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Simple Mechanisms for Agents with Non-linear Utilities

Yiding Feng∗ Jason D. Hartline† Yingkai Li‡

Abstract

We show that economic conclusions derived from Bulow and Roberts (1989) for linear utility
models approximately extend to non-linear utility models. Specifically, we quantify the extent
to which agents with non-linear utilities resemble agents with linear utilities, and we show that
the approximation of mechanisms for agents with linear utilities approximately extend for agents
with non-linear utilities.

We illustrate the framework for the objectives of revenue and welfare on non-linear models
that include agents with budget constraints, agents with risk aversion, and agents with endoge-
nous valuations. We derive bounds on how much these models resemble the linear utility model
and combine these bounds with well-studied approximation results for linear utility models. We
conclude that simple mechanisms are approximately optimal for these non-linear agent models.

1 Introduction

This paper identifies conditions under which the conclusions derived from the simple economics of
optimal auctions (e.g., Bulow and Roberts, 1989) approximately extend from linear utility mod-
els to general (i.e., non-linear) utility models. For context, optimal mechanisms for agents with
non-linear utilities are not simple and therefore difficult to understand precisely. For example,
the single-item auction for a single agent with a private budget constraint admits no closed-form
characterization (Che and Gale, 2000).1

There are extensive studies of simple mechanisms with approximation guarantees in the classical
linear utility model of mechanism design. Example 1: Bulow and Roberts (1989) show that the
marginal revenue maximization mechanism is revenue optimal. Example 2: Yan (2011) shows that
sequential posted pricings, which arrange the agents in an order and offer while-supplies-last posted
prices, guarantee an e/(e− 1)-approximation, i.e., the best order and prices achieves at least 63.2%
of the optimal auction revenue. Approximation results allow qualitative conclusions about drivers
of good economic outcomes. From Example 1, we see that the drivers of classical microeconomics
and auction theory are closely connected. From Example 2, we can conclude that simultaneity and
competition are not necessary drivers for revenue maximization. See the survey of Hartline (2012)
for detailed discussion of the method of approximation in economics.
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1Che and Gale (2000) provide a characterization showing that the optimal mechanism must be the solution of

a differential equation. However, solving the differential equation given arbitrary type distribution is generally
intractable.
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We generalize these approximation results from linear agents to non-linear agents.2 From this
generalization, not only do we observe that the main drivers of good mechanisms are similar for
non-linear agents, but also that non-linearity itself is not a main concern that necessitates specialized
mechanism designs (beyond the approach of our generalization).

Bulow and Roberts (1989), as later interpreted by Alaei et al. (2013), show that to design optimal
mechanisms for linear agents, it is without loss to restrict attention to pricing-based mechanisms,
i.e., mechanisms where the menu offered to each agent is equivalent to a distribution over posted
prices. The multi-agent mechanism design problem can be decomposed as single-agent mechanism
design problems through the reduced-form approach of Border (1991). From Bulow and Roberts
(1989), the solution to these single-agent problems for linear agents are (possibly randomized) price
postings and the optimal mechanism can be interpreted as marginal revenue maximization. Thus,
every mechanism for linear agents is equivalent to a pricing-based mechanism.

Pricing-based mechanisms can be generalized to non-linear agents by considering per-unit prices,
i.e., given per-unit price p, an agent can purchase any lottery with winning probability q ∈ [0, 1]
and pay price p · q in expectation. For non-linear agents (e.g., agents with budget constraints),
not all mechanisms can be interpreted as pricing-based mechanisms and, in fact, pricing-based
mechanisms are not generally optimal. Nonetheless, we show that these mechanisms are approx-
imately optimal for large families of non-linear agents. For these families we say that the non-
linear agents resemble linear agents. More specfically, we introduce a reduction framework as
follows. Given a pricing-based mechanism that guarantees a β-approximation (i.e., achieves at
least 1/β fraction of the optimal objective) for linear agents and given non-linear agents that are
ζ-resemblant3 of linear agents and satisfy the von Neumann-Morgenstern expected utility represen-
tation (Morgenstern and von Neumann, 1953), the reduction framework transforms the aforemen-
tioned pricing-based mechanism for linear agents into an analogous pricing-based mechanism for the
non-linear agents. The non-linear agent mechanism guarantees a βζ-approximation bound.

The reduction framework can be combined with approximation results for linear agents to show that
simple mechanisms such as marginal revenue maximization, sequential posted pricing, and oblivious
posted pricing are approximately optimal for non-linear agents that resemble linear agents, and the
economic lessons (e.g., non-cruciality of simultaneity, competition, discrimination) derived from
those mechanisms for linear agents can be lifted to non-linear agents (see Examples 1–3, previously).
As an example, agents with independent private budget and regular valuation distribution are 3-
resemblant of linear agents, which implies that the approximation of sequential posted pricing for
such non-linear agents is 3e/(e − 1).

The paper characterizes broad families of non-linear agents that are ζ-resemblant for small constant
factors ζ (e.g., agents with independent private budget and regular valuation distribution) and
families that are not (e.g., agents whose budget and value are correlated). For non-linear agents
that are ζ-resemblant, pricing-based mechanisms are approximately optimal wherever they are
approximately optimal for linear agents; thus, non-linearity of utility can be viewed as a detail
that can be omitted from the model without significantly altering the main economic take-aways.

2In this paper, we write “agents with linear utilities” as “linear agents” for short, and “agents with non-linear
utilities” as “non-linear agents”.

3We measure the resemblance of agents in terms of the (topological) closeness of their revenue curves, as defined
in Bulow and Roberts (1989). We provide the details in the next subsection.
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On the other hand, with utility models that are not ζ-resemblant for modest ζ, non-linearity is a
crucial feature that needs specific study for identifying forms of mechanisms lead to good economic
outcomes.

Our reduction framework can be applied more broadly for non-linear agents beyond the expected
utility theory with the restriction to posted pricing mechanisms4 (e.g., sequential posted pricing,
oblivious posted pricing). For instance, non-linear agents with endogenous valuations (Gershkov et al.,
2021b) – which do not satisfy expected utility theory – are 1-resemblant under the regularity as-
sumption. Thus, for such agents, sequential posted pricing is approximately optimal and the
economic lessons from previous discussions generalize.

1.1 Discussion of Our Results

In this paper, we define a notion of single-agent approximation by price-posting (see next para-
graph) and show that, for non-linear agents that satisfy this definition as well as the von Neumann-
Morgenstern expected utility representation, approximately optimal multi-agent pricing-based mech-
anisms can be derived from the analogous mechanisms for linear agents. This reduction framework
is general – it can be applied to any downward-closed feasibility constraint (e.g., single-item, multi-
unit, matroid) and common objectives (e.g., revenue, welfare, or their convex combination) and
thus allows many known approximation mechanisms for linear agents to be lifted to non-linear agent
environments. The approximation factors we obtain are the product of the single-agent approxima-
tion factor of price-posting for non-linear utilities and the approximation factor of the multi-agent
mechanisms for linear utilities. Additionally, with the restriction to posted pricing mechanisms,
our reduction framework is applicable to non-linear agents without the expected utility presenta-
tion.

To understand the single-agent price-posting approximation that governs our reduction, we need to
introduce the revenue curve, which is defined by the literature on revenue optimal mechanism design
for a single agent under the ex ante constraint defines (cf. Bulow and Roberts, 1989). Fixing any
family of mechanisms and a single agent, the revenue curve is a mapping from an ex ante allocation
constraint q ∈ [0, 1] to the revenue of the optimal mechanism in the family that sells the item with
the given ex ante probability q. Specifically, the price-posting revenue curve is generated by fixing
mechanism class to all (single-agent) posted pricing mechanisms, i.e., posting a per-unit price;5

and the optimal revenue curve is generated by allowing all possible mechanisms.6 In this paper
we extend the revenue curve for revenue maximization and consider general objectives and general
payoff curves that correspond to these objective. For linear agents, the optimal payoff curve is
equivalent to the concave hull of the price-posting payoff curve. Motivated by this equivalence,
the price-posting approximation for non-linear agents that governs our reduction is the closeness
between the concave hull of the price-posting payoff curve and the optimal payoff curve. Namely,
we say a non-linear agent is ζ-resemblant if price-posting is a ζ-approximation to the (single-agent)

4Posted pricing mechanisms are pricing-based mechanisms where prices posted to each agent do not depend on
actions of other agents.

5Given per-unit price p, an agent can purchase any lottery with wining probability q ∈ [0, 1].
6For example, in the revenue maximization problem for a single agent with independent private budget, when

the agent’s valuation distribution satisfies the decreasing marginal property, the optimal mechanism is not posting
a per-unit price, but a menu of lotteries where the lottery with higher winning probability has lower per-unit price
(Che and Gale, 2000).
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Table 1: Summary of results for ζ-resemblance in welfare maximization problems. The public
budgeted utility can be thought as a special case of independent private budgeted utility.

independent
private budget

risk averse
endogenous
valuation

ζ-resemblance 2 1 1

Table 2: Summary of results for ζ-resemblance in revenue maximization problems. (∗) assume that

the valuation distribution F is regular, i.e., v − 1−F (v)
f(v) is non-decreasing in v.

public
budget (∗)

public
budget

independent MHR
private budget

endogenous
valuation (∗)

ζ-resemblance 1 2 3 1

optimal mechanism for all ex ante constraints.

It is not hard to invent pathological non-linear agents that do not resemble linear agents. Nonethe-
less, in our study of three canonical non-linear utility models (i.e., budgeted utility, risk averse
utility, and endogenous valuation utility), under natural conditions, ζ-resemblance is bounded by
small constants for welfare maximization (Section 5) and revenue maximization (Section 6) prob-
lems. See Tables 1 and 2 for summary of the ζ-resemblance results shown in this paper.7

Budgeted Utility. We show several of constant-factor resemblance results (i.e., single-agent ap-
proximation by price-posting) for public or private budget utility. An agent with independently
distributed value and private budget resembles a linear agent as follows.

For welfare-maximization problems, we identify a constant bound on the closeness between the
welfare curves without any assumption on the valuation or budget distributions. For revenue-
maximization we show the budgeted agent resembles a linear agent under standard assumptions on
the distributions of budget. We also construct examples showing the necessity of our assumptions
to guarantee the ζ-resemblance for constant ζ.

Risk Averse Utility. It is standard to model risk averse utility as a concave function that maps
the agents’ wealth to utility. This risk-aversion does not impose challenges in welfare maximization
problems since both the optimal mechanism (e.g., VCG mechanism) and the simple price posting
mechanisms are deterministic, and agents behave as if they are linear agents. However, for revenue
maximization problems, this introduces a non-linearity into the incentive constraints of the agents
which in most cases makes mechanism design analytically intractable. It remains as an open
problem whether there exists natural condition ensuring constant ζ-resemblance.

Endogenous Valuation Utility. In this model, agents can take costly actions to boost their valu-
ations for winning the item in the auction before their interaction with the mechanism. We follow
the formalization of the model in Gershkov et al. (2021b), where the authors show that it is equiv-
alent to consider agents with utility linear in payments and convex in the allocation probability.
This utility model does not satisfy the expected utility characterization. Gershkov et al. (2021b)

7In Appendix A, we include the small ζ-resemblance guarantees for more non-linear utility models implied by
works in the literature. Some of them are motivated after appearance of an online version of our paper.
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show that under regularity conditions, price posting is optimal for the single-agent revenue maxi-
mization problem without ex ante constraint. We extend their results to both welfare and revenue
maximization problems, and show that price posting is optimal for any ex ante constraint q ∈ [0, 1],
i.e., agents with endogenous valuation are 1-resemblant.

Our resemblance results can be generalized to any convex combination of welfare and revenue as
the objective function. For example, if an agent is ζ1-resemblant for welfare maximization and
ζ2-resemblant for revenue maximization, then this agent is (ζ1 + ζ2)-resemblant for any convex
combination of welfare and revenue. This generalization result does not rely on the utility model
of the agents or their type distributions.

Our analyses and results of the closeness between the concave hull of the price-posting payoff curve
and optimal payoff curve are interesting independently of our reduction framework. The setting of
our single-agent analysis with an ex ante constraint is equivalent to the mechanism design problem
for a continuum of i.i.d. (non-linear) agents with unit-demand and limited supply. A similar setting
has been studied in Richter (2019), who shows that a posted pricing mechanism is optimal in the
continuum model for budgeted agents with regular and decreasing density value distributions but,
critically, without our unit-demand constraint (which is important for connecting this problem to
multi-agent Bayesian mechanism design).

All mechanisms implemented in our paper are dominant strategy incentive compatible mecha-
nisms. In contrast to linear agents, where any Bayesian incentive compatible mechanism can
be implemented in dominant strategies for single item auctions (Gershkov et al., 2013), it is not
without loss to consider dominant strategy incentive compatible mechanisms for non-linear agents
(e.g., Feng and Hartline, 2018; Fu et al., 2018). Our results have implication for the line of work
focusing on the design of strategically simple mechanisms (e.g., Chung and Ely, 2007; Li, 2017;
Börgers and Li, 2019). A consequence of our results is that for a broad family of non-linear agents,
dominant strategy incentive compatible mechanisms are approximately optimal for any convex
combination of welfare and revenue as the objective function.

1.2 Related Work

Frameworks for reducing approximation for non-linear agents to approximation for linear agents
has also been studied in Alaei et al. (2013). This reduction framework converts the marginal rev-
enue mechanism for linear agents to a mechanisms for non-linear agents and general objectives.
Their reduction framework is also applicable to other DSIC, IIR, deterministic mechanisms for
linear agents. Unlike our framework which uses single-agent price-posting mechanisms (induced
from price-posting payoff curves) as a building-block, Alaei et al. (2013) convert mechanisms for
linear agents into mechanisms for non-linear agents with single-agent ex ante optimal mechanisms
(induced from optimal payoff curves) as components. From the mechanism designer’s perspective,
identifying ex ante optimal mechanisms for a single non-linear agents can be much harder than iden-
tifying ex ante optimal price-posting mechanisms (e.g., private budget utility, risk averse utility).
Furthermore, due to this difference, the implementation of the reduction framework together with
its outcome mechanisms in Alaei et al. (2013) is more complex than ours. In general, the frame-
work in Alaei et al. (2013) converts DSIC mechanisms for linear agents into Bayesian incentive
compatible mechanisms for non-linear agents.

Mechanism design for non-linear agents is well studied in the literature. In this work, as applica-
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tions of our general framework, we focus on three specific non-linear models, agents with budget
constraints, agents with risk averse attitudes, and agents with endogenous valuation.

Laffont and Robert (1996) and Maskin (2000) study the revenue-maximization and welfare-maximization
problems for symmetric agents with public budgets in single-item environments. Boulatov and Severinov
(2018) generalize their results to agents with i.i.d. values but asymmetric public budgets. Che and Gale
(2000) consider the single agent problem with private budget and valuation distribution that satis-
fies declining marginal revenues, and characterize the optimal mechanism by a differential equation.
Devanur and Weinberg (2017) consider the single agent problem with private budget and an arbi-
trary valuation distribution, characterize the optimal mechanism by a linear program, and use an
algorithmic approach to construct the solution. Pai and Vohra (2014) generalize the characteriza-
tion of the optimal mechanism to symmetric agents with uniformly distributed private budgets.
Richter (2019) shows that a price-posting mechanism is optimal for selling a divisible good to a
continuum of agents with private budgets if their valuations are regular with decreasing density.
For more general settings, no closed-form characterizations are known. However, the optimal mech-
anism can be solved by a polynomial-time solvable linear program over interim allocation rules (cf.
Alaei et al., 2012; Che et al., 2013).

Most results for agents with risk-averse utilities consider the comparative performance of the
first- and second-price auctions, cf., Holt Jr (1980), Che and Gale (2006). Matthews (1983) and
Maskin and Riley (1984), however, characterize the optimal mechanisms for symmetric agents for
constant absolute risk aversion and more general risk-averse models. Baisa (2017) shows that the
optimal mechanism for risk averse agents departs from the linear agents, since the optimal mecha-
nism does not allocate to the highest bidder, and can better screen the agents through allocating
the item to a group of agents with lotteries. Gershkov et al. (2021a) show that if the seller can
make positive transfer to the agents, the optimal mechanism features the property that under
equilibrium, all agents face no uncertainty in the realized utility.

The model for agents with endogenous valuation has been studied extensively in Tan (1992);
King et al. (1992); Gershkov et al. (2021b); Akbarpour et al. (2021) where agents can make costly
investment before the auction. This is a generalization of the model for agents with entry costs
(Celik and Yilankaya, 2009). This main focus of the literature is to characterize the optimal mecha-
nisms in restricted settings. For example, Gershkov et al. (2021b) characterize the revenue optimal
symmetric mechanism for symmetric buyers.8 The reduction framework in our paper implies that
sequentially offering a price to each agent is a constant approximation for both welfare and rev-
enue maximization when there are multiple asymmetric buyers. Akbarpour et al. (2021) consider
approximating the optimal welfare when it is computationally intractable to find the optimal allo-
cation. They show that any algorithm that excludes bossy negative externalities can be converted
to a mechanism that guarantees the same approximation ratio to the optimal welfare. They re-
strict attention to full information equilibrium, while our analysis applies to settings with private
valuations.

It is well known that simple mechanisms generate robust performance guarantees for both wel-
fare maximization (Roughgarden et al., 2017) and revenue maximization (Carroll, 2017; Bei et al.,
2019). Moreover, simple mechanisms are approximately optimal under natural assumptions of type

8Gershkov et al. (2021b) also showed that even for symmetric buyers, symmetric mechanism may not be revenue
optimal among all possible mechanisms.
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distributions. For single item auction and linear agents, Jin et al. (2019) show that the tight ra-
tio between anonymous pricing and the optimal mechanism is 2.62 under regularity assumption,
and Yan (2011) shows that the tight approximation ratio is e/(e− 1) for sequential posted pricing.
The approximate optimality of sequential posted pricing can be generalized to multi-item settings
when agents have unit-demand valuations (Chawla et al., 2010; Cai et al., 2016). For non-linear
agents, given matroid environments, Chawla et al. (2011) show that a simple lottery mechanism
is a constant approximation to the optimal pointwise individually rational mechanism for agents
with monotone-hazard-rate valuations and private budgets. In contrast, our approximation results
are with respect to the optimal mechanism under interim individually rationality which can be
arbitrarily larger than the benchmark from Chawla et al. (2011). Feng et al. (2019) study of the
approximation of a specific mechanism (i.e., anonymous pricing) for non-linear agents in single-item
environments for revenue maximization. A key ingredient of their result is the “similarity” between
the price-posting revenue curve and the optimal revenue curve. However, in order to preserve the
anonymous property, the “similarity” defined in Feng et al. (2019) is much stronger than the resem-
blance in this paper and thus harder to satisfy in non-linear utility models. The main contributions
of our results, relative to Feng et al. (2019), are the following three points: our reduction frame-
work (i) introduces a weaker resemblance definition that is sufficient to preserve approximation,
(ii) is applicable to any deterministic, DSIC mechanism, (iii) is applicable to general objectives
(e.g., welfare) besides revenue and more general environments (i.e., any downward-closed feasibility
constraints).

2 Preliminaries

In this paper, we study auction design under downward-closed environments for non-linear agents.

Agent Models. There is a set of agents N where |N | = n. An agent’s utility model is defined as
(T , Φ, u) where T , Φ, and u are the type space, distribution and utility function. The outcome for an
agent is the distribution over the pair (x, p), where allocation x ∈ {0, 1} and payment p ∈ R+. The
utility function of each player u is a mapping from her private type and the outcome to her utility
for the outcome. There are several specific utility models we are interested in this paper.

• Linear utility: For each agent i ∈ N , her private type is her value vi of the good. Given
allocation x and payment p, her utility is vi · x − p. In the following sections, we will drop
the subscripts when we discuss the single agent problems.

• Private-budget utility: Each agent i ∈ N has a private value vi and private budget
constraint wi. We refer to the pair (vi, wi) as the private type of the agent. The valuation vi
for each agent i is sampled from the valuation distribution Fi and her budget wi is sampled
from the budget distribution Gi. We assume that Fi and Gi are independent distributions.
We also use Fi and Gi to denote the cumulative probability function for the valuation and
budget of agent i. Given any realization of allocation x and payment p, her utility is vix− p
if the payment does not exceed her budget, i.e., p ≤ wi. Otherwise, her utility is −∞.

Note that when the support of budget distribution G is a singleton {w}, it is equivalent to
assume that the agent has a (deterministic) public budget w. We name the utility model of
such agents as public-budget utility.
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• Risk-averse utility: For each agent i ∈ N , her private type is her value vi ∈ [0, v̄i] of the
good. Given allocation x and payment p, the utility function u is a concave function mapping
from the wealth vi · x− p of the agent to her utility.

• Endogenous valuation: Each agent i ∈ N can make costly investments before the auction
by taking action ai ∈ R. For agent i with private type ti, the cost for action ai is ci(ai) and
the value for the item is vi(ai, ti) = ai + ti. Given allocation x and payment p, agent i taking
action ai has utility x · vi(ai, ti) − p − ci(ai). This is the model presented in Gershkov et al.
(2021b).9 Note that in this endogenous utility model, the agent can be equivalently modeled
as one with convex preference over allocations, which does not satisfy the expected utility
characterization.

Mechanisms. In this paper, we consider the sealed-bid mechanisms: in a mechanism {(xi, pi)}i∈N ,
agents simultaneously submit sealed bids {bi}i∈N from their type spaces to the mechanism, and
each agent i gets allocation xi({bi}i∈N ) with payment pi({bi}i∈N ). The outcome of mechanisms
is a distribution of the allocation payment pair (xi, pi) for each agent i where the allocation is a
probability xi ∈ [0, 1] and the price is pi ∈ R+. There is a downward-closed constraint X ⊆ {0, 1}n

on the set of feasible outcomes.

We consider mechanisms that satisfy Bayesian incentive compatibility (BIC), i.e., no agent can gain
strictly higher expected utility than reporting her private type truthfully if all other agents are
reporting their private types truthfully, and interim individual rationality (IIR), i.e., the expected
utility is non-negative for all agents and all private types if all agents are reporting their private types
truthfully mechanisms. For later discussion, we also define dominant strategy incentive compatibility
(DSIC) for a mechanism if no agent can gain strictly higher expected utility than reporting her
private type truthfully, regardless of other agents’ report.

Payoff Curves. The payoff function of the seller is a mapping from the lotteries of each agent,
to a real value. We assume that the payoff function satisfies expected utility theory,10 i.e., the
payoff for a distribution over lotteries is the corresponding expected payoff.11 Moreover, the payoff
function is additive separable across different agents. In the later section of this paper, we apply our
reduction framework to two classic payoff functions – revenue which is the total payment collected
from the agents, and welfare which is the expected value from the agents for realized allocation
{xi}.

12

Now we introduce the payoff curves, which is an important concept in our reduction framework.
Since payoff curves are defined for the single agent problem, we drop the subscript index of agents
for the discussion below.

9Gershkov et al. (2021b) characterized the single-agent revenue optimal mechanism for slightly more general classes
of valuation functions. To simplify the presentation, in this paper, we only illustrate the proof for this special form
of valuation function, and the same technique can be easily extended to broader settings.

10In contrast, we do not restrict the agents to satisfy the expected utility theory.
11For example, the seller may care about the ex ante welfare of the agents, i.e., the sum of the ex ante utility of

the agents when each agent is assigned with a lottery.
12Note that there are alternative definitions for welfare of non-linear agents. For example, when agents are risk

averse, an alternative definition for welfare contribution from agent i is the sum of her payment pi and her utility
ui(xi, pi). Whether non-linear agents resemble linear agents under this alternative welfare definition is left as an open
question.
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Definition 2.1. Given ex ante constraint q ∈ [0, 1], the optimal payoff curve R(q) is a mapping
from quantile q to the optimal ex ante payoff for the single agent problem, i.e., the optimal payoff
of the mechanism which in expectation sells the item with probability q.

For non-linear utility models, the optimal mechanism might be complicated even for the single
agent problem. Motivated by this, we also study a subclass of mechanisms which admits a simple
format, i.e., per-unit posted pricing.

Definition 2.2. Posting per-unit price p is offering a menu {(x, x · p) : x ∈ [0, 1]} to the agent.

As a sanity check, for an agent with value v and public budget w, given per-unit price p, she
will purchase the lottery with x = min{1,w/p} if v ≥ p, and purchase the lottery with x = 0
otherwise.

Definition 2.3. Given ex ante constraint q, the price-posting payoff curve P (q) is a mapping from
quantile q to the optimal price-posting payoff for the single agent problem, i.e., the optimal payoff
of posting per-unit price p for some p such that the item is sold with probability q in expectation,
where the randonmess is taken over the type distribution as well as the probabilities of the selected
lottery.

Given the price-posting payoff curve P , for any ex ante constraint q, we define the market clearing
price pq as the per-unit price used in P (q).

Since the space of mechanisms is closed under convex combination, the optimal payoff curve is
guaranteed to be concave. In contrast, the price-posting payoff curve is not generally concave.
Nonetheless, we can iron it to get the concave hull of the price-posting payoff curve.

Definition 2.4. The ironed price-posting payoff curve P̄ is the concave hull of the price-posting
payoff curve P .

When we consider revenue as the seller’s payoff function, for an agent with linear utility, the
following relation between the optimal revenue curve and the price-posting revenue curve.

Lemma 2.1 (Bulow and Roberts, 1989). The optimal revenue curve R of a linear agent is equal
to her ironed price-posting revenue curve P̄ .

A similar result holds for the welfare curve. Note that the price-posting welfare curve is always
concave for linear agents.

Lemma 2.2. The optimal welfare curve R of a linear agent is equal to her price-posting welfare
curve P , both are concave and R = P = P̄ .

Ex Ante Relaxation. Next we provide the benchmark of our paper, the ex ante relaxation. For
auctions with downward-closed feasibility constraints, any profile of ex ante probabilities {qi}i∈N is
ex ante feasible with respect to constraint X if there exists a randomized, ex post feasible allocation
such that the probability agent i receives an item, i.e., marginal allocation probability for agent
i, is exactly equal to qi. We denote the set of ex ante feasible profiles with respect to feasibility
constraint X by EAF(X ). The optimal ex ante payoff given a specific collection of payoff curves
{Ri}i∈N and feasibility constraint X is

EAR({Ri}i∈N ,X ) = max
{qi}i∈N⊆EAF(X )

∑

i∈N
Ri(qi).
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By definition, for any payoff function, the optimal ex ante payoff gives an upper bound on the
optimal payoff achievable among all BIC, IIR mechanisms.

Pricing-based Mechanisms and Posted Pricing Mechanisms. In Bayesian mechanism de-
sign, the taxation principle suggests that it is without loss to focus on menu mechanisms: Fixing
any agent, the mechanism offers a menu of outcomes (i.e., her allocation and payment) to the
agent, where the menu depends on other agents’ bids. Among all such menu mechanisms, there are
two subclasses of mechanisms closely related to price posting which allow simple implementations
– pricing-based mechanisms and posted pricing mechanisms. The subclass of pricing-based mech-
anisms consider mechanisms where the menu (offered by the mechanism) is equivalent to posting
a per-unit price. Furthermore, a pricing-based mechanism is called a posted pricing mechanism if
the menu (a.k.a., per-unit price) offered to each agent is invariant of other agents’ bids.

3 Reduction Framework for Sequential Posted Pricing

In this section, we introduce the definition of ζ-resemblance to quantify the single-agent approx-
imation by price-posting in non-linear utility models. As a warm up, we introduce a reduction
framework which extends approximation results of posted pricing mechanisms for linear agents to
non-linear agents that satisfy the definition. In next section, we discuss a more general reduction
framework for pricing-based mechanisms.

As we discussed in Section 2, the taxation principle suggests that it is without loss to focus on
menu mechanisms in Bayesian mechanism design. For non-linear agents, the menu offered in the
Bayesian optimal mechanism are complicated even in single-agent environments. For example, to
maximize the revenue from a single agent with private budget, the menu size of the optimal mech-
anism is exponential to the size of the support of the budget distribution (Devanur and Weinberg,
2017). In contrast, for linear agents, there exist posted pricing mechanisms that is optimal
(resp. approximately optimal) in the single-agent (resp. multi-agent) environments (Myerson, 1981;
Riley and Zeckhauser, 1983; Yan, 2011; Alaei et al., 2018). Here we introduce a reduction frame-
work that extends the approximation bounds of posted pricing mechanisms for linear agents to
non-linear agents.

To simplify the presentation, we focus on the reduction framework on a canonical class of posted
pricing mechanisms – sequential posted pricing mechanisms (see Definition 3.1 for a formal defini-
tion) with the most simple feasibility environments (i.e., single-item environments). 13

Note that given the ex ante probability q, the payoff of posting the market clearing price is uniquely
determined by the price-posting payoff curve and quantile q. Thus, for simplicity, we define the
sequential posted pricing in quantile space.14

13It is easy to verify that the reduction framework for (sequential) posted pricing mechanisms Theorem 3.2 directly
applies when there is a downward closed feasibility constraint X . A generalization of the framework to other posted
pricing mechanisms is also straightforward and we include more discussions in Section 7.

14The reason for defining posted pricings in quantile space is that the mapping from quantiles to prices is not
generally pinned down by the payoff curve (specifically, for the welfare objective) for non-linear agents. As the actual
prices to be posted are not important in our reduction framework, it is convenient to remain in quantile space.
Any sequential posted pricing mechanism defined in quantile space can be converted to a sequential posted pricing
mechanism in price space (e.g., Chawla et al., 2010). Thus, in this paper, without loss of generality, we will focus on
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Definition 3.1. A sequential posted pricing mechanism is parameterized by ({oi}i∈N , {qi}i∈N )
where {oi}i∈N denotes an order of the agents and {qi}i∈N denotes the quantile corresponding to the
per-unit prices to be offered to agents if the item is not sold to previous agents.15

According to the definition, the payoff of the sequential posted pricing mechanism with parameters
({oi}i∈N , {qi}i∈N ) is uniquely determined by the price-posting payoff curves {Pi}i∈N of the agents.
Specifically,

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ) =
∑

i∈N





∏

j:o(j)<o(i)

(1− qj)



Pi(qi) .

and the optimal payoff among the class of sequential posted pricing mechanisms is

SPP({Pi}i∈N ) = max
{oi}i∈N ,{qi}i∈N

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ).

As we mentioned above, Yan (2011) shows the following approximation guarantee for sequential
posted pricing.

Theorem 3.1 (Yan, 2011). For linear agents with the price-posting payoff curves {Pi}i∈N , there
exists a sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N ) that is an e/(e− 1)-approximation to
the ex ante relaxation, i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ) ≥ (1− 1/e) · EAR({P̄i}i∈N ).

To quantify the extent to which a non-linear agent resembles a linear agent, we start with the
following observation. For a linear agent, the ironed price-posting payoff curve equals the optimal
payoff curve. However, for a non-linear agent, the Bayesian optimal mechanisms are not posted
pricing mechanisms in general. In other words, for a non-linear agent, the ironed price-posting payoff
curve is not generally equivalent to the optimal payoff curve. Hence, we introduce ζ-resemblance of
an agent to measure her ironed price-posting payoff curve resemble her optimal payoff curve.

Definition 3.2 (ζ-resemblance). An agent’s ironed price-posting payoff curve P̄ is ζ-resemblant
to her optimal payoff curve R, if for all q ∈ [0, 1], there exists q ≤ q† such that P̄ (q) ≥ 1/ζ · R(q†).
Such an agent is ζ-resemblant.

Smaller ζ-resemblance guarantee implies that such non-linear agents resemble linear agents better,
since the approximation guarantee for sequential posted pricing mechanisms for linear agents can
be lifted to those non-linear agents with an additional factor ζ (Theorem 3.2). Note that the ζ-
resemblant property is equivalent to show the approximation of posted pricing mechanisms for a
continuum of i.i.d. (non-linear) agents with unit-demand and limit supply. In Sections 5 and 6, we
give small constant bound on this resemblant property under several canonical non-linear utility
models for both welfare maximization and revenue maximization.

To extend the approximation of sequential posted pricing mechanisms for linear agents to non-linear
agents, we need to reduce a non-linear agent to her linear agent analog as follows.

the sequential posted pricing mechanisms in quantile space.
15In the sequential posted pricing mechanism, each agent may only get a lottery for winning the item. We assume

that the lottery is realized immediately after each agent’s purchase decision. The per-unit prices are offered to each
agent if and only if the item is not sold to previous agents given the realization.
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Definition 3.3. Fix any set of (non-linear) agents with price-posting payoff curves {Pi}i∈N . The
linear agents analog is a set of linear agents whose price-posting payoff curves are {Pi}i∈N and the
optimal payoff curves are {P̄i}i∈N .

Note that the linear agent analog is well-defined for both welfare maximization and revenue max-
imization.16 Based on the definition of ζ-resemblance and the linear agent analog, we present
a reduction framework that converts sequential posted pricing mechanisms for linear agents to
non-linear agents, and approximately preserves its payoff approximation guarantee.

Theorem 3.2. Fix any set of (non-linear) agents with price-posting payoff curves {Pi}i∈N that are
ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists a sequential posted pricing mech-
anism ({oi}i∈N , {qi}i∈N ) that is a γ-approximation to the ex ante relaxation for linear agents analog
with price-posting payoff curves {Pi}i∈N , i.e., SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ) ≥ 1/γ·EAR({P̄i}i∈N ),
then this mechanism is also a γζ-approximation to the ex ante relaxation for non-linear agents, i.e.,
SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ) ≥ 1/γ ζ · EAR({Ri}i∈N ).

Proof. Let {q†i }i∈N be the profile of optimal ex ante quantiles for optimal payoff curves {Ri}i∈N .
Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal payoff curves

{Ri}i∈N , there exists a sequence of quantiles {q‡i }i∈N such that for any agent i, q‡i ≤ q†i and

P̄ (q‡i ) ≥ 1/ζ · R(q†i ). Note that since
∑

i q
‡
i ≤

∑

i q
†
i ≤ 1, {q‡i }i∈N is also feasible for ex ante

relaxation. Therefore,

EAR({Ri}i∈N ) =
∑

i∈N

Ri(q
†
i ) ≤ ζ ·

∑

i∈N

P̄i(q
‡
i ) ≤ ζ · EAR({P̄i}i∈N ).

Since the expected payoff of the sequential posted pricing mechanism ({oi}i∈N , {qi}i∈N ) only de-
pends on the price posting payoff curves, not on the agents’ utility models, we have

SPP({Pi}i∈N , {oi}i∈N , {qi}i∈N ) ≥ 1/γ · EAR({P̄i}i∈N ) ≥ 1/γ ζ · EAR({Ri}i∈N ),

and Theorem 3.2 holds.

The reduction framework (Theorem 3.2) seems to be an immediate consequence from the definition
of sequential posted pricing and definition of ζ-resemblance. In the later sections, We will discuss its
extensions to other (probably more general) classes of mechanisms by adopting the same method.
Specifically, in Section 7, we show that how a similar reduction framework hold for other formats
of posted pricing mechanisms, e.g., oblivious posted pricing where mechanisms cannot control the
order of agents. In Section 4, we show that when the agents satisfy the expected utility represen-
tation, any deterministic, dominant strategy incentive compatible mechanism can be converted to
approximately preserve the approximation ratio for non-linear agents.

16The price-posting revenue (resp. welfare) curve P (q) of a linear agent uniquely pins down her valuation distribution

as v(q) = P (q)
q

(resp. v(q) = P ′(q)). For general payoff function, given the price-posting payoff curves {Pi}i∈N of
the non-linear agents, there may not exist distributions for linear agents such that their price-posting payoff curves
coincide with {Pi}i∈N . However, both the payoffs for sequential posted pricing mechanisms and the ex ante relaxation
are well defined given the payoff curves, and theorem 3.1 holds for payoff curves that does not correspond to any
distributions of the agents. Hence, we can refer to the linear agents analog even without the existence of the underlying
distributions.

12



As an application of the reduction framework in Theorem 3.2, consider (non-linear) agents with
private budget utility. Optimal mechanism for agents with private budget utility have been
studied in the literature (e.g. Che and Gale, 2000; Devanur and Weinberg, 2017 for single-agent,
Pai and Vohra, 2014 for i.i.d. agents and Alaei et al., 2012 for non-i.i.d. agents). The characteri-
zation of these optimal mechanisms are complicated even for simple distributions (e.g., value and
budget drawn i.i.d. from [0, 1] uniformly). However, with the reduction framework (Theorem 3.2 for
posted pricing mechanism and Theorem 4.1 for pricing-based mechanism), due to the resemblance
between price-posting payoff curve and optimal payoff curve, we can extend the simple mechanism
(i.e., sequential/oblivious posted pricing mechanism and marginal payoff mechanism) from linear
agents to private-budgeted agents with good approximation guarantees. See Appendix C for an toy
example where we numerically evaluate the resemblance of revenue for private-budgeted agents with
uniform values and uniform budgets, and the performance of sequential posted pricing mechanism
and for them.

4 Reduction Framework for Pricing-based Mechanisms

Following the discussion in Section 3, in this section we introduce the reduction framework for
pricing-based mechanisms. For this reduction framework, we focus on agents satisfying the von
Neumann-Morgenstern expected utility representation.

Recall that by the taxation principle, it is without loss to consider menu mechanisms. The class
of pricing-based mechanisms is ones whose menu offered to each agent is posting a per-unit price.
For linear agents, every mechanism (e.g., the Bayesian optimal mechanism) can be implemented
as a pricing-based mechanism. Here, our reduction framework extends the approximation bounds
of deterministic, dominant strategy incentive compatible (DSIC), interim individual rational (IIR),
pricing-based mechanisms for linear agents to non-linear agents whose utility models satisfy the
expected utility representation.

Due to the technical reason, we make the following assumption on agents’ utility models. Note
that this assumption is satisfied for most common utility models, e.g., linear utility, budget utility,
risk averse utility.

Assumption 1. The item is the ordinary good, i.e., when offered a per-unit price for the item to
the agent, her demand is weakly decreasing in price.

Based on the definition of ζ-resemblance and linear agent analog, we present the meta-theorem
(Theorem 4.1): a reduction framework that converts every deterministic, DSIC, IIR, pricing-based
mechanism for linear agents to a DSIC, IIR, pricing-based mechanism for non-linear agents, and
approximately preserves its payoff approximation guarantee.

Theorem 4.1 (Reduction Framework). Fix any set A of (non-linear) agents with price-posting
payoff curves {Pi}i∈N and optimal payoff curves {Ri}i∈N . For any deterministic, DSIC, IIR,
pricing-based mechanism ML for linear agents, there is a pricing-based mechanism M for non-
linear agents A that is DSIC, IIR, and satisfies

i. Identical payoff: mechanism M for non-linear agents A has the same payoff as mechanism
ML for the linear agents analog AL. Denote the payoff of mechanism M as M({Pi}i∈N ).
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ii. Identical feasibility: mechanism M for non-linear agents A has the same distribution over
outcomes as mechanism ML for the linear agents analog AL.

Denote by γ the approximation of mechanism ML for the linear agents analog AL to the ex ante
relaxation of AL, i.e., ML({Pi}i∈N ) ≥ 1/γ · EAR({P̄i}i∈N ). If each non-linear agent in A is
ζ-resemblant, then mechanism M for non-linear agents A is γ ζ-approximation to the ex ante
relaxation of A, i.e., M({Pi}i∈N ) ≥ 1/γ ζ · EAR({Ri}i∈N ).

In Section 4.1, we present the implementation of the reduction framework. In Section 4.2, we
show how it achieves the claimed properties in Theorem 4.1. Finally, in Section 4.3, we discuss
the consequence of the reduction framework for the marginal payoff mechanism (i.e., the Bayesian
optimal mechanism) for linear agents.

4.1 Implementation in Theorem 4.1

Algorithm 1 describes the implementation of Theorem 4.1. This implementation includes two
notations q̂ML

i

(

{qj}j∈N\{i}

)

and xq̂(t) which we define below.

For any deterministic DSIC, IIR mechanism ML for linear agents, it can be represented by a
mapping from the quantiles of other agents to a threshold quantile for each agent. The agent
wins when her quantile is below the threshold and loses when her quantile is above the threshold.
We denote the function that maps the profile of other agent quantiles {qj}j∈N\{i} to a quantile

threshold for agent i as q̂ML

i

(

{qj}j∈N\{i}

)

.

For any non-linear agent model (T , F, u), the single-agent pricing problem identifies the per-unit
(market clearing) price pq̂ to offer the agent for any ex ante allocation constraint q̂. Denote the
allocation probability selected by an agent with type t when offered per-unit price pq̂ as x̂q̂(t).
For every type t, define function Ht(q) = x̂q(t). Note that under the ordinary good assumption
(Assumption 1) Ht(q) is weakly increasing in q for all type t under (Assumption 1), and thus can
be viewed as the cumulative density function of a distribution. See Lemma 4.2.

Algorithm 1: Reduction Framework for Pricing-based Mechanism

Input: Non-linear agents {(Ti, Fi, ui)}i∈N ; and deterministic, DSIC, IIR mechanism ML for
linear agents

1 For each agent i with private type ti, map the type to a random quantile qi according to the
distribution Hi,ti with cdf Hi,ti(q) = x̂i

q(ti).
/* Hi(q) is well-defined. See Lemma 4.2 */

2 For each agent i, calculate quantile threshold as q̂i = q̂ML

i

(

{qj}j∈N\{i}

)

.

/* q̂ML

i (·) is well-defined since ML is deterministic and DSIC. */

3 For each agent i, set payment pi = pq̂i xq̂ii (ti), and allocation xi = 1 if qi < q̂i and xi = 0
otherwise.

Lemma 4.2. For an ordinary good (Assumption 1), the allocation probability xq(t) is weakly in-
creasing in q for all type t.

Proof. For an ordinary good by definition, the agent’s expected allocation probability is weakly
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decreasing in the price. Thus, the per-unit price in each q ex ante mechanism (with respect to the
price-posting payoff curve P ) is weakly decreasing in q. Now consider the q ex ante mechanism
with respect to the ironed price-posting payoff curve P̄ for all quantile q. The per-unit price is
monotone (by the previous argument) on quantiles that are not in ironed intervals. Within an
ironed interval, the mechanism is a mix over two end-points of non-ironed intervals which linearly
interpolates between the end-points and is thus monotone.

4.2 Proof of Theorem 4.1

We first show the implementation (Algorithm 1) is DSIC, IIR and satisfies both identical payoff
and identical feasibility properties.

Lemma 4.3. Given a deterministic, DSIC, IIR mechanism ML for linear agents, the mechanism
M from the implementation (Algorithm 1) is DSIC, IIR, and satisfies identical payoff and identical
feasibility properties in Theorem 4.1.

Proof. Since mechanism ML is deterministic and DSIC, Algorithm 1 is well-defined. Since for each
agent i, her type ti is drawn from Fi and qi is drawn from Hi condition on ti, the (unconditional)
distribution of qi is uniform on [0, 1]. Thus, from each agent i’s perspective, the other agents’
quantiles are distributed independently and uniformly on [0, 1]. This agent faces a distribution over
ex ante posted pricing that is identical to the distribution of quantile thresholds in the mechanism
ML. Thus, DSIC and the identical payoff property is satisfied. Since ML is IIR, M is also IIR.
Finally, note that the distribution of qi is uniform on [0, 1], identical feasibility property is satisfied
by construction.

We now show that the implementation extends the approximation guarantee of mechanism ML

for linear agents. Note that this is immediately implied by the identical payoff property and the
following lemma.

Lemma 4.4. For agents with ironed price-posting payoff curves {P̄i}i∈N and the optimal payoff
curves {Ri}i∈N , if each agent is ζ-resemblant, the ex ante relaxation on the ironed price-posting
payoff curve is a ζ-approximation to the ex ante relaxation on the optimal payoff curves, i.e.,
EAR({P̄i}i∈N ) ≥ 1/ζ · EAR({Ri}i∈N ).

Proof. Let {q†i }i∈N ∈ EAF(X ) be the profile of optimal ex ante quantiles for optimal payoff curves
{Ri}i∈N . Since the ironed price-posting payoff curves {P̄i}i∈N are ζ-resemblant to the optimal
payoff curves {Ri}i∈N , there exists a sequence of quantiles {qi}i∈N such that for any agent i,

qi ≤ q†i and P̄ (qi) ≥ 1/ζ · R(q†i ). Note that {qi}i∈N is also feasible. Therefore,

EAR({Ri}i∈N ) =
∑

i∈N

Ri(q
†
i ) ≤ ζ ·

∑

i∈N

P̄i(qi) ≤ ζ · EAR({P̄i}i∈N ).

4.3 Application on Marginal Payoff Mechanism.

In Bulow and Roberts (1989), authors introduce the marginal revenue mechanism and show its
revenue-optimality for linear agents. The marginal revenue mechanism can be easily extended to
other payoff objectives and we denote its extensions as the marginal payoff mechanisms. The ex
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ante relaxation gives an upper bound on the Bayesian optimal mechanism. For linear agents, the
gap between the ex ante relaxation and the Bayesian optimal mechanisms (i.e., marginal payoff
mechanisms) is precisely determined by the optimal payoff curves.

Definition 4.1. The ex ante gap for the optimal payoff curves {Ri}i∈N is the ratio between the ex
ante relaxation EAR({Ri}i∈N ) and the payoff of the Bayesian optimal mechanism for linear agents
OPT({Ri}i∈N ).

In single-item environments, the ex ante gap γ is at most 1/(1 − 1/
√

2π) (Yan, 2011). By our framework
Theorem 4.1 on the marginal payoff mechanisms, we obtain the marginal payoff mechanism for non-
linear agents, and its approximation guarantee.

Definition 4.2. The marginal payoff mechanism, denoted by MPM (defined in Algorithm 1) cor-
responds to the linear agent marginal revenue mechanism. Denote the payoff of MPM for agents
with price-posting payoff curves {Pi}i∈N as MPM({Pi}i∈N ).

Proposition 4.5. Given agents with the ironed price-posting payoff curves {P̄i}i∈N and the optimal
payoff curves {Ri}i∈N , if each agent is ζ-resemblant, the worst case ratio between the the marginal
payoff mechanism with respect to price-posting payoff curves and the ex ante relaxation on the
optimal payoff curves is ζγ, i.e., MPM({Pi}i∈N ) ≥ 1/ζγ ·EAR({Ri}i∈N ), where γ is the ex ante gap
with curves {P̄i}i∈N .

5 Resemblance of Welfare Maximization

In the previous section, we have provided a framework showing that posted pricing mechanisms
are approximately optimal if the payoff curves of the agents satisfy the resemblant property. This
framework only has bite if we can show that the resemblance is indeed satisfied in canonical set-
tings for objectives such as welfare or revenue maximization. In this section, we show that the
ironed price-posting welfare curves resemble the optimal welfare curves under three canonical non-
linear utility models – budgeted utility, risk-averse utility and endogenous valuation utility. Note
that the resemblance of welfare curve is a single-agent problem. Thus, we drop subscript of all
notations.

5.1 Budgeted Agent

For agents with budget constraints, the ex ante optimal mechanism might be complicated and hard
to characterize. However, as we show below, without any assumption on the valuation distribution
or the budget distribution except the independence, posting the market clearing price guarantees
a 2-approximation in welfare.

Theorem 5.1. An agent with private budget has the price-posting welfare curve P that is 2-
resemblant to her optimal welfare curve R if the budget is drawn independently from the valuation.

The proof of Theorem 5.1 generalizes the price decomposition technique from Abrams (2006) and
extends it for welfare analysis.

Fix an arbitrary ex ante constraint q, denote EX as the q ex ante welfare-optimal mechanism, and
Payoff[EX] as its welfare. We want to decompose EX into two mechanisms EX† and EX‡ according
to the market clearing price pq and bound the welfare from those two mechanisms separately. The
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decomposed mechanism may violate the incentive constraint for budgets, and we refer to this setting
as the random-public-budget utility model. Note that the market clearing price is the same in both
the private budget model and the random-public-budget utility model. Intuitively, mechanism EX†

contains per-unit prices at most the market clearing price, while mechanism EX‡ contains per-
unit prices at least the market clearing price. Both mechanisms EX† and EX‡ satisfy the ex ante
constraint q, and the sum of their welfare upper bounds the original ex ante mechanism EX, i.e.,
Payoff[EX] ≤ Payoff

[

EX†
]

+Payoff
[

EX‡
]

.

To construct EX† and EX‡ that satisfy the properties above, we first introduce a characterization of
all incentive compatible mechanisms for a single agent with private-budget utility, and her behavior
in the mechanisms.

Definition 5.1. An allocation-payment function τ : [0, 1] → R+ is a mapping from the allocation
x to the payment p.

Lemma 5.2. For a single agent with private-budget utility, in any incentive compatible mechanism,
for all types with any fixed budget, the mechanism provides a convex and non-decreasing allocation-
payment function, and subject to this allocation-payment function, each type will purchase as much
as she wants until the budget constraint binds, or the unit-demand constraint binds, or the value
binds (i.e., her marginal utility becomes zero).

Proof. Myerson (1981) show that any mechanisms (x, p) for a single linear agent is incentive com-
patible (the agent does not prefer to misreport her value) if and only if a) x(v) is non-decreasing; b)
p(v) = vx(v) −

∫ v
0 x(t)dt. Thus, given any non-decreasing allocation x, the payment p is uniquely

pined down by the incentive constraints.

Comparing with the linear utility, the incentive compatibility in the private-budget utility guar-
antees that the agent does not prefer to misreport either her value or budget. If we relax the
incentive constraints such that she is only allowed to misreport her value, Myerson result already
shows that for any fixed budget level w, the allocation x(v,w) is non-decreasing in v and the pay-
ment p(v,w) = vx(v,w) −

∫ v
0 x(t, w)dt is uniquely pined down. We define the allocation-payment

function τw(x̂) = max{p(v,w) + v · (x̂ − x(v,w)) : x(v,w) ≤ x̂} if x̂ ≤ x(v̄, w); and ∞ otherwise.
Given the characterization of allocation and payment above, this allocation-payment function is
well-defined, non-decreasing and convex.

Remark 5.2. Unlike Myerson’s result which give a sufficient and necessary condition for incentive
compatible mechanisms for linear agents, Lemma 5.2 only characterizes a necessary condition for
private-budget utility.17 This condition is already enough for our arguments in Section 5.1.

Now we give the construction of EX† and EX‡ by constructing their allocation-payment functions.
The decomposition is illustrated in Figure 1. For agent with budget w, let τw be the allocation-
payment function in mechanism EX, and x∗w be the utility maximization allocation for a linear
agent with value equal to the market clearing price pq, i.e., x∗w = argmax{x : τ ′w(x) ≤ pq}. For

agents with budget w, we define the allocation-payment functions τ †w and τ ‡w for EX† and EX‡

17This characterization is only necessary because it relaxes the incentive constraints for misreporting the private
budget.
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∞
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τ †w
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∞

1

τ ‡w

τw

Figure 1: Depicted are allocation-payment function decomposition. The black lines in both figures
are the allocation-payment function τw in ex ante optimal mechanism EX; the gray dashed lines
are the allocation-payment function τ †w and τ ‡w in EX† and EX‡, respectively.

respectively below,

τ †w(x) =

{

τw(x) if x ≤ x∗w,
∞ otherwise;

τ ‡w(x) =

{

τw(x
∗
w + x)− τw(x

∗
w) if x ≤ 1− x∗w,

∞ otherwise.

By construction, for each type of the agent, the allocation from EX is upper bounded by the sum
of the allocation from EX† and EX‡, which implies that the welfare from EX is upper bounded
by the sum of the welfare from EX† and EX‡, and the requirements for the decomposition are
satisfied.

As sketched above, we separately bound the welfare in EX† and EX‡ by the welfare from posting
the market clearing price.

Lemma 5.3. For a single agent with random-public-budget utility, independently distributed value
and budget, and any ex ante constraint q, the welfare from posting the market clearing price pq is
at least the welfare from EX†, i.e., P (q) ≥ Payoff

[

EX†
]

.

Proof. Consider agent with type (v,w) and agent with type (v′, w), where both value v and v′ are
higher than the market clearing price pq. Notice that the allocations for these two types are the
same in EX† and in market clearing, since the per-unit price in both mechanisms is at most pq

which makes the mechanisms unable to distinguish these two types.

Let x† be the allocation rule in EX† and let xq be the allocation rule in posting the market clearing
price pq. For any value v ≥ pq, the expected allocation for types with value v is lower in EX† than
in market clearing, i.e., Ew

[

x†(v,w)
]

≤ Ew[x
q(v,w)]. Otherwise suppose the types with value v∗

has strictly higher allocation in EX† for some value v∗ ≥ pq, i.e, Ew

[

x†(v∗, w)
]

> Ew[x
q(v∗, w)].

By the fact stated in previous paragraph, we have that for any budget w and any value v, v∗ ≥ pq,
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xq(v,w) = xq(v∗, w), x†(v,w) = x†(v∗, w), and the expected allocation in EX† is

Ev,w

[

x†(v,w)
]

≥ Pr[v ≥ pq] ·Ev,w

[

x†(v,w) | v ≥ pq
]

= Pr[v ≥ pq] ·Ew

[

x†(v∗, w)
]

> Pr[v ≥ pq] ·Ew[x
q(v∗, w)]

= Pr[v ≥ pq] ·Ev,w[x
q(v,w) | v ≥ pq] = q,

where the qualities hold due to the independence between the value and the budget. Note that
this implies that EX† violates the ex ante constraint q, a contradiction. Further, for any type with
value v ≥ pq, Ew

[

x†(v,w)
]

≤ Ew[x
q(v,w)] implies that the allocation in market clearing “first order

stochastic dominantes” the allocation in EX†, i.e., for any threshold v†, the expected allocation from
all types with value v ≥ v† in market clearing is at least the expected allocation from those types
in EX†. Taking expectation over the valuation and the budget, the expected welfare from market
clearing is at least the welfare from EX†, i.e., P (q) ≥ Payoff

[

EX†
]

.

Lemma 5.4. For a single agent with random-public-budget utility, independently distributed value
and budget, and any ex ante constraint q; the welfare from market clearing is at least the welfare
from EX‡, i.e., P (q) ≥ Payoff

[

EX‡
]

.

Proof. In both EX‡ and market clearing, types with value lower than pq will purchase nothing, so
we only consider the types with value at least pq in this proof. Consider any type (v,w) where
v ≥ pq, its allocation in market clearing is at least its allocation in EX‡, because the per-unit price
in EX‡ is higher. Thus, the welfare from market clearing is at least the welfare from EX‡, i.e.,
P (q) ≥ Payoff

[

EX‡
]

.

Proof of Theorem 5.1. Combining Lemma 5.3 and 5.4, for any quantile q, we have

R(q) = Payoff[EX] ≤ Payoff
[

EX†
]

+Payoff
[

EX‡
]

≤ 2P (q) ≤ max
q′≤q

2P̄ (q′).

5.2 Risk Averse Agent

Note that the preference of a risk averse agent coincide with a linear agent when the allocation is
deterministic, and the welfare optimal mechanism for the single-agent problem with linear utility
is deterministic. Thus it is easy to verify that posting price is optimal for welfare maximization
under any ex ante constraint and the price-posting welfare curve is 1-resemblant to the optimal
welfare curve. Formally, we have the following theorem, with proof omitted.

Theorem 5.5. An agent with risk-averse utility has the price-posting welfare curve P that equals
(i.e. 1-resemblant) her optimal welfare curve R.

5.3 Endogenous Valuation

When agents can make investment decisions before the auction, we assume that the investment
costs are subtracted from the social welfare, i.e., the welfare contribution from agent i when she
chooses investment decision ai and receives allocation xi is vi(ai, ti) ·xi−ci(ai). Note that for agents
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with endogenous valuation, to apply Theorem 3.2 it is also important to specify the timeline for
agents to exert costly efforts as it affects the equilibrium payoff of any given mechanism. In this
paper, we assume that the agent can delay the investment decision until she sends a message to
the seller. In the case of sequential posted pricing mechanisms, for each agent i, the agent makes
the investment decisions after she sees the realized price offered by the seller. Note that the price
is infinite if the item is sold to previous agents and agent i will not make any investment given this
price. Under this timeline of the model, we can show that agents with endogenous valuation are
1-resemblant for welfare maximization.

Lemma 5.6 (Fan and Lorentz, 1954; Gershkov et al., 2021b). For any function L : R2 → R such
that L(x, q) is supermodular in (x, q) and convex in x, for any pair of allocations x ≺ x̂,18 we have

∫ 1

0
L(x(q), q) dq ≤

∫ 1

0
L(x̂(q), q) dq.

Theorem 5.7. An agent with endogenous valuation has the price-posting welfare curve P that
equals (i.e. 1-resemblant) her optimal welfare curve R.

Proof. Let L(x, q) be the welfare of the agent with type corresponding to quantile q when she makes
optimal investment decision given allocation x. By Gershkov et al. (2021b), the function L(x, q)
is supermodular in (x, q) and convex in x. For any quantile constraint q̂, let x̂ be the allocation
such that x̂(q) = 1 for any q ≤ q̂ and x̂(q) = 0 otherwise. Any mechanism with allocation x that
sells the item with probability q̂ satisfies x ≺ x̂. By Lemma 5.6, the optimal mechanism that is q̂
feasible has allocation rule x̂, which is posting a deterministic price to the agent. Thus this agent
has price-posting welfare curve P that equals (i.e. 1-resemblant) her optimal welfare curve R.

6 Resemblance of Revenue Maximization

In this section, we show that the ironed price-posting revenue curves resemble the optimal rev-
enue curves for non-linear agents. We will also drop the subscript representing the agent in all
notations.

6.1 Budgeted Agent

In this section we analyze the resemblance of revenue curves for an agent with budget. We show
that approximate resemblance is satisfied under weaker assumptions on the valuation distribution
or the budget distribution. For simplicity, in this section, we use the notation Payoffw[·] to denote
the revenue given any mechanism if the budget of the agent is w, and Payoff[·] to denote the
revenue by taking expectation over the budget w.

6.1.1 Public Budget

In this section, we consider the simpler setting where agents have public budgets, i.e., the budget
distribution is a point mass. For an agent with a public budget, we show that the ironed price-
posting revenue curve is 1-resemblant to her optimal revenue curve if her valuation distribution is

18x ≺ x̂ means that for any q̂ ∈ [0, 1],
∫ q̂

0
x(q) dq ≤

∫ q̂

0
x̂(q) dq and

∫ 1

0
x(q) dq =

∫ 1

0
x̂(q) dq.
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Figure 2: The thin solid line is the allocation rule for the optimal ex ante mechanism. The thick
dashed line on the left side is the allocation of the decomposed mechanism with lower price, while
the thick dashed line on the right side is the allocation of the decomposed mechanism with higher
price.

regular (Theorem 6.1) and for an agent with general valuation distribution, the ironed price-posting
revenue curve is 2-resemblant to her optimal revenue curve (Theorem 6.3).

Theorem 6.1. An agent with public budget and regular valuation distribution has the ironed price-
posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve R.

To prove Theorem 6.1, it is sufficient to show for any quantile q̂ ∈ [0, 1], the q̂ ex ante optimal
mechanism is a price-posting mechanism, i.e., R(q̂) = P (q̂). To show this, we write the ex ante
optimal mechanism as an optimization program, and apply Lagrangian relaxation on the budget
constraint. This leads to a new optimization program similar to an agent with linear utility but with
a Lagrangian objective function. Following the technique that price-posting revenue curve indicates
the ex ante optimal mechanism for a linear agent, we consider the Lagrangian price-posting revenue
curve which characterizes the ex ante optimal mechanism for the Lagrangian objective function.
See further discussion about this technique in Alaei et al. (2013) and Feng and Hartline (2018).
The detailed proof of Theorem 6.1 is deferred to Appendix B.1.

For an agent with a general valuation distribution, resemblance follows from a characterization of
the ex ante optimal mechanism from Alaei et al. (2013).

Lemma 6.2 (Alaei et al., 2013). For a single agent with public budget, the q ∈ [0, 1] ex ante optimal
mechanism has a menu with size at most two.

Theorem 6.3. An agent with public budget has the ironed price-posting revenue curve P̄ that is
2-resemblant to her optimal revenue curve R.

Proof. By Lemma 6.2, the allocation rule xq of the ex ante revenue maximization mechanism for
the single agent with public budget has a menu of size at most two. We decompose its allocation
into xL and xH as illustrated in Figure 2. Note that both allocation xL and xH are (randomized)
price-posting allocation rules, and neither allocation violates the allocation constraint q. Thus,

R(q) = Payoff[xq] = Payoff[xL] +Payoff[xH ] ≤ 2 max
q†≤q

P̄ (q†).
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6.1.2 Private Budget

In this section, we study the resemblance of the ironed price-posting revenue curve and the optimal
revenue curve for agents with private budget. For linear agents, those two curves are equivalent
for any valuation distribution. However, for an agent with private budget, the gap between them
can be unbounded. Specifically, when the budget distribution is correlated with the valuation
distribution, posting prices is not a constant approximation to the optimal revenue for a single
agent even with strong regularity assumption on the marginal valuation distribution and budget
distribution.

Example 6.1 (necessity of the independence between the value and budget distributions, Feng et al.,
2019). Fix a large constant h. Consider a single agent with value v drawn from [1, h] with density
function h

h−1
1
v2 , and budget w = 2h − v, i.e., her value and budget are fully correlated. A mecha-

nism which charges the agent v − 2ǫ with probability 1 − ǫ
h , or w with probability ǫ

h for sufficient
small positive ǫ is incentive compatible and has revenue O(lnh). However, the revenue of the posted
pricing is O(1).

Therefore, in this section, we focus on the case when the budget distribution is independent with
the valuation distribution for each agent. Note that even with the independence assumption,
without any further assumption on the valuation or the budget distribution, posting prices is
not approximately optimal even for a single agent, see the following example as an illustration.
Therefore, we consider mild assumption on the budget distribution and show the corresponding
resemblant property.

Example 6.2. Consider the budget distribution is the discrete equal revenue distribution, i.e.,
g(i) = 1/̟ · i2, where ̟ = π2/6. Let the quantile function of the valuation distribution be q(i) = 1/ln i.
The optimal price posting revenue is a constant. Next consider the pricing function τ(x) = 1

1−x .

From this pricing function, the value vi corresponding to payment i is vi = i2. Note that the revenue
from this payment function is infinity, i.e.,

Payoff[τ ] ≥ lim
m→∞

m
∑

i=1

(i · q(vi) · g(i))

=
1

2̟
lim

m→∞

m
∑

i=1

1

i · ln i

=
1

2̟
lim

m→∞
ln lnm → ∞.

Therefore, the gap between price posting and the optimal mechanism is infinite.

Here We consider an assumption that the budget exceeds its expectation with constant probability
at least 1/κ. This assumption on budget distribution is also studied in Cheng et al. (2018). Notice
that a common distribution assumption, monotone hazard rate, is a special case of it with κ = e
(cf. Barlow and Marshall, 1965).

Theorem 6.4. A single agent with private-budget utility has an ironed price-posting revenue curve
P̄ that is (1 + 3κ− 1/κ)-resemblant to her optimal revenue curve R, if her value and budget are
independently distributed, and the probability the budget exceeds its expectation is 1/κ.
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Corollary 6.5. A single agent with private-budget utility has an ironed price-posting revenue curve
P̄ that is (1 + 3e − 1/e)-resemblant to her optimal revenue curve R, if her value and budget are
independently distributed, and the budget distribution satisfies the monotone hazard rate.

The proof of Theorem 6.4 also uses the similar decomposition technique as in Theorem 5.1, which
we deferred to Appendix B.2.

6.2 Endogenous Valuation

For agents with endogenous valuation, we show that posted pricing is optimal for the single agent
problem given any ex ante constraint if the type distribution satisfies the regularity condition.

Theorem 6.6. An agent with endogenous valuation and regular type distribution has the ironed
price-posting revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve R.

Proof. Let L(x, q) be the virtual value of the agent given allocation x and type with quantile q.
By Gershkov et al. (2021b), the function L(x, q) is supermodular in (x, q) and convex in x if the
type distribution is regular. Similar to Theorem 5.7, for any quantile q̂, the optimal mechanism
for maximizing the expected virtual value that sells the item with probability at most q̂ is posted
pricing. Since the expected revenue equals the expected virtual value, this agent has price-posting
revenue curve P̄ that equals (i.e. 1-resemblant) her optimal revenue curve R.

7 Conclusions and Extensions

This paper provides a general framework for generalizing results from linear agents to non-linear
agents. The reduction framework relies on a novel resemblant property which characterizes the
gap between the concave hull of the price-posting payoff curve and the ex ante payoff curve for
the single agent problem. As the instantiations of the framework, we analyze the approximation
bound for various mechanisms for various non-linear utility models (i.e., budgeted utility, risk
averse utility, endogenous valuation utility) under the objective of both revenue-maximization and
welfare-maximization. Next we discuss several important extensions of our framework.

7.1 Convex Combination of Welfare and Revenue Maximization

One common objective of the designer considered in the literature is to maximize the convex com-
bination of welfare and revenue of the mechanism. Formally, given any α ∈ (0, 1), the objective of
the designer is to maximize α ·Wel+ (1−α) ·Rev. We can extend our results in Section 5 and 6 to
show that if an agent resembles linear agents for both welfare maximization and revenue maximiza-
tion, then this agent resembles linear agents for any convex combination of the two objectives. The
argument holds by applying the following lemma since both Wel and Rev are non-negative.

Lemma 7.1. If an agent is ζ-resemblant for objective 1 and ζ ′-resemblant for objective 2 with
non-negative values, then this agent is (ζ + ζ ′)-resemblant for any convex combination of the two
objectives.

Proof. For any quantile q, let EX be the q ex ante optimal mechanism for the convex combination
of the objectives. Let Payoff1[EX] be the contribution of objective 1 given mechanism EX and
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Payoff2[EX] be the contribution of objective 2 given mechanism EX. Let Payoff[EX] = α ·
Payoff1[EX]+(1−α)·Payoff2[EX] be the convex combination of the contributions given α ∈ (0, 1).
Let q1 = argmaxq′≤q P̄1(q

′) and q2 = argmaxq′≤q P̄2(q
′), where P̄1 and P̄2 are the concave hull of

price posting payoff curves for objectives 1 and 2 respectively. Let P̄ be the concave hull of price
posting payoff curves for the convex combination of objectives 1 and 2. Then, we have

Payoff[EX] = α ·Payoff1[EX] + (1− α) ·Payoff2[EX]

≤ αζ · P̄1(q1) + (1− α)ζ ′ · P̄2(q2)

≤ ζ · P̄ (q1) + ζ ′ · P̄ (q2)

≤ (ζ + ζ ′) ·max
q′≤q

P̄ (q′).

Thus this agent is (ζ + ζ ′)-resemblant for the convex combination of the two objectives.

7.2 Heterogeneous Utility Models

Our resemblant definitions are monotonic, formalized in the subsequent lemma. With this obser-
vation, our framework can be applied to environments with heterogeneous utility functions. For
example, suppose some of the agents have private budget constraints and some of the agents are
risk averse. If each agent i ∈ N is ζi-resemblant, then oblivious posted pricing for these agents is a
2maxi{ζi}-approximation to the optimal ex ante relaxation.

Lemma 7.2. For any ζ ′ ≥ ζ ≥ 1, ζ-resemblant implies ζ ′-resemblant.

7.3 Oblivious Posted Pricing

For oblivious posted pricing mechanisms (e.g. Chawla et al., 2010), we show how to apply resem-
blant property between the ironed price-posting payoff curve and optimal payoff curve to obtain
approximation results for agents with general utility. Similar to sequential posted pricing, we will
define the oblivious posted price in quantile space.

Definition 7.1. An oblivious posted pricing mechanism is ({qi}i∈N ) where the adversary chooses
an ordering {oi}i∈N of the agents, and {qi}i∈N denotes the quantile corresponding to the per-unit
prices to be offered to agents at the time they are considered according to the order {oi}i∈N if the
item is not sold to previous agents. Note that quantiles {qi}i∈N can be dynamic and depends on
both the order and realization of the past agents.

Given the definition of the oblivious quantile pricing mechanism, we denote the payoff of the
oblivious quantile pricing mechanism ({qi}i∈N ) for agents with a collection of price-posting payoff
curves {Pi}i∈N by OPP({Pi}i∈N , {qi}i∈N ), and the optimal payoff for the oblivious quantile pricing
mechanism is

OPP({Pi}i∈N ) = max
{qi}i∈N

OPP({Pi}i∈N , {qi}i∈N ).

Similar to Theorem 3.2, we have the following reduction framework for oblivious posted pricing for
non-linear agents. The proof is identical to Theorem 3.2, hence omitted here.

Theorem 7.3. Fix any set of (non-linear) agents with price-posting payoff curves {Pi}i∈N that
are ζ-resemblant to their optimal payoff curves {Ri}i∈N . If there exists an oblivious posted pricing
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mechanism ({qi}i∈N ) that is a γ-approximation to the ex ante relaxation for linear agents analog
with price-posting payoff curves {Pi}i∈N , i.e., OPP({Pi}i∈N , {qi}i∈N ) ≥ 1/γ · EAR({P̄i}i∈N ), then
this mechanism is also a γζ-approximation to the ex ante relaxation for non-linear agents, i.e.,
OPP({Pi}i∈N , {qi}i∈N ) ≥ 1/γ ζ · EAR({Ri}i∈N ).

For the single item setting, there exists an oblivious posted pricing mechanism that is a 2-approximation
to the ex ante relaxation for linear agents (Feldman et al., 2016). In addition, if the price-posting
payoff curves are the same for all gents, the approximation ratio is improved to 1/(1− 1/

√
2π) (Yan,

2011).
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Appendix

A ζ-resemblance Guarantees Known from the Literature

Here we list some non-linear utility models, and discuss their ζ-resemblance guarantees implied by
works in the literature.

Capacitated Utility. Fu et al. (2013) introduce capacitated utility – a very specific form of risk
aversion, which is both computationally and analytically tractable: utility functions that are linear
up to a given capacity C and then flat. Given allocation x and payment p, an agent has utility
min{vi ·x− p,C}. The capacity C is encoded in the utility function and is not necessarily identical
across agents. Feng et al. (2019) shows that an agent with capacitated C and valuation support
[0, v̄] is (2 + ln v̄/C)-resemblant for revenue maximization.

Private Budget Utility. Similar to Theorem 6.4 which considers independent private budget
and impose assumption on the budget distribution, Feng et al. (2019) shows that an agent with
independent private budget and regular value is 3-resemblant for revenue maximization.

Private Outside Option Utility. Gonczarowski et al. (2021) introduce a non-linear utility
model where the agent has a private value v as well as a private stochastic outside option c when she
does not participate the mechanism. Gonczarowski et al. (2021) shows that an agent with private
outside option is 2-resemblant for revenue maximization if either of the following two conditions
holds: (i) independence between value and outside option, the valuation has decreasing marginal
revenue and bounded support; or (ii) the outside option is a concave function of the value.

B Missing Proofs for Resemblance of Revenue Maximization

B.1 Public Budget

Theorem 6.1. An agent with public budget and regular valuation distribution has the ironed price-
posting revenue curve P̄ that equals to (i.e. 1-resemblant) her optimal revenue curve R.

Proof. For an agent with public budget w, the q̂ ex ante optimal mechanism is the solution of the
following program,

max
(x,p)

Ev[p(v)]

s.t. (x, p) are IC, IR,
Ev[x(v)] = q̂,
p(v̄) ≤ w.

(1)

where v̄ is the highest possible value of the agent. Consider the Lagrangian relaxation of the budget
constraint in (1),

min
λ≥0

max
(x,p)

Ev[p(v)] + λw − λp(v̄)

s.t. (x, p) are IC, IR,
Ev[x(v)] = q̂.

(2)
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Let λ∗ be the optimal solution in program (2). If we fix λ = λ∗ in program (2), its inner max-
imization program can be thought as a q̂ ex ante optimal mechanism design for a linear agent
with Lagrangian objective function Ev[p(v)] − λ∗p(v̄). Thus, we define the Lagrangian price-
posting revenue curve Pλ∗(·) where Pλ∗(q) is the maximum value of the Lagrangian objective
Ev[p(v)]− λ∗p(v̄) in price-posting mechanism with per-unit price V (q). For any q ∈ (0, 1], by the
definition, Pλ∗(q) = qV (q)− λ∗V (q). For q = 0, notice that the agent with v̄ is indifferent between
purchasing or not purchasing. Thus, by the definition, Pλ∗(q) = 0 if q = 0.

Now, we consider the concave hull of the Lagrangian price-posting revenue curve Pλ∗(·) which we
denote as P̂λ∗(·). Let q† be the smallest solution of equation Pλ∗(q) = qP ′

λ∗(q). Since Pλ∗(0) ≤ 0,

Pλ∗(1) = 0 and Pλ∗(·) is continuous, q† always exists. Then, for any q ≤ q†, P̂λ∗(q) = q P ′
λ∗(q†). For

any q ≥ q†, we show P̂λ∗(q) = Pλ∗(q) by the following arguments. First notice that Pλ∗(q†) ≥ 0,
and hence q† ≥ λ∗. Consider P ′′

λ∗(q) = V ′′(q)(q − λ∗) + 2V ′(q). Clearly, V ′(q) ≤ 0. If V ′′(q) ≤ 0,
then P ′′

λ∗(q) ≤ 0. If V ′′(q) > 0, then P ′′
λ∗(q) = V ′′(q)(q−λ∗)+2V ′(q) ≤ qV ′′(q)+2V ′(q) ≤ 0, where

qV ′′(q) + 2V ′(q) is non-positive due to the regularity of the valuation distribution.

To summarize, P̂λ∗(·), the concave hull of the Lagrangian price-posting revenue curve satisfies

P̂λ∗(q) =

{

q P ′
λ∗(q†) if q ∈ [0, q†]

Pλ∗(q) if q ∈ [q†, 1]

Therefore, use the similar ironing technique based on the revenue curves for linear agents with
irregular valuation distribution (e.g. Myerson, 1981; Bulow and Roberts, 1989; Alaei et al., 2013),
Lemma B.1 (stated below) suggests that the q̂ ex ante optimal mechanism irons quantiles between
[0, q†] under q̂ ex ante constraint, which is still a posted-pricing mechanism.

Lemma B.1 (Alaei et al., 2013). For incentive compatible and individual rational mechanism
(x(·), p(·)) and an agent with any Lagrangian price-posting revenue curve Pλ∗(q), the expected La-
grangian objective of the agent is upper-bounded by her expected marginal Lagrangian objective of
the same allocation rule, i.e.,

Ev[p(v)] + λ∗p(v̄) ≤ Eq

[

P̂ ′
λ∗(q) · x(V (q))

]

.

Furthermore, this inequality holds with equality if the allocation rule x(·) is constant all intervals
of values V (q) where P̂λ∗(q) > Pλ∗(q).

B.2 Private Budget

Theorem 6.4. A single agent with private-budget utility has an ironed price-posting revenue curve
P̄ that is (1 + 3κ− 1/κ)-resemblant to her optimal revenue curve R, if her value and budget are
independently distributed, and the probability the budget exceeds its expectation is 1/κ.

Let w∗ denote the expected budget of the agent. For any ex ante constraint q, denote EX as the q
ex ante revenue optimal mechanism.

Our analysis here is similar to the analysis for welfare, i.e., the price decomposition technique.
Consider the decomposition of EX into three mechanisms EX†, EX§ and EX‡ such that mechanism
EX† contains per-unit prices at most the market clearing price, mechanism EX‡ contains per-unit
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prices at least the expected budget, while mechanism EX§ contains per-unit prices between the
market clearing price and the expected budget. All mechanisms satisfy the ex ante constraint q,
and the sum of their welfare is upper bounded by the welfare of the original ex ante mechanism
EX, i.e., Payoff[EX] ≤ Payoff

[

EX†
]

+Payoff
[

EX§
]

+Payoff
[

EX‡
]

. Note that in the special case
where the market clearing price is larger than the expected budget, i.e., pq > w∗, EX§ does not
exist and mechanism EX is decomposed into EX† and EX‡.

We construct the allocation-payment functions τ †w, τ
‡
w and τ §w for EX†, EX‡, and EX§ respectively.

For each budget w, let τw be the allocation-payment function for types with budget w in mech-
anism EX, and x∗w be the utility maximization allocation for the agent with value and budget
equal to the market clearing price pq, i.e., x∗w = argmax{x : τ ′w(x) ≤ pq}. Let x♯w be the utility
maximization allocation for the agent with value and budget equal to the expected budget w∗, i.e.,
x♯w = argmax{x : τ ′w(x) ≤ w∗}. Then the allocation-payment functions τ †w, τ

‡
w and τ §w are defined

respectively as follows,

τ †w(x) =

{

τw(x) if x ≤ x∗w,
∞ otherwise;

τ §w(x) =

{

τw(x
∗
w + x)− τw(x

∗
w) if x ≤ x♯w − x∗w,

∞ otherwise;

τ ‡w(x) =

{

τw(x
♯
w + x)− τw(x

♯
w) if x ≤ 1− x♯w,

∞ otherwise.

To bound the revenue contribution from EX†, we use the following technical lemma developed in
Feng et al. (2019).

Lemma B.2 (Feng et al., 2019). For a single agent with random-public-budget utility, indepen-
dently distributed value and budget, and any ex ante constraint q; the revenue of EX† is at most
the revenue from posting the market clearing price, i.e., P (q) ≥ Payoff

[

EX†
]

.

Next we illustrate how to bound the revenue from EX‡ and EX§ respectively using the revenue
from price-posting.

Lemma B.3. For a single agent with private-budget utility, independently distributed value and
budget, for any quantile q, there exists q† ∈ [0, q] such that (1 + κ− 1/κ) · P (q†) ≥ Payoff

[

EX‡
]

.

Proof. Let w∗ be the expected budget and let p̄ = max{w∗, pq}. Let q̄ be the quantile corresponding
to value p̄ and let q† = argmaxq′≤q P (q′). Thus P (q̄) ≤ P (q†). Moreover, by the construction of

the decomposition, the per-unit price in EX‡ is larger than p̄. In both EX‡ and the mechanism
that posts the market clearing price, the types with value lower than p̄ will purchase nothing, so
we only consider the types with value at least p̄ in this proof.

Let Payoffw

[

τ ‡w
]

be the expected revenue of providing the allocation-payment function τ ‡w in EX‡

to the types with budget w; and let Payoffw[p] be the expected revenue of posting price p to the
types with budget w. The following three facts allow comparison of Payoff

[

EX‡
]

to P (q†):

(a) Posting the price p̄ makes the budget constraints bind for the types with budget at most w∗,

so Payoffw

[

τ ‡w
]

≤ Payoffw[p̄] for all w ≤ w∗.
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(b) Payoffw

[

τ ‡w
]

≤ w
w∗Payoffw∗

[

τ ‡w
]

for all w ≥ w∗. This is because if the type (v,w∗) pays her

budget w∗ (i.e., the budget constraint binds), her payment is a (w/w∗)-approximation to the
payment from the type (v,w), since the type (v,w) pays at most w. Moreover, if the type
(v,w∗) pays less than her budget w∗ (i.e., the unit-demand constraint binds, or the value
binds), her allocation is equal to the allocation from the type (v,w) for w ≥ w∗. Hence, their
payments are the same.

(c) Since the revenue of posting price p̄ to an agent with budget w∗ is at most the revenue to
an agent with budget w > w∗; with the assumption that budgets exceed the expectation w∗

with probability at least 1/κ, it implies that

Payoffw∗[p̄] ·
1

κ
≤ E

[

Payoffw[p̄]
∣

∣

∣
w ≥ w∗

]

·Pr[w ≥ w∗] ≤ P (q̄).

We upper bound the revenue of EX‡ as follows,

Payoff
[

EX‡
]

=

∫ w∗

¯
w

Payoffw

[

τ ‡w

]

dG(w) +

∫ w̄

w∗
Payoffw

[

τ ‡w

]

dG(w)

≤

∫ w∗

¯
w

Payoffw[p̄] dG(w) +

∫ w̄

w∗

w

w∗
Payoffw∗

[

τ ‡w

]

dG(w)

≤ (1−
1

κ
)P (q̄) +

∫ w̄
w∗ wdG(w)

w∗
Payoffw∗ [p̄]

≤ (1−
1

κ
)P (q̄) +Payoffw∗ [p̄] ≤ (1 + κ−

1

κ
)P (q†)

where the first inequality is due to facts (a) and (b); in the second inequality, the first term is due
to Pr[w ≤ w∗] ≤ 1 − 1/κ, the revenue Payoffw[p̄] is monotone increasing in w, and by definition
∫ w̄

¯
w Payoffw[p̄] dG(w) = P (q̄), and the second term is due to fact (a); and the last inequality is due

to P (q̄) ≤ P (q†) and fact (c).

Lemma B.4. For a single agent with private-budget utility, independently distributed value and
budget, when pq ≤ w∗, there exists q† ≤ q such that the price-posting revenue from q† is a (2κ− 1)-
approximation to the revenue from EX§, i.e., (2κ− 1)P (q†) ≥ Payoff

[

EX§
]

.

Proof. Let q† = argmaxq′≤q P (q′). Suppose the support of the budget distribution is from [
¯
w, w̄].

Let p̃ be the price larger than the market clearing price pq and smaller than the expected budget
w∗ that maximizes revenue without the budget constraint. Consider the following calculation with
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justification below.

Payoff
[

EX§
]

=

∫ w∗

¯
w

Payoffw

[

τ §w

]

dG(w) +

∫ w̄

w∗
Payoffw

[

τ §w

]

dG(w)

(a)

≤

∫ w∗

¯
w

Payoffw∗

[

τ §w

]

dG(w) +

∫ w̄

w∗

w

w∗
Payoffw∗

[

τ §w

]

dG(w)

(b)

≤

∫ w∗

¯
w

Payoffw∗[p̃] dG(w) +

∫ w̄

w∗

w

w∗
Payoffw∗[p̃] dG(w)

(c)

≤ (2−
1

κ
)Payoffw∗ [p̃]

(d)

≤ (2κ − 1)Payoff[p̃]
(e)

≤ (2κ− 1)P (q†).

Inequality (a) holds because given the allocation payment function τ §w, the revenue only increases

if we increase the budget to w∗, i.e., Payoffw

[

τ §w
]

≤ Payoffw∗

[

τ §w
]

for any w ≤ w∗. Moreover, for

any w > w∗, given the allocation payment function τ §w, the revenue is either the same for budget
w and w∗, or the budget binds for agent with expected budget w∗. Since the revenue from agent

with budget w is at most w, we know that Payoffw

[

τ §w
]

≤ w/w∗ · Payoffw∗

[

τ §w
]

. Note that for

allocation payment rule τ §w, per-unit prices are larger than the market clearing price pq and smaller
than the expected budget w∗, and budget does not bind for agents with budget w∗. Therefore, by

definition, the optimal per-unit price in this range is p̃, Payoffw∗

[

τ §w
]

≤ Payoffw∗[p̃] and inequality

(b) holds. Inequality (c) holds because
∫ w∗

¯
w dG(w) ≤ 1− 1/κ by the assumption that the probability

the budget exceeds its expectation is at least κ, and
∫ w̄
w∗

w
w∗dG(w) ≤ 1. Inequality (d) holds because

Payoffw∗ [p̃] ≤ κ·Payoff[p̃] for any randomized prices p̃ according to Cheng et al. (2018). Inequality
(e) holds by the definition of the price-posting revenue curve P and quantile q†, the fact that price
p̃ is larger than the market clearing price pq.

Proof of Theorem 6.4. Let q† = argmaxq′≤q P (q′). Combining Lemma B.2, B.3 and B.4, we have

Payoff[EX] ≤ Payoff
[

EX†
]

+Payoff
[

EX‡
]

+Payoff
[

EX§
]

≤ (1 + 3κ− 1/κ)P (q†).

C Numerical Result for Uniformly Distributed Private-budgeted

Agents

In this section, we discuss the numerical results of the approximation ratios of revenue-maximization
for i.i.d. private-budgeted agents with value and budget drawn uniformly from [0, 1] independently.
This example and the optimal mechanisms have been studied in Che and Gale (2000) for a single
agent and Pai and Vohra (2014) for multiple agents. For both scenarios, the optimal mechanisms
are complicated. However, Figure 3a suggests that for a single agent, posting a single price is a
good approximation to the optimal mechanism for all ex ante probability constraint; Figure 3b
suggests that for multi-agents, simple pricing based mechanisms (i.e. oblivious posted pricing and
marginal payoff maximization) achieve good approximation to the optimal mechanism. Next, we
explain how the numerical results are computed.
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Figure 3: Figure 3a illustrates the comparison between the price-posting revenue curve (dashed
line) and the ex ante revenue curve (solid line) for selling a single item to a private-budgeted agent
with value and budget both drawn uniformly from [0, 1]. The x-axis is the ex ante probability
and the y-axis is the expected revenue. The price-posting revenue curve for this uniform budgeted
agent is 1.02-resemblant to her ex ante revenue curve.
Figure 3b illustrates the comparison between approximation ratio of optimal oblivious posted pric-
ing (grey line) and marginal payoff mechanism (black line) to the ex ante relaxation for selling
a single item to i.i.d. private-budgeted agents with value and budget both drawn uniformly from
[0, 1]. The x-axis is the number of agents and the y-axis is the approximation ratio. When there
are 15 agents, the approximation ratio for oblivious posted pricing is 1.23 and the approximation
ratio for marginal payoff mechanism is 1.11.

First we focus on the single agent problem, i.e., the calculation of the price-posting revenue curve
and ex ante revenue curve illustrated in Figure 3a. For the price-posting revenue curve, we directly
compute the probability the item is sold and the corresponding revenue for any price p. Thus, we
can have the closed-form characterization for the mapping from the ex ante allocation constraint to
the optimal price-posting revenue. For the ex ante revenue curve, by approximating the continuous
uniform distribution with a discretized uniform distribution, we can write this optimization problem
as a finite dimensional linear program, which allows us to numerically evaluate the optimal ex
ante revenue given any ex ante allocation constraint q. By evaluating the curve on quantiles q ∈
{0, 1/50, . . . , 1} with grid size 1/50, we have the numerical figure for the ex ante revenue curve.

For the multi-agent problem, since both oblivious posted pricing and marginal payoff mechanism
are pricing based mechanism, the revenues of both mechanisms for private-budgeted agents are
equivalent to the revenues of both mechanisms for linear agents with the same price-posting revenue
curve. By the above paragraph, we have the closed-form for the price-posting revenue curve, which
pins down the value distribution of such linear agents. First note that since agents are i.i.d.,
the revenue from oblivious posted pricing (OPP) is the same as sequential posted pricing (SPP).
We compute the revenue for both OPP and SPP using an dynamic programming (i.e. backward
induction). For i.i.d. regular linear agents, the revenue of the marginal payoff mechanism is the same
as the revenue of the second price auction with monopoly reserve, which can be solved analytically.
Finally, we can numerical calculate the optimal ex ante relaxation using the ex ante revenue curve
for a single agent, and evaluate the approximation ratio for both mechanisms when number of
agents ranges from 1 to 15.
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