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Higher degree sum-of-squares relaxations robust against
oblivious outliers ∗

Tommaso d’Orsi† Rajai Nasser‡ Gleb Novikov† David Steurer†

November 14, 2022

Abstract

We consider estimation models of the form Y � X∗ + N, where X∗ is some m-dimensional
structured signal we wish to recover, and N is symmetrically distributed noise that may be
unbounded in all but a small α fraction of the entries. This setting captures problems such as
(sparse) linear regression, (sparse) principal component analysis (PCA), and tensor PCA, even in
the presence of oblivious outliers and heavy-tailed noise.

We introduce a family of algorithms that under mild assumptions recover the signal X∗

in all estimation problems for which there exists a sum-of-squares algorithm that succeeds in
recovering the signal X∗ when the noise N is Gaussian. This essentially shows that it is enough
to design a sum-of-squares algorithm for an estimation problem with Gaussian additive noise in
order to get the algorithm that works with the symmetric noise model.

Our framework extends far beyond previous results on symmetric noise models and is even
robust to an ε-fraction of adversarial perturbations. As concrete examples, we investigate two
problems for which no efficient algorithms were known to work for heavy-tailed noise: tensor
PCA and sparse PCA.

For the former, our algorithm recovers the principal component in polynomial time when
the signal-to-noise ratio is at least Õ(np/4/α), that matches (up to logarithmic factors) current
best known algorithmic guarantees for Gaussian noise. For the latter, our algorithm runs in
quasipolynomial time and matches the state-of-the-art guarantees for quasipolynomial time
algorithms in the case of Gaussian noise. Using a reduction from the planted clique problem, we
provide evidence that the quasipolynomial time is likely to be necessary for sparse PCA with
symmetric noise.

In our proofs we use bounds on the covering numbers of sets of pseudo-expectations, which
we obtain by certifying in sum-of-squares upper bounds on the Gaussian complexities of sets of
solutions. This approach for bounding the covering numbers of sets of pseudo-expectations may
be interesting in its own right and may find other application in future works.

∗This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 815464).

†ETH Zürich.
‡Google Zürich. This work was done at ETH Zürich.
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1 Introduction

Consider an estimation problem over �m , in which we observe (a realization of)1 the random
variable Y � X∗ + N where X∗ ∈ Ω ⊆ �m is some structured signal we seek to recover and N is
some additive noise. This generic primitive captures widely studied models such as compressed
sensing, linear regression, principal component analysis, clustering mixture distributions, matrix
completion or tensor principal component analysis.

From both a statistical and computational point of view, as one weakens the assumptions on the
noise N , the task of reconstructing the hidden signal X∗ becomes harder. 2 Recent years have seen
tremendous advances in the design of efficient algorithms able to recover the planted structure
X∗, under weaker and weaker assumptions on the noise (e.g. [KKM18, Hop20, dKNS20, DdNS21,
BDJ+22]). In particular, a certain line of work [CLMW11, ZLW+10, TJSO14, BJKK17, SBRJ19, SZF20,
PJL20, dNS21, Cd22, dLN+21] has aimed to identify the weakest possible requirements on the
signal-to-noise ratio so that it is still possible to efficiently recover the signal X∗ with vanishing error.
In this context an established model3 is that of assuming the entries of N to be (i) independent, (ii)
symmetric about zero and (iii) to have some probability mass in a neighborhood of 0. That is, to
satisfy �[|Ni | 6 1] > α, for i ∈ [m]with the parameter α possibly vanishingly small.

Remarkably, the framework emerging from these results shows that the Huber loss estimator–
when equipped with an appropriate regularizer– offers provably optimal error guarantees among
efficient estimators. In particular, it recovers the error convergence rates of classical least squares
algorithms in the presence of Gaussian noise.

The general recipe behind these results relies on two main points: first an upper bound on the
gradient of the Huber loss function at the true solution X∗,4 and second a lower bound on the
curvature of the loss function (in the form of a local strong convexity bound) within a structured
neighborhood of X∗. Here the structured neighborhood of X∗ is a superset Ω̄ ⊇ Ω. The curvature of
the loss function depends on the directions (and the radius) considered and (one expect that) it is
sharper in the directions contained in Ω. Thus one can establish stronger statistical guarantees by
forcing the minimizer of the loss function to be in a small set of directions close to Ω. The crux of
the argument is that the set Ω̄ is controlled by the regularizer: If the chosen regularizer is norm
decomposable5 with respect to a meaningful set Ω̄, then indeed it will force the minimizer to fall in one
of the desired structured directions.

The inherent consequence of this approach is that, in settings where no such decomposable
norm regularizer is known –such as for tensor principal component analysis– these estimators
cannot provide any error guarantees. In this paper, we overcome this limitation and introduce a
family of algorithms (based on sum-of-squares) that recover the parameter X∗ for a remarkably
large set of models. More concretely, our result can be informally read (under certain reasonable
conditions) as:

Whenever there exists a degree-` sum-of-squares algorithm that recovers X∗ from Y when the

1We denote random variables in boldface.
2The complexity of the problem may also be affected by the structure of X∗.
3Sometimes denoted the oblivious adversarial model.
4The attentive reader may notice that no such upper bound exists for the least square estimator, under the noise

assumptions above. This is evidence confirming the intuition that "least squares estimator are fragile to outliers".
5We formally define decomposability in Appendix D.

1



entries of N are Gaussian with standard deviation6 σ � (1 + ‖X∗‖max)/α, there also exists an
algorithm running in time mO(`) that recovers X∗ with the same guarantees, even if N only
satisfies (i), (ii), (iii).

In other words, we introduce a framework that allows to directly generalize sum-of-squares
algorithms designed to recover the hidden signal in the presence of Gaussian noise, to the
significantly more general settings of symmetric noise.

Our result relies on a novel use of the sum-of-squares hierarchy. The core of the argument consists
of bounds on the covering number of sets of pseudo-expectations, which we obtain via sum-of-squares
certificates of the Gaussian complexity of the space of solutions. We then use these small covers to
ensure that feasible solutions must fall in one of a few directions close to X∗.

1.1 Results

Our main result is the following meta-theorem for recovering a structured signal from symmetric
noise.

Theorem 1.1 (SoS meta-theorem, Informal). Let m , ` ∈ �. LetΩ ⊂ �m be a set defined by at most mO(1)

polynomial constraints of degree7 at most `. Suppose that for some r > 0 and γ > r
√

ln m the following
bounds are certifiable by degree O(`) sum-of-squares proofs (from the constraints that define Ω):

(1) supX∈Ω‖X‖max 6 1 ,

(2) supX∈Ω‖X‖2 6 r ,

(3) �W∼N(0,Idm) supX∈Ω〈X,W 〉 6 γ .
Let 0 < α 6 1 and let N be a random m-dimensional vector with independent (but not necessarily

identically distributed) symmetric about zero8 entries satisfying �[|Ni | 6 1] > α for all i ∈ [m].
There exists an algorithm running in time mO(`) that on input Y � X∗ + N outputs X̂ satisfyingX∗ − X̂

2
2 6 O

(
γ/α

)
with high probability.

Moreover, for ε . γ2

r2·m ln m , the same result holds if an arbitrary (adversarially chosen) ε-fraction of
entries of Y is replaced by adversarially chosen values.

It is possible to gain an understanding of the importance of Theorem 1.1 even before applying
it to specific problems. First, notice that if γ/α 6 o(r2), the error guarantees are non-trivial. In
particular this means that the fraction α of entries with bounded noise can be vanishingly small
and the algorithm can still reconstruct a meaningful estimate. Second, observe how the error rate
crucially depends on the upper bounds we are able to certify on the Gaussian complexity of the
space of solutionsΩ. By certifying tighter bounds on it one can obtain tighter guarantees on the error
of the estimation. This shows the existence of a trade-off between error of the estimate and running
time. Finally we remark that the algorithm is robust to an ε-fraction of adversarial corruptions, the
magnitude of ε will become clearer when discussing the various applications.

Next we apply Theorem 1.1 to specific problems.

6As we will see in the context of sparse PCA problem, it is unlikely that we can relax the condition σ > ‖X‖max.
7These constaints may use up to mO(1) auxiliary variables, and degrees of all polynomials in all variables are at most `.
8I.e., Ni and −Ni have the same distribution for every i ∈ [m].
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Tensor principal component analysis. We consider the following tensor PCA model (we remark
that one may consider further tensor models, in Section 5 we study other versions of Model 1.2 as
well).

Model 1.2 (Tensor PCA with asymmetric tensor noise). Let n , p ∈ �, n , p > 2, and 0 < α 6 1. We
observe (an instance of) Y � λ · v⊗p + N , where λ > 0, v ∈ �n is an unknown unit vector and N is
a random order p tensor with independent (but not necessarily identically distributed) symmetric
about zero entries such that

�[|Ni1 ...ip | 6 1] > α , for all 1 6 i1 , . . . , ip 6 n .

In the significantly more restrictive settings when the noise is standard Gaussian (captured by
Model 1.2 by the special case with α > Ω(1)), this model was studied in [MR14, HSS15]. In these
settings, one can recover the hidden vector v in exponential timewhenever the signal-to-noise ratio λ
is at leastΩ(

√
n), but existing polynomial time algorithms are known to require at least λ > Ω

(
np/4) .

Moreover, evidence of an information-computation gap exists in the literature in the form of lower
bounds against different computational models (sum-of-squares lower bounds [HSS15, HKP+17] or
low degree polynomial lower bounds [KWB19]), showing that these computational models cannot
recover the hidden vector in polynomial time if λ < np/4/polylog(n).

Less restrictive noise models have been considered more recently. [DHS20] proved that when
the noise has zero mean and bounded variance and v is a random vector whose entries have small
fourth moment, then one can recover it as long as λ > Ω(np/4). Later, [AY21] showed that if the
noise has zero mean and bounded variance, there exists an algorithm that, under mild assumption
on the magnitude of the entries of v, can recover v as long as λ & np/4 · (ln n)1/4.

However, an application of Theorem 1.1 shows that whenever the entries of the noise are
symmetric about zero, no assumption on the moments is needed to recover the parameter v. The
application of Theorem 1.1 only relies on known sum-of-squares certificates for the injective tensor
norm of random tensors [HSS15].

Theorem 1.3 (Robust Tensor PCA). Let p > 2. There exists an absolute constant C > 1, and an algorithm
running in time nO(p) that, given Y as in Model 1.2, outputs a unit vector v̂ ∈ �n satisfying

|〈v , v̂〉| > 0.99

with high probability, whenever

• If p is even: λ > C
α · np/4 and ‖v‖max 6

α1/p
C · n−1/4 .

• If p is odd: λ > C(p ln n)1/4
α · np/4 and ‖v‖max 6

α1/p

C(p ln n)1/4p · n−1/4 .

Moreover, if p is odd, the algorithm recovers the sign of v, that is, 〈v , v̂〉 > 0.99 with high probability.
Furthermore, for ε 6

(
C · p · np/2 · ln n

)−1, the same result holds if an arbitrary (adversarially chosen)
ε-fraction9 of entries of Y is replaced by adversarially chosen values.

9For odd p we allow slightly greater fraction of corruptions ε 6
(
C · p · np · ln n

)−1/2.
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Let us briefly and informally describe how this result can be obtained from Theorem 1.1.
Consider the case when p is odd10. Let b �

α1/p

C(p ln n)1/4p · n−1/4. We may rescale Y by 1/(λbp) 6 1 so
that ‖X∗‖max 6 1 and the bound �[|Ni1 ...ip | 6 1] > α still holds for all 1 6 i1 , . . . , ip 6 n. Note that
now r :� ‖X∗‖2 � 1/bp . So we trivially have the desired sum-of-squares certificates for (1) and (2) in
Theorem 1.1. Most importantly, from [HSS15] we know that for the set Ω of rank-one symmetric
tensors of norm r there is a degree O(p) sum-of-squares proof that certifies the bound

�
W∼N(0,Idnp )

sup
X∈Ω
〈X,W 〉 6 O

(
p · (ln n) · np )1/4 · r .

Thus using the value on the right-hand side as γ, we get that X̂ that is obtained from Theorem 1.1
satisfies X∗ − X̂

2
2 6 O

(
γ/α

)
6 O

(
r
(Cb)p

)
� O

(
1

Cp

)
· r2 ,

and hence X̂ is highly correlated with X∗ and the result follows11.
Concerning the noise N , it is easy to observe that the algorithm works with symmetric heavy

tailed noise (e.g., Cauchy noise) and achieves guarantees similar to the best known guarantees
for standard Gaussian noise. Moreover, the number of adversarial corruptions that the algorithm
allows is nearly optimal: For instance, for constant even p and constant α our bound on the entries
allows v to be O

(√
n
)
-sparse. Hence for such v, if the adversary is allowed to make more than

np/2 corruptions, the signal can be completely removed and the problem becomes information-
theoretically unsolvable. Our theorem guarantees that if the number of corruptions is o

(
np/2/log n

)
,

we can find a vector highly correlated with v in polynomial time.
The dependence of λ on α is also likely to be optimal since we match (up to

(
log n

)1/4 factor)
the current best known guarantees for Gaussian noise with standard deviation Θ(1/α).

We remark that some bound on the magnitude of the entries is needed12 even if we do not allow
adversarial corruptions. For example, if the vector v is 1-sparse (so it has one large entry), then
the unbounded noise removes the information about v with probability 1 − α. Indeed, if the noise
entries are sampled from the mixture of the uniform distribution on [−1, 1] with weight α and the
Gaussian N(0, 2n) with weight 1 − α, then with probability 1 − α the entry that corresponds to the
support of v has vanishing small signal-to-noise ratio.

Evidence of the tightness of these requirements can also be found in the observation that,
for p � O(1) and arbitrarily small constant δ > 0, it is unlikely that a n1/2−δ-sparse flat v can be
recovered in polynomial time from the upper simplex of the input (i.e. the set of entries Yi1 ...ipsuch
that i1 < . . . < ip). Indeed the planted clique in random hypergraph problem can be reduced to this
question (see Section 6.2). In other words, for certain vectors with ‖v‖max 6 n−1/4+δ/2 the problem
of recovering v from the upper simplex is likely to be computationally hard. It is not difficult to
see that if we can use our SoS-based approach to recover k-sparse flat vectors from Y , then we can
also add additional sparsity constraints and get an SoS-based algorithm that recovers k-sparse flat
vectors from the upper simplex of Y (if p � O(1)). This shows that the assumption on ‖v‖max in

10The case when p is even is similar.
11We also need to perform rounding to obtain the vector from the output tensor. See Appendix B.1 for more details.
12In fact, this is a recurring theme for unbounded noise models.
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Theorem 1.3 is likely to be inherent, at least for our SoS-based approach. It remains a fascinating
open question whether for specific noise distributions (e.g., Cauchy) the bound on ‖v‖max from
Theorem 1.3 is tight.

Sparse principal component analysis. We consider the following sparse PCA model with sym-
metric noise.

Model 1.4 (Sparse PCA, single spike model). Let n , k ∈ �, k 6 n and 0 < α 6 1. Observe (an
instance of) Y � λ · vvT + N , where λ > 0, v ∈ �n is an unknown k-sparse unit vector and N is a
random n-by-n matrix with independent (but not necessarily identically distributed) symmetric
about zero entries such that

�[|Ni j | 6 1] > α , for all 1 6 i , j 6 n .

When the noise is Gaussian this model is called the spiked Wigner model [FP07, JL09, DM16,
DKWB19, dKNS20]. For Gaussian noise, when λ >

√
n (this is called the strong signal regime) the

leading eigenvector of Y correlates with the signal and thus a simple singular value decomposition
provides optimal guarantees. In the weak signal regime –that is when λ <

√
n– polynomial time

algorithms are known to recover the principal component v whenever λ & k
√

log(n/k2) [DM16,
dKNS20]. In the sparse regime k < n0.5−δ (for arbitrary constant δ > 0), one can improve over these
results in quasipolynomial time. Concretely, there exist algorithms [DKWB19, dKNS20, CdO21]

that can recover the signal v in time nO(t) as long as λ & k
√

log n
t for arbitrary 1 6 t 6 k. So for

t � Θ(log n) these algorithms can recover the signal in time nO(log n) as long as λ > k. In the regime
k < n0.5−δ no no(log n) time algorithm is known to recover the signal if λ 6 O(k), and there exist
lower bounds (see [CdO21]) against restricted computational model of low degree polynomials,
showing that in this model such algorithms do not exist.

In the context of spare PCA, Theorem 1.1 provides guarantees matching those of known
quasipolynomial time algorithms, but also works with the heavy tailed noise of Model 1.4 (e.g.,
standard Cauchy noise):

Theorem 1.5 (Robust Sparse PCA). There exists an absolute constant C > 1 such that if k > C · ln(n)/α2,
λ > k and ‖v‖max 6 100/

√
k, then there exists an algorithm running in time nO(log(n)/α2) that, given Y as

in Model 1.4, outputs a unit vector v̂ satisfying

|〈v , v̂〉| > 0.99

with high probability.
Moreover, for ε 6 α2k2

Cn2 ln n , the same result holds if an arbitrary (adversarially chosen) ε-fraction of entries
of Y is replaced by adversarially chosen values.

Anatural question to ask concerning Theorem 1.5 is whether one could hope to obtain non-trivial
guarantees in polynomial time. In Section 6.1 we provide evidence that the quasipolynomial time
requirement for the noise model in Model 1.4 might be inherent (and thus the running time of
Theorem 5.9 is nearly optimal) via a reduction from the Planted Clique problem. As in the context
of tensor PCA, it is an interesting open question whether for specific heavy-tailed distributions (e.g.,
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Cauchy) one can design polynomial time algorithms recovering the signal v (for not very large λ,
say, λ � k polylog n).

Finally, we remark that the number of adversarial corruptions that the algorithm can handle is
nearly optimal: If the adversary that can change ε � k2/n2 fraction of the entries then all information
about the signal may be removed.

Comparison with other results for symmetric unbounded noise models. Various other estima-
tion problems in the presence of symmetric unbounded noise have been studied, such as linear
regression, sparse regression and principal component analysis. We remark that our framework
can be used to recover the best previously known results for these models [dNS21, dLN+21]. We
point out however that compared to these algorithms, Theorem 1.1 provides a slow rate of error
convergence. That is, when those algorithms guarantee an error bound O(ε), Theorem 1.1 provides a
bound O(

√
ε). This phenomenon is a consequence of the decomposability of particular regularizers

used in previous works. Our framework does not require a decomposable regularizer and can thus
deal with signal sets Ω that may be significantly more challenging than the `1-ball and nuclear
norm ball considered in other works. We provide a more detailed discussion in Appendix D.

2 Techniques

LetΩ ⊆ �m be a set of structured signals we wish to recover (e.g., a sparse rank-1 matrix or a rank-1
tensor). Let N be an m-dimensional random noise with independent, symmetrically distributed
entries such that mini∈[m] �{|Ni | 6 1} > α. Given (a realization of) a random vector Y � X∗ + N for
some unknown signal X∗ ∈ Ω, our task is to approximately recover the signal X∗.

A common approach for this task is to minimize a loss function L(X − Y ) over X ∈ Ω. In the
special case of Gaussian noise, this approach recovers the maximum likelihood estimator if we
choose the least-squares loss function L(X−Y ) � ‖X−Y ‖22 . However, a well knownweakness of this
estimator is that it is extremely susceptible to outliers, thus it cannot be used with noise distributions
with diverging moments. In contrast, an estimator that has been observed (both in practice and
theory) to be significantly more robust to outliers is the Huber loss function Fh(Z) :�

∑
i∈[m] fh(Zi)

where fh is the following Huber penalty,

fh(Zi) :�

{
1
2 Z2

i for |Zi | 6 h ,

h · (|Zi | − h
2 ) otherwise .

(2.1)

Here, h > 0 is a parameter of the estimator to be determined later.
From a computational perspective, the problem is that for many (perhaps most) signal sets Ω

one may be interested in, this kind of loss minimization turns out to be NP-hard (regardless of the
concrete choice of the loss function). Therefore, we can only expect to solve specific relaxations of
this optimization problem.

Previouswork [dLN+21] considered these kinds of relaxations, but could only obtainmeaningful
error guarantees for sets Ω that admit convex regularizers with a certain decomposability property.
Unfortunately, only few regularizers with this property are known (e.g., the `1-norm for vectors
and the nuclear norm for matrices) and so this limitation turned out to be a fundamental obstacle
to the application of this framework to many estimation problems.
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Our machinery overcomes this obstacle, extending the approach in [dLN+21] to a significantly
broader set of choices for Ω. Concretely, we can consider all choices of Ω such that a natural family
of convex relaxations –namely the sum-of-squares hierarchy– succeeds in recovering the signal
from Gaussian noise.

Tensor PCA as a running example. In order to illustrate our techniques, we consider the following
example. Let x ∈ �n be a unit vector and let 0 < λ 6 n3/2. For simplicity of the exposition, we
assume here that x has entries from

{
±1/
√

n
}
. We would like to recover a tensor X∗ � λx⊗3 from

Y � X∗ + N , and determine how small λ can be so that the recovery of X∗ is possible. Notice that in
these settings the signal set is Ω � {λ · x⊗3 | x ∈

{
±1/
√

n
}n
, ‖x‖ � 1} . This set is non-convex –in

fact the problem is NP-hard in general– but let us temporarily disregard computational efficiency.
Suppose we optimize the Huber loss with parameter h � 3 over this set Ω of rank-1 tensors.

Let X̂ ∈ Ω be a minimizer, and denote ∆ � X∗ − X̂ . A common approach is to apply Taylor’s
theorem and obtain

Fh(Y − X∗) � Fh(N) > Fh
(
Y − X̂

)
> Fh(N) + 〈∇Fh(N),∆〉 +

1
2
κ(∆) , (2.2)

where κ(∆) is some lower bound on the values ∆>H(X)∆ for all X from the segment between X∗ and
X̂ , where H(X) is the Hessian13 of the Huber loss at point X. It is not hard to see (see Lemma 3.2)
that one can choose

κ(∆) �
m∑

i�1
1[|Ni |61] · 1[|∆i |6h−1]∆

2
i �

m∑
i�1

1[|Ni |61]∆
2
i .

Now it is clear that if we can show |〈∇Fh(N),∆〉| 6 γ(∆) for some γ(∆) and κ(∆) > 0.9 · α · ‖∆‖22 ,
Eq. (2.2) immediately implies the bound

‖∆‖22 < 3γ(∆)/α . (2.3)

That is, the estimator guarantee depends only on an upper bound on the gradient and a lower bound on
the curvature of the space in the direction of ∆.

Let us first obtain the bound

κ(∆) �
m∑

i�1
1[|Ni |61]∆

2
i > 0.9 · α · ‖∆‖22 .

For simplicity assume ‖∆‖2 � τ for some14 τ > n−O(1). A successful strategy here is
to derive a lower bound on κ(∆) for a fixed ∆, and then construct an ε-net over Ω′ �

{X − X′ : X,X′ ∈ Ω , ‖X − X′‖2 � τ}. The idea is that if our lower bound holdswith sufficiently large
probability and if the size of the covering is not too large, then we will be able to show the desired
curvature in all the possible directions of ∆. Now for fixed ∆, the expected value of κ(∆) is α‖∆‖22 ,

13The second derivative of the Huber penalty does not exit at the points {±h}. However, the indicator function Ih of the
interval [−h , h] is the second derivative of Huber penalty in L1 sense, that is f ′h[b] − f ′h[a] �

∫ b
a Ih(t)dt for all a , b ∈ �. So

by the Hessian at point X we mean a quadratic form whose matrix in the standard basis is diagonal with (diagonal)
entries Ih(Xi).

14Estimation error τ cannot be n−ω(1) in our parameter regime.
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and by Hoeffding’s inequality, the deviation from the mean is bounded by O
(
‖∆‖24

√
log(1/δ)

)
with

probability at least 1 − δ. Since ‖∆‖max 6 2, ‖∆‖24 6 2‖∆‖2. Thus we have

κ(∆) > α‖∆‖22 − ‖∆‖2 · O
(√

log(1/δ)
)
� τ

(
ατ − O

(√
log(1/δ)

))
,

which is close to its expectation when τ &
√

log 1/δ/α .
We need now to extend this bound to all possible directions of ∆. To this end note that if

∆,∆′ ∈ Ω′ are ε-close to each other for some small enough ε � n−O(1), then15

|κ(∆) − κ(∆′)| . ατ2 .

So it remains to show a cover of Ω. Notice that the size of the cover determines in a very strong
way the quality of the error guarantees of the estimator. For example one could try to use the ε-net
covering the unit ball in �n3 , this does not exploit the structure of Ω and has thus size (O(1/ε))n

3
.

By the above calculations, with this ε-net we could provide a meaningful lower bound only when
τ & n3/2/α. In other words, our error estimate would be worse than the trivial estimator outputting
the zero tensor! To obtain a tighter covering, recall Ω is a subset of the set of rank one tensors of
norm λ 6 n3/2. The size of minimal ε-net in Ω is at most O

(
nO(1)/ε

)n (since the mapping x 7→ x⊗3

is nO(1)-Lipschitz for ‖x‖2 6 nO(1)). Hence the size of the ε-net in Ω′ is bounded by nO(n), and by
union bound we get

κ(∆) > α‖∆‖22 − ‖∆‖2 · O
(√

n log n
)
� ατ2 − O

(
τ
√

n log n
)
,

with high probability. Hence for τ &
√

n log n
α we get the desired bound.

We can now focus on bounding the gradient |〈∇Fh(N),∆〉|. The choice of the Huber loss function
makes this very easy: ∇Fh(N) is a random vector with symmetric independent entries bounded
by h � O(1) in absolute value, so for fixed ∆, |〈∇Fh(N),∆〉| is bounded by O

(
‖∆‖2

√
log(1/δ)

)
with

probability 1 − δ. By union bound over the ε-net in Ω′, with high probability

|〈∇Fh(N),∆〉| 6 ‖∆‖2 · O
(√

n log n
)
.

Hence by Eq. (2.3), we can conclude that with high probability

‖∆‖2 6 O

(√
n log n
α

)
.

Therefore, the minimizer X̂ of this inefficient estimator is highly correlated with X∗ as long as
λ &

√
n log n/α. This bound is nearly optimal: if N has iid Gaussian entries with standard deviation

Θ(α), it is information-theoretically impossible to recover X∗ if λ 6 o
(√

n/α
)
(see [PWB20]).

15Here we assume that α > 1/n, otherwise the problem is information theoretically intractable.
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Tensor PCA as a running example: efficient estimation. We take now into account the computa-
tional complexity of computing the desired estimator. To have a loss function we can minimize
efficiently, the idea is to replace the set of rank-1 tensors Ω by some set Ω̃ ⊃ Ω over which we
can efficiently optimize. We cannot do this via the framework in [dLN+21] since no appropriate
decomposable regularizer is known for high-order tensors. Thus we use instead sum-of-squares
relaxations, and take Ω̃ � Ω̃t to be the set of pseudo-expectations of degree t that satisfy certain
constraints. Crucially, in order to apply the argument of the previous paragraph, we need a tight
upper bound on the covering number of the set of pseudo-expectations Ω̃t .

In the exponential time algorithm described above we had a natural nO(1)-Lipschitz mapping
from n-dimensional space to n3-dimensional space, which allowed us to construct such a covering.
In the case of pseudo-expectations, we do not have such a mapping, so different techniques are
required to to get a bound on the size of ε-net.

We use Sudakov minoration: For every bounded set A ⊂ �m , the size of the minimal ε-net of A
is bounded by exp

(
O

(
G(A)2/ε2) ) , where

G(A) � �
w∼N(0,Idm)

[
sup
a∈A

m∑
i�1

ai wi

]
.

The quantity G(A) is called the Gaussian complexity of the set A. So in order to bound the size of
optimal ε-net of the set Ω̃ of pseudo-expectations it is enough to bound its Gaussian complexity.
The good news is that we can bound the Gaussian complexity of the set of pseudo-expectations by
certifying in sum-of-squares a bound on the Gaussian complexity of the set Ω of rank-1 tensors!
Concretely, Ω can be defined by polynomial constraints with variables X ∈ �n3 and auxiliary
variables x ∈ �n :

SX,x �
{
X � λx⊗3 , ‖x‖22 � 1, ∀i ∈ [n], x2

i 6 1/n
}
.

If we can show that with high probability16 over the tensors W with iid Gaussian entries there
exists a degree t sum-of-square proof that these constraints imply∑

16i6 j6k6n

xi x j xkWi jk 6 γt ,

then we can conclude that G
(
Ω̃t

)
6 O

(
λγt

)
.

In [HSS15, HKP+17] it was shown that there exists a 4-degree sum-of-squares proof that SX,x

imply the inequality ∑
16i6 j6k6n

xi x j xkWi jk 6 O(ln(n))1/4 · n3/4 .

Hence, G
(
Ω̃4

)
6 Õ

(
λn3/4) as desired.

Note that the analysis of the exponential time algorithm does not work here because the
dependence of the size of ε-net on ε in Sudakov’s minoration is exponential and not polynomial as
in the case of `2-ball. However, it turns out that via a more careful analysis we can show

‖∆‖22 6 Õ
(
λn3/4

α

)
.

16For Gaussian distribution it is not hard to obtain from this a bound on expectation since we have good tail bounds
for it.
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This bound implies that X̂ is highly correlated with X∗ as long as λ & (log n)1/4n3/4/α, which
matches (up to a logarithmic factor) the current best known guarantees for polynomial time
algorithms when N has i.i.d. Gaussian entries with standard deviation Θ(α), but also works with
significantly more general noise (e.g., Cauchy noise at scale Θ(α)).

Recovery in the presence of adversarial corruptions and oblivious noise. Our framework is
robust to additional adversarial corruptions resulting from an adversary corrupting an ε-fraction of
the entries of Y . In light of our discussion so far, to show this it suffices to check how do the values
|〈∇Fh(N),∆〉| and κ(∆) �

∑n
i�1 1[|Ni |61]∆

2
i change in the presence of corruptions. For simplicity, we

limit our discussion to the first inefficient estimator introduced in previous paragraphs.
First assume that the adversary corrupts a set of entries of size εn3 that is random (not

adversarially chosen). In this case |〈∇Fh(N),∆〉| can only be increased by an additive term

h · 2λ‖v‖3max · n3ε 6 O
(
n3/2λε

)
,

since the entries of ∇Fh(N) are bounded by h, and the entries of ∆ are bounded by 2λ‖v‖3max. The
value κ(∆) also does not change significantly if a small random set of entries is corrupted. Hence in
this case, if n3/2λε 6 ‖∆‖2

√
n log n, the error does not increase in any significant way. Note that in

the regime ‖∆‖2 > Ω(λ) (when we can still have 0.99 correlation with the signal), the number of
corruptions εn3 is allowed to be up to n2.

In the general case, when the adversary is allowed to choose the corrupted set, we need to use a
union bound over all sets of size εn3 (we use it to bound both |〈∇Fh(N),∆〉| and κ(∆)). Here, the
gradient bound becomes

|〈∇Fh(N),∆〉| 6 ‖∆‖2 · O
(√

n log n +

√
εn3 log n

)
.

Hence the number of corruptions is only allowed to be at most n. Observe that Theorem 1.3 is
robust up to Ω̃

(
n3/2) corrupted entries. This is not surprising. The reason is that the algorithm

requires signal strength λ � Ω̃
(
n3/4) compared to λ � Ω̃

(
n1/2) that is required by the exponential

time algorithm.

Sparse PCA. As a second example of the applications of Theorem 1.1 consider the sparse PCA
problem: We are given Y � λ · vv> + N , where v ∈ �n is a k-sparse vector, and the goal is to recover
v. For simplicity we assume here that v is flat, i.e., that its non-zero entries are in {±1/

√
k}.

In order to use our framework, we need to certify in sum-of-squares an upper bound on the
Gaussian complexity of the set of sparse vectors. So we need to show that for some (as small as
possible) γ, with high probability over matrices W with i.i.d. Gaussian entries there exists a (not
very high degree) sum-of-squares proof that some system of constraints C defining sparse vectors
implies ∑

16i , j6n

xi x jWi j 6 γ ,

where x are variables that satisfy sparsity constraints of C.
We use the system of constraints Ct (the subscript t ∈ � indicates that the constraints involve

degree t polynomials) from [dKNS20] (see Section 5.2 for a precise definition). The authors in
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[dKNS20] used the program for a different sparse PCA model, but it is possible to adapt their proof
and show that with high probability there exist a degree O(t) sum-of-squares proof that Ct implies
the inequality ∑

16i , j6n

xi x jWi j 6 O

(
k

√
log n

t

)
.

Hence if λ � k and t & log(n)/α2, then Theorem 1.1 implies that the Huber loss minimizer has
0.999 correlation with vv> (and hence its top eigenvector has correlation 0.99 with v or −v).

The running time is nO(t) � nO(log(n)/α2), and it is likely to be inherent: For α � 1 we can reduce
the planted clique problem (with clique size k) to the problem of recovering v from the upper
triangle (without the diagonal) of matrix Y . The best currently known algorithmic guarantees for
sparse PCA are captured by algorithms that can recover v from the upper triangle of the input
matrix, hence it is likely that sparse PCA with symmetric noise is at least as hard as the planted
clique problem. Finally, we remark that there is a conjecture stating that there is no no(log n)-time
algorithm that can solve the planted clique problem for some values of k (see [MRS21]).

The reduction works as follows. We use the notation U(M) to denote the upper triangle of
matrix M. It is not hard to see that if A is an instance of the planted clique problem (the adjacency
matrix of the graph) and J is the matrix with all entries equal to one, thenU(2A − J) is the upper
triangle of an instance of the sparse PCA problem with symmetric noise, where λ � k,

√
k · v is the

0/1 indicator of the clique, and the noise N is as follows: For the entries i , j ∈ supp(v), Ni j � 0, and
for other entries Ni j are iid sampled from the uniform distribution on {±1}.

3 Preliminaries

Notation. We use boldface to denote random variables. We hide absolute constant multiplicative
factors using the standard notations O(·),Ω(·), &, .. Similarly, we hide multiplicative logarithmic
(in the dimension m of the input) factors using the notation Õ(·), Ω̃(·). We use the notation ‖·‖2
for the Euclidean norm, ‖·‖F for the Frobenius norm, ‖X‖max � maxi∈[m] |Xi |. We write log for the
logarithm to the base e.

Definition 3.1 (Huber loss function). The Huber loss penalty is defined as:

fh(t) :�

{
1
2 t2 for |t | 6 h ,

h(|t | − h
2 ) otherwise.

(3.1)

For a vector x ∈ �n we denote by Fh(x) :�
∑

i∈[n] fh(xi).

The Huber loss satisfies the following inequality.

Lemma 3.2. Let h > 0. For all t , δ ∈ �, and all 0 6 ζ 6 h,

fh(t + δ) − fh(t) − f ′h(t) · δ >
δ2

2
1[|t |6ζ] · 1[|δ |6h−ζ] . (3.2)

Proof. We have two cases:
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• If |t | > ζ or |δ | > h − ζ, then either 1[|t |6ζ] � 0 or 1[|δ |6h−ζ] � 0. Hence,

1[|t |6ζ] · 1[|δ |6h−ζ] � 0 . (3.3)

For this case, we simply use the convexity of fh to get

fh(t + δ) − fh(t) − f ′h(t) · δ > 0 (3.4)

�
δ2

2
1[|t |6ζ] · 1[|δ |6h−ζ] . (3.5)

• If |t | 6 ζ and |δ | 6 h − ζ, then |t + δ | 6 h. In this case, we have fh(t + δ) � 1
2 (t + δ)2, fh(t) � 1

2 t2

and f ′h(t) � t. By direct inspection, we get

fh(t + δ) − fh(t) − f ′h(t) · δ �
1
2
(t + δ)2 − 1

2
t2 − tδ �

δ2

2
(3.6)

�
δ2

2
1[|t |6ζ] · 1[|δ |6h−ζ] . (3.7)

�

3.1 Sum of squares and pseudodistributions

Let x � (x1 , x2 , . . . , xn) be a tuple of n indeterminates and let �[x] be the set of polynomials with
real coefficients and indeterminates x1 , . . . , xn . We say that a polynomial p ∈ �[x] is a sum-of-squares
(sos) if there are polynomials q1 , . . . , qr such that p � q2

1 + · · · + q2
r .

3.2 Pseudo-distributions

Pseudo-distributions are generalizations of probability distributions. We can represent a discrete
(i.e., finitely supported) probability distribution over�n by its probabilitymass function D : �n → �
such that D > 0 and

∑
x∈supp(D)D(x) � 1. Similarly, we can describe a pseudo-distribution by its

mass function. Here, we relax the constraint D > 0 and only require that D passes certain low-degree
non-negativity tests.

Concretely, a level-` pseudo-distribution is a finitely-supported function D : �n → � such
that

∑
x D(x) � 1 and

∑
x D(x) f (x)2 > 0 for every polynomial f of degree at most `/2. (Here, the

summations are over the support ofD.) A straightforwardpolynomial-interpolation argument shows
that every level-∞-pseudo distribution satisfies D > 0 and is thus an actual probability distribution.
We define the pseudo-expectation of a function f on �d with respect to a pseudo-distribution D,
denoted �̃D(x) f (x), as

�̃D(x) f (x) �
∑

x

D(x) f (x) . (3.8)

The degree-` moment tensor of a pseudo-distribution D is the tensor �D(x)(1, x1 , x2 , . . . , xn)⊗` .
In particular, the moment tensor has an entry corresponding to the pseudo-expectation of all
monomials of degree atmost ` in x. The set of all degree-`moment tensors of probability distribution
is a convex set. Similarly, the set of all degree-` moment tensors of degree d pseudo-distributions
is also convex. Key to the algorithmic utility of pseudo-distributions is the fact that while there
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can be no efficient separation oracle for the convex set of all degree-` moment tensors of an actual
probability distribution, there’s a separation oracle running in time nO(`) for the convex set of the
degree-` moment tensors of all level-` pseudodistributions.

Fact 3.3 ([Sho87, Par00, Nes00, Las01]). For any n , ` ∈ �, the following set has a nO(`)-time weak
separation oracle (in the sense of [GLS81]):{

�̃D(x)(1, x1 , x2 , . . . , xn)⊗d | degree-d pseudo-distribution D over �n} . (3.9)

This fact, together with the equivalence of weak separation and optimization [GLS81] allows us
to efficiently optimize over pseudo-distributions (approximately)—this algorithm is referred to as
the sum-of-squares algorithm.

The level-` sum-of-squares algorithm optimizes over the space of all level-` pseudo-distributions
that satisfy a given set of polynomial constraints—we formally define this next.

Definition 3.4 (Constrained pseudo-distributions). Let D be a level-` pseudo-distribution over �n .
Let A � { f1 > 0, f2 > 0, . . . , fm > 0} be a system of m polynomial inequality constraints. We say
that D satisfies the system of constraintsA at degree r, denoted D r A, if for every S ⊆ [m] and every
sum-of-squares polynomial h with deg h +

∑
i∈S max{deg fi , r} 6 `,

�̃D h ·
∏
i∈S

fi > 0 .

We write D A (without specifying the degree) if D 0 A holds. Furthermore, we say that D r A
holds approximately if the above inequalities are satisfied up to an error of 2−n` · ‖h‖ ·∏i∈S‖ fi ‖,
where ‖·‖ denotes the Euclidean norm17 of the cofficients of a polynomial in the monomial basis.

We remark that if D is an actual (discrete) probability distribution, then we have D A if and
only if D is supported on solutions to the constraintsA.

We say that a systemA of polynomial constraints is explicitly bounded if it contains a constraint
of the form {‖x‖2 6 M}. The following fact is a consequence of Fact 3.3 and [GLS81],

Fact 3.5 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(`)-time algorithm
that, given any explicitly bounded and satisfiable system18 A of m polynomial constraints in n variables,
outputs a level-` pseudo-distribution that satisfiesA approximately.

3.3 Sum-of-squares proofs

Let f1 , f2 , . . . , fr and 1 be multivariate polynomials in x. A sum-of-squares proof that the constraints
{ f1 > 0, . . . , fm > 0} imply the constraint {1 > 0} consists of sum-of-squares polynomials (pS)S⊆[m]
such that

1 �

∑
S⊆[m]

pS ·
∏
i∈S

fi . (3.10)

17The choice of norm is not important here because the factor 2−n` swamps the effects of choosing another norm.
18Here, we assume that the bitcomplexity of the constraints inA is (n + m)O(1).
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We say that this proof has degree ` if for every set S ⊆ [m], the polynomial pS
∏

i∈S fi has degree at
most `. If there is a degree ` SoS proof that { fi > 0 | i 6 r} implies {1 > 0}, we write:

{ fi > 0 | i 6 r} ` {1 > 0} . (3.11)

Sum-of-squares proofs satisfy the following inference rules. For all polynomials f , 1 : �n → �
and for all functions F : �n → �m , G : �n → �k , H : �p → �n such that each of the coordinates of
the outputs are polynomials of the inputs, we have:

A ` { f > 0, 1 > 0}
A ` { f + 1 > 0}

,
A ` { f > 0} ,A `′ {1 > 0}
A `+`′ { f · 1 > 0}

, (addition and multiplication)

A ` B ,B `′ C

A `·`′ C
, (transitivity)

{F > 0} ` {G > 0}
{F(H) > 0}

`·deg(H) {G(H) > 0}
. (substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-
distributions as models.

Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions that
satisfy some constraints.

Fact 3.6 (Soundness). If D r A for a level-` pseudo-distribution D and there exists a sum-of-squares proof
A r′ B, then D

r·r′+r′
B.

If the pseudo-distribution D satisfies A only approximately, soundness continues to hold if
we require an upper bound on the bit-complexity of the sum-of-squaresA r′ B (number of bits
required to write down the proof).

In our applications, the bit complexity of all sum of squares proofs will be nO(`) (assuming that
all numbers in the input have bit complexity nO(1)). This bound suffices in order to argue about
pseudo-distributions that satisfy polynomial constraints approximately.

The following fact shows that every property of low-level pseudo-distributions can be derived
by low-degree sum-of-squares proofs.

Fact 3.7 (Completeness). Suppose d > r′ > r andA is a collection of polynomial constraints with degree
at most r, andA ` {∑n

i�1 x2
i 6 B} for some finite B.

Let {1 > 0} be a polynomial constraint. If every degree-d pseudo-distribution that satisfies D r A also
satisfies D

r′
{1 > 0}, then for every ε > 0, there is a sum-of-squares proofA d {1 > −ε}.

We will repeatedly use the following SoS version of Cauchy-Schwarz inequality and its
generalization, HÃűlder’s inequality:

Fact 3.8 (Sum-of-Squares Cauchy-Schwarz). Let x , y ∈ �d be indeterminites. Then,

4
x ,y


(∑

i

xi yi

)2

6

(∑
i

x2
i

) (∑
i

y2
i

) .
14



We will also use the following facts about triangle inequalities and spectral certificates within
the SoS proof system.

Lemma 3.9. There is a degree-2 sum-of-squares proof of the following weak triangle inequality:

2

(
n∑

i�1
a2

i

)
+ 2

(
n∑

i�1
b2

i

)
−

(
n∑

i�1
(ai + bi)2

)
�

n∑
i�1
(ai − bi)2 . (3.12)

Fact 3.10 (Spectral Certificates). For any m × m matrix A,

2
u

{
〈u ,Au〉 6 ‖A‖ · ‖u‖22

}
.

We will also use the following results about pseudo-distributions.

Fact 3.11 (Cauchy-Schwarz for Pseudo-distributions). Let f , 1 be polynomials of degree at most d in

indeterminate x ∈ �d . Then, for any degree d pseudo-distribution D, �̃D[ f 1] 6
√
�̃D[ f 2]

√
�̃D[12].

4 Meta-theorem

In this section we prove Theorem 1.1.

Theorem 4.1 (Meta-theorem). Let δ, α ∈ (0, 1) and ζ > 0. Let Ω̃ ⊆ �m be a compact convex set. Let
b , r, γ ∈ � be such that

max
X∈Ω̃
‖X‖max 6 b ,

max
X∈Ω̃
‖X‖2 6 r ,

and

�
W∼N(0,Id)

[
sup
X∈Ω̃
〈X,W 〉

]
6 γ .

Consider

Y � X∗ + N ,

where X∗ ∈ Ω̃ and N is a random m-dimensional vector with independent (but not necessarily identically
distributed) symmetric about zero entries satisfying �[|Ni | 6 ζ] > α.

Let

ε �
γ2

r2m log m
,

and let Z be an m-dimensional vector such that at least (1 − ε)m entries of Z coincide with entries of Y , and
other entries are arbitrary.

Then the minimizer X̂ � argminX∈Ω̃ Fh(Z − X) of the Huber loss with parameter h > 2b + ζ satisfies

X̂ − X∗


2 6 O©«
√

h
α

(
γ + r

√
log(1/δ)

)ª®¬
with probability at least 1 − δ over the randomness of N .
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Note that without loss of generality we can assume that h · ε · m log m 6 γ. Indeed, otherwise
we would get h · γ > r2, and the error bound becomes trivial. Similarly, we can assume that
h log(1/δ) 6 r

√
log(1/δ).

To prove the theorem we need the next two intermediate lemmas.

Lemma 4.2 (Gradient bound). Consider the settings of Theorem 4.1. Then with probability at least 1 − δ
over the randomness of N , for every X,X′ ∈ Ω̃, we have

|〈∇Fh(N + Z − Y ),X − X′〉| 6 100h ·
(
γ + r

√
log(1/δ)

)
.

Proof. Let C be the set of entries where Y differs from Z. The size of C is at most εm, hence�����∑
i∈C

f ′h(Ni + Zi − Yi) ·
(
Xi − X′i

) ����� 6 h · 2b · εm 6 h2 · εm 6 hγ . (4.1)

Now consider some fixed (non-random) subset S of entries of size (1 − ε)m. By Lemma C.4, the
random variable supX,X′∈Ω̃

∑
i∈S f ′h(Ni) ·

(
Xi − X′i

)
has expectation bounded by 6 · h · γ, and for

every 0 < δ′ < 1, we get that with probability at least 1 − δ′,�����∑
i∈S

f ′h(Ni) ·
(
Xi − X′i

) ����� 6 h ·
(
6γ + 10r

√
log(1/δ′)

)
.

Now choose
δ′ :� δ( m

εm

) > δ( e
ε

)εm .

By taking a union bound over all subsets19 of size (1 − ε)m, we can see that with probability at least
1 − δ, we have �����∑

i∈S

f ′h(Ni) ·
(
Xi − X′i

) ����� 6 h ·
(
6γ + 10r

√
log(1/δ′)

)
6 h ·

(
6γ + 10r

√
log(1/δ) + 10r

√
εm log(e/ε)

)
for all subsets of size (1 − ε)m. In particular, for S � [m] \ C, with probability at least 1 − δ, we have������ ∑

i∈[m]\C
f ′h(Ni) ·

(
Xi − X′i

) ������ 6 h ·
(
6γ + 10r

√
log(1/δ) + 10r

√
εm log(e/ε)

)
. (4.2)

Now notice that

r2εm log(e/ε) � r2 ·
γ2

r2m log m
· m

(
1 + log

r2m log m
γ2

)
�

γ2

log m

(
1 + log m + log log m + log r2

γ2

)
6 4γ2 .

19The number of such subsets is
( m
(1−ε)m

)
�

( m
εm

)
.
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By combining this with (4.1) and (4.2), we get that with probability at least 1 − δ, we have

|〈∇Fh(N + Z − Y ),X − X′〉| 6 h ·
(
10γ + 10r

√
εm log(e/ε) + 10r

√
log(1/δ)

)
6 100h ·

(
γ + r

√
log(1/δ)

)
.

�

Lemma 4.3 (Local strong convexity). Consider the settings of Theorem 4.1 and let h > ζ + 2b. Denote
M � N + Z − Y � Z − X∗. With probability at least 1 − δ over the randomness of N , for every X,X′ ∈ Ω̃
satisfying ‖X − X′‖ > 20

√
b
α

(
4γ + b log(1/δ)

)
, we have

Fh(M + X − X′) > Fh(M) + 〈∇Fh(M),X − X′〉 + α
10
‖X − X′‖22 .

Proof. Fix some X,X′ and let ∆ � X − X′. Using Lemma 3.2,

Fh(M + ∆) �
∑

i∈[m]
fh(Mi + ∆i)

>
∑

i∈[m]

(
fh(Mi) + f ′h(Mi) · ∆i +

∆2
i

2
1[|Mi |6ζ] · 1[|∆i |6h−ζ]

)
� Fh(M) + 〈∇Fh(M),∆〉 +

1
2

∑
i∈[m]

1{|Mi |6ζ} ∆
2
i .

Denote U � {i ∈ [m] : Zi � Yi}. It suffices to show that with probability at least 1 − δ, for every
X,X′ ∈ Ω̃ satisfying ‖X − X′‖ > 20

√
b
α

(
4γ + b log(1/δ)

)
, we have∑

i∈U

1{|Ni |6ζ} ·∆2
i >

α
10
‖∆‖22 ,

where ∆ � X − X′. To this end fix such an X,X′ ∈ Ω̃. For every i ∈ [m], define the random variable

zi :� 1{|Ni |6ζ} ·∆2
i .

Let S be an arbitrary fixed (non-random) set of size (1 − ε)m and let

z �

∑
i∈S

zi .

We have

�[z] �
∑
i∈S

�[zi] �
∑
i∈S

�[|Ni | 6 ζ] · ∆2
i >

∑
i∈[m]

α · ∆2
i − 4εm · b2 >

α
2
· ‖∆‖22 ,

where the last inequality holds becausewe assumed (without loss of generality) that h ·ε·m log m 6 γ,
and hence

4εm · b2 6 h2 · ε · m log m 6 hγ 6
α
2
· ‖∆‖22 .
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On the other hand, since 0 6 zi 6 ∆2
i 6 ‖∆‖2max 6 4b2 for all i ∈ [m], we have∑

i∈S

�[z2
i ] 6

∑
i∈S

4b2 · �[zi] � 4b2 · �[z] .

It follows from Bernstein’s inequality that for every t > 0, we have

�[z −�[z] 6 −t] 6 exp
(
− t2/2

4b2 · �[z] + ‖∆‖2max · t

)
6 exp

(
− t2/2

4b2 · �[z] + 4b2 · t

)
.

By taking t � �[z]2 >
α
4 · ‖∆‖22 , we get

�

[
z 6

α
4
‖∆‖22

]
6 �

[
z 6
�[z]

2

]
6 �

[
z −�[z] 6 −�[z]

2

]
6 exp

(
− �[z]2/8

4b2�[z] + 4b2�[z]/2

)
6 exp

(
−�[z]

64b2

)
6 exp

(
−
α‖∆‖22
128b2

)
.

By taking a union bound over all subsets20 of size (1 − ε)m, we get

�

[∑
i∈U

1{|Ni |6ζ} ·∆2
i 6

α
4
‖∆‖22

]
6

(
m

(1 − ε)m

)
exp

(
−
α‖∆‖22
128b2

)
�

(
m
εm

)
exp

(
−
α‖∆‖22
128b2

)
6

( e
ε

)εm
exp

(
−
α‖∆‖22
128b2

)
� exp

(
εm log(e/ε) −

α‖∆‖22
128b2

)
6 exp

(
2γ
b
−
α‖∆‖22
128b2

)
, (4.3)

where in the last inequality, we used the fact that we assumed (without loss of generality) that
h · ε · m log m 6 γ, which means that

εm log(e/ε) � εm
(
1 + log

r2m log m
γ2

)
� εm

(
1 + log m + log log m + log r2

γ2

)
6 4εm log m 6

4γ
h
6

2γ
b
.

Now define

L � 20
√

b
α

(
4γ + b log(1/δ)

)
,

D :�
{
X − X′ : X,X′ ∈ Ω̃ , ‖X − X′‖2 > L

}
,

and
ε̃ �

L
√
α

10
,

20The number of such subsets is
( m
(1−ε)m

)
�

( m
εm

)
.
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and letNε̃(D) be an ε̃-net ofD of minimal size. Using Sudakov’s minoration Fact C.5, we have

ε̃
2

√
log|Nε̃(D)| 6 �

g∼N(0,Im)

[
sup
∆∈D
〈g,∆〉

]
6 �

g∼N(0,Im)

[
sup

X,X′∈Ω̃
〈g,X − X′〉

]
6 �

g∼N(0,Im)

[
sup

X,X′∈Ω̃
〈g,X〉 + sup

X,X′∈Ω̃
〈g,−X′〉

]
� �

g∼N(0,Im)

[
sup
X∈Ω̃
〈g,X〉

]
+ �

g∼N(0,Im)

[
sup
X′∈Ω̃
〈g,X′〉

]
� 2γ .

By taking a union bound overNε̃(D) and applying (4.3), it follows that

�

[
∃∆ ∈ Nε̃(D) ,

∑
i∈U

1{|Ni |6ζ} ·∆2
i 6

α
4
‖∆‖22

]
6 |Nε̃(D)| exp

(
2γ
b
− αL2

128b2

)
6 exp

(
16γ2

ε̃2 +
2γ
b
− αL2

128b2

)
6 exp

(
1600γ2

αL2 +
2γ
b
− αL2

128b2

)
(∗)
6 exp

(
αL2

1600b2 +
αL2

800b2 −
αL2

128b2

)
6 exp

(
− αL2

400b2

)
(†)
6 δ ,

where (∗) follow from the fact that L > 20
√

4γb
α , which implies that 1600γ2

αL2 6
αL2

1600b2 and 2γ
b 6

αL2

800b2 .

(†) follows from the fact that L > 20
√

b2

α log(1/δ).
We conclude that with probability at least 1 − δ, it holds that for every ∆ ∈ Nε̃(D), we have∑

i∈U

1{|Ni |6ζ} ·∆2
i >

α
4
‖∆‖22 .

Assume that this event happens, and let ∆ ∈ D be arbitrary. We can decompose ∆ as

∆ � A + B ,

where A ∈ Nε̃(D) and ‖B‖max 6 ε̃. We have∑
i∈U

1{|Ni |6ζ} ·∆2
i �

∑
i∈U

1{|Ni |6ζ} ·(Ai + Bi)2 >
1
2

∑
i∈U

1{|Ni |6ζ} ·A2
i −

∑
i∈U

1{|Ni |6ζ} ·B2
i

>
α
4
‖A‖22 − ‖B‖22 �

α
4
‖∆ − B‖22 − ‖B‖22 >

α
4
(‖∆‖2 − ‖B‖2)2 − ‖B‖22

(‡)
>
α
4

(
‖∆‖2 −

‖∆‖2
√
α

10

)2

−
(
‖∆‖2
√
α

10

)2

>
α
10
‖∆‖22 ,

where (‡) follows from the fact that ‖B‖max 6 ε̃ �
L
√
α

10
6
‖∆‖2
√
α

10
. �

We can now prove the theorem.

Proof of Theorem 4.1. We may assume ‖X∗ − X̂‖2 > 20
√

b
α

(
4γ + b log(1/δ)

)
, since otherwise the

statement is trivially true. By definition, for M � Z − X∗, we have

Fh(Z − X̂) 6 Fh(Z − X∗) � Fh(M) ,
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and by Lemma 4.3, with probability 1 − δ, we have

Fh(Z − X̂) > Fh(M) − 〈∇Fh(M),X∗ − X̂〉 + α
10

X∗ − X̂
2

2 .

Combining the two inequalities and rearranging, we getX∗ − X̂
2

2 6
10
α

��〈∇Fh(N),X∗ − X̂〉
�� 6 O

(
h
α

(
γ + r

√
log(1/δ)

))
,

and the result follows. �

5 Applications

In this section we apply Theorem 4.1 to various estimation problems.

5.1 Tensor PCA with oblivious outliers

We show here how Theorem 4.1 can be used to recover a rank-1 tensor under symmetric noise. We
will need the following fact:

Fact 5.1 ([HSS15]). Let p > 3 be an odd number, and let W ∈ (�n)⊗p be a tensor with i.i.d. entries from
N(0, 1). Then with probability21 1 − δ (over W ) every pseudo-distribution µ of degree at least 2p − 2 on
indeterminates x � (x1 , . . . , xn) satisfies

�̃x∼µ〈x⊗p ,W 〉 6 C ·
( (

np · p · ln n
)1/4

+ np/4(ln(1/δ))1/4 + n1/4(ln(1/δ))3/4
)
·
(
�̃x∼µ‖x‖2p−2) p

2p−2

for some absolute constant C.

The following corollary is a simple application of Lemma A.4 to Fact 5.1.

Corollary 5.2. Let p > 3 be an odd number and let W ∈ (�n)⊗p be a tensor with i.i.d. entries from N(0, 1).
Then for every d > 2p − 2, we have

�

[
sup

X∈Ω̃n ,d

〈X,W 〉
]
6 O

( (
np · p · ln n

)1/4
)
,

where
Ω̃n ,d �

{
�̃x∼µx⊗p : µ ∈ Pd , �̃x∼µ‖x‖2 6 1

}
,

and Pd is the set of pseudo-distributions over �[x] � �[x1 , . . . , xn] of degree d.

The following fact is an easy consequence of Fact 3.10 and the bound on the expected value of
the spectral norm of Gaussian np/2 × np/2 matrix:

21Note that Fact 5.1 follows from applying Theorem 56 of [HSS15] to p-tensors in the same way as it was applied to
3-tensors in order to prove Theorem 11 and Corollary 12 of [HSS15]. It is worth mentioning that the probability that
was reported in [HSS15, Theorem 56] is 1 − O(n−100). However, a closer look at the proof of Theorem 56 in Page 47 of
[HSS15], we can see that the probability at least 1 − δ can be easily obtained for arbitrarily small δ.
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Fact 5.3. Let p > 2 be an even number and let W ∈ (�n)⊗p be a tensor with i.i.d. entries from N(0, 1). Then
for every d > p, we have

�

[
sup

X∈Ω̃n ,d

〈X,W 〉
]
6 O

(
np/4

)
,

where
Ω̃n ,d �

{
�̃x∼µx⊗p : µ ∈ Pd , �̃x∼µ‖x‖2 6 1

}
,

and Pd is the set of pseudo-distributions over �[x] � �[x1 , . . . , xn] of degree d.

Proof. Fix X ∈ Ω̃n ,d and let µ ∈ Pd be such that �̃x∼µ‖x‖2 6 1 and X � �̃x∼µx⊗p . Denote by W ′ the
np/2 × np/2 matrix that is obtained by reshaping W . We have:

〈X,W 〉 � �̃x∼µ
〈
x⊗p ,W

〉
� �̃x∼µ

〈
x⊗p/2 ,W ′x⊗p/2〉 (∗)6 ‖W ′‖2�̃x∼µ‖x⊗p/2‖22

(†)
6 ‖W ′‖2 ,

(∗) follows from Fact 3.10 and (†) follows from the fact that

�̃x∼µ‖x⊗p/2‖22 � �̃x∼µ(‖x‖22)p/2 6 1 .

Therefore,

�

[
sup

X∈Ω̃n ,d

〈X,W 〉
]
6 �[‖W ′‖2] 6 O

(
np/4

)
.

The last inequality follows from the well known bounds on the expected spectral norm of a Gaussian
matrix, and can be immediately seen from Fact A.1 and Lemma A.4. �

The following two theorems are about tensor PCA with asymmetric tensor noise.

Theorem 5.4 (Asymmetric Tensor Noise of odd order). Let p > 3 be an odd number. Let n ∈ �, n > 2,
λ > 0 and α ∈ (0, 1]. Let T � λ · v⊗p + N , where v ∈ �n is a unit vector and N is a random tensor
whose entries are independent (but not necessarily identically distributed), symmetric about zero and satisfy
�
[��Ni1 ...ip

�� 6 1
]
> α for all i1 , . . . , ip ∈ [n].

There exists an absolute constant C > 1 and an algorithm such that if

λ >
C
α
·
(
p ln n

)1/4 · np/4

and
‖v‖max 6

(α/C)1/p
n1/4(p ln n)1/(4p) ,

then the algorithm on input T runs in time (np)O(1) and outputs a unit vector v̂ ∈ �n satisfying

〈v , v̂〉 > 0.99

with probability at least 1 − 2−n .
Furthermore, for ε 6

(
Cnp · p ln n

)−1/2, the same result holds if an arbitrary (adversarially chosen)
ε-fraction of entries of T is replaced by adversarially chosen values.
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Proof. We can apply Theorem 4.1 for input

Y � T/λ � v⊗p
+ N ′ ,

where
N ′ �

1
λ

N .

In order to do so, define the set

Ω̃ �
{
�̃x∼µx⊗p : µ ∈ E

}
,

where E is the set of pseudo-distributions over�[x1 , . . . , xn] of degree 2p that satisfy the constraints
�̃x∼µ‖x‖22 6 1 and �̃x∼µx2

i 6
1
λ2/p for all i ∈ [n].

Define ζ �
1
λ so that for every i1 , . . . , ip ∈ [n], we have

�

[���N ′i1 ...ip

��� 6 ζ] � �
[��Ni1 ...ip

�� 6 1
]
> α .

Now notice that

max
X∈Ω̃
‖X‖max � max

µ∈E
‖�̃x∼µx⊗p ‖max � max

µ∈E
max

i1 ,...,ip∈[n]

���̃x∼µxi1 . . . xip

��
6 max

µ∈E
max

i1 ,...,ip∈[n]

√
�̃x∼µx2

i1
. . . x2

ip

(∗)
6

√(
1
λ2/p

)p

�
1
λ
,

where (∗) follows from the fact that �̃x∼µx2
i 6

1
λ2/p for all µ ∈ E and all i ∈ [n]. Furthermore,

max
X∈Ω̃
‖X‖2 � max

µ∈E
‖�̃x∼µx⊗p ‖2 6 max

µ∈E

√
�̃x∼µ‖x⊗p ‖22 � max

µ∈E

√
�̃x∼µ‖x‖2p

2 6 1 ,

where the last inequality follows from the fact that �̃x∼µ‖x‖22 6 1 for all µ ∈ E.
Let b �

1
λ and r � 1 so that maxX∈Ω̃‖X‖max 6 b and maxX∈Ω̃‖X‖2 6 r. By defining h �

3
λ , we

can see that
h > ζ + 2b ,

Now from Corollary 5.2 and Fact 5.3, we can see that there is

γ � Θ

(
O

( (
p ln n

)1/4 · np/4
))

such that the Gaussian complexity of Ω̃ satisfies

�

[
sup
X∈Ω̃
〈X,W 〉

]
6 γ ,

where W is a random tensor in (�n)⊗p whose entries are i.i.d. standard Gaussian N(0, 1).
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If follows from Theorem 4.1 that with probability at least 1− 2−n , the pseudo-distribution �̃ that
minimizes the Huber loss satisfies

v⊗p − �̃x⊗p


2 6 O©«
√

h
α

(
γ + r

√
log(1/2−n)

)ª®¬
6 O

(√
3
λα

( (
p ln n

)1/4 · np/4 + 1
√

n log 2
))

� O
(

1
C

)
.

By making C > 0 arbitrarily large, we can make the above bound on
v⊗p − �̃x⊗p


2 arbitrarily small.

Now we take v̂ � �̃x/‖�̃x‖.
By Lemma B.1, v̂ satisfies the desired bound with probability at least 1− 2−n . Note that Theorem

Theorem 4.1 also implies that we can also afford an ε fraction of arbitrary adversarial changes in the
observed tensor as long as

ε 6
γ2

r2np log(np) �
O

( (
p ln n

)1/2 · np/2
)

np p log n
� O

( (
np · p ln n

)−1/2
)
.

�

Theorem 5.5 (Asymmetric Tensor Noise of even order). Let p > 2 be an even number. Let n ∈ �,
n > 2, λ > 0 and α ∈ (0, 1]. Let T � λ · v⊗p + N , where v ∈ �n is a unit vector and N is a random tensor
whose entries are independent (but not necessarily identically distributed), symmetric about zero and satisfy
�
[��Ni1 ...ip

�� 6 1
]
> α for all i1 , . . . , ip ∈ [n].

There exists an absolute constant C > 1 and an algorithm such that if

λ >
C
α
· np/4

and

‖v‖max 6
(α/C)1/p

n1/4 ,

then the algorithm on input T runs in time (np)O(1) and outputs a unit vector v̂ ∈ �n satisfying

|〈v , v̂〉| > 0.99

with probability at least 1 − 2−n .
Furthermore, for ε 6

(
Cnp/2 · p ln n

)−1, the same result holds if an arbitrary (adversarially chosen)
ε-fraction of entries of T is replaced by adversarially chosen values.

Proof. The proof is very similar to the proof of Theorem 5.4, we only need to use Fact 5.3 to bound
the Gaussian complexity. For rounding, we can take v̂ to be the top eigenvector of �̃xx> and by
Lemma B.2 v̂ satisfies the desired bound with probability at least 1 − 2−n . �

The next two theorems is about tensor PCA with symmetric tensor noise.
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Theorem 5.6 (Symmetric Tensor Noise of odd order). Let p > 3 be an odd number. Let n ∈ �, n > 2,
λ > 0 and α ∈ (0, 1]. Let T � λ · v⊗p + N , where v ∈ �n is a unit vector and N is a random symmetric
tensor whose entries Ni1 ...ip with indices i1 6 i2 6 . . . 6 ip are independent (but not necessarily identically
distributed), symmetric about zero and satisfy �

[��Ni1 ...ip

�� 6 1
]
> α.

There exists an absolute constant C > 1 and an algorithm such that if

λ >
Cp!
α
·
(
p ln n

)1/4 · np/4

and
‖v‖max 6

α1/p

(Cp!)1/p · n1/4 · (p ln n)1/4p
,

then the algorithm on input T runs in time (np)O(1) and outputs a unit vector v̂ ∈ �n satisfying

〈v , v̂〉 > 0.99

with probability at least 1 − 2−n .
Furthermore, for ε 6

(
Cnp · p ln n

)−1/2, the same result holds if an arbitrary (adversarially chosen)
ε-fraction of entries of T is replaced by adversarially chosen values.

Proof. The proof is similar to the asymmetric N , but we apply Theorem 4.1 for input

Y � T ′/λ � X′ + N ′ ,

where T ′,X′ and N ′ are the restrictions of T , v⊗p and 1
λN to the entries Ti1 ...ip , (v⊗)i1 ...ip and 1

λNi1 ...ip

with indices i1 6 i2 6 . . . 6 ip , respectively. We also use the set

Ω̃ �

{(
�̃x∼µxi1 · · · xip

)
i16...6ip

: µ ∈ E
}
,

where E is as in Theorem 5.4.
We define ζ �

1
λ so that for every 1 6 i1 6 . . . 6 ip 6 n, we have

�

[���N ′i1 ...ip

��� 6 ζ] � �
[��Ni1 ...ip

�� 6 1
]
> α .

By defining r � 1 and b �
1
λ , we can show similarly to Theorem 5.4 that maxX∈Ω̃‖X‖max 6 b

and maxX∈Ω̃‖X‖2 6 r. By defining h �
3
λ , we can see that

h > ζ + 2b .

Also similarly to Theorem 5.4, we can show that for some γ � Θ

( (
p ln n

)1/4 · np/4
)
, the Gaussian

complexity of Ω̃ can be bounded22 as

�

[
sup
X∈Ω̃
〈X,W 〉

]
6 γ ,

22We use Corollary 5.2 and Fact 5.3, together with Fact C.1 which implies that the Gaussian complexity does not
increase if we restrict to a subset of coordinates.
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where (W )i1 ...ip are i.i.d. standard Gaussian N(0, 1) for 1 6 i1 6 . . . 6 ip 6 n.
If follows from Theorem 4.1 that with probability at least 1− 2−n , the pseudo-distribution �̃ that

minimizes the Huber loss satisfies∑
16i16...6ip6n

(
vi1 · · · vip − �̃xi1 · · · xip

)2
6 O©«

√
h
α

(
γ + r

√
log(1/2−n)

)ª®¬
6 O

(√
3
λα

( (
p ln n

)1/4 · np/4 + 1
√

n log 2
))

6 O
(

1
Cp!

)
.

Therefore, with probability at least 1 − 2n , we havev⊗p − �̃x⊗p


2 � p! ·
∑

16i16...6ip6n

(
vi1 · · · vip − �̃xi1 · · · xip

)2
6 O

(
1
C

)
.

The remaining of the proof is the same as in the asymmetric case. �

We can similarly modify the proof of Theorem 5.5 to get the theorem for symmetric tensor noise:

Theorem 5.7 (Symmetric Tensor Noise of even order). Let p > 2 be an even. Let n ∈ �, n > 2,
λ > 0 and α ∈ (0, 1]. Let T � λ · v⊗p + N , where v ∈ �n is a unit vector and N is a random symmetric
tensor whose entries Ni1 ...ip with indices i1 6 i2 6 . . . 6 ip are independent (but not necessarily identically
distributed), symmetric about zero and satisfy �

[��Ni1 ...ip

�� 6 1
]
> α.

There exists an absolute constant C > 1 and an algorithm such that if

λ >
Cp!
α
· np/4

and

‖v‖max 6

(
α/(Cp!)

)1/p

n1/4 ,

then the algorithm on input T runs in time (np)O(1) and outputs a unit vector v̂ ∈ �n satisfying

|〈v , v̂〉| > 0.99

with probability at least 1 − 2−n .
Furthermore, for ε 6

(
Cnp/2 · p ln n

)−1, the same result holds if an arbitrary (adversarially chosen)
ε-fraction of entries of T is replaced by adversarially chosen values.

5.2 Sparse PCA with oblivious outliers

We will use the system of constraints for sparse PCA from [dKNS20].
Let t 6 k and let St be the set of all n-dimensional vectors with values in {0, 1} that have exactly

t nonzero coordinates.
We start with the following definition.
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Definition 5.8. For every u ∈ St we define the following polynomial in variables s :� (s1 , . . . , sn)

pu(s) �
(
k
t

)−1

·
∏

i∈supp{u}
si .

Note that if v is a k-sparse vector and s is the indicator of its support, then for every u ∈ St , we
have

pu(s) �
{(k

t

)−1
if supp{u} ⊆ supp{v} ,

0 otherwise .

Now consider the following system Cs ,x of polynomial constraints.

Cs ,x :



∀i ∈ [n], s2
i � si∑

i∈[n]
si � k

∀i ∈ [n], si · xi � xi∑
i∈[n]

x2
i � 1∑

u∈St

pu(s) � 1

∀i ∈ [n],
∑
u∈St

ui pu(s) �
t
k
· si



(5.1)

It is easy to see that if x is k-sparse and s is the indicator of its support, then x and s satisfy these
constraints.

In [dKNS20] a different model of Sparse PCA is considered than the one we study here. There,
a bound on v>Mv is certified where M is the centered Wishart matrix, while we need to certify the
bound for standard Gaussian matrix M . The proofs of [dKNS20] can be easily adapted for our case.
In Appendix B.2 we show that the Gaussian complexity of the set of degree 4t pseudo-distributions

that satisfy the constraints Cs ,x is bounded by O
(
k
√

log n
t

)
.

Now we are able to show how the algorithm from Theorem 4.1 can be used to solve the sparse
PCA problem with general noise with symmetric independent entries.

Theorem 5.9. Let n , k ∈ �, k 6 n, λ > 0 and α ∈ (0, 1]. Let M � λ · vv> + N , where v ∈ �n is a
k-sparse unit vector and N is a random matrix with independent (but not necessarily identically distributed)
symmetric about zero entries that satisfy �

[��Ni j
�� 6 1

]
> α.

There exists an absolute constant C > 1 and an algorithm such that if λ > k > C ln(n)/α2 and
‖v‖max 6 100/

√
k, then the algorithm on input M runs in time nO(log(n)/α2) and outputs v̂ ∈ �n satisfying

|〈v , v̂〉| > 0.99

with probability at least 1 − n−100.
Moreover, the same result holds if we only get the upper triangle (without the diagonal) of the matrix M

as input.
Furthermore, for ε 6 k2α2

Cn2 ln n , the same result holds if an arbitrary (adversarially chosen) ε-fraction of
entries of M is replaced by adversarially chosen values.
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Proof. We can apply Theorem 4.1 for input

Y � M/λ � vv> + N ′ ,

where N ′ � 1
λN . We also use the set

Ω̃ �
{
�̃x∼µxx> : µ ∈ E

}
,

where E is the set of pseudo-distributions over�[x1 , . . . , xn] of degree 4t that satisfy the constraints
Eq. (5.1) and additional constraints �̃x2

i 6 1002/k for all i ∈ [n]. Note that we choose t �

dC ln(n)/α2e 6 k.
If we define b �

100
k and r � 1, it is not hard to see from the constraints Eq. (5.1) and �̃x2

i 6 1002/k
for all i ∈ [n] that maxX∈Ω̃‖X‖max 6 b and maxX∈Ω̃‖X‖2 6 r. Let h �

201
k , so that

h > ζ + 2b .

From Lemma B.6, we can see that there exists γ � Θ

(
k
√

ln n
t

)
such that the Gaussian complexity

of Ω̃ can be bounded by γ. We conclude from Theorem 4.1 that with probability at least 1 − n−100,
the pseudo-distribution �̃ that minimizes the Huber loss satisfies

vv> − �̃xx>


2 6 O©«
√

h
α

(
γ + r

√
log(1/n−100)

)ª®¬
6 O©«

√√√
201
kα

(
k

√
ln n

t
+ 1

√
100 log n

)ª®¬
6 O©«

√
1
α

√
ln n

t
+

√
log n
kα

ª®¬ 6 O

(√
1√
C

+
α

C
√

log n

)
6 O

(
1

C1/4

)
,

where the last inequality follows from the fact that t > C ln(n)/α2 and k > C ln(n)/α2. If we choose
C > 1 to be large enough, we can make the above bound on

vv> − �̃xx>


2 to be arbitrarily small.
Therefore, by Lemma B.2, the top eigenvector v̂ of �̃xx> satisfies the desired bound with probability
at least 1 − n−100. Note that Theorem Theorem 4.1 also implies that we can also afford an ε fraction
of arbitrary adversarial changes in the observed matrix as long as

ε 6
γ2

r2n2 log(n2) �
O

(
k2 ln n

t

)
2n2 log(n) � O

(
k2

tn2

)
� O

(
k2α2

n2 ln(n)

)
.

If we only get the upper triangle of M as input, we can optimize the Huber loss over

Ω̃ �

{(
�̃x∼µxi x j

)
i< j : µ ∈ E

}
.

27



The Gaussian complexity of Ω̃ is bounded23 by O
(
k
√

ln n
t

)
, hence the pseudo-distribution �̃ that

minimizes the Huber loss satisfies∑
i, j

(
vi v j − �̃xi x j

)2
6 2

∑
16i< j6n

(
vi v j − �̃xi x j

)2
6 O

(
1√
C

)
with probability at least 1 − n−100. Moreover,∑

16i6n

(
v2

i − �̃x2
i

)2
6 max

16 j6n

(
v2

j + �̃x2
j

) ∑
16i6n

(
v2

i + �̃x2
i

)
6 O(1/k) .

Hence, with probability at least 1 − n−100, we havevv> − �̃xx>


2 6 O

(√
1√
C

+
1
k

)
.

The remaining of the proof is the same as when the input is the whole matrix M . �

6 Reduction from the planted clique problem

6.1 Sparse PCA

In this section we show that the running time nO(log n) for sparse PCA with symmetric noise is
likely to be inherent. We will use a reduction from the planted clique problem. Reductions from the
planted clique problem to different models of sparse PCA were studied in [BR13a, BR13b, WBS16,
GMZ17, BBH18, BB19]. Our analysis is simpler since our noise model is less restrictive than models
considered in prior works. In fact, the planted clique problem can be seen as a special case of sparse
PCA with symmetric noise (when only upper triangle without the diagonal is given as input).

Recall that the instance of planted clique problem is a random graph sampled according to
the following distribution G(n , q , k): First, some graph is sampled from Erdős-Rényi distribution
G(n , q) (where q ∈ (0, 1) is the probability of including an edge), and then a random subset of
vertices of size k 6 n is chosen and the clique corresponding to these vertices is added to the graph.
The goal is to find the clique. It is possible to find in time nO(log n) for constant24 q if k > ω(log n),
but no polynomial time algorithm is known for ω(log n) 6 k 6 o(

√
n).

In this section we assume that ω(log n) < k < n0.49. Currently no no(log n)-time algorithm is
known to solve this problem in this regime (for constant q), and for q � 1/2 and for some k � nΩ(1)

it is conjectured to be impossible to solve it in time no(log n) (see [MRS21] for more details).
Let M � λ · vv> + N , where v is a k-sparse unit vector whose nonzero entries are equal to 1/

√
k,

N is a random matrix with independent (but not necessarily identically distributed) entries that
satisfy �

[��Ni j
�� 6 1

]
� 1.

Also suppose that we get only the upper triangle (without the diagonal) of the matrix M as
input. There are algorithms that can solve sparse PCA problem that only observe the upper triangle
and match (up to a constant factor) current best known guarantees (if ‖v‖44 � 1 which is true if

23We use Fact C.1 which implies that the Gaussian complexity does not increase if we restrict to a subset of coordinates.
24I.e., Ω(1) 6 q 6 1 −Ω(1).
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‖v‖max 6 100/
√

k). Hence we assume that for flat vectors the problem does not become harder if we
get only the upper triangle of M as input. We denote the upper triangle matrix of M asU(M).

Now let G ∼ G(n , 1/2, k) be a random graph with a planted clique of size k. Let A be the
adjacency matrix of G. Let J be the matrix with all entries equal to 1 and let C � 2A − J. Note that
U(C) � U(k · vv> + N), where

√
k · v is the indicator vector of the vertices of the clique (so it is

k-sparse), and N is the noise whose entries that correspond to the vertices of the clique are zero,
and other entries are iid {±1}.

If we could recover v fromU(k · vv> + N) in time no(log n), we would be able to find the planted
clique in G ∼ G(n , 1/2, k) in time no(log n).

Moreover, we can make the noise even smaller and the problem is likely to remain hard. That is,
if we could recover v fromU(k · vv> + N)where for all (i , j) ∈ [n]2, �

[
Ni j � 0

]
> α, then we would

be able to find the planted clique in G(n , (1 − α)/2, k). Indeed, for p � (1 − α)/2 let G ∼ G(n , p , k)
and let A be the adjacency matrix of G. Let B be a random matrix such that Bi j � 0 for all (i , j)
such that Ai j � 1, and for other (i , j), Bi j is 0 with probability p/(1 − p) and 0.5 with probability
1 − p/(1 − p) � α/(1 − p). Let J be the matrix with all entries equal to 1 and let C � 2A + 2B − J.
Note thatU(C) �U(k · vv> + N), where

√
k · v is the indicator vector of the vertices of the clique,

and N is the noise matrix with independent entries that satisfy �
[
Ni j � 0

]
> α.

Hence if we could recover v from U(k · vv> + N), where �
[
Ni j � 0

]
> 0.99 in time no(log n),

then we could find the planted clique in G ∼ G(n , 0.005, k) in time no(log n), which currently known
algorithms cannot do.

Remark 6.1. Exact recovery of v by the sparse PCA algorithm is not necessary in order for the
reduction to work: As we shall see, if we only get unit v̂ that has correlation ρ � Ω(1)with v, we
can still find the clique. First notice that since

∑
i∈[n] |vi |v̂i >

∑
i∈[n] vi v̂i , we can assume without

loss of generality that the entries of v̂ are nonnegative. Now consider the set S ⊆ [n] containing the
indices the of top 4k/ρ2 entries of v̂. Then∑

i<S

vi v̂i �
∑

i∈supp(v)\S

1√
k

v̂i
(∗)
6 k · 1√

k
·
ρ

2
√

k
� ρ/2 ,

where (∗) follows from the fact that | supp(v) \S | 6 | supp(v)| � k and that for every i < S, we have25
v̂2

i 6
ρ2

4k . We conclude that ∑
i∈S

vi v̂i � 〈v , v̂〉 −
∑
i<S

vi v̂i > ρ/2 .

Now let S′ � S ∩ supp(v). We have

√
kρ/2 6

√
k
∑
i∈S

vi v̂i �
√

k
∑

i∈S∩supp(v)

1√
k

v̂i �
∑
i∈S′

v̂i 6
√
|S′ | ,

i.e.,
|S′ | > kρ2/4 .

25This is a consequence of
∑

i∈[n] v̂2
i � 1 and the fact that S ⊆ [n] contains the indices the of top 4k/ρ2 entries of v̂.
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So if we restrict the graph to the vertices corresponding to S, we can find26 the clique corresponding
to S′ in polynomial time as long as |S′ | > ω

(√
|S | log n

)
, which is true for ρ � Ω(1) and k > ω(log n).

Then we can then easily find the remaining of the clique by searching for all vertices that are
adjacent to every vertex in S′.

6.2 Tensor PCA

In this section, we provide evidence that the assumption on ‖v‖max in Theorem 5.4 is likely to be
inherent, at least for our SoS-based approach.

First, we notice that exactly the same reasoning as that of Section 6.1 for obtaining a reduction
from the planted clique problem to sparse PCA, can also be applied to get a reduction from the
problem of recovering a planted clique in a random p-hypergraph to the problem of recovering a
k-sparse unit vector v from the upper simplex of Y � kp/2 · v⊗p + N , i.e., from the entries Yi1 ,...,ip

such that i1 < . . . < ip . It is conjectured that for every constant p, if k < n0.49, then the problem
of recovering a planted clique in a random p-hypergraph cannot be solved in polynomial time
(see [LZ20] for more details). Hence, we expect that if k < n0.49 then it is not possible to efficiently
recover a k-sparse unit vector v from the upper simplex of Y � kp/2 · v⊗p + N .

Second, we show that recovering from the upper simplex is not harder than recovering from the
entire tensor Y � kp/2 · v⊗p +N , at least for the algorithmic approach that is provided in Theorem 5.4.
We proceed similarly to how we showed in Theorem 5.9 that recovering from the upper triangle
matrix (without the diagonal) is not harder than recovering from the entire matrix. More precisely,
we show that if it is possible to get a sum-of-squares certificate of the bound on the Gaussian
complexity in such a way that shows that the algorithm in Theorem 5.4 can recover a k-sparse
vector v from the entire Y , then by slightly modifying the algorithm in Theorem 5.4 we can also
recover v from the upper simplex of Y .

Let us start by considering the case p � 3. Let b � O(1/
√

k) be a bound on the entries of v.
Since we know that v is k-sparse, we can restrict the optimization problem in the algorithm of
Theorem 5.4 to the pseudodistributions satisfying the constraint

∑n
j�1 |�̃x j | 6 bk. Similarly to the

proof of Theorem 5.9, we notice that

∑
16i6n

(
v3

i − �̃x3
i

)2
6 max

16 j6n

(
|v3

j | + |�̃x3
j |
) ∑

16i6n

(
|v3

i | + |�̃x3
i |
) (∗)
6 O(kb6) 6 o(1) ,

and ∑
16i , j6n

(
v2

i v j − �̃x2
i x j

)2
6 max

16i′, j′6n

(��v2
i′v j′

�� + ���̃x2
i′x j′

��) · ∑
16i , j6n

(��v2
i v j

�� + ���̃x2
i x j

��)
6 2b3

∑
16 j6n

(��v j
�� + ���̃x j

��) (†)6 O(kb4) 6 o(1) ,

26We apply the well-known spectral algorithm for the planted clique problem. It is worth mentioning that the log n
factor comes from the fact that S is not independent from the graph, and hence the distribution of the graph that is
induced by the vertices in S does not exactly match that of the planted clique problem. By taking a union bound over
all sets of size |S | and using standard concentration bounds for the spectral norm of symmetric matrices with i.i.d.
subgaussian entries, one can show that the maximal spectral norm among all submatrices of the centered adjacency
matrix of the random graph is bounded by O(|S | log n)with high probability.
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where (∗) and (†) follow from the constraint
∑n

j�1 |�̃x j | 6 bk. The remaining of the proof is similar
to the proof of Theorem 5.9.

For general p-order tensors with 3 6 p 6 O(1), we can get a similar bound if we add the
constraints

∑
16i1 ,...,ir6n |�̃xi1 · · · xir | 6 br kr for all 1 6 r 6 p − 2, from which we can deduce that∑

16i1 ,...,ip6n:
∃ j, j′, i j�i j′

(
(v⊗p)i1 ...ip − �̃(x⊗p)i1 ...ip

)2
6 o(1) .

The above implies that for pseudodistributions that satisfy the added constraints, we have

‖v⊗p − �̃x⊗p ‖22 6 o(1) + p! ·
∑

16i1<...<ip6n

(
(v⊗p)i1 ...ip − �̃(x⊗p)i1 ...ip

)2
. (6.1)

If we could get a sum-of-squares certificate of the bound on the Gaussian complexity showing
that our degree-` SoS-based algorithm in Theorem 5.4 can recover k-sparse flat vectors from
Y � kp/2 · v⊗p + N , then the same bound would imply that in the case where we only observe the
upper simplex of Y , the algorithm of Theorem 5.4 restricted to pseudoexpectations on the upper
simplex would give27 a pseudodistribution satisfying∑

16i1<...<ip6n

(
(v⊗p)i1 ...ip − �̃(x⊗p)i1 ...ip

)2
� 1 .

If we also require that the pseudodistributions satisfy the constraints
∑

16i1 ,...,ir6n |�̃xi1 · · · xir | 6 br kr

for all 1 6 r 6 p − 2, then (6.1) implies that we can get a pseudodistribution satisfying

‖v⊗p − �̃x⊗p ‖22 � 1 ,

from which we can recover v. Since we know that this is not likely to be possible if k 6 n0.49, we can
see that the assumption on ‖v‖max in Theorem 5.4 is likely to be inherent, at least for our SoS-based
approach.

27This is mainly because of Fact C.1 which implies that the Gaussian complexity does not increase if we restrict to a
subset of coordinates.
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A Additional tools

This section contain tools used throughout the rest of the paper.

Fact A.1. [Wai19] Let W be an n × d random matrix with iid standard Gaussian entries. Then with
probability at least 1 − exp(−τ/2), we have

‖W ‖ 6
√

n +

√
d +
√
τ .

Fact A.2. [Wai19] Let B be a unit m-dimensional Euclidean ball. Then for every ε ∈ (0, 1) there exists an
ε-net in B of size (3/ε)m .

Fact A.3. Let ξ be a nonnegative random variable. Then � ξ �
∫ ∞

0 �[ξ > τ]dτ.

Lemma A.4. Let η be a random variable such that for some a ∈ � and for all τ > 0, η 6 a + τ with
probability at least 1 − f (τ) for some nonnegative f ∈ L1((0,∞)). Then

� η 6 a +

∫ ∞

0
f (τ)dτ .

Proof. Denote ξ � 1[η>a]
(
η − a

)
. Note that η 6 a + ξ and ξ is nonnegative, hence by Fact A.3 we

have
� ξ �

∫ ∞

0
�[ξ > τ]dτ �

∫ ∞

0
�
[
η − a > τ

]
dτ �

∫ ∞

0
f (τ)dτ < ∞ .

Hence either � η � −∞ and the bound is trivially satisfied, or we can take the expectations form
both sides of η 6 a + ξ. �
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B Sum-of-squares toolbox

B.1 Rounding

Lemma B.1. Let v ∈ �n be a unit vector. Let p > 3 be an odd number and let �̃ be a pseudo-distribution
over �[x1 , . . . , xn] of degree t > p + 1 such that �̃‖x‖22 � 1. If for some ε > 0v⊗p − �̃x⊗p


2 6 ε ,

then ṽ � �̃x/‖�̃x‖2 satisfies
〈v , ṽ〉 > 1 − 2ε .

Proof. The proof is almost the same as the proof of Lemma 50 from [HSS15].
Consider the univariate polynomial f (u) � 1 − 2up + u. It is easy to verify that f (u) > 0 for all

u ∈ [−1, 1]. Hence by Theorem 3.23 from [Lau09], f can be written as

f (u) � s1(u)(1 + u) + s2(u)(1 − u) ,

where s1 and s2 are SoS polynomials of degree at most p − 1.
Now consider �̃ f (〈v , x〉). Since ‖v‖22 + ‖x‖22±2〈v , x〉 are SoS polynomials of degree 2 in variables

x1 , . . . , xn , for every SoS polynomial s of degree at most p − 1, we have���̃[s(〈v , x〉)〈v , x〉]�� 6 1
2
�̃

[
s(〈v , x〉)

(
‖v‖22 + ‖x‖22

) ]
6 �̃[s(〈v , x〉)] .

Hence
�̃ f (〈v , x〉) � �̃[s1(〈v , x〉)(1 + 〈v , x〉)] + �̃[s2(〈v , x〉)(1 − 〈v , x〉)] > 0 ,

which implies that �̃〈v , x〉 > 2�̃〈v , x〉p − 1. On the other hand, since

‖�̃x⊗p ‖2 > ‖v⊗p ‖2 −
v⊗p − �̃x⊗p


2 > 1 − ε,

we have
�̃〈v , x〉p �

1
2

(
‖v‖2p

2 + ‖�̃x⊗p ‖22 − ‖v⊗p − �̃x⊗p ‖22
)
> 1 − ε .

We conclude that
�̃〈v , x〉 > 2�̃〈v , x〉p − 1 > 1 − 2ε .

�

Lemma B.2. Let v ∈ �n be a unit vector. Let p > 2 be an even number and let �̃ be a pseudo-distribution
over �[x1 , . . . , xn] of degree t > p such that �̃‖x‖22 � 1. If for some ε > 0v⊗p − �̃x⊗p


2 6 ε ,

then the top (unit) eigenvector ṽ of �̃xx> satisfies

〈v , ṽ〉2 > 1 − 4ε .
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Proof. Consider the polynomial f (u) � 1−2up+u2. It is easy to verify that f (u) > 0 for all u ∈ [−1, 1].
Hence by Theorem 3.23 from [Lau09], f can be written as

f (u) � s3(u) + s4(u)(1 − u2) ,

where s3 and s4 are SoS polynomials satisfying deg(s3) 6 p and deg(s4) 6 p − 2. It is easy to see
that �̃ f (〈v , x〉) > 0, and so �̃〈v , x〉2 > 2�̃〈v , x〉p − 1. On the other hand, since

‖�̃x⊗p ‖2 > ‖v⊗p ‖2 −
v⊗p − �̃x⊗p


2 > 1 − ε,

we have
�̃〈v , x〉p �

1
2

(
‖v‖2p

2 + ‖�̃x⊗p ‖22 − ‖v⊗p − �̃x⊗p ‖22
)
> 1 − ε .

Therefore,

v>
(
�̃xx>

)
v � �̃〈v , x〉2 > 2�̃〈v , x〉p − 1 > 1 − 2ε .

Hence, by Fact B.3, the top eigenvector of �̃xx> satisfies the desired bound. �

Fact B.3. Let M ∈ �d×d be such that M � 0 and Tr M � 1, and let z ∈ �d be a unit vector such that
zTMz > 1 − ε. Then the top eigenvector v1 of M satisfies 〈v1 , z〉2 > 1 − 2ε.

Proof. Write z � αv1 +
√

1 − α2v⊥ where v⊥ is a unit vector orthogonal to v1. Let λ1 > . . . > λd > 0
be the eigenvalues of M. We have

1 − ε 6 zTMz

� α2v1
TMv1 +

(
1 − α2)v⊥TMv⊥

� α2 (λ1 − v⊥TMv⊥
)
+ v⊥TMv⊥

6 α2
+ v⊥TMv⊥ ,

where the last inequality follows from M � 0 and Tr M � 1, which imply that v⊥TMv⊥ > 0 and
λ1 6 1.

Now since M � λ1Id , we have λ1 > zTMz > 1 − ε, and

λ2 + . . . + λd � Tr M − λ1 6 1 − (1 − ε) � ε .

Therefore, v⊥TMv⊥ 6 ε and

〈v1 , z〉2 � α2

> 1 − ε − v⊥TMv⊥
> 1 − 2ε.

�
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B.2 Sum-of-squares certificates for sparse PCA

Let t ∈ � be such that 1 6 t 6 k and let St be the set of all n-dimensional vectors with values in
{0, 1} that have exactly t nonzero coordinates.

We start with the following definition.

Definition B.4. For every u ∈ St we define the following polynomial in variables s :� (s1 , . . . , sn)

pu(s) �
(
k
t

)−1

·
∏

i∈supp{u}
si .

Note that if x is a k-sparse vector and s is the indicator of its support, then for every u ∈ St , we
have

pu(s) �
{(k

t

)−1
if supp{u} ⊆ supp{x} ,

0 otherwise .

Now consider the following system Cs ,x of polynomial constraints.

Cs ,x :



∀i ∈ [n], s2
i � si∑

i∈[n]
si � k

∀i ∈ [n], si · xi � xi∑
i∈[n]

x2
i � 1∑

u∈St

pu(s) � 1

∀i ∈ [n],
∑
u∈St

ui pu(s) �
t
k
· si



(B.1)

It is easy to see that if x is k-sparse and s is the indicator of its support, then x and s satisfy these
constraints.

Lemma B.5. Let M ∈ �n×n be a matrix. Denote by mt the maximal spectral norm among all 2t × 2t
principal submatrices of M. Then

Cs ,x 2t+2
s ,x {

xTMx 6 2 · mt · k/t
}
.

Proof. Without loss of generality we can assume that M is symmetric, since otherwise we can
replace M by its symmetrisation. Indeed, xTMx � xT ( 1

2 M +
1
2 MT)x, and symmetrisation does not

increase the spectral norms of principal submatrices. Note that

Cs ,x 2t
s

{
ssT

�
k2

t2

∑
u ,u′∈St

u′uTpu′(s)pu(s)
}
.

For x , y ∈ �n we denote the Hadamard product of x and y as x � y, i.e., x � y is the vector in �n

with entries (x � y)i � xi · yi for all i ∈ [n]. It follows that

Cs ,x 4
s ,x {

xxT
� (x � s)(x � s)T

}
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2t+2
s ,x

{
xxT

�
k2

t2

∑
u ,u′∈St

(x � u′)(x � u)Tpu′(s)pu(s)
}

2t+2
s ,x

{
xTMx �

k2

t2

∑
u ,u′∈St

(x � u)TM(x � u′)pu′(s)pu(s)
}

2t+2
s ,x

{
xTMx �

k2

2t2

∑
u ,u′∈St

(
(x � u)TM(x � u′) + (x � u′)TM(x � u)

)
pu′(s)pu(s)

}
.

Now for every u , u′ ∈ St , let Mu ,u′ be the matrix that coincides with M at the entries (i , j) such
that both i and j are from the union of the supports of u and u′, and is zero at other entries. Note
that (x � u)>M(x � u′) � (x � u)>Mu ,u′(x � u′). Since Mu ,u′ is symmetric, it is a difference of two
PSD matrices M+

u ,u′ and M−u ,u′ whose spectral norms are at most ‖Mu ,u′‖ 6 mt . Since for every PSD

matrix S we have 2
a ,b {〈ab> + ba> , S〉 6 〈aa> + bb> , S〉} for variables a , b ∈ �n , we get

2
x

{
(x � u)>Mu ,u′(x � u′) + (x � u)>Mu ,u′(x � u′)

� (x � u)>M+

u ,u′(x � u′) + (x � u′)>M+

u ,u′(x � u)
+ (−(x � u))>M−u ,u′(x � u′) + (x � u′)>M−u ,u′(−(x � u))

6 (x � u)>M+

u ,u′(x � u) + (x � u′)>M+

u ,u′(x � u′)
+ (x � u)>M−u ,u′(x � u) + (x � u′)>M−u ,u′(x � u′)

6 2 · mt ·
(
‖(x � u)‖2 + ‖(x � u′)‖2

)}
.

Since Cs ,x t
s {

pu(s) > 0
}
, it follows that

Cs ,x 2t+2
s ,x

{
xTMx 6

k2

t2

∑
u ,u′∈St

(
mt · ‖(x � u)‖2 + mt · ‖(x � u′)‖2

)
pu′(s)pu(s)

}
2t+2
s ,x

{
xTMx 6 mt

k2

t2

( ∑
u∈St

‖(x � u)‖2pu(s)
( ∑

u′∈St

pu′(s)
)
+

∑
u′∈St

‖(x � u′)‖2pu′(s)
( ∑

u∈St

pu(s)
))}

2t+2
s ,x

{
xTMx 6 mt

k2

t2

(∑
u∈St

‖(x � u)‖2pu(s) +
∑

u′∈St

‖(x � u′)‖2pu′(s)
)}

2t+2
s ,x

{
xTMx 6 2mt

k2

t2

∑
u∈St

‖(x � u)‖2pu(s)
}
.

Now observe that

Cs ,x t+2
s ,x

{∑
u∈St

‖(x � u)‖2pu(s) �
∑
u∈St

n∑
i�1

x2
i u2

i · pu(s)
}

t+2
s ,x

{∑
u∈St

‖(x � u)‖2pu(s) �
n∑

i�1
x2

i

∑
u∈St

ui · pu(s)
}
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t+2
s ,x

{∑
u∈St

‖(x � u)‖2pu(s) �
t
k

n∑
i�1

x2
i si

}

t+2
s ,x

{∑
u∈St

‖(x � u)‖2pu(s) �
t
k

}
.

�

Lemma B.6. Suppose that n > k > t > 2. Let P` be the set of all pseudo-distributions of degree ` on
�[x , s] � �[x1 , . . . , xn , s1 , . . . , sn] and let W ∈ �n×n be a random matrix with i.i.d. standard Gaussian
N(0, 1) entries. We have

�

 sup
µ∈P2t+2:
µ|�Cs ,x

�̃x∼µx>W x

 6 O

(
k

√
log n

t

)
.

Proof. Fix a pseudo-distribution µ ∈ P2t+2 that satisfies Cs ,x . By Lemma B.5, we have

�̃x∼µx>W x 6 2 · wt · k/t ,

where wt is the maximal spectral norm among all 2t × 2t principal submatrices of W . Since this
is true for every µ ∈ P2t+2 satisfying Cs ,x , we get

�

 sup
µ∈P2t+2:
µ|�Cs ,x

�̃x∼µx>W x

 6 2 · �[wt] · k/t . (B.2)

For every A ⊆ [n], let WA be the principal submatrix of W that is obtained by taking the rows
and columns with indices in A. By Fact A.1, we know that for every fixed A ⊆ [n] of size 2t and
every 0 < δ′ < 1, we have

‖WA‖ 6
√

2t +
√

2t +
√

2 log(1/δ′) ,

with probability at least 1 − δ′. By taking a union bound over all
( n
2t

)
subsets A ⊆ [n] of size 2t, we

can see that for every 0 < δ < 1, the following holds with probability at least 1 − δ:

wt � max
A⊆[n]:
|A|�2t

‖WA‖ 6 2
√

2t +

√√√
2 log

( ( n
2t

)
δ

)
6 2
√

2t +

√√√
2 log

( ( ne
2t

)2t

δ

)
� 2
√

2t +
√

4t log(n) + 4t − 4t log(2t) + 2 log(1/δ)

6 10
√

t log(n) +
√

2 log(1/δ) .

In other words, for every τ > 0, with probability at least 1 − exp(−τ2/2), we have

wt 6 10
√

t log(n) + τ .
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By applying Lemma A.4, we get

�[wt] 6 10
√

t log(n) +
∫ ∞

0
exp(−τ2/2)dτ 6 10

√
t log(n) + O(1) .

Combining this with (B.2), we get the result.
�

C Facts about Gaussian and Rademacher complexities

Recall that for a bounded set A ∈ �m , the Gaussian complexity G(A) is defined as

G(A) � �
w∼N(0,Idm)

sup
a∈A

m∑
i�1

ai wi ,

and Rademacher complexity R(A) is defined as

R(A) � �
s∼U({±1}m)

sup
a∈A

m∑
i�1

ai si ,

where U({±1}m) is the uniform distribution over {+1,−1}m .

Fact C.1 ([Wai19], Proposition 5.28). Let A ⊂ �m be a bounded set, and let φ1 , . . . , φm : �→ � be
1-Lipschitz functions that satisfy φi(0) � 0 for all i ∈ [m]. Denote φ : �m → �m , φ(x1 , . . . , xm) �(
φ1(x1), . . . , φm(xm)

)
. Then

G(φ(A)) 6 G(A) and R(φ(A)) 6 2R(A) .

Fact C.2. [Wai19] For every bounded set A ⊂ �m ,

R(A) 6
√
π/2 · G(A) .

Proof. Let w1 , . . .wm be iid standard Gaussian variables. Denote si � sign(wi) and zi � |wi |. Since
wi are symmetric, si and zi are independent. Since � zi �

√
2/π,

G(A) � �
[
sup
a∈A

m∑
i�1

ai wi

]
� ��

[
sup
a∈A

m∑
i�1

ai zi si

����� s

]
>

√
2/π�

[
sup
a∈A

m∑
i�1

ai si

]
� R(A) .

�

Fact C.3 ([Wai19], Theorem 3.4). Let m ∈ �, h > 0 and let ξ1 , . . . , ξm be independent random variables
such that ∀i ∈ [m], |ξi | 6 h with probability 1. Let L > 0 and let f : �m → � be a convex L-Lipschitz
function. Then for all t > 0,

�
[

f (ξ1 , . . . , ξm) > � f (ξ1 , . . . , ξm) + t
]
6 exp

(
− t2

16 · L2 · h2

)
.
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Lemma C.4. Let m ∈ � , h > 0 and let ξ1 , . . . , ξm be independent, symmetric about zero random variables
such that ∀i ∈ [m], |ξi | 6 h with probability 1. Let A ⊂ �m be a bounded set and denote rA � supa∈A‖a‖2.
Let

SA � sup
a∈A

m∑
i�1

aiξi .

Then
� SA 6 2 · h · R(A) 6 3 · h · G(A) ,

and for all t > 0,

�[SA > � SA + t] 6 exp

(
− t2

16 · r2
A · h2

)
.

Proof. Let us first show the concentration bound. Consider the function f : �m → � defined as
f (x) � supa∈A〈x , a〉. It is a convex function (as the supremum of convex functions), and rA-Lipschitz
since for all x , y ∈ �m ,

〈x , a〉 − f (y) 6 〈x − y , a〉 6 ‖a‖2‖x − y‖2 ,

and if we take sup over a ∈ A, we get f (x) − f (y) 6 rA‖x − y‖2. The desired bound follows from
Fact C.3.

Now let us bound the expectation. Denote si � sign(ξi) and ηi �
1
h |ξi | so that ξi � h · si · ηi .

Since ξi are symmetric, si and ηi are independent. We have

�

[
sup
a∈A

m∑
i�1

aiξi

]
� �

[
�

[
sup
a∈A

m∑
i�1

ai · h · ηi si

����� η
] ]

� h · �
[
�

[
sup
a∈A

m∑
i�1
φi(ai) · si

����� η
] ]
,

where φi : �→ � is defined as φi(xi) � ηi xi . Since 0 6 ηi 6 1 for all i ∈ [m], we can see that
φ1 , . . . ,φm are all 1-Lipschitz. It follows fromFact C.1 that

�

[
sup
a∈A

m∑
i�1
φi(ai) · si

����� η
]
6 2R(A) ,

and hence
� SA 6 2 · h · R(A) 6 3 · h · G(A) ,

where the last inequality follows from Fact C.2. �

Fact C.5 (Sudakov’s Minoration, [Wai19], Theorem 5.30). Let A ⊂ �m be a bounded set. Then

sup
ε>0

ε
2

√
log|Nε(A)| 6 G(A) ,

where |Nε(A)| is the minimal size of ε-net in A with respect to Euclidean distance.
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D Decomposability

In [dLN+21] the Huber loss minimization was studied with `1-norm and nuclear norm regularizers.
The authors of [dLN+21] used a well-known property of these norms that is called decomposability
(this property has been extensively used in the literature, see [Wai19]).

A norm ‖·‖◦ in �m is said to be decomposable with respect to a pair of vector subspaces
(
V, V̄

)
such that V ⊆ V̄ , if for all v ∈ V, u ∈ V̄⊥, we have ‖v + u‖◦ � ‖v‖◦ + ‖u‖◦. In the context of
PCA, where the signal is rank-one symmetric matrix X∗ � λ · vv>, and if X∗ ∈ V and both
V and V̄ contain only rank O(1) matrices, then decomposability of the nuclear norm implies
∆ ∈ {M : ‖M‖nuc 6 O(‖M‖F)}. This fact can be used to get a good bound on the error. It is easy
to see that for the nuclear norm there are natural spaces V and V̄ that satisfy these properties:
V � span{vv>} and V̄ � span{uv> + vu> : u ∈ �m}.

Now assume that the signal is a tensor X∗ � λ · v⊗3. One could try to apply the same approach
for tensors: That is, to minimize the Huber loss with the dual norm of the injective tensor norm as a
regularizer (let us ignore in this discussion computational aspects of the problem for simplicity).
Recall that the injective tensor norm of order 3 symmetric tensor T is defined as

‖T‖inj :� sup
‖x‖2�1

〈x⊗3 , T〉 .

Let us checkwhether its dual norm ‖·‖∗inj is decomposablewith respect to some natural subspaces
of V and V̄ of low-rank tensors. The choice of V is simple: it is always better if it is as small as
possible, so we should just take V � span{v⊗3}. And there are two candidates for V̄ similar
to the corresponding subspace in the matrix case: V̄1 � span{Sym(u ⊗ u ⊗ v) : u ∈ �m} and
V̄2 � span{Sym(u ⊗ w ⊗ v) : u , w ∈ �m}.

V̄2 is not a good choice: It contains some tensors of rank n, and hence we cannot a get good
bound if we use it (additional

√
n factor appears in the error bound if we use it).

Let us now show that V̄1 is also not a good choice: The norm ‖·‖∗inj is not decomposable with
respect to

(
V, V̄1

)
. Indeed, for unit vectors u , w ∈ �m such that all u , v , w are orthogonal to each

other, the tensor S � Sym(v ⊗ u ⊗ w) is in V̄⊥. By definition of ‖·‖∗inj ,

‖v⊗3
+ S‖∗inj � max

‖T‖inj61
〈T, v⊗3

+ S〉.

We can assume without loss of generality that T � λv⊗3 +µS for some λ, µ ∈ �. Then 〈T, v⊗3 +S〉 6
λ + µ/6.

Note that |λ | 6 1, otherwise ‖T‖inj > 1. Now consider

x �
1√
3

(
sign(µ) · u + sign(λ) · v + sign(λ) · w

)
,

and note that
〈x⊗3 , T〉 � 3−3/2 |λ | + 3−3/2 |µ| 6 1 .

The maximal value of the linear function λ + µ/6 on the polygon{
(λ, µ) ∈ �2 : |λ | 6 1 , |λ | + |µ| 6 33/2}
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is achieved at one of the vertices of this polygon, hence

λ + µ/6 6 max
{√

3/2, 1 +
√

3/2 − 1/6
}
6 5/6 +

√
3/2 ,

and ‖v⊗3 + S‖∗inj 6 5/6 +
√

3/2.
It is easy to verify that ‖v⊗3‖∗inj � 1 and ‖S‖∗inj �

√
3/2, hence

‖v⊗3
+ S‖∗inj < ‖v⊗3‖∗inj + ‖S‖∗inj

and the norm ‖·‖∗inj is not decomposable with respect to
(
V, V̄1

)
.

This shows that naive approach fails and either we need to look for other sets V̄ and try to prove
decomposability for them, or not to use decomposability at all. We show that decomposability is
not necessary for obtaining vanishing error28, and hence we can study Huber loss minimization
over more complicated sets than nuclear norm ball or `1 ball.

28The only advantage of the analysis that uses decomposability compared to our approach is that it guarantees better
error convergence: when the decomposability guarantees the error bound O(ε), our analysis guarantees the bound
O(
√
ε).
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