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A NEAR-LINEAR TIME SAMPLER FOR THE ISING MODEL WITH EXTERNAL FIELD

XIAOYU CHEN AND XINYUAN ZHANG

Abstract. We give a near-linear time sampler for the Gibbs distribution of the ferromagnetic Ising
models with edge activities β > 1 and external fields λ < 1 (or symmetrically, λ > 1) on general
graphs with bounded or unbounded maximum degree.

Our algorithm is based on the field dynamics given in [CFYZ21b]. We prove the correctness and
efficiency of our algorithm by establishing spectral independence of distribution of the randomcluster
model and the rapid mixing of Glauber dynamics on the random cluster model in a low-temperature
regime, which may be of independent interest.

1. Introduction

The Isingmodel [Isi25] introduced by Ising and Lenz is an extensively studied statistical physics
modelwhich leads tomany inspiring discoveries in physics, discrete probability, machine learning,
and theoretical computer science. Let G = (V ,E) be an undirected graph with n vertices and m

edges, β ∈ (1,+∞)E be the edge activities, and λ ∈ [0, 1]V be the external fields. The Gibbs distribution
µ
Ising

β,λ
over 2V of the ferromagnetic Ising model is defined by

∀S ⊆ V , µ
Ising

β,λ
(S) :=

1

Z
Ising

β,λ

∏

e∈m(S)

βe

∏

v∈S

λv,

where m(S) := {e ∈ E | e ∩ S = e or e ∩ S = ∅} denotes the set of “monochromatic” edges, and
Z
Ising

β,λ
:=

∑
S⊆V

∏
e∈m(S) βe

∏
v∈S λv is known as the partition function. A major problem is to

sample from the Gibbs distribution of the ferromagnetic Ising model.
One of the most well-known approaches is the Markov Chain Monte Carlo (MCMC) method.

The Glauber dynamics, also known as the Gibbs sampler, is an example of this method. There are
numerous researches establishing the rapid mixing results of Glauber dynamics [MS13, CLV20,
CLV21a, CFYZ21b, AJK+21a, AJK+21b, CE22] when β < βc(∆), where ∆ is the maximum degree
of a graph G and βc(∆) := ∆/(∆ − 2) is the critical threshold. However, when β > βc(∆), it is
known that there exist graphs such that the Glauber dynamics is exponentially slow in the size of
the graph [GM07].

Even though the Glauber dynamics fails to be efficient, there still exist fast algorithms to sample
from the Gibbs distribution of the ferromagnetic Ising model. The random cluster model [FK72,
For72a, For72b] and subgraph-world model are two statistical mechanics models that are closely
related to the Ising model. Leveraging the connection between the partition function of the Ising
model and the subgraph-world model [NM53], [JS93] showed that the 1/2-lazy Metropolis chain
on the subgraph-world model converges rapidly by using the technique of canonical path [JS89].
The following works [GJ18, FGW22a] established a similar mixing time of Glauber dynamics on
the random cluster model via multicommodity flow based on the canonical path in [JS93] and the
coupling in [GJ09]. All these results can be translated into fast Ising samplers that run in time
Õβ,λ(m

3) when β > 1 and λ < 1. Furthermore, these samplers also work when λ = 1, where the
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running time degenerates to Õβ(n
4m3). It is also worth mentioning that for the case λ = 1, there

is a specific Markov chain called worm process on the Prokof’ev-Svistunov measure of the Ising
model studied in statistical physics, which is proved to be rapid mixing [CGHT16].

With bounded degree assumption, [CLV21b] proved the optimal mixing time of Glauber dy-
namics on the subgraph-world model via spectral independence, implying a fast Ising sampler
that runs in ∆Oβ,λ(∆) · Õ(m) when β > 1 and λ < 1.

Apart from MCMC based method, algorithms based on zero-freeness property and polymer
model also achieve polynomial running time with restrictions. By the celebrated Lee-Yang circle
theorem [LY52] and the polynomial interpolation algorithm framework [Bar16, PR17, PR19], there
is an algorithm for sampling the ferromagnetic Ising model that runs in time nOλ(log∆) for β > 1

and λ < 1 [LSS19], where ∆ is the maximum degree of the graph. While algorithms based on
the polymer model usually require graph G to be an α-expander for some constant α > 0 and
parameter β = Ω(log(∆)/α). An algorithm of this type with running time nOβ,α(log∆) was given
in [JKP20], and follow-up works [CGG+21, BCP22a] improved the running time to Õβ,α(n).

Besides, there are many other fast samplers for the Ising model on special families of graphs
[MSW03, GŠV19, BCŠV21, BCP+22b, GS22], such as lattice graph and torus graph.

In summary, no algorithms in previous studies run faster than cubic time without any assump-
tion on graphs or parameters. It is natural to ask the following question:

Are there faster algorithms to sample from Gibbs distribution of the Ising model in the general case?

In this paper, we answer this question in the affirmative.

Theorem 1.1. Let δβ, δλ ∈ (0, 1) be constants, and µ be the Gibbs distribution of the ferromagnetic Ising
model specified by graph G = (V ,E), parameters β ∈ [1 + δβ,+∞)

E and λ ∈ [0, 1 − δλ]
V . There exists an

algorithm that samples X satisfying dTV (X,µ) 6 ε for any given parameter ε > 0 within running time

m · (logn)
Oδβ ,δλ

(1)
,

where m is the number of edges and n is the number of vertices.

Remark 1.2. Let µ be the Gibbs distribution of the Ising model with parameters β ∈ RE
>1 and

λ ∈ RV
>1
, and define µ by letting µ(S) = µ(V \S) for each S ⊆ V . Note that µ is the Gibbs distribution

of the Ising model with parameters β and λ−1 ∈ (0, 1)V . Therefore, we can sample from µ via the
sampler in Theorem 1.1, which implies a sampler for µ.

Compared to previous works, our algorithm could handle general instances while it only takes
a near-linear running time when parameters are bounded away from 1. We give a detailed com-
parison between Theorem 1.1 and previous results in Table 1.

As in [GJ18, FGW22a], we leverage the Edwards-Sokal coupling [ES88] (see Proposition 2.2),
which reduces the task of sampling from the distribution of the ferromagnetic Ising model to the
random cluster model (see Section 2.3.2 for formal definition).

Theorem 1.3. Let δp, δλ ∈ (0, 1) be constants and µ be the distribution of a random cluster model specified
by graph G = (V ,E), parameters p ∈ [δp, 1)

E and λ ∈ [0, 1 − δλ]
V . There is an algorithm that samples X

satisfying dTV(X,µ) 6 ε for any given parameter ε > 0 within running time

m · (logn)Oδp,δλ
(1) ,

where m is the number of edges and n is the number of vertices.

The proof of Theorem 1.1 assuming Theorem 1.3 is deferred to Appendix A.1.
In the recent progress on high-dimensional expansion and the analysis of Glauber dynamics, a

newMarkov chain called field dynamics has played an important role [CFYZ21b, AJK+21b, CFYZ22,
CE22]. The field dynamicswas originally used to obtain a boostedoptimal spectral gap ormodified
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results running time requirements

[JS93]
Õβ,λ(m

3) λ < 1

Õβ(n
4m3) λ = 1

[LSS19] nOλ(log∆) λ < 1

[CLV21b] ∆Oβ,λ(∆) · Õ(m) bounded degree

[CGG+21] Õβ,α(n)
α-expander, λ = 1

β = Ω(log(∆)/α)

This work (Theorem 1.1) Õβ,λ(m) λ < 1

Table 1. Comparison of running times and requirements for Ising samplers

log-Sobolev constant froma sub-critical regime. However, it turns out that the field dynamics could
also be used to design fast sampler. A recent work [AJK+21b] used field dynamicswith interleaved
systematic scans to build a fast sampler for the hardcore model. In our result, Theorem 1.3 is
another example in which field dynamics is used as an algorithmic tool to design fast sampler. The
proof of Theorem 1.3 is outlined in Section 3.

The key ingredients in Theorem 1.3 are to establish spectral independence of the random cluster
model for graphs with both bounded and unbounded maximum degree, and to prove the mixing
results for the random cluster model in a low-temperature regime. The previous work [CLV21b]
established an O∆,p,η(1) bound for the spectral independence of the subgraph-world model (see
Section 2.3.1) by using the analytical property offered by the zero-freeness region, which leads
to a ∆Oβ,λ(∆) factor in the running time of the sampler for the Ising model or the random cluster
model. In this work, we remove the dependency on ∆ and prove an Oη(1) spectral independence
for the subgraph-world model by using a novel coupling based argument (see lemma 4.4). Unlike
the previous analysis in [CLV21b], this coupling based argument enables us to lift the spectral
independence bound from the subgraph-world model to the random cluster model by using the
nature coupling between these models. Therefore, we are able to prove the first Oλ(1) bound for
the spectral independence of the random cluster model (see lemma 4.1). Finally, in section 5, we
use the coupling with stationary argument to show that the Glauber dynamics on the random
cluster model mixes rapidly in a low-temperature regime (i.e. when pmin is close to 1). With these
ingredients, we develop a near-linear time sampler via the field dynamics for the random cluster
model on general graphs with both bounded and unbounded maximum degree.

We remark that the recently updatedversion [FGW22b] of [FGW22a] proved the optimalmixing
time of the Glauber dynamics of the random clustermodelwhen the fields are bounded away from
1 and the maximum degree of graphs is bounded by a universal constant. Their proof is also based
on the high-dimensional expander.

1.1. Open problems. In this paper, we developed a near-linear time sampler for Isingmodelswith
parameters β > 1 and λ < 1 (or symmetrically, λ > 1). It still leaves several open problems.

• Develop a good sampler for the ferromagnetic Isingmodelwhenfieldλ = 1. Our algorithm
fails due to the exponential reliance on the gap of λ and 1, which stems from the analysis
based on high dimensional expander technique. Therefore, It is still tempting to surpass
Jerrum and Sinclair’s algorithm [JS93] in this case.
• Better analysis on the Glauber dynamics and the Swendsen-Wang dynamics of the random
cluster model. These simple yet powerful dynamics are of great interests in the study of

3



randomclustermodel [GJ99,GJ18, GŠV19, BCŠV21, FGW22a]. Though, the currentmixing
time bounds for these dynamics on general graphs are still far from optimal. We hope our
techniques and results could be an inspiration for works in this field.

2. Preliminaries

2.1. Notation. Let µ be a distribution over 2U for some ground set U, and τ,Λ be subsets of U.
Pτ,Λ denote the set of configurations S ⊆ U that agree with τ on Λ, i.e.

Pτ,Λ = {S ⊆ U | S ∩Λ = τ ∩Λ}.

The distribution conditional on event E ⊆ 2U is defined by1

∀S ⊆ U, µ(S | E) =

{
µ(S)
µ(E)

if S ∈ E,

0 otherwise.

For simplicity, wedenotebyµ (· | i) (resp. µ(· | i)) thedistributionµ
(
· | P{i},{i}

)
(resp. µ

(
· | P∅,{i}

)
)

projected onU \ {i} for some i ∈ U. Furthermore, we denote by µ(i) (resp. µ(i)) be the probability
PrS∼µ [i ∈ S] (resp. PrS∼µ [i ∉ S]).

Let p ∈ [0, 1]U. The distribution µ =
⊗

i∈U Ber(pi) is defined by

∀S ⊆ E, µ(S) =
∏

i∈S

pi

∏

i∉S

(1 − pi).

We will write 1 be the constant vector with value 1, and 1u = (1i=u)i∈U for some u ∈ U. Lastly,
let X,Y ⊆ U be two subsets of the ground set U, we use X ⊕ Y := (X \ Y) ∪ (Y \ X) to denote the
symmetric difference between X and Y.

2.2. Markov chains, entropy and mixing time.

2.2.1. Basic definitions. Let (Xt)t∈N be a Markov chain over a finite state space Ω with transition
matrix P = (px,y)x,y∈Ω ∈ R

Ω×Ω
>0 . (Xt)t∈N is irreducible, if for any x,y ∈ Ω, there exists t > 0,

such that Pt(x,y) > 0. (Xt)t∈N is aperiodic, if for any x ∈ Ω, gcd
{
t ∈ N>0 | P

t(x, x) > 0
}
= 1. A

distribution µ overΩ is a stationary distribution of (Xt)t∈N, if µ = µP. The fundamental theorem of
Markov chain says that a Markov chain (Xt)t∈N has a unique stationary distribution, if the Markov
chain is irreducible and aperiodic. A distribution µ overΩ is reversible with respect to (Xt)t∈N, if µ
satisfies the detailed balance condition, i.e. µ(x)P(x,y) = µ(y)P(y, x) holds for all x,y ∈ Ω. It is known
that µ is the stationary distribution of (Xt)t∈N if µ is reversible with respect to the Markov chain.

Let µ,ν be two distributions over the finite state spaceΩ, the total variation distance is defined as

dTV(µ,ν) = max
S⊆Ω
|µ(S) − ν(S)| =

1

2

∑

σ∈Ω

|ν(σ) − µ(σ)| .

Suppose µ is the stationary distribution of a Markov chain (Xt)t∈N with transition matrix P. The
mixing time initialized from configuration X0 is defined by

Tmix(ε,X0) = min{t ∈ N | dTV(P
t(X0, ·),µ) < ε}.

The mixing time is defined by Tmix(ε) = maxX0∈Ω Tmix(ε,X0).

1Event Emust satisfy µ(E) =
∑

S∈E
µ(S) > 0.
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2.2.2. Glauber dynamics. Letµ be a distribution over 2U on a finite ground setU. One of themost fa-
mous single-site dynamics is theGlauber dynamics (a.k.a. Gibbs sampler). In each step, theGlauber
dynamics updates configuration X ∈ 2U according to the following rules:

• pick i ∈ U uniformly at random;
• update X according to distribution µ

(
· | PX,U\{i}

)
.

It can be verified that µ is reversible with respect to Glauber dynamics.

2.2.3. Entropy decay and mixing time. The relation between the functional inequalities and the mix-
ing time of the Markov chain has been studied in literature [DSC96, BT06]. We now introduce the
decay of the relative entropy and its implication on the mixing time of the Markov chain.

Let µ,ν be distributions over finite state setΩ and ν is absolutely continuous with respect to µ.
The relative entropy (known as Kullback-Leibler divergence) between ν and µ is defined as

DKL(ν ‖ µ) =
∑

σ∈Ω

ν(σ) log

(
ν(σ)

µ(σ)

)
,

with convention 0 · ∞ = 0.
Let (Xt)t∈N be aMarkov chainwith transitionmatrix P and stationary distributionµ. The relative

entropy decays with rate α, if for any distribution ν absolutely continuous with respect to µ,

DKL(νP ‖ µP) 6 (1 − α)DKL(ν ‖ µ).

It is known (see, for example, [BCP+22b, Lemma 2.4]) that the mixing time Tmix(ε,X0) satisfies

Tmix(ε,X0) 6 α−1
(
log log

1

µ(X0)
+ log

1

2ε2

)
.(1)

2.3. Subgraph-world model, random cluster model, and relation of models.

2.3.1. Generalized subgraph-world model. Let G = (V ,E) be an undirected graph, p ∈ [0, 1]E,η ∈
[0, 1]V and σ ∈ {0, 1}V . The weight of a configuration S ⊆ E in the generalized subgraph-world
model is defined by:

wGSW
E,p,η,σ(S) :=

∏

e∈S

pe

∏

f∈E\S

(1 − pf)
∏

v∈V
|S∩Ev |≡σv(mod 2)

ηv,

whereEv denotes the set of edges that is incident to v. For ease of notation,wemay usepS, (1−p)E\S

to denote
∏

e∈S pe and
∏

f∈E\S(1 − pf), respectively. The distribution µGSW
E,p,η,σ

on 2E is

∀S ⊆ E, µGSW
E,p,η,σ(S) :=

wGSW
E,p,η,σ

(S)

ZGSW
E,p,η,σ

,

whereZGSW
E,p,η,σ

:=
∑

S⊆E wGSW
E,p,η,σ

(S) is the partition function of this system 2. We remark that when

p′ ∈ [0, 1]E
′
, where E′ ⊇ E is a superset of E, the distribution µGSW

E,p′,η,σ
is defined by

µGSW
E,p′,η,σ = µGSW

E,p′ |E,η,σ
,

wherep′ |E is the vector obtained by restrictingp′ to E. When σ = 1, our definitionmatches the def-
inition of the subgraph-world model [JS93, FGW22a]. In this case, we may denote the distribution
and partition function by µSW

E,p,η
and ZSW

E,p,η
instead.

2ZGSW
E,p,η,σ

may equal to zero. In this case, the system is invalid and we will not consider such case.
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2.3.2. Random cluster model. Let G = (V ,E) be an undirected graph, p ∈ [0, 1]E,λ ∈ [0, 1]V be
parameters. The weight of a configuration S ⊆ E in the random cluster model is defined by:

wRC
E,p,λ
(S) :=

∏

e∈S

pe

∏

f∈E\S

(1 − pe)
∏

C∈κ(V ,S)

(
1 +

∏

j∈C

λj

)
,

where we use κ(V ,S) to denote the set of connected components of graph (V ,S). The distribution
µRC
E,p,λ

is defined by

∀S ⊆ E, µRC
E,p,λ
(S) :=

wRC
E,p,λ
(S)

ZRC
E,p,λ

,

whereZRC
E,p,λ

:=
∑

S⊆EwRC
E,p,λ
(S) is the partition function of this system. Whenλ = 1, our definition

matches the classical definition of the random cluster model with q = 2 [FK72].

2.3.3. Relation between models. A well-known holographic transformation [JS93, Val08] connects
the partition functions of the ferromagnetic Ising model, the subgraph-world model and the ran-
dom cluster model.

Proposition 2.1 ([FGW22a, Lemma 2.1]). Let G = (V ,E) be a graph, β ∈ (1,+∞)E and λ ∈ [0, 1]V be
parameters, then

Z
Ising

β,λ
=

(∏

e∈E

βe

)
ZRC
E,p,λ =

(∏

e∈E

βe

) (∏

v∈V

(1 + λv)

)
ZSW
E,p/2,η

,

where p = 1 − β−1 =
(
1 − β−1e

)
e∈E

and η =

(
1−λv

1+λv

)
v∈V

.

The standardEdwards-Sokal coupling connects theGibbs distributionof the ferromagnetic Ising
model and the distribution of the random cluster model.

Proposition 2.2 ([FGW22a, Proposition 2.3]). LetG = (V ,E) be a graph, β ∈ (1,+∞)E and λ ∈ [0, 1]V

be parameters. Furthermore, let p = 1 − β−1 = (1 − βe)e∈E. Construct Y according to the following rules.

• initialize Y = ∅ and sample X ∼ µRC
E,p,λ

;

• for each C ∈ κ(V ,X), add C to Y with probability
∏

i∈C λi

1+
∏

i∈C λi
.

Then, it holds that Y ∼ µ
Ising

β,λ
.

3. Proof outline

In this section, we outline the proof of Theorem 1.3. We first summarize previous results of the
field dynamics in Section 3.1, and then introduce the field dynamics simulator, prove its correctness
as an approximate sampler, and analyze its running time in Section 3.2.

3.1. Field dynamics. The field dynamics is an adaptive select-update dynamics, first introduced
in [CFYZ21b]. Intuitively, the field dynamics serves as a reduction from a critical instance to a
sub-critical instance, i.e., instance that are much easier to handle.

Let µ be a distribution over 2U on ground set U and λ ∈ RU
>0
. Denote by λ ∗ µ the distribution

over 2U satisfying

∀S ⊆ U, (λ ∗ µ)(S) ∝ λSµ(S),

where λS
=

∏
i∈S λi. In particular, if λ is a constant vector with λu = λ, we may write λ ∗µ instead.

The field dynamics PFD
θ

with parameter θ ∈ (0, 1) in each round updates a configuration X ∈ 2U

according to the following rules:
6



• sample S′ ∼
⊗

u∈U Ber(θ) and let S = S′ ∪ X;
• update X according to distribution (θ−1 ∗ µ)

(
· | PX,U\S

)
,

where we recall the event PX,Y = {T ⊆ U | T ∩ Y = X ∩ Y}.
It has been showed in [CFYZ21b] that the field dynamics PFD

θ
has the stationary distribution µ.

We note that the only non-trivial step in the field dynamics is to sample from a new distribution
(θ−1 ∗µ)

(
· | PX,U\S

)
. A key intuition of the field dynamics is that (θ−1 ∗µ)

(
· | PX,U\S

)
might be rel-

atively easy to sample from when we choose a good parameter θ. Hence, when the field dynamics
itself is rapid mixing, it actually reduces the task of sampling from µ to an easier task of sampling
from (θ−1 ∗µ)

(
· | PX,U\S

)
. Our algorithm for the random cluster model is based on this idea where

we use a Glauber dynamics to generate approximate samples from (θ−1 ∗ µ)
(
· | PX,U\S

)
so as to

sample from the original distribution (see algorithm 1 and algorithm 2 for the details). Moreover,
We also establish the rapid mixing of field dynamics via the spectral independence.

In recent years, there is a long line of works [ALO20, CLV21a, CFYZ21b, AJK+21a, BCC+21,
AJK+21b, CE22, CFYZ22] establishing the relation between the mixing time of select-update dy-
namics and the spectral independence. We first introduce the notion of spectral independence.

Definition 3.1 (influence matrix, [ALO20]). Let µ be a distribution over 2U on ground set U of
size n. The influence matrix Ψinf

µ is an n by nmatrix defined as

∀i, j ∈ U, Ψinf
µ (i, j) =

{
µ(i | j) − µ(i | j) if i ≠ j and 0 < PrS∼µ [j ∈ S] < 1,

0 otherwise.

Definition 3.2 (spectral independence in infinite norm). Let µ be a distribution over 2U on ground
set U. The distribution µ is C-spectrally independent, if



Ψinf
µ




∞
6 C.

Furthermore, µ is C-spectrally independent under all pinnings, if for any τ,Λ ⊆ Uwith µ(Pτ,Λ) >
0, µ(· | Pτ,Λ) projected on U \Λ is C-spectrally independent.

We remark the notionof spectral independence inDefinition 3.2 is stronger than that in [ALO20],
where the distribution µ is C-spectrally independent, if λmax(Ψ

inf
µ ) 6 C.

In recent progress of high-dimensional expansion and the analysis of Glauber dynamics on anti-
ferromagnetic two-state spin systems, the following entropy decay result for field dynamics is es-
tablished [AJK+21b, CFYZ21a, CE22, CFYZ22].

Lemma 3.3 (entropy decay of field dynamics). Let µ be a distribution over 2U on ground setU. If λ ∗µ
is C-spectrally independent under all pinnings for all λ ∈ RU

>0, then for any θ ∈ (0, 1) and distribution ν

absolutely continuous with respect to µ, let κ = (θ/e)
C+3, it holds that

DKL(νP
FD
θ ‖ µPFD

θ ) 6 (1 − κ)DKL(ν ‖ µ).

For completeness, we include the proof of Lemma 3.3 in Appendix A.3. By (1), this entropy
decay result implies a tight bound on the mixing time of field dynamics.

3.2. Field dynamics simulator. We are now ready to introduce the field dynamics simulator for
random cluster model. Parameters θ, TFD, and TGD are to be determined.

7



Algorithm 1: field dynamics simulator for random cluster model

input : Graph G = (V ,E), parameters p ∈ (0, 1)E, λ ∈ [0, 1)V and ε ∈ (0, 1)

output: a random configuration X ⊆ E satisfying dTV(X,µ
RC
E,p,λ
) < ε

1 Initialize X = E;
2 for t← 1 to TFD do
3 draw S′ ∼

⊗
e∈E Ber(θ) and let S = S′ ∪ X;

4 update X← Resample(G′ = (V ,S),p★,λ,
(
2TFD

)−1
ε), where p★e =

pe

θ(1−pe)+pe
,∀e ∈ S.

5 return X

Algorithm 2: Resample(G, p, λ, ε)

input : Graph G = (V ,E), parameters p ∈ (0, 1)E, λ ∈ [0, 1)V , and ε ∈ (0, 1)

output: a random configuration X ⊆ E satisfying dTV(X,µ
RC
E,p,λ
) < ε

1 Initialize X = E;
2 for t← 1 to TGD do
3 draw e ∈ E uniformly at random;
4 update X according to µRC

E,p,λ

(
· | PX,E\{e}

)
.

5 return X

Remark 3.4. In Algorithm 1, since S = S′ ∪ X, it holds that X ∩ (E \ S) = ∅. This means all the
elements in E \ S are in the “out” state in X. So, it is straight forward to verify that

(
θ−1 ∗ µRC

E,p,λ

) (
· | PX,E\S

)
= µRC

S,p★,λ
(·),

where p★e =
pe

pe+θ(1−pe)
for all e ∈ S. Hence, when |V | > N0, Algorithm 1 is exactly the field dynam-

ics assuming Algorithm 2 being a perfect sampler. Though in our implementation, Algorithm 2
returns approximate samples and causes biases.

Let µRC
E,p,λ

be the distribution of the random cluster model specified by graphG = (V ,E), param-

eters p ∈ (0, 1)E and λ ∈ [0, 1)V . Furthermore, let

pmin = min
e∈E

pe and λmax = max
v∈V

λv.

We first state the mixing time results for both field dynamics and Glauber dynamics, and then
prove Theorem 1.3 with these results.

Lemma 3.5. The mixing time of the field dynamics initialized from E satisfies

∀ε ∈ (0, 1), T (ε,E) 6
(
e

θ

)5(1−λmax)
−2

(
2 logn + log log

2

pmin

+ log
1

2ε2

)
.

This mixing time result is a corollary of Lemma 3.3 and the spectral independence of µRC
E,p,λ

.

Lemma 3.6. µRC
E,p,λ

is 2(1 − λmax)
−2-spectrally independent under all pinnings.

The proof of Lemma 3.5 assuming Lemma 3.6 is deferred to Appendix A.2.

Remark 3.7. Establishing spectral independence is a challenging task. A series of works[CLV20,
BCC+21, Liu21, CLV21b, ALO22] establish spectral independence via different approaches, in-
cluding correlation decay, path coupling, stability of polynomial, and the trickle-down phenom-
enon. An O∆,p,η(1) spectral independence result for the subgraph-world model was established
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in [CLV22]. This result has the dependency on ∆ and does not imply a spectral independence
bound for the random cluster model. Our method is quite different from the previous approaches
for bounding the spectral independence. In contrast to previous works, we establish a better spec-
tral independence result for the subgraph-world model that is independent of∆ by a sophisticated
coupling procedure. This coupling procedure also enables us to lift the spectral independence re-
sult from the subgraph-world model to the random cluster model. As far as we know, lemma 3.6
gives the first spectral independence bound for the random cluster model. The details will be de-
scribed in Section 4.

Lemma 3.8. If it holds that

(1 − pmin) logn 6 min

{
10−7,

1 − λmax

27

}
,

then the mixing time of the Glauber dynamics satisfies

∀ε ∈ (0, 1), Tmix(ε) 6 25m logm log
1

ε
+ 1.

The proof of Lemma 3.8 involves a coupling with stationary argument, which will be presented
in Section 5. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We choose parameters in Algorithm 1 and Algorithm 2 as follows:

parameter value

θ
min{10−7, 1−λmax

27 }pmin

logn

TFD
⌈(

e
θ

)5(1−λmax)
−2

(
2 logn + log log 2

pmin
+ log 2

ε2

)⌉

TGD
⌈
25m logm log 2TFD

ε

⌉
+ 1

To prove Theorem 1.3, it suffices to show that:

(1) The sample X returned from Algorithm 1 satisfies dTV(X,µ
RC
E,p,λ
) < ε.

(2) The overall running time can be achieved in m
(
ε−1 · δ−1p · logn

)O(δ−2λ ).
First, we prove requirement (1). For convenience, let P̂FD

θ
denote the transition matrix of the

simulation algorithm (Algorithm 1) and µ = µRC
E,p,λ

. Let (Xt)06t6TFD (respectively, (Yt)06t6TFD)
be the Markov chain starting from configuration X0 = E (respectively, Y0 = E) with transition

matrix P̂FD
θ

(respectively, PFD
θ

). It holds that

dTV (XTFD ,µ) 6 dTV (XTFD,YTFD ) + dTV (YTFD ,µ) 6 Pr [XTFD ≠ YTFD] + dTV (YTFD ,µ) .

Note that XTFD ≠ YTFD is equivalent to that there exists 1 6 i 6 TFD such that Xi ≠ Yi but Xj = Yj
for all j < i. Hence,

Pr [XTFD ≠ YTFD] =

TFD∑

i=1

Pr
[
Xi ≠ Yi and ∀j < i,Xj = Yj

]
6

TFD∑

i=1

Pr [Xi ≠ Yi | Xi−1 = Yi−1] .

For any 1 6 i 6 TFD, consider the following coupling of Xi and Yi condition on Xi−1 = Yi−1:
(1) Generate set S′ ∼

⊗
u∈U Ber(θ) and S = S′ ∪ Xi−1, i.e., the first step of the field dynamics;

(2) Generate Xi and Yi according to the optimal coupling of distribution µRC
S,p★,λ

and �µRC
S,p★,λ

,

where �µRC
S,p★,λ

is the distribution generated by Resample((V ,S),p★,λ, (2TFD)−1ε).
9



Hence, we have

Pr [Xi ≠ Yi | Xi−1 = Yi−1] 6 max
S⊆E

dTV

(�µRC
S,p★,λ

,µRC
S,p★,λ

)
=: ε′.

Note that (1 − p★
min
) logn 6

θ logn
pmin

6 min
{
10−7,

1−λmax

27

}
. By Lemma 3.8 and our choice of TGD,

ε′ 6 ε
2TFD . Therefore, by Lemma 3.5 and our choice of TFD, it holds that

dTV (XTFD ,µ) 6 TFDε′ + ε/2 6 ε.

This proves the requirement (1).
Lastly, we verify requirement (2). In each iteration of the field dynamics in Algorithm 1, we

need O(m) time to generate the set S. This consumes mTFD time. Besides, the algorithm needs
TFD iterations of TGD-steps Glauber dynamics starting from configuration X = S on distribution
µRC
S,p★,λ

for some S ⊆ E. We claim that each step of the Glauber dynamics could be implemented
in polylog(n) time, then the total running time is

mTFD + TFD · TGD · polylog(n).(2)

By our choice of TFD and TGD, it holds that

TFD
=

(
(1 − λmax)

−1 · p−1min · logn
)O((1−λmax)

−2)
and TGD

6 25m logm log
2TFD

ε
+ 2.

Together with λmax 6 1 − δλ and pmin > δβ, the total running time (2) could be bounded by

m
(
δ−1λ · δ

−1
p · logn

)O(δ−2λ ) .
We only left to show that each step of the Glauber dynamics could be implemented in polylog(n)

time. Suppose the current configuration is X, the Glauber dynamics will first use O(logn) time to
draw a random edge e = (u, v) ∈ E. LetCu = Cu(X) and Cv = Cv(X) be the connected components
in graph (V ,X \ {e}), containing u and v, respectively. Then the probability pX,e that X will be
updated by X ∪ {e} is

pX,e =

{
p if Cu = Cv,

1+λCu∪Cv

1+λCu∪Cv+(1−p★

e)(λCu+λCv)
otherwise,

(3)

where λR
=

∏
i∈R λi for R ⊆ V . In order to calculate pX,e fast, we need a data structure that

supports the following operations:

• update X← X ∪ {e} for any given e ∈ E;
• update X← X \ {e} for any given e ∈ E;
• query if Cu(X) = Cv(X) for any given u, v ∈ V ;
• query λCu(X) for any given u ∈ V .

These updates and queries can all be handled in O(log2 n) amortized time by the data structure in
[WN13, Section 3]. This concludes the proof of requirement (2) and Theorem 1.3. �

4. Spectral independence of random cluster model

In this section, we are going to prove Lemma 3.6. We prove Lemma 3.6 via the following lemma.

Lemma 4.1. Let µ be the distribution of the random cluster model specified by graphG = (V ,E), parameters
p ∈ [0, 1]E and λ ∈ [0, 1)V . Then, µ is 2(1 − λmax)

−2-spectrally independent.
10



Proof of Lemma 3.6. For any τ,Λ ⊆ E, define p̃ ∈ [0, 1]E by

∀e ∈ E, p̃e =




0 if e ∈ Λ \ τ,
1 if e ∈ Λ ∩ τ,

pe if e ∈ E \Λ.

Note that µRC
E,p̃,λ

is exactly µ(· | Pτ,Λ). This concludes the proof of Lemma 3.6. �

In order to prove Lemma 4.1, we introduce a simple coupling criteria for spectral independence.

Definition 4.2 (coupling independence). A distribution µ over 2E on ground set E is C-coupling
independent, if for all i ∈ E, there exists a coupling (X,Y) of distribution µ(· | i) and µ(· | i), that

E [|X ⊕ Y |] 6 C.

Furthermore, a distribution isC-coupling independent under all pinnings, if for anyΛ, τ ⊆ Uwith
µ(Pτ,Λ) > 0, µ(· | Pτ,Λ) projected on U \Λ is C-coupling independent.

Proposition 4.3. If a distribution µ over 2E isC-coupling independent, then µ isC-spectrally independent.

Proof. Fix i ∈ E. Let (X,Y) be a coupling of µ(· | i) and µ(· | i) such that E [|X ⊕ Y |] 6 C, then
∑

j∈E\{i}

���µ(j | i) − µ(j | i)
��� 6

∑

j∈E

E
[
1[Xj ≠ Yj]

]
= E [|X ⊕ Y |] 6 C,

where the first inequality holds by standard coupling lemma. Therefore,


Ψinf

µ




∞
= max

i∈E

∑

j∈E\{i}

���µ(j | i) − µ(j | i)
��� 6 C. �

Now, to prove Lemma 4.1, we first claim the coupling independence for the distribution of
subgraph-world model.

Lemma 4.4. Let ν be the distribution of subgraph-world model specified by graph G = (V ,E), and vectors
p ∈ [0, 1

2
]E, η ∈ (0, 1]V . It holds that ν is 1

2η2
min

-coupling independent.

Then, we show that once we have a coupling of distributions of generalized subgraph-world
model, we could “lift” it to the random cluster model.

Lemma 4.5. LetG = (V ,E) be an undirected graph, p ∈ [0, 1]E and λ ∈ [0, 1)V be parameters. Let µ be the
distribution of a random cluster model specified by graph G, parameters p and λ. Let ν be the distribution

of a subgraph-world model specified by graph G, parameters p
2
=

(pe

2

)
e∈E

and η =

(
1−λv

1+λv

)
v∈V

.

If ν is C-coupling independent, then µ is also C-coupling independent.

Lemma 4.1 is proved by combining Proposition 4.3, Lemma 4.4, and Lemma 4.5.
The proof of Lemma 4.4 and Lemma 4.5 are given in Section 4.1 and Section 4.2 respectively.

4.1. Coupling independence of generalized subgraph-world model. In this section, we prove
Lemma 4.4. For convenience, for σ ∈ RV , we use σu←c to denote a vector σwith σu being changed
to value c. Meanwhile, for σ, τ ∈ {0, 1}V , we use σ ⊕ τ to denote the bitwise exclusive or of σ and
τ. We now prove a generalized version of Lemma 4.4.

Lemma 4.6. Let G = (V ,E) be an undirected graph, σ ∈ {0, 1}V be parity constraints on vertices, p ∈[
0, 1

2

]E
and η ∈ (0, 1]V be parameters. For any u ∈ V , there is a coupling (X,Y) between µGSW

E,p,η,σ
and

µGSW
E,p,η,σ⊕1u

such that E [|X ⊕ Y |] 6 1

4η2
min

.
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U = X = Y = ∅

v1 v2 v3e1 e2

e3

U = {v1}, X = Y = {e2}

v1 v2 v3e2

U = {v1}, X = Y = ∅

v1 v2 v3e1 e2

e3

U = {v1}, X = Y = {e1}

v1 v2 v3e1 e2

e3

U = {v1}, X = ∅,Y = {e1}

v1 v2 v3e1 e2

e3

r 6 q0 or r > q1 q0 < r < q1

X1 = Y1 X1 ≠ Y1

Figure 1. This is an illustration of Algorithm 3. Here, vertices vi is colored red
if u = vi, blue if σvi

= 1 and green if σvi
= 0. Moreover, edge that has not been

revealed is represented as dotted line, edge in both X and Y is colored with black,
edge in exactly one of X and Y is colored with red, and edge that has been revealed
but not in either X or Y is removed.

We now prove Lemma 4.4. The proof follows from a standard coupling argument.

Proof of Lemma 4.4. Fix e ∈ (u, v) ∈ E and let ν = µGSW
E,p,η,σ

. By definition,

ν(· | e) = µGSW
E\{e},p,η,1

and ν(· | e) = µGSW
E\{e},p,η,1⊕1u⊕1v

,

Consider an intermediate distribution ν̃ := µGSW
E\{e},p,η,1⊕1u

. By Lemma 4.6, there are couplings C1

of ν(· | e) and ν̃ as well as C2 of ν̃ and ν(· | e) satisfying

∀i ∈ {1, 2}, E(X,Y)∼Ci
[|X ⊕ Y |] 6

1

4η2
min

.

Using C1 and C2, we could construct a coupling (X,Y) of ν(· | e) and ν(· | e) by: (1) sampling
X ∼ ν(· | e); (2) sampling Z proportional to C1(X, ·); (3) sampling Y proportional to C2(Z, ·). It
could be verified from the definition of C1 and C2 that X,Y have correct marginals. Again, by
Lemma 4.6, it holds that

E [|X ⊕ Y |] 6 E [|X ⊕ Z| + |Z ⊕ Y |] 6 E [|X ⊕ Z|] + E [|Z ⊕ Y |] 6
1

2η2
min

,

where the last inequality follows from the fact that (X,Z) ∼ C1 and (Z,Y) ∼ C2. �

The rest part of this section is dedicated to the proof of Lemma 4.6. We construct the coupling
(X,Y) using the procedure Couple(G,p,η,σ,u,U) in Algorithm 3, where U denotes the set of vis-
ited vertices, and is initialized to ∅. Figure 1 is an illustration of Algorithm 3.

In order to prove Lemma 4.6, it suffices to prove the following properties.
(1) Each recursive call in Algorithm 3 is valid.

12



(2) E [|X ⊕ Y |] 6 1

4η2
min

;

(3) (X,Y) = Couple(u,E,η,σ,∅) is indeed a coupling of µGSW
E,p,η,σ

and µGSW
E,p,η,σ⊕1u

, that is

X ∼ µGSW
E,p,η,σ and Y ∼ µGSW

E,p,η,σ⊕1u
.

Algorithm 3: Couple(G,p,η,σ,u,U)

input : graph G = (V ,E), parameters p ∈ [0, 1]E,η ∈ [0, 1]V ,σ ∈ {0, 1}V , vertex u ∈ V and
set of visited vertices U satisfying

(1) ηu = 0 if and only if u ∈ U;
(2) ZGSW

E,p,η,σ
,ZGSW

E,p,η,σ⊕1u
> 0.

output: a pair of random configuration (X,Y) ∈ 2E × 2E.
1 if u ∉ U then
2 update U← U ∪ {u};
3 let A = {S ⊆ E | |S ∩ Eu | ≡ 0 mod 2};

4 let R =

(∑
S∈A µGSW

E,p,ηu←1,σ
(S)

) (∑
S∉A µGSW

E,p,ηu←1,σ
(S)

)−1
, q0 =

ηuR
ηuR+1

and q1 =
R

R+ηu
;

5 draw r ∼ Uniform(0, 1);
6 update ηu← 0;
7 if r > q1 then
8 sample C ∼ µGSW

E,p,η,σu←0 ;

9 return (X,Y) = (C,C)

10 if r 6 q0 then
11 sample C ∼ µGSW

E,p,η,σu←1 ;

12 return (X,Y) = (C,C)

13 pick an arbitrary e = (u, v) ∈ Eu;
14 let ν, π be the distributions of µGSW

E,p,η,σ
and µGSW

E,p,η,σ⊕1u
projected on e respectively;

15 sample (X1,Y1) from an optimal coupling of ν and π;
16 if X1 = {e} then
17 update σ← σ ⊕ 1u ⊕ 1v;

18 if X1 = Y1 then
19 (X2,Y2) ← Couple((V ,E \ {e}),p,η,σ,u,U);
20 return (X,Y) = (X1 ∪ X2,Y1 ∪ Y2)

21 else
22 (X2,Y2) ← Couple((V ,E \ {e}),p,η,σ, v,U);
23 return (X,Y) = (X1 ∪ X2,Y1 ∪ Y2)

Thefirst property can be verified easily. We nowproveProperty (2)with following observations.

Proposition 4.7. Let U be the set of visited vertices upon termination. For any k > 1,

Pr [|U| > k] 6

(
1 − ηmin

1 + ηmin

)k−1
.
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Proof. Note that |U| > k implies that first k− 1 random numbers r1, r2, . . . , rk−1 drawn in Line 5 all
lie in their corresponding segments. Therefore,

Pr [|U| > k] 6

(
max

R>0,u∈V

{
R

R + ηu
−

ηuR

ηuR + 1

})k−1
6

(
1 − ηmin

1 + ηmin

)k−1
. �

Proposition 4.8. Let U be the set of visited vertices upon termination and (X,Y) be the returned pair of
configurations in Algorithm 3. For each e = (u, v) ∈ X ⊕ Y, both u, v ∈ U.

Proof. This directly follows from the coupling procedure. �

Now, we are ready to prove Property (2).

Proof of Property (2). LetU be the set of visited vertices upon termination and (X,Y) be the returned
configuration. By Proposition 4.7 and Proposition 4.8,

E [|X ⊕ Y |] 6

|V |∑

k=1

(
k

2

)
Pr [|U| = k] 6

+∞∑

k=1

kPr [|U| > k + 1] 6
1

4η2
min

. �

Now, we only left to prove Property (3). To begin with, we need the following propositions.

Proposition 4.9. µGSW
E,p,η,σu←0(A) = q0 and µ

GSW
E,p,η,σu←1(A) = q1.

Proof. Without loss of generality, we only prove the first part. It holds that

µGSW
E,p,η,σu←0(A) =

(
∑

S∈A

wGSW
E,p,η,σu←0(S)

) (
∑

S∈A

wGSW
E,p,η,σu←0(S) +

∑

S∉A

wGSW
E,p,η,σu←0(S)

)−1

=

(
ηu

∑

S∈A

wGSW
E,p,ηu←1,σ

(S)

) (
ηu

∑

S∈A

wGSW
E,p,ηu←1,σ

(S) +
∑

S∉A

wGSW
E,p,ηu←1,σ

(S)

)−1

=
ηuR

ηuR + 1
= q0.

�

Fact 4.10. µGSW
E,p,ηu←0,σu←0 = µGSW

E,p,η,σ
(· | A) and µGSW

E,p,ηu←0,σu←1 = µGSW
E,p,η,σ

(· | A) 3.

Now, we are ready to prove Property (3).

Proof of Property (3). It suffices to prove that, for any valid input ((V ,E),p,η,σ,u,U), a pair of con-
figurations (X,Y) drawn in procedure Couple((V ,E),p,η,σ,u,U) satisfies

X ∼ µGSW
E,p,η,σ and Y ∼ µGSW

E,p,η,σ⊕1u
.

Without loss of generality, we only prove X ∼ µGSW
E,p,η,σ

. We prove by induction on m = |E|.
The base case m = 0 is trivial. Suppose Property (3) holds for all E with |E| = m′ < m. We will

show that it also holds when |E| = m. We will considering two cases: (1) u ∈ U; (2) u ∉ U.
When u ∈ U, Algorithm 3 will

• select an arbitrary e = (u, v) ∈ Eu = {f ∈ E | f = (u,y) for some y};
• sample X1 ∼ ν, which is the distribution µGSW

E,p,η,σ
projected on e;

3We only consider the case where distributions are well-defined, i.e. ZGSW
E,p,ηu←c,σu←c

> 0 for c = 0, 1.
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• sample C1 via procedure Couple(u,E \ {e},η,σ★,U) or Couple(u,E \ {e},η,σ★,U), where

σ★ =

{
σ ,X1 = ∅;

σ ⊕ 1u ⊕ 1v ,X1 = {e}

By induction hypothesis,C1 ∼ µGSW
E\{e},p,η,σ★

. By the definition of σ★, it holds that

µGSW
E\{e},p,η,σ★

=

{
µGSW
E,p,η,σ

(· | e) ,X1 = {e},

µGSW
E,p,η,σ

(· | e) ,X1 = ∅.

Hence, X = C1 ∪ X1 ∼ µGSW
E,p,η,σ

.
When u ∉ U, let q0,q1 be defined in Line 4 in Algorithm 3. Algorithm 3 behaves as follows:

• with probability 1 − q1, sample X from distribution µGSW
E,p,ηu←0,σu←0 ;

• with probability q0, sample X from distribution µGSW
E,p,ηu←0,σu←1 ;

• with probability remaining probability q1 − q0, sample X from distribution µGSW
E,p,ηu←0,σ

.

Here, the last term follows from the analysis of previous case. Hence for S ⊆ E, it holds that

Pr [X = S] = q0µ
GSW
E,p,ηu←0,σu←1(S) + (q1 − q0)µ

GSW
E,p,ηu←0,σ

(S) + (1 − q1)µ
GSW
E,p,ηu←0,σu←0(S).

When σu = 0, it holds that

Pr [X = S] = q0µ
GSW
E,p,ηu←0,σu←1(S) + (1 − q0)µ

GSW
E,p,ηu←0,σu←0(S)

= µGSW
E,p,η,σu←0(A)µ

GSW
E,p,η,σ(S | A) + µ

GSW
E,p,η,σu←0(A)µ

GSW
E,p,η,σ(S | A)

(by σu = 0) = µGSW
E,p,η,σ(S),

where the second equation holds by Proposition 4.9, Fact 4.10.
Similarly, when σu = 1, it holds that

Pr [X = S] = q1µ
GSW
E,p,ηu←0,σu←1(S) + (1 − q1)µ

GSW
E,p,ηu←0,σu←0(S)

= µGSW
E,p,η,σu←1(A)µ

GSW
E,p,η,σ(S | A) + µ

GSW
E,p,η,σu←1(A)µ

GSW
E,p,η,σ(S | A)

(by σu = 1) = µGSW
E,p,η,σ(S),

where the second equation holds by Proposition 4.9, Fact 4.10.
Combining these two cases, we have X ∼ µGSW

E,p,η,σ
and hence complete the proof. �

4.2. Lifting coupling independence. In this section, we will prove Lemma 4.5. Let µ be the dis-
tribution of random cluster model specified by graph G = (V ,E), and parameters p ∈ [0, 1]E,
λ ∈ [0, 1)V . Furthermore, let ν be the distribution of the subgraph-world model model specified

by the same graphG, and parameters p
2
=

(pe

2

)
e∈E

and η =

(
1−λv

1+λv

)
v∈V

. A natural coupling between

µ and ν is observed by previous works [GJ18, FGW22a], which is summarized below.

Lemma 4.11 ([FGW22a, Lemma 3.3]). Let q := (pi/(2 − pi))i∈E. Suppose Z ∼
⊗

i∈E Ber(qi), X ∼ ν,
and Y = X ∪ Z then it holds that Y ∼ µ. Equivalently, for every Y ⊆ E, we have

µ(Y) =
∑

X⊆Y

ν(X)
∏

h∈Y\X

qh

∏

f∈E\Y

(1 − qf).(4)

Now, fix e ∈ E, let (X0,X1) be a coupling of ν(· | e) and ν(· | e). Let te :=
qeν(e)

qeν(e)+ν(e)
be a real

number. We will construct (Y0,Y1) as a coupling of µ(· | e) and µ(· | e) as follow:
15



• sample Z ∼
⊗

f∈E Ber (qf);
• with probability te, let Y0 = (X0 ∪ Z) \ {e} and Y1 = (X0 ∪ Z) ∪ {e};
• with probability 1 − te, let Y0 = (X0 ∪ Z) \ {e} and Y1 = X1 ∪ Z.

Now, Lemma 4.5 could be simply proved by

E [|Y0 ⊕ Y1 |] = te + (1 − te) · E [|(X0 ∪ Z) \ {e} ⊕ X1 ∪ Z|]

6 te + (1 − te) · E [|X0 ⊕ X1 |] 6 C,

where in the last inequality, we use the fact that C > 1, which holds by definition.
Now, we only need to verify that Y0,Y1 follow the correct distribution as we claimed. For conve-

nience, for S ⊆ E, we use qS to denote
∏

i∈S qi. Then for any Y ⊆ E \ {e},

Pr [Y0 = Y] =
∑

T⊆Y

ν(T | e)qY\T (1 − q)E\Y\{e}

=

∑
T⊆Y ν(T )qY\T (1 − q)E\Y

ν(e)(1 − qe)

(★)
=

µ(Y)

µ(e)
= µ(Y | e),

where in (★) we use (4) and the fact that µ(e) = ν(e)(1 − qe), which could be implied from
Lemma 4.11. A similar calculation shows that for any {e} ⊆ Y ⊆ E,

Pr [Y1 = Y] = te
∑

T⊆Y\{e}

ν(T | e)qY\{e}\T (1 − q)E\Y + (1 − te)
∑

{e}⊆T⊆Y

ν(T | e)qY\T (1 − q)E\Y

=

(
te

∑
T⊆Y\{e}

ν(T )
ν(e)

qY\{e}\T + (1 − te)
∑
{e}⊆T⊆Y

ν(T )
ν(e)

qY\T
)
(1 − q)E\Y

(+)
=

(∑
T⊆Y\{e} ν(T )q

Y\T +
∑
{e}⊆T⊆Y ν(T )qY\T

)
(1 − q)E\Y

qeν(e) + ν(e)

=

∑
T⊆Y ν(T )qY\T (1 − q)E\Y

qeν(e) + ν(e)

(★)
=

µ(Y)

µ(e)
= µ(Y | e),

where (+) holds by the fact that te =
qeν(e)

qeν(e)+ν(e)
and (★) holds by Lemma 4.11.

5. Rapid mixing of Glauber dynamics in good regime

Let µ be the distribution of the random cluster model specified by graph G = (V ,E), parameters
p ∈ (0, 1)E and λ ∈ (0, 1)V . Let PGD

µ be the Glauber dynamics with stationary distribution µ.
We restate Lemma 3.8 for convenience.

Lemma 5.1. Let ε ∈
(
0, 1

4

)
be a real number. If

K := (1 − pmin) logn 6 min

{
10−7,

1 − λmax

27

}
,(5)

then the mixing time of Glauber dynamics satisfies

Tmix(ε) 6 25m logm log(1/ε) + 1.

Furthermore, if

K 6 min

{
10−5 exp

(
−
log(8/ε)

logn

)
,
1 − λmax

27

}
,

then the mixing time of Glauber dynamics initialized from E satisfies

Tmix(ε,E) 6 2m(logm + log(2/ε)).
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We remark that a trade-off exists between themixing time and the condition on K. This trade-off
arises from a subtle distinction in the proof of the mixing time. To prove the first part, we employ
the burn-in method and a “doubling” argument, whereas the second part does not rely on these
techniques. We will use the first part of Lemma 5.1 in the subsequent analysis, and the proof of
the second part is deferred to Appendix B.

In the rest of this section, we will always assume that K is picked as in (5). Define C by

C := {S ⊆ V | |S| 6 n/2 and |E(S,V \ S)| > |S| logn},

where E(S,V \ S) is the set of edges between S and V \ S. Furthermore, define the good event G by

G := {X ⊆ E | ∀S ∈ C, |X ∩ E(S,V \ S)| > 0}.

Intuitively, the good eventG is the set of configurationsX ⊆ E, such that there exists no connected
components C in graph (V ,X)with large |E(C,V \ C)|.

Let (Xt)t>0 and (Yt)t>0 be Glauber dynamics starting from different configurations X0 and Y0.
We will show that after a burn-in phase of length O(m logm), the good event G happens in high
probability. Furthermore, when Xt,Yt ∈ G, there exists a coupling so that the hamming distance
of Xt and Yt contracts with rate 1 − 1

2m , wherem = |E|.

Lemma 5.2. If t > θm logm for some θ > 0, it holds that

Pr [Xt ∉ G] 6 nlog(27K) +m1−θ and Pr [Yt ∉ G] 6 nlog(27K) +m1−θ.

Lemma 5.3. When K 6 1−λmax

27
, there exists a coupling of (Xt)t>0 and (Yt)t>0 so that when Xt,Yt ∈ G,

E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] 6

(
1 −

1

2m

)
|Xt ⊕ Yt | .

The proof of Lemma 5.2 and Lemma 5.3 is deferred to Section 5.2 and Section 5.1 respectively.
To prove Lemma 5.1 via Lemma 5.2 and Lemma 5.3, we need the coupling with stationary lemma.

Lemma 5.4 ([HV06, Theorem 3.1]). Let (Xt)t>0 and (Yt)t>0 be coupled Markov chains. Let ε ∈ (0, 1),
T0, T1 ∈ N be parameters satisfying T0 < T1. Furthermore, Et denote the event

E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] 6

(
1 −

1

2m

)
|Xt ⊕ Yt | .

Suppose Pr
[
Et

]
6 δ for all T0 6 t < T1, then

Pr [XT1
≠ YT1

] 6

(
1 −

1

2m

)T1−T0

m + δ · 2m2.

We are now ready to prove Lemma 5.1.

Proof for the first part of Lemma 5.1. Without loss of generality, we will only prove the case where
ε =

1
4
. This can be extended to general case by a doubling argument [LPW17]. Moreover, we

assume n > 2 and m > 2. Since n 6 1 implies that m = 0 and when m 6 1, Glauber dynamics
mixes in one step.

Let T0 = 9m logm, T1 = 15m logm and X0,Y0 be arbitrary starting configurations. We consider
the Glauber dynamics (Xt)t>0 and (Yt)t>0 starting from X0 and Y0 respectively. By Lemma 5.2
and Lemma 5.3, there exists a coupling of (Xt)t>0 and (Yt)t>0 such that for all T0 6 t < T1, the
event Et happens with probability no more than 2nlog(27K) + 2m−8, where Et denotes the event
E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] 6

(
1 − 1

2m

)
|Xt ⊕ Yt |. By K 6 10−7, it holds that

(
2nlog(27K) + 2m−8

)
· 2m2

6 4n4+log(27K) + 4m−6 6 4n−6 + 4m−6 6
1

8
,
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where the last inequality follows from our assumption n,m > 2. Therefore, by Lemma 5.4,

Pr [XT1
≠ YT1

] 6

(
1 −

1

2m

)T1−T0

m +
1

8
6

1

4
.

Finally, by the geometric convergence of Markov chain, it holds that

Tmix(ε) 6 15m logm log2(1/ε) 6 25m logm log(1/ε) + 1,

where the +1 is used to handle the cases where n 6 1 or m 6 1. �

5.1. Contraction inG (proof of Lemma5.3). For any S, T ∈ G, let e1, e2, . . . , ex be edges in S\T , and
f1, f2, . . . , fy be edges in T \S. We design the following path of configurations P = (P0,P1, . . . ,Px+y)
from S to T .

∀0 6 i 6 s + t, Pi =




S if i = 0,

Pi−1 ∪ {fi} if 1 6 i 6 y,

Pi−1 \ {ei−y} if i > y.

Note that |Pi−1 ⊕ Pi | = 1 for all 1 6 i 6 x + y, Pi ∈ G for all 0 6 i 6 x + y, and the length of this
path is exactly |S ⊕ T |. Hence, by the standard path coupling argument [BD97], it suffices to prove
that, for every Xt,Yt ∈ G satisfying |Xt ⊕ Yt | = 1,

E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] 6 1 −
1

2m
.(6)

Without loss of generality, we assume that Yt = Xt ∪ {e}, where e = (u, v) ∈ E. Using the one
step optimal coupling of the Glauber dynamics, it holds that

E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] = 1 −
1

m
+

1

m

∑

f∈E\{e}

d(Xt,Yt, f),

where d(Xt,Yt, f) =
��� µ(Xt∪{f})

µ(Xt∪{f})+µ(Xt\{f})
−

µ(Yt∪{f})

µ(Yt∪{f})+µ(Yt\{f})

���.
We first discuss the value of d(Xt,Yt, f). Fix edge f = (x,y) ≠ e, let

S
f,e

:= Xt \ {f},Sf,e := Xt ∪ {f},Sf,e := Yt \ {f},Sf,e := Yt ∪ {f}.

It can be verified that

µ(Xt ∪ {f})

µ(Xt ∪ {f}) + µ(Xt \ {f})
=




pf, if C
x,f,e

= C
y,f,e

,

1+λ
C
x,f,e

∪C
y,f,e

1+λ
C
x,f,e

∪C
y,f,e+(1−pf)

(
λ
C
x,f,e+λ

C
y,f,e

) otherwise,

µ(Yt ∪ {f})

µ(Yt ∪ {f}) + µ(Yt \ {f})
=




pf if C
x,f,e

= C
y,f,e

,

1+λ
C
x,f,e

∪C
y,f,e

1+λ
C
x,f,e

∪C
y,f,e+(1−pf)

(
λ
C
x,f,e+λ

C
y,f,e

) otherwise,

where Cr,i,j is the connected component containing r in graph (V ,Si,j) where i ∈ {f, f} and j ∈

{e, e}, and λS
=

∏
r∈S λr. For general subset R ⊆ E, we also use Cr(R) to denote the connected

component containing r in graph (V ,R). We consider the following cases as illustrated in Figure 2.

(1) C
u,f,e

= C
v,f,e

;
(2) C

u,f,e
≠ C

v,f,e
and Cu,f,e = Cv,f,e;

(3) C
u,f,e

≠ C
v,f,e

and Cu,f,e ≠ Cv,f,e.
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Figure 2. Illustration of three cases. Each ellipse is a connected component in graph (V ,S
f,e
).

5.1.1. Case (1). In this case, (V ,S
f,e
) and (V ,S

f,e
) have the same structure of connected compo-

nents. Hence we have, C
x,f,e

= C
x,f,e

and C
y,f,e

= C
y,f,e

, which implies d(Xt,Yt, f) = 0.

5.1.2. Case (2). In this case, both edges e = (u, v) and f = (x,y) connect C
u,f,e

and C
v,f,e

in graph
(V ,Sf,e). Thus, Cx,f,e ≠ Cy,f,e and Cx,f,e = Cy,f,e, which implies

d(Xt,Yt, f) =
pf(1 − pf)(λ

C
u,f,e + λ

C
v,f,e)

1 + (1 − pf)(λ
C

u,f,e + λ
C

v,f,e) + λ
C

u,f,e
∪C

v,f,e

6 (1 − pmin)(λ

���Cu,f,e

���
max + λ

���Cv,f,e

���
max ).(7)

We further consider two sub-cases: (a) f ∈ Xt; (b) f ∉ Xt.
Case (2a). As f ∈ Xt, it holds that Cu(Xt) = Cv(Xt) and there exists a path P = (x0, x1, . . . , xℓ) that
connects u and v in the graph (G,Xt) for some ℓ > 0. Note that only edges on path P may satisfy
the requirement of Case (2) i.e. Cu,f,e ≠ Cv,f,e. Therefore, by (7), the sum of d(Xt,Yt, f) in this
case can be bounded by

∑

f∈P

(1 − pmin)(λ

���Cu,f,e

���
max + λ

���Cv,f,e

���
max )

(★)

6 (1 − pmin)

ℓ∑

i=1

(λimax + λ
ℓ+1−i
max ) 6

2K

1 − λmax

,(8)

where (★) follows from the fact that Cu,f,e and Cv,f,e contains at least i and ℓ+1− i vertices respec-
tively, where f = (xi−1, xi).
Case (2b). As f ∉ Xt, it holds that Xt = Sf,e, and only edges in E(Cu,f,e,Cv,f,e) may satisfy the
requirement of Case (2) (i.e. f connects two components), where we recall that E(C

u,f,e
,C

v,f,e
)

denotes the set of edges between C
u,f,e

and C
v,f,e

. Therefore, the sum of dXt,Yt,f in this case can
be bounded by

���E(Cu,f,e
,C

v,f,e
)
��� · (1 − pmin)(λ

���Cu,f,e

���
max + λ

���Cv,f,e

���
max )

(★)

6 logn ·min

{���Cu,f,e

��� ,
���Cv,f,e

���
}
· (1 − pmin)(λ

���Cu,f,e

���
max + λ

���Cv,f,e

���
max )

6 2 logn · (1 − pmin) ·max
z>0

z λzmax

6
2K

1 − λmax

,(9)

where (★) follows from fact that Xt ∈ G.
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5.1.3. Case (3). Note that d(Xt,Yt, f) = 0when

C
u,f,e

= Cu,f,e and C
v,f,e

= Cv,f,e,(10)

i.e. both x and y are not in C
u,f,e

∪ C
v,f,e

where f = (x,y). Furthermore, two constraints in (10)
cannot be violated at the same time, as f = (x,y) does not connect C

u,f,e
and C

v,f,e
. Therefore, it

suffices to consider the case where C
u,f,e

≠ Cu,f,e and C
v,f,e

= Cv,f,e.
Let A = C

u,f,e
,B = C

v,f,e
,C = Cu,f,e \A. A similar calculation yields

d(Xt,Yt, f) =

�������

pf

(
1 + λA∪B

)

1 + λA∪B + (1 − pf)
(
λA + λB

) −
pf

(
1 + λA∪B∪C

)

1 + λA∪B∪C + (1 − pf)
(
λA∪C + λB

)

�������

6 (1 − pmin)λ
|A|
max.(11)

We further consider two sub-cases: (a) f ∈ Xt; (b) f ∉ Xt.
Case (3a). When f ∈ Xt, in order to make contribution, the deletion of f splitCu,f,e intoA = C

u,f,e

andC = Cu,f,e\A. In this case, fmust be a bridge in graphCu,f,e. Pick an arbitrary spanning tree T
rooted at u in Cu,f,e. Obviously, fmust be an edge in T . Let ℓ be the size of T and {f1, f2, . . . , fℓ} be
the edges in T sorted by the size of C

u,fi,e
in decreasing order. Note that fj must be in component

C
u,fi,e

for all 1 6 i < j 6 ℓ, since |C
u,fi,e

| > |C
u,fj,e

| means fi cannot be an ancestor of fj. Hence,
|C

u,fi,e
| > ℓ − i + 1. Together with (11), we bound the sum of d(Xt,Yt, f) in this case by

ℓ∑

i=1

(1 − pmin)λ
i
max 6

λmax(1 − pmin)

1 − λmax

6
K

1 − λmax

.(12)

Case (3b). When f ∉ Xt, f must connects C
u,f,e

and other component in (V ,S
f,e
) except C

v,f,e
.

Therefore, the sum of d(Xt,Yt, f) in this case is bounded by (similar calculation as in (9))
���E(Cu,f,e

,V \ C
u,f,e
)

��� · (1 − pmin)λ
|Cu |
max 6

K

1 − λmax

,(13)

where we use (11) and the fact that S
f,e

= Xt ∈ G.

5.1.4. Wrapping up. Recall that by our assumption of K in (5.3), it holds that K 6 (1 − λmax)/27.
Together with previous analysis, we bound

∑
f∈E\{e} d(Xt,Yt, f) by

∑

f∈E\{e}

d(Xt,Yt, f) 6 (8) + (9) + 2 × (12) + 2 × (13) 6
8K

1 − λmax

6
1

2
.(14)

Therefore, it holds that

E [|Xt+1 ⊕ Yt+1 | | Xt,Yt] 6 1 −
1

m

(
1 −

1

2

)
= 1 −

1

2m
,

which concludes the proof of Lemma 5.3.

5.2. Bad event happenswith small probability (proof of Lemma 5.2). Without loss of generality,
wewill only bound the probabilityPr [Xt ∉ G]. For simplicity of notation,wedenoteupdate sequence
Lt = (e1, e2, . . . , et) the chosen edges of the Glauber dynamics in the first t rounds, and denote
S(Lt) = {e1, e2, . . . , et} be the set of edges of an update sequence Lt.

Fix t > θm logm for some θ > 0. We claim that S(Lt) = E happens with high probability. Fur-
thermore, condition on any updating sequenceLt with S(Lt) = E, the distributionXt stochastically
dominates the product distribution ν =

⊗
e∈E Ber(1 − 3K), where K = (1 − pmin) logn.
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Lemma 5.5. If t > θm logm for some θ > 0, event S(Lt) ≠ E occurs with probability at most m1−θ.

Lemma 5.6. For every S ⊆ E and e ∈ E, it holds that

µ(S ∪ {e})

µ(S ∪ {e}) + µ(S \ {e})
> 1 − 3K.

Lemma 5.7. For any updating sequence Lt satisfying S(Lt) = E the distribution Xt condition on Lt

stochastically dominates ν, i.e., there exists a coupling C = (S, T ) of (Xt | Lt) and ν satisfying T ⊆ S.

We first prove Lemma 5.2 with Lemma 5.5 and Lemma 5.7.

Proof of Lemma 5.2. For any t > θm logm, it holds that

Pr [Xt ∉ G] =
∑

Lt∈E
t

S(Lt)=E

Pr [Xt ∉ G | Lt]Pr [Lt] +
∑

Lt∈E
t

S(Lt)≠E

Pr [Xt ∉ G | Lt]Pr [Lt]

6 max
Lt∈E

t

S(Lt)=E

Pr [Xt ∉ G | Lt] + Pr [S(Lt) ≠ E]

Fix an update sequence Lt satisfying S(Lt) = E. By Lemma 5.7, the definition of good event G
and the definition of ν,

Pr [Xt ∉ G | Lt] 6
∑

S∈C

(3K)|E(S,V\S)| 6
∑

S∈C

(3K)|S| logn 6

+∞∑

j=1

njnj log(3k)
6 nlog(27K).

Furthermore, by Lemma 5.5, the probability of S(Lt) ≠ E is upper bounded bym1−θ. Therefore,

Pr [Xt ∉ G] 6 nlog(27K) +m1−θ. �

In the rest of this section, we are dedicated to proving Lemma 5.5 and Lemma 5.7.

Proof of Lemma 5.5. Fix t > θm logm. For each edge e ∈ E, the probability that e ∉ Lt is at most

Pr [e ∉ Lt] 6

(
1 −

1

m

)t
6

(
1 −

1

m

)θm logm

6 m−θ.

By union bound,

Pr [S(Lt) ≠ E] 6
∑

e∈E

Pr [e ∉ Lt] 6 m1−θ. �

Proof of Lemma 5.7 assuming lemma 5.6. Insteadof proving the original statement,wewill prove that
for any update sequence Lt ∈ E, there exists a coupling (S, T ) of (Xt | Lt) and ν satisfying that
(T ∩ R) ⊆ (S ∩ R), where R = S(Lt). We remark that this is stronger compared to the original
statement.

Weprove by induction on t. Base case t = 0 follows from R = ∅. Nowwe assumeour assumption
holds for any t′ 6 t. Fix an update sequence Lt+1 = (e1, e2, . . . , et+1). Let Lt = (e1, e2, . . . , et)
be the update sequence. By induction hypothesis, there exists a coupling (S, T ) of (Xt | Lt) and ν

satisfying (T∩R) ⊆ (S∩R), whereR = S(Lt). We design the following coupling (S′, T ′) of (Xt | Lt+1)
and ν based on (S, T ):

• let q0 =
µ(S∪{et+1})

µ(S∪{et+1})+µ(S\{et+1})
and q1 = 1 − 3K;

• draw r ∼ Uniform(0, 1);
– if r < q0, set S′ = S ∪ {et+1}; Otherwise, set S′ = S \ {et+1};
– if r < q1, set T ′ = T ∪ {et+1}; Otherwise, set T ′ = T \ {et+1}.
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Note that q0 is the probability of adding et+1 to S in the update step of Glauber dynamics. It can
be verified that (S′, T ′) is indeed a coupling of (Xt+1 | Lt+1) and ν. Moreover, if q0 > q1, it holds
that (T ′ ∩ R′) ⊆ (S′ ∩ R′), where R′ = S(Lt+1). Hence, it remains to show q0 > q1 = 1 − 3K, which
follows from lemma 5.6. This concludes the proof of Lemma 5.7. �

Proof of lemma 5.6. For convenience, let e = (u, v). We consider the following cases.

(1) u, v are in the same connected component in graph (V ,S \ {e}). In this case,

µ(S ∪ {e})

µ(S ∪ {e}) + µ(S \ {e})
= pe > 1 − K/logn > 1 − 3K.

(2) u, v are in different connected components in graph (V ,S \ {e}). Let Cu and Cv be the
connected components that u and v are in respectively. In this case,

µ(S ∪ {e})

µ(S ∪ {e}) + µ(S \ {e})
=

pe(1 + λ
Cu∪Cv)

1 + λCu∪Cv + (1 − pe)
(
λCu + λCv

) > pe

3 − 2pe
.

Recall that pe > 1 − K
logn > 1 − K. Therefore, µ(S∪{e})

µ(S∪{e})+µ(S\{e})
>

1−K
1+2K > 1 − 3K. �
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Appendix A. Missing proofs

A.1. Proof of Theorem 1.1. Let A(G = (V ,E),p,λ, ε) be the approximate sampler in Theorem 1.3
for distribution of random cluster model specified by graphG and parameters p and λwithin total
variation distance ε. The sampler B(G = (V ,E),β,λ, ε) for Gibbs distribution of Ising model is
defined as follows.

• initialize X← ∅ and let p =
(
1 − β−1

i

)
i∈V

;
• draw S from A(G,p,λ, ε);
• for each C ∈ κ(V ,X), add C to Xwith probability λC

1+λC ;
• return X.

By a standard coupling argument and Proposition 2.2, X drawn in B(G,β,λ, ε) satisfies

dTV(X,µ
Ising

β,λ
) 6 ε.

This concludes the proof of Theorem 1.1.

A.2. Proof of Lemma 3.5. By Lemma 3.6, Lemma 3.3, and (1), it suffices to show

µRC
E,p,λ
(E) >

(
pmin

2

)n2

.

By Proposition 2.1, ZRC
E,p,λ

· βE
= Z

Ising

β,λ
6 βE · 2n, which implies ZRC

E,p,λ
6 2n. Therefore,

µRC
E,p,λ(E) >

pE
(
1 + λV

)

2n
>

(
pmin

2

)2n
.

A.3. Proof of Lemma 3.3. We give a proof of Lemma 3.3 in this section for completeness. Recall
that in Section 3.1, we consider a distribution µ over 2U on the ground set U. In each round, the

field dynamics PFD
θ

for µwith parameter θ ∈ (0, 1) updates a configuration X ∈ 2U as

• sample S′ ∼
⊗

u∈U Ber(θ) and let S = S′ ∪ X;
• update X according to distribution (θ−1 ∗ µ)(· | PX,U\S).

We want to prove that when λ ∗ µ is C-spectrally independent under all pinnings for all λ ∈ RU
>0
,

then for θ ∈ (0, 1), and any distribution ν that is absolutely continous with respect to µ, we have

DKL(ν PFD
θ
‖ µ PFD

θ
) 6 (1 − κ)DKL(ν ‖ µ),(15)

where κ is defined as κ = (θ/e)C+3.
Note that the field dynamicsweuse here is not in its standard form in previousworks [CFYZ21b].

In order to bemore compatiblewith previous results, wefirst transform the settingweuse to amore
standard version. Specifically, let µ and ν be the distribution over 2U defined as

∀S ⊆ E, µ(S) := µ(E \ S), and ν(S) := ν(E \ S).

It is standard to check that ν is absolutely continous with respect to µ and λ ∗µ isC-spectrally inde-
pendent under all pinnings for all λ ∈ RU

>0. In each round, the field dynamics PFD
θ

with parameter
θ ∈ (0, 1) falls into its standard form that updates a configuration X ∈ 2U as

• sample S′ ∼
⊗

u∈U Ber(θ) and let S = S′ ∪ (E \ X);
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• update X according to the distribution (θ ∗ µ)(· | PX,U\S).

Note that PFD
θ

is exact PFD
θ

except we exchange the role of “in” and “out” for each element in U,
and it could be easily checked that

∀X,Y ⊆ E, PFD
θ (X,Y) = PFD

θ
(E \ X,E \ Y),

which implies that

∀X ⊆ E, µPFD(X) = µ PFD
θ
(E \ X) and νPFD(X) = ν PFD

θ
(E \ X).

Hence, in order to prove Equation (15), it is sufficient for us to prove

DKL(νP
FD
θ ‖ µPFD

θ ) 6 (1 − κ)DKL(ν ‖ µ),(16)

for κ = (θ/e)C+3, under the assumption that λ ∗ µ is C-spectrally independent under all pinnings
for all λ ∈ RU

>0
and ν is absolutely continuous with respect to µ.

For convenience, we just inherit the notation that is used in [CFYZ21a]. Suppose µ is a distribu-
tion over 2U over the ground set U, it could also be interpreted as a distribution over {−1,+1}U .
Let θ ∈ (0, 1) and π := θ ∗ µ. Formally, for every σ ∈ {−1,+1}U , we have

π(σ) :=
µ(σ)θ‖σ‖+

Zπ
,

where Zπ :=
∑

σ∈{−1,+1}U µ(σ)θ‖σ‖+ and ‖σ‖+ denotes the number of +1 in the vector σ. For a
function f : {−1,+1}U → R>0 and a distribution µ over {−1,+1}U , the entropy is defined as
Entµ [f] := Eµ [f log f] − Eµ [f] log Eµ [f].

Lemma A.1 ([CFYZ21a, Lemma 2.3]). Let θ ∈ (0, 1) be a real number. Let µ be a distribution over
{−1,+1}U and η > 0. If µ is C-spectrally independent under all pinnings for all λ ∈ RV

>0, then µ satisfies

the following inequality for any function f : {−1,+1}U → R>0 with κ =
(
θ
e

)C+3
,

Entµ [f] 6 κ−1 ·
Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R| · πR(1R) · Entπ1R [f] ,(17)

where 1R is the all-1 vector on R.

Remark A.2. In [CFYZ21a], (17) is called θ-magnetized block factorization of entropy.

Note that the field dynamics could be decomposed into two components that mimics the so-
called down-up walk. LetΩ := {σ ∈ {−1,+1}U} andω := {1R | R ⊆ U} that is

PFD
θ = P↓P↑,

where P↓ ∈ RΩ×ω
>0

and P↑ ∈ Rω×Ω
>0

are defined as follow: ∀σ ∈ Ω, 1R ∈ ωwe have

P↓(σ, 1R) := 1[R ⊆ σ−1(+1)] (1 − θ)|
R| θ‖θ‖+−|R|

and P↑(1R,σ) := 1[R ⊆ σ−1(+1)]π1R (σ),

where σ−1(+1) := {u ∈ U | σu = +1} denotes the set of +1-spin elements in U according to σ.
Moreover, let µ0 := µP↓, these two operator have the following adjoint property: ∀σ ∈ Ω, 1R ∈ ω,

µ(σ)P↓(σ, 1R) = µ0(1R)P
↑(1R,σ).
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Without loss of generality, if we assume R ⊆ σ−1(+1), then we have

µ0(1R)P
↑(1R,σ) =

∑

τ:τR=1R

(1 − θ)|R|θ‖τ‖+−|R|µ(τ) · π1R(σ)

=

∑

τ:τR=1R

(1 − θ)|R|θ‖τ‖+−|R| ·
µ(τ)π(σ)

πR(1R)

=

∑

τ:τR=1R

(1 − θ)|R|θ‖σ‖+−|R| ·
π(τ)µ(σ)

πR(1R)

= µ(σ)(1 − θ)|R|θ‖σ‖+−|R|
∑

τ:τR=1R

π(τ)

πR(1R)

= µ(σ) · (1 − θ)|R|θ‖σ‖+−|R| = µ(σ)P↓(σ, 1R).

Let ν be a distribution over {−1,+1}U , let f = ν
µ
. By standard result, adjoint property gives us

νP↓

µP↓
= P↑f.(18)

Now, we are ready to prove Lemma 3.3. We claim that when f = ν
µ
, (17) is equivalent to

DKL(ν ‖ µ) 6 κ−1
(
DKL(ν ‖ µ) −DKL(νP

↓ ‖ µP↓)
)
,(19)

which is equivalent to

DKL(νP
↓ ‖ µP↓) 6 (1 − κ)DKL(ν ‖ µ).

Then, (16) (and Lemma 3.3) follows directly from the data processing inequality as

DKL(νP
FD
θ ‖ µPFD

θ ) = DKL(νP
↓P↑ ‖ µP↓P↑) 6 DKL(νP

↓ ‖ µP↓) 6 (1 − κ)DKL(ν ‖ µ).

Now, we are going to prove (17)⇔ (19) by a brute force calculation. First, note that

Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R| · πR(1R) · Entπ1R [f]

=
Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R|πR(1R)Eπ1R [f log f] −(20)

Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R|πR(1R)Eπ1R [f] logEπ1R [f] .(21)

We will show that

(20) = DKL(ν ‖ µ) = Entµ [f] and (21) = DKL(νP
↓ ‖ µP↓).
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We start from (20) and note that

(20) =
Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R|
∑

σ:σR=1R

π(σ)f(σ) log f(σ)

=
Zπ

θ|U|

∑

σ∈Ω

π(σ)
∑

R⊆σ−1(+1)

(1 − θ)|R|θ|U|−|R| · f(σ) log f(σ)

=

∑

σ∈Ω

µ(σ)
∑

R⊆σ−1(+1)

(1 − θ)|R|θ‖σ‖+−|R| · f(σ) log f(σ)

=

∑

σ∈Ω

µ(σ) · f(σ) log f(σ)
∑

R⊆σ−1(+1)

(1 − θ)|R|θ‖σ‖+−|R| ·

=

∑

σ∈Ω

µ(σ) · f(σ) log f(σ) = Entµ [f] .

Now, we only left to prove (21) = DKL(νP
↓ ‖ µP↓). By the definition of KL-divergence, we have

DKL(νP
↓ ‖ µP↓) =

∑

R⊆U

µP↓(1R) ·
νP↓(1R)

µP↓(1R)
log

νP↓(1R)

µP↓(1R)

(by (18)) =

∑

R⊆U

µP↓(1R) · P
↑f(1R) log P

↑f(1R)

(★)
=

∑

R⊆U

∑

σ:σR=1R

µ(σ)(1 − θ)|R|θ‖σ‖+−|R| · Eπ1R [f] logEπ1R [f]

=
Zπ

θ|U|

∑

R⊆U

∑

σ:σR=1R

π(σ)(1 − θ)|R|θ|U|−|R| · Eπ1R [f] logEπ1R [f]

=
Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R|

(
∑

σ:σR=1R

π(σ)

)
· Eπ1R [f] logEπ1R [f]

=
Zπ

θ|U|

∑

R⊆U

(1 − θ)|R|θ|U|−|R|πR(1R) · Eπ1R [f] logEπ1R [f] = (21),

where in (★) we use the fact that

µP↓(1R) =
∑

σ:σR=1R

µ(σ)(1 − θ)|R|θ‖σ‖+−|R| and P↑f(1R) = Eπ1R [f] .

Appendix B. Proof for the second part of Lemma 5.1

Let (Xt)t>0 and (Yt)t>0 be Glauber dynamics starting from E and the stationary distribution µ

respectively. Just as in the proof of the first part, we present the following lemma. The proof of
Lemma B.1 follows a similar fashion to that of Lemma 5.2, and we shall omit the proof for brevity.

Lemma B.1. For any t > 0, it holds that

Pr [Xt ∉ G] 6 nlog(27K) and Pr [Yt ∉ G] 6 nlog(27K).

Proof for the second part of Lemma 5.1. Let T = 2m(logm + log (2/ε)) and Et be the event that Xt ∉ G

or Yt ∉ G happens. By Lemma B.1 and union bound,

∀0 6 t 6 T − 1, Pr
[
Et

]
6 2nlog(27K).

28



When K 6 10−5 exp

(
−

log(8/ε)
logn

)
, it holds that

2nlog(27K) · 2m2
6 4n4+log(27K)

6
ε

2
.

Together with Lemma 5.3 and Lemma 5.4, we have

Pr [XT ≠ YT ] 6

(
1 −

1

2m

)T
+

ε

2
6 ε. �
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