GM); and
(b) for each D € D(Gp), the bound in Lemma 3.4 is upper bounded by the sum of weights of proper
wdags over the subset that D is mapped to.

We present such a mapping in Definition 3.11. Conditions (a) and (b) are verified in Theorem 3.12 and
Theorem 3.13 respectively.

The idea of constructing a mapping between wdags of two dependency graphs may be of independent
interest, and may be applied elsewhere when we wish to show some properties about Shearer’s bound.

1.2.2. Proof overview of Theorem 4.1. The proof of Theorem 4.1 mainly consists of two parts. First, we
show that there is an elementary event set which approximately achieves the minimum amount of
the intersection between dependent events (Lemma 4.2). Here, we call an event A; € A elementary,
if there is a subset S;. of the domain of variable X for each variable in vbl(A) such that A happens if
and only if X; € Sj. for all variables in vbl(A). We call a set A of events elementary if every A; € A

is elementary. Then, for elementary event sets, by applying AM-GM inequality, we obtain a lower
7



bound on the total amount of overlap on common variables, which further implies a lower bound on
the amount of intersection between dependent events (Lemma 4.5).

1.3. Related works. Beck proposed the first constructive LLL, which provides efficient algorithms for
finding the perfect object avoiding all “bad” events [Bec91]. His methods were refined and improved
by a long line of research [Alo91, MR98, CS00, HSS11]. In a groundbreaking work, Moser and Tardos
proposed a new algorithm, i.e., Algorithm 1, and proved that it finds such a perfect object under the
condition in Theorem 1.1 in the variable setting [MT10]. Pegden [Peg14] proved that the MT algorithm
efficiently converges even under the condition of the cluster expansion local lemma [BFPS11]. Kolipaka
and Szegedy [KS11] pushed the efficient region to Shearer’s bound. The phenomenon that the MT
algorithm can still be efficient beyond Shearer’s bound was known to exist for sporadic and toy examples
[Har16]. However, such result employs the special structures in the examples and only applies to some
restricted variable-generated event systems A ~ (Gp, p). By contrast, the results in this work applies
to all variable-generated event systems.

Besides the line of research exploring the efficient region of the MT algorithm, there is a large amount
of effort devoted to derandomizing or parallelizing the MT algorithm [MT10, CGH13, Har19, BFH* 16,
Ghal6, CPS17, HH17, Har18] and to extending the Moser-Tardos techniques beyond the variable setting
[HS14, Al16, HV20, ATV17, AIK19, Mol19, 1S20, AIS19].

There is a line of works studying the gap between non-constructive VLLL and Shearer’s bound
[KS11,HLL*17, Gil19, HLSZ19]. Kolipaka and Szegedy [KS11] obtained the first example of gap existence
where the canonical dependency graph is a cycle of length 4. The paper [HLL*17] showed that Shearer’s
bound is not tight for VLLL. More precisely, Shearer’s bound is tight for non-constructive VLLL if and
only if the canonical dependency graph is chordal. The first paper to study quantitatively the gaps
systematically is [HLSZ19], which provides lower bounds on the gap when the canonical dependency
graph containing many chordless cycles.

Erdos and Spencer [ES91] introduced the lopsided-LLL, which extends the results in [EL75] to lop-
sidependency graphs. Lopsided LLL has many interesting applications in combinatorics and theoretical
computer science, such as the k-SAT [GST16], random permutations [LS07], Hamiltonian cycles [AFR95],
and matchings on the complete graph [LS09]. Shearer’s bound is also the tight condition for the lopsided
LLL [She85].

LLL has a strong connection to sampling. Guo, Jerrum and Liu [GJL19] proved that the MT algorithm
indeed uniformly samples a perfect object if the instance is extremal. For extremal instances, they
developed an algorithm called “partial rejection sampling” which resamples in a parallel fashion,
since the occurring bad events form an independent set in the dependency graph. Actually, a series
of sampling algorithms for specific problems are the parallel resampling algorithm running in the
extremal case [GJL19, GJ19, GH20, GJ18]. In a celebrated work, Moitra [Moi19b] introduced a novel
approach that utilizes LLL to sample k-CNF solutions. This approach was then extended by several
works [GLLZ19, GGGY20, FGYZ20, FHY20, JPV20, JPV21].

1.4. Organization of the paper. In Section 2, we recall and introduce some definitions and notations.
In Section 3, we prove Theorem 1.6. Section 4 is about the proof of Theorem 4.1, which gives a lower
bound on the amount of the intersection between dependent events. In Section 5, we prove Theorem
1.5. In Section 6, we provide a explicit lower bound for the gaps between the efficient region of MT
algorithm and Shearer’s bound on periodic Euclidean graphs.

2. PRELIMINARIES

Let N = {0,1,2,-- -} denote the set of non-negative integers. Let N* = {1,2,---} denote the set
positive integers. For m € N*, we define [m] = {1, - - - , m}. Throughout this section, we fix a canonical
dependency graph Gp = ([m], Ep).

2.1. Witness DAG. If for a given run, MT algorithm picks the events Ay, As,, ..., A, for resampling
in this order, we say that s = sy, s2..., s7 is a resample sequence. If the algorithm never finishes, the
resample sequence is infinite, and in this case we set T = 0.

8



Definition 2.1 (Witness DAG). We define a witness DAG (abbreviated wdag) of Gp to be a DAG D, in
which each node v has a label L(v) from [m], and which satisfies the additional condition that for all
distinct nodes v,v’ € D there is an arc between v and v’ (in either direction) if and only if L(v) = L(v”) or
(L(v),L(v")) € Ep.

We say D is a proper wdag (abbreviated pwdag) if D has only one sink node. Let D (Gp) denote the set
of pwdags of Gp.

Given a resampling sequence s = s, $2, ..., ST, wWe associate a wdag D on the node set {0y, ..., o7}
such that (i) L(vx) = sx and (ii) vx — vp with k < £ is as an arc of Dy if and only if either s = s, or
(sk» s¢) € Ep. See Figure 1 for an example of Dj.

Given a wdag D and a set U of nodes of D, we define D(U) to be the induced subgraph on all nodes
which has a directed path to some u € U. Note that D(U) is also a wdag. We say that H is a prefix of D,
denoted by H < D, if H = D(U) for some node set U.

Definition 2.2. We say a wdag D occurs in a resampling sequence s if D < Ds. Let yp be the indicator
variable of the event that D occurs in s.

Similar to Lemma 12 in [KS11], we have that T = ¥ pcp(G,,) Xp- For i € [m] and r € N¥, define
D(i,r) to be the set of pwdags whose unique sink node is labelled with i and in which there are exactly
r nodes labelled with i. Let yp(;,) be the indicator variable of the event that there isa D € D(i,r)
occurring in s. It is easy to see that only one pwdag in D (i, r) can occur ins. Thus yp(ir) = Xpen(ir) XD
which further implies that

Fact 2.3. T = Y ic[m] Zren+ XD (i)

2.2. Reversible arc. In the rest of this section, we fix a matching M C Ep of Gp. Given i € [m], with
a slight abuse of notation, we sometimes say i € M if there is some i’ € [m] such that (i,i") € M.

Definition 2.4 (Reversibility). We say that an arc u — v is reversible in a wdag D if the directed graph
obtained from D by reversing the direction of the arc is still a DAG.
Furthermore, we say that u — v is M-reversible in D if u — v is reversible in D and (L(u), L(v)) € M.

By definition, we have the following two observations.
Fact 2.5. u — v is reversible in D if and only if it is the unique path from u tov in D.

Fact 2.6. Ifu — v is reversible in a wdag D of Gp, then the directed graph obtained from D by reversing
the direction of u — v is also a wdag of Gp.
Given a pwdag D = (V,E, L), define
V(D) £ {v: Ju € V such that u — v or v — u is M-reversible in D}
to be the set of nodes participating in reversible arcs, and V(D) £ V\ V(D). Fori € [m], define
V(D,i) =2 V(D)N{v:L(v) =i}

2.3. Other notations. Let p = (p1,---,pm) € (0,1]™ and § € (0,1)™ be two probability vectors.
Recall that p~ = (p7,-- -, p,,) is defined as

(1) Vie[m]: p;=

1

{p,- - % if (i,i") € M for some i’,
pi otherwise.
For each i € [m] where (i,i") € M for some i’ € [m], define

82, 82,
2 8pl,~,;),'/ and pi2pi(l—c)=pi— 8110’;'
Fact 2.7. p; +p, (p; — p}) = pi for each (i,i’) € M.

Ci



3. ProoF oF THEOREM 1.6

The proof of Theorem 1.6 consists of two parts. First, we provide a tighter upper bound on the
complexity of MT algorithm (Section 3.1). Then, we show that the tighter upper bound converges if p~
is in the Shearer’s bound of Gp (Section 3.2).

3.1. A tighter upper bound on the complexity of MT algorithm. In this subsection, we prove
Theorem 3.7, which follows from Lemma 3.1 and Lemma 3.4 immediately. We first recall and introduce
some concepts and notations.

Resampling Table. One key analytical technique of Moser and Tardos [MT10] is to precompute the
randomness in a resampling table X. Specifically, we can assume (only for the analysis) that MT
algorithm has a preprocessing step where it draws an infinite number of independent samples X}, XJ?, e
for each variable X ;. These independent samples create a table X = (X Jk )je[m]ken+, called the resampling
table (see Figure 2). MT algorithm takes that first column as the initial assignments of X, - - - , Xj,. Then,
when X is to be resampled, MT algorithm goes right in the row corresponding to X; and picks the
sample.

Consistency with the resampling table. For a wdag D, a node v, and a variable X; € vbl(Af(,)), we define

L(D,v,j) = |[{u : there is a directed path from u to v in D and X € vbl(Ar () }| + 1.

Moreover, let Xp, = {XJT/:(D’U’j) : Xj € Ar()}. We say that D is consistent with X, denoted by D ~ X,
if for each node v in D, the event A; () holds on Xp .. Intuitively, suppose D occurs, then Xp , are the
assignments of vbl(Af(y)) just before the time that the MT algorithm picks the event corresponding to
v to resample, hence Ay (,) must hold on Xp ,. We sometimes use £L(v, j) and X, instead of L(D, v, j)
and Xp , respectively if D is clear from the context. Besides, we use D (i,r) ~ X to denote that there is
some D € D(i,r) such that D ~ X.

1 2 3 1 2 3
Xll X%) X}% e v, Y, Y},
2 : 1 2 3
X% X‘-?) X’—; - Y:s 4 Y3 1 Yi%,il
2 : 1 2 3
X;i X 3} Xﬂ% - Yoo Yis Yig
2 : 1 2 3
Xy X§ Xy - 7.8 Y?,s YT,8
FiGURE 2. The left is a resampling table where there are four variables X, - - - , Xy. The

right is an auxiliary table where M = {(1, 2), (3,4), (5,6), (7,8)}.

Auxiliary Table. We introduce another central concept in the proof of Theorem 3.7, called the auxiliary
table, which is a table of independent fair coins. Specifically, for each pair (i,i’) € M, we draw
an infinite number of independent fair coins Yl.’li,, Yi,2i" -+, where ]P’(Ylkl, =1i) = P(Ylkl, =1i) =1/2
These independent coins form the auxiliary table Y = (Yl.kl.,)@-)i/)e Mken+ (see Figure 2). The auxiliary
table is used to encode directions of M-reversible arcs, éccording to which we partition the space
Vpen(in(D ~ X).

Consistency with the resampling table and the auxiliary table. We need some notations about reversible
arcs. Suppose D has a unique sink node w and u — v is reversible in D. Let D’ be the DAG obtained
from D by reversing the direction of u — v. We define ¢ (D, u,v) £ D’({w}). In other words, ¢(D, u, v)
is the prefix of D’ with a unique sink node w. Given (i,i") € M and a pwdag D, let List(D, i,i") denote
the sequence listing all nodes in D with labels i or i’ in a topological order of Gp*. Given a node v in D,
if (L(v),i) € M®, we define

AMo,D) 2 {u: (u > visin D) A (L(u) € {i,L(v)})}| +1
Mt is easy to see that List(D, i, i") is well defined. That is, all topological orderings of D induce the same List(D, i, i’).

>Because M is a matching, there is at most one such i.
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to be the order of v in List(D, L(v), i). For simplicity of notations, we will use A(v) instead of A(v, D) if
D is clear from the context.
Given a wdag D, we say an M-reversible arc u — v is inconsistent with the auxiliary table Y if

ngzi,L(v) = L(v). We say D is consistent with (X,Y), denoted by D ~ (X,Y), if (i) D ~ X and (i) for
any M-reversible arc u — v inconsistent with y, ¢(D,u,0) » X. We say D(i,r) ~ (X,Y) if there is
some D € D(i,r) such that D ~ (X,Y).

The intuition of the notion “consistency” is as follows. Suppose u — v in a M-reversible arc in D, and
both D and ¢ (D, u, v) are consistent with the resampling table. But D and ¢ (D, u, v) cannot both occur. It

is according to the auxiliary table to which one of D and ¢ (D, u, v) we assign (D ~ X) A (¢(D, u,v) ~ X).

Lemma 3.1. Foreachi € [m] andr € N*,Px[D(i,r) ~ X] =Px y[D(i,r) ~ (X,Y)].

Proof. Fix an arbitrary assignment x of X and an arbitrary assignment y of Y. Suppose D(i,r) ~ x,
i.e, 3Dg € D(i,r) such that D ~ x. We will show that there must exist some D € D(i,r) such that
D ~ (x,y). This will imply the conclusion immediately.

We apply the following procedure to find such a pwdag D € D (i, r).

1 Initially, k = 0;
2 while 3 an M-reversible arc ux — vy in Dy inconsistent with y such that ¢ (D, ug, vx) ~ x do
3 L let Dy41 == (D, ug, vr) and k ==k + 1;

4 Return Dy;

By induction on k, it is easy to check that Dy ~ x and Dy € D(i,r) for each k. Furthermore, if the
procedure terminates, then in the final wdag D, for every M-reversible arc u — o inconsistent with y,
we have that ¢ (D, u,v) + x. So D ~ (x,y). In the following, we will show that the procedure always
terminates, which finishes the proof.

Note that each Dy has no more nodes than Dy and that there are finite number of wdags in D (i, r)
with no more nodes than Dy, so it suffices to prove that each wdag appears at most once in the procedure.

By contradiction, assume D; = Dy for some j < k. Recall that u; — v; is reversible in D; and
inconsistent with y. So ijZj)Dﬁ()UJI) = jézf)lij()vj) = L(v;).

Let D, be the last wdag in Dj41, - - - , D such that A(v, Dy) < A(vj, D;). Observing that A(vj, Dj.1) =
Mwj, Dj) — 1, we have such D, must exist. By A(vj, Dx) = A(v;, D;), we have A(v;, D¢) = A(vj, D;) — 1,
Movj, Des1) = Mvj,Dj). Therefore, A(vj, Der1) = A(vj, Dg) + 1. Combining with that u, — v, is the
inconsistent arc in D, which is reversed in D1, we have u, = v}, (L(u;), L(v;)) = (L(u.), L(v;)) € M
and yl(u”’D") = L(v). Thus we have L(v;) = L(u;) and yl(u”’D") = L(uj). Note that A(vy, D;) =

L(ue),L(ovr) L(ue),L(ovr)
1+ A(ug, D) = 1+ A(vj, Dg). Combining with A(u;, D;) = A(v;, Dj) — 1, we have A(ug, Dy) = A(uj, D;).
. AueDy) AwiDy) . . 1 AupDy)
Combining with yL(u:’)’L"(W) = L(u;), we have yL(u;))L](W) = L(u;). This is contradicted with yL(uj)’LJ(Uj) =

L(Uj).
O

The following two propositions will be used in the proof of Lemma 3.4. The first proposition is an
easy observation, and the second one is a direct application of the Cauchy-Schwarz inequality. For the
sake of completeness, we present their proof in the appendix.

Proposition 3.2. Given any wdag D, there exists a set P of disjoint M-reversible arcs® such that: for each
ieM,

1
[{v : 3u such thatu > vorv > uisinP}N{v:L(v) =i}| > 3 -V(D,i).

oWe say two arc u — v and u’ — o’ are disjoint if their node sets are disjoint, i.e. {u,0} N {u’,v’} = 0.
11



Proposition 3.3. Suppose X,Y and Z are three independent random variables, A is an event determined
by {X,Y}, and A’ is an event determined by {Y,Z}. Let X1, Y1, Y2, Z1 be four independent samples of
X,Y,Y, Z, respectively. Then the following holds with probability at most P(A)P(A’) — P(A N A")2:

o Aistrueon (X1,Y1), A’ istrue on (Ys, Z1), and
o either A is false on (X1, Y2) or A’ is false on (Y1, Z1).

Now, we are ready to show Lemma 3.4.

Lemma 3.4. For each pwdag D,

PO~ XN <| [| pro || [] Phew |

veV(D) 0eV (D)

Proof. Let P be the set of disjoint M-reversible arcs defined in Proposition 3.2. Let V() denote the

set of nodes which appears in £, and V(¥) consists of the other nodes. Proposition 3.2 says that for
eachi e M,

VP)N{v:L(v) =i}| > % -V(D,i).

For each v € V(P), let B, denote the event that Ay (,) holds on X, It is easy to see that P[B,] = py ().
Besides,

Claim 3.5. IfD ~ (X,Y), then B, holds for eachv € V(P).

Proof. Note that X, are the assignments of vbl(Ar(,)) just before the time that the MT algorithm picks
the event corresponding to v to resample. MT algorithm decides to pick Ay, only if A (,) holds. Hence
Ar(y) must hold on X, |

Let u — v be an arc in P, where L(u) = i and L(v) = i’. Then by the definition of , we have u — v
is reversible in D. Let D’ be the wdag obtained by reversing the direction of u — v in D. Recalling the
definition of Xy ,, one can verify that

Xpw = {Xj £(oj) : Xj € vDI(A;) N vDL(Ar) } U {X) £uj) : Xj € vDI(A;) \ vbl(Ay)}
and
Xy = {Xj,.C(u,j) 1 Xj € Vbl( ﬁ Vbl } { L)) - Xj € vbl(A,v) \Vbl(Ai)} .

For simplicity, let A := A(u, D). We define B, , to be the event that the following hold:

(a) A; holds on X),, and Ay holds on X,;
(b) If Yl’ll, = i’, then either A; is false on Xp,, or A] is false on Xp ,.

Conditioned on that Yl’ll = i, B, , happens with probability p;py. Condition on that Yfl = i’, by using
Proposition 3.3, B, , happens with probability at most p;py — 51'21'" Thus,

P[By,] < ]P[Yfi, = i]pipy +P[Y}f1,v =i'] (PiPi' - 53,) < 5 cpipr+ = (P pr — O )

< pipr (1 = 2¢;) (1 = 2cy).
Claim 3.6. IfD ~ (X,Y), then B, , holds for eachu — v in P.

Proof. Suppose D ~ (X,Y). Similar to the argument in Claim 3.5, we can see that Item (a) holds. In the
following, we show Item (b) holds.

By contradiction, assume Y’1 =1i’, A; holds on Xp,,, and Ay holds on Xy ,. Then, we have u — v
in D is inconsistent with Y and D’ ~ X. Thus, ¢(D,u,v) ~ X since ¢(D,u,v) is a prefix of D’. By
definition, we have D » (X,Y), a contradiction. m]
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Since the events {B, : v € V(#)} and {By, : u — v is in P} depend on distinct entries of X and Y,
they are mutually independent. Therefore,

PID~XV)]<P| (] B ﬂ( M B) =l |1 P(Bw>( [1 P(Bu,a)

u—visin P

weV (P) u—visin P weV (P)
<{ [T prew ( [T Preopre (1-2e00) (1- 20L<u>))
weV (P) u—wvisin P
= ( [ Puu)) A ] (= 2epPntet@=
vin D ie[m]
< (n Pum) A ] =2e)VO12 ) < (l_[ PL(v)) A ] a=envo
vin D ie[m] vin D i€[m]
= H PL(v) l—l PLiw) |-
0eV(D) veV(D)
O
Now we are ready to prove the main theorem of this subsection.
Theorem 3.7. E[T] < Ypen(6p) (ITew(p) PL0) (TToev vy P15
Proof. First, according to Lemmas 3.1 and 3.4,
Plxoinl < PID>r) ~X] =P[D(r) ~ (X,Y)] < Z P[D ~ (X,Y)]
DeD(i,r)
< 2 | L]zl 1] i)
DeD(i,r) 0eV (D) veV (D)
Then, by Fact 2.3 and the above inequality, we have
E[Tl= > > Plxoanl< ). >, D, | || rewl| [] Pho
i€e[m] reNt ie[m] reN* DeD(i,r) veV (D) veV (D)
< ), | ]zl 1] plw]
DeD(Gp) \veV (D) veV (D)
]

3.2. Mapping between wdags. In this section, we will prove Theorem 3.13, which provides a upper
bound of E[T] in terms of p~.

Definition 3.8 (Homomorphic dependency graph). Given a dependency graph Gp = ([m], Ep) and a
matching M of Gp, we define a graph GM = (VM, EM) homomorphic to Gp respected to M as follows.

o VM= [m]\ {io.ir : (iovin) € MY U {iguig il iy = (o, 1) € M
e V(ig,i1) € Ep, each pair of vertices in {iy, i1, i(T), ié, iI, 1%} N VM are connected in GM.
Besides, we associate a probability vector p™ with GM as follows:
p; ifo =il for somei € [m),
Vo e VM. pz/)\/[ =3p; —p; ifv= il for somei € [m],

P; otherwise, v = i for somei € [m].
13



A, A, As Ay Ay A,
1 l
AZ Aa

(a) (b)

FIGURE 3. (a) a dependency graph Gp; (b) the GM when M = {(2,3)}.

In fact, (Gp, p~) and (GM, pM) are essentially the same: suppose A ~ (Gp, p~), then for each
i € M, we view A; as the union of two mutually exclusive events Ay U A;; whose probabilities are p;
and p~ — p; respectively. Such a representation of A is of the setting (GM, pM).

We have the following proposition, whose proof can be found in the appendix.

Proposition 3.9. ZDIED(GM) Hv’ inD’ pl//vzv’) = ZDeD(GD) Hv inDpZ(U)'

Given a pwdag D = (V, E, L), recall that V(D) is the set of nodes of M-reversible arcs in D. Define
M (D) = {v : L(v) € M} to be the set of nodes v in D where L(v) is contained in an edge in M.
Obviously, V(D) € 4 (D). For simplicity of notations, we will omit D from the notations if D is clear
from the context.

Given a pwdag D = (V,E,L), we use & = {81, $2, §3, 84} to represent a partition of 4 (D) where
V C &) (some of these four sets are possibly empty). Let /(D) denote the set consisting of all such
partitions. The formal definition is as follows.

Definition 3.10 (Partition). Given a pwdag D = (V,E, L) of Gp, define
(D) 2 {{S$1, 2, 83,84} : V C S and M = S U Sy U S3U Sy}
Given a wdag D, there may be two or more topological ordering of D. We fix an arbitrary topological

ordering, and denote it by 7p. In the following, we define an injection h from {(D, §) : D € D(Gp), S €
(D)} to D(GM).

Definition 3.11. Given a pwdag D and § € (D), define h(D, §) to be a directed graph D’ = (V',E’, L")
constructed as follows.

Constructing V'. V' = V] L V) where |V]| = |V] and |V;| = |83 U S4|. For convenience of presentation,
we fix two bijections f : V — V| and f* : §3 U &4 — V] to name nodes in V'. In order to distinguish

between nodes in D and those in D’, we will always use u, v, w to represent the nodes of D and u’,v’, w’ to
present the nodes of D’. Given v’ € V', we use g(v”) to denote the unique nodev € V such that f(v) = v’

(ifv” € V) or f*(v) = o’ (if v’ € V).
Description of L. For each node v’ € V,, wherev’ = f(v),
(L)', ifves,

(2) L'(0) =1 (L), ifveSUus3UdS,,
L(v), otherwise, v & M .

For each node v’ € V, assuming v € 83U 8y is the node such thatv’ = f*(v) and i € [m] is the node such
that ((L(v),i) € M,

.T . 3
(3) LI(U/) — {zla lfU € (5)3’

, otherwise, v € §4.
Constructing E'. E' = E{ U E}, where E{ = {f*(v) — f(v) : v € $3U 84} and
Eh={u —o: ((L'W)=L")) Vv ((L'W),L @) € EM) A (gu) < g(v') inmp)}.

Theorem 3.12. h(-,-) is an injection from {(D,S) : D € D(Gp), S € (D)} to D(GM).
14



The proof of Theorem 3.12 is in the appendix. Now we can prove the main theorem of this subsection.

Theorem 3.13. X pen(Gp) (Hueﬂp) PL(u)) (Hoe(V(D) Pi(v)) < 2penGp) [oin b PLy)-

Proof. For each i € [m] where (i, j) € M, let

a 2p, @ Epr-p, 4= pr-p)p, and qf = (p; - p)(p; — P

According to Fact 2.7, q} + ¢> + ¢ + g} = p; +p; (p; —p)) 2 pi-
Given D = (V,E,L) € D(Gp) and § € (D), let D’ = h(D, §). For each v in D where (L(v), j) € M
for some j € [m], according to the definition of p™, (2), and (3), we have that
M — _ 1 .
L (f(o) = PLo) T ILeop

. M — = ’ — 42 .
e ifv e 05)2, then pL’(f(v)) = pL(U) —PL(U) = qL(v),

: M M — (p— ’ r_ 3 .
o if v €83, then pry vy Pl (o) = PLiy ~ PLi0))P) = L)}
. M M _ - ’ — N — A4

[ ] lfU (S 54, thel’l pL’(f(U)) ° pL/(f*(U)) - (pL(U) _pL(U))(pJ _pJ) - qL(y)'

o ifv € &, thenp

Moreover, for eachu € V\ # (D) = V(D) \ 4 (D), we have péw,(f(v)) = pL(v)- Thus, for each & € ¢¥/(D),
M _ 1 2 3 4
1—[ Prw) = l—[ PL(v) l_l 9L(0) 1—[ ‘e l—[ 9L(0) l_[ o)
o’ in h(D,S) UEW\% veES] vESH VES3 veESY

_ ’ 1 2 3 4

= ]—[ PL(v) l_[m l_l 9L (v) l_[ 9L (v) l_l L) 1_[ 9L(0):
veW\/% veV veES\V VESH vESS vESY

So
M _ ’ 1 2 3 4
2. 1 =2 |l molleiw [ dwllde]]de]]de
Sey(D) o' in h(D,S) Sey(D) veV\M veV veS\V VESY VeSS vESY

_ ’ 1 2 3 4

= || ol lriw 20 1] gwl]de |40 ]]de
UEW\./% veV Sey(D) veS1\V VESH vES3 VESy

_ , 1 2 3 4

= ﬂ PL(v) l_[m» l_l (qL<v> a0 T 9L +qL(u))
veV\M veV vel\YV

> || reo [ |21 [] oo
veV\M veV veM\YV

= l_l PL(v) l_[ PL(oy
VeV veV

where the third equality is according to the definition of (D). Finally,

Z 1—[ PL(v) l_[ Prio) | < Z Z 1_[ Py < Z HPLMM

DeD(Gp) veV (D) 0eV(D) DeD(Gp) Sey(D) v in h(D,S) D'eD(GM)vin D’
o
DeD(Gp) vin D

where the second inequality is due to Theorem 3.12 and the equality is by Proposition 3.9. ]

3.3. Putting all things together. The following lemma is implicitly proved in [KS11].

Lemma 3.14 ([KS11]). For any undirected graph Gp = ([m], Ep) and probability vector p € 1,(Gp)/(1+

9} (Gp.p)
€), Zie[m] q{w}(GLip) < mfe.

Theorem 1.6 (restated). For any A ~ (Gp, p, M, 8), if (1 +¢) - p~ € 1,(Gp), then the expected number
of resampling steps performed by MT algorithm is most m/e, where m is the number of events in A.
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Proof. Fix any such A. We have that

_ iem 94} (Gp, P7)  m
s > [ riws=="0, 5 e
DeD(Gp) vin D 90{&D, P

where the first inequality is by Theorems 3.7 and 3.13, the second inequality is due to Theorem 4
in [KS11], and the last inequality is according to Lemma 3.14. O

4. LOWER BOUND ON THE AMOUNT OF INTERSECTION

In order to explore how far beyond Shearer’s bound MT algorithm is still efficient in general, we
provide a lower bound on the amount of intersection between dependent events for general instances
(Theorem 4.1).

We first introduce some notations. Given a bipartite graph Gg = ([m], [n], Eg), we call the vertex
i € [m] left vertex and the vertex j € [n] right vertex. We call Gg linear” if any two left vertices in [m]
share at most one common neighbor in [n]. Let Ap(Gp) denote the maximum degree of Gp(Gg), and
Ap(Gpg) denote the maximum degree of the left vertices in Gg. If Gg is clear from the context, we may
omit Gp from these notations. In addition, for a bipartite graph G = (L C [m], R, E) and a probability
vector p € (0,1)™, we define®

(minser pi)° - (=1 Uier No ()] + Zier NG (0)] - p; /N 1)

F(G,p) *
G VI - 20(G) - A(G)?

and F*(G, p) £ max{F(G, p),0}.

We use A ~ (Gp, p) to denote that (i) Gp is an event-variable graph of A and (ii) the probability vector
of Ais p. Let M = {(i1, iy), (i, i3), - - - } be amatching of Gp(Gg), and & = (81,47, Siy,i, -+ ) € (0, 1M
be another probability vector. We say that an event set A is of the setting (Gp, p, M, §), and write
A ~ (G, p, M, 8),if A ~ (Gp, p) and P(A; N Ay) > ;1 for each pair (i,i") € M.

We call an event A elementary, if A can be written as (X;, € ;) A (Xi, € Siy) A -+ A (X, € Sip)
where S;,,---,S;, are subsets of the domains of variables. We call an event set A elementary if all
events in A are elementary.

Theorem 4.1. Let Gg = ([m], [n], Eg) be a bipartite graph, p € (0,1]™ be a probability vector, and
Ly, Ly, -+, L; be a collection of disjoint subsets of [m]. For each k € [t], let G denote the induced subgraph
on L U (UieLkNGB(i)) and Ey. denote the edge set of Gp(Gy). If all Gy’s are linear, then the following
holds.

If A ~ (G, p), then there is a matching M of Gp(Gp) satisfying that ¥ ; i»ye mng, P(Ai N Ap)? >

(F* (G, p))2 for anyk.

The proof of Theorem 4.1 mainly consists of two parts. First, we show that there is an elementary
event set which approximately achieves the minimum amount of intersection between dependent
events (Lemma 4.2). Then, for elementary event sets, by applying AM-GM inequality, we obtain a lower
bound on the total amount of overlap on common variables, which further implies a lower bound on
the amount of intersection between dependent events (Lemma 4.5).

Lemma 4.2. Let Gg = ([m], [n], Eg) be a linear bipartite graph, Ep be the edge set of Gp(Gg), and
p € (0,1]™ is a probability vector. Let y denote the minimum 3 ;. ;) ek, P[Aiy N Ai, | among all event sets
A= (A1, ,Am) ~ (Gp, p). Then there is an elementary event set A’ such that 3’ ;. i)k, P[Alfo NA; | <

(AB(Gg))? - y.

Proof. For simplicity, we let A = Ap(Gp). Without loss of generality, we assume that each random
variable X; is uniformly distributed over [0, 1]. Let A ~ (Gp, p) be an event set where 3. ;. ;,)eg, P[AiN

"The notion is not arbitrary. The bipartite graph Gg can be represented by a hypergraph in a natural way: each right
vertex j is represented by a node v; in the hypergraph, each left vertex i is represented by a hyperedge e;, and v; is in ¢; if and
only if (i, j) € Eg. A hypergraph is called linear if any two hyperedges share at most one node.

81t is possible that F(G, p) < 0.

16



Aj] = y. We will replace A; with an elementary Alf one by one for each i = 1,2,- -+, m, so that the
resulted event set A’ satisfies 2. ;) i) ep, PIA; NA] ] < A% 2(ioin)eEp PlAip N Ai ] = A%y,

More precisely, fix i € [m] and suppose Ay, - -, A;_1 have been replaced with elementary events
Al,---,Al_, respectively. For simplicity of notations, for any pair iy < i1, we abbreviate P[A;, N A; ],
P[A; NAi ] and P[A] NA] ] to piiy, p;, ;, and p; ; respectively. Without loss of generality, we assume

A; depends on variables X1, Xo, - - - , Xk. For every j € [k], we define

1 ’
P](XJ) = Z KP[AIO |Xj=Xj]+ Z P[Aio |X]:X]]

i0<i,i0€NGB j) i0>i,ioENGB j)
for x; € [0, 1]. Without loss of generality, we assume P;(-) is non-decreasing. Let y : [0, 11%* — {0,1}
be the indicator of A;, then

/ p(x1, - x)dxg - - dxg = PLA;],
X1, Xk
For each j € [k], let
pi(x;) = P[A; | Xj = x;] =/ pxt, oo xp)doeg - - dxgogdage - - doge
X1, X 1X L, Xk
Noticing that Gp is linear (i.e., any two events share at most one common variable), we have
(4) / Pj(xj)pj(xj)dx; = Z Pos + Z Piosi-
i L A e
Y io<i,io€Ngg (J) io>1,i0 €N (7)

Let A} be an elementary event such that it happens if and only if (x1,- -+, xx) € [0,q1] X+ X [0, gx].
Here g1, - - , qx is a set of positive real numbers satisfying that

(i) Hleq,- = P[A;]. That is, P[A!] = P[A;];
(ii) fxlqu p(x1)dxy = fx22q2 po(x2)dxg - -+ =

Claim 4.3. Such {q1,--- ,qx} exists. Thus so does A;.

P (xic ) dox.

Xk 29k

Proof. We prove a generalized statement in which H'j?:lq ; can be required to be an arbitrary number in
[0, 1]. Our proof is by induction on k. The base case when k = 1 is trivial. Now we assume that for any
preset g’ € (0, 1], there exist {q1, - - - , qx—1} satisfying that
(i) - }g; = ¢’ and
i) [, sqp () dxy = = ka_lzqk_l Hie—1 (xge—1) doxge-1.
Let f(q’) denote the minimum fx s
f(1) =0 and f is continuous and non-increasing.
Fix an arbitrary g € [0, 1]. We define g(q”’) := IXk sa/q M (xx)dxg for g’ € [q, 1]. Obviously, g(g) =0
and g is continuous and non-decreasing. So there must exist a g* € [q, 1] such that g(¢*) = f(q"). Then
let {q},- -, q;_,} be a set of positive real numbers where
() T2/ q; = ¢* and
(i) f(g) = [, sqp Pr(x)dxy ==

Let q; = q/q". It is obvious that Hi?:lqu =gqand f(q") =9(q*) = ka oy (xx)dxg. This completes the
=1k
induction step. o

11 (x1)dx; among all such {q1,- - -, gr-1}’s. It is easy to see that

Xfe—1 Zq271 :uk—l (xk—l)dxk_l

Claim 4.4. For every j € [k], we have

p//

io,i ’ ’

ig<i,ig€NGg (J) io>1,i0€NG (7) ig<i,ip€NGg (J) io>1,i0 NGy ()
17




Proof. Let piy, piny, and p;\; denote the indicator functions of the events A/, A N A;, and A \ A;
respectively. Since P[A]] = P[A;],

/ i ()b o+ / () = PIANAL = P[AD\A,] = / pin 3 - dxg.
X12q1 Xk 29k

X1, Xk

Fix j € [k], then

1
/ pj(x)dx; > z / pirvi (1, - -+, x)doeg -+ - e
Xj2q; X1,X2," " Xk

J

Since Pj(x;) is non-decreasing and k < A, we have

1
/ Pj(xj)pj(xj)dx; > X / Pj(x) pini (1, - -+, X )doy - - - doxe.
Xj2q;

j X1,X2,°" Xk

According to Equation 4,

Z P+ A Z Pigi = A / Pj(xj)p(xj)dx;

io<i,io € Ny (J) io>1,i0 € NG (7) 7
A / P (o) () + A / P ey ()
Xj=q; Xj<qj

ZA-/ Pi(xj)pj(xj)dx; + A - / Pj(xj) pini (x1, -+ -, xp)doxy - - - doxge
Xj2q;

3 X1, Xk

2/ Pj(xj) piryi(x1, -+ +  xg)doey - - - doxg +/ Pj(xj) pririr (x1, -+, xg )dory -+ - dxe
X1, Xk

X1, Xk

/ Pj(xj)pir (1, - -+, xp)dxy - - - dxg
X1, Xk
PlA, N A7)

> —— > PlA, nAj.

io<iio€Ngg (J) io>i,i0 € NG (7)

This completes the proof. ]
From Claim 4.4, we have

() D pZ”i > Phas DL PhatA DL Dok

i0<i,i0€NGD(i) i0>i,i0€N(}D (i) io<i,ioENGD (i) i0>i,i0€NGD(i)

By summation over all i € [m], we finish the proof:

(io.i) €Ep (io,i) €Ep

O

Lemma 4.5. Let Gg = ([m], [n], Eg) be a linear bipartite graph and p be a probability vector. Then for
any elementary A = (A1, ,Am) ~ (Gg, p),

D1 P(Ay N Ay) = Vm- Ap(Ga) - As(Gp)? - F(Ga, p),

(io,i1) €Ep

where Ep is the edge set of Gp(Gp)

Proof. For simplicity of notation, we let N stand for Ng,. Without loss of generality, we assume that
each variable X; is uniformly distributed over [0, 1]. As A is elementary, each A; can be written as
Njen [Xj € S{] where S{ C [0,1]. Let u be the Lebesgue measure.

On one hand, according to the AM-GM inequality,

© DU uEhz Y INDI Menips)) MO = ST ING - p VO
icfm] jEN() i&m] &
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On the other hand,
(7) Z Z pu(s)) = Z Z p(S)) <n+ Z Z /1(5?0“5{1)
ie[m] jeN(i) jeln] ieN(i) je[n] iog#i1 eN(J)

By Inequalities 6 and 7 and noticing Gg is linear, we have that

® X wlshasl)=2 X wlshasi)z| X o=

(i0.i1) €Ep jeN (io)NN (i1) j€ln] io#i1 eN(J) ie[m]

Moreover, given any (ig, i1) € Ep, where {j} = N (i) N N(i’), we have that

Pag nA) zp(shosl) [ [T web ]| 1w
) keN (io)\{j} K eN(i)\{j}

2 p (S,JO N S{l) *Pig * Pig -
Finally, combining (8) with (9), we concludes that

Z P(Aij, N Ay) > Z Z p (5{;) n S,ﬂ) “Pio " Pix

(io.i1) €Ep (i0,i1) €Ep jEN (ip)NN(i1)

> (min o) (ZW()' N0 )

= Vm - Ap(Gg) - As(Gg)? - F(Gg, p).
O

The following lemma is a special case of Theorem 4.1 where t = 1 and L; = [m]. In fact, Theorem 4.1
is proved by applying Lemma 4.6 to each Gy separately.

Lemma 4.6. Let Gg = ([m], [n],Eg) be a linear bipartite graph and p be a probability vector. If
A ~ (G, p), then A ~ (Gg, p, M, 8) for some matching M of Gp(Gg) and some & € (0,1)M|

satisfying that 3 ; iy e m 51.2’1./ > (F*(Gs, P))z-

Proof. Given an instance A ~ (G, p), we construct such a M greedily as follows.

We maintain two sets E and M, which are initialized as Ep and 0 respectively. We do the following
iteratively until E becomes empty: select a edge (i, i1) with maximum P(A;, N A;,) from E, add (ip, i1)
to M, and delete all edges connecting iy or i; from E (including (i, i1)).

Let Ap and Ap denote Ap(Gp) and Ap(Gp) respectively. In each iteration, at most 2Ap edges are
deleted from E and for each deleted edge (i, i), P(A; N Ay)? < P(A;, N A;;)%. Based on this observation,
it is easy to see that

1
(10) D P(ARNA) 2 o= > P(AN A
4 2Ap .
(ig,i1)EM (i,i")€Ep
Moreover, according to Lemma 4.2 and 4.5, it has that

2 A2 L (FF 2
(1) S rana?z | 3 Banay| » mip ECRR)

(i,i')€Ep [Ep] (i) €Ep [Ep]

By combining Inequality 10 and 11, setting §; y = P(A; N Ay), and noting 2|Ep| < mAp, we finish the
proof. O

Proof of Theorem 4.1. For each k € [t], by applying Lemma 4.6 to G, we have that A ~ (Gg, p, My, k)

for some matching My C Ei and some & where ) ; i1)e m, 5[.2,1., > (F*(Gy, p))z. Note that Ej’s are

disjoint with each other, so M; UMaU---U M, is still a matching. By letting M = MjUMyU---UM,

and 6 = (61, - -, 8;), we conclude the theorem. m]
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Remark 4.7. Given a bipartite graph G, its simplified graph is defined to be obtained from G by deleting
all the right nodes which only have one neighbor and combining all the right nodes with the same neighbor
set. Notice that if G is linear, so is its simplified graph.

Theorem 4.1 can be slightly generalized: it is sufficient that the simplified graph of Gy instead of Gy
itself is linear.

5. THE MOSER-TARDOS ALGORITHM IS BEYOND SHEARER’S BOUND

In this section, we prove Theorem 1.5. Given a dependency graph Gp, a vector p and a chordless
cycle C in Gp, define

r(Gp. p.C) = |C| - (minp;)"* - (
jeC

2%jecVPi 1)2
IC] '

and

2% VP O})2
€l )

r*(Gp, p,C) £ |C| - (minp;)* - (max{
jeC
Then Theorem 1.5 is obvious by Lemmas 5.1 and 5.2.

Lemma 5.1. Given Gp, p and e > 0, let C1,Co, - - - ,Cy be any disjoint chordless cycles in Gp. If

1
d((1+¢&)p,Gp) < — > " (Gp, p,C),
544 4
i<t
then for any variable-generated event system A ~ (Gp, p), the expected number of resampling steps
performed by MT algorithm is most m/e.

Proof. Fix such an instance A. Define §; := P(A; N Ay). Let Gg denote the event-variable graph of
A. Let Gi denote the induced subgraph of Gg on Cy U (UieCkNGB (l)) According to Remark 4.7, it is
lossless to assume Gy is a cycle of length 2|Cy|. Thus we have
. 2
min; i) (=ICk| + e 24/Pi
(12) F+(Gk,p) > ( ieCy pz) ( | kI Z €L \/E)
8v/ICk|

According to Theorem 4.1, there is a matching M of Gp such that ;e pm 531., > D<o (F (Gy, P>
Define p~ as (1). We have (1 +¢)p™ < (1+¢)p and

— — 2 2 2 + 2
Ia+ep=+eapllizlp-plhz (_%M&,i, 2 77 0, (FGep)”

Combining with (12), we have

~ 1
(1+e)p—(1+e)p|l1 = 7 r*(Gp, p.Ci) > d((1+¢)p,Gp),
i<t

where the last inequality is by the condition of the lemma. Thus by Definition 1.4, we have (1+¢)p~ isin
the Shearer’s bound of Gp. Combining with Theorem 1.6, we have the expected number of resampling
steps performed by the Moser-Tardos algorithm is most m/«. O

Lemma 5.2. Given Gp and any chordless cycle C in Gp, there is some probability vector p beyond the
Shearer’s bound of Gp and with

1 90 —
d(p,GD) > % : F(GD,p,C) > 9720473

such that for any variable-generated event system A ~ (Gp, p), the expected number of resampling steps
performed by MT algorithm is most 2% - m? - |C|3.

The following two lemmas will be used in the proof of Lemma 5.2.

Lemma 5.3. [She85] qo(Gp, p) = 1 —P(|Uacq A) holds for any extremal instance A ~ (Gp, p).
20



Lemma 5.4. [She85] Suppose p is the Shearer’s bound of Gp = ([m], Ep). Then fori € [m],

aq9(G —
90(Gp.p) _ 4 ﬂ yy
opi . -
JE€NGp, (HU{i}
holds for any A ~ (Gp, p) satisfying that Ay N Ay = 0 for any (i’,i"") € Ep wherei’,i"” # i.

Proof of Lemma 5.2. Let £ = |C| and A = ( e ’Z 4) Let A ~ (C, A) be an extremal instance defined
as follows: A = (Ay,---,Ar) is a variable-generated event system fully determined a set of underlying
mutually independent random variables {Xi, - - - , X, }. Moreover, A; = [X; < 1/2] A [Xj41 = 1/2] for
eachi€ [¢—1],and Ay = [X, < 1/2] A [X7 = 1/2]. According to Lemma 5.3,

g0(C,A) =P (UA)
ie[f]

Besides, according to Lemma 5.4, for any A" = % . %: zll + ¢) in the Shearer’s bound of C,
9q0(C,A") ) =2
/ YR
3/1 16[21’ 2] 2
Thus, forany A < A" < A" = (4, cee i, ;11 + ﬁ), we have that
).;,/ a ’
. q0(C,A") ., 1 t-2 1 1 1
C,A")=qo(CA) + ——=dA, > = . .
90(CA7) = q(CA) A R T N R T RS BT

Hence A" is in the Shearer’s bound of C. Thus, there exists ¢ > 0 such that q defined as follows is on
the Shearer’s boundary of Gp:

1 ifie[e—-1],
Vie[m]: qi= }l+4([1_1) ifi=¢,
q otherwise.
One can verify that
. 1 (1Y 1
(13) r (GD, q, C) = r(GD,q, C) > - E . W > —210 WER

Define
£(8) =545 -d((1+8)q,Gp) — r*(Gp, (1 +8)q,C).
One can verify that f(0) < 0 because d(q,Gp) = 0 and r*(Gp, q,C) > 0. Moreover, let §’ be large

enough such that (1 + 8")q ¢ Z,(Gp). One can verify that such §’ must exist. We have f(§’) > 0. This
is because otherwise f(8’) < 0 and then

1
d((1+68")q,Gp) < YR r*(Gp, (1+6)q,0).

By following the proof of Lemma 5.1, we have the MT algorithm terminates at (1 + ¢”)q, which is
contradictory with (1 +6")q ¢ Z,(Gp).
Moreover, f(§) is a continuous function of §, because d((1 + §)q, Gp) and r*(Gp, (1 + §)q, C) are

both continuous functions of §. Combining with f(0) < 0 and f(6’) > 0, we have there must be a
0 < § < ¢’ such that f(§) = 0. Let p = (1 +5)q. By f(6) = 0, we have

1 +
(14) d(p,Gp) = T (Gp, p,0).

Combining with r*(Gp, p,C) = r(Gp, p,C) > r(Gp, g, C) and (13), we have d(p, Gp) > 2720¢73.
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Fix a variable-generated event system A ~ (Gp, p). Define 8; 7 := P(A; N Ay). Let Gp denote the
event-variable graph of A. Let G denote the induced subgraph of Gg on C U (U;ec NG, (i)). According
to Remark 4.7, it is lossless to assume that G is a cycle of length 2|C|. Thus we have

. 2
minjec pi)” - (=|C| + 2ier 2/pi
(15> F+(G,p) > ( zEsz) ( | | ZzeL \/E) ]
8vIC|
According to Theorem 4.1, there is a matching M of Gp such that }’; ;e m 512,1" > (F*(G, p))*. Define
p~ as (1). We have

_ 2 2 2 2
lp-pllhz5 D) &zt FGep).

(i, eM k<t
Combining with (15), we have

~ 1
lp-plli = — - r"(Gp, p.0).

544
Let
R 1
By (13) we have
1 1 1 1 1
< <|=—-=—|r"(Gp,q,C) < |=— - — | r"(Gp, p.C).
m£_545-544-210-£’3_(544 545)“ 0.4.€) (544 545)“ 2 .0)
Thus we have
_ _ r*(Gp, p,C) r*(Gp, p,C)
lp=(1+epTlly > llp— prll —me > 2L e > TEDLE S g(p ),

where the last inequality is by (14). Thus by Definition 1.4, we have (1 + ¢) p~ is in the Shearer’s bound
of Gp. Combining with Theorem 1.6, we have the expected number of resampling steps performed by
the MT algorithm is most m/e. O

6. APPLICATION TO PERIODIC EUCLIDEAN GRAPHS

In this section, we explicitly calculate the gaps between our new criterion and Shearer’s bound on
periodic Euclidean graphs, including several lattices that have been studied extensively in physics. It
turns out the efficient region of MT algorithm can exceed significantly beyond Shearer’s bound.

A periodic Euclidean graph Gp is a graph that is embedded into a Euclidean space naturally and has
a translational unit Gy in the sense that Gp can be viewed as the union of periodic translations of Gy.
For example, a cycle of length 4 is a translational unit of the square lattice.

Given a dependency graph Gp, it naturally defines a bipartite graph Gg(Gp) as follows. Regard each
edge of Gp as a variable and each vertex as an event. An event A depends on a variable X if and only if
the vertex corresponding to A is an endpoint of the edge corresponding to X.

For simplicity, we only focus on symmetric probabilities, where p = (p, p, - - - , p). Given a dependency
graph Gp and a vector p, remember that p is on Shearer’s boundary of Gp if (1 — ¢€) p is in Shearer’s
bound and (1 + ¢) p is not for any ¢ > 0.

Given a dependency graph Gp = ([m], Ep) and two vertices i, i’ € [m], we use dist(i, i) to denote
the distance between i and i’ in Gp. The following Lemma will be used.

Lemma 6.1. Suppose p, = (pa,Pa>- " Pa) is on Shearer’s boundary of Gp = ([m],Ep). For any
probability vector p other than p,, it is in the Shearer’s bound if there exist K,d € N*, S C 2l™] where
Uses = [m], and f : 8 — 2™ such that the following conditions hold:

(a) for eachi € [m], there are at most K subsets S € S such that f(S) > i;
(b) if f(S) =T, thendist(i,i’) < d foreachi € S andi’ € T;
(c) if f(S) =T, then

d-1
1- a
(—p) K D" max{pi - pa, 0} < > max{pa - pi, 0}.

Pa Pa ieS ieT
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While Lemma 6.1 looks involved, the basic idea is simple: by contradiction, suppose there is such a
vector p’ beyond Shearer’s bound; then we apply Lemma D.1 repeatedly to transfer probability from
one event to another while keeping the probability vector still beyond Shearer’s bound; finally, the
vector p’ will be changed to a vector strictly below p, which makes a contradiction to the assumption
that p is on the Shearer’s boundary. The involved part is a transferring scheme which changes p’ to
another probability vector strictly below p. We leave the proof to the appendix.

The main result of this section is as follows.

Theorem 6.2. Let Gp = (Vp, Ep) be a periodic Euclidean graph with maximum degree A, and p, =
(pas -+ »pa) be the probability vector on Shearer’s boundary of Gp. Suppose Gy = (Vy, Ey) is a transla-
tional unit of Gp with diameter D. Let

PP (F*(Gp(Gu), pa))’
17-(A+1) - [V]2- (1 - pg)P*L

>

q

Then for any A ~ (Gg(Gp), p) where (1+¢&)p < (pa+q,- -, pa+q), the expected number of resampling
steps performed by the MT algorithm is most |Vp|/e.

Proof. Fix any A ~ (Gg(Gp), p) where (1 +¢&)p < (pa+¢q, -, pa+q). Let 8, ,, denote P(A,, NA,,)
for (vg,v1) € Ep. We construct a matching M C Ep greedily as follows: we maintain two sets E and M,
which are initialized as Ep and 0 respectively. We do the following iteratively until E becomes empty:
select a edge (v, v1) with maximum &, ,, from E, add (v, v1) to M, and delete all edges connecting v
or 01 from E (including (vg, v1)). Let 8 = (8yp,0, : (v0,01) € M). Then A ~ (Gp(Gp), p. M, 8).

Define p~ as (1). In the remaining part of the proof, we will show that (1 + ¢) p~ is in the Shearer’s
bound. This implies the conclusion immediately by Theorem 1.6.

In fact, it is a direct application of Lemma 6.1 to show that (1 + £) p~ is in the Shearer’s bound.
To provide more detail, we need some notations. We use v,v’,v1,v9, - - - to represent vertices in Gp,
and use u,u’, uj, ug, - - - to represent vertices in Gy. Let G[lj, G?], -+ be the periodic translations of Gy
in Gp. And we use a surjection’ h : N* X V; — Vp to represent how these periodic translations
constitute Gp: h(k,u) = v if the copy of u € Vyy in k-th translation (i.e., Gf]) is v € Vp. In particular,
the vertex set of Gf] , denoted by vk is {h(k,u) : u € V}, and the edge set of Gf] , denoted by EF is
{(h(k,u),h(k,u")) : (u,u’) € Ey}. Besides, let N*(v) := Ng,(v) U {v} forv € Vp. For V C Vp, let
N (V) := Uyey Nt (0). Let Ty := {(vg,v1) € M :vg,01 € N+(G(k])} stand for the pairs in M adjacent to
G{‘]. With some abuse of notation, we sometimes use v € Ti to denote that (v,0’) € Ty for some v’ € Vp.

The following claim says that p~ is much smaller than p even projected on a single translation. Its
proof uses a similar idea to Theorem 4.6 and can be found in the appendix.

Claim 6.3. 3 (4 01)en 00, = (F*(GB(Gu), p))* holds for any k.

To apply Lemma 6.1, let K := (A+ 1)|Vy|,d :=D+2,8 := {Vl, Vg, .-+ },and f(V[lJ‘) := Tx. Based on
Claim 6.3, one can check that all the three conditions in Lemma 6.1 hold (see the appendix for details).
Thus, according to Lemma 6.1, (1 + €) p~ is in Shearer’s bound. m]

We apply Theorem 6.2 to three lattices: square lattice, Hexagonal lattice, and simple cubic lattice.
For square lattice, we take the 5 X 5 square with 25 vertices as the translational unit. For Hexagonal
lattice, we take a graph consisting of 19 hexagons as the translational unit, in which there are 3,4,5,4,3
hexagons in the five columns, respectively. For simple cubic lattice, we take the 3 X 3 X 3 cube with 27
vertices as the translational unit. The explicit gaps are summarized in Table 1. Finally, the lower bounds
for these three lattices in Table 1 hold for all bipartite graphs with the given canonical dependency
graph, because all such bipartite graphs are essentially the same under the reduction rules defined
in [HLL*17].

%his possibly not a injection, as these translations are possibly overlapped with each other.
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APPENDIX A. MISSING PROOFS IN SECTION 2

Proof of Proposition 3.2. The following simple greedy procedure will find such a .

1
2
3
4
5

N

8

Initially, # = 0;
for each (i,i") € M do

for each k from 1 to |List(D,i,i")| — 1 do
if the k-th node and (k + 1)-th node in List(D, i,i") form a reversible arc then
L add this arc to P, and k := k + 2;
else
L k:=k+1;
Return P;

Obviously, for each (i,i") € M, the procedure contains at least half of all reversible arcs u — v where

{L(u),L(v)} = {i,i’}, hence at least half of nodes in V (D, i). O

26



APPENDIX B. PROOF oF PROPOSITION 3.9

Given a pwdag D = (V,E, L) of Gp and a Boolean string R € {0,1}#P) define h(D, R) to be a
directed graph D’ := (V’,E’,L’) where V' =V, E’ = E, and

(L())", ifve A and R, = 0;
YoeV: L'(v)=1{(L(v), ifve#andR,=1;
L(v), otherwise, v ¢ /.

It is easy to verify that h(D, R) is a pwdag of GM. Moreover, given any D’ € D(GM), there is one
and only one D € D(Gp) and R € {0, 1}#P) such that h(D, R) = D’. In other words, h is a bijection
between {(D,R) : D € D(Gp), R € {0,1}#P)} and D(GM). So

Z 1_[ PLiw) = Z Z H )

D'eD(GM) v inD’ DeD(Gp) Re{0,1}#(D) v’ in h(D,R)

- Z Z prw’(z»

DeD(Gp) Re{0,1}4#(D) vin D

= Z l_l PLo) Z l—[ 0

DeD(Gp) v¢M (D) Re{0,1}#(D) ve (D)

= Z l_l PLw l_l (%)T*qu)l)

DeD(Gp) v¢M (D) vel (D)

= > 11l rw [1 (Piw)*PZ(v)‘Pi(u))

DeD(Gp) v¢M (D) veM (D)

= 2 |lrw

DeD(Gp) vin D

where the second equality is by that V = V’, the forth equality is by the definition of L’, and the fifth
equality is by the definition of pM.

APPENDIX C. PROOF OF THEOREM 3.12
We first verify that the image of & is a subset of D(GM).
Lemma C.1. Forany D € D(Gp) and § € y(D), h(D, §) € D(GM).

Proof. First, we prove that h(D,8) = (V’,E’,L’) is a DAG. Define a total order z’ over the set V’ as
follows: for any two distinct nodes u’,0” € V’,

o ifg(u’) # g(v’), then u’ < v’ in n’ if and only if g(u’) < g(v’) in 7p;

o ifg(u’) = g(v'), then v’ < v’ in 7’ if and only if u” = f*(g(u’)) (and then v’ = f(g(u"))).
One can verify that 7z’ is a topological order of h(D, &), which means that h(D, &) is a DAG.

Secondly, we prove that h(D, §) is a wdag of GM. As h(D, &) has been shown to be a DAG, we only
need to verify that: for any two distinct nodes u’,v” in D’, there is a arc between u” and v’ (in either
direction) if and only if either L’ (u’) = L’ (v’) or (L'(v’), L’ (u")) € EM.
=: By symmetry, suppose (v’ — v’) € E’. If (u" — v’) € E, thenu’ = f*(w) and v’ = f(w) for
some vertex w € &3 U &y. Thus, by (2) and (3) we have L'(u’) € {i',il} and L’(v") = L(w)! where
(L(w), i) € M. By (L(w),i) € M, any two vertices in {(L(w))T, (L(w))!,i',i!} are connected in GM.
In particular, (L’ (v”), L’ (u")) € EM.If (u’ — v’) € E},, we have L' (u") = L'(v’) or (L' (v’), L’ (v")) € EM
immediately.
&=: Suppose u’,0’ € V' are two distinct nodes where L’(u’) = L'(v’) or (L'(u"),L’ (")) € EM. If
g(u’) # g(v’), then either g(u’) < g(v’) or g(v”) < g(u’) in mp, which implies that either (u” — v’) € E
or (" — u’) € EJ,. Otherwise, g(u") = g(v’). Let v := g(u’) = g(v"). By (2) and (3), we have v € §3 U &4
and {u’,0"} = {f(0v), f*(0v)}. Therefore either u” — v" or v” — u’ is in E].
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Finally, one can check that f(v) where v is the unique sink of D is the unique sink of D’. This
completes the proof. O

In the rest of this section, we show that h is injective. Given D € D(Gp) and (i, j) € M, recall that
List(D, i, j) is the sequence listing all nodes in D’ labelled with i or j in the topological order. Similarly,

Definition C.2. Given D’ = (V',E’,L’) € D(G™) and (i, j) € M, we use List’(D’, i, j) to denote the
unique sequence listing all nodes in D’ with label in {i1, i\, jT, j1} in the topological order.

Claims C.3 and C.5 are two properties about List’(D’, i, j), which will be used to show the injective-
ness of h.

Claim C.3. Suppose D’ = h(D, §) for some D € D(Gp) and § € y(D). Let (i, j) € M. Then for any
nodev’ in D’,
(a) v’ € List’ (D', 1, j) if and only if g(v”) € List(D, i, j);
(b) forany othernodeu’ inD’,ifg(u’) precedesg(v’) inList(D, i, j), thenu’ precedesv’ inList’ (D', i, j);
(c) ifv € 83U 84, then f(v) is next to f*(v) in List’(D’, i, j).

Proof. Part (a) is immediate by Definition 3.11.

Now, we show Part (b). Suppose g(u’) precedes g(v’) in List(D, i, j). Then g(u’) < g(v’) in 7zp.
Thus one can check that all the four arcs f(g(u’)) — f(g9(v")), f*(g(u')) — f(g(v)), f(g(u')) —
f*(g(v’)), and f*(g(u’)) — f*(g(v’)) are contained in E}. In particular, (" — 0’) € E" asu’ €
{f(g(u"), f*(g(u’))} and v’ € {f(g(v")), f*(g(v’))}. This implies that u’ precedes v’ in List’(D’, i, j).

Finally, we prove Part (c). According to Part (b), f(v) and f*(v) are adjacent in List’(D’, i, j). Besides,
as there is an arc f*(v) — f(v) in E/, we conclude that f(v) is next to f*(v) in List’(D’, i, j).

O

Definition C.4. For a reversible arcu’ — v’ in D', we call it (x, |)-reversible in D’ if L’(u") € {il,i'}
and L' (v") = jb for some (i, j) € Ep.

Claim C.5. Suppose D’ = h(D, &) for some D € D(Gp) and § € Y(D). Let (i, j) € M. Letu’, 0" be two
nodes in List’(D’, i, j) where v’ is next tou’. Thenu’ € V; if and only ifu’ — v’ is (%, ])-reversible in D’
andv’ € V/.

Proof. =: Let u :=g(u’). Assume u’ € V), i.e, u’ = f*(u). By Definition 3.11, u € &3 U &4. According
to Part (c) of Claim C.3, as v’ is next to u’, we have v” = f(u) and then v’ € V/'.

Now we show that u’ — v is (%, |)-reversible. First, by Definition 3.11, either L’ (u’) € {i',i'} and
L'(v") = jbor L'(w') € {j1,j'} and L’ (v") = i!. What remains is to show u’ — v’ is reversible, by
Fact 2.5 which is equivalent to show that f*(u) — f(u) is the unique path from u’ to v’ in D’. By
contradiction, assume that there is a path f*(u) - w{ — .-+ = w/ — f(u) in D’ where w{ # f(u)
and w; # f*(u). As w] # f(u), we have (f*(u) — wj) is not in E] and then should be in E, which
further implies that u < g(wy) in #p. Similarly, we have g(w;) < u in 7p. So g(w;) < u < g(wj).
Meanwhile, for each ¢ < k, if (w, — w;,,) € E], then g(w;) = g(w,,,); if (w; — w;,,) € E}, then
g(w;) < g(wy,,) in zp. So, it always holds that g(w;) < g(wy,,) in 7p for each ¢ < k. In particular,
g(w}) < g(wj;). A contradiction.

&: Let u := g(u’) and v := g(v'). Assume v’ ¢ VJ and 0’ € V/,ie, v’ = f(u) and 0’ = f(0).
Furthermore, assume L’(v’) = j!, then v ¢ & and L(v) = j. We will show that (f(u) — f(v)) is not
reversible.

Note that (f(u) — f(v)) should be in E/ and then u < v in 7p. By L'(u’) € (i}, w = f(u),
and (2), we have L(u) = i. Thus, (L(u), L(v)) = (i,j) € M C Ep. As D is a wdag and u < v in np, the
arc (u — v) exists in D. Since v ¢ &1, v ¢ V, which means that u — v is not reversible in D. According
to Fact 2.5, there is a path u = w; — wg — -+ - — Wi — Wyy1 = 0 from u to v in D other than the arc
u — v, where wy < wyy1 in rp and (L(wp) = L(wes1)) V ((L(wy), L(wgy1)) € Ep) for each £ € [k].

According to the definition of GM and (2), one can check that (f(w;) = f(wis1)) € E}. Therefore
u = f(wy) = f(wg) = - = f(wg) = f(wgye1) =0’ is a path from u’ to v” in D’, which implies that
u’ — f(v) is not reversible in D" by Fact 2.5. ]
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Having Claims C.3 and C.5, we are ready to show that A is injective.
Lemma C.6. h is injective.

Proof. Fixa D = (V,E,L) € D(Gp) anda § € y(D). Let D’ = (V',E’, L") denote h(D,S§). We show
(D, 8) can be recovered from D’, which implies the injectiveness of h.

First, we recover the partition (V, V2’ ). That is, given a node u’ € V’, we distinguish whether u’ € Vl’
oru’ € V). If L(u’) € [m] \ M, then u’ € V] according to (2). Otherwise, we have L’(u’) € (i1, il}
for some (i, j) € M, hence v’ is in List’(D’, , j). Assume the nodes in List’(D, i, j) are vjvjv} - - - 0;.
According to Claim C.5, we can see that the following procedure distinguishes whether v; € V| or
v, €V, for all v; € List’(D’, i, j), including u’.

1 Initially, mark that z)l’< €V/,andlet £ :=k - 1;
2 while ¢ > 1do
if the arc (v, — v;,,) is (*,])-reversible and v;,, € V| then

w

4 ‘ Mark that v; € VJ;
5 else

6 L Mark that v; € V;
7 £:=f—1;

Secondly, we can easily recover D = (V, E, L) from D’ and (V/, V,). Ignoring labels, it is easy to see
that D is exactly the induced subgraph of D’ on V. By the way, we also get the function f : V — V/.
For labels, we simply replace each label iT or it with i.

Finally, we recover & from D’, D and (V/, V»). That is, we distinguish which one of {§, &2, 83, $3}
contains a given node v € (D). Assume L(v) =i and (i, j) € M. Let u’ be the node previous to f(v)
in List’(D, i, j). According to Part (c) of Claim C.3, u” € V; if and only if v € §3U &. Whenov € S3U 8}y,
ved3ifL'(u) =j1,andv € S4if L’(u') = j{. Whenov ¢ S3U S, v e & if L' (v') =i, andov € &y if
L'(v") = il.

m}

AprPENDIX D. PrROOF OoF LEMMA 6.1

Let e; denote the vector whose coordinates are all 0 except the i-th that equals 1. The following
lemmas will be used in the proof.

Lemma D.1. [HLSZ19] Let Gp = ([m], Ep) be a dependency graph and p be a probability vector beyond

the Shearer’s bound. Suppose i, iy, i, ,ix_1,i’" form a shortest path from i to i’ in Gp. Then for any

q<pr,p—qer+( [Teerr-1 1:"") : % - ge; is also beyond the Shearer’s bound.
ip i

Without loss of generality, we assume that p; — p, is rational for each i € [m]. By contradiction, let
p be such a vector which is beyond Shearer’s bound. Let Sy := {i € [m] : p; > p} and S_ := {i € [m] :
pi < p}. Let A, be a real number such that the following hold:
e Foreachi € Sy, p; — pa = yi - Ap for some y; € N*. Intuitively, we cut p; — p, into y; pieces each of
size A,. Besides, we call such pieces positive pieces.
e Foreachie S_,

L‘Pa)‘“.%

Pa Pa

d-1
. : . . - A
for some 7; € N*. Intuitively, we cut p, — p; into 7; - K pieces each of size (1 pp “) . P—p. We call

such pieces negative pieces.
Weuse R :={(i,r):ie€ Sy, rely]tand T = {(i’,t,k) : i’ € S_,t € [ry],k € [K]} to denote the set of
positive pieces and negative pieces respectively.
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For convenience, let y; = 0ifi ¢ S;, and 7; = 0 if i ¢ S_. Then Condition (c) can be restated as: for
f(S) =T, the positive pieces in S are no more than the negative pieces in T, i.e.,

(16) IR EDN2

ieS i’eT

The basic idea of Lemma 6.1 is relatively simple: for each S € S, we move positive pieces in S to f(S)
such that (i) all the positive pieces in S are absorbed by the negative pieces in f(S) and (ii) the resulted
probability vector is still beyond Shearer’s bound. Finally, all positive pieces will be absorbed, and we
will get a vector strictly smaller than p. By Lemma D.1, this vector is beyond Shearer’s bound, which
makes a contradiction.

For i’ € [m], remember Condition (a) which says that there are at most K subsets S C S such that
i’ € f(S), and we use Sl1 512 -+ to represent these subsets. Let g : R — 7 be a injection mapping each

(i,r) € R to some (i’,t,k) € T satisfying that (i) i € Sg‘, and (ii)

Z Yip ¥ 1= Z Ty + 1.

ioesf,,ioq' i1 ef(sf,),i1<i'
By (16), one can verify that such mapping g exists. In addition, according to Condition (b), if g(i,r) =
(i’,t, k), then dist(i,i") < d.
In the following, we will apply Lemma D.1 repeatedly.
Let gg be g, Sp be S_ and Ry be R. Given an injection g, : R — 7, S and R, where dis(i, j) < d if
gi(i,r) = (j, t, k), we construct another injection g1 : R — 7, Sk41 and Ry41 as follows. There are
two possible cases for g, Sx and Ry.

(1) there exists i, r, j, t, k such that (i,r) € Ry, g« (i,r) = (Jj, t, k) and there is a shortest path between
i and j such that no vertex in Si is on the path;

(2) For each g, (i,r) = (j, t, k) where (i,r) € R, and each shortest path between i and j, there is a
vertex in S, on the path.

For case (1), we let gi41 = g, Rier1 = Ree \ {(i,7)}, and
Sk+1 = {j € S_ : there exists i, r, t, k where (i,r) € Ry41 such that g1 (i, 7) = (j, £, k) }.
For case (2), there must be (i1, 71, j1, 1, k1), * - * » (in, Tns jns> tns kn) for some n € N* such that
- (ie,1e) € Rucs je € Sies gic(ies re) = (jes te, k) for each £ € [n],

- Jje+1 1s on a shortest path between i, and j, for each ¢ € [n — 1],
- Jji1 is on a shortest path between i, and j,.

We define the injection F(gy) as follows.

F(gx)(insrn) = (j1, 11, k1),
F(gi)(ie,re) = (jests test, kesr) for each £ € [n— 1],
F(gy)(i,r) = g, (i,r) for other (i,r).
One can verify that dis(i, j) < dif F(g,)(i,r) = (j, t, k) and
N2 Z dis(i, j) > 1+ Z dis(i, ).

(i,r,j,t,k): (i,r,j,t.k):
g (Lr)=(j,2.,k) F(gx) (ir)=(j,t.k)

Since N is bounded, there must be a constant £ < N and i, r, j, t, k such that (i,r) € Ry, F[(g,c)(i, r)=
(j,t, k) and there is a shortest path between i and j such that no vertex in Sy is on the path. Let

Jx+1 = F[(glc): Ricr1 =R \ {(i,7)} and
Si+1 = {Jj € S_ : there exists i, r, t, k where (i,r) € Ry41 such that g1 (i, 7) = (j, £, k) }.

One can verify that in both cases, gx+1 is an injection from R to 7 and dis(i, j) < dif gi41(i,7) = (j, t, k).
Let g’ be g|g|. For each ¢ € [|R]], let (i, r¢) be the unique element in R,_1 \ R,. Let (ji, t, k¢) denote
g’ (ig, r¢). Thus, we have
- ¢’ is an injection from R to 7,
- dis(iy, jo) < d for each £ € [|R]|],
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- there is a shortest path between i, and j, such that jy,1, jeso, - -, jjg| € S¢ are not on the path.
For each j € S_, define

nj =H(@,r):g'(i,r) = (j, t,k) for some t € [7;],k € [K]}|.

Because ¢’ is an injection, we have n; < 7; - K. Let

Puép/_,_Z(K.Tj_nj). 5

jes-

C—-ej.

(1_p)d—1 Ap
p

By p’ is beyond Shearer’s bound and 1; < K - 7; for each j € S_, we have p” is also beyond Shearer’s
bound. For each ¢ € [0, |R]], let

A ’” 1_pd_11 1_pd_1 1
e 3 e (5] o (5 )
K;L ) p ) p+dy

Then we have the following claim.

Claim D.2. For¢ € [0,|R]], p¢ is beyond Shearer’s bound.

Proof. We prove this claim by induction. Obviously, pg is beyond Shearer’s bound. In the following, we
prove that if p,_; is beyond Shearer’s bound, then p;, is also beyond Shearer’s bound.

Let
d-1
N7 1- p 1
oo 3 (52 L)
Kszt’;l p p
Obviously, ¢ > p,—1. By ps—1 is beyond Shearer’s bound, we have g is also beyond Shearer’s bound.
Note that there is a shortest path iy, k1, ko, - - - , kn, je between i, and j, such that jp,1, jes2, -+, jig| are
not on the path. Because q is beyond Shearer’s bound, by Lemma D.1, we have

7 A 1_qk 1
g 2q-0p-le - [] —=| e
refn) Ik q

is also beyond Shearer’s bound. Meanwhile, by (i, r;) € R, we have
qie :pl/ - AP Z ﬂ(iK = if) = pz’ - (Yi - I)Ap 2 pi +Ap-
Ker-1

For each t € [n], if k; ¢ S_, we have gk, > p. Otherwise, k; € S_, and k; # ji for each k > ¢. Thus, we
have },c,_1 L(ji = k¢) = ng,. Therefore,

d-1 d-1
, l-p Ap l-p Ap
L R RN 1
ke P K;1 Tlp p
d-1 d-1
, 1- A 1- A
:pkt+(K.Tkt_;7kt).(_p) ._p+ kt'(_p) _P:p
p p p p
By dis(i, j) > d,q;, > p+ A, and qx, > p for each t € [n], we have
l_l 1 — gy, 1<(1—P)d_1 1
refn) Tk 9 P phy
Thus, by q’ is beyond Shearer’s bound, we have
pr=q—-A,-|e (1 _p)d_l ! e
r=q-A,-|e, - | —= . e,
4 P P +Ap J
is also beyond Shearer’s bound. O

Thus, we have p|g| is beyond Shearer’s bound. It is easy to verify that p|g| < p, which is contradictory

with that p is on Shearer’s boundary.
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APPENDIX E. MISSING PART IN THE PROOF OF THEOREM 6.2

Proof of Claim 6.3. Observe that for each (v,0’) € EX, if (v,0”) ¢ M, then one of its neighboring edge
(vo,v1) is in Ti and satisfies that 8,y < Jy,0,. Here, we say two edges neighboring if they share a
common vertex. Besides, note that each edge has at most 2A neighboring edges. So

(17) > 51,001_% >,
(vo,01) €Tk (v.v)€EX

Moreover, according to Lemma 4.2 and 4.5, it has that

2
VEl- a2 2
(18) Z 500 - |Ek| Z 52),0’ 2 W : (F (GB(GD)3 P)) B
(0,0’ )EEk (v,0") EE{} U
By combining Inequality 17, 18 and the fact that 2|E'{]| < |V§|A, we finish the proof. ]

LetK .= (A+1)|Vy|,d :=D+2,8 := {V VL2,, .-}, and f(VLlﬁ) := Ti. In the following, we check
that all the three conditions in Lemma 6.1 hold.
Condition (a). That is, we want to show |{k : Ty 3 v}| < (A + 1)|Vy| for each v € Vp. Observe that if

v € Ty, theno € N+(V§). So

[k T 3 0} < [{k - NT(VE) 2 0} < ks NT@)NVE # 0} < > [k : V5 2 0'H < (A+1)-[Vpl.
v eN*(v)

The last inequality uses the fact that h(k’,u) # h(k,u) if k # k’.

Condition (b). That is, we want to show dist(v,0’) < D+ 2 forany o € Vg} and o’ € Ti. This is obvious,

because if v’ € Ty, then v’ € N+(V§).

Condition (c). We verify that

1— " D+1
(19) ( £ ) XS max(p - pun0} < Y maxc{pq - pi 0%
Pa Pa ieS ieT
On one hand, noting that max{(1 + €)p, — pa, 0} < max{(1+ ¢)p, — pa, 0} < g, we have
1 _ D+1 A 1 2
(20) L.H.S of (19) s( pp ) A +p)|VU| .q

On the other hand, observe that
max{ps = (L +&)py, 0} 2 pa = (L+e)py = (pa+q—(1+e)py) —q = (L+&)(po—py) — ¢
2 (po=Ps) ~ 4
where the last inequality is due to the assumption that (1+¢)p < (pa+ ¢, -, pa + q). Then

2
- k 2
RHSof (19) 2| > (po=po) |~ IN'(Vla = = | D) e, |- AlVulg

veVk (vo,01) €Tk

(21) > (F(Gu(Gp). ) - AlVila

Putting Inequality 20 and 21 together and noting that p <> 1
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