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Abstract

We study sublinear time algorithms for estimating the size of maximum matching in graphs.
Our main result is a (1

2 + Ω(1))-approximation algorithm which can be implemented in O(n1+ε)
time, where n is the number of vertices and the constant ε > 0 can be made arbitrarily small. The
best known lower bound for the problem is Ω(n), which holds for any constant approximation.

Existing algorithms either obtain the greedy bound of 1
2 -approximation [Behnezhad FOCS’21],

or require some assumption on the maximum degree to run in o(n2)-time [Yoshida, Yamamoto,
and Ito STOC’09]. We improve over these by designing a less “adaptive” augmentation algo-
rithm for maximum matching that might be of independent interest.
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1 Introduction

Linear-time algorithms have long been considered the gold standard in algorithm design. With
the rapid increase in the size of data, however, even linear-time algorithms may be slow in some
settings. A natural question is whether it is possible to solve a problem of interest in sublinear time
in the input size. That is, without even reading the whole input. In this work, we focus on the
problem of estimating the size of maximum matching in sublinear time. Recall that a matching is
a set of edges no two of which share an endpoint, and a maximum matching is a matching of the
largest size. This is a central problem in the study of sublinear time algorithms and several general
techniques of the area have emerged from the study of matchings [PR07, NO08, YYI09, ORRR12,
KMNT20, CKK20, Beh21].

There is a simple greedy algorithm for constructing a maximal (but not necessarily maximum)
matching: Iterate over the edges and greedily add each edge whose endpoints are yet unmatched.
Every maximal matching is at least half the size of a maximum matching. Thus, this simple
algorithm is a 1/2-approximation. Note, however, that the algorithm’s running time is not sublinear
in the input size as we have to go over all the possibly Ω(n2) edges one by one where n is the number
of vertices. In fact, there are lower bounds showing that Ω(n2) time is necessary to find any O(1)-
approximate matching. Nonetheless, approximating the size of the maximum matching can be done
much faster. Indeed, a beautiful line of work in the literature [NO08, YYI09, ORRR12, Beh21] led
to an Õ(n) time algorithm for estimating the size of a (random) greedy maximal matching [Beh21].

Unfortunately, the main shortcoming of the greedy maximal matching algorithm is that it only
provides a 1/2-approximation, even when the edges are processed in a random order [DF91]. There
are techniques to improve the approximation by “augmenting” the greedy matching [YYI09], but
such techniques only work well when the degrees in the graph are rather small. In particular, when
we go even slightly above 1/2-approximation, then all known algorithms take a (large) polynomial
time in the maximum degree. Unfortunately, this can be as large as Ω(n2) for general n-vertex
graphs which is no longer sublinear time in the input size. This raises a natural question:

Question 1. Is it possible to (1
2 + Ω(1))-approximate maximum matching size in n2−Ω(1) time?

We remark that this question has been open even for bipartite graphs.

In this work, we answer Question 1 in the affirmative. The running time of our algorithm
can, in fact, be made abritrarily close to linear in n. Our algorithm can be adapted to both
the adjacency list and adjacency matrix query models, which are the two standard graph repre-
sentations studied in the literature. We also consider both multiplicative approximations as well
as multiplicative-additive approximations. See Section 3 for the formal definitions of these query
models and approximations.

Using n, m, ∆, and d̄ to respectively denote the number of vertices, the number of edges, the
maximum degree, and the average degree in the graph, our results can be summarized as follows:

Theorem 1.1. For any constant ε > 0, there is a constant δ > 2−O(1/ε) along with an algorithm
that w.h.p. estimates the size of maximum matching up to a:

(1) multiplicative factor of (1
2 + δ) in the adjacency list model in Õ(n+ ∆1+ε) time,

(2) multiplicative-additive factor of (1
2 + δ, o(n)) in the adjacency list model in Õ(d̄ ·∆ε) time,

(3) multiplicative-additive factor of (1
2 +δ, o(n)) in the adjacency matrix model in O(n1+ε) time.
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A few remarks about the three results of Theorem 1.1:

• The constant δ > 0 in Theorem 1.1 is miniscule. We did not attempt to optimize it, but do
not expect our techniques to lead to a better than, say, .51-approximation in n2−Ω(1) time.

• Theorem 1.1–(1) comes close to an Ω(n) lower bound that holds for any O(1)-approximation
in the adjacency list model. Any such algorithm must distinguish an empty graph from one
with a single edge. This clearly requires Ω(n) queries in the adjacency list model.

• Theorem 1.1–(2) comes close to an Ω(d̄) lower bound for any (O(1), o(n))-approximation in
the adjacency list model due to [PR07]. Observe that d̄∆ε � m for any ε < 1. Therefore,
this algorithm always runs in sublinear time in the number of edges in the graph.

• Theorem 1.1–(3) comes close to an Ω(n) lower bound for any (O(1), o(n))-approximation in
the adjacency matrix model. Any such algorithm must distinguish an empty graph from one
that includes a random perfect matching. This requires Ω(n) adjacency matrix queries.

• It takes Ω(n2) queries to the adjacency matrix to distinguish an empty graph from one with
only a single edge. Since this must be done for any multiplicative O(1)-approximation, no
non-trivial such algorithm (i.e., one with o(n2) queries) exists for this model.

On Beating Greedy Matching in Various Settings

The greedy 1/2-approximation is a prevalent barrier for maximum matching across various settings.
As a result, numerous works in the literature study the possibility of beating it — both on the upper
bound side as well as the lower bound side. The answer is not always the same. For instance, for
the online model under edge arrivals, [GKM+19] showed that 1/2 is provably the best achievable
approximation, which can be trivially matched by the greedy algorithm. There are also settings
where the answer remains unknown, despite a significant research effort. For instance, in the
single-pass streaming setting, beating the greedy 1/2-approximation in Õ(n) (or even subquadratic)
space has been open for nearly two decades [FKM+05], and is often considered as one of the
most fundamental open problems of the area. Finally, there are settings for which the greedy
1/2-approximation has been broken. Various models of the online setting [FHTZ20, GKM+19],
the random-order streaming setting [KMM12], and the stochastic matching setting [AKL17] are
examples of this. In many of these settings, the approximation has been improved well beyond
1/2 after the greedy bound was first broken. For instance, in the random-order streaming the
current best known bound is slightly above 2/3 [AB21], and in the stochastic matching setting
a (1 − ε)-approximation has been achieved [BDH20]. We hope that our work in this paper also
inspires future work on going tangibly above 1/2-approximation in the sublinear time model.

Discovering short augmenting paths has been a central technique in many of the works discussed
above in beating the greedy algorithm. What varies significantly is whether it is possible to find
these augmenting paths effeciently in the particular model at hand. In particular, a common
approach is to first construct a maximal matching in full, and then augment it via the vertices
left unmatched. This “adaptivity” complicates things in our model, making it hard to estimate
the size of the solution in subquadratic time. One of our main contributions in this work is to
give a less “adaptive” algorithm that interleaves the construction of a maximal matching and the
augmentation phase. We believe this technique, which is overviewed in Section 2, might be of
independent interest.
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2 Technical Overview

In Section 2.1, we first give a brief overview of existing approaches and discuss why the take
quadratic time to implement. Then, in Section 2.2, we overview our main tool in breaking this
quadratic time barrier through a less “adaptive” augmentation algorithm.

2.1 The Quadratic Barrier: A Brief Discussion of Earlier Techniques

Discovering (short) augmenting paths1 is a natural way of improving the approximation for the
maximum matching problem. For example, the Hopcroft-Karp [HK73] algorithm starts with an
empty matching and iteratively applies a maximal set of vertex disjoint (short) augmenting paths.
Each step of Hopcroft-Karp can essentially be viewed as a maximal independent set (MIS) instance.
Put one vertex for each (short) augmenting path and connect two vertices if their corresponding
augmenting paths share a vertex. An MIS in this graph corresponds to a maximal set of vertex
disjoint augmenting paths. Building on this idea and by giving a size estimator for MIS, Yoshida,
Yamamoto, and Ito [YYI09] showed that for any integer k ≥ 1, a ( k

k+1 , o(n))-approximation can be

obtained in Ok(∆
6k(k+1)) time2. This is sublinear when ∆ is sufficiently small.

Although the MIS-based approach is powerful enough to go well beyond 1/2-approximation in
poly(∆) time, it does not seem to help with general graphs where ∆ can be large. This holds even
if we limit ourselves to length-3 augmenting paths, which is needed for beating 1/2. The MIS size
estimator of [YYI09] crucially requires time at least linear in the average degree. Since every edge
of a maximal matching can belong to Ω(∆2) length-3 augmenting paths (with Ω(∆) choices from
each endpoint of the edge), this average degree in the MIS graph can be Ω(∆2) where ∆ is the
original graph’s maximum degree. This makes it unlikely for this approach to yield an o(∆2) time
algorithm. Additionally, not being able to construct the MIS graph explicitly in whole, and not
having the edges of the maximal matching we are trying to augment also impose other ∆ factors
in the running time, arriving at the rather large poly(∆) bound of [YYI09].

There is an alternative way of discovering length-3 augmenting path which works directly with
matchings instead of independent sets. The idea is to first find a maximal matching M of G, then
find another maximal matching S on a subgraph H of G which includes a subset of the edges
that have exactly one endpoint matched by M . Note that if both endpoints of an edge e ∈M are
matched in S, then we get a length-3 augmenting path. This framework was first used by [KMM12]
in the context of random-order streaming algorithms, but has since been applied to various other
settings [BHN16, BLM20, GS17]. Because the second graph H is defined adaptively based on
M , we cannot simply run two independent instances of existing maximal matching estimators as
black-box. In fact, this framework also hits a quadratic-in-degree time barrier as we describe next.
To describe this barrier, we first briefly overview the key ideas behind the maximal matching size
estimator of [Beh21].

Consider a maximal matching S that is constructed greedily by iterating over the edges in some
ordering π. It is not hard to see that e ∈ S iff there is no edge e′ incident to e such that π(e′) < π(e)
and e′ ∈ S. Therefore to determine whether e ∈ S, it suffices to go over the lower rank neighboring
edges of e (in the increasing order of their ranks) and recursively query them to either find one that
belongs to S, or conclude that e must be in S. This approach was first suggested by Nguyen and
Onak [NO08]. The main question is the total number of recursive calls needed for the process to

1See Section 3 for the formal definition of augmenting paths.
2Ok ignores dependencies on k.
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finish. The result of Behnezhad [Beh21] is that for a random vertex v and a random permutation
π, the process terminates in O(d̄ · log n) expected total time, coming close to an Ω(d̄) lower bound.

Now, let us revisit the above two-step algorithm which first constructs a maximal matching M
of G and then another maximal matching S of a subgraph H of G. Consider the task of determining
whether a vertex v is matched by S. From [Beh21], we get that for a random vertex v, this should
be doable by exploring Õ(d̄H) edges of H in expectation where here we use d̄X to denote the average
degree of graph X. The challenge, however, is that since H is defined adaptively based on M , we
do not a priori know the neighbors of v in H. In particular, to know whether an edge (u, v) exists
in H, we have to ensure that exactly one of u and v is matched in M . Therefore, for exploring
Õ(d̄H) edges in H, the naive approach would make Õ(d̄H) vertex queries to M . Note that these
calls are not necessarily to random vertices anymore, which is crucial for the bound of [Beh21] to
work. But even if we manage to get an Õ(d̄G) time bound on each one of these calls we arrive at
a total running time of Θ̃(d̄H · d̄G) which again can be as large as Ω(n2).

2.2 Our Contribution: A Less “Adaptive” Augmentation Algorithm

The two-stage algorithm we discussed earlier, constructs M fully and then adaptively picks the
edges of S based on M . Our first step towards proving Theorem 1.1 is introducing a less “adaptive”
algorithm that interleaves the construction of the two matchings M and S.

Our algorithm starts by constructing a sequence T , containing a single element (e,Extend)
and K ≥ 1 distinct elements (e,Start), corresponding to every edge e in the graph, where K is
a parameter of the algorithm. We will process T in a random order. The role of having multiple
copies of the Start elements is to bias them to appear earlier in the random permutation. We start
by initializing two empty matchings M and S and then iterate over these randomly sorted m(K+1)
elements of T . Whenever we see an (e,Start) element, we add e to M iff both endpoints of e are
unmatched in M . Therefore, M will be a random greedy maximal matching of G. Whenever we
see an (e,Extend) element, we add e to S under a few conditions. The first condition is that both
endpoints of e must be yet unmatched by S; this is to ensure that S continues to be a matching.
The second condition is that at most one endpoint of e can be already matched by M . Our final
algorithm, formalized as Algorithm 1, also checks two more technical conditions before adding e to
S which are needed for the approximation ratio analysis. Once all of T is processed, the algorithm
returns a maximum matching of M ∪ S.

Observe that even though at the time of adding an edge (u, v) to S, at most one of its endpoints
is matched in M , the other endpoint may get matched in M later in the process. Such edges of S
cannot be used in length-3 augmenting paths for M . One way to avoid these bad events is to set
K large enough so that all the Start elements appear before all Extend elements. However, this
will negatively impact the running time. Specifically, the local query process to determine whether
a random vertex v is matched in either of S or M takes Õ(d̄ ·K) time. This means that we need
to set K to be much smaller than ∆ to beat the quadratic-time-barrier. Indeed we set K ≈ ∆ε to
get the bounds of Theorem 1.1.

A C

MM

B D

S

When K � ∆, we will inevitably have many edges of S for which
both endpoints are matched in M . For example, consider the con-
struction illustrated on the right with four vertex parts A, B, C, D.
There is a regular bipartite graph of degree Θ(∆) between A and B,
a regular bipartite graph of degree Θ(∆0.99) between A and D, and a
regular bipartite graph of degree Θ(∆0.98/K) between C and D. In
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this construction, the edges of M match A to B and C to D nearly
completely. The edges of S match A to D nearly completely. This happens because there are many
more Extend elements in (A,D) than there are Start elements in (C,D). Therefore, at the time
of adding S, the part of M from C to D is not yet constructed.

Despite this bad event, we show that the edges of S are still useful in augmenting M . One key
insight apparent in the above example is that the edges of (C,D) in M tend to have rank (in the
permutation of T ) roughly K times larger than those edges of (A,B) in M . We generalize this to
all graphs and show that if an edge of S connects two edges of M , then the ranks of these edges
of M must differ by a factor of roughly K.3 Therefore, if instead of considering all edges of M for
augmentation, we consider a subset Mj? of M that is a constant fraction of M and at the same
time any two edges in Mj? have ranks within K factor of each other, then S cannot connect two
edges of Mj? and so we can focus on augmenting just Mj? instead of the whole matching M . See
Sections 4.1 and 4.2 for the full details of the algorithm and its approximation analysis.

So far we have only described an algorithm that finds a (1
2 + Ω(1))-approximate matching and

have not yet described how to estimate its output size in sublinear time. To do this, we first define
a query process akin to the one described above for maximal matching. That is, for a given edge e
we define two query processes that respectively return whether e ∈M and e ∈ S. We then analyze
the expected number of the recursive calls for a random start vertex by building on the techniques
of [Beh21, YYI09]. Several challenges arise along the way that are unique to our algorithm and
require new ideas. For instance, an Extend element remains relevant (i.e., can still be added to S)
until seeing two Start elements in M , one from each endpoint. This is unlike the greedy approach,
say for MIS or maximal matching, where an element (respectively a vertex and an edge) becomes
irrelevant right after seeing one neighbor in the solution. Also note that we should not simply count
the number of edges in M and S. Rather, we have to count the number of edges of M plus the
number of length-3 augmenting paths that we find. To do this, when we find an edge (u, v) ∈ S
and an edge (v, w) ∈ M , we also query whether w is matched in S to a vertex left unmatched by
M or not. This complicates the analysis because this vertex w is not picked uniformly at random
anymore. The details of the query process and its analysis are provided in Section 5.

3 Preliminaries

Notation: Throughout the paper we use G = (V,E) to denote the input graph. We use n to
denote the number of vertices in G, m to denote the number of edges in G, ∆ to denote the
maximum degree of G, and d̄ to denote the average degree of G. We write µ(G) to denote the size
of the maximum matching in G.

We use A ⊕ B := (A ∪ B) \ (A ∩ B) to denote the symmetric difference of two sets A and B.
Also for any positive integer k, we use [k] to denote the set {1, . . . , k}. Throughout the paper, we
use the Õ(·) to suppress poly log n factors, that is Õ(f) = O(f · poly log(n)).

Problem Definition: Given a graph G, represented in one of the following two ways, we study
the problem of estimating the size of maximum matching:

• Adjacency List: In this model, the neighbors of each vertex are stored in a list sorted in an
arbitrary order. Each query of the algorithm specifies a vertex v and an index i. The answer

3To be more precise, we only prove this for most edges of S, but not all.
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is the ID of the i-th vertex in the list of v’s neighbors, or empty if v has less than i neighbors.

• Adjacency Matrix: In this model, each query of the algorithm specifies a pair of vertices u
and v. The answer is 1 if u and v are adjacent, and 0 otherwise.

For α ∈ (0, 1] and γ ∈ [0, 1], we say µ̃(G) is a multiplicative-additive (α, γn)-approximation of the
size of maxmimum matching of G if αµ(G)−γn ≤ µ̃(G) ≤ µ(G). Additionally, it is a multiplicative
α-approximation if αµ(G) ≤ µ̃(G) ≤ µ(G).

Augmenting/Alternating Paths: Given a matching M of G, a path in G is an alternating
path for M if its edges alternatively belong to M . An alternating path is an augmenting path for
M if the first and the last edges of the path do not belong to M .

It is well-known that if a maximal matching is nearly half the size of a maximum matching,
then almost all of its edges belong to length-three augmenting paths. The following statement is
folklore. For the sake of completeness, we provide a simple proof in Appendix A.

Claim 3.1 (Folklore). Let M be a maximal matching and M? a maximum matching. Suppose
|M | < (1

2 + δ)|M?|. In M ⊕M?, there are at least |M | − 4δ|M?| length-3 augmenting paths for M .

Greedy Matching: Given a graph G = (V,E) and a permutation π of its edge-set E, we use
GreedyMM(G, π) to denote the greedy maximal matching obtained by iterating over the edges of
E in the order of π and greedily adding each encountered edge that does not violate matching
constraints to the matching.

We use the following proposition about the size of greedy matchings in vertex-subsampled
subgraphs. It was first proved in [BLM20] using the techniques developed in [KMM12].

Proposition 3.2 ([BLM20, Lemma 5.2]). Let G(V,U,E) be a bipartite graph, let π be an arbitrary
permutation over E, let p ∈ (0, 1), and let M be an arbitrary matching in G. Let W be a subsample
of V including each vertex independently with probability p. Define X to be the number of edges in
M whose endpoint in V is matched in GreedyMM(G[W ∪ U ], π); then

EW [X] ≥ p(|M | − 2p|V |).

Probabilistic tools: We use the following version of Chernoff bound.

Proposition 3.3 (Chernoff Bound). Suppose X1, X2, . . . , Xn are independent Bernoulli random
variables and X =

∑n
i=1Xi. For any t > 0, we have

Pr[|X −E[X]| ≥ t] ≤ 2 exp

(
− t2

3 E[X]

)
.

4 A Meta Algorithm for Beating the 1
2-Approximation

4.1 The Algorithm

In this section, we formalize our new “less adaptive” meta algorithm that we informally overviewed
in Section 2. We show in Section 4.2 that its approximation ratio is strictly better-than-half. We
later show in Section 5 that the size of its output matching can be estimated in sublinear time.
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Before formalizing the algorithm, let us give a few useful definitions. Given an n-vertex graph
of maximum degree ∆, and a parameter ε ∈ (0, .25), define:

• p := 0.007.

• D := (c ·∆ · log n)ε where we later fix c ≥ 1 to be sufficiently large function of ε.

• K := 10D log2 n.

• αi := 1/Di−1 for i ∈ [2/ε] and α2/ε+1 = 0. Note that 0 = α2/ε+1 < α2/ε < . . . < α2 < α1 = 1.

We are now ready to state the algorithm, which is formalized below as Algorithm 1.

Algorithm 1: An algorithm for beating half-approximate matching.

Input: An n-vertex m-edge graph G = (V,E) of max degree ∆. Parameter: ε ∈ (0, .25).

1 Define K, p, and α2/ε, . . . , α1 as above.

2 Construct a sequence T , which for any edge e ∈ E includes K copies of (e,Start) and one

copy of (e,Extend). Then random shuffle the elements in T .

3 For any vertex v ∈ V pick a color cv ∈ {Blue,Red} uniformly and independently.

4 Initialize M ← ∅, S ← ∅.; // Both M and S will be matchings of G.

5 Initialize M1 ← ∅, . . . ,M2/ε ← ∅.; // These will partition the edges in M.

6 Draw j? from [2/ε] uniformly at random.

7 for i = 1 to |T | do

8 Let (e = {u, v}, X) be the i-th element in T .

9 if X = Start and degM (u) = degM (v) = 0 then

10 Add e to M .

11 Add e to the unique Mi, i ∈ [2/ε] where αi+1|T | < i ≤ αi|T |.
12 if cv = cu or e 6∈Mj? then

13 Mark both u and v as frozen.

14 else

15 With probability 1− p mark both u and v as frozen.

16 if X = Extend, degS(u) = degS(v) = 0, degM (v) + degM (u) ≤ 1, cu 6= cv, and neither

endpoint of e is frozen then

17 Add e to S.

18 return the maximum matching in M ∪ S.

4.2 The Approximation Guarantee

In this section, we prove the following approximation guarantee for Algorithm 1. (We note that we
have not attempted to optimize the constants in the statement.)

Theorem 4.1. Let G be any n-vertex graph. Let M and S be the matchings produced by Algorithm 1

7



run on G for parameter ε ∈ (0, .25). Then for some δ > 2−O(1/ε),

E[µ(M ∪ S)] ≥
(

1

2
+ δ

)
µ(G).

4.2.1 Basic Notation and Definitions

For any element ` we use π(`) to denote the location of ` in T . For any edge e ∈ E we use πStart(e)
(resp. πExtend(e)) to denote the minimum i ∈ [|T |] such that the i-th index of T includes element
(e,Start) (resp. (e,Extend)). For any element ` ∈ T we say “at the time of processing `” to refer
to the iteration of the for loop in Algorithm 1 when i equals π(`).

Next, we define unusual edges as follows:

Definition 4.2 (unusual edges). We say an edge e ∈M is unusual, if there is some edge e′ = (u, v)
incident to e such that one of the following holds:

• πStart(e) < πExtend(e′) < D · πStart(e), and at the time of processing (e′,Extend) the only
edge in M that is incident to e′ is e.

• πExtend(e′) < πStart(e), and at the time of processing (e′,Extend) no edge in M is incident
to e′ in M .

We use A to denote the subset of unusual edges of M .

In Section 4.2.4 we prove the following Lemma 4.3 which shows only a small fraction of the
edges in M will be unusual. This is one of our key insights towards our proof of Theorem 4.1, and
is the main place where having K copies of (e,Start) compared to one copy of (e,Extend) in T
is used crucially.

Lemma 4.3. E |A| = o(|M |).

4.2.2 The Main Argument

In this section, we present the main building blocks of the proof of Theorem 4.1, deferring the proof
of one key lemma (Lemma 4.9) to a later section.

Our proof of Theorem 4.1 relies on four independent sources of randomization, which with a
slight abuse of notation we denote by j?, T , C, and F :

• T : The order in which Algorithm 1 processes T .

• C: The colors assigned to the vertices in Line 3 of Algorithm 1.

• j?: The index chosen in Line 6 of Algorithm 1.

• F : The set of edges in M that get frozen in Line 15 of Algorithm 1.

All four sources of randomization are needed for the proof of Theorem 4.1. But it would be
convenient to first condition on T because:

8



Observation 4.4. Conditioning on T fully reveals the maximal matching M , the set A of unusual
edges in M , and all of M1, . . . ,M2/ε.

Note, however, that S remains random even after conditioning on T as it depends on the other
three sources of randomization too.

Because M is a maximal matching of G, we immediately get |M | ≥ µ(G)/2. Our plan is to
show that if M is only half the size of µ(G), then in expectation S augments it well enough that
M and S together include a larger matching. More formally, recall that our goal in Theorem 4.1 is
to prove that E[µ(M ∪ S)] ≥ (1

2 + δ)µ(G). This clearly holds if |M | ≥ (1
2 + δ)µ(G). So let us for

the rest of the proof assume that M is smaller.

Assumption 4.5. |M | < (1
2 + δ)µ(G).

Plugging this assumption into Claim 3.1 gives:

Observation 4.6. At least |M |−4δ|M?| edges of M belong to length-3 augmenting paths in M⊕M?.

Our next claim shows that there is one subset Mj of M that has several nice properties. We
will later argue that Mj will be well augmented by S in expectation.

Claim 4.7. Define q(x) := 220(x−3/ε). There is Mj such that all the following hold:

1. |Mj | ≥ q(j)|M |,

2. |M1|+ . . .+ |Mj−1| ≤ 2−19|Mj |,

3. For any two edges e, e′ ∈Mj, πStart(e′)/D ≤ πStart(e) ≤ πStart(e′) ·D.

Proof. First, there should exist j ∈ [2/ε] such that |Mj | ≥ q(j)|M | as otherwise

|M1|+ . . .+ |M2/ε| <
2/ε∑
i=1

q(i)|M | = 220 + . . .+ 240/ε

260/ε
|M | < |M |,

which contradicts the fact that Mi’s partition M . Take the smallest j with |Mj | ≥ q(j)|M |, noting
that the first property of the lemma is satisfied for Mj . We have

|M1|+ . . .+ |Mj−1| <
j−1∑
i=1

q(i)|M | < 220 + . . .+ 220(j−1)

260/ε
|M | < 220j−19−60/ε|M | < 2−19|Mj |,

so the second property also holds for Mj .

For the third property, note from the definition of α1, . . . , α2/ε+1 that if j 6= 2
ε , then all edges e

in Mj have the same πStart(e) up to a factor of D. So it suffices to show j 6= 2
ε . Observe that for

every e ∈M2/ε, by definition we have

πStart(e) ≤ α 2
ε
|T | = |T |

D2/ε−1
≤ 2mK

D2/ε−1
=

20m log n

D2/ε−2
=

20m log n

(c∆ log n)ε(2/ε−2)
<

20m log n

c∆ log n
=

20m

c∆
.

Now by choosing c to be a sufficiently large function of ε, we can further guarantee that

πStart(e) <
q(1)m

4∆
≤ q(1)|M |,

9



where the last inequality follows because4 µ(G) ≥ m
2∆ and |M | ≥ µ(G)/2. Since there are less than

q(1)|M | edges e for which πStart(e) < q(1)|M |, we get |M2/ε| < q(1)|M |. Combined with the first
property of the claim that |Mj | ≥ q(j)|M | and given that q(x) ≥ q(1) for every x ≥ 1, we get that
j 6= 2/ε, implying the third property and completing the proof.

Now consider the set Pj all length three augmenting paths in M? ⊕M where the middle edge
belongs to Mj and that the vertices along these paths are alternatively Blue and Red as follows:

Pj :=

{
(x, u, v, y)

∣∣∣∣∣ (x, u, v, y) is an augmenting path for M , (x, u) ∈M?, (v, y) ∈M?,
(u, v) ∈Mj , cx = Red, cu = Blue, cv = Red, cy = Blue

}
.

Observation 4.8. Conditioning on T and C fully reveals Pj.

Proof. Definition Pj only depends on the vertex colors which are determined by C, and matchings
Mj and M which are fully determined by T .

The following lemma, which conditions on everything except F , is the key to Theorem 4.1. We
defer its proof to Section 4.2.3.

Lemma 4.9. Let us condition on T , C, j? = j, and let Pj and Mj be as above. Let Y denote the
number of length three augmenting paths for M in M ⊕ S. Then

EF

[
Y | T,C, j? = j

]
≥ p|Pj | −

(
4p2 + 2−18

)
|Mj | − 12|A|.

Let us first see how Lemma 4.9 implies Theorem 4.1.

Proof of Theorem 4.1. We assume Assumption 4.5 holds, or otherwise the theorem is trivial. Recall
from Observation 4.6 that at most 4δµ(G) edges of M (and thus Mj) are not in length-three
augmenting paths in M ⊕M?. Since the colors are random and independent, each of these length-
three augmenting paths is colored in the way specified in the definition of Pj with probability
exactly 1/24. Hence,

EC [|Pj |] ≥
1

24
(|Mj | − 4δµ(G)). (1)

Additionally, recall from Claim 4.7 that

|Mj | ≥ q(j)|M | ≥ q(1)|M | ≥ q(1)

2
µ(G). (2)

Also recall from Lemma 4.3 that
ET [|A|] = o(µ(G)). (3)

Taking expectation over C and T from both sides of the inequality of Lemma 4.9, we get

EF,C,T [Y | j? = j] ≥ EC,T

[
p|Pj | −

(
4p2 + 2−18

)
|Mj | − 12|A|

]
≥ p

16
(|Mj | − 4δµ(G))−

(
4p2 + 2−18

)
|Mj | − o(µ(G)) (By (1) and (3))

4Edge color the graph greedily using 2∆ colors and pick the largest color class which will be a matching.
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=
( p

16
− 4p2 − 2−18

)
|Mj | −

pδ

4
µ(G)− o(µ(G))

≥
(( p

16
− 4p2 − 2−18

) q(1)

2
− pδ

4
− o(1)

)
µ(G) (By (2).)

>
(
10−4q(1)− 0.002 · δ − o(1)

)
µ(G) (Since p = 0.007.)

>
2δ

ε
µ(G). (Since q(1) = 220−60/ε, δ = 2−70/ε.)

This, in turn, implies that

EF,C,T,j? [Y ] ≥ Pr[j? = j] ·EF,C,T [Y | j? = j] ≥ ε

2
· 2δ

ε
µ(G) = δµ(G).

Since Y is a lower bound on the number of length three augmenting paths for M in M ⊕S, we get

EF,C,T,j? [µ(M ∪ S)] ≥ |M |+ EF,C,T,j? [Y ] ≥
(

1

2
+ δ

)
µ(G),

which is the desired bound.

4.2.3 Proof of Lemma 4.9

Proof. For brevity, we use E′[X] as a shorthand for EF [X | T,C, j? = j] throughout the proof.

Recall that in Algorithm 1, when visiting an element ((u, v),Extend) in T , we add it to S if
all the following conditions hold, where we have deliberately broken the last condition in Line 16
of Algorithm 1 into two sub-conditions (C4) and (C5):

(C1) degS(u) = degS(v) = 0,

(C2) degM (v) + degM (u) ≤ 1,

(C3) cu 6= cv,

(C4) neither of u or v is frozen in Line 13 of Algorithm 1.

(C5) neither of u or v is frozen in Line 15 of Algorithm 1.

Since we have conditioned on T and C, both the matching M and the vertex colors are fully
revealed. Thus, every element ((u, v),Extend) ∈ T which upon being visited violates one of the
conditions (C2), (C3), or (C4) is fully revealed a priori and can be discarded. On the flip side,
condition (C5) depends on F and so remains random.

Now suppose for the sake of the analysis that we also discard all elements (e,Extend) where
e is incident to an unusual edge in M . We emphasize that discarding these elements might change
matching S, but we will show later that this effect is not significant.

Useful definitions: Next, we give a few useful definitions that we use in the proof. First, define

B̂ := {v | ∃(u, v) ∈Mj , cv = Blue, cu = Red}
R̂ := {u | ∃(u, v) ∈Mj , cv = Blue, cu = Red}.

11



MB

UR

HB

HR

UB

B

R
MR

Figure 1: Illustration of B̂, R̂, UB, UR, HB, HR, and matchings MB, MR. The solid edges are the
edges of M?, and the dashed edges are the edges of Mj whose endpoints have different colors.

Also let U be the set of vertices that are left unmatched by Mj , . . . ,M2/ε, and define

UR := {u | u ∈ U, cu = Red}, UB := {v | v ∈ U, cv = Blue}.

Moreover, define matchings MB and MR as

MB := {(x, u) | ∃(x, u, ·, ·) ∈ Pj}, MR := {(y, v) | ∃(·, ·, v, y) ∈ Pj}.

Finally, define HB (resp. HR) to be the bipartite graph with vertex parts B̂ and UR (resp. R̂ and
UB), including an edge e of G between its vertex parts iff (e,Extend) is not discarded.

It can be confirmed from the definitions above that the sets B̂, R̂, UR, UB are all disjoint. This
implies that HB and HR are vertex disjoint. The next observation also follows immediately from
the definitions above.

Observation 4.10. All edges of MB (resp. MR) belong to HB (resp. HR).

See Figure 1 for an illustration of some of these definitions.

We show that HB and HR include all the remaining Extend elements.

Claim 4.11. For every element (e,Extend) that is not discarded, e belongs to HB or HR.

Proof. Take an undiscarded element (e = (u, v),Extend). Take the edge e′ = (u,w) ∈M with the
smallest πStart(e′) that is incident to e. Note that such e′ should exist because M is a maximal
matching of G. There are three possible cases, and only the last one does not lead to a contradiction:

• Case 1 – πExtend(e) < πStart(e′): In this case, e′ is unusual by the second condition of
Definition 4.2 and so (e,Extend) must be discarded, a contradiction.

• Case 2 – πExtend(e) ≥ πStart(e′) and (e′ 6∈ Mj? or cu = cw): In this case, the endpoints
of e′ must be frozen in Line 13 of Algorithm 1. So condition (C4) does not hold for e when
processing (e,Extend) and we should discard it, a contradiction.

• Case 3 – πExtend(e) ≥ πStart(e′) and e′ ∈Mj? and cu 6= cw: This is the only case that does
not lead to a contradiction.

12



The condition of Case 3 immediately implies that if cu = Blue then u ∈ B̂ otherwise u ∈ R̂.

Next, we show that v must be unmatched by Mj? , . . . ,M2/ε, and so v ∈ U . First, note that if
v is also matched by M through an edge e′′, then by definition of e′ it must satisfy πStart(e′′) >
πStart(e′). Since e′ ∈Mj? and the ranks of the edges of Mj?+1, . . . ,M2/ε are all smaller than those
in Mj? , this implies e′′ 6∈ Mj?+1, . . . ,M2/ε. So it remains to show e′′ 6∈ Mj? . To see this, note
that if e′′ ∈ Mj? = Mj , then from Claim 4.7 part 3, we get πStart(e′′) < πStart(e′) · D. Now if
πExtend(e) > πStart(e′′), then at the time of processing (e,Extend) both e′ and e′′ are in M and
we have degM (u) + degM (v) = 2, which means (e,Extend) violates (C2) and must be discarded,
a contradiction. So we should have πExtend(e) < πStart(e′′) < πStart(e′) · D. This is again a
contradiction because by the first condition of Definition 4.2, e′ must be unusual, and so e must be
discarded.

Finally, note that since (e,Extend) is not discarded, it should satisfy (C3) and so cu 6= cv.
Combined with the discussion above this means that if u ∈ B̂ then v ∈ UR and if u ∈ R̂ then
v ∈ UB. Hence e must belong to one of HB and HR, completing the proof.

Now consider the construction of S from the remaining undiscarded elements. We iterate over
these elements in the order specified by T , and whenever we see an element (e,Extend) that
satisfies all of (C1)–(C5) we add it to S. As discussed, conditions (C2)–(C4) are automatically
satisfied by all undiscarded elements, which only leaves (C1) and (C5). Condition (C1) is simply
the greedy matching constraint. Condition (C5) depends on the randomization in F . An edge in
HB (resp. HR) satifies (C5) if its endpoint in B̂ (resp. R̂) is not frozen. An important observation
is that each vertex in B̂ (resp. R̂) is frozen independently from the other vertices of B̂ (resp. R̂)
with probability 1 − p. (We emphasize though that these decisions are not mutually independent
when we consider the vertices of both B̂ and R̂ together.)

Let SB and SR be the subset of edges of S that respectively belong to HB and HR. Our goal
is to apply Proposition 3.2 on both HB and HR.

First, we apply Proposition 3.2 by letting G = HB, V = B̂, U = UR, the subsample W being
the subset of vertices in B̂ that are not frozen, and M = MB (recalling from Observation 4.10
that MB is completely inside HB). Using XB to denote the set of vertices in V (MB) ∩ B̂ that get
matched in S to UR, we get from Proposition 3.2 that:

E′[|XB|] ≥ p(|MB| − 2p|B̂|) ≥ p|Pj | − 2p2|Mj |.

Next, we apply Proposition 3.2 by letting G = HR, V = R̂, U = UB, the subsample W being
the subset of vertices in R̂ that are not frozen, and M = MR (recalling from Observation 4.10
that MR is completely inside HR). Using XR to denote the set of vertices in V (MR) ∩ R̂ that get
matched in S to UB, we get from Proposition 3.2 that:

E′[|XR|] ≥ p(|MR| − 2p|R̂|) ≥ p|Pj | − 2p2|Mj |.

Adding back the discarded Extend elements: We now add back the Extend elements
incident to unusual edges that we discarded earlier. To do so, we iteratively take an arbitrary
vertex of an arbitrary unusual edge in M , and add back all the Extend elements incident to it
that we discarded, and re-compute matching S.

Claim 4.12. Let S1 and S2 be the edges in matching S before and after adding back the discarded
edges of a vertex v. At most two vertices can be matched in one of S1, S2 bot not the other.
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Proof. Since S1 and S2 are both matchings, S1∆S2 is a collection of paths and cycles. Thus any
vertex whose matching-status differs in S1 and S2 must be an endpoint of a path in S1∆S2. Suppose
for contradiction that there are more than two such vertices. Then we have more than one path in
S1∆S2. Take the lowest rank edge e in the path that does not include v. It can be confirmed that
whether the conditions (C1)–(C5) are satisfied for e remains the same in both S1 and S2, so either
e belongs to both or neither, contradicting that e ∈ S1∆S2.

Let us now define X ′B and X ′R to be the analogs of XB and XR after we add back the discarded
edges incident to unusual edges of M . More precisely, let X ′B (resp. X ′R) denote the set of vertices

in V (MB) ∩ B̂ (resp. V (MR) ∩ R̂) that are matched in S to UR (resp. UB).

Note that a vertex v may belong to XB \X ′B for two reasons: either v was matched in S before
adding back the discarded edges but then got unmatched after doing so, or v remains matched in
S, but to a vertex not in UR. Claim 4.12 bounds the total number of vertices of the former type by
2× 2|A| = 4|A|. For the latter type, note from Claim 4.11 that any edge of v that is not discarded
goes to UR. So the new match of v after adding the discarded edges must be a discarded edge. But
each discarded edge that belongs to S must match one endpoint of one of the |A| unusual edges in
M , so the total number of such edges is no more than 2|A|. Thus, overall

E′[|X ′B|] ≥ E′[|XB|]− 6|A| ≥ p|Pj | − 2p2|Mj | − 6|A|. (4)

Applying the same argument on X ′R gives

E′[|X ′R|] ≥ E′[|XR|]− 6|A| ≥ p|Pj | − 2p2|Mj | − 6|A|. (5)

Now, let UFj denote the set of Mj edges of Pj that are unfrozen. Each edge e ∈ UFj has one
endpoint colored Blue and one that is colored Red by definition of Pj . The set of Blue (resp.
Red) endpoints of UFj that are matched in S to a vertex in UR (resp. UB) is exactly X ′B (resp.
X ′R). We have:

E′[# of (u, v) ∈ UFj s.t. u ∈ X ′B, v ∈ X ′R] ≥ E′[|UFj | − (|UFj | − |X ′B|)− (|UFj | − |X ′R|)]
= E′[|X ′B|] + E′[|X ′R|]−E′[|UFj |]
≥ p|Pj | − 4p2|Mj | − 12|A|. (6)

The last inequality follows from (4) and (5), and the fact that E[|UFj |] = p|Pj | because Pj has |Pj |
edges in Mj and each one is unfrozen with probability p.

To finish the proof, note that if for an edge (u, v) ∈ UFj we have u ∈ X ′B and v ∈ X ′R, then
S matches both u and v to vertices that are unmatched by Mj , . . . ,M2/ε. Therefore, only if these
vertices are also unmatched by M1, . . . ,Mj−1 we have a length three augmenting path. Therefore,

E′[Y ] ≥ E′[# of (u, v) ∈ UFj s.t. u ∈ X ′B, v ∈ X ′R]− 2

j−1∑
i=1

|Mi|

≥ p|Pj | − 4p2|Mj | − 12|A| − 2× 1

1000
|Mj | (By (6) and Claim 4.7.)

= p|Pj | −
(

4p2 +
1

500

)
|Mj | − 12|A|.

This finishes the proof of Lemma 4.9
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4.2.4 Bounding Unusual Edges

In this section we prove Lemma 4.3 that E |A| = o(|M |).
We start by proving the following auxiliary claim.

Claim 4.13. With probability 1− 1/n2, every edge e ∈ E satisfies πStart(e) ≤ 8m log n.

Proof. Let z := 8m log n. We show that with probability 1 − 1/n2 every edge e ∈ E satisfies
πStart(e) ≤ z. This statement is trivial if |T | ≤ z so assume |T | > z. Fix an arbitrary edge e ∈ E.
For the event πStart(e) > z to happen, all K copies of (e,Start) should appear after the first z
elements in T . Thus, noting that |T | = m(K + 1), z = 8m log n, and K ≥ 1, we have

Pr[πStart(e) ≤ z] ≥ 1−
(

1− z

|T |

)K
= 1−

(
1− 8m log n

m(K + 1)

)K
≥ 1− e−

8K logn
K+1 ≥ 1− n−4.

A union bound over all choices of e, which there are less than n2 many, proves our first claim.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. We count the number of unusual edges separately based on the two cases in
Definition 4.2. Consider the second case. Let A′ be the set of (e′,Extend) elements in T such
that at the time of processing (e′,Extend), both endpoints of e′ are unmatched in M . If we show
that Eπ |A′| = o(|M |), since each edge in A′ has at most two incident edges in M , the number of
unusual edges in the second case of Definition 4.2 will be o(|M |). Consider the following equivalent
construction of A′. We iterate over T , processing its elements one by one. If we see an element
(e,Start) we add e to M and remove all the unprocessed elements (e′, X), X ∈ {Extend,Start}
from T such that e′ shares an endpoint with e. If we see an element (e,Extend), we add it to A′.

At any time during this process, the remaining Start elements are at least K times more than
the Extend element since for each Extend element (e,Extend) that remains in T , all K copies
of (e,Start) must also remain in T . This means that every time we reveal the next remaining
element of T , it is an Extend element with probability at most 1/(K+ 1). Furthermore, there are
at most µ(G) steps where we process a Start element since each time we add an edge to M and

clearly |M | ≤ µ(G). This implies that E |A′| ≤ µ(G)
K . Combining µ(G) ≤ 2|M | and K = Ω(log n),

we have E |A′| = o(|M |).
Now consider the first case in Definition 4.2. Define σ : T → R as σ((e,Start)) := π((e,Start))

and σ((e,Extend)) := π((e,Extend))/D. Similar to the proof of the second case, we process the
elements in T one by one. However, instead of π, we process them in the increasing order of their σ
values. Let A′′ be the set of Extend elements in T such that at the time of processing (e′,Extend)
both endpoints of e′ are unmatched in M . Note that if an edge e is unusual because of the first case
of Definition 4.2, there exists an element (e′,Extend) such that πExtend(e′)/D < πStart(e) and at
the time of processing (e′,Extend), the only incident edge to e′ in M is e. Hence, we must process
(e′,Extend) before (e,Start) according to new ordering of elements and at the time of processing
(e′,Extend), there is no incident edge to e′ in M . Therefore, |A′′| is an upperbound for number
of unusual edges in first case of Definition 4.2. Similar to the previous case, it suffices to show
Eπ |A′′| = o(|M |) since each edge in A′′ has at most two incident edges in M . Consider again the
following equivalent construction of A′′, where we iterate over the elements based on σ one by one.
If we see an element (e,Start) we add e to M and remove all the unprocessed elements (e′, X),
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X ∈ {Extend,Start} such that e′ shares an endpoint with e. If we see an element (e,Extend),
we add it to A′′.

Let ES be the event that πStart(e) ≤ 8m log n for all edges e ∈ E, and let ĒS be the complement
event. Noting from Claim 4.13 that Pr[ĒS ] ≤ 1/n2. We get

Pr[σ((e,Extend)) ≤ πStart(e)] = Pr [πExtend(e) ≤ D · πStart(e)]

≤ Pr[ĒS ] + Pr [πExtend(e) ≤ D · πStart(e) | ES ]

≤ 1

n2
+

8mD log n

m(K + 1)

≤ 8D log n

K
.

Hence, the probability of the element that we are processing to be an Extend element is at
most 8D logn

K . Similar to the former case, since there are at most µ(G) steps in the process that

an Start element is added to M , we have E |A′′| ≤ µ(G)·16D logn
K . Combining with µ(G) ≤ 2|M |,

D = (c ·∆ · log n)ε, and K = 10D log2 n, implies E |A′′| = o(|M |) which completes the proof.

5 A Local Query Algorithm and its Complexity

In this section, we present a local query process that determines whether a given vertex has any
edge in matchings M and S of Algorithm 1 without constructing the whole output of Algorithm 1.

While all the randomizations in Algorithm 1 were crucial for the approximation guarantee of
Section 4.2 to hold, the bounds of this section only rely on the random shuffling of the sequence
T . In particular, the result of this section continues to hold even if all the other coin flips of
Algorithm 1 besides the order of T are picked adversarially.

To help the discussion above simplify the presentation of this section, we regard the index j?

and the color cv of any vertex v as given. Alternatively, one could pick the color cv of any vertex
uniformly at random whenever we access cv.

Note from Algorithm 1 that whether a vertex is frozen depends on its edge in M , if any. In
particular, a vertex v is frozen iff it is matched in M and its match is also frozen. This can essentially
be seen as freezing the edges of M instead of the vertices, which will be the more convenient view
for our purpose in this section. More generally, instead of just the Start elements that end up in
M , we define (Definition 5.1) whether a Start element of T is frozen or not. This way, we say
a vertex v is frozen iff there is an edge e incident to v such that e ∈ M and the corresponding
(e,Start) element in T that adds e to M is frozen.

Definition 5.1. We say an element ` = ((u, v),Start) ∈ T is frozen if either of the following
conditions holds:

• cu = cv,

• π(`) ≤ αj?+1|T | or π(`) > αj? |T |,
• The corresponding Bernoulli(1− p) variable in Line 15 of Algorithm 1 is one.

We emphasize again that the randomization in the last bullet of Definition 5.1 is only needed
for the approximation guarantee, and can be regarded as (adversarially) fixed for our purpose in
this section.
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Now let π be a permutation of the sequence T consisting of edge copies in graph G. We write
MS(G, π) to denote the subgraph M∪S constructed by Algorithm 1 when processing T in the order
of π. The argument π in MS(G, π) is meant to emphasize that once we feed π into Algorithm 1,
its output is uniquely determined as we have fixed the other sources of randomization.

Having discussed our basic analysis setup, our local query process for determining whether a
given vertex v is matched in M or S is formalized below as Algorithm 2. The algorithm calls two
other edge subroutines formalized as Algorithms 3 and 4. Subroutine Algorithm 3 determines if a
Start element is matched in M by recursively calling the subroutine for incident Start elements
with a lower rank. Similarly, subroutine Algorithm 4 determines if an Extend element is matched
in S by recursively calling the subroutines for incident Start and Extend elements with lower
ranks.

Let F (v, π) denote the total number of recursive calls to the edge oracles of Algorithms 3 and 4
during the execution of VO(v, π). The following theorem is the main result of this section.

Theorem 5.2. For a randomly chosen vertex v and a random permutation π of T ,

Ev,π[F (v, π)] = O(Kd̄ · log4 n),

where d̄ is the average degree of G.

5.1 Correctness of the Oracles

In this section, we prove the correctness of the vertex oracle. Namely, we prove that:

Claim 5.3. Let v ∈ V and ST,EX be the outputs of VO(v, π). It holds:

• ST = True iff v has an incident Start element in MS(G, π).

• EX = True iff v has an incident Extend element in MS(G, π).

Let us first prove two auxiliary claims about the correctness of the two edge oracles.

Claim 5.4. For any ` = ((u,w),Start), if EOS(`, u, π) is called during computing VO(v, π), then
EOS(`, u, π) = True iff ` ∈ MS(G, π).

Proof. We prove Claim 5.4 by induction on π(`). Suppose that the statement holds for all Start
elements with a ranking lower than π(`). If VO(v, π) directly calls EOS(`, u, π), it had already
called EOS(`′′, u, π) for every Start elements `′′ incident on u with a lower ranking. Moreover,
if EOS(`, u, π) is called by EOS(`′, w, π) or EOE(`′, w, π, ·), then all Start elements on edges
(w, u′) with a smaller rank must be queried before ` by the description of oracles. All these calls
to the edge oracle, EOS, must return False since the edge oracle queries EOS(`, u, π). By the
induction hypothesis, there is no Start element incident to w with a smaller rank in MS(G, π).
Also, EOS(`, u, π) queries all the Start elements incident to u with lower rank and returns True
if none of them is in MS(G, π). By the induction hypothesis, these calls are answered correctly,
completing the proof.

Claim 5.5. Let ` = ((u,w),Extend), and let STw indicate if w has a Start element incident
to it in MS(G, π) with a rank smaller than π(`). If EOE(`, u, π, STw) is called during computing
VO(v, π), then EOE(`, u, π, STw) = True iff ` ∈ MS(G, π).
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Algorithm 2: The vertex oracle VO(u, π) which determines the matching-status of u in the
outputs M and S according to permutation π.

1 Let `1 = (e1, X1), . . . , `r = (er, Xr) be the elements in T such that ei = (u, vi), and
π(`1) < . . . < π(`r).

2 ST ← False, EX ← False.
3 for i in 1 . . . r do
4 if Xi = Extend and cu = cvi then continue.
5 if ST = False and Xi = Start and EOS(`i, vi, π) = True then
6 ST ← True

7 if EX = False and Xi = Extend and EOE(`i, vi, π, ST ) = True then
8 EX ← True

9 return ST , EX.

Algorithm 3: The edge oracle EOS(` = (e,Start), u, π) for Start elements. Here u in the
input must be an endpoint of e.

1 if EOS((e,Start), u, π) is already computed then return the computed answer.
2 Let `1 = (e1, X1), . . . , `r = (er, Xr) be the elements in T such that ei = (u, vi), Xi = Start

for all i, and π(`1) < . . . < π(`r) < π(`).
3 for i in 1 . . . r do
4 if EOS(`i, vi, π) = True then return False.

5 return True.

Algorithm 4: The edge oracle EOE(` = (e,Extend), u, π, STw) for Extend elements. Here
e = (u,w) and STw indicates whether vertex w is matched by M in MS(G, π) through an element
of rank smaller than π(`).

1 if EOE((e,Extend), u, π, STw) is already computed then return the computed answer.
2 Let `1 = (e1, X1), . . . , `r = (er, Xr) be the elements in T such that ei = (u, vi), and

π(`1) < . . . < π(`r) < π(`).
3 STu ← False
4 for i in 1 . . . r do
5 if Xi = Extend and cu = cvi then continue.
6 if STu = False, Xi = Start, and EOS(`i, vi, π) = True then
7 STu ← True
8 if `i is frozen then return False.
9 if STw = True then return False.

10 if Xi = Extend and EOE(li, vi, π, STu) = True then return False.

11 return True.
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Proof. We prove the statement by induction on π(`). With a similar argument as in the proof of
Claim 5.4, we can show that Extend elements incident to w with lower ranks are queried before `,
and that the results of all these calls are False. Also, if there exists a Start element incident to
w with a lower rank in MS(G, π), then by the description of EOE, it is queried before and STw is
True. Note that if such an edge exists, it must not be frozen, otherwise, the oracle does not query
EOE(`, u, π, STw). Hence, if ` /∈ MS(G, π), there must be a frozen or an Extend element incident
to u, or STw = True and there exists a Start element incident to u. Since EOE(`, u, π, STw)
queries all the edges incident to u with lower rank to determines if a Start or Extend element
exists in MS(G, π), the proof is complete by induction hypothesis.

We are now ready to prove Claim 5.3.

Proof of Claim 5.3. Since the vertex oracle queries the edge oracle EOS for all incident Start ele-
ments in increasing order of their ranking until it finds a Start element in MS(G, π), by Claim 5.4,
the first property holds. Since Algorithm 2 and Algorithm 4 query incident edges in increasing
order, if EOE(`, u, π, STw) is queried for an Extend element ` = ((u,w),Extend), STw is com-
puted correctly before calling EOE(`, u, π, STw) which implies that the condition in Claim 5.5
holds. Therefore, with the similar argument for Extend elements and correctness of edge oracle
EOE by Claim 5.5, the second property holds.

5.2 Query Complexity of the Oracles

In this section, we prove Theorem 5.2. Consider ` = (e,X), an element in T . If X = Start, we
write Q(`, v, π) to denote the total number of recursive calls to EOS(`, ·, π, ·) during the execution
of VO(v, π). If X = Extend, we write Q(`, v, π) to denote the total number of recursive calls to
EOE(`, ·, π, ·) during the execution of VO(v, π).

Observation 5.6. For a permutation π, at most one Start copy of every edge is queried in
recursive calls of EOS.

Proof. For a fixed edge, the edge oracle on its Start copies only generates a new recursive call on
the first call because of the caching in Line 1 of Algorithm 3.

Observation 5.7. For every element ` = (e,X) in T and permutation π, Q(`, π) ≤ O(n2).

Proof. Let e = {x, y}. For a fixed vertex u, either the vertex oracle VO(u, π) queries the edge
oracle for ` directly, or through some incident elemenet `′. Note that by Observation 5.6, for each
edge e′ incident to e, at most one of its Start copies generates a new recursive call. Hence, the
edge oracle of ` is called through at most 2(deg(x)− 1) + 2(deg(y)− 1) of its incident edges (one of
its Start copy and one Extend element) which implies that there are at most 4(n− 1) + 1 calls
during the course of VO(u, π). In other words, we have that Q(`, u, π) ≤ 4n− 3. Therefore,

Q(`, π) ≤
∑
u∈V

Q(`, u, π) ≤ n(4n− 3) ≤ O(n2).

The main contribution of this section is to show that the expected Q(`, π) for a random per-
mutation π is O(log4 n) which is formalized in the following lemma.

Lemma 5.8. For any element ` ∈ T , we have Eπ[Q(`, π)] = O(log4 n).
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Assuming the correctness of Lemma 5.8, we can complete the proof of Theorem 5.2.

Proof of Theorem 5.2.

Ev,π[F (v, π)] =
1

n
Eπ

[∑
v∈V

F (v, π)

]
=

1

n
Eπ

[∑
v∈V

∑
`∈T

Q(`, v, π)

]

=
1

n
Eπ

[∑
`∈T

∑
v∈V

Q(`, v, π)

]
=

1

n
Eπ

[∑
`∈T

Q(`, π)

]

=
1

n

∑
`∈T

Eπ[Q(`, π)] =
1

n

∑
`∈T

O(log4 n)

=
1

n
O(Km · log4 n) = O(Kd̄ · log4 n).

During the recursive calls to the edge oracles that start from VO(v, π), edges corresponding
to the elements in the stack of recursive calls create a path. Because, we query VO(v, π) at the
beginning, one of the endpoints of this path is vertex v. We direct the elements in the path away
from v towards the other endpoint. We call such a directed path starting from the bottom of the
stack all the way to the top, a (v, π)-query-path. For an edge e = (x, y), let ~e denote the directed
edge from x to y and ~e denote a directed edge from y to x. Similarly, for an element ` = ((x, y), X),
~̀ and ~` represent the direction of e.

Let Q(~̀, π) ⊆ Q(`, π) be the set of all query paths that end at ~̀ (with the same direction).
In the following lemma, we bound the query complexity based on the direction of `. We use this
lemma to prove Lemma 5.8.

Lemma 5.9. For any element ` ∈ T , we have Eπ[Q(~̀, π)] = O(log4 n).

Proof of Lemma 5.8. Since Q(`, π) = Q(~̀, π) ∪Q( ~`, π), by Lemma 5.9 we have

Eπ[Q(`, π)] ≤ Eπ[Q(~̀, π)] + Eπ[Q( ~`, π)] = O(log4 n) +O(log4 n) = O(log4 n).

In the rest of this section, we focus on proving Lemma 5.9. The first helpful observation is that
all the Extend elements in a (v, π)-query-path appear before the Start elements.

Observation 5.10. Let ~P = ( ~̀r, . . . , ~̀1) be a (v, π)-query-path and ~̀
i = (~ei, Xi) for all i. Then

there exists a j (0 ≤ j ≤ r) such that Xi = Start for 0 < i ≤ j, and Xi = Extend for j < i ≤ r.

Proof. Let j be the maximum index such that Xj = Start. If there is no such index, the proof is
complete since we can assume that j = 0. Now we claim that for all i < j, we have Xi = Start.
This can be verified by noting that Algorithm 3 only queries the edge oracle for Start elements.

Given a permutation π and a path of elements ~P = ( ~̀r, . . . , ~̀1), we define φ(π, ~P ) to be another
permutation σ over edges such that:

(σ(`1), σ(`2), . . . , σ(`r−1), σ(`r)) := (π(`2), π(`3), . . . , π(`r), π(`1))

π(`′) = σ(`′) ∀`′ /∈ ~P .
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Given an element ~̀, by using the above mapping function we can construct a bipartite graph H
with two parts A and B such that each part has ((K+1)m)! vertices showing different permutations
of elements. For a permutation π ∈ A and a (v, π)-query-path ~P that ends at ` for some arbitrary
vertex v, we connect π in A to φ(π, ~P ) in B. Note that by the construction of H, deg(πA) = Q(~̀, πA)
for all πA ∈ A, since we have a unique element for each query-path that ends at ~̀with permutation
πA. Hence, in order to prove Lemma 5.8, it is sufficient to prove that EπA∼A[degH(πA)] = O(log4 n).

Let Q(~̀, π) be the set of all query-paths for permutation π that ends at ~̀. Let β = c log2 n for
some large constant c and Π be the set of all possible ((K + 1)m)! permutations. We partition Π
into two subsets of likely and unlikely permutations, denoted by L and U , respectively, as follows:

L :=

{
π ∈ Π

∣∣∣ max
~P∈Q(~̀,π)

|~P | ≤ β

}
U := Π \ L.

In words, likely permutations are those where the longest query-path ending at ~̀ has a length
of at most β and unlikely permutations are the remaining ones. Let AL be the set of vertices
corresponding to the likely permutations in A and AU be the set of vertices corresponding to unlikely
permutations. The intuition behind this partitioning is that the set of unlikely permutations makes
up a tiny fraction of all permutations which is formalized in Lemma 5.11.

Lemma 5.11. If c is a large enough constant, then we have |AU | ≤ ((K + 1)m)!/n2.

Furthermore, we show that each vertex πB ∈ B has at most O(β2) neighbors among the likely
permutations in part A of our bipartite graph H.

Lemma 5.12. Let πB be a vertex in B. Then πB has at most β2 neighbors in AL.

Proof of Lemma 5.9. We provide an upper bound on |E(H)|. First, note that by Lemma 5.11, we
have |AU | ≤ ((K + 1)m)!/n2. Furthermore, by Observation 5.7, degree of each vertex πA ∈ A is at
most O(n2) which implies that the total number of edges incident to vertices of AU is at most

E(AU , B) ≤ ((K + 1)m)!/n2 ·O(n2) ≤ O
(
((K + 1)m)!

)
.

Moreover, by Lemma 5.12, each vertex πB ∈ B has at most O(β2) neighbors in AL. Since H is
a bipartite graph, total number of incident edges to AL is at most O(β2) · |AL|. Therefore, sum of
degrees of all vertices in A is at most

O(β2) · |AL|+ E(AU , B) ≤ O(β2 · ((K + 1)m)!).

For a random vertex in A, the expected degree is O(β2·((K+1)m)!)
((K+1)m)! = O(β2), which completes the

proof since β = c log2 n and deg(πA) = Q(~̀, πA).

In the following two subsections, we prove Lemmas 5.11 and 5.12.

5.2.1 Proof of Lemma 5.12

This proof is the most technical part of this part of the analysis. We show that for two query-paths
~P and ~P ′ that end at ~̀, and two permutations π and π′, if φ(π, ~P ) = φ(π′, ~P ′), then either one of
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the query paths is a subpath of the other one, or they “branch” through a specific configuration of
Start and Extend elements illustrated in Figure 2.

To formalize this, let us formally define what a “branch” is:

Definition 5.13. Let ~P = (~̀r1 , . . . ,
~̀
1) and ~P ′ = (~̀′r2 , . . . ,

~̀′
1) be two query-paths. Let j be an such

that ~̀i = ~̀′
i for all i ≤ j < min(r1, r2), but ~̀j+1 6= ~̀′

j+1. Then ~P and ~P ′ branch at element ~̀j.

And now let us define valid and invalid branches (see Figure 2).

Definition 5.14. Let ~P = (~̀r1 , . . . ,
~̀
1) and ~P ′ = (~̀′r2 , . . . ,

~̀′
1) be two query-paths, where ~̀

i =

(~ei, Xi), and ~̀′
i = (~e′i, X

′
i). Assume that ~P and ~P ′ branch at element ~̀j for j < min(r1, r2).

Moreover, let u be the shared vertex between ~ej and ~ej+1. We call this branch valid if Xj = Start
and {Xj+1, X

′
j+1} = {Extend,Start}. For all other possible configurations of Xj, Xj+1, and

X ′j+1, we say the branch is invalid.

Valid Invalid Invalid Invalid

Figure 2: All valid and invalid branches. Green edges represent Start elements and red edges
represent Extend elements.

One key property of invalid branches is formalized in the following observation which is helpful
in the rest of this section.

Observation 5.15. Let ~P = (~̀r1 , . . . ,
~̀
1) and ~P ′ = (~̀′r2 , . . . ,

~̀′
1) be two query-paths, ~̀i = (~ei, Xi)

and ~̀′i = (~e′i, X
′
i) for all i. If there exists an invalid branch at ~̀j, then none of the tuples (Xj , Xj+1),

(Xj , X
′
j+1), (Xj+1, X

′
j+1), and (X ′j+1, Xj+1) is (Extend,Start).

Proof. Let u be the shared endpoint between ~ej , ~ej+1, and ~e′j+1. If Xj = Extend, by Observa-
tion 5.10, we have Xj+1 = X ′j+1 = Extend. Therefore, all tuples are (Extend,Extend).

Now assume that Xj = Start. If one of Xj+1 or X ′j+1 is Extend and the other one is Start,
then the branch is valid by Definition 5.14. This leaves two remaining scenarios:

• Xj+1 = X ′j+1 = Start: In this case, all tuples are (Start,Start).

• Xj+1 = X ′j+1 = Extend: In this case, (Xj+1, X
′
j+1) = (X ′j+1, Xj+1) = (Extend,Extend).

Moreover, (Xj , Xj+1) = (Xj , X
′
j+1) = (Start,Extend). Thus there is no (Extend,Start)

among the tuples considered in the statement.

The proof is thus complete.
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Next, we show that for two query-paths ~P and ~P ′ that end at ~̀, and two permutations π and
π′, if φ(π, ~P ) = φ(π′, ~P ′), then either the shorter query-path is a subpath of the longer one or they
have exactly one valid branch. In particular, it is not possible for ~P and ~P ′ to have an invalid
branch or have multiple valid branches under this condition.

Lemma 5.16. Let π and π′ be two different permutations over T , and let ~P and ~P ′ be (v, π)- and
(v′, π′)-query-path, respectively, that both end at element ~̀. If φ(π, ~P ) = φ(π′, ~P ′), then ~P and ~P ′

branch at most once and this branch is valid.

Before proving Lemma 5.16, we prove a sequence of auxiliary observations and claims. Let
~P = (~̀r1 , . . . ,

~̀
1) and ~P ′ = (~̀′r2 , . . . ,

~̀′
1) where ~̀= ~̀

1 = ~̀′
1. Also, let ~̀i = (~ei, Xi) and ~̀′i = (~ei

′, X ′i).

For the sake of contradiction, suppose that ~P and ~P ′ branch at element ~̀b and the branch is invalid.
This means that ~̀i = ~̀′

i for i ≤ b and ~̀
b+1 6= ~̀′

b+1. Note that ~eb+1 and ~e′b+1 can be the same edge.
We do not need to separately investigate these two cases as our proof generally works for both
cases.

Observation 5.17. We have that π(`1) < π(`2) < . . . < π(`r1) and π′(`′1) < π′(`′2) < . . . < π′(`′r2).

Proof. Algorithms 3 and 4 recursively call on elements with π values less than π value of the current
element. Therefore, the stack of recursive calls will be decreasing with respect to π values. The
same condition also holds for permutation π′.

Observation 5.18. π(`b) = π′(`b+1).

Proof. Since ~̀b+1 is not in ~P ′, we have that φ(π′, ~P ′)(`b+1) = π′(`b+1). Also, φ(π, ~P )(`b+1) = π(`b)
since φ(π, ~P ) shifts the elements of path ~P by one. Given that φ(π, ~P ) = φ(π′, ~P ′), we get π(`b) =
π′(`b+1).

In the rest of the proof, we assume that π(`b) < π′(`b). This is without loss of generality because
we have not distinguished the two permutations π and π′ in any other way.

Observation 5.19. π′(`b+1) < π′(`b).

Proof. By combining Observation 5.18, our assumption that π(`b) < π′(`b), and the fact that π′ is
a permutation, we have that π′(`b+1) < π′(`b).

Claim 5.20. If π(f) < π(`b) or π′(f) < π(`b) for some element f , then π(f) = π′(f).

Proof. There are five different possible cases for f :

• f /∈ P ∪ P ′: Since φ only changes the rank of elements on the query-path and φ(π, ~P )(f) =
φ(π′, ~P ′)(f), we have π(f) = π′(f).

• f ∈ {`1, . . . , `b−1}: Since φ(π, ~P )(`i+1) = φ(π′, ~P ′)(`i+1) for 1 ≤ i < b, we have π(`i) = π′(`i).
Hence, π(f) = π′(f).

• f = `b: In this case, condition π(f) < π(`b) does not hold since π(f) = π(`b). Also,
π′(f) = π′(`b) > π(`b) by our assumption. Therefore, condition π′(f) < π(`b) does not hold.

• f ∈ {`b+1, . . . , `r1}: By Observation 5.17, we have π(f) > π(`b). Therefore, condition π(f) <
π(`b) does not hold. Let f = `i for i > b. Since φ(π, ~P ) = φ(π′, ~P ′), we have that π′(f) =
π(`i−1) ≥ π(`b). Therefore, none of the conditions in the claim statement hold.
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• f ∈ {`′b+1, . . . , `
′
r2}: By Observation 5.17, we have π′(f) > π′(`b). Combined with our

assumption π′(`b) > π(`b), this gives π′(f) > π(`b). Let f = `′i for i > b. Since φ(π, ~P ) =

φ(π′, ~P ′), we have π(f) = π′(`i−1) ≥ π′(`b) > π(`b). Therefore, none of the conditions in the
claim statement hold.

Each of the cases above either contradicts a condition of the claim, or satisfies π(f) = π′(f).
The proof is thus complete.

Observation 5.21. Let f be a Start element such that π(f) = π′(f). Then f is frozen in
permutation π iff it is frozen in permutation π′.

Proof. Since we fix the color of vertices, Bernoulli random variables in Line 15 of Algorithm 1, and
the index j∗ that is used in Algorithm 1 for both permutations π and π′ over T , the only way that
one of the f and f ′ is frozen and the other one is not, is when π(f) 6= π(f ′).

Claim 5.22. `b+1 ∈ MS(G, π′).

Proof. We prove the claim by contradiction. Assume that `b+1 /∈ MS(G, π′). There are two possible
scenarios for `b+1 not to be in MS(G, π′):

• Xb+1 = Extend and `b+1 /∈ MS(G, π′) because of two Start elements f, f ′ ∈ MS(G, π′):

Note that π′(f) < π′(`b+1) and π′(f ′) < π′(`b+1) since f, f ′ ∈ MS(G, π′) and `b+1 /∈ MS(G, π′).
On the other hand, by Observation 5.18, we have that π(`b) = π′(`b+1). Thus, π′(f) < π(`b)
and π′(f ′) < π(`b). Hence, by Claim 5.20, π(f) = π′(f) and π(f ′) = π′(f ′), which implies
that f, f ′ ∈ MS(G, π) since π and π′ are identical for ranks smaller than π(`b). Moreover, by
Observation 5.21, each of f and f ′ are either frozen in both π and π′ or not. Also, both f and
f ′ are not in path P since π(f) < π(`b) and π(f ′) < π(`b). Let eb+1 = (w, y) where y is the
shared endpoint with eb. Without loss of generality, assume that f is incident to w and f ′ is
incident to y. Note that, both of f and f ′ cannot be incident to the same endpoint of eb+1

since Start elements create a maximal matching. Since both edge oracle and vertex oracle
queries edges in increasing order, when EOE(`b+1, y, π, STw) was called, STw must be True
since the edge oracle already queried element f before. Furthermore, EOE(`b+1, y, π, STw)
calls edge oracle for f ′ before `b since π′(f) < π(`b). This implies that (v, π)-query-path ~P is
not a valid (v, π)-query-path since the EOE(`b+1, y, π, STw) terminates after calling the edge
oracle for element f ′ (see Figure 3).

• `b+1 /∈ MS(G, π′) because of a single element f ∈ MS(G, π′):

Let y be the shared endpoint of eb and eb+1. With the same argument as in the previous
case, we get that f ∈ MS(G, π) and π(f) < π(`b). Thus, by Observation 5.21, element f
is either frozen in both π and π′ or in neither one. Note that either both of f and `b+1

are Start elements, or f is a frozen element, or both of f and `b+1 are Extend elements.
Hence, by Observation 5.10, f must be queried before `b+1 if it is not incident to y in the edge
oracle for permutation π which implies that the edge oracle will not query `b+1. Furthermore,
if f is incident to y, edge oracle queries f before `b which implies that it terminates and
(v, π)-query-path ~P is not a valid (v, π)-query-path.
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Figure 3: Illustration of a possible case of the first scenario in the proof of Claim 5.22. Green
edges represent Start elements and red edges represent Extend elements. The left figure shows
a query-path ~P in permutation π which is highlighted in light blue. Similarly, the right figure
shows a query-path ~P ′ in permutation π′. Query-path ~P is not a valid query-path since the
EOE(`b+1, y, π, STw) terminates after calling the edge oracle on element f ′.

Proof of Lemma 5.16. Assume for the sake of contradiction that the branch at ~̀b is an invalid
branch. We prove that query-path ~P ′ is not a valid (v, π′)-query-path. By Definition 5.14, we have
that Xb+1 = X ′b+1. Also, by Claim 5.22, edge oracle of `′b+1 for permutation π′ queries `b+1 before
`b since π′(`b+1) < π′(`b) by Observation 5.19. Thus, the edge oracle for `′b+1 terminates at this
point. Therefore, P and P ′ contains no invalid branch.

Now we are ready to complete the proof of Lemma 5.12.

Proof of Lemma 5.12. As above, consider two query paths ~P = (~̀r1 , . . . ,
~̀
1) and ~P ′ = (~̀′r2 , . . . ,

~̀′
1)

that end at ~̀= ~̀
1 = ~̀′

1 and suppose that φ(π, ~P ) = φ(π′, ~P ′).

If ` is an Extend element, then all the elements in the two query paths ~P and ~P ′ must be
Extend by Observation 5.10. Therefore, ~P and ~P ′ cannot have a valid branch since a valid branch,
by Definition 5.14, requires two Start elements. Since Lemma 5.16 asserts ~P and ~P ′ cannot have
invalid branches either, one of P and P ′ must be a subpath of the other. Note that all paths that
end at ` must be a subpath of the longest query path since we do not have a branch which implies
that all paths must have different lengths. Therefore, there are at most β query-paths that end at
~̀ since the length of the longest path is at most β.

Now suppose that ` is a Start element. Assume that ~P and ~P ′ branch at ~̀b. Since this cannot
be an invalid branch by Lemma 5.16, without a loss of generality, assume that `′b+1 is an Extend
element. By Observation 5.10, all `′b+1, `

′
b+2, . . . , `

′
r2 must be Extend elements. Let P be the set of

all query-paths that end at ~̀, and ~Ps ∈ P be the path with maximum number of Start elements
(break the tie with the longest length of Extend elements of the path). Note that there is no other
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Start element in the paths of P other than Start elements of Ps. Otherwise, we have an invalid
branch since Start elements appear before Extend elements by Observation 5.10.

Let (~̀s, . . . , ~̀1) be the subpath of ~Ps consisting of Start elements. We claim that for each ~̀
i

(i < s), if there exist two query-paths in P that branch with ~Ps at ~̀i, then one of them must be
a subpath of the other. To see this, assume that there are two paths ~P and ~P ′ such that they
both have a branch with ~Ps at ~̀i. Let ~f and ~f ′ be the next elements on ~P and ~P ′. Note that it is
possible that ~f = ~f ′. By Definition 5.14, f and f ′ are Extend elements. Hence, the first elements
that are not shared in both ~P and ~P ′ are Extend elements which means ~P and ~P ′ has an invalid
branch.

Figure 4: Illustration of P̂ and Ps. The green edges represent Start elements and the red edges
represent Extend elements. Paths in P̂ are highlighted in light blue.

On the other hand, note that there is no path in P that has a branch with ~Ps in Extend
elements of ~Ps since there is no invalid branch by Lemma 5.16. Let P̂ be the union of ~Ps and the
set of paths in P such that they have a valid branch with ~Ps, and they are not a subgraph of other
paths in P (see Figure 4).

By the above claim, |P̂| ≤ s + 1. To complete the proof, assume that for each edge between
πA ∈ AL and πB ∈ B in graph H, we write a label (~P ′, |~P |) where ~P is the query-path corresponding
to the edge between πB and πA, and ~P ′ ∈ P̂ such that ~P ⊆ ~P ′ (if there are multiple choices for ~P ′,
choose the longest path). Since all labels must be different, and by definition of AL we have that
all query-paths have a length of at most β, there are at most (s+ 1)β ≤ 2β2 different labels, where
the last inequality followed by the fact that |~Ps| ≤ β.

5.2.2 Proof of Lemma 5.11

In this section, we prove that it is very unlikely to have long query-paths during the recursive calls
of edge oracle. Our proof is inspired by [BFS12], who proved that the parallel round complexity
of greedy maximal independent set is O(log2 n). Our arguments are slightly different because our
algorithm is not an instance of greedy MIS.

We define a θ-prefix of permutation π over elements T to be the first θ|T | elements in permu-
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tation π. Suppose that instead of running the edge oracle on the whole permutation of elements,
we choose a θ-prefix of elements and run the edge oracle for elements of the prefix. The first useful
observation is that if the algorithm calls edge oracle for one of the elements in a θ-prefix of T , all
recursive calls during this call will be on elements in the prefix.

Observation 5.23. Let ` be an element in T and π be a permutation over T . Then EOS(`, ·, π)
or EOE(`, ·, π, ·) only recursively calls edge oracle for elements with a lower rank.

Proof. Proof can be easily obtained by how we defined Algorithm 3 and Algorithm 4 since each
element only recursively calls elements with a lower rank.

The high-level approach for this section is that we partition elements of T to O(log n) continuous
ranges and show that the length of the longest query-path inside each of these ranges is O(log n).
Therefore, since for each element the edge oracle only calls elements with a lower rank, the length
of the longest path in total should be at most O(log2 n).

Element Partitioning: Let P1 be a θ1-prefix of T . Suppose that we run Algorithm 1 on P1. Let
A1 be the set of elements that are chosen by Algorithm 1 for the selected subgraph MS(G, π). Also,
let D1 be the set of elements outside the prefix P1 that cannot be in MS(G, π) due to the existence
of some elements in A1. We delete P1 ∪D1 from T and similarly choose θ2-prefix of the remaining
elements. Let P1,P2, . . . ,Pd be the partitions with parameters θ1, θ2, . . . , θd, and D1,D2, . . . ,Dd
be sets of deleted elements as defined above. We let θi = Ω(2i log(n)/(2K∆)) for the i-th partition
and d = O(log n).

Observation 5.24. Let ` be an element in Pj ∪ Dj as defined above. Then EOS(`, ·, π) or
EOE(`, ·, π, ·) only recursively calls edge oracle for elements in {Pi}i≤j ∪ {Di}i<j.

Proof. If ` ∈ Pj , since all the elements with lower ranks are in {Pi}i≤j ∪ {Di}i<j , by Observa-
tion 5.23, the proof is complete. If ` ∈ Dj , there are some elements in Pj that their existence in
MS(G, π) caused ` not to be in MS(G, π). Hence, since edge oracle recursively calls incident elements
in their increasing ranks, edge oracles for ` will only query incident elements in {Pi}i≤j∪{Di}i<j .

Note that the Start elements that appear in matching M of Algorithm 1 form a randomized
greedy maximal matching, and our query process for Start elements also coincides with the query
process for greedy matchings. Therefore, we can use the following result of [Beh21] which itself
builds on the bound on [FN20] as black-box.

Lemma 5.25 ([Beh21, Lemma 3.13]). Let π be a permutation over elements of T . With high
probability, the maximum length of a query-path consisting of Start elements is O(log n).

In the rest of this section, we show that it is unlikely to have a query-path consisting of Extend
elements with length larger than O(log2 n). Since by Observation 5.10 all Start elements appear
after Extend elements in a query-path, this is enough to show that the length of a query-path is
bounded by O(log2 n) with high probability.

The following two lemmas are similar to [BFS12, Lemma 3.1 and Lemma 3.3], however, both
are adapted to our setting.

Lemma 5.26. Suppose that we choose a θ-prefix of a uniformly at random permutation π of
elements of T , where θ = a/b for positive numbers a ≤ b ≤ |T | such that a/b ≥ 2/|T |. Let
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MSθ(G, π) be the subgraph produced by Algorithm 1 on this prefix. Assume that we remove all other
elements outside the prefix that cannot join subgraph MS(G, π) based on the current elements in
MSθ(G, π). All remaining Extend elements have at most b incident elements with probability of

at least 1− 2|T |2
ea/2

.

Proof. We say an element is live if we can add it to subgraph MSθ(G, π) and dead otherwise.
Assume that we sequentially pick (a|T |/b) elements. If the chosen element is live, we add the
element to MSθ(G, π), and mark all incident elements that cannot be in MSθ(G, π) after adding
this element, as dead. If the chosen element is dead, we do nothing. This sequential algorithm is
equivalent to choosing a prefix of a permutation and then processing the permutation.

Let ` be an Extend element that is live and has more than b incident live elements after
processing the prefix. We show that this event is unlikely. Since at the end of (a|T |/b) rounds, `
has more than b incident live elements, before all of (a|T |/b) rounds, it has more than b incident live
elements. Hence, in round i of the sequential process, with probability of at least b/(|T |−i) > b/|T |,
one of the incident live elements of ` will be selected. Note that if more than one incident element
of ` is added to MSθ(G, π), then ` 6∈ MS(G, π). (It is possible that ` is not in MS(G, π) because of
one incident element, however, we provide a looser bound by only considering the existence of two
incident elements.) Thus, the probability that at most one of its incident elements is selected is at
most(

1− b

|T |

)a|T |
b

+

(
a|T |
b

)(
1− b

|T |

)a|T |
b
−1

<
2a|T |
b

(
1− b

|T |

)a|T |
2b

=
2a|T |
b

(
1− b

|T |

) |T |
b
·a
2

, (7)

where the first term of left-hand side is the probability that none of the incident elements is chosen
and the second term is an upper bound for the probability that exactly one of the incident elements

is selected. Combining equations (7), (1− b
|T |)

|T |
b < (1/e), and a

b < 1, the probability of this event

is at most 2|T |
ea/2

. Taking a union bound over all elements completes the proof.

Corollary 5.27. If θi = Ω(2i log n/(2K∆)), then all remaining elements have at most 2K∆/2i

incident elements after round i.

Proof. At the beginning, each element is incident to at most 2K∆ elements since the degree of
each vertex is at most ∆ and we create K copies of each edge. Since log |T | = O(log n), the proof
can be obtained by Lemma 5.26 with a = Ω(log n) and b = 2K∆/2i for partition i.

In the previous lemma, by choosing the appropriate θi, the number of incident elements for each
Extend element reduce by half after removing partition i. Hence, there will be at most O(log n)
partitions. In the next lemma, we will show that the length of the longest query-path for Extend
elements in each of Pi is bounded by O(log n).

Lemma 5.28. Suppose that all Extend elements have at most x incident elements. Let a and
b be two positive integers such that a ≥ b and consider a randomly ordered θ-prefix from T with
θ < b/x. Then the longest query-path consist of Extend elements has length O(a) with probability
of at least 1− |T |(b/a)a.

Proof. Let (i1, i2, . . . , ik+1) be k + 1 different indices in the θ-prefix. Choosing the prefix elements
sequentially is equivalent to choosing a randomly ordered prefix. Let (`i1 , `i2 , . . . , `ik+1

) be elements
in these indices that create a query-path. Hence, the probability that `i1 and `i2 are incident is at
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most x/(|T |−1) since when we select `i2 , element `i1 is already chosen and there are |T |−1 choices
remaining and `1 has at most x incident elements. With the same argument, the probability that
`2 and `3 be incident is at most x/(|T | − 2). Hence, the probability of having such a path is at
most (x/(|T | − k))k. Taking a union bound over all possible k + 1 indices of the prefix, we get the
following bound for having a query-path of length k + 1. By assuming that k < |T |/2, we have(

θ|T |
k + 1

)
· (x/(|T | − k))k ≤

(
eθ|T |
k + 1

)k+1

·
(

x

|T | − k

)k
=
eθ|T |
k + 1

·
(

exθ|T |
(k + 1)(|T | − k)

)k
≤ eθ|T |
k + 1

·
(

2exθ

k + 1

)k
(k ≤ |T |/2)

≤ |T |
(

2exθ

k + 1

)k+1

.

By setting k = 2ea − 1 and θ < b/x the above bound will be at most |T |(b/a)a. Therefore, with
probability 1−|T |(b/a)a, the longest query-path has length O(a). Note that if k ≥ |T |/2, it implies
that 2ea ≥ |T |/2 which the lemma clearly holds since a = O(|T |).

Corollary 5.29. Suppose that all Extend elements have at most x incident elements. The longest
query-path consisting of Extend elements, has length of at most O(log n) with probability 1 − 1

n4

for a O(log(n)/x)-prefix of T .

Proof. Setting a = 5b = O(log |T |) = O(log n) in Lemma 5.28 completes the proof.

Now we are ready to complete the proof of Lemma 5.11.

Proof of Lemma 5.11. First, if the edge oracle recursively calls a Start element, then we get from
Lemma 5.25 and Observation 5.10 that the remaining length of the query-path will not exceed
O(log n) with high probability. Therefore, we only need to show that the length of the longest
query-path involving only Extend elements is bounded by O(log2 n) with high probability. Note
that according to the partitioning, if we choose θi = Ω(2i log(n)/(2K∆)), by Lemma 5.26, after
round i each Extend element has at most (2K∆)/2i incident elements. This implies that the
number of parts is O(log n) (i.e. d = O(log n)). Furthermore, by Lemma 5.28, the longest path
consisting of Extend elements in each part has length at most O(log n).

Figure 5: A possible query-path according to the partitioning. Blue boxes represent Pi and yellow
boxes represent Di.

Now consider a query-path P . By Observation 5.24, at most one element of P is in each Di for
i ≤ d. Moreover, by the above argument, there are at most O(log n) elements of P in each of Pi
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(see Figure 5). Therefore, the longest length of a query-path is bounded by O(log2 n) with high
probability (i.e. with probability of at least 1− 1/n2).

For each unlikely permutation π ∈ U , there exists a query-path of length larger than β. Since
β = c log2 n, by choosing c large enough we have that |U |/|Π| ≤ 1/n2. Therefore, |U | ≤ ((K +
1)m)!/n2 which implies that |AU | ≤ ((K + 1)m)!/n2 since AU represents vertices that correspond
to unlikely permutations.

6 Our Estimator for the Adjacency List Model

In this section, we use the oracles introduced in the previous section to estimate the size of the
matching in Algorithm 1. We assume that without loss of generality, the algorithm knows ∆, d̄,
and there is no singleton vertex in the graph (note that the algorithm can simply query degree of
each vertex and compute ∆ and d̄).

Note that our upper bound of Section 5 is on F (v, π) which recall is the number of recursive
calls to the oracles, but not necessarily the running time needed to implement it. Generating the
whole permutation π requires |T | = Θ(Km) time, which is too large for our purpose. Therefore,
we have to generate π on the fly during the recursive calls whenever needed. Using the techniques
developed first by [ORRR12] and further used by [Beh21], we show in Appendix B that indeed it
is possible to get an Õ(F (v, π)) time implementation. In particular, we show that:

Lemma 6.1. In the adjacency list model, there is a data structure that given a graph G, (implicitly)
fixes a random permutation π over its edge set. Then for any vertex v, the data structure returns
whether v has any edge in outputs M and S of Algorithm 1 according to a random permutation
π. Each query v to the data structure is answered in Õ(F (v, π)) time w.h.p. where F (v, π) is as
defined in Section 5. Additionally, the vertices we feed into the oracle can be adaptively chosen
depending on the responses to the previous calls.

In order to estimate the output of our algorithm, we sample r random vertices, and for each
vertex, we check if it is the endpoint of a Start element. Moreover, for each sampled vertex, we
check if the vertex is an endpoint of a length three augmenting path that is created by a Start
element as a middle edge and two other Extend elements.

6.1 Multiplicative Approximation

We use the following well-known claim about the size of maximum matching, a similar bound to
which was also used in [Beh21].

Claim 6.2. Let G be a graph with maximum degree ∆ and average degree d̄. Then µ(G) ≥ nd̄
4∆ .

Proof. Greedily edge color the graph using 2∆ colors. The color with the largest size is a matching
of size at least m/2∆ = nd̄/4∆.

We use this claim to show that the number of samples that is needed to estimate the output of
Algorithm 1 is r = Θ̃(∆/d̄).

Remark 6.3. In Algorithm 5, we do not estimate µ(M ∪ S). Instead, we estimate the size of
the maximal matching M and augment length-three augmenting paths in M ∪ S. Since the bound
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Algorithm 5: Final algorithm for adjacency list.

1 r ← (384 ·∆ log n)/(δ2d̄).
2 Sample r vertices u1, u2, . . . , ur uniformly at random from V with replacement.
3 Run vertex oracle for each ui and let Si and Ei be the indicator that ui has an incident

Start and Extend elements that appear in the output of Algorithm 1.
4 for i in 1 . . . r do
5 Xi ← 0
6 if Si = 1 then Xi ← 1;
7 if Si = 0 and Ei = 1 then
8 Let wi be the other endpoint of Extend element incident to u.
9 Run vertex oracle for wi (with the same permutation) and let S′i be the indicator

that wi has an incident Start element.
10 if S′i = 0 then continue;
11 Let xi be other endpoint of Start element incident to wi.
12 Run vertex oracle for xi (with the same permutation) and let E′i be the indicator

that xi has an incident Extend element.
13 if E′i = 0 then continue;
14 Let yi be other endpoint of Extend element incident to xi.
15 Run vertex oracle for yi (with the same permutation) and let S′′i be the indicator

that yi has an incident Start element.
16 if S′′i = 0 then Xi ← 1;

17 Let X =
∑

i∈[r]Xi and f = X/r.

18 Let µ̃ = (1− δ
2)fn/2.

19 return µ̃

in Theorem 4.1 is based on augmenting length three augmenting paths of M ∪ S, we get the same
approximation guarantee.

We can change the vertex oracle and edge oracle to return the incident elements that appear
in subgraph M ∪ S. However, for simplicity of oracles, we return the indicators for having Start
and Extend elements but we assume that we have access to these elements.

Lemma 6.4. Let µ̃ be the output of Algorithm 5. With high probability,(
1

2
+
δ

4

)
µ(G) ≤ µ̃ ≤ µ(G),

where δ is as in the statement of Theorem 4.1.

Proof. Let Xi be the indicator for each vertex i which shows in output of Algorithm 1, either i
has a Start incident element, or it is an endpoint of a length three augmenting path created by a
Start element in the middle along with two Extend elements. Note that the way Xi is computed
in Algorithm 5 is the same as the definition given earlier.

Let M̂(G, π) be the set of edges of the matching created by augmenting the length-three aug-
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menting paths of M ∪ S. By Remark 6.3 and Theorem 4.1,(
1

2
+ δ

)
µ(G) ≤ Eπ |M̂(G, π)| ≤ µ(G). (8)

Since the number of matched vertices is twice the number of edges in the matching,

E[Xi] = Pr[Xi = 1] =
2 Eπ |M̂(G, π)|

n
.

Similarly, we have

E[X] =
2rEπ |M̂(G, π)|

n
. (9)

Since X is the sum of r independent Bernoulli random variables, the Chernoff bound (Proposi-
tion 3.3) implies

Pr[|X −E[X]| ≤
√

6 E[X] log n] ≤ 2 exp

(
−6 E[X] log n

3 E[X]

)
=

2

n2
. (10)

Now, fn = Xn/r. Therefore, using the above equation, fn is in the following range with probability
1− 2/n2.

fn ∈
n(E[X]±

√
6 E[X] log n)

r
=
nE[X]

r
±
√

6n2 E[X] log n

r

= 2 E |M̂(G, π)| ±

√
12nE |M̂(G, π)| log n

r
(By (9))

= 2 E |M̂(G, π)| ±

√
nE |M̂(G, π)|d̄

32 · δ−2 ·∆
(Since r = 384·∆ logn

δ2d̄
)

≥ 2 E |M̂(G, π)| ±

√
µ(G) E |M̂(G, π)|

8 · δ−2
(Since µ(G) ≥ nd̄

4∆)

By (8), we have 2 E |M̂(G, π)| ≥ µ(G). Combining with Claim 6.2, we get

fn ∈ 2 E |M̂(G, π)| ±

√
E |M̂(G, π)|2

4δ−2
= (2± δ

2
) E |M̂(G, π)|.

Since µ̃ = (1− δ
2)fn/2, we have that

(1− δ) E |M̂(G, π)| ≤ µ̃ ≤ E |M̂(G, π)|

Next, note that by (8), (1
2 + δ)µ(G) ≤ E |M̂(G, π)| ≤ µ(G). Hence,

(1− δ)
(

1

2
+ δ

)
µ(G) ≤ µ̃ ≤ µ(G),

and thus (
1

2
+
δ

4

)
µ(G) ≤ µ̃ ≤ µ(G).
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Lemma 6.5. Algorithm 5 runs in Õ(n+ ∆1+ε) with high probability.

Proof. We show that for each of r sampled vertices in Algorithm 5, the iteration corresponding to
the vertex in Line 4 takes Õ(Kd̄) time. First, note that for a random permutation π, the vertex
oracle for a vertex u can be called a constant number of times. The reason is that the algorithm
only queries vertex oracle for vertices of length three augmenting paths. Also, by Theorem 5.2,
the vertex oracle takes Õ(Kd̄) time for random vertex and permutation. Therefore, if we run the
vertex oracle a constant time for a fixed vertex, still the expected running time will be Õ(Kd̄).
Since the number of samples is O(∆ log n/d̄), the total running time for all samples will be Õ(K∆).
Furthermore, we spent O(n) time for computing ∆, d̄, and finding the isolated vertices.

In order to achieve a high probability bound on running time, we run Θ(log n) instances of the
algorithm simultaneously and return the estimation of the first instance that terminates. Since the
expected running time is Õ(n+K∆), the first instance terminates with probability 1− 1/poly(n)
in Õ(n+K∆).

Plugging K = Õ(∆ε) completes the proof.

6.2 Multiplicative-Additive Approximation

We use the same algorithm as Algorithm 5, however, the o(n) additive error allows us to sample
Θ̃(1) vertices instead of Θ̃(∆/d̄) vertices. Moreover, we no longer need to estimate d̄ and ∆ since
the number of samples is independent of these parameters.

Lemma 6.6. Let µ̃ be the output of Algorithm 5 with parameter r = 12 log3 n and estimation
µ̃ = fn/2− n

2 logn . With high probability,(
1

2
+ δ

)
µ(G)− n

log n
≤ µ̃ ≤ µ(G).

Proof. Let Xi be defined the same as Lemma 6.4. With the exact same argument, inequalities (8),
(9), and (10) hold with new parameter and estimation. Hence, with probability of at least 1−2/n2,

fn ∈
n(E[X]±

√
6 E[X] log n)

r
=
nE[X]

r
±
√

6n2 E[X] log n

r2

= 2 E |M̂(G, π)| ±

√
12nE |M̂(G, π)| log n

r
(By (9))

= 2 E |M̂(G, π)| ±

√
nE |M̂(G, π)|

log2 n
(Since r = 12 · log3 n)

∈ 2 E |M̂(G, π)| ± n

log n
(Since E |M̂(G, π)| ≤ n).

Since µ̃ = fn/2− n
2 logn , we have that

E |M̂(G, π)| − n

log n
≤ µ̃ ≤ E |M̂(G, π)|.

By plugging (8), we get (
1

2
+ δ

)
µ(G)− n

log n
≤ µ̃ ≤ µ(G).
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Lemma 6.7. Algorithm 5 with parameter r = 12 log3 n, runs in Õ(d̄ ·∆ε) with high probability.

Proof. First, note that we do not need to spend Õ(n) time to estimate ∆ and d̄, since the number of
samples is independent of these parameters. By the exact same argument as the proof of Lemma 6.5,
we can show that the expected running time for each sampled vertex is Õ(Kd̄). Since r = (̃O)(1),
the total running time will be Õ(Kd̄).

To get a high probability bound on the running time, similar to Lemma 6.5, we run Θ(log n)
instances of the algorithm simultaneously. Using the same argument, the first instance terminates
with probability 1− 1/poly(n) in Õ(Kd̄).

Plugging K = Õ(∆ε) completes the proof.

7 Our Estimator for the Adjacency Matrix Model

In this section, we give a reduction from the adjacency matrix model to the adjacency list model
such that each query in the adjacency list can be implemented with a constant number of queries
in the adjacency matrix model. Such a reduction appears in [Beh21, Section 5]. We use a similar
idea with a minor modification in the parameters of the construction.

Let γ = (4 log n) · n. We construct a graph H = (VH , EH) as follows:

• VH is the union of V1, V2 and U1, U2, . . . , Un such that:

– V1 and V2 are two copies of the vertex set of the original graph G.

– Ui is a vertex set of size γ for each i ∈ [n].

• We define the edge set such that degree of each vertex is in {1, n, n+ γ}:

– Degree of each vertex v ∈ V1 is n. The i-th neighbor of v is the i-th vertex in V1 if
(v, i) ∈ E, otherwise, its i-th neighbor is the i-th vertex in V2 for i ≤ n. Note that graph
(V1, EH ∩ (V1 × V1)) is isomorphic to G.

– Degree of each vertex v ∈ V2 is n + γ. The i-th neighbor of v is the i-th vertex in
V2 if (v, i) ∈ E, otherwise, its i-th neighbor is the i-th vertex in V1 for i ≤ n. For all
n < i ≤ n+ γ, the i-th neighbor of v is i-th vertex in Uv.

– Degree of each vertex u ∈ Ui is one for i ∈ [n]. The only neighbor of u is the i-th vertex
of V2.

Observation 7.1. For each vertex v ∈ VH and i ∈ [degH(v)], the i-th neighbor of vertex v can be
determined using at most one query to the adjacency matrix.

Proof. First, note that the degree of each vertex is not dependent on the original graph G. Hence,
we do not need any queries to find the degree of each vertex. For each vertex v ∈ U1∪U2∪ . . .∪Un,
one can find its only neighbor without any queries by the construction of H. For each vertex
v ∈ V1 ∪ V2, the i-th neighbor is either the i-th vertex of V1 or the i-vertex of V2. Therefore, with
at most one query, one can determine the i-th neighbor of vertex v.

Consider a random permutation π over the list of elements T , consisting of Start and Extend
copies of EH . Intuitively, for almost all vertices v ∈ V2, the first incident Start element to v in T
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is an edge between v and Uv. Similarly, the first two incident Extend elements to v are between
v and Uv. We say v is a bad vertex, if it violates the mentioned conditions. Let R ⊆ V2 be the
set of bad vertices. Since the permutation over edges in H[V1 ∪ R] is uniformly at random, using
Theorem 4.1, we can provide a bound on the size of the matching produced by the algorithm.

Observation 7.2. For each v ∈ V2 \ R, the incident Start and Extend elements in MS(H,π)
are between v and Uv. Moreover, both incident Start and Extend elements in MS(H,π) appears
before all edges between v and V1 ∪ V2.

Proof. By the definition of R, the first Start element incident to v in the permutation is between
v and Uv. Let this edge be (v, w). Hence, the algorithm adds (v, w) to MS(H,π). Note that all
Start elements incident to v after (v, w) in the permutation cannot be in MS(H,π) since Start
elements create a maximal matching. By definition of R, the first two Extend elements incident
to v are between v and Uv. Let (v, u1) and (v, u2) be these two edges (u1 6= u2 since there is one
Extend copy). Therefore, one of (v, u1) and (v, u2) must be added to MS(H,π) and no other
Extend element incident to v can be added to MS(H,π) since Extend elements create a maximal
matching.

Observation 7.3. It holds that(
1

2
+ δ

)
µ(H[V1 ∪R]) ≤ Eπ |MS(H,π) ∩ ((V1 ∪R)× (V1 ∪R)) | ≤ µ(H[V1 ∪R]).

Proof. Note that by Observation 7.2, all vertices in V2 \ R have incident Start and Extend
elements in MS(H,π) which appear before edges between V 1 ∪ R and V2 \ R in the permutation.
Hence, none of these edges can be added to the subgraph MS(H,π) in Algorithm 1. Since the
permutation over edges in H[V1∪R] is uniformly at random, using Theorem 4.1, we have the given
bound

Next, we provide an upper bound for the size of R.

Observation 7.4. It holds that Eπ |R| ≤ n
2 logn .

Proof. For vertex v ∈ V2 and a random permutation π over EH , the first incident Start element is
between v and Uv, with probability of at least Kγ

(n+γ)K ≥ 1− 1
4 logn . Furthremore, with probability

γ(γ−1)
(n+γ)(n+γ−1) ≥ 1− 1

4 logn , the first two Extend elements are between v and Uv. Since these events
are independent, the probability of v not being a bad vertex is at least(

1− 1

4 log n

)2

≥ 1− 1

2 log n
.

Therefore, |R| is at most n
2 logn in expectation over a random permutation.

With the intuition that a few vertices in V2 are matched to vertices in V1 ∪ V2, our goal is to
estimate the number of vertices that have a matching edge in V1. Since we have an upper bound
on the size of the R, we are able to estimate the number of matching edges in H[V1] = H[G]. In
order to count the number of matching edges in V1, we need to run the vertex oracle for vertices of
V1 ∪ V2. We show that the expected running time of vertex oracle on a random vertex of V1 ∪ V2

is Õ(n1+ε).
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Claim 7.5. Let v be a random vertex in V1 ∪ V2 and π be a random permutation over EH . Then

Ev∼(V1∪V2),π[F (v, π)] = Õ(n1+ε).

Proof. By Theorem 5.2, we have

Ev∼VH ,π[F (v, π)] = O

(
K
|EH |
|VH |

log4 |VH |
)
.

Summing over all vertices of VH , we get∑
v∈VH

Eπ[F (v, π)] = O(K|EH | · log4 |VH |) = Õ(n2+ε),

because |VH | = O(n2), |EH | = O(n2 + nγ), K = Õ(nε), and γ = (4 log n) · n. Therefore,

Ev∼(V1∪V2),π[F (v, π)] ≤

∑
v∈VH

Eπ[F (v, π)]

 /|(V1 ∪ V2)| = Õ(n1+ε).

Claim 7.6. Let v be a random vertex in V1 and π be a random permutation over EH . Then

Ev∼V1,π[F (v, π)] = Õ(n1+ε).

Proof. Proof follows by combining Claim 7.5 and |V1| = |V2|.

Lemma 7.7. Let µ̃ be the output of Algorithm 6. With high probability,(
1

2
+ δ

)
µ(G)− n

log n
≤ µ̃ ≤ µ(G).

Proof. Let M̂(H,π) be the intersection of edges between V1 and set of edges of the matching that
is created by augmenting the length-three augmenting paths of M ∪ S. We claim(

1

2
+ δ

)
µ(H[V1])− n

2 log n
≤ Eπ |M̂(H,π)| ≤ µ(H[V1]). (11)

By combining Observation 7.3 and Observation 7.4, imply that there are at most n
2 logn edges

in output of algorithm in H[V1 ∪ R] with at least one endpoint in R. Therefore, by combining
Remark 6.3, Theorem 4.1, and the bound for number of edges with at least one endpoint in R, we
have the first inequality. Furthermore, since M̂(H,π) is a matching of H[V1], we have the second
inequality.

By definition, Xi is the indicator of the event that a vertex i ∈ V1 is matched in the output of
Algorithm 1 to another vertex in V1. Since the number of matched vertices is twice the number of
matching edges,

E[Xi] = Pr[Xi = 1] =
2 E |M̂(H,π)|

n
.
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Algorithm 6: Final algorithm for adjacency matrix.

1 Let H = (VH , EH) as described above.

2 r ← 48 · log3 n.
3 Sample r vertices u1, u2, . . . , ur uniformly at random from V1 with replacement.
4 Run vertex oracle for each ui and let Si and Ei be the indicator that ui has an incident

Start and Extend elements that appear in output of Algorithm 1.
5 for i in 1 . . . r do
6 Xi ← 0
7 if Si = 1 then
8 Let wi be the other endpoint of Start edge incident to u.
9 if wi ∈ V1 then Xi ← 1;

10 if Si = 0 and Ei = 1 then
11 Let wi be the other endpoint of Extend element incident to u.
12 Run vertex oracle for wi (with same π) and let S′i be the indicator that wi has an

incident Start edge.
13 if S′i = 0 then continue;
14 Let xi be other endpoint of Start element incident to wi.
15 Run vertex oracle for xi (with same π) and let E′i be the indicator that xi has an

incident Extend element.
16 if E′i = 0 then continue;
17 Let yi be other endpoint of Extend element incident to xi.
18 Run vertex oracle for yi (with same π) and let S′′i be the indicator that yi has an

incident Start element.
19 if S′′i = 0 and wi ∈ V1 then Xi ← 1;

20 Let X =
∑

i∈[r]Xi and f = X/r.

21 Let µ̃ = fn/2− n
4 logn .

22 return µ̃

Similarly,

E[X] =
2rE |M̂(H,π)|

n
. (12)

Since X is the sum of r independent Bernoulli random variables, the Chernoff bound (Propo-
sition 3.3) implies

Pr[|X −E[X]| ≤
√

6 E[X] log n] ≤ 2 exp

(
−6 E[X] log n

3 E[X]

)
=

2

n2
.

Note that fn = Xn/r, so using the above equation, fn is in the following range with probability
1− 2/n2:

fn ∈
n(E[X]±

√
6 E[X] log n)

r
=
nE[X]

r
±
√

6n2 E[X] log n

r2

= 2 E |M̂(H,π)| ±

√
12nE |M̂(H,π)| log n

r
(By (12))
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= 2 E |M̂(H,π)| ±

√
nE |M̂(H,π)|

4 log2 n
(Since r = 48 · log3 n)

∈ 2 E |M̂(H,π)| ± n

2 log n
(Since E |M̂(H,π)| ≤ n).

Now, µ̃ = fn/2− n
4 logn . Therefore,

E |M̂(H,π)| − n

2 log n
≤ µ̃ ≤ E |M̂(H,π)|.

Combining the above range with (11) implies(
1

2
+ δ

)
µ(G)− n

log n
≤ µ̃ ≤ µ(G).

Lemma 7.8. Algorithm 6 runs in Õ(n1+ε) with high probability.

Proof. First, we show that the iteration in Line 5, for each of r sampled vertices from V1 takes
Õ(n1+ε) time in expectation. With the same argument as Lemma 6.5, the vertex oracle for a vertex
u can be called a constant number of times. Moreover, by Claim 7.5 and Claim 7.6, the vertex
oracle takes Õ(n1+ε) time for a random vertex in V1∪V2 and a random permutation (since set R is
a uniformly at random set in V2). Therefore, if we run the vertex oracle constant time for a fixed
vertex, still the expected running time will be Õ(n1+ε).

In order to achieve a high probability bound on the running time, similar to the proof of
Lemma 6.5, we run Θ(log n) instances of the algorithm simultaneously. Using the same argument,
the first instance terminates with probability 1− 1/poly(n) in Õ(n1+ε).

Proof of Theorem 1.1.

• By combining Lemma 6.4 and Lemma 6.5, we get multiplicative factor of (1
2 + δ) in the

adjacency list model in Õ(n+ ∆1+ε) time.

• By combining Lemma 6.6 and Lemma 6.7, we get multiplicative-additive factor of (1
2 +δ, o(n))

in the adjacency list model in Õ(d̄ ·∆ε) time.

• By combining Lemma 7.7 and Lemma 7.8, we get multiplicative-additive factor of (1
2 +δ, o(n))

in the adjacency matrix model in Õ(n1+ε) time. For a constant ε, running this algorithm for
a slightly smaller value of ε allows us to get rid of polylogarithmic factor in the running time
and achieve an O(n1+ε) time algorithm.

8 Conclusion

We presented a new algorithm for finding a (1
2 +Ω(1))-approximate maximum matching and showed

how its output size can be estimated in sublinear time. The algorithm gives a multiplicative
(1

2 + Ω(1))-approximation of the size of maximum matching in the adjacency list model that runs

in Õ(n + ∆1+ε) = O(n1+ε) time, where constant ε > 0 can be made arbitrarily small. This is the
first algorithm that beats half-approximation in o(n2) time for all graphs.

Given that the barrier of 1/2 is now broken, a natural question is what is the best approximation
achievable in n2−Ω(1) time. Is it possible to get a, say, .51-approximation? On the flip side, a lower
bound ruling out say a .9999-approximation in n2−Ω(1) time would also be extremely interesting.
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A Deferred Proofs

Proof of Claim 3.1. For any odd i, let ti be the number of augmenting paths of length i for M in
M ⊕M?. Note that since M is maximal, we have t1 = 0. Therefore,

|M?| − |M | =
∑
i≥1

t2i+1 ≤ t3 +
∑
i≥2

1

2
it2i+1 ≤

1

2
t3 +

1

2

∑
i≥1

it2i+1 =
1

2
t3 +

1

2
|M |.

Moving the terms and using the assumption of |M | < (1
2 + δ)|M?|, we get

|M | − t3 ≤ |M | − (2|M?| − 3|M |) = 4|M | − 2µ(G) ≤ (2 + 4δ)µ(G)− 2µ(G) = 4δµ(G).

B Implementation Details

In this section, we provide an implementation of our vertex and edge oracle. The idea is similar to
the [Beh21, Appendix A]. The main difference is that instead of having at most one edge between
two vertices, here we have K + 1 edges where K of them correspond to Start copies and one of
them corresponds to Extend copy. The idea is to generate a random permutation π locally and
sort edges based on π to create the permutation.

Note that in the vertex oracle and edge oracle, when an Start incident element appears in
MS(G, π), the algorithm no longer queries on the Start incident elements (the same also holds for
Extend elements). Therefore, instead of having one graph, we assume that we have two graphs
Gs and Ge that are isomorphic to G. Also, we assume that each edge in Gs has K copies that is
corresponds to the number of Start elements. In other words, graph Gs is the a graph made by
all Start elements of G and Ge is the a graph made by all Extend elements of G.

Let LowestGt(u, i) for t ∈ {s, e} be a procedure that returns a pair of an edge e in Gt and its
ranking such that e is the i-th lowest rank edge incident to u in Gt. We use the same implementation
of LowestGt procedure as the [Beh21, Appendix A] (note that in this paper, the procedure only
returns the edge. However, in the implementation of the Lowest, they compute the edge ranking
and we can simply return the edge ranking). Let degGt

(u) be the degree of vertex u in graph Gt.
By definition of the Gs and Ge, we have that degGs

(u) = K degG(u) and degGe
(u) = degG(u).

Claim B.1 ([Beh21]). Let u be a vertex and suppose that we call procedure LowestGt(u, i) for all
1 ≤ i ≤ j. The total time to implement all these calls is Õ(j) with high probability for all u ∈ V .

We present the implementation of our oracles in the following three algorithms. Note that we
can generate vertex colors (i.e. cv for vertex v) on the fly when it is needed. Also, we can toss a
coin with a probability 1 − p for each edge to determine if it is a frozen edge or not. Therefore,
once we have the rank of edges in our oracles, we can distinguish whether an edge is frozen or not
based on the Definition 5.1. However, to make algorithms easier to read, we do not include the
technical details of this part.
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Algorithm 7: Implementation of the vertex oracle VO(u).

1 js ← 1, je ← 1
2 vs, πs ← LowestGs(u, js)
3 ve, πe ← LowestGe(u, je)
4 ST ← False, EX ← False
5 while js ≤ degGs

(u) or je ≤ degGe
(u) do

6 if πs < πe then
7 X ← Start
8 ` = ((u, vs), X)

9 else
10 X ← Extend
11 ` = ((u, ve), X)

12 if X = Extend and cu = cve then continue;
13 if ST = False and X = Start and EOS(`, vs) = True then
14 ST ← True
15 js ← js + 1
16 if js ≤ degGs

(u) then
17 vs, πs ← LowestGs(u, js)

18 else
19 vs, πs ←∞,∞

20 if EX = False and X = Extend and EOE(`, ve, ST ) = True then
21 EX ← True
22 je ← je + 1
23 if je ≤ degGe

(u) then
24 ve, πe ← LowestGe(u, je)

25 else
26 ve, πe ←∞,∞

27 return ST,EX

Algorithm 8: Implementation of the edge oracle for Start elements EOS(`, u).

1 if EOS(`, u) is already computed then return the computed answer;
2 j ← 1
3 w, πw ← LowestGs(u, j)
4 while w 6= v do
5 `′ ← ((u,w),Start)
6 if EOS(`′, w) = True then return False;
7 j ← j + 1
8 w ← LowestGs(u, j)

9 return True
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Algorithm 9: Implementation of the edge oracle for Extend elements EOE(`, u, STw).

1 if EOE(`, u, STw) is already computed then return the computed answer;
2 js ← 1, je ← 1
3 vs, πs ← LowestGs(u, js)
4 ve, πe ← LowestGe(u, je)
5 STu ← False
6 if πs < πe then
7 w ← vs, X

′ ← Start

8 else
9 w ← ve, X

′ ← Extend

10 `′ ← ((u,w), X ′)
11 while w 6= v or X ′ 6= X do
12 if X ′ = Extend and cu = cw then continue;
13 if X ′ = Start then
14 if STu = False, and EOS(`′, w) = True then
15 STu ← True
16 if `′ is frozen then return False;
17 if STw = True then return False;

18 js ← js + 1
19 if js ≤ degGs

(u) then
20 vs, πs ← LowestGs(u, js)

21 else
22 vs, πs ←∞,∞

23 if X ′ = Extend then
24 if EOE(`′, w, STu) = True then return False;
25 je ← je + 1
26 if je ≤ degGe

(u) then
27 ve, πe ← LowestGe(u, je)

28 else
29 ve, πe ←∞,∞

30 if πs < πe then
31 w ← vs, X

′ ← Start

32 else
33 w ← ve, X

′ ← Extend

34 `′ ← ((u,w), X ′)

35 return True

Lemma B.2. In the adjacency list model, there is a data structure that given a graph G, (implicitly)
fixes a random permutation π over its edge set. Then for any vertex v, the data structure returns
whether v has any edge in outputs M and S of Algorithm 1 according to a random permutation
π. Each query v to the data structure is answered in Õ(F (v, π)) time w.h.p. where F (v, π) is as
defined in Section 5. Additionally, the vertices we feed into the oracle can be adaptively chosen
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depending on the responses to the previous calls.

Proof. Note that in Algorithm 7, we only call Lowest procedure for the neighbors that we recur-
sively call edge oracle for them. Similarly, in Algorithm 8 and Algorithm 9 we only call Lowest
procedure for incident elements that we will recursively call the edge oracle on them. Therefore, by
Claim B.1, the total time spent on Lowest procedure calls is Õ(F (v, π)) for a random permutation
π and every vertex v with high probability.

45


	1 Introduction
	2 Technical Overview
	2.1 The Quadratic Barrier: A Brief Discussion of Earlier Techniques
	2.2 Our Contribution: A Less ``Adaptive'' Augmentation Algorithm

	3 Preliminaries
	4 A Meta Algorithm for Beating the 12-Approximation
	4.1 The Algorithm
	4.2 The Approximation Guarantee

	5 A Local Query Algorithm and its Complexity
	5.1 Correctness of the Oracles
	5.2 Query Complexity of the Oracles

	6 Our Estimator for the Adjacency List Model
	6.1 Multiplicative Approximation
	6.2 Multiplicative-Additive Approximation

	7 Our Estimator for the Adjacency Matrix Model
	8 Conclusion
	A Deferred Proofs
	B Implementation Details

