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A NEAR-LINEAR TIME SAMPLER FOR THE ISING MODEL WITH EXTERNAL FIELD

XIAOYU CHEN AND XINYUAN ZHANG

AsstrRACT. We give a near-linear time sampler for the Gibbs distribution of the ferromagnetic Ising
models with edge activities 3 > 1 and external fields A < 1 (or symmetrically, A > 1) on general
graphs with bounded or unbounded maximum degree.

Our algorithm is based on the field dynamics given in [CFYZ21b]. We prove the correctness and
efficiency of our algorithm by establishing spectral independence of distribution of the random cluster
model and the rapid mixing of Glauber dynamics on the random cluster model in a low-temperature
regime, which may be of independent interest.

1. INTRODUCTION

The Ising model [Isi25] introduced by Ising and Lenz is an extensively studied statistical physics
model which leads to many inspiring discoveries in physics, discrete probability, machine learning,
and theoretical computer science. Let G = (V, E) be an undirected graph with n vertices and m

edges, B € (1, +00)F be the edge activities, and A € [0, 1]V be the external fields. The Gibbs distribution
Ising

Hga over 2V of the ferromagnetic Ising model is defined by

sin, 1
VSV, i) = e [ ] Be] [
ZB,)\ eem(S) veSs

where m(S) :=={e € E|eNnS =eoren$S = @} denotes the set of “monochromatic” edges, and

Zlgi;g = 2 scv [leemes) Be [Tves Av is known as the partition function. A major problem is to

sample from the Gibbs distribution of the ferromagnetic Ising model.

One of the most well-known approaches is the Markov Chain Monte Carlo (MCMC) method.
The Glauber dynamics, also known as the Gibbs sampler, is an example of this method. There are
numerous researches establishing the rapid mixing results of Glauber dynamics [MS13, CLV20,
CLV21la, CFYZ21b, AJK*21a, AJK"21b, CE22] when < f.(A), where A is the maximum degree
of a graph G and $.(A) := A/(A — 2) is the critical threshold. However, when B > B.(A), it is
known that there exist graphs such that the Glauber dynamics is exponentially slow in the size of
the graph [GMO07].

Even though the Glauber dynamics fails to be efficient, there still exist fast algorithms to sample
from the Gibbs distribution of the ferromagnetic Ising model. The random cluster model [FK72,
For72a, For72b] and subgraph-world model are two statistical mechanics models that are closely
related to the Ising model. Leveraging the connection between the partition function of the Ising
model and the subgraph-world model [NM53], [JS93] showed that the 1/2-lazy Metropolis chain
on the subgraph-world model converges rapidly by using the technique of canonical path [JS89].
The following works [G]18, FGW22a] established a similar mixing time of Glauber dynamics on
the random cluster model via multicommodity flow based on the canonical path in [JS93] and the
coupling in [G]J09]. All these results can be translated into fast Ising samplers that run in time

0137;\(1113) when > 1 and A < 1. Furthermore, these samplers also work when A = 1, where the
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running time degenerates to Og(n'm3). It is also worth mentioning that for the case A = 1, there
is a specific Markov chain called worm process on the Prokof’ev-Svistunov measure of the Ising
model studied in statistical physics, which is proved to be rapid mixing [CGHT16].

With bounded degree assumption, [CLV21b] proved the optimal mixing time of Glauber dy-
namics on the subgraph-world model via spectral independence, implying a fast Ising sampler
that runs in A9#A(8) . O(m) when B > land A < 1.

Apart from MCMC based method, algorithms based on zero-freeness property and polymer
model also achieve polynomial running time with restrictions. By the celebrated Lee-Yang circle
theorem [LY52] and the polynomial interpolation algorithm framework [ Bar16, PR17, PR19], there
is an algorithm for sampling the ferromagnetic Ising model that runs in time n©2(1°84) for g > 1
and A < 1 [LSS19], where A is the maximum degree of the graph. While algorithms based on
the polymer model usually require graph G to be an x-expander for some constant o« > 0 and
parameter B = Q(log(A)/«). An algorithm of this type with running time n©#.«(164) was given
in [JKP20], and follow-up works [CGG*21, BCP22a] improved the running time to Og «(1).

Besides, there are many other fast samplers for the Ising model on special families of graphs
[MSWO03, GSV19, BCSV21, BCP+22b, GS22], such as lattice graph and torus graph.

In summary, no algorithms in previous studies run faster than cubic time without any assump-
tion on graphs or parameters. It is natural to ask the following question:

Are there faster algorithms to sample from Gibbs distribution of the Ising model in the general case?
In this paper, we answer this question in the affirmative.

Theorem 1.1. Let 5g, 0 € (0,1) be constants, and w be the Gibbs distribution of the ferromagnetic Ising
model specified by graph G = (V,E), parameters B € [1 + 8p,+00)E and A € [0,1 — 551V There exists an
algorithm that samples X satisfying drv (X, 1) < € for any given parameter € > 0 within running time

m - (log n)oéﬁ’ﬁh(l),

where m is the number of edges and n is the number of vertices.

Remark 1.2. Let p be the Gibbs distribution of the Ising model with parameters € RE, and
A€ Rl/l, and define [t by letting {1(S) = w(V'\S) foreach S € V. Note that 1 is the Gibbs distribution
of the Ising model with parameters 3 and A™! € (0,1)V. Therefore, we can sample from [ via the

sampler in Theorem 1.1, which implies a sampler for p.

Compared to previous works, our algorithm could handle general instances while it only takes
a near-linear running time when parameters are bounded away from 1. We give a detailed com-
parison between Theorem 1.1 and previous results in Table 1.

As in [G]18, FGW22a], we leverage the Edwards-Sokal coupling [ES88] (see Proposition 2.2),
which reduces the task of sampling from the distribution of the ferromagnetic Ising model to the
random cluster model (see Section 2.3.2 for formal definition).

Theorem 1.3. Let 6,8, € (0, 1) be constants and w be the distribution of a random cluster model specified
by graph G = (V, E), parameters p € [5,, 1) and X € [0,1 — 551V, There is an algorithm that samples X
satisfying drv(X, 1) < ¢ for any given parameter € > 0 within running time

m- (log n)oép,ﬁ)\(l) ,

where m is the number of edges and n is the number of vertices.

The proof of Theorem 1.1 assuming Theorem 1.3 is deferred to Appendix A.1.

In the recent progress on high-dimensional expansion and the analysis of Glauber dynamics, a
new Markov chain called field dynamics has played an important role [CFYZ21b, AJK*21b, CFYZ22,
CE22]. The field dynamics was originally used to obtain a boosted optimal spectral gap or modified
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TaBLE 1. Comparison of running times and requirements for Ising samplers

log-Sobolev constant from a sub-critical regime. However, it turns out that the field dynamics could
also be used to design fast sampler. A recent work [AJK*21b ] used field dynamics with interleaved
systematic scans to build a fast sampler for the hardcore model. In our result, Theorem 1.3 is
another example in which field dynamics is used as an algorithmic tool to design fast sampler. The
proof of Theorem 1.3 is outlined in Section 3.

The key ingredients in Theorem 1.3 are to establish spectral independence of the random cluster
model for graphs with both bounded and unbounded maximum degree, and to prove the mixing
results for the random cluster model in a low-temperature regime. The previous work [CLV21b]
established an O p (1) bound for the spectral independence of the subgraph-world model (see
Section 2.3.1) by using the analytical property offered by the zero-freeness region, which leads
to a AC8A() factor in the running time of the sampler for the Ising model or the random cluster
model. In this work, we remove the dependency on A and prove an Oy, (1) spectral independence
for the subgraph-world model by using a novel coupling based argument (see lemma 4.4). Unlike
the previous analysis in [CLV21b], this coupling based argument enables us to lift the spectral
independence bound from the subgraph-world model to the random cluster model by using the
nature coupling between these models. Therefore, we are able to prove the first O (1) bound for
the spectral independence of the random cluster model (see lemma 4.1). Finally, in section 5, we
use the coupling with stationary argument to show that the Glauber dynamics on the random
cluster model mixes rapidly in a low-temperature regime (i.e. when pmiy is close to 1). With these
ingredients, we develop a near-linear time sampler via the field dynamics for the random cluster
model on general graphs with both bounded and unbounded maximum degree.

We remark that the recently updated version [FGW22b | of [FGW22a] proved the optimal mixing
time of the Glauber dynamics of the random cluster model when the fields are bounded away from
1 and the maximum degree of graphs is bounded by a universal constant. Their proof is also based
on the high-dimensional expander.

1.1. Open problems. In this paper, we developed a near-linear time sampler for Ising models with
parameters 3 > 1 and A < 1 (or symmetrically, A > 1). It still leaves several open problems.

e Develop a good sampler for the ferromagnetic Ising model when field A = 1. Our algorithm
fails due to the exponential reliance on the gap of A and 1, which stems from the analysis
based on high dimensional expander technique. Therefore, It is still tempting to surpass
Jerrum and Sinclair’s algorithm [JS93] in this case.

e Better analysis on the Glauber dynamics and the Swendsen-Wang dynamics of the random
cluster model. These simple yet powerful dynamics are of great interests in the study of
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random cluster model [G]99, GJ18, GSV19,BCSV21, FGW22a]. Though, the current mixing
time bounds for these dynamics on general graphs are still far from optimal. We hope our
techniques and results could be an inspiration for works in this field.

2. PRELIMINARIES

2.1. Notation. Let p be a distribution over 2" for some ground set U, and T, A be subsets of U.
P+ A denote the set of configurations S C U that agree with ton A, i.e.

Pra={SCU|SNA=TNA}

The distribution conditional on event & C 2Y is defined by

WS s ee
VSCU, wS|e)={n® ! ’
0 otherwise.

For simplicity, we denoteby (- | i) (resp. p(- | 1)) thedistribution u (- | Pyiy.41y) (resp. 1 (- | P 1))
projected on U\ {i} for some i € U. Furthermore, we denote by p(i) (resp. 1(i)) be the probability
Prs.. [i € S] (resp. Prs., [i ¢ S]).

Let p € [0,1]Y. The distribution p = Xy Ber(py) is defined by

VSCE, wS) = [p] [ -po)
ieS i¢S
We will write 1 be the constant vector with value 1, and 1,, = (1i=y)icu for some u € U. Lastly,

let X,Y C U be two subsets of the ground set U, we use X @Y := (X \ Y) U (Y \ X) to denote the
symmetric difference between X and Y.

2.2. Markov chains, entropy and mixing time.

2.2.1. Basic definitions. Let (X¢)ten be a Markov chain over a finite state space Q) with transition

matrix P = (pxylxyeq € RSOXQ. (X¢)ten is irreducible, if for any x,y € Q, there exists t > 0,

such that P*(x,y) > 0. (X¢)ten is aperiodic, if for any x € Q, ged {t € Ny | Pt(x,x) > O} =1 A
distribution p over Q is a stationary distribution of (X¢)ten, if 1 = pP. The fundamental theorem of
Markov chain says that a Markov chain (X¢)ten has a unique stationary distribution, if the Markov
chain is irreducible and aperiodic. A distribution p over Q is reversible with respect to (X )ten, if pt
satisfies the detailed balance condition, i.e. u(x)P(x,y) = u(y)P(y, x) holds for all x,y € Q. Itis known
that p is the stationary distribution of (Xt)ten if p is reversible with respect to the Markov chain.
Let pu, v be two distributions over the finite state space Q, the total variation distance is defined as

(i, V) = max [uS) = ¥(S)| = 5 3 [v(0) - u(o).
B oceQ)

Suppose p is the stationary distribution of a Markov chain (X¢)ten with transition matrix P. The
mixing time initialized from configuration Xy is defined by

Tmix(£7 XO) = mln{t €N | dTV(Pt(X()a ')7 “‘) < 8}'

The mixing time is defined by Tyix(e) = maxx,cq Tmix(€, Xo)-

IEvent & must satisfy p(€) = D gee H(S)>0.



2.2.2. Glauber dynamics. Let pbe a distribution over 2% on a finite ground set U. One of the most fa-
mous single-site dynamics is the Glauber dynamics (a.k.a. Gibbs sampler). In each step, the Glauber
dynamics updates configuration X € 2% according to the following rules:

e pick i € U uniformly at random;

e update X according to distribution yt (- | Px, u\(i})-
It can be verified that 1 is reversible with respect to Glauber dynamics.

2.2.3. Entropy decay and mixing time. The relation between the functional inequalities and the mix-
ing time of the Markov chain has been studied in literature [ DSC96, BT06]. We now introduce the
decay of the relative entropy and its implication on the mixing time of the Markov chain.

Let 1, v be distributions over finite state set Q and v is absolutely continuous with respect to p.
The relative entropy (known as Kullback-Leibler divergence) between v and p is defined as

DxL(v | W) =) v(o)log (%)

with convention 0 - co = 0.
Let (Xt )tenw be a Markov chain with transition matrix P and stationary distribution pt. The relative
entropy decays with rate «, if for any distribution v absolutely continuous with respect to y,

DkL(VP || uP) < (1 = a)Dkr(v || w.
It is known (see, for example, [BCP*22b, Lemma 2.4]) that the mixing time Tp,ix(e, Xo) satisfies

1 + log —
uXo) B2e2)

(1) Tix(€, Xo) < o™ (log log

2.3. Subgraph-world model, random cluster model, and relation of models.

2.3.1. Generalized subgraph-world model. Let G = (V,E) be an undirected graph, p € [0,1]E,n €
[0,1]V and o € {0,1}V. The weight of a configuration S C E in the generalized subgraph-world

model is defined by:
Wi e® =] pe [[C-p0 [] m

e€sS feE\S vev
|SNE, |=0y(mod 2)

where E,, denotes the set of edges that is incident to v. For ease of notation, we may use p°, (1-p)F\®

to denote [[.cs Pe and []cg\s(1 — pr), respectively. The distribution ”g,spv,‘;,o on 2F is
GSW
w (S)
GSW _ _Epno
VS g E’ HE,pJLU(S) T W’
E,;p,n,0

where Z(E;SPV\; o = D_SCE WE’SPV‘; »(8) is the partition function of this system 2, We remark that when
p’ €10, 1]¥, where E’ D Eisa superset of E, the distribution ”giav’\fn,c is defined by

GSW  _  GSW
HEvP'JLO' - HE,P'|EJLO"
where p’| is the vector obtained by restricting p’ to E. When o = 1, our definition matches the def-
inition of the subgraph-world model [JS93, FGW22a]. In this case, we may denote the distribution
and partition function by p%vg , and Z%V;]) , instead.

1l 4]

ZZGSW

Eop.m,o MY equal to zero. In this case, the system is invalid and we will not consider such case.
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2.3.2. Random cluster model. Let G = (V,E) be an undirected graph, p € [0,1]5,A € [0,1]Y be
parameters. The weight of a configuration S C E in the random cluster model is defined by:

wiC Sy =] e [ 1=po) [] (1+]‘[Aj),
eeS feE\S Cek(V,S) jeC
where we use k(V, S) to denote the set of connected components of graph (V, S). The distribution
plécp 5 is defined by
W p,,\( )
ZRC ’

E p7
where ZI’E‘% AT 2_ScE wE . »(S) is the partition function of this system. When A = 1, our definition

matches the classical definition of the random cluster model with q =2 [FK72].

VSCE, upe \(S):=

2.3.3. Relation between models. A well-known holographic transformation [JS93, Val08] connects
the partition functions of the ferromagnetic Ising model, the subgraph-world model and the ran-
dom cluster model.

Proposition 2.1 ([FGW22a, Lemma 2.1]). Let G = (V,E) bea graph, p € (1,+c0)F and A € [0,1]V be

parameters, then
Zghe = (HB )Z‘%‘;A (]—[B )(ﬂ(lmv)) ZE o

eckE eckE veV

wherep=1-B~" = (1-B5) g andn = (%;ii)vev
The standard Edwards-Sokal coupling connects the Gibbs distribution of the ferromagnetic Ising
model and the distribution of the random cluster model.
Proposition 2.2 ([FGW22a, Proposition 2.3]). Let G = (V,E) beagraph, B € (1, +o0)Eand A € [0,1]V
be parameters. Furthermore, let p =1 — Bl = (1 - Be)eck. Construct Y according to the following rules.
o initialize Y = @ and sample X ~ ulécp N
o foreach C € k(V,X), add C to Y with probability lnle—c)‘l

+[Tiec Ai”
Then, it holds that Y ~ ulsmg

3. PrROOF OUTLINE

In this section, we outline the proof of Theorem 1.3. We first summarize previous results of the
tield dynamics in Section 3.1, and then introduce the field dynamics simulator, prove its correctness
as an approximate sampler, and analyze its running time in Section 3.2.

3.1. Field dynamics. The field dynamics is an adaptive select-update dynamics, first introduced
n [CFYZ21b]. Intuitively, the field dynamics serves as a reduction from a critical instance to a
sub-critical instance, i.e., instance that are much easier to handle.

Let p be a distribution over 2" on ground set U and A € RY}. Denote by A * i1 the distribution
over 24 satisfying

VSCU,  (A*u)S) o ASu(S),

where AS = [];cs Ai. In particular, if A is a constant vector with A, = A, we may write A * it instead.
The field dynamics PgD with parameter 0 € (0, 1) in each round updates a configuration X € 24
according to the following rules:
6



e sample S’ ~ (X, Ber(®) and let S = S" U X;
e update X according to distribution (07" * 1) (- | Px u\s),

where we recall theevent Px y ={TCU | TNY=XNY}.

It has been showed in [CFYZ21b] that the field dynamics P§" has the stationary distribution p.
We note that the only non-trivial step in the field dynamics is to sample from a new distribution
(071« w) (- | Px.u\s)- A key intuition of the field dynamics is that (6! + ) (- | Px u\s) might be rel-
atively easy to sample from when we choose a good parameter 6. Hence, when the field dynamics
itself is rapid mixing, it actually reduces the task of sampling from p to an easier task of sampling
from (071 %) ( | Px u\s ) Our algorithm for the random cluster model is based on this idea where
we use a Glauber dynamics to generate approximate samples from (87! * ) (- | Px u\s) so as to
sample from the original distribution (see algorithm 1 and algorithm 2 for the details). Moreover,
We also establish the rapid mixing of field dynamics via the spectral independence.

In recent years, there is a long line of works [ALO20, CLV21la, CFYZ21b, AJK*21a, BCC*21,
AJK*21b, CE22, CFYZ22] establishing the relation between the mixing time of select-update dy-
namics and the spectral independence. We first introduce the notion of spectral independence.

Definition 3.1 (influence matrix, [ALO20]). Let n be a distribution over 2% on ground set U of
size n. The influence matrix Wﬁlf is an n by n matrix defined as

Vijel, W)= r@ 1) =@ 1j) ifi#jand 0 <Prs-.[jeS] <1,

0 otherwise.
Definition 3.2 (spectral independence in infinite norm). Let p be a distribution over 24 on ground
set U. The distribution p is C-spectrally independent, if

ol < ¢

Furthermore, p is C-spectrally independent under all pinnings, if for any T, A € U with u(P. o) >
0, u(- | Pr,A) projected on U \ A is C-spectrally independent.

We remark the notion of spectral independence in Definition 3.2 is stronger than that in [ ALO20],
where the distribution p is C-spectrally independent, if A ax \Pifff) < C.

In recent progress of high-dimensional expansion and the analysis of Glauber dynamics on anti-
ferromagnetic two-state spin systems, the following entropy decay result for field dynamics is es-
tablished [AJK*21b, CFYZ21a, CE22, CFYZ22].

Lemma 3.3 (entropy decay of field dynamics). Let y be a distribution over 2% on ground set U. If A= p
is C-spectrally independent under all pinnings for all X € RY., then for any 0 € (0, 1) and distribution v

>0
absolutely continuous with respect to p, let k = (8/ e)C+3, it holds that

Dxr (VPP || uPEP) < (1 = K)DkL(v || 1)

For completeness, we include the proof of Lemma 3.3 in Appendix A.3. By (1), this entropy
decay result implies a tight bound on the mixing time of field dynamics.

3.2. Field dynamics simulator. We are now ready to introduce the field dynamics simulator for
random cluster model. Parameters 0, T¥P, and TSP are to be determined.
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Algorithm 1: field dynamics simulator for random cluster model

input : Graph G = (V, E), parameters p € (0,1)F, A € [0,1)V and ¢ € (0, 1)
output: a random configuration X C E satisfying drv(X, ulécp N <€

[y

Initialize X = E;
fort — 1to T'P do
L draw §’ ~ (X) .. Ber(6) and let S = S’ U X;

update X « Resample(G’ = (V, S), p*, A, (QTFD)_1 ¢), where pX =

5 return X

@ N

'S

Pe
9(1—pe)+pe’ve €3.

Algorithm 2: Resample(G, p, A, €)
input : Graph G = (V, E), parameters p € (0,1)5,A € [0,1)V,and ¢ € (0,1)

output: a random configuration X C E satisfying drv(X, p};{% N <€

1 Initialize X = E;

2 fort «— 1to TGP do

3 draw e € E uniformly at random;

4 | update X according to “PE{,%,A (- | Px E\(e)-

5 return X

Remark 3.4. In Algorithm 1, since S = S’ U X, it holds that X N (E \ S) = @. This means all the
elements in E \ S are in the “out” state in X. So, it is straight forward to verify that

(e_l * H-Iég)’)\) ( | fPX,E\S) = Hls{g,ﬁ)\('%

m forall e € S. Hence, when |V| > Ny, Algorithm 1 is exactly the field dynam-

ics assuming Algorithm 2 being a perfect sampler. Though in our implementation, Algorithm 2
returns approximate samples and causes biases.

where p% =

Let ur’é% » be the distribution of the random cluster model specified by graph G = (V, E), param-
eters p € (0,1)F and A € [0,1)V. Furthermore, let

Pmin = Minpe and Apax = maxA,,.
eckE veV

We first state the mixing time results for both field dynamics and Glauber dynamics, and then
prove Theorem 1.3 with these results.

Lemma 3.5. The mixing time of the field dynamics initialized from E satisfies

5(1_)\max)72
Ve € (0,1), T(&,E) < (E) (2 log n + log log

+log—|.
Pmin 2¢2

0

RC

This mixing time result is a corollary of Lemma 3.3 and the spectral independence of i DA

Lemma 3.6. plég)’A is 2(1 — Amax)~2-spectrally independent under all pinnings.
The proof of Lemma 3.5 assuming Lemma 3.6 is deferred to Appendix A.2.

Remark 3.7. Establishing spectral independence is a challenging task. A series of works[CLV20,

BCC*21, Liu21, CLV21b, ALO22] establish spectral independence via different approaches, in-

cluding correlation decay, path coupling, stability of polynomial, and the trickle-down phenom-

enon. An Ox p ,(1) spectral independence result for the subgraph-world model was established
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in [CLV22]. This result has the dependency on A and does not imply a spectral independence
bound for the random cluster model. Our method is quite different from the previous approaches
for bounding the spectral independence. In contrast to previous works, we establish a better spec-
tral independence result for the subgraph-world model that is independent of A by a sophisticated
coupling procedure. This coupling procedure also enables us to lift the spectral independence re-
sult from the subgraph-world model to the random cluster model. As far as we know, lemma 3.6
gives the first spectral independence bound for the random cluster model. The details will be de-
scribed in Section 4.

Lemma 3.8. If it holds that

1-A
1- min 1 < mi 1 _77ﬂ )
(1 — pmin) logn mm{ 0 o }

then the mixing time of the Glauber dynamics satisfies
1
Ve € (0,1), Tmix(e) < 25mlogmlog - + 1.

The proof of Lemma 3.8 involves a coupling with stationary argument, which will be presented
in Section 5. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We choose parameters in Algorithm 1 and Algorithm 2 as follows:

parameter value
min{l(]_77 —1_?‘2‘;‘“ }pmin
0 logm
_ -2
TFD [(%)5(1 Amax) (2 logn + log log pr + log %)-‘
TGD [25mlog mlog @-‘ +1

To prove Theorem 1.3, it suffices to show that:

(1) The sample X returned from Algorithm 1 satisfies dv (X, plécp \) <&
(2) The overall running time can be achieved in m (¢! - 6;1 -logn) 0(6;2).

First, we prove requirement (1). For convenience, let P;" denote the transition matrix of the
simulation algorithm (Algorithm 1) and p = ulé%)\. Let (Xt)o<t<TrFp (respectively, (Yi)oci<TFD)

be the Markov chain starting from configuration X, = E (respectively, Yy = E) with transition
matrix PgP (respectively, P§P). It holds that
drv (Xyrp, 1) < dpyv (Xyrp, Y1rp) + dpv (Y1eD, 1) < Pr[Xyep # Yyeo | + dpyv (Yep, 1) .

Note that Xyrp # Yyrp is equivalent to that there exists 1 < i < T'P such that X; # Y; but X; = Y;
for all j < i. Hence,

TFD TFD
Pr[Xtrp # YD | = Z Pr [Xi #Yiand Vj <1, Xj = Yj] < Z Pr[Xi # Vi | Xi—1 = Yi-1].
i=1 i=1

Forany1 <i< T¥D consider the following coupling of X; and Y; condition on Xi_; = Yi_;:
(1) Generate set S’ ~ ® Ber(0) and S = S’ U Xj_1, i.e., the first step of the field dynamics;

(2) Generate X; and Y; according to the optimal coupling of distribution u?%,m 5%*7A,

where u};{%* » is the distribution generated by Resample((V, S), PH A, (2TFP) ).
9
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Hence, we have

Pr[Xi# Yy | Xio1 =Yiq] < max drv (HIS{,({‘)*,A’ H?%*J\) =€

Note that (1 — pZ. )logn < epli)gi:l < min {1077, 1-?2\%} By Lemma 3.8 and our choice of TGP,
g/ < ﬂ% Therefore, by Lemma 3.5 and our choice of TFD it holds that

dry (X7, 1) < T'P¢/ +€/2 < e.

This proves the requirement (1).

Lastly, we verify requirement (2). In each iteration of the field dynamics in Algorithm 1, we
need O(m) time to generate the set S. This consumes mT'P time. Besides, the algorithm needs
TFD iterations of T¢P-steps Glauber dynamics starting from configuration X = S on distribution
“ES)*, » for some § C E. We claim that each step of the Glauber dynamics could be implemented

in polylog(n) time, then the total running time is
(2) mTHP + TFP . TGP L holylog(n).

By our choice of TFD and TSP, it holds that

FD

_ -2
T = (1 = Amax) ™' - L, < log n)o((l Ama) ) and TOP < 25mlog mlog + 2.

€
Together with Ayax < 1 — 0 and pmin > 8, the total running time (2) could be bounded by

m (le ) 5;1 -log n)o(5X2)_

We only left to show that each step of the Glauber dynamics could be implemented in polylog(n)
time. Suppose the current configuration is X, the Glauber dynamics will first use O(logn) time to
draw a random edge e = (u,v) € E. Let C,, = Cy(X) and C,, = C,,(X) be the connected components
in graph (V, X \ {e}), containing u and v, respectively. Then the probability px . that X will be
updated by X U {e} is

( P if Cy, = Cy,
3 X = )\CuUCv .
) PX.e 1+7\CLLUC"1:(1_p$)(ACu+)\Cv) otherwise,

where AR = [Ticr At for R € V. In order to calculate px . fast, we need a data structure that
supports the following operations:

update X < XU {e} for any given e € E;
update X « X'\ {e} for any given e € E;
query if Cy,(X) = C,(X) for any given u,v € V;
query ACX) for any givenu € V.

These updates and queries can all be handled in O(log? n) amortized time by the data structure in
[WN13, Section 3]. This concludes the proof of requirement (2) and Theorem 1.3. m]

4. SPECTRAL INDEPENDENCE OF RANDOM CLUSTER MODEL

In this section, we are going to prove Lemma 3.6. We prove Lemma 3.6 via the following lemma.

Lemma 4.1. Let p be the distribution of the random cluster model specified by graph G = (V, E), parameters
p €[0,1]F and A € [0,1)V. Then, wis 2(1 — Apax)~2-spectrally independent.
10



Proof of Lemma 3.6. For any T, A C E, define p € [0, 1]F by

0 ifeeA\T,
VeeE, Pe=491 ifeeAnm,
pe ifeceE\A.
Note that pr’é% 5 is exactly p(- | Pr A). This concludes the proof of Lemma 3.6. O

In order to prove Lemma 4.1, we introduce a simple coupling criteria for spectral independence.
Definition 4.2 (coupling independence). A distribution p over 2 on ground set E is C-coupling
independent, if for all i € E, there exists a coupling (X, Y) of distribution u(- | i) and p(- | i), that

E[IXeY|]<C.
Furthermore, a distribution is C-coupling independent under all pinnings, if for any A, T € U with
w(Pr A) >0, u(- | Pr,A) projected on U \ A is C-coupling independent.
Proposition 4.3. Ifa distribution wover 2F is C-coupling independent, then w is C-spectrally independent.

Proof. Fix i€ E. Let (X,Y) be a coupling of u(- | 1) and u(- | i) such that E[[X @ Y|] < C, then
> |w610-uG1D< X B[ £ V1] =ElXe Y] <C,
jeE\{i} jeE
where the first inequality holds by standard coupling lemma. Therefore,
inf _ ). s
[l = max > [uG10-uG19|<C. 0
jeE\{i}

Now, to prove Lemma 4.1, we first claim the coupling independence for the distribution of
subgraph-world model.

Lemma 4.4. Let v be the distribution of subgraph-world model specified by graph G = (V, E), and vectors
p €10, %]E, n € (0,1]V. It holds that v is 5 L -coupling independent.

min

Then, we show that once we have a coupling of distributions of generalized subgraph-world
model, we could “lift” it to the random cluster model.

Lemma4.5. Let G = (V, E) be an undirected graph, p € [0,1]% and A € [0,1)V be parameters. Let w be the
distribution of a random cluster model specified by graph G, parameters p and A. Let v be the distribution

of a subgraph-world model specified by graph G, parameters & = (5¢) . andn = ( 1;;: )vev'

If v is C-coupling independent, then w is also C-coupling independent.

Lemma 4.1 is proved by combining Proposition 4.3, Lemma 4.4, and Lemma 4.5.
The proof of Lemma 4.4 and Lemma 4.5 are given in Section 4.1 and Section 4.2 respectively.

4.1. Coupling independence of generalized subgraph-world model. In this section, we prove
Lemma 4.4. For convenience, for o € RY, we use 0 ¢ to denote a vector o with oy, being changed
to value c¢. Meanwhile, for o, T € {0,1}V, we use 0 ® T to denote the bitwise exclusive or of o and
7. We now prove a generalized version of Lemma 4.4.

Lemma 4.6. Let G = (V, E) be an undirected graph, o € {0,1}V be parity constraints on vertices, p €

[0, %] " and n € (0,11 be parameters. For any w € V, there is a coupling (X,Y) between p&5W _ and

E,pn,0
1
Hg,srz\il,d@lu such that E[|X @ Y[] < nZ

11



K

r<qOorT>q|1/ \?0<T<Q1

....... €3
@ (o-e@® A "_':@
U={v}, X=Y={e} U={wn}X=Y=0
X4 =Y|1/ \>‘<1 Y1
....... €3 ... et €3
Vi _ el . ey @ Vi _ er vy )b ey @
U={w},X=Y={e} U={n}X=2Y={e}

Ficure 1. This is an illustration of Algorithm 3. Here, vertices v; is colored red
if u = vy, blue if oy, = 1 and green if o,, = 0. Moreover, edge that has not been
revealed is represented as dotted line, edge in both X and Y is colored with black,
edge in exactly one of X and Y is colored with red, and edge that has been revealed
but not in either X or Y is removed.

We now prove Lemma 4.4. The proof follows from a standard coupling argument.

. _ GSW e ey
Proof of Lemma 4.4. Fix e € (u,v) € Eand letv = HE oot By definition,
=) _  GSW _ , GSW
VOl =teeypaa and V1€ = Ui pnerer,

GSW
— _ E\{e},p,n.181,
of v(- | €) and v as well as C; of vV and v(- | e) satisfying

Consider an intermediate distribution v := ! . By Lemma 4.6, there are couplings C;

Vie{l,2}, Exye~c [X®Y|]<——

Using €; and €3, we could construct a coupling (X,Y) of v(- | €) and v(- | e) by: (1) sampling
X ~ v(- | e); (2) sampling Z proportional to C;(X,-); (3) sampling Y proportional to C(Z,-). It
could be verified from the definition of €; and €, that X,Y have correct marginals. Again, by
Lemma 4.6, it holds that

E[XoY|]]<E[XeZ|+|ZoV|]<E[X®Z]]+E[Za Y]] <

2 )
21Almin

where the last inequality follows from the fact that (X, Z) ~ €¢; and (Z,Y) ~ Cs. O

The rest part of this section is dedicated to the proof of Lemma 4.6. We construct the coupling
(X,Y) using the procedure Couple(G, p,n, 0, u, U) in Algorithm 3, where U denotes the set of vis-
ited vertices, and is initialized to @. Figure 1 is an illustration of Algorithm 3.

In order to prove Lemma 4.6, it suffices to prove the following properties.

(1) Each recursive call in Algorithm 3 is valid.
12



(@) E[IX® Y]] < 1+

M min

(3) (X,Y) = Couple(u, E,n, 0,2) is indeed a coupling of “(E;,Srm,cr and pg’spvz]’o@lu, that is
GSW GSW
X~ UEpnoand Y~ HE LY Ger,:

Algorithm 3: Couple(G, p,n, o,u, U)

input : graph G = (V, E), parameters p € [0,1]F,1 € [0,1]Y, 0 € {0,1}V, vertex u € V and
set of visited vertices U satisfying
(1) nu =0ifand only if u € U;

GSW GSW
<2) ZE,P,n,G’ZE,p,n,Gﬂalu > 0.

output: a pair of random configuration (X, Y) € 2F x 2F.
if u ¢ U then

2 update U « U U {u};

3 let A={SCE||SNEy|=0 mod 2};

-1
uR _ .

4 letR = (ZSGA Hgi’ﬁuhl,o(s)) (ZS¢A HS’SF’VX]W_17G(S)) +q0 = ﬂTlR+1 and q1 = Rfﬂu’

draw 1 ~ Uniform(0, 1);

update n,, « 0;

if r > q; then

sample C ~ ugspvz] U0’
| return (X,Y) = (C,C)
10 | if < qo then

[y

® N o G

o

1 sample C ~ ug‘?ﬁ] guets
12 | return (X,Y) = (C, C)

13 pick an arbitrary e = (u,v) € Ey;

14 let v, 7 be the distributions of pgspvz] - gspvz] sl
) k) ) ) ) ) uw

15 sample (X1, Y;) from an optimal coupling of v and ;
16 if X; = {e} then

17 L update 0 «— 0® 1, ® 1,;

18 if X1 = Y; then

1 ‘ (X2,Y2) <= Couple((V,E\ {e}), p,n,0,u,U);

and p projected on e respectively;

al

o

20 return (X,Y) = (X7 U X2, Y UY)y)

21 else

22 (X2,Y2) « Couple((V,E\ {e}),p,n, 0,v,U);
23 L return (X,Y) = (X3 U X2, Y1 UYy)

The first property can be verified easily. We now prove Property (2) with following observations.
Proposition 4.7. Let U be the set of visited vertices upon termination. For any k > 1,

k-1
1- MNmin )

Pr[|U| > k] < (
1 + Nmin

13



Proof. Note that |U| > k implies that first k — 1 random numbers 1,12, ..., -1 drawn in Line 5 all
lie in their corresponding segments. Therefore,

R R NV (1 — i \ <
PrUl > k] < -— <|l—] . O
rUl> ] (Rﬁ}i’év{Rmu nuR+1}) (1 T Tonin
Proposition 4.8. Let U be the set of visited vertices upon termination and (X,Y) be the returned pair of
configurations in Algorithm 3. For each e = (u,v) € X® Y, both u,v € L.

Proof. This directly follows from the coupling procedure. m]
Now, we are ready to prove Property (2).

Proof of Property (2). Let U be the set of visited vertices upon termination and (X, Y) be the returned
configuration. By Proposition 4.7 and Proposition 4.8,

[V]
k
E[|XEBY|]<Z( )Pr Iu| = ZkPr (Ul >k+1] < . O
k=1 Mmin
Now, we only left to prove Property (3). To begin with, we need the following propositions.
Proposition 4.9. pg’srm’guho (A) = qo and “g,S])V,\;,auH(A) =qs.
Proof. Without loss of generality, we only prove the first part. It holds that
-1
GSW _ GSW GSW GSW
HEpon, gueo(A) = Z WE,P,H,G“HO(S)) (Z wEvpm,GWO(S) * Z WE,p,mGWO(S))
SeA SeA S¢A
-1
- GSW GSW GSW
- [ o) 1 95 T e 05)
SeA SeA S¢A
NuR
= ; = qO'
NuR+1
O

FaCt 4‘10‘ }‘l‘g?pv’\;ux—070u<—0 Hgsp\}\; 0—( | ‘A) and Hgi‘?;u«—()7o-u4—1 Hgspvv;] 0—( | ‘A) 3

Now, we are ready to prove Property (3).

Proof of Property (3). It suffices to prove that, for any valid input ((V, E), p,n, o, u, U), a pair of con-
figurations (X, Y) drawn in procedure Couple((V, E), p,n, o, u, U) satisfies

GSW
X~uEpnc

GSW

and Y ~ uE?p7n70—®1u.

Without loss of generality, we only prove X ~ pGSVf% o

The base case m = 0 is trivial. Suppose Property (3) holds for all E with |E| = m’ < m. We will
show that it also holds when |E| = m. We will considering two cases: (1) u € U; (2) u ¢ U.
When u € U, Algorithm 3 will

e select an arbitrary e = (u,v) € E, = {f € E | f = (u,y) for some y};

e sample X; ~ v, which is the distribution ugiﬂhc projected on e;

We prove by induction on m = |E|.

3We only consider the case where distributions are well-defined, i.e. ZSSW wee ~uce >0forc=0,1.
7p 71] ’ o
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e sample C; via procedure Couple(u, E \ {e},n, 0*,U) or Couple(u, E \ {e},n, 0*, U), where

(Y*: (0 Xl
odl,®1, ,X;={e}

By induction hypothesis, C; ~ ug\s{vg} S By the definition of 0%, it holds that
HGSW _ ugSpV\; G( | e) ;X1 = {e}7
felpmet = (W (17 X =0

Hence, X = C; U Xy ~ ugsp\i\; o
When u ¢ U, let qo, q; be defined in Line 4 in Algorithm 3. Algorithm 3 behaves as follows:

GSW
E n u—0 o-uHO I

e with probability 1 — ¢, sample X from distribution w

GSW
E 11u«fO oue1 ’

o with probability qo, sample X from distribution p

GSW
E nuHO o

Here, the last term follows from the analysis of previous case. Hence for S C E, it holds that
Pr [X = S] = qougspvz]ueo ou<l (S) + (ql - qO)FLS’Sp\ﬁ]ueoﬁ(s) + (1 - ql)ugiv’\:]ueqo-u«fo(s)'
When o, =0, it holds that
Pr [X = S] = qOHgSpV\;ueo ou<l (S) + (1 - qO)ugSpV\:]uHO’o-uHO(S)
— ,GSW GSW
= Hepom, O-uHO( )PLE P, o‘(s | A) + He p’mgueo( )PLE P, 0‘(8 | ‘A)
byou=0) =gV (s),

where the second equation holds by Proposition 4.9, Fact 4.10.
Similarly, when oy, = 1, it holds that

Pr [X = S] = qlugspvz]ueo ou<l (S) + (1 - ql)ugiv’\;uHO’o-uHO(s)

= H‘S’SPVZ] Gu%l(ﬂ)ugi}i\;’g(s | ‘A) + ug’sp\ﬁ]’()-ukl (Z)H‘g?pVXLO-(S | Z)

byou=1 =u@W ()
where the second equation holds by Proposition 4.9, Fact 4.10.

Combining these two cases, we have X ~ ugs“; and hence complete the proof. m]

o with probability remaining probability q; — qo, sample X from distribution p

4.2. Lifting coupling independence. In this section, we will prove Lemma 4.5. Let u be the dis-
tribution of random cluster model specified by graph G = (V,E), and parameters p € [0, 1]F,
A € [0,1)V. Furthermore, let v be the distribution of the subgraph-world model model specified

1-Ay,
1+A,

wand v is observed by previous works [G]18, FGW22a], which is summarized below.

Lemma 4.11 ([FGW22a, Lemma 3.3]). Let q := (pi/(2 — p1))ice- Suppose Z ~ Q); ¢ Ber(qi), X ~ v
and Y = X U Z then it holds that Y ~ w. Equivalently, for every Y C E, we have

(4) m) =Y v [ an [] 0 =a0.

XCY heY\X  feE\Y

by the same graph G, and parameters & = (5¢)__ andn = ( . A natural coupling between

Now, fix e € E, let (Xo, X;) be a coupling of v(- | €) and v(- | e). Let te := w%)g(e) be a real

number. We will construct (Yp, Y1) as a coupling of u(- | €) and u(- | e) as follow:
15



e sample Z ~ (X); ¢ Ber (q¢);
e with probability te, let Yo = (Xo U Z) \ {e} and Y; = (Xo U Z) U {e};
e with probability 1 —te, let Yo = (Xo U Z) \ {e} and Y; = X; U Z.
Now, Lemma 4.5 could be simply proved by
E[[Yo® Yi]] =te + (1 —te) - E[|[(Xo U Z) \ {e} & X1 U Z|]
Ste+(1—-te) - E[[Xo®X1]] < C,
where in the last inequality, we use the fact that C > 1, which holds by definition.

Now, we only need to verify that Yy, Y; follow the correct distribution as we claimed. For conve-
nience, for S C E, we use ¢° to denote [];cs qi- Then forany Y C E \ {e},

PriYo=Y]=) v(T|e)q"\"(1-q)=\"\e
TCY
_ 2Ty v(T)g"\T(1 - q)F\Y ® wY) _
v(e)(1-qe) u(e)

where in (%) we use (4) and the fact that u(e) = v(e)(1 — qe), which could be implied from
Lemma 4.11. A similar calculation shows that for any {e} CY CE,

Privi=Y]=te Y v(T|eq"™MN1-q"V+(1-ts) Y v(Tleg"\T1-q"
TcY\{e} {e}cTcYy

T T
= (te Zrevie) 2 a N+ (1= 1) T ey crey 2ga™T) (1 -

) (ZTQY\{e} v\ T+ Y ycrey V(T)qY\T) (1-q)FY
deVv(e) + v(e)
_ Y ey V(NG (1 - @)F\Y ® u) _
qeVv(e) +v(e) w(e)
where (+) holds by the fact that t. = —9ev@ 4 (%) holds by Lemma 4.11.

qev(e)+v(e)

n(yle,

u(y [ e),

5. RAPID MIXING OF GLAUBER DYNAMICS IN GOOD REGIME

Let pbe the distribution of the random cluster model specified by graph G = (V, E), parameters
pe(0,1)Fand A € (0,1)V. Let PED be the Glauber dynamics with stationary distribution .
We restate Lemma 3.8 for convenience.

Lemma 5.1. Let ¢ € (0, 1) be a real number. If
. -7 1- }\max
(5) K:= (1 - pmin)logn < min{107", —r [’
then the mixing time of Glauber dynamics satisfies
Tix(e) < 25mlog mlog(1/¢e) + 1.

Furthermore, if

logn 27
then the mixing time of Glauber dynamics initialized from E satisfies

Tmix(ea E) S 2m(10g m+ 10g(2/8))
16
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We remark that a trade-off exists between the mixing time and the condition on K. This trade-off
arises from a subtle distinction in the proof of the mixing time. To prove the first part, we employ
the burn-in method and a “doubling” argument, whereas the second part does not rely on these
techniques. We will use the first part of Lemma 5.1 in the subsequent analysis, and the proof of
the second part is deferred to Appendix B.

In the rest of this section, we will always assume that K is picked as in (5). Define C by

C:={SCV]|IS|<n/2and |E(S,V\S)| = |S|logn},
where E(S, V'\ S) is the set of edges between S and V' \ S. Furthermore, define the good event G by
G:={XCE|VSeCl|XNES,V\S) >0}

Intuitively, the good event G is the set of configurations X C E, such that there exists no connected
components C in graph (V, X) with large |E(C, V' \ C)|.

Let (Xt)t>0 and (Y¢)t>0 be Glauber dynamics starting from different configurations X, and Y.
We will show that after a burn-in phase of length O(mlog m), the good event § happens in high
probability. Furthermore, when X, Yy € G, there exists a coupling so that the hamming distance
of X{ and Y; contracts with rate 1 — ﬁ, where m = |E|.

Lemma 5.2. If t > O@mlog m for some © > 0, it holds that

PrX¢ ¢ §] < n'°8CT) £ m1=0 gnd Pr[Y, ¢ G] < nlos@™) 4 10,

Lemma 5.3. When K < 1_)2‘%, there exists a coupling of (Xt)t>0 and (Yi)tso so that when X¢, Yy € G,
1
E[|Xt+1 @ Yeer] | X, Ye] < (1 - %) Xt @ Yi| .

The proof of Lemma 5.2 and Lemma 5.3 is deferred to Section 5.2 and Section 5.1 respectively.
To prove Lemma 5.1 via Lemma 5.2 and Lemma 5.3, we need the coupling with stationary lemma.

Lemma 5.4 ([HV06, Theorem 3.1]). Let (Xt)t>0 and (Yi)tso be coupled Markov chains. Let € € (0,1),
To, 1 € N be parameters satisfying Ty < Ty. Furthermore, ¢ denote the event

E[[Xts1 @ Yo | | X, Ya] < (1 - %n) Xe @ Vil
Suppose Pr [S_t] < Oforall Ty <t < Ty, then
Ti-To
Pr[Xt, # Y1,] < (1—%) m+ 8- 2m?.

We are now ready to prove Lemma 5.1.

Proof for the first part of Lemma 5.1. Without loss of generality, we will only prove the case where
¢ = 1. This can be extended to general case by a doubling argument [LPW17]. Moreover, we
assume n > 2 and m > 2. Since n < 1 implies that m = 0 and when m < 1, Glauber dynamics
mixes in one step.

Let To = 9mlogm, Ty = 15mlog m and Xy, Yy be arbitrary starting configurations. We consider
the Glauber dynamics (X¢)t>0 and (Yi)t»o starting from Xy and Yy respectively. By Lemma 5.2
and Lemma 5.3, there exists a coupling of (X¢)t>0 and (Y¢)¢>o such that for all Ty < t < Ty, the
event &; happens with probability no more than 2n'°627%) 4+ 2m~8, where &; denotes the event
E[|Xer ® Yesa| | Xe, Ye] < (1 - 5%) [Xe @ Y¢|- By K < 1077, it holds that

m
(2n1°g<27‘<> + 2m—8) c9m? < AntH1oECTK) | 46 ¢ 406 4 46 < L

Qo
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where the last inequality follows from our assumption n, m > 2. Therefore, by Lemma 5.4,

1\
Pr[Xt, # Y1,] < (1—%) m+§ T
Finally, by the geometric convergence of Markov chain, it holds that
Thix(€) < 15mlog mlogy(1/e) < 25mlog mlog(l/e) + 1,

where the +1 is used to handle the cases wheren < 1 orm < 1. m]

5.1. Contractionin G (proof of Lemmab5.3). Forany S, T € G, lete;, es,...,ex beedgesin S\ T, and
f1,fa,...,fy beedgesin T\S. We design the following path of configurations P = (Pg, P, ..., Pxiy)
fromStoT.
S ifi=0
VO<i<s+t, Pi= Pi_lU{fi} if1<i<y,
Pioi \{eiy} ifi>y.
Note that [Pi—; ® Pi| = 1forall1 <i<x+y,P; € Gforall 0 <1i< x+vy, and the length of this

path is exactly |S & T|. Hence, by the standard path coupling argument [BD97], it suffices to prove
that, for every X, Y; € G satisfying |X¢ @ Y¢| =1,

1
(6) E[[Xt+1 @ Yeer| | Xe, Ye] <1 o

Without loss of generality, we assume that Y; = Xt U {e}, where e = (u,v) € E. Using the one
step optimal coupling of the Glauber dynamics, it holds that

11
E[Xen @ Yerr| [ Xe Vil =1-—+— 3 d(Xy, Ve, f),
feE\{e}
_ HOGULED) W(YLU(F))
where d(X¢, Vi, f) = | ogrmnaxoom ~ u(Ytu{fﬁw(Yt\{f})"

We first discuss the value of d(X¢, Y¢, f). Fixedge f = (x,y) # e, let
S —.—Xt\{f} Sfe Z—XtU{f} Sfe _Yt\{f} Sfe I—YtU{f}
It can be verified that

MRS ) N Lt o #C 7o = Cyte
KX UL + X\ 1)) |~ ARG otherwise,
1+A xfe y, f e+(1 Pf)( X A y,f e)
u(Y, U {£)) Pr C e #C e = Cyfe
= x,f,e ,f,e .
n(Ye U {f}) + n(Ye \ {f}) 12 - otherwise,

1+ACX,¥,2UCH,¥,2 +(1_pf)(ACx.?,e +)\Cy,?,e)

where C, ; j is the connected component containing r in graph (V, S; ;) where i € {f, f}andj €
{e,€}, and A = [],cs Ar. For general subset R C E, we also use C,(R) to denote the connected
component containing r in graph (V, R). We consider the following cases as illustrated in Figure 2.

(1) Cu,?,? = Cv,? =l
(2) Cu,?,? #C 7?5 and Cu fe = Cv fer
(3) Cu;g;tC Fed ndCufeiC\,fe

18
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Ficure 2. Illustration of three cases. Each ellipse is a connected component in graph (V, S5 ).

5.1.1. Case (1). In this case, (V,S53) and (V, S— .) have the same structure of connected compo-
nents. Hence we have, C_ s =C 5 _and C yiz = C‘J Fer which implies d(X¢, Y¢, f) =0

5.1.2. Case (2). In this case, both edges e = (u,v) and f = (x,y) connect C , sz and C
(V,S55). Thus, C s, #C and CX =C

v ,?,E
which implies

y,f,e y.f.e’

pr(l = pr)ATwTe + A%:Te)

d(X¢, Y, f) =
1+ (1 — pf)(ACu},E + ACV,¥,E) + Acu},EUCv,?,E
| u f e Cv,?,E
(7) < (1 pmln)()\max + }\max )‘

We further consider two sub-cases: (a) f € X; (b) f ¢ X;.
Case (2a). As f € X, it holds that C,,(X¢) = C,(X¢) and there exists a path P = (x¢,x1,. .., X¢) that
connects u and v in the graph (G, X¢) for some ¢ > 0. Note that only edges on path P may satisfy

the requirement of Case (2) i.e. C, 75 # C, 55 Therefore, by (7), the sum of d(X¢, Y¢, f) in this
case can be bounded by
|c e 2K
8 1 = Pmin A e e 1 = Pmin AL }\(Hl t <
(8) 3 (1 pain) s AL ) € 1 - )Z( b F A < 75—

feP

where (%) follows from the fact that C | ; ; and C ;5 contains at least i and { + 1 -1 vertices respec-
tively, where f = (xi—1,x1). - -

Case (2b). As f ¢ Xy, it holds that Xy = 5S¢, and only edges in E(C,, 7, C, 75) may satisfy the
requirement of Case (2) (i.e. f connects two components) where we recall that E(C wiwe Gy, f’E)
denotes the set of edges between C, 7 and C, 7. Therefore, the sum of dx, v, ¢ in this case can
be bounded by

C -_
E(C (1- pmm)(ALai” Amax )

ufe’ vfe)

(%) )
< logn - min {‘Cu e

v,f,e

| u,f,e c
} (1 pmm)(y\max Ama)’(y )
< 2logn-(1- pmln) max z Amax
z>0

2K
<
1- }\max

’ vfe

9)

where (x) follows from fact that X; € G.
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5.1.3. Case (3). Note that d(X¢, Y, f) = 0 when
(10) Cofe=Cureand C :5-=Cyspe,

u, f e
ie. bothx and yarenotin C, 75U C 7 wheref = (x,y). Furthermore, two constraints in (10)
cannot be violated at the same time, a sf= (x,y) does not connect C , 75 and C,, 5 5. Therefore, it
suffices to consider the case where C Wiz ? Cyfeand C vie = Cyre
LetA=C wieB= C vie C=Cure \ A. A similar calculation yields
Pr (1 + AAUB) Pr (1 + AAUBUC)
d(X¢, Ye, 1) = -
1+AME L (1 —py) (AA + AB) 1+ AABYC L (1 —pyp) (AAUC + AB)

(11) < (1= Pain) A

We further consider two sub-cases: (a) f € X; (b) f ¢ X;.
Case (3a). When f € Xy, in order to make contribution, the deletion of f split C, s into A = C Wi
and C = C, r¢\A. Inthis case, f must be a bridge in graph C,, ¢ . Pick an arbitrary spanning tree T
rooted at win Cy, ¢ z. Obviously, f must be an edge in T. Let { be the size of T and {f1,fs,...,f¢} be
the edgesin T sorted by the size of C, 7 in decreasing order. Note that f; must be in component
u e s for all 1 <i<j<{since|C, T _| > |Cu ; _| means f; cannot be an ancestor of fj. Hence,

|C —1i+ 1. Together with (11) we bound the sum of d(X4, Y¢, f) in this case by

u,fi,El z
¢

max(l - pmin) K
2 S < .
(12) ( pmln)}\max 1 _ }\max 1 _ }\max

i=1
Case (3b). When f ¢ X, f must connects C Wiz
Therefore, the sum of d(X4, Y, f) in this case is bounded by (similar calculation as in (9))

and other component in (V, S5 ) except C, 5 =

Cu K
(13) ‘E(Cu f,e’ \4 \ Cu f E) (1 - pmln)}\|max| < 1—

where we use (11) and the fact that Sy = X € .

’
- }\max

5.1.4. Wrapping up. Recall that by our assumption of K in (5.3), it holds that K < (1 — Apax)/27.
Together with previous analysis, we bound }_¢cp\ (¢} d(Xt, Yt f) by

(14) D d(Xe, Ve, ) < (8) + (9) +2x (12) +2x (13) < _s L

1—Apax 2
feE\{e}
Therefore, it holds that

1 1 1
B[Xen ® Yenl | X, Vel <1- — (1——) =1-—,

which concludes the proof of Lemma 5.3.

5.2. Bad event happens with small probability (proof of Lemma 5.2). Withoutloss of generality,
we will only bound the probability Pr [X; ¢ G]. For simplicity of notation, we denote update sequence
Ly = (e, eg,...,e¢) the chosen edges of the Glauber dynamics in the first t rounds, and denote
8(L+t) = {e1,e2,..., et} be the set of edges of an update sequence L.

Fix t > @mlog m for some 6 > 0. We claim that S(£{) = E happens with high probability. Fur-
thermore, condition on any updating sequence £ with S(£) = E, the distribution X, stochastically
dominates the product distribution v = (X) ¢ Ber(1 — 3K), where K = (1 — pmin) log n.
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Lemma 5.5. If t > Omlog m for some 0 > 0, event S(L+) # E occurs with probability at most m!=°.

Lemma 5.6. For every S C E and e € E, it holds that
WS U {e})
w(S U {e}) + S\ {e})

Lemma 5.7. For any updating sequence Ly satisfying S(L+) = E the distribution X condition on Ly
stochastically dominates v, i.e., there exists a coupling C = (S, T) of (Xt | £+) and v satisfying T C S.

> 1-3K.

We first prove Lemma 5.2 with Lemma 5.5 and Lemma 5.7.

Proof of Lemma 5.2. For any t > 6mlog m, it holds that
PriXe¢Gl= D PriXe¢G|LdPr[ld+ Y PrXeg§|LdPr(L]

LtEEt LtGEt

S(Ly)=E S(Le)#E
< max Pr[X¢ ¢ G| L]+ Pr[S(Ly) # E]

Li€EL

S(Ef) E

Fix an update sequence £ satisfying S(£) = E. By Lemma 5.7, the definition of good event G
and the definition of v,

+00
PriXeg G| L <) BKIESVISE N 3K)lSToan < 3 ninilosBh) ¢ ploalTio),
See See j=1

Furthermore, by Lemma 5.5, the probability of §(£+) # E is upper bounded by m!~°. Therefore,
Pr[X¢ ¢ G] < nlosC™€) 4170, O
In the rest of this section, we are dedicated to proving Lemma 5.5 and Lemma 5.7.

Proof of Lemma 5.5. Fix t > 6mlog m. For each edge e € E, the probability that e ¢ £+ is at most

1 t 1 Omlogm
Pr[e¢£t]<(1——) <(1——) <m°.
m m

By union bound,

T[S(Le) #E] < ) Prle¢ L] < O

eckE

Proof of Lemma 5.7 assuming lemma 5.6. Instead of proving the original statement, we will prove that
for any update sequence L € E, there exists a coupling (S, T) of (X; | £¢) and v satisfying that
(TNR) € (SNR), where R = S(L{). We remark that this is stronger compared to the original
statement.

We prove by induction on t. Base case t = 0 follows from R = @. Now we assume our assumption
holds for any t’ < t. Fix an update sequence L1 = (e1,€e2,...,e¢+1). Let Ly = (e1,e2,...,€¢)
be the update sequence. By induction hypothesis, there exists a coupling (S, T) of (X¢ | £¢) and v
satisfying (TNR) € (SNR), where R = S(£+). We design the following coupling (S’, T") of (Xt | Lt+1)
and v based on (S, T):

* let 4o = ot and 1 = 1= 3K;

e draw 1 ~ Uniform(0, 1);
- if r < qo,set S’ = SU{e+1}; Otherwise, set S’ =S\ {et+1};
—ifr < qq,setT" =TU{ers1}; Otherwise, set T =T \ {et+1}-
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Note that qq is the probability of adding e to S in the update step of Glauber dynamics. It can
be verified that (S, T’) is indeed a coupling of (Xt+1 | £t+1) and v. Moreover, if qy > qi, it holds
that (" N R’) C (S’ N R’), where R” = §(L+4+1). Hence, it remains to show qg > q; = 1 — 3K, which
follows from lemma 5.6. This concludes the proof of Lemma 5.7. m]
Proof of lemma 5.6. For convenience, let e = (u,v). We consider the following cases.
(1) u,v are in the same connected component in graph (V, S \ {e}). In this case,
uS U {e}) —p
uSU{eh) +uS\{eph °°

(2) u,v are in different connected components in graph (V,S \ {e}). Let Cy, and C, be the
connected components that u and v are in respectively. In this case,

w(Su{e}) _ pe(l +ACY) , _Pe
S uU{e}) + S\ {e}) 1, cuucy (1-pe) (Acu + ACV) 3-2pe

>1-K/logn > 1-3K.

Recall that p. > 1 - % > 1 — K. Therefore, u(SU?éfi{:(}g\{e}) > 11;2]% >1-3K. m]
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APPENDIX A. MISSING PROOFS

A.l. Proof of Theorem 1.1. Let A(G = (V,E), p, A, ¢) be the approximate sampler in Theorem 1.3
for distribution of random cluster model specified by graph G and parameters p and A within total
variation distance €. The sampler B(G = (V,E), B, A, ¢) for Gibbs distribution of Ising model is
defined as follows.
e initialize X < @ and letp = (1 - B
o draw S from A(G, p, A, €);
e for each C € k(V,X), add C to X with probability % ;
e return X.

i_l)iev;

By a standard coupling argument and Proposition 2.2, X drawn in B(G, $, A, ¢) satisfies
drv(X, ngtl;\g) <e
This concludes the proof of Theorem 1.1.

A.2. Proof of Lemma 3.5. By Lemma 3.6, Lemma 3.3, and (1), it suffices to show

Pin\ ™
WEC AE) > (Ba)

2
By Proposition 2.1, ZIE,%,;\ -BE = Zlﬁsf;g < BF - 2™, which implies ZI-E,%,;\ < 2". Therefore,
E \%
P (1 +A ) Con
RC Pmin
FLE,P,?\(E) > om > ( 2 ) ’

A.3. Proof of Lemma 3.3. We give a proof of Lemma 3.3 in this section for completeness. Recall
that in Section 3.1, we consider a distribution Tt over 24 on the ground set U. In each round, the

field dynamics PiP for Tt with parameter 6 € (0, 1) updates a configuration X € 24 as
e sample S’ ~ Q) Ber(®) and let S = S" U X;
e update X according to distribution (87 * )(- | Px uy\s)-

We want to prove that when A « [t is C-spectrally independent under all pinnings for all A € RY,

then for 0 € (0, 1), and any distribution v that is absolutely continous with respect to 1, we have
(15) Dru(v Pg” I P5P) < (1= <)Dx1(¥ || 1),

where k is defined as k = (8/¢)C*3.

Note that the field dynamics we use here is not in its standard form in previous works [ CFYZ21b .
In order to be more compatible with previous results, we first transform the setting we use to a more
standard version. Specifically, let p and v be the distribution over 2" defined as

VSCE, w(S):=nE\S), and v(S) :=v(E\S).
It is standard to check that v is absolutely continous with respect to L and A* p is C-spectrally inde-
pendent under all pinnings for all A € RSO. In each round, the field dynamics PgD with parameter
0 € (0, 1) falls into its standard form that updates a configuration X € 24 as

e sample S’ ~ (X) ., Ber(6) and let S = S’ U (E \ X);
25
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e update X according to the distribution (6 = w)(- | Px u\s)-

Note that P{P is exact P{P except we exchange the role of “in” and “out” for each element in U,
and it could be easily checked that

VX,Y CE, PEP(X,Y) = PED(E\ X,E\Y),
which implies that
VX CE, wPP(X) =1 PEP(E \ X) and vP*P(X) = ¥ PED(E \ X).
Hence, in order to prove Equation (15), it is sufficient for us to prove
(16) DkL(vPg" [ 1PG"°) < (1= k)DL (v || ),

for k = (0/e)“*3, under the assumption that A = p is C-spectrally independent under all pinnings
forall A € RY and v is absolutely continuous with respect to p.

For convenience, we just inherit the notation that is used in [CFYZ21a]. Suppose p is a distribu-
tion over 24 over the ground set U, it could also be interpreted as a distribution over {—1, +1}!.
Let 0 € (0,1) and 7t := 0 * . Formally, for every o € {-1,+1}!", we have

- p(d)6”0”+
T[(G) T ZT( 9
where Zr =} . gy n(o)ollells and ||o]|, denotes the number of +1 in the vector o. For a

function f : {-1,+1}Y — Ry, and a distribution p over {—1,+1}"Y, the entropy is defined as
Ent,, [f] := E, [flog f] — E. [f]logE,, [f].

Lemma A.1 ([CFYZ2la, Lemma 2.3]). Let © € (0,1) be a real number. Let w be a distribution over
{=1,+1}% andn > 0. If wis C-spectrally independent under all pinnings for all A € RY,, then  satisfies

>0/

the following inequality for any function f : {=1, +1}" — Ry with k = (%)C+3,
o Z -
(17) Ent, [f] < k7! el—{[' > (- 0)RIpUIIRI. g (1g) - Ent g [£],
RcU

where 1y is the all-1 vector on R.
Remark A.2. In [CFYZ21a], (17) is called 6-magnetized block factorization of entropy.

Note that the field dynamics could be decomposed into two components that mimics the so-
called down-up walk. Let Q := {0 € {-1,+1}"} and w := {1g | R C U} that is

where P! € RSOX‘” and PT R;OXQ are defined as follow: Yo € Q, 1z € w we have
PL(0,1g) := 1[R € o™ (+1)] (1 — 0)/RI glIol-~IRI
and Pl(1g,0) = 1[R C o™ (+1)]n'*(0),

where 071(+1) := {u € U | o, = +1} denotes the set of +1-spin elements in U according to o.
Moreover, let 1 := 1P}, these two operator have the following adjoint property: Vo € Q, 1 € w,

w(0)PH(o, 1r) = po(1r)P (1R, 0).
2



Without loss of generality, if we assume R C 0~ }(+1), then we have

Ho(1r)PT (1R, 0) Z (1 = 0)RIgITI=Rl, (1) . iR ()

T:TR=1R
_ _ gyRigltl.-IR| . KD7(o)
m;ha(l e TR (1R)
_ _ g)Riglicll,-Irl , TOH(O)
T§1R(1 e mr(1R)
- _ g\IRlglloll,~IR]| m(T)
w(o)(1-0)"o ’t:’rRzle —c

= 1(0) - (1- ) Flglol- I = (0)PL(o, 1),

Let v be a distribution over {1, +1}!", let f = .- By standard result, adjoint property gives us

(18) — =PIt
Now, we are ready to prove Lemma 3.3. We claim that when f = =, (17) is equivalent to

(19) D (v | W) < &7 (e (v | W) = Diw (VP [ uPh))
which is equivalent to
Dir(vP! | tPY) < (1= K)Dkr (v || ).
Then, (16) (and Lemma 3.3) follows directly from the data processing inequality as
DkL(vPg” || 4Pg”) = DKL (VPLPT || wPPT) < Dip(vP || wPY) < (1= €Dk (v || 1).

Now, we are going to prove (17) & (19) by a brute force calculation. First, note that

|u| Z(l 0)IRIgIU=IRI . e (1) - Ent 1y []

0 RCU
(20) e|u| = Y (1—0)RleMI Rl (1) g [flog f]  —
RCU
(21) e|u| =Y (1 - 0)RloMM IRl (1R)E 1 [f]log E g [£].
RcU

We will show that

(20) = Dxr(v || w) = Ent, [f] and (21) = DgL(vP! || uPb).
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We start from (20) and note that

(20) = |u|Z(1—e)|R|e|U| RS> m(0)f(o)log (o)

RcCU o:or=1gr
|u| =Y mo) Y (1-0)RleMIIRl. £(g)log (o)
9 0eQ RCo~1(+1)
- Z 1w(o) Z (1- 9)|R|9||0||+-|R| - f(0)log (o)
0eQ RCo™1(+1)
= Z (o) - f(o) log f(o) Z (1 — 0)IRlglloll=IRI.
0eQ RCo~1(+1)
= ) (0)-f(0)log f(c) = Enty, [f].
ceQ)

Now, we only left to prove (21) = Dk(vP! || uP!). By the definition of KL-divergence, we have
vP! (R, VPl(lR)

Dxp (VP [ uPY) = ) uPl(1g) -

Rou Pl(lR) HPl(lR)
(by (18)) = Y wuPY(1g)- PTf(1g)log PTf(1g)
RCU

) Z Z w(o)(1 - e)|R|e||<T||+—|R| -E_ g [f]log E g [f]

RCU o:or=1r

=Y Y w1 - 0NN B [1]log B [1

RCU o:or=1r

RcU 0:0R=1R

. Ean [f] log ET[lR [f]

|u| Y (1-0)RloMRlng (1g) - E g [fllog B [£] = (21),
RCU

where in (x) we use the fact that

WPliR) = Y w1 - 0)RIIR and  PTH(1g) = B [f].

o:0r=1R

AprPENDIX B. PROOF FOR THE SECOND PART OF LEMMA 5.1

Let (Xt)t>0 and (Yt)t>0 be Glauber dynamics starting from E and the stationary distribution p
respectively. Just as in the proof of the first part, we present the following lemma. The proof of
Lemma B.1 follows a similar fashion to that of Lemma 5.2, and we shall omit the proof for brevity.

Lemma B.1. Forany t > 0, it holds that
Pr [Xt ¢ 9] < nlog;(27K) and Pr [Yt ¢ 9] < nlog(27K)'

Proof for the second part of Lemma 5.1. Let T = 2m(log m + log (2/¢)) and ¢ be the event that X¢ ¢ §
or Y ¢ G happens. By Lemma B.1 and union bound,

Vo<t<T-1, Pr [g_t] < onlos27K),
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When K < 1075 exp (—M) it holds that

logn

I3
OnloB27K) | 9112 « gndtlog27K) &

[\

Together with Lemma 5.3 and Lemma 5.4, we have

T
Pr[X Y] <|[1—-—] +
r[XT # Y7] ( 2m)

29



	1. Introduction
	1.1. Open problems

	2. Preliminaries
	2.1. Notation
	2.2. Markov chains, entropy and mixing time
	2.3. Subgraph-world model, random cluster model, and relation of models

	3. Proof outline
	3.1. Field dynamics
	3.2. Field dynamics simulator

	4. Spectral independence of random cluster model
	4.1. Coupling independence of generalized subgraph-world model
	4.2. Lifting coupling independence

	5. Rapid mixing of Glauber dynamics in good regime
	5.1. Contraction in G (proof of lem:pc-good)
	5.2. Bad event happens with small probability (proof of lem:bad-event-bound)

	6. Acknowledgement
	References
	Appendix A. Missing proofs
	A.1. Proof of thm:main
	A.2. Proof of lem:mixing-field
	A.3. Proof of lem:field-dynamics-mixing

	Appendix B. Proof for the second part of thm:good-mixing

