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Abstract

We are interested in the well-studied Sparse Fourier transform problem, where one aims to

quickly recover an approximately Fourier k-sparse domain vector x̂ ∈ Cnd from observing its
time domain representation x. In the exact k-sparse case the best known dimension-independent
algorithm runs in near cubic time in k and it is unclear whether a faster algorithm like in low
dimensions is possible. Beyond that, all known approaches either suffer from an exponential
dependence of their runtime on the dimension d or can only tolerate a trivial amount of noise.
This is in sharp contrast with the classical FFT algorithm of Cooley and Tukey, which is stable
and completely insensitive to the dimension of the input vector: its runtime is O(N logN) in
any dimension d for N = nd. Our work aims to address the above issues.

First, we provide a translation/reduction of the exactly k-sparse Sparse FT problem to a
concrete tree exploration task which asks to recover k leaves in a full binary tree under certain
exploration rules. Subsequently, we provide (a) an almost quadratic in k time algorithm for the
latter task, and (b) evidence that obtaining a strongly subquadratic time for Sparse FT via this
approach is likely to be impossible. We achieve the latter by proving a conditional quadratic
time lower bound on sparse polynomial multipoint evaluation (the classical non-equispaced
sparse Fourier transform problem) which is a core routine in the aforementioned translation.
Thus, our results combined can be viewed as an almost complete understanding of this approach,
which is the only known approach that yields sublinear time dimension-independent Sparse FT
algorithms.

Subsequently, we provide a robustification of our algorithm, yielding a robust cubic time al-
gorithm under bounded `2 noise. This requires proving new structural properties of the recently
introduced adaptive aliasing filters combined with a variety of new techniques and ideas. Lastly,
we provide a preliminary experimental evaluation comparing the runtime of our algorithm to
FFTW and SFFT 2.0.
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1 Introduction.

Computing the largest in magnitude Fourier coefficients of a function without computing all of
its Fourier transform, or reconstructing a sparse vector/signal x from partial Fourier measure-
ments are common and well-studied tasks across science and engineering, as they appear in a
variety of disciplines. Possibly the earliest work on the topic was by Gaspard de Prony in 1795,
who showed that any k-sparse vector can be efficiently reconstructed from its first 2k Discrete
Fourier transform (DFT) coefficients. These ideas have been re-discovered/used both in the con-
text of decoding BCH codes [Wol67], as well as in the context of computer algebra by Ben-Or
and Tiwari [BOT88]. In the context of learning theory, and in particular learning decision trees,
Kushilevitz and Mansour [KM93] devised an algorithm that detects the largest Fourier coefficients
of a function defined over the Boolean hypercube, building upon [GL89]. The work of [AGS03]
uses sparse Fourier transform techniques in cryptography, namely for proving hard-core predicates
for one-way functions. In 2002, a sublinear-time efficient algorithm for learning the k largest
DFT coefficients was proposed in [GGI+02]; this line of work has resulted in (near-)optimal al-
gorithms [GMS05, HIKP12a, Kap16, Kap17] for the DFT case. In terms of its applications to
signal processing and reconstruction, arguably the most prominent is the work of Candes, Donoho,
Romberg, and Tao [Don06, CT06, CRT06], which has far-reaching applications in fields such as
medical imaging and spectroscopy [LDSP08, KY11], and created the area of compressed sensing ;
the reader may consult the text [FR13] for a thorough view on the topic.

Formally, the Sparse Fourier Transform problem is the following. Given oracle access to a size
N d-dimensional vector x, find a vector χ̂ such that

‖x̂− χ̂‖p ≤ C ·mink-sparse vectors ẑ‖x̂− ẑ‖q,

where C is the approximation factor, and ‖ · ‖p, ‖ · ‖q are norms. The number of oracle accesses
to x shall be referred to as sample complexity. The most well studied case in the literature is the
case where C = 1 + ε (or constant) and p = q = 2, referred to as the `2/`2 guarantee. Other well-
studied cases are the so-called `∞/`2 guarantee, where C = 1√

k
, p =∞, q = 2, as well as the `2/`1

guarantee, see [CT06, IK14, NSW19]. Our focus in this paper is the `2/`2 guarantee. Frequently,
the k largest in magnitude coordinates of x̂ are referred to as the head of the signal, while all the
other coordinates are referred to as the tail of the signal, or as noise. With this vocabulary, the
`2/`2 guarantee asks to recover the head of x̂ with error up to (1 + ε) times the noise level.

The research on the topic, especially over the last fifteen years, has been extensive [KM93,
LMN93, BFJ+94, Man94, Man95, GGI+02, GMS05, CT06, IGS07, Iwe10, Aka10, CGV13, HIKP12a,
HIKP12b, BCG+12, PR13, IKP14, PR14, Bou14, IK14, OPR15, PS15, JENR15, CKPS16, HR16,
Kap16, CKSZ17, Kap17, CI17, MZIC17, KVZ19, AZKK19, NSW19, OHR19, JLS20]. Our under-
standing of the sample complexity of this problem is quite good: we know that O(k poly(logN))
samples are sufficient for finding in time near linear in N a vector χ̂ satisfying any of the afore-
mentioned guarantees [CT06, HR16, NSW19]. Regarding the particularly interesting case of d = 1,
the research effort of the community has produced time-efficient algorithms as well. The fastest
algorithm, due to the celebrated work of Hassanieh, Indyk, Katabi, and Price [HIKP12a], runs in
time O(k log(N/k) logN) and achieves the same sample complexity as well. We know also how to
achieve O(k logN) sample complexity and O(k poly(logN)) running time [Kap17]. On the other
extreme, when d = logN , i.e. in the case of the Walsh-Hadamard transform, almost optimal
running time is known to be achievable, even deterministically [CI17].

Along with the running time, the sample complexity, and the error guarantee, of particular
interest is also the sensitivity of the algorithm to the underlying field. When we are concerned
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with Fourier transforms over Zdn1, this corresponds to the sensitivity to the dimension d. Indeed,
virtually all Sparse Fourier transform algorithms have a running time that suffers from an expo-
nential dependence on d (in particular logΩ(d)N), and the techniques either in dimension d = 1 or
d = logN heavily rely on the structure of the corresponding group. At the same time, given that
the Cooley-Tukey FFT algorithm itself is completely dimension-independent, a natural question is
whether this independence transfers also to the Sparse Fourier transform setting. Concretely, is
the curse of dimensionality an inherent problem, or an artifact of previous techniques? A major
practical motivation is that a quest for removing the curse of dimensionality can ultimately lead to
new insights for designing empirical, efficient algorithms in dimensions d = 3, 4, which are mostly
relevant in applications in NMR-spectroscopy and MRI imaging. Thus, an algorithm with better
dependence on the d and k could thus be of practical importance as well.

A step towards dimension-independence was taken in [KVZ19], by giving a O(k3 ·poly(logN))-
time algorithm which recovers exactly k-sparse signals in any dimension. Their approach is based
on pruning the FFT computation graph, using a new tool called adaptive aliasing filters. However,
the aforementioned algorithm had two disadvantages: i) the time was cubic and there was no
evidence whether this was optimal under some reasonable assumption, and ii) was not able to
go beyond the barrier of exactly k-sparse signals (or, noise level poly(N) times smaller than the
energy of the head). Somewhat relevant is an algorithm due to Mansour [Man95], which performs
breadth-first search on the Cooley-Tukey FFT computation tree, and can get poly(k) running time
for exactly k-sparse signals, but pays an additional multiplicative signal to noise ratio factor for
general signals [Man95]. We also mention a beautiful O(k · poly(logN))-time algorithm for exactly
k-sparse signals from [GHI+13], which requires a distributional assumption on the support of the
input signal in Fourier domain and unfortunately suffers from the restriction k = O(N1/d); already
in dimension d = O(logN/ log logN), this guarantees correctness only for k ≤ poly(logN).

Our results. First, we translate the exactly k-Sparse FT problem using the machinery developed
in [KVZ19] to a tree exploration problem that is accessible without any knowledge on Fourier
transform. Our first main result is an almost complete understanding of this line of attack.

• The tree exploration task can be solved in almost quadratic time, and hence the exact k-
Sparse FT problem can be solved in almost quadratic time. This shaves off almost a factor
of k from the previous best sublinear-time, dimension-independent algorithm of [KVZ19].

• The quadratic time is most likely impenetrable by any explorative algorithm which succes-
sively peels off elements. That implies that overcoming this quadratic time barrier will likely
require a major paradigm shift in Sparse FFT technology. This is based on a lower bound on
sparse polynomial multipoint evaluation and is interesting in its own right as the problem is
well-studied under the name of non-equispaced Fourier transform.

In the robust case, we obtain a quadratic sample complexity, sublinear-time, dimension-independent
algorithm that recovers the head of the signal under bounded `2 noise, i.e. when every fre-
quency in the head is larger than the energy of the tail. Even under this seemingly restricted
noise model, designing an efficient algorithm turns out to be non-trivial, requiring a constella-
tion of new techniques. Previous algorithms were either i) robust and dimension-independent
but not sublinear-time [CT06, IK14, NSW19], ii) sublinear-time and robust but not dimension-
independent [GMS05, HIKP12a, Kap16], or iii) sublinear-time and dimension-independent but not

1This is the case with the groups of interest in the Sparse FT literature. Furthermore, these are the groups on
which the FFT algorithm of Cooley and Tukey operates. For general finite groups G, the fastest FT algorithm runs
in time almost |G|ω/2 [Uma19], where ω is the matrix multiplication exponent.
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Task Result

? Sparse Fourier Transform in the exact case

Input: Integers n, d, k andN = nd, and oracle access to a vector x ∈ Cnd satisfying
‖x̂‖0 ≤ k.

Question: Compute x̂.

Theorem 1

? `2/`2 Sparse Fourier Transform
Input: Integers n, d, k and N = nd, parameter ε < 1, and oracle access to a vector

x ∈ Cnd .
Question: Compute a vector χ̂ ∈ Cnd such that ‖x̂− χ̂‖2 ≤ (1 + ε)‖x̂−k‖2.

Theorem 4

? Non-Equispaced Fourier Transform
Input: Integers n, d, parameter ε < 1, two sets F, T ⊆ [n]d with |F | = |T | = k,

and a vector x ∈ Cnd supported on T .
Question: Compute additive ±ε‖x̂‖2 approximations to each of x̂f , for f ∈ F .

Theorem 2

? Sparse Polynomial Multipoint Evaluation
Input: Integers n, k, parameter ε < 1, a polynomial p of degree n and sparsity

k, i.e. k non-zero coefficients, each of which is of magnitude 1, as well as
points a1, a2, . . . , ak ∈ Cn of magnitude 1.

Question: Compute additive ±ε approximations to each of p(ai), for all i =
1, 2, . . . , k.

Theorem 3

? Orthogonal vectors, OVk,d

Input: A,B ⊆ {0, 1}d, with |A| = |B| = k
Question: Determine whether there exists a ∈ A, b ∈ B such that 〈a, b〉 = 0.

Figure 1: Computational tasks considered in this paper.

robust to any form of noise [KVZ19]. We also discuss all the barriers we have faced, including the
barrier to handling noise of larger magnitude, in Section 5.3.

2 Computational Tasks and Formal Results Statement.

This section contains the computational tasks studied in this paper, our results, and a preparations
section for the lower bound, namely Theorem 2. We will be concerned with N -length d-dimensional
vectors x : [n]d → C, where N = nd and n is a power of 2. Thus, N,n, d will remain unaltered
throughout the paper. We will use the notation [n] to denote the set of integer numbers {0, 1, . . . , n−
1}. We will use a non-standard notation Õ(f) = O(f poly(logN)), where f is some parameter
and N is the size of our underlying vector x. For a vector x, we denote ‖x̂‖0 =

∣∣{f ∈ [n]d : x̂f 6= 0
}∣∣,

and x̂T , for a set T ⊆ [n]d, to be the vector that results from zeroing out every coordinate of x
outside of T . We let x̂−k be the vector that occurs after zeroing out the top k coordinates in
magnitude, breaking ties arbitrarily. All logarithms are base 2. For the algorithm we present, we
shall assume exact arithmetic operations over C in unit time throughout the paper, although the
analysis goes through with 1

poly(N) precision as well.
We start by summarizing the formal definitions of all relevant computational problems in Fig-

ure 1. With these definitions in place we can state our results as follows:

Theorem 1 (Almost-Quadratic Time Exact k-Sparse FFT). 2 Given oracle access to x : [n]d → C
2proved as Theorem 11 in Section 3 and Section 9
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with ‖x̂‖0 ≤ k, we can find x̂ in deterministic time

Õ
(
k2 · 28

√
log k·log logN

)
.

We formally show that the exact Sparse FFT problem can be reduced to a tree exploration
problem and show how to solve the tree exploration in almost quadratic time, and thus prove the
above theorem, in Section 3 and Section 9 as Theorem 11.

Conjecture 1. (Orthogonal Vectors Hypothesis(OVH) [Wil05, AWW14]) For every ε > 0, there
exists a constant c ≥ 1 such that OVk,d (see Figure 1) requires Ω(k2−ε) time whenever d ≥ c log k.

It is known that a collapse of the Orthogonal Vectors Hypothesis would have groundbreaking
implications in algorithm design, see [GIKW19] and [ABDN18].

Theorem 2 (Lower Bound for Non-Equispaced Fourier Transform). 3 Assume that for all k < n
and ε > 0 there exists an algorithm that solves the Non-Equispaced Fourier Transform in time
O(k2−δ poly(log(n/ε))) for some constant δ > 0. Then the Orthogonal Vectors hypothesis fails.

Proof outline: Given sets of vectors

A = {a0, a1, . . . , ak−1}, B = {b0, b1, . . . , bk−1} ⊆ {0, 1}d,

we build |A| points in time domain and |B| points in frequency domain as follows. We pick
sufficiently large M, q,N (for details see Section 10) and define for j ∈ [k]:

tj :=
∑
r∈[d]

aj(r) ·M rq, fj :=
∑
r∈[d]

bj(r) ·
N

M rq+1
,

Subsequently, we look at the indicator vector of the set {t0, t1, . . . , tk−1}, let it be x. Asking for
the values x̂f0 , x̂f1 , . . . , x̂fk−1

corresponds exactly to the non-equispaced Fourier transform problem.
Using the aforementioned evaluations we show that it is possible to extract the values

Vj,h :=
∑
`∈[k]

〈a`, bj〉h, for j ∈ [n], h ∈ [d].

For a fixed j, the values of Vj,h can be expresed in terms of Zr := |{` ∈ [k] | 〈a`, bj〉 = r}|, via
multiplication by a d × d Vandermonde matrix. Since the entries involved in this matrix and Vj,h
have poly(d, log k) bits, we can then solve for Z0 in poly(d, log k) time, where Z0 corresponds to the
number of vectors a ∈ A which are orthogonal to bj . Repeating this over all j ∈ [k] yields whether
there exists a pair of orthogonal vectors.

Of course, the overview presented above completely ignores how we actually extract the values
of Vj,h from evaluations of the Fourier transform. This carefully exploits periodicity of complex
exponentials – see Section 10 for more details.

A lower bound for sparse polynomial multipoint evaluation (Figure 1) also follows immediately.

Theorem 3 (Lower bound for Sparse Polynomial Multipoint Evaluation over C). Assume that for
all k < n and ε there exists an algorithm for sparse polynomial multipoint evaluation which runs in
time k2−δ poly(log(n/ε)). Then the Orthogonal Vector Hypothesis fails.

3proved as Theorem 12 in Section 10
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Significance of our lower bound for computational Fourier Transforms. Non-equispaced
Fourier transform falls into a class of Fourier transforms referred to as non-uniform. These trans-
forms are an extensively studied topic in signal processing and numerical analysis [GR87, FS03,
GL04], with numerous applications in imaging, signal interpolation and solutions of differential
equations; the reader may consult the texts [BM96, PST01, BM12].

To present our robust Sparse FFT results, we first quantify the notion of “bounded `2 noise”.

High SNR model. A vector x : [n]d → C satisfies the k-high SNR assumption, if there exist
vectors w, η : [n]d → C such that i) x̂ = ŵ + η̂, ii) supp(ŵ) ∩ supp(η̂) = ∅, iii) |supp(ŵ)| ≤ k and
iv) |ŵf | ≥ 3 · ‖η̂‖24, for every f ∈ supp(ŵ).

Theorem 4 (Robust Sparse Fourier Transform with Near-quadratic Sample Complexity). 5 Given
oracle access to x : [n]d → C in the k-high SNR model and parameter ε > 0, we can solve the `2/`2
Sparse Fourier Transform problem with high probability in N using

m = Õ

(
k2

ε
+ k2 · 2Θ(

√
log k·log logN)

)
samples from x and Õ

(
k3

ε

)
running time.

This theorem is restated as Theorem 13 in Section 12 followed by the proof. We re-iterate
that even though the noise model we consider might seem restrictive, it turns out to be quite
challenging requiring whole new constellation of ideas. The starting point here is the observation
that the adaptive aliasing filters constructed by [KVZ19] in fact form an orthogonal basis (see
Lemma 14 in Section 11), and while the norms of individual filters in the family are not the same,
the sum of their squares is equal to 1 at every point in time domain (see Lemma 16 in Section 11).
The combination of these new facts allows us to argue noise stability of our algorithm in Section 12.

Additionally, in Section 5.3 we explain how we are led to consider this particular notion of high
SNR regime, and why handling lower SNR is a hard barrier for algorithms which explore a pruned
Cooley-Tukey FFT computation tree (which is also the only known class of algorithms that enables
sublinear and dimension-independent recovery). The discrepancy between the running time and
sample complexity provided by Theorem 4 is due to the fact that we used non-uniform Sparse
Fourier Transform to subtract recovered frequencies from time domain in our algorithm, which
requires quadratic time as per Theorem 2.

Experimental Evaluation. Lastly, we present our experimental evaluation in Section 14, where
we compare our method to the highly optimized software packages such as FFTW and SFFT 2.0.
The source code of our implementation is available at https://bitbucket.org/michaelkapralov/
sfft-experiments.

3 Technical overview.

In this section we first present (in Section 3.1) a new near-isometry property of adaptive aliasing
filters of [KVZ19], which underlies our robust high dimensional Sparse FFT algorithm. We then
present (in Section 3.2) an abstract formulation of the Sparse Fourier transform algorithms which

4The constant 3 is arbitrary, and can be driven down to (1 + ζ), for any ζ > 0.
5proved as Theorem 13 in Section 12
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work based on these adaptive aliasing filters as an abstract Tree Exploration Problem. Such a
formulation allows us to present the key ideas behind our quadratic time dimension-independent
Sparse FFT algorithm in a concise way, avoiding unnecessary Fourier analytic formalism. The
formal connection the tree exploration problem and the adaptive aliasing filter-based Sparse FFT
is presented in Section 9.

3.1 A Near-Isometry Property of Adaptive Aliasing Filters.

Recall that given a signal x : [n]d → C, the execution of the FFT algorithm produces a binary tree,
referred to as T full

N . The root of T full
N corresponds to the universe [n]d, while the children of the root

correspond to [n/2]× [n]d−1; note that FFT recurses by peeling off the least significant bit. Every
node v has a label fv ∈ Zdn associated to it, defined according to the following rules.

1. The root has label froot = (0, 0, . . . , 0︸ ︷︷ ︸
d entries

), and corresponds to the universe [n]d.

2. The children vleft, vright of a node v which corresponds to the universe [n/2l] × [n]d
′
, with

0 ≤ d′ ≤ d − 1, 0 ≤ l ≤ log n − 1, have the following properties. Both correspond to
universe [n/2l+1] × [n]d

′
, and vright has label fvright

= fv, while vleft has label fvleft
= fv +

(0, 0, . . . , 0︸ ︷︷ ︸
d′

, 2l, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′−1

).

3. The children of a node v corresponding to universe [1] × [n]d
′

with d′ > 0, are vleft, vright,
corresponding to universe [n/2] × [n]d

′−1 and have labels fvright
= fv and fvleft

= fv +
(0, 0, . . . , 0︸ ︷︷ ︸

d′−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′

) respectively.

4. A node v corresponding to universe [1] is called a leaf in T full
N .

The above rules create a binary tree of depth logN , which corresponds to the FFT computation
tree. The labels of the leaves of T full

N represent the set [n]d of all possible frequencies of any signal
x : [n]d → C in the Fourier domain. We demonstrate T full

N that corresponds to the 2-dimensional
FFT computation on universe [4] × [4] in Figure 3. Subtrees T of T full

N can be defined as usual.
For every node v ∈ T , the level of v, denoted by lT (v), is the distance from the root to v. We
denote by Leaves(T ) the set of all leaves of tree T , and for every v ∈ Leaves(T ), its weight wT (v)
with respect to T is the number of ancestors of v in tree T with two children. The levels (distances
from the root) on which the aforementioned ancestors lie will be called Anc(v, T ). Furthermore,
the sub-path of v with respect to T will be the children of the aforementioned ancestors which are
not ancestors of v. Additionally, for a node v ∈ T we denote the subtree of T rooted at v by Tv.

The following definition will be particularly important for our algorithms.

Definition 1 (Frequency cone of a leaf of T ). For every subtree T of T full
N and every node v ∈ T ,

we define the frequency cone of v with respect to T as,

FreqConeT (v) :=
{
fu : for every leaf u in subtree of T full

N rooted at v
}
.

Furthermore, we define supp(T ) :=
⋃
u∈Leaves(T ) FreqConeT (u).

The splitting tree of a set S ⊆ [n]d is the subtree of T full
N that contains all nodes v ∈ T full

N such
that S ∩ FreqConeT full

N
(v) 6= ∅.

The main technical innovation of [KVZ19] is the introduction of adaptive aliasing filters, a new
class of filters that allow to isolate a given frequency from a given set of k other frequencies using
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O(k) samples in time domain and in O(k logN) time – see Section 7 for a more detailed account
of this prior work.

Definition 2 ((v, T )-isolating filter, see Definition 11). Consider a subtree T of T full
N , and a leaf v

of T . A filter G : [n]d → C is called (v, T )-isolating if the following conditions hold:

• For all f ∈ FreqConeT (v), we have Ĝ(f) = 1.

• For every f ′ ∈
⋃
u∈Leaves(T )

u6=v
FreqConeT (u), we have Ĝ(f ′) = 0.

As shown in [KVZ19], for a given tree T and a node v one can construct isolating filters G such
that ‖G‖0 = O(2wT (v)), and Ĝ(f) is computable in Õ(1) time (see also Lemma 9). The sparsity
of G in time domain, i.e. ‖G‖0, corresponds to the number of accesses to x needed in order to get
our hands on (Ĝ · x̂)f for a fixed f .

Unfortunately, as we have already pointed out, the algorithm in [KVZ19] works only for exactly
k-sparse signals, and also demands cubic time and sample complexity. Our new toolkit shows that
all three limitations can be remedied (though not completely simultaneously). The key observation
underlying our new techniques is a new near-isometry property of adaptive aliasing filters.

Collectively, adaptive aliasing filters act as near-isometries. Adaptive aliasing filters as
used in [KVZ19] are particularly effective for non-obliviously isolating elements of the head with
respect to each other. However, in standard sparse recovery tasks, one desires control of the tail
energy that participates in the measurement. This is a relatively easy (or at least well-understood)
task in Sparse Fourier schemes which operate via `∞-box filters [HIKP12a, HIKP12b, IKP14, IK14,
Kap17], but a non-trivial task using adaptive aliasing filters. The reason is that the tail via the
latter filtering is hashed in a non-uniform way. The hashing depends on the arithmetic structure
of the elements used to construct the filters, as well as their arithmetic relationship with the
elements in the tail. This non-uniformity is essentially the main driving reason for the “exactly k-
sparse” assumption in [KVZ19]. Our starting point is the observation that for every tree T ⊆ T full

N ,
the (v, T )-isolating filters for v ∈ Leaves(T ), satisfy the following orthonormality condition in
dimension one, see subsection 11.1.

Lemma 1. (Gram Matrix of adaptive aliasing filters in d = 1) Let T ⊆ T full
n , let Gv be the (v, T )-

isolating filter of leaf v ∈ Leaves(T ), as per (4). Let v and v′ be two distinct leaves of T . Then,
(1) ‖Ĝv‖22 :=

∑
ξ∈[n] |Ĝv(ξ)|2 = n · 2−wT (v) and (2) the adaptive aliasing filters corresponding to v

and v′ are orthogonal, i.e. 〈Ĝv, Ĝv′〉 :=
∑

ξ∈[n] Ĝv(ξ) · Ĝv′(ξ) = 0.

This already postulates that adaptive aliasing filters are relatively well-behaved: for a signal
x with tree T all leaves of which have roughly the same weight, it must be the case that x 7→
{〈Ĝv, x̂〉}v∈Leaves(T ) is a near-orthonormal transformation. Of course, this is too much to ask in
general. The crucial property that we will make use of is captured in the following Lemma, see
Subsection 11.2.

Lemma 2. (see Lemma 16) Consider a tree T ⊆ T fullN . For every leaf v of T we let Ĝv be a Fourier

domain (v, T )-isolating filter. Then for every ξ ∈ [n]d,
∑

v∈Leaves(T ) |Ĝv(ξ)|2 = 1.

Using standard arguments, the above gives the following Lemma.

Lemma 3. For z : [n]d → C, let z→a be the cyclic shift of z by a, i.e. z→a(f) := z(f − a), where
the subtraction happens modulo n in every coordinate. For a tree T ⊆ T full

N ,
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Ea∼U
[n]d

 ∑
v∈Leaves(T )

|〈Ĝv, ẑ→a〉|2
 = ‖z‖22,

i.e. on expectation over a random shift the total collection of filters is an isometry.

The above property is the key new observation that underlies our analysis, but several other
technical ideas are needed to obtain our robust result – a more detailed overview is given in Section 5.
We also note that the our ultimate robust algorithm does not achieve the standard `2/`2 sparse
recovery guarantees, which allow for recovery of a good approximation to the signal if the energy
of the top k coefficients is larger than the energy of the tail. Instead, we show that recovery is
possible when every one of the top k coefficients dominates the cumulative energy of the tail of
the signal. It is weaker, but one must note that several recent works on Fourier sparse recovery
are only known to tolerate inverse polynomial amounts of noise [HK15, Moi15], so our robustness
guarantee appears to be a strong first step.

3.2 A Tree Exploration Problem.

We now present an abstract formulation of the Sparse Fourier transform algorithms which work
based on the adaptive aliasing filters of [KVZ19] as an abstract Tree Exploration Problem. We
will lay down the formal connection between this problem and the adaptive aliasing filter-based
Sparse FFT in Section 9. For now, we focus on the tree problem without any reference to Fourier
transforms.

The setup. In this problem we are given a full binary tree T full
N with N nodes where each leaf of

this tree has a (potentially complex) number written on it, known as the value of the leaf. Suppose
that T is an instance of T full

N with at most k of its leaves having non-zero values. The goal of
the tree exploration problem is to find those k leaves and estimate their corresponding values. It
has been formally shown in [KVZ19] that there is a bijective correspondence between any k-sparse
x̂ : [n]d → C (‖x̂‖0 ≤ k) and such tree T with k non-zero valued leaves, so the Sparse FFT problem
can be formulated as learning the tree. We will show this formally in Section 9.

Definition 3 (Leaves and HeavyLeaves). For a node v ∈ T we let Leaves(v) be the leaves of
T full
N which are the descendants of v (including v itself in case v is a leaf). We let HeavyLeaves(v)

denote the leaves in Leaves(v) with non-zero values.

For a set of vertices S ⊂ T full
N we will denote by T (S) the subtree of T full

N with minimum number
of vertices containing S and the root.

Definition 4 (Weight of a vertex). For a binary tree T , and a vertex v ∈ T , the weight wT (v) of
v is equal to the number of ancestors of v in T with two children. For a set S ⊆ T full

N and v ∈ T full
N ,

we denote wS(v) := wT (S∪{v})(v) for simplicity.

It turns out that this weight function is subadditive for a fixed v.

Lemma 4. For any two sets S1, S2 ⊆ T full
N and v ∈ T full

N ,

wS1∪S2(v) ≤ wS1(v) + wS2(v)

8



You can find the proof in Appendix B.
The tree T is unknown to us and we can explore it indirectly only using two primitives;

ZeroTest, which can answer queries about whether HeavyLeaves(v) is empty, and Estimate,
which can estimate the value of a leaf. In this section we are not concerned about the internal
working of these primitives and treat them as oracles. The implementation of these routines in the
context of Sparse FFT is given in Section 9. In order to design efficient versions of these primitives
to virtually prune the tree T full

N and avoid operating on T full
N as a whole, we need to introduce two

extra parameters, Found and Excluded.

The Found and Excluded parameters. Found is an associative array of already recovered leaves
with some estimates for their values. We say that the estimates in Found are correct if for all leaves
v in Found, Found(v) is equal to the value of v in tree T . We denote by |Found| the number of leaves
with non-zero estimates in Found. For two associative arrays, Found1 and Found2, Found1 +Found2

denotes their union. In our applications we will never take a union of two arrays with intersecting
key sets. Our algorithm will virtually subtract the values in Found from the corresponding leaves
of tree T , essentially deleting them if the estimates are correct.

Excluded is a subset of nodes of T full
N . Our algorithm will virtually delete all subtrees with roots

in Excluded from the tree. For technical reasons, the procedure only accept the set excluded in the
form of a tree T (Excluded). For simplicity, we equate the set Excluded and its tree T (Excluded). One
can pictorially see examples of these notions in Figure 2. This motivates the following definition:

Definition 5. A vertex v ∈ T full
N is isolated by Found and Excluded if

Leaves(v) ∩ Leaves(Excluded) = ∅

and for all leaves ` of T full
N not in Leaves(v), either the value of ` is zero, the estimate Found(`)

for the value of ` is correct, or ` ∈ Leaves(Excluded).

Now we are ready to present the interfaces of ZeroTest and Estimate as well as their runtime.

Assumption 1. There exist procedures ZeroTest and Estimate with the following properties,

1. ZeroTest(Found,Excluded, v, b), where b is a positive integer, representing budget, and v is
a vertex in T full

N . This routine checks if there are any leaves with non-zero value in the subtree
of v. More formally, if v is isolated by Found and Excluded and |HeavyLeaves(v)| ≤ b, then
the routine returns True if for every ` ∈ Leaves(v) either the value of ` is zero or the estimate
Found(`) for the value of ` is correct, and returns False otherwise; if v is not isolated, it can
return either True or False. The runtime of ZeroTest is Õ

(
2wExcluded(v)b+ |Found| · b

)
.

2. Estimate(Found,Excluded, `), where ` is a leaf of T full
N . This routine estimates the value of

` correctly if ` is isolated by Found and Excluded. If not, the estimate is arbitrary.

The time complexity of Estimate is Õ
(
2wExcluded(`) + |Found|

)
.

The above running time bounds still hold regardless of the correctness of the inputs.
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Figure 2: Example of a tree T full
8 . The leaves are labeled by integers 1 to 8. The unfilled leaves

have zero associated value, hence HeavyLeaves(u) = {8}, Leaves(u) = {7, 8}. Also the diamond-
shaped leaves 2 and 3 are assumed to lie in the Found together with their correct estimates. Thus if
the triangle-shaped node v is in the set Excluded, then u is isolated by Found and Excluded. Thick
edges represent the tree T , and the set of its leaves is S = {u, v}. If we pick u as the next vertex
in the vanilla algorithm, the set Excluded will again contain only the vertex v.

The vanilla algorithm in [KVZ19]. Using the above translation of Sparse FFT into a tree
learning problem, the algorithm in [KVZ19] does the following. At all times it maintains a tree
T ⊆ T full

N and a set Found of leaf nodes with their perfect estimates such that the following invariants
hold:

Found ⊆ HeavyLeaves(root),

HeavyLeaves(root) \ Found ⊆ Leaves(T ).

Initially, T contains only the root of the tree and Found = ∅.
While T is not empty, the algorithm picks a leaf u ∈ T with the smallest weight wT (u). It now

needs to find a set Excluded such that u would be isolated by Found and Excluded. As it turns out, it
is enough for Excluded to contain the children of nodes in T on the path from u to the root, except
for the nodes that are on this path themselves — see Fig. 2 for an illustration. At every point the
algorithm calls ZeroTest(Found,Excluded, u, k) to test whether the subtree rooted at u contains
a non-recovered leaf, in order to avoid exploring empty subtrees. The budget of ZeroTest is
chosen to be k in order to avoid false negatives, i.e. never miss a non-empty subtree. This is the
main inefficiency in [KVZ19] which we address here, obtaining a quadratic time algorithm. Before
outlining our main algorithmic technique, which allows us to handle frequent false negatives in
ZeroTest by a novel error correction mechanism, we note that quadratic time is a natural barrier
for any algorithm that iteratively recovers the input signal. Indeed, suppose that the algorithm has
recovered a constant fraction of coefficients and recurses on the rest. The most common approach
here is to subtract the recovered elements from time domain samples, reducing to the same problem
with a smaller number of coefficients – but this requires nearly quadratic time by our lower bound
(see Theorem 2 in Section 10).

3.3 Obtaining Almost Quadratic Runtime via Hierarchical Error Correction.

Our main insight is that not all calls to ZeroTest need to succeed. Instead, one can try to assign
varying budgets to the nodes to be explored and then perform hierarchical error correction in order
to detect errors in exploration which are caused by the failures of ZeroTest due to incorrect
budget assignments. We explain the main underlying idea next.
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Suppose that we optimistically explore a subtree of T full
N with a budget b � k for ZeroTest.

If the budget assigned to the subtree was correct, i.e. number of heavy leaves in that subtree are
no larger than b, then we correctly recover the leaves locally and the resulting speed-up will be a
multiplicative k/b factor. On the other hand, if the assigned budget was wrong, exploration could
be misguided and estimates could be incorrect. The idea is that this error can be detected at an
ancestor of the subtree if we assign that ancestor a large enough budget so that the invocation
of ZeroTest does not get fooled. As a sanity check, note that this is definitely the case for the
root, where we use a budget of size k. Once the error is detected at an ancestor of the subtree
in question, the algorithm will re-explore that subtree with increased budget. Roughly speaking,
the algorithm tries to learn the correct budget of each subtree by performing backtracking : guess
a budget, explore the subtree, determine whether it is wrong upon backtracking to an ancestor
and subsequently increase the budget to explore that subtree, so on so forth. In this approach
there are two things that need to be carefully balanced. On the one hand, one needs to use the
smallest possible budgets, close to the actual sizes of the corresponding subtrees (so that calls to
ZeroTest are cheap) and on the other hand one needs to control the amount of backtracking
the algorithm performs; a smaller budget leads to a larger number of required backtracking steps.
A careful analysis reveals that, roughly speaking, increasing the budget by a factor of 1/α for
α := 2−2

√
log k·log logN whenever an adjustment is needed ensures nearly quadratic runtime.

The pseudocode of the recursive recovery algorithm is presented in Algorithm 1. The algorithm
is passed budget s, which is assumed to be the sparsity of the subtree of v. If the sparsity is low
it defaults to the cubic algorithm of [KVZ19]. Otherwise it starts the inner loop in lines 6 to 29,
where it explores the tree. It maintains the tree T containing all of unexplored heavy leaves of v
as a set S of its leaves. On each iteration of inner loop, the algorithms picks a vertex z from S
with minimum weight in line 7, for which it first checks if there is any heavy leaves in Leaves(z).
If not, it discards the vertex and continues to the next iteration. Otherwise, it tries to guess that
the sparsity of each child of z are at most α · s and runs itself recursively on both children of z
with a this decreased budget in lines 19 and 20. For each child it then checks using ZeroTest
in lines 22 and 23 if the guess was correct and the values were found correctly, they get added to
Foundout, otherwise the corresponding child is added to S. Finally, if the z is the leaf of the T full

N ,
the algorithm runs Estimate on it instead and then adds the recovered value to Foundout.

3.4 Analysis of ExactSparseRecovery.

In this section we shall present analysis of Algorithm 1. The key idea is that instead of using a
large budget that is sufficient for ZeroTest to succeed every time, we try to explore the subtrees
with a lower budget and then check with a larger budget whether the subtrees have been recovered
correctly or not.

To do the analysis we will need the correctness guarantee for the base Algorithm 10.
Recall that b is the input parameter of SlowExactSparseRecovery.

Theorem 5 (Correctness of Algorithm 10). If |HeavyLeaves(v)| ≤ b and v is isolated by Found
and Excluded, then the procedure SlowExactSparseRecovery returns the correct estimates for
all HeavyLeaves(v).

The proof can be found in Appendix A.

Theorem 6 (Correctness of Algorithm 1). Consider a call to primitive ExactSparseRecovery(Found,
Excluded, v, s, k) for any vertex v ∈ T full

N , budget s ≤ k and sets Found and Excluded such that v
is isolated by them (see Definition 5) and Found ∩ Leaves(v) 6. If the sparsity of subtree rooted

6The algorithm works even without this requirement, however it somewhat simplifies the proof.
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Algorithm 1 ExactSparseRecovery(Found,Excluded, v, s, k)

1: if s ≤ 1/α then . This is the base case — run the qubic time algorithm
2: Foundout ← SlowExactSparseRecovery(Found,Excluded, v, s)
3: if |Foundout| ≤ s return Foundout else return ∅
4: Foundout ← ∅ , S ← {v} , Steps← 1 . Construct a subtree tree of T full

N rooted at v,
5: . with S as the set of leaves (so S is initialized as {v})
6: repeat
7: z ← vertex in S with the minimum weight with respect to S
8: S = S \ {z}, Steps← Steps + 1
9: Excluded′ ← Excluded ∪ S, Found′ ← Found + Foundout

10: if ZeroTest(Found′,Excluded′, z, s) then continue
11: . No heavy leaves in the subtree of z, so we remove it
12: if z is a leaf in T full

N then
13: Foundout(z)← Estimate(Found′,Excluded′, z)
14: continue
15:

16: sdesc ← min(α · s, k − |Found′|) . sdesc is the budget for the children of z
17: zleft, zright ← left and right child of z in T full

N respectively.
18:

. Try to estimate the values in the subtrees of the children of z with a smaller budget sdesc
19: Foundleft ← ExactSparseRecovery(Found′,Excluded′ ∪ {zright}, zleft, sdesc, k)
20: Foundright ← ExactSparseRecovery(Found′,Excluded′ ∪ {zleft}, zright, sdesc, k)
21:

. Check if the values were correctly recovered
22: IsZeroleft ← ZeroTest(Found′ + Foundleft,Excluded

′ ∪ {zright}, zleft, s)
23: IsZeroright ← ZeroTest(Found′ + Foundright,Excluded

′ ∪ {zleft}, zright, s)
24:

25:

. If the estimates appear correct under current budget, save them

. Otherwise, we must increase the budget for the child, so we add it to the set S
26: If IsZeroleft then Foundout ← Foundout + Foundleft else S ← S ∪ {zleft}
27: If IsZeroright then Foundout ← Foundout + Foundright else S ← S ∪ {zright}
28:

29: until S = ∅, Steps > 6 logN
α or |Foundout| > s

30:

31: if S = ∅, Steps ≤ 6 logN
α and |Foundout| ≤ s then

32: return Foundout
33: else
34: return ∅

at v is less than the allowed budget, that is |HeavyLeaves(v)| ≤ s, then ExactSparseRecov-
ery returns a correct estimate for every leaf in HeavyLeaves(v). In particular, if v = root,
Excluded = ∅, Found = ∅ and |HeavyLeaves(r)| ≤ s, the procedure correctly recovers the entire
tree.

Proof. We will show correctness by induction on the budget s. The base case is provided by
s ≤ 1/α. In that case the procedure calls SlowExactSparseRecovery (see line 1 and line 2),
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and thus the output is correct by Theorem 5. We now provide the inductive step.
Now, we show by induction on the number of iterations of the repeat loop in line 6 that for a

fixed s the returned frequencies are correct. The set S is the set of leaves of the tree T , described
earlier in Section 3.3. We will show that the following invariants hold:

(1) Foundout ⊆ HeavyLeaves(v) and the estimated values in Foundout are all correct

(2) HeavyLeaves(v) \ Foundout ⊆ Leaves(S)7

Then the correctness follows from the fact that S = ∅ at the end of execution.
Consider an iteration of the repeat loop where the above invariants hold and let z be the vertex

extracted from S in line 7. By the inductive hypothesis, z is isolated by Found′ and Excluded′ (see
line 9), and by the theorem assumption, |HeavyLeaves(v)| ≤ s. Therefore, the calls to ZeroTest
and Estimate in lines 10 and 13 return correct answers. Therefore, in case HeavyLeaves(z) is
empty the node z can be removed from S, or in case z is a leaf in T full

N Estimate returns a correct
estimate for z and it again can be removed from S and the invariants still hold.

Otherwise, the algorithm recursively calls itself on zleft and zright. Assume that we virtu-
ally add zleft and zright to S, and remove z from it. Then the invariants still hold. We will
only discuss the correctness of operations with zleft, since they are symmetric. zleft is isolated
by Found′ and Excluded′ ∪ {zright}, since z is isolated by Found′ and Excluded′. Therefore, if
|HeavyLeaves(zleft)| ≤ αs, Foundleft will contain correct estimates of HeavyLeaves(zleft), by the
inductive hypothesis. Because the algorithm doesn’t know if that is the case, it checks whether the
recovered values are correct or not in line 22 by running ZeroTest. IsZeroleft would be True only if
HeavyLeaves(zleft) were correctly recovered. From this fact it follows that if HeavyLeaves(zleft)
were correctly recovered, we can remove zleft from S and update Found by adding Foundleft to it
without violating the invariants, and if not, we can just discard Foundleft. Notice that under the
theorem’s assumption on sparsity and by invariant 1 it can never happen that |Foundout| > s.

Finally, notice that if |HeavyLeaves(z)| ≤ α · s, the subtree of z will be completely recovered
by a recursive call. Therefore, only nodes with |HeavyLeaves(z)| ≥ α · s and their children get
added to S. By an averaging argument, the number of such nodes is at most logN

α , thus, the

maximum number of nodes that would ever be added to S is 3 logN
α . Because at each iteration at

least one vertex is removed from S, Steps ≤ 6 logN
α and at the end of the loop S = ∅.

We finish this section with the runtime analysis of Algorithm 1. To do it, we will need to use
the correctness guarantee for Algorithm 10, proof of which can be found in Appendix A.

Theorem 7 (Running time of Algorithm 10). If Leaves(v)∩Leaves(Excluded) = ∅, the runtime
of SlowExactSparseRecovery is bounded by Õ

(
|Found| · b2 + 2wExcluded(v) · b3

)
.

Theorem 8 (Running time of ExactSparseRecovery). Let logN > 6
√

5 and k ≤ N . The
running time of ExactSparseRecovery(∅,∅, root, k, k) is bounded by Õ(k2 · 28

√
log k log logN ).

Proof. Recall that α := 2−2
√

log k·log logN . First, we make several observations:

• Each call to ExactSparseRecovery (Algorithm 1) returns Foundout of size at most s.

• At most 6 logN
α vertices are inserted in S in a single invocation of ExactSparseRecovery,

and there the number of recursive calls to ExactSparseRecovery is bounded by 12 logN
α .

7Recall the definition of HeavyLeaves – Definition 3.
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• Similarly, at all times during an invocation of ExactSparseRecovery one has |Foundout| ≤
αs · 12 logN

α = Õ(s). Also, because sdesc ≤ k − |Found′| from line 16, it is guaranteed that

|Found′| ≤ k + Õ(αs).

• For each recursive call in lines 19 and 20 as well as the call to SlowExactSparseFFT, we
have Leaves(v)∩Leaves(Excluded) = ∅. This means that the precondition of Theorem 7 is
satisfied and that for each picked z,

wExcluded∪S(z) ≤ wExcluded(z) + wS(z) ≤ wExcluded(z) + log(6 logN/α).

where the first inequality follows from Lemma 4.

Recall that bound our basic setup an invocation of ZeroTest takes Õ(2wExcluded(z) · b+ |Found| ·
b) time, an invocation of Estimate takes Õ(2wExcluded(z) + |Found|) time and an invocation of
SlowExactSparseFFT takes Õ(2wExcluded(z) ·b3 + |Found| ·b2) time respectively. We will separately
bound the time dependent on |Found| and 2wExcluded(v). Formally, we say that there are two runtime
pools, first and second, and the aforementioned primitives spend Õ(2wExcluded(v) · b), Õ(2wExcluded(v))
and Õ(2wExcluded(v) ·b3) from the first pool, and Õ(|Found| ·b), Õ(|Found|) and Õ(|Found| ·b2) from the
second one, respectively. We now bound the sizes of both pools. Using the notation A := 6 logN

α ,
we have

The first pool. Let T1[s,W, l] be the time the procedure spends from the first pool where for
convenience of notation W = 2wExcluded(v) and l is the distance to the node v from the root. Notice
that the algorithm makes at most A iterations, since at most A vertices are added to S. That also
means that |S| ≤ A. Also notice that for each picked z, since z is the vertex with the smallest
weight in S, by Lemma 4 and by Lemma 10

2wExcluded∪S(z) ≤ 2wExcluded(z) · 2wS(z) ≤W ·A.

Notice that because we only call Estimate in line 13, there always a call to ZeroTest in line 10
that precedes it. Since they are called with the same set of parameters, by Assumption 1 the time
to run ZeroTest dominates that of Estimate. Similarly, it is easy to see that the time to perform
all other operations except for recursive calls is also dominated by ZeroTest, so there exists an
f = Õ(1) such that,

• If l = logN , then we are in the case where v is a leaf of T full
N . The algorithm makes only one

iteration of the repeat loop in line 6 where it executes Estimate and stops at line Line 14.
The ZeroTest call takes time Õ(2wExcluded(v)s) = Õ(sW ) ≤ sWf , so

T1[s,W, l] ≤ sWf.

• Else, if s ≤ 1/α, then we are in the base case where Algorithm 10 is called in line 2. By
Theorem 7 it takes time Õ(s32wExcluded(v)) ≤ s3Wf from the first pool to run it, so

T1[s,W, l] ≤ s3Wf.

• Else the algorithm proceeds with the recursive mode of operation. As was discussed before,
it makes at most A iterations of the repeat loop where it runs ZeroTest and calls itself
recursively in lines 19 and 20. Now ZeroTest is called with set Excluded being equal to
Excluded ∪ S, so its runtime from the first pool is bounded by WAsf . For each recursive
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call, similarly, the set Excluded becomes Excluded ∪ S ∪ {z′}, where z′ is the other child of
z (see lines 19 and 20), hence the new W is upper bounded by 2WA. The distance l also
increases by at least 1. Finally, by observing that T1[s,W, l] is monotonically non-decreasing
with respect to its parameters, we get the following formula

T1[s,W, l] ≤ A(WAsf + 2T1[α · s, 2W ·A, l + 1]).

We can now show by induction that

T1[s,W, l] ≤ (5αA2)
log s

log 1/αW · s · f/α2. (1)

The base case corresponds to s ≤ 1/α or l = logN for which we get by the above inequalities that
the runtimes respectively are s3Wf ≤ sWf/α2 and sWf , both of which are not greater than the
right hand side of Equation (1).

Suppose now that for s > 1/α and l < logN , the inductive hypothesis holds for smaller values
of s or larger values of l. Then β ≥ 1 and

T1[s,W, l] ≤ A(WAsf + 2T1[αs, 2W ·A, l + 1]), (2)

where we have

T1[αs, 2W ·A, l + 1] ≤ 2(5αA2)
logαs
log 1/αWA · αs · f/α2

≤ 2(5αA2)
log s

log 1/α
−1
WA · s · f/α

by the inductive hypothesis. Substituting this bound into (2), we get

T1[αs, 2W ·A, l + 1] ≤ A(WAsf + 4(5αA2)
log s

log 1/α
−1
WA · s · f/α)

= Wsf(A2 + (5αA2)
log s

log 1/α
−1 · 4A2/α)

= Wsf(α2A2 + (5αA2)
log s

log 1/α
−1 · 4αA2)/α2

≤Wsf(α2A2 + (5αA2)
log s

log 1/α
−1 · 4αA2)/α2

≤Wsf(α2A2 + (5αA2)
log s

log 1/α
−1 · 4αA2)/α2

≤ (5αA2)βWsf/α2,

where in the last transition we used the fact that (5αA2)
log s

log 1/α
−1

= (5(6 logN)2/α)
log s

log 1/α
−1 ≥

5
log s

log 1/α
−1 ≥ 1 (the latter bound holds since log s

log 1/α − 1 ≥ 0, as s ≥ 1/α in the inductive step).

This completes the inductive step, establishing (1). Substituting the values for α,W, f and A and
simplifying, we get

T1[k, 1, 0] ≤ (5αA2)
log k

log 1/αW · k · f/α2

≤ (5αA2)
log k

log 1/α 2wExcluded(v) · k · f/α2

= Õ((5αA2)
log k

log 1/αk/α2),

(3)

where we used the fact that 2wExcluded(v) = 1 when v is the root of T full
N .
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It remains to upper bound (5αA2)
log k

log 1/α = (5(6 logN)2/α)
log k

log 1/α . We bound the logarithm of
this value:

log k

log 1/α
log(5(6 logN)2/α) ≤ log k

log 1/α
(log(log4N) + log(1/α))

≤ 4
log k log logN

log 1/α
+ log k

≤ 2
√

log k log logN + log k.

Substituting this into (3) and recalling that α = 2−2
√

log k·log logN , we get

T1[k, 1, 0] = Õ(k2 · 28
√

log k log logN )

as required.

The second pool. We bound |Found′| by Õ(k). Let T2[s, l] denote the upper bound on the
runtime from the second pool, where l is the distance from v to root. Again, the runtime is
dominated by the call to ZeroTest, so for some f = Õ(1) the following relations hold:

• If l = logN , then T2[s, l] ≤ kf .

• Else, if s ≤ 1/α, then T2[s, l] ≤ ks2f ≤ kf/α2.

• Else, T2[s, l] ≤ A(ksf + 2T2[αs, l + 1]).

Similarly to the first pool, one can show by induction that T2[s, l] ≤ (3αA)βksf/α2, where β =
b log s

log 1/αc. Using the fact that (3αA)βksf ≤ 22
√

log k log logn we have T2[k, 0] = Õ(k2 · 28
√

log k log logn).

Summing up runtimes of both pools yields total runtime of Õ(k2 · 28
√

log k log logn).
Finally, the time spent on maintaining Excluded′ is negligible, since, similarly to SlowEx-

actSparseRecovery, it can be constructed once at the beginning of the algorithm, and on each
iteration we modify it by adding and removing a constant number of vertices to or from it. Hence,
by the same proof as in Theorem 7 the used time is Õ(s+ wExcluded(v)).
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4 Preliminaries and Notations.

Fourier transform basics. We will often identify [n]d → C with Cnd for convenience and use
the two interchangeably depending on the context.

Definition 6 (Fourier transform). For any positive integers d and n, the Fourier transform of a

signal x ∈ Cnd is denoted by x̂, where x̂f =
∑
t∈[n]d xte

−2πi f
>t
n for any f ∈ [n]d. Here f>t =∑d−1

q=0 fqtq.

Recall that by Parseval’s theorem we have ‖x̂‖22 = nd ·‖x‖22. Furthermore, recall the convolution-

multiplication duality (̂x ? y) = x̂ · ŷ, where x ? y ∈ Cnd is the convolution of x and y and defined
by the formula (x ? y)t =

∑
τ∈[n]d xτ · y(t−τ mod n) for all t ∈ [n]d, where the modulus is taken

coordinate-wise. We will also need the following well-known theorem on the Fourier subsampled
matrices.

Theorem 9. (Restricted Isometry Property of Subsampled Fourier Matrices, [HR17, Theorem 3.7])
Let q = Θ(s log3N). Then with high probability in N , the time domain points {xt}t∈Q for a random

multiset Q ⊆ [n]d with q uniform samples are sufficient to (1 ± ε)-approximate the energy of all
s-sparse vectors x̂, where ε > 0 is some absolute constant. Formally, simultaneously for all s-sparse
vectors: N2

q

∑
t∈Q |xt|2 ∈

[
(1− ε)‖x̂‖22, (1 + ε)‖x̂‖22

]
.

4.1 Notation for Manipulating FFT Computation Trees.

Recall that given a signal x : [n]d → C, the execution of the FFT algorithm produces a binary tree,
referred to as T full

N . The root of T full
N corresponds to the universe [n]d, while the children of the root

correspond to [n/2]× [n]d−1; note that FFT recurses by peeling off the least significant bit. Every
node v has a label fv ∈ Zdn associated to it, defined according to the following rules.

1. The root has label froot = (0, 0, . . . , 0︸ ︷︷ ︸
d entries

), and corresponds to the universe [n]d.

2. The children vleft, vright of a node v which corresponds to the universe [n/2l] × [n]d
′
, with

0 ≤ d′ ≤ d − 1, 0 ≤ l ≤ log n − 1, have the following properties. Both correspond to
universe [n/2l+1] × [n]d

′
, and vright has label fvright

= fv, while vleft has label fvleft
= fv +

(0, 0, . . . , 0︸ ︷︷ ︸
d′

, 2l, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′−1

).

3. The children of a node v corresponding to universe [1] × [n]d
′

with d′ > 0, are vleft, vright,
corresponding to universe [n/2] × [n]d

′−1 and have labels fvright
= fv and fvleft

= fv +
(0, 0, . . . , 0︸ ︷︷ ︸

d′−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′

) respectively.

4. A node v corresponding to the universe [1] is called a leaf in T full
N .

The above rules create a binary tree of depth logN , which corresponds to the FFT computation
tree. The labels of the leaves of T full

N represent the set [n]d of all possible frequencies of any signal
x : [n]d → C in the Fourier domain. We demonstrate T full

N that corresponds to the 2-dimensional
FFT computation on universe [4] × [4] in Figure 3. Subtrees T of T full

N can be defined as usual.
For every node v ∈ T , the level of v, denoted by lT (v), is the distance from the root to v. We
denote by Leaves(T ) the set of all leaves of tree T , and for every v ∈ Leaves(T ), its weight wT (v)
with respect to T is the number of ancestors of v in tree T with two children. The levels (distances
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from the root) on which the aforementioned ancestors lie will be called Anc(v, T ). Furthermore,
the sub-path of v with respect to T will be the children of the aforementioned ancestors which are
not ancestors of v. Additionally, for a node v ∈ T we denote the subtree of T rooted at v by Tv.

The following definition will be particularly important for our algorithms.

Definition 7 (Frequency cone of a leaf of T ). For every subtree T of T full
N and every node v ∈ T ,

we define the frequency cone of v with respect to T as,

FreqConeT (v) :=
{
fu : for every leaf u in subtree of T full

N rooted at v
}
.

Furthermore, we define supp(T ) :=
⋃
u∈Leaves(T ) FreqConeT (u).

The splitting tree of a set S ⊆ [n]d is the subtree of T full
N that contains all nodes v ∈ T full

N such
that S ∩ FreqConeT full

N
(v) 6= ∅.

5 Techniques and Comparison with the Previous Technology.

This section is devoted to highlighting the differences between previous work and our technical
contributions.

5.1 Previous Techniques.

Most previous sublinear-time Sparse Fourier transform algorithms [GMS05, HIKP12a, Kap16,
Kap17] rely on emulating the hashing of signal x̂ by picking a structured set of samples (in low
dimensions, the samples correspond to arithmetic progressions) and processing them with the help
of bandpass filters, i.e. functions which approximate the `∞ box in frequency domain and are
simultaneously sparse in time domain. However, while those filters are particularly efficient in
low dimensions, their performance deteriorates when the number of dimensions increases: in-
deed, a d-dimensional `∞ box has 2d faces, and hence this approach suffers inevitably from the
curse of dimensionality. On the other hand, an unstructured collection of O(k · poly(logN)) sam-
ples [CT06, NSW19] suffice, showing that the sample complexity is dimension-independent; the
cost that one needs to pay, however, is Ω(N) running time.

To (partially) remedy the aforementioned state of affairs, the approach of [KVZ19] departs from
both the aforementioned approaches, and performs pruning in the Cooley-Tukey FFT computation
graph, in a way that suffices for recovery of exactly k-sparse vectors. Recall that as we explained
in Section 3, the exact Sparse FFT problem can be translated to a tree exploration problem. What
makes the exploration possible and is the main technical innovation of [KVZ19] is the introduction
of adaptive aliasing filters, a new class of filters that allow to isolate a given frequency from a given
set of k other frequencies using O(k) samples in time domain and in O(k logN) time. Those filters
are revised in Section 7.

Definition 8 ((v, T )-isolating filter, see Definition 11). Consider a subtree T of T full
N , and a leaf v

of T . A filter G : [n]d → C is called (v, T )-isolating if the following conditions hold:

• For all f ∈ FreqConeT (v), we have Ĝ(f) = 1.

• For every f ′ ∈
⋃
u∈Leaves(T )

u6=v
FreqConeT (u), we have Ĝv(f

′) = 0.
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As shown in [KVZ19], for a given tree T and a node v one can construct isolating filters G such
that ‖G‖0 = O(2wT (v)), and Ĝ(f) is computable in Õ(1) time (see also Lemma 9). The sparsity
of G in time domain, i.e. ‖G‖0, corresponds to the number of accesses to x needed in order to get
our hands on (Ĝ · x̂)f for a fixed f .

As was shown in Section 3, the FFT tree exploration proceeds using two primitives that satisfy
Assumption 1 and both of these primitives can be efficiently constructed given the above filters. The
first one is a primitive for performing a zero test on a subtree, i.e., checking whether x̂FreqCone(v) ≡ 0.

This check can be performed efficiently using a (deterministic) collection of O(k log3N) samples
which satisfy the Restricted Isometry Property (RIP) of order k; its pseudocode, named ZeroTest,
is depicted in Algorithm 2. The sample complexity of ZeroTest is then

O(2wT (v) · k · poly(logN)),

namely, one needs to multiply the time domain support size of the isolating filter G with the
number of samples needed to satisfy RIP of order k. The second primitive is used when ` is a leaf
in T full

N , i.e. a node at depth logN , in which case the algorithm needs to estimate x̂f` using the
(`, T )-isolating filter, see Algorithm 3 for a pseudocode. This requires only O

(
2wT (`)

)
samples.

Unfortunately, as we have already pointed out, the algorithm in [KVZ19] works only for exactly
k-sparse signals, and also demands cubic time and sample complexity. Our new toolkit shows that
all three limitations can be remedied (though not completely simultaneously).

We also mention that a modified version of [Man95] can be employed to recover exactly k-
sparse signals in Õ(k3) time. The algorithm presented in [Man95] performs breadth-first search in
the Cooley-Tukey FFT computation graph, rather than exploring by picking the lowest weight leaf.
Opposed to [KVZ19], the algorithm in [Man95] uses Dirac comb filters to learn all the non-empty
frequency cones in the same level at once. However, the techniques in that paper cannot go beyond
cubic time for k-sparse signals, and as can be seen in [Man95, Section 6], extending the result to
robust signals pays a multiplicative signal-to-noise ratio factor on top of k3.

5.2 Our Techniques.

Our first technique is a way to traverse the Cooley-Tukey FFT computation graph in almost
quadratic time complexity. This was presented in detail in Section 3. Here we give a quick summary
of our FFT tree exploration.

FFT backtracking. The first crucial observation is that the vanilla FFT traversal algorithm
given in [KVZ19] performs a zero test with RIP of order k to decide whether a subtree contains
a non-zero frequency, and this might be unnecessary. Indeed, if we are at a node v for which
‖x̂FreqCone(v)‖0 = O(1), i.e. there are at most O(1) elements in FreqCone(v), we only need to
perform RIP of order O(1). Thus, maybe there is a way to approximately learn ‖x̂FreqCone(v)‖0,
for nodes v explored during the execution of the algorithm, and perform a low-budget zero test
accordingly?

We have demonstrated that this intuition is correct in Section 3. The idea is to assign varying
budgets to the nodes to be explored and then perform the hierarchical error detection in order to
detect errors in the exploration which are caused by the failures of ZeroTest due to incorrect
budget assignments. The algorithm maintains at all times a subtree T , as well as a vector χ̂,
such that supp(x̂ − χ̂) ⊆ ∪u∈T FreqCone(u), and supp(χ̂) ⊆ supp(x̂). The algorithm explores the
tree by considering values b1, b2 . . ., corresponding to the possible assumptions on the sparsity of
x̂FreqCone(v), for some node v picked during the execution of the algorithm. For a parameter α < 1 we
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use thresholds b0 := k, b1 := αk, b2 := α2k, . . . , b log k
log(1/α)

= O(1). Our algorithm recursively explores

various subtrees Tv with some budget b := bj , i.e. under the assumption ‖x̂FreqCone(v)‖0 ≤ b.
The algorithm maintains a subtree Tv, initialized at {v} and proceeds by picking the minimum
weight node z ∈ Tv and considering the two children of z, let them be zleft, zright. Then, it runs
itself recursively on Tzleft

, Tzright
with budget bj+1 = αb. When the recursive calls return, yielding

candidate vectors χ̂left, χ̂right, it performs a zero test on each of zleft, zright with RIP of order b, in
order to check whether x̂FreqCone(zleft) − χ̂left is the all zeros vector (similarly for the right child).
If the zero test on zleft is False, we add zleft to Tv; similarly for zright. If both zero tests are True,
then we remove z. This continues either until Tv = ∅ or until the number of nodes that have ever
been inserted in Tv becomes too large (in particular if there is Ω(b/α) leaves). In the first case, the
algorithm returns the found vector, otherwise it returns the all zeros vector, since insertion of too
many nodes into Tv means that we have underestimated the sparsity of x̂FreqCone(v), as we argued
in Section 3.

Upon performing a call with arguments a node v and a budget b, it could be the case that
‖x̂FreqCone(v)‖0 ≤ b does not hold; however, this misassumption is not detected by that call, and
a vector which is not equal to x̂FreqCone(v) is returned to the above recursion level. Nevertheless,
although undetectable at the time, this discrepancy will be detected in some recursion level above,
where we make use of higher budget; definitely at the very first level where we perform RIP of
order k. We proved the correctness of the above process in Section 3 using induction on the tree.

Robust Algorithm. Our tree exploration technique works well for solving the exact Sparse FFT
problem. For designing a robust algorithm we need a collection of new techniques in addition to the
FFT backtracking. In what follows we explain the techniques needed for robustifying our Sparse
FFT algorithm.

First of all, in the robust case we should substitute ZeroTest with an analogous HeavyTest
routine. The role of this routine is to determine whether ‖(x̂−χ̂)FreqCone(v)‖2 ≥ ‖η̂‖2, where v is any
node that appears during the execution of the algorithm. If the latter inequality holds, this means
that there are elements of the head of x̂ inside FreqCone(v) that are yet to be recovered. Pseu-
docode for this routine is presented in Algorithm 4, and the guarantees of this routine are spelled
out in Lemma 17. The algorithm is very similar to ZeroTest, with the difference that we now
need to take a collection of random samples, since a deterministic collection of samples sastisfying
RIP does not suffice to control the non-sparse component, i.e. the contribution of the tail under
filtering. Furthermore, what is demanded is a control on how a (v, T )-isolating filter Ĝ acts on
x̂∪u∈T\{v} FreqCone(u), i.e. on parts of the signal living inside frequency cones which u is not isolated

from. In words, one would like to appropriately control the energy of
(
Ĝ · x̂∪u/∈T FreqCone(u)

)
, where

· corresponds to element-wise vector multiplication.

Collectively, adaptive aliasing filters act as near-isometries. Adaptive aliasing filters are
particularly effective for non-obliviously isolating elements of the head with respect to each other.
However, in standard sparse recovery tasks, one desires control of the tail energy that participates
in the measurement. This is a relatively easy (or at least well-understood) task in Sparse Fourier
schemes which operate via `∞-box filters [HIKP12a, HIKP12b, IKP14, IK14, Kap17], but a non-
trivial task using adaptive aliasing filters. The reason is that the tail via the latter filtering is
hashed in a non-uniform way. The hashing depends on the arithmetic structure of the elements
used to construct the filters, as well as their arithmetic relationship with the elements in the tail.
This non-uniformity is essentially the main driving reason for the “exactly k-sparse” assumption
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in [KVZ19]. Our starting point is the observation that for every tree T ⊆ T full
N , the (v, T )-isolating

filters for v ∈ Leaves(T ), satisfy the following orthonormality condition in dimension one, see
subsection 11.1.

Lemma 5. (Gram Matrix of adaptive alliasing filters in d = 1) Let T ⊆ T full
n , let Gv be the

(v, T )-isolating filter of leaf v ∈ Leaves(T ), as per (4). Let v and v′ be two distinct leaves of T .
Then,

1.
‖Ĝv‖22 :=

∑
ξ∈[n]

|Ĝv(ξ)|2 =
n

2wT (v)
.

2. (cross terms) the adaptive aliasing filters corresponding to v and v′ are orthogonal, i.e.

〈Ĝv, Ĝv′〉 :=
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ) = 0.

This already postulates that adaptive aliasing filters are relatively well-behaved: for a tree T all
leaves of which have roughly the same weight, it must be the case that x 7→ {〈Ĝv, x̂〉}v∈Leaves(T )

is a near-orthonormal transformation. Of course, this is too much to ask in general. The crucial
property that we will make use of is captured in the following Lemma, see Subsection 11.2.

Lemma 6. (see Lemma 16) Consider a tree T ⊆ T fullN . For every leaf v of T we let Ĝv be a Fourier
domain (v, T )-isolating filter. Then for every ξ ∈ [n]d,∑

v∈Leaves(T )

|Ĝv(ξ)|2 = 1.

Using standard arguments, the above gives the following Lemma.

Lemma 7. For z : [n]d → C, let z→a be the cyclic shift of z by a, i.e. z→a(f) := z(f − a), where
the subtraction happens modulo n in every coordinate. For a tree T ⊆ T full

N ,

Ea∼U
[n]d

 ∑
v∈Leaves(T )

|〈Ĝv, ẑ→a〉|2
 = ‖z‖22,

i.e. on expectation over a random shift the total collection of filters is an isometry.

Thus, although the tail is hashed in a way that is dependent on the head of the signal, what we
can prove is that in expectation over a random shift the total amount of noise is controllable. Using
the last property we can ensure that HeavyTest in the high-SNR regime we consider i) does not
introduce false positives, i.e. does not engage in exploration in subtrees that contain no sufficient
amount of energy, and ii) prevents false negatives. Guarantee i) translates to a bound on the
running time of the algorithm, while ii) ensures correct execution of the algorithm. Note that due
to the explorative nature of algorithm and the fact that missing a heavy element increases the total
noise in the system (since we stop isolating with respect to it afterwards, it contributes as noise in
subsequent measurements), accumulation of false negatives can totally destroy the guarantees of
our approach. We note that this phenomenon of the tail not hashed independently of the signal
occurs also in one-dimensional continuous Sparse Fourier Transform [PS15], although for a very
different reason; in their setting handling such an irregularity is significantly easier, mostly due to
the fact that errors do not accumulate as in our explorative algorithm.
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Identification and estimation are interleaved. In contrast to more standard sparse recovery
tasks where usually identification and estimation can be decoupled, our algorithm needs to have a
precise way to perform estimation upon identification of a coordinate. That happens due to the
explorative nature of our algorithm, which does not allow us to perform estimation at the very end.
This is relatively easy in the exactly k-sparse case, but in the robust case, due to the presence of
noise it is much more challenging. Whenever we identify a frequency and isolate it from the other
head elements, we can pick Õ(k) random samples and estimate it up to 1/

√
k fraction of the tail

energy. Although this precision is sufficient for our algorithm to go through, it would lead us to an
undesirable cubic sample complexity in total. The next two techniques are introduced in order to
handle this situation.

Lazy Estimation. One additional crucial difference between the exactly k-sparse case and the
robust case is estimation. In the former, when we had a tree T and the minimim-weight leaf v ∈ T
was also a leaf in T full

N , we needed Õ(2wT (v)) samples in order to perfectly estimate x̂fv . However,
in the robust case, perfect estimation is impossible, and as is usual in sparse recovery tasks, we

should estimate it up to additive error O
(

1√
k
‖η̂‖2

)
(recall that we write x̂ = ŵ+ η̂, where η is the

tail of the signal). One way to achieve this type of guarantee is to take Õ(k) random samples from
Gv ?x, where Gv is the (v, T )-isolating filter. This would yield Õ(k ·2wT (v)) samples for estimation,
a k factor worse than what is needed in the exactly k-sparse case. In total, the sample complexity
(and running time) would be k times more expensive, getting us back to Õ(k3).

Let’s see how it is possible to shave the aforementioned multiplicative k factor in the sample
complexity. Imagine that upon finding such a leaf v, our algorithm does not estimate it immediately,
but rather decides to postpone estimation for later. Instead, it marks it as a fully identified
frequency, without removing it from T and proceeds in exploring T further. From now on, instead
of picking the lowest weight leaf in T at any time, it picks the lowest weight unmarked leaf in T .
Of course, it could be the case that this rule causes the leaf picked to have weight much more
than log k, significantly increasing the cost of filtering. Consider however the following strategy.
While the minimum weight unmarked leaf in T has weight at most log k + 2, we pick and it and
continue exploring. Whenever the aforementioned condition does not hold, the total Kraft mass8

occupied by the marked leaves in T is at least 1 − k · 1
2k = 1

2 . When this happens, we show that
we can extract a large subset of the marked nodes, see Lemma 11, which can be well-estimated on
average using only a polylogarithmic number of samples. This suffices for the `2/`2 guarantee, and
furthermore reduces the number of marked nodes (and hence the Kraft mass occupied by marked
nodes) causing our algorithm to proceed without increasing the cost of filtering. A more involved
demonstration of this idea appears in section 12.

Multi-scale Estimation. The lazy estimation technique presented above can estimate k heavy

frequencies of x̂ up to average additive error of O
(
‖η̂‖2√
k

)
using quadratic samples only if we use the

vanilla tree exploration strategy which always picks the lowest weight unmarked leaf of tree T and
explores its children. This exploration strategy ensures that leaves get identified and consequentky
marked in ascending weight order. Thus, there will be a point where the Kraft mass occupied by
marked leaves is sufficiently large (recall that marked leaves have weight bounded by log k + 2).
However, as we already mentioned, the tree exploration employed in [KVZ19] results in cubic
sample complexity even in the exactly k-sparse case. On the other hand, our new exploration

8For a tree T and a set S ⊆ Leaves(T ) we shall refer to the quantity
∑
v∈S 2−wT (v) as the Kraft mass occupied

by S in T , or just the Kraft mass of S if it is clear from context.
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(0, 0) → universe [4]× [4]

(0, 1)

(0, 3)

(1, 3)

(3, 3) (1, 3)

(0, 3)

(2, 3) (0, 3)

(0, 1)

(1, 1)

(3, 1) (1, 1)

(0, 1)

(2, 1) (0, 1)

(0, 0) → universe [2]× [4]

(0, 2)

(1, 2)

(3, 2) (1, 2)

(0, 2)

(2, 2) (0, 2)

(0, 0)→ universe [1]× [4]

(1, 0)

(3, 0) (1, 0)

(0, 0) → universe [2]

(2, 0) (0, 0)
→ universe [1]

T full
16

Figure 3: An example of the FFT binary tree T full
N with n = 4 and dimension d = 2, (thus N = 16).

The universe corresponding to the nodes at each level of the tree is shown on the right side and
the labeles of each node appears next to it.

strategy (FFT backtracking) does not necessarily guarantee that the identified leaves will have
large Kraft mass and bounded weight at the same time.

To make both lazy estimation and backtracking tree exploration techniques work together and
achieve near quadratic total sample complexity, we devise a multi-scale estimation scheme. Our
estimation strategy is to estimate every heavy frequency not once, but multiple times, each time
to a different accuracy. More precisely, let’s assume we are exploring a node v ∈ T under the
assumption that ‖x̂FreqCone(v)‖0 ≤ b, and this assumption is correct. For every found frequency

f , we estimate x̂(f), to precision ‖η̂‖2√
b

instead of ‖η̂‖2√
k

, which would be the standard thing to do.

However, sticking to this error precision will not give the desired `2/`2 guarantee: for small b, it

blows up the error by a factor of
√

k
b , and it could be that all f ∈ supp(x̂) are estimated in a

low-budget subproblem, due to recursion. Nevertheless, we can use these coarse-grained estimates
to only locate the support of x̂ inside a subtree, and return it to the parent subproblem, i.e. to the
above recursion level. The parent subproblem will mark those recovered frequencies, ignore their
values, and continue its execution normally (pick the lowest leaf, perform lazy estimation etc).
At some point, when the Kraft mass occupied by the parent subproblem is large enough, those
frequencies will be estimated up to higher precision, i.e. ‖η̂‖2√

b/α
. When it finishes execution, it will

return those elements to the above recursion level, so on so forth. This type of argumentation can
be used to glue together lazy estimation and FFT backtracking. An illustration of this idea takes
place in Section 13.

5.3 Explanation of the barriers faced.

Discussion on the limits of the explorative approach, or why the quadratic barrier is
impenetrable. On a high level, the explorative approach we take maintains a vector χ̂ such that
supp(χ̂) ⊆ supp(x̂) at all times9. Whenever the algorithm reaches a leaf v ∈ T full

N (see definitions
in the Preliminaries Section), it estimates it and adds it to χ̂. Subsequently, it proceeds by trying
to recover the residual vector x̂− χ̂. Now, imagine that we have recovered a constant fraction, say

9In fact, this is an oversimplification of our approach (as well as slightly inaccurate), but for the sake of discussion
let us assume that this is the case.
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1/10, of x̂, and want to proceed further in order to recover the remaining part of x, i.e. x̂ − χ̂,
which is an Ω(k)-sparse vector. In order even to test whether x̂ − χ̂ is the zero vector, we need
to pick a set of Ω(k) random samples, satisfying for example the Restricted Isometry Property of
order k, from x − χ. In turn, this means that we need to compute the values χt for all t in the
aforementioned collection of random samples, and subtract them from the corresponding values of x.
Since both supp(χ̂) and the samples needed for RIP are in principle unstructured sets of size Ω(k),
the computation of the relevant χt is exactly the classical non-equispaced Fourier transform, for
which no strongly subquadratic algorithm in available. We explain this unavailability by providing
a quadratic lower bound on this task based on the well-established Orthogonal Vectors hypothesis,
see Theorem 2. This also provides evidence that the quadratic time barrier is the limit of our
explorative approach. Indeed, at all times we need to decide whether to explore a subtree or not by
testing whether x̂− χ̂ is the zero vector projected on that subtree. Since subtracting the effect of
χ̂ from the measurements, i.e. evaluating χ on an unstructured set of samples, cannot be done in
strictly subquadratic time unless OVH fails, a subquadratic algorithm for exactly k-sparse FFT by
traversing a pruned Cooley-Tukey FFT computation tree would most likely yield a subquadratic
algorithm for the Orthogonal Vectors problem.

Discussion on the high-SNR regime. We shall illustrate a potential scenario where we might
miss most frequencies in the head of the signal if we run our algorithm on an input signal that is not
in the high-SNR regime. Note that throughout the exploration algorithm, we always maintain a set
of nodes, such that the union of the frequency cones of those nodes covers the head of the signal. The
frequencies which are not covered are essentially treated as noise, and we do not isolate with respect
to them. Due to the fact that the adaptive aliasing filters hash the noise in a non-uniform way, it
could be that our HeavyTest primitive misclassifies a subtree as “frequency-inactive”, i.e. no head
element inside it, although it contains one. In such a scenario, it is natural to abandon exploration
inside the subtree. This would cause the noise in the system to increate by the magnitude of the
missed head element (since we shall not isolate with respect to it anymore). Subsequently, this can
potentially lead to a chain reaction, leading to successively missing head elements, and successively
increasing the noise in the system, ending up to not recovering anything. However, our HeavyTest
primitive is strong and ensures that we never miss a heavy frequency of signals that are not in the
high-SNR regime as long as we perform oversampling by a factor k.

On the other hand, note that in order to achieve the `2/`2 guarantee on signals that are not in
high-SNR regime, we need to set the threshold of HeavyTest to 1/k fraction of the tail norm as
opposed to the tail norm. Hence, another conceivable bad scenario is that, with such low threshold,
the tail of the signal can make some frequency-inactive cones to appear heavy, introducing false
positives. This can blow up the running time of the algorithm to super-polynomial in k.

Discrepancy between the runtime of our robust algorithm and its sample complexity.
The only way we know how to perform dimension-independent estimation is via random sampling,
as implemented in the HeavyTest routine. If we perform standard (non-lazy estimation) this
would yield an additional multiplicative k factor, as claimed in the first paragraph of Techniques III.
Remedying this via lazy estimation shaves the multiplicative k factor from the sample complexity,
but does not do so in the running time. In particular, we run again into the same issue of subtracting
χ̂ from the buckets (which corresponds to an unstructured set of samples), i.e. the solution of a
non-equispaced Fourier transform instance. As we’ve proven a quadratic time lower bound for the
latter problem, this indicates that this discrepancy is most likely unavoidable with this approach.
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6 Roadmap.

The roadmap of this paper is the following. We follow an incremental approach, trying to introduce
the techniques one by one, to the extent that is possible. In Section 7 we revise adaptive aliasing
filters from [KVZ19]. In Section 8 we give the facts related to Kraft’s inequality which we are
going to use throughout our algorithms. In Section 9 we formally prove that the exact Sparse FFT
problem can be translated and reduced to the tree exploration problem and prove our first main
result, i.e., Theorem 1. In Section 10 we give the conditional lower bound on non-equispaced Fourier
transform. In Section 11, the new structural properties of adaptive aliasing filters are inferred. In
section 12 we introduce our first robust Sparse Fourier transform algorithm, illustrating techniques
II-III and partly technique I. Lastly, in Section 13 we obtain our final robust Sparse FT algorithm,
which uses techniques I-IV. For that reason, the algorithm is presented last.

7 Machinery from Previous work: Adaptive Aliasing Filters.

In this section, we recall the class of adaptive aliasing filters that were introduced in [KVZ19]. These
filters form the basis of our sparse recovery algorithm. For simplicity, we begin by introducing the
filters in one-dimensional setting and then show how they naturally extend to the multidimensional
setting (via tensoring).

7.1 One-dimensional Fourier transform.

Our algorithm extensively relies on binary partitioning the frequency domain. In d = 1, the
following definitions are the one-dimensional analogues (special cases) of the ones in Section 4.1.
We re-iterate them here, for completeness. The following is a re-interpretation of the splitting tree
of a set in dimension 1.

Definition 9 (Splitting tree). For every S ⊆ [n], the splitting tree T = Tree(S, n) of a set S is a
binary tree that is the subtree of T full

n that contains, for every j ∈ [log n], all nodes v ∈ T full
n at

level j such that
{
f ∈ S : f ≡ fv (mod 2j)

}
6= ∅.

Our Sparse FFT algorithm requires a filter G that satisfies a refined isolating property due to
the fact that throughout the execution of the algorithm, the identity of supp(x̂) is only partially
known. The following is a re-interpretation of the frequency cone of a node in dimension 1.

Definition 10 (Frequency cone of a leaf of T ). Consider a subtree T of T full
n , and vertex v ∈ T

which is at level lT (v) from the root, the frequency cone of v with respect to T is defined as,

FreqConeT (v) :=
{
fu : for every leaf u in subtree of T full

n rooted at v
}
.

Note that under this definition, the frequency cone of a vertex v of T corresponds to the subtree
rooted at v when T is embedded inside T full

n . Next we present the definition of an isolating filter,
introduced in [KVZ19].

Definition 11 ((v, T )-isolating filter). Consider a subtree T of T full
n , and leaf v of T , a filter

G : [n]→ Cn is called (v, T )-isolating if the following conditions hold:

• For all f ∈ FreqConeT (v), we have Ĝ(f) = 1.

• For every f ′ ∈
⋃
u∈Leaves(T )

u6=v
FreqConeT (u), we have Ĝv′(f

′) = 0.
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Note that in particular, for all signals x ∈ Cn with supp(x̂) ⊆
⋃
u∈Leaves(T ) FreqConeT (u) and

t ∈ [n], ∑
j∈[n]

x(j)Gv(t− j) =
1

n

∑
f∈FreqConeT (v)

x̂fe
2πi ft

n .

The main technical construction of [KVZ19] is captured by the following Lemma.

Lemma 8 (Filter properties, [KVZ19]). Let n be an integer power of two, T a subtree of T full
n , v a

leaf in T . Let f := fv be the label of node v. Then the filter Gv : [n]→ C with Fourier Transform

Ĝv(ξ) =
1

2wT (v)

∏
`∈Anc(v,T )

(
1 + e

2πi
(ξ−f)

2`+1

)
, (4)

is a (v, T )-isolating filter. Furthermore,

• |supp(Gv)| = 2wT (v), and the filter G can be constructed in O(2wT (v) +log n) time (in the time
domain).

• Computing Ĝv(ξ) for ξ ∈ [n] can be done in O(log n) time.

7.2 d-dimensional Fourier transform.

In this subsection, we present the extension of adaptive aliasing filters to higher dimensions (by
tensoring). It was shown in [KVZ19] that multidimensional construction of these filters is extremely
efficient and incurs no loss in the dimensionality.

Definition 12 (Multidimensional (v, T )-isolating filter). For every subtree T of T full
N and vertex

v ∈ T , a filter Gv ∈ Cnd is called (v, T )-isolating if Ĝv(f) = 1 for every f ∈ FreqConeT (v) and
Ĝv(f

′) = 0 for every f ′ ∈ supp(T ) \ FreqConeT (v).

In particular, for every signal x ∈ Cnd with supp(x̂) ⊆ supp(T ) and for all t ∈ [n]d,∑
j∈[n]d

x(j)Gv(t− j) =
1

N

∑
f∈FreqConeT (v)

x̂fe
2πi f

T t
n .

We need the following lemma which is the main result of this section and shows that isolating
filters can be constructed efficiently.

Lemma 9 (Construction of a multidimensional isolating filter – Lemma 4.2 of [KVZ19]). Let T of
T full
N , and consider v ∈ Leaves(T ). There exists a deterministic construction of a (v, T )-isolating

filter Gv such that

1. |supp(Gv)| = 2wT (v).

2. Gv can be constructed in time O
(
2wT (v) + logN

)
.

3. For any frequency ξ ∈ [n]d, Ĝv(ξ), i.e. the Fourier transform of Gv at frequency ξ, can be
computed in time O(logN).
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8 Kraft-McMillan inequality and averaging claims.

For our needs, we are going to make use of the following standard claim from coding theory, referred
to as Kraft’s or Kraft-McMillan inequality. The most general version is an inequality, but in the
case of binary trees (complete codes in coding theory vocabulary), it becomes an equality.

Theorem 10 (Kraft’s equality). Let T ⊆ T full
N , it holds that∑

u∈Leaves(T )

2−wT (u) = 1.

For a tree T ⊆ T full
N and a set S ⊆ Leaves(T ), we shall refer to the Kraft mass of S with

respect to T as the quantity
∑

u∈S 2−wT (u).
We shall frequently use the following straightforward Lemma, which we shall refer to as Kraft

averaging. This ideas has appeared in [KVZ19].

Lemma 10 (Kraft averaging). Let T ⊆ T full
N , with L leaves. Then there exists a u∗ ∈ Leaves(T )

such that wT (u∗) ≤ log2 L.

The following fine-grained version of Kraft averaging is an indispensable building block of our
lazy estimation technique, and constitutes one of the important departures from the approach
in [KVZ19]. The reader may postpone reading it at the moment, since its first usage will be in
section 12. Neverthless, we decided to keep all the claims regarding Kraft’s inequality in a separate
section, for compactness reasons.

Lemma 11 (Fine-grained Kraft Averaging). Consider a subtree T of T full
N and a positive integer

b such that |Leaves(T )| ≤ b. Let S :=
{
v ∈ Leaves(T ) : 2wT (v) ≤ 2b

}
, i.e. the leaves of T with

weight at most log2(2b). Then there exists a subset L ⊆ S such that

maxv∈L 2wT (v)

|L|
≤ 1

θ
,

where θ ≤ 1
4+2 log2 b

.

Informally (but somewhat imprecisely), the claim postulates that for any subtree T of T full
N with

|Leaves(T )| = k, there exist either 1 node of weight 1, or 2 nodes of weight of 2, or . . . at least
2j/ log k nodes of weight j, or . . . k/ log k nodes of weight log k. We now proceed with its proof.

Proof. First note that one can show the preconditions of claim imply that
∑

u∈S 2−wT (u) ≥ 1
2 . For

every j = 0, 1, . . . dlog2(2b)e, let Lj denote the subset of S defined as Lj := {u : u ∈ S,wT (u) = j}.
We can write, ∑

u∈S
2−wT (u) =

dlog2(2b)e∑
j=0

|Lj |
2j

Therefore by the assumption of the claim, we have that there must exist a j ∈ {0, 1, . . . dlog2(2b)e}
such that

|Lj |
2j
≥ 1

2dlog2(2b)e . Because θ ≤ 1
4+2 log2 |S|

, there must exist a set L ⊆ S such that

|L| ≥ θ ·maxv∈L 2wT (v).
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9 Translation of Exactly k-sparse FFT to Tree Exploration.

This section is devoted to solving the exact Sparse FFT problem through translation and reduction
of this problem to the tree exploration problem detailed in Section 3 and invoking Algorithm 1.
Recall that in this problem, we try to recover the values written on the leaves of a full binary
tree T full

N using two procedures, ZeroTest and Estimate which satisfy the properties given in
Assumption 1. For solving the Sparse FFT problem we let the full binary tree T full

N be defined as per
Section 4.1 and each of its leaf values be the Fourier coefficients of the input signal x associated with
the frequency labels of the corresponding leaves. Given this tree construction we can implement
the procedures ZeroTest and EstimateFreq in a similar fashion to [KVZ19].

Algorithm 2 ZeroTest(T, x, χ̂, v, s)

1: f := fv
2: Gv ← the (v, T ) isolating filter as in Lemma 9
3: RIPs := a set of O(s log3N) samples, which suffice for s-RIP condition, see Theorem 9

4: h∆
f ←

∑
ξ∈[n]d

(
e2π ξ

>∆
n · χ̂(ξ) · Ĝv(ξ)

)
, for all ∆ ∈ RIPs

5: H∆
f ←

∑
j∈[n]d x(j)Gv(∆− j)− h∆

j , for all ∆ ∈ RIPs

6: if
∑

∆∈RIPs
|H∆
f |2 = 0 then

7: return True
8: else
9: return False

Algorithm 3 EstimateFreq(T, x, χ̂, v)

1: f := fv
2: Gv ← the (v, T ) isolating filter as in Lemma 9

3: hf ←
∑

ξ∈[n]d

(
χ̂(ξ) · Ĝv(ξ)

)
4: Return N ·

∑
j∈[n]d x(j)Gv(−j)− hj

For detailed proofs we refer the reader to [KVZ19]. First we present the performance guarantee
of the procedure EstimateFreq given in Algorithm 3 which can be proved by the filter isolation
properties given in Lemma 9.

Lemma 12. (Estimation) For any signals x, χ̂, any tree T ⊆ T full
N such that supp(x̂−χ̂) ⊆ supp(T ),

and any leaf ` ∈ T which is also a leaf of T full
N , the procedure EstimateFreq(T, x, χ̂, `) returns

(x̂− χ̂)(f`). Furthermore, the routine requires

• O
(
2wT (`)

)
sample complexity, and

• Õ(‖χ̂‖0 + 2wT (`)) running time.

Next we present the performance guarantee of the procedure ZeroTest given in Algorithm 2
which was also proved in [KVZ19].

Lemma 13. (Testing whether a subtree is empty, see also [KVZ19, Lemma 7]) For any signals x, χ̂,
any tree T ⊆ T full

N such that supp(x̂−χ̂) ⊆ supp(T ), and any leaf v ∈ T , if ‖ (x̂− χ̂)FreqConeT (v) ‖0 ≤
s, then ZeroTest(T, x, χ̂, v, s) determines correctly whether x̂FreqConeT (v) = χ̂FreqConeT (v) or not.
Iff x̂FreqConeT (v) = χ̂FreqConeT (v), the primitive returns True. Furthermore, the routine requires
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• O(2wT (v) · |RIPs|) sample complexity, and

• Õ
(
‖χ̂‖0 · |RIPs|+ 2wT (v) · |RIPs|

)
running time 10.

Recall that RIPs is a set of samples satisfying s-RIP, see Theorem 9, and |RIPs| = O(s log3N).

Given these primitives we can reduce the Sparse FFT problem to the tree exploration problem.
More specifically, for any given signal x ∈ Cnd we let T full

N be a binary tree wth N = nd leaves
such that the values of each leaf is the Fourier coefficient of the signal x at the frequency which
corresponds to the lable of that leaf. The only catch here is that the tree exploration algorithm we
developed in Section 3 relies on functions ZeroTest and Estimate which satisfy the properties
given in Assumption 1, i.e., take as inputs Found and Excluded but the primitives in Algorithm 2
and Algorithm 3 operate on a tree T and a signal χ̂ ∈ Cnd . We show that in fact any Found and
Excluded can be very efficiently translated to a tree T and a signal χ̂. Using this translation, we
can just invoke Algorithm 1 to solve the exact k-Sparse FFT problem in almost quadratic time and
thus, prove Theorem 1.

Theorem 11 (Theorem 1, restated). The sparse Fourier transform problem with an exactly k-
(Fourier sparse) signal x : [n]d → C, i.e., ‖x̂‖0 ≤ k can be solved in

m = Õ
(
k2 · 28

√
log k·log logN

)
time, deterministically.

Proof. We prove the theorem by defining an appropriate binary tree T full
N for any given k-Sparse

signal x ∈ Cnd and then invoking Algorithm 1 on T full
N and then transforming the output to get the

Fourier transform x̂. The first part is straightforward because for any given signal x ∈ Cnd we let
T full
N be a binary tree wth N = nd leaves such that the values of each leaf ` ∈ Leaves(T full

N ) equals
x̂(fv). Because, ‖x̂‖0 ≤ k, we can readily see that |HeavyLeaves(T full

N )| ≤ k.
Next we have to show how to invoke Algorithm 1 to learn this tree efficiently. As was assumed in

Section 3, for this algorithm to operate correctly it needs to have access to two primitives ZeroTest
and Estimate which satisfy the properties given in Assumption 1. We show that the primitives
given in Algorithm 2 and Algorithm 3 can be modified to satisfy the conditions of Assumption 1.

According to Assumption 1, these primitives take as input Found and Excluded, however, Al-
gorithm 2 and Algorithm 3 take as input a tree T and signals x, χ̂. The signal x is just the input
signal in time domain and we can feed it to these procedures without any modifications. The signal
χ̂ is going to be constructed from Found very efficiently in time O(|Found|) as follows,

χ̂f :=

{
Found(`) if f = f` for some leaf ` ∈ Leaves(T full

N )

0 otherwise
.

We can also construct the tree T from Excluded efficiently as follows. We consider the path p in
T full
N from node v to the root. First we start with T = p. Then we iterate over every node u ∈ T full

N

which is a child of a node that belongs to the path p we check whether Leaves(u) ∩ Excluded 6= ∅
and if so we will add u to tree T . Thus, this tree can be constructed in time Õ(|Excluded|).

10The 2wT (v) · |RIPs| correspond to the number of accesses on x, and ‖χ̂‖0 · |RIPs| corresponds to the time needed
to subtract χ̂ from the measurements. Lemma 7 in [KVZ19] has an additional third component, which corresponds

to the time needed to prepare the isolating filter Ĝv. It is not hard to see that this third component can always be
bounded by O(logN), and hence can be safely ignored.
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Now we show that with the above translation of Found and Excluded to χ̂ and tree T , Algorithm 2
and Algorithm 3 satisfy the conditions of Assumption 1. First note that the tree T that was
constructed above is a subtree of T (Excluded) therefore,

supp(T (Excluded)) ⊆ supp(T ).

Using the above inequality and the way we defined the signal χ̂ we have that, if a node v is isolated
by Found and Excluded as per Definition 5 we have the following,

supp(x̂− χ̂) = HeavyLeaves(T full
N ) \ Leaves(Found) ⊆ supp(T (Excluded)) ⊆ supp(T ).

Furthermore, under the assumption that node v is isolated by Found and Excluded we have

‖ (x̂− χ̂)FreqConeT (v) ‖0 ≤ |HeavyLeaves(v)|.

Thus, using the above two inequalities we can invoke Lemma 13 to conclude that ZeroTest(T, x, χ̂, v, b)
given in Algorithm 2 satisfies the conditions of the first part of Assumption 1. Note that the way
we constructed the tree T implies that wExcluded(v) = wT (v), and also from the construction of χ̂
one can easily see |Found| = ‖χ̂‖0. Therefore, the runtime of ZeroTest(T, x, χ̂, v, b) matches the
desired runtime in Assumption 1.

The above argument also implies that for a leaf ` ∈ T full
N if ` is isolated by Found and Excluded

then T, x, χ̂, ` satisfy the preconditions of Lemma 12, thus EstimateFreq(T, x, χ̂, `) given in Al-
gorithm 3 satisfies the conditions of the second part of Assumption 1. Also the runtime of this
procedure matches the desired runtime in Assumption 1.

Therefore, Algorithm 1 is applicable with our proposed translations, and by Theorem 6 and
Theorem 8, this procedure finds x̂ perfectly and outputs correct estimates of the frequencies in time

Õ
(
k2 · 28

√
log k·log logN

)
.

10 Lower Bound on Non-Equispaced Fourier Transform.

The main result of this section is the following theorem.

Theorem 12. (Detailed version of Theorem 2) For every c > 0 larger than an absolute constant
and every δ > 0 there exists c′ > 0 and δ′ > 0 such that if for all ε ∈ (0, 1/2), for all N a power of

two and all k ≤ 2c
′(logN)1/3

there exists an algorithm that solves the 1-dimensional non-equispaced
Fourier Transform problem on universe size N , sparsity k in time k2−δ′ poly(log(N/ε)), then there
exists an algorithm which solves OVk,d with d = c log k in time k2−δ.

As also mentioned in the abstract of this paper, this answers one of the subproblems of Problem
21 from IITK Workshop on Algorithms for Data Streams, Kanpur 2006. Additionally, the following
proof facilities gives also the lower bound on sparse multipoint evaluation, i.e. Theorem 3.

Proof. Given an Orthogonal Vectors instance, we shall appropriately construct a non-equispaced
Fourier transform instance, such that an algorithm for the non-equispaced Fourier transform with
strongly subquadratic running time in k implies a strongly subquadratic time algorithm for the
Orthogonal Vectors problem.

Let A = {a0, . . . , ak−1}, B = {b0, . . . , bk−1} ⊆ {0, 1}d be the input to an OVk,d instance with
d = c log k. We denote by aj(r) the r-th coordinate of vector aj ∈ A. We first pick sufficiently large
integers N,M, q that are powers of 2 such that M = kdC1d, q = C2d, and N = M2dq, where C1, C2

are sufficiently large absolute constants.
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Next, we define for j ∈ [k]:

tj :=
∑
r∈[d]

aj(r) ·M rq, fj :=
∑
r∈[d]

bj(r) ·
N

M rq+1
,

and set F = {f0, . . . , fk−1}, T = {t0, . . . , tk−1}. Furthermore, we define vector x ∈ CN such that
xt = 1 if t ∈ T , and 0 otherwise, and we pick ε = 1

N . Thus, to transform our initial OVk,d instance to
an instance of non-equispaced Fourier transform, we show that from additive ε‖x̂‖2-approximations
of x̂f0 , . . . , x̂fk−1

we can infer whether (A,B) contains a pair of orthogonal vectors. It then follows

that an algorithm for non-equispaced Fourier transform running in time k2−δ′ poly(log(N/ε)) would
imply a strongly subquadratic time algorithm for Orthogonal Vectors.

Our first claim postulates that x̂fj corresponds to summing up exp
(
−2πi · 1

M 〈a`, bj〉
)

for all
` ∈ [k], up to error terms in the exponent.

Claim 1. For every j ∈ [k] it holds that

x̂fj =
∑
`∈[k]

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
,

for a real number ξ`,j satisfying

|ξ`,j | ≤
(
d

2

)
M−q−1.

Proof. Fix j ∈ [k] and note that

x̂fj =
∑
t∈T

exp

(
−2πi

fjt

N

)

=
∑
`∈[k]

exp

−2πi

N
·

∑
r′∈[d]

a`(r) ·M rq

 ·
∑
r∈[d]

bj(r
′) · N

M r′q+1


=
∑
`∈[k]

exp

−2πi ·
∑

(r,r′)∈[d]×[d]

a`(r)bj(r
′) ·M (r−r′)q−1


=
∑
`∈[k]

∏
(r,r′)∈[d]×[d]

exp
(
−2πi · a`(r)bj(r′) ·M (r−r′)q−1

)

We now investigate the exponents of the complex exponentials, namely a`(r)bj(r
′) ·M (r−r′)q−1

for ` ∈ [k] and (r, r′) ∈ [d]× [d]. In particular, we find that:

1. For any pair (r, r′) with r > r′, we have (r − r′)q − 1 ≥ 0, meaning that the corresponding
exponent is an integer multiple of 2πi. In turn, the corresponding term in the product
contributes 1, so it can be ignored.

2. For any pair (r, r′) with r < r′ we have (r − r′)q − 1 ≤ −q − 1. For a fixed `, there are
(
d
2

)
such products, and hence their total contribution to the exponent of the `-th summand is at
most

(
d
2

)
M−q−1 (in absolute value).

3. The pairs (r, r′) with r = r′ contribute to the exponent of the `-th summand the term
−2πi ·M−1

∑
r∈[d] a`(r)bj(r) = −2πi ·M−1〈a`, bj〉.
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Putting everything together we arrive at the proof of the claim.

In the remainder of this proof we write

Vj,h :=
∑
`∈[k]

〈a`, bj〉h.

Next, we perform a series expansion and error analysis on the exponential function to obtain:

Claim 2. For every j ∈ [k] it holds that

x̂fj = ξ′j +
∑
h≥0

(
− 2πi

M

)h 1
h! · Vj,h,

for a complex number ξ′j satisfying

|ξ′j | ≤M−q.

Proof. Let a, b be real numbers. Starting from the basic fact | exp(−2πib) − 1| ≤ 2π|b|, we obtain
exp(−2πi(a + b)) = exp(−2πia) + exp(−2πia)(exp(−2πib) − 1) = exp(−2πia) + ξ′a,b with |ξ′a,b| ≤
2π|b|. In particular, with notation as in Claim 1, we have

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
= exp

(
−2πi · 1

M 〈a`, bj〉
)

+ ξ′`,j ,

with |ξ′`,j | ≤ 2π|ξ`,j | ≤ 2π
(
d
2

)
M−q−1 ≤M−q.

Summing over all ` ∈ [k] now yields

x̂fj =
∑
`∈[k]

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
= ξ′j +

∑
`∈[k]

exp
(
−2πi · 1

M 〈a`, bj〉
)
,

with |ξ′j | ≤ 2πk
(
d
2

)
M−q−1. Using that M = kdC1d for a sufficiently large constant C1 > 0, we

obtain |ξ′j | ≤M−q.
Finally, we use the series expansion of exp(.) to obtain

x̂fj = ξ′j +
∑
h≥0

(
− 2πi

M

)h 1
h! ·

∑
`∈[k]

〈a`, bj〉h.

We now show that in our expression for x̂fj the summands
(
− 2πi

M

)h 1
h! · Vj,h lie sufficiently far

apart, so that each summand can be reconstructed from an approximation of x̂fj .

Claim 3. Let j ∈ [k], H ∈ [d], and let x̃fj be an additive ε‖x̂‖2 approximation of x̂fj . Then

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h =

(
− 2πi

M

)H 1
H! ·

(
Vj,H + ξ′′j,H

)
,

for a complex number ξ′′j,H satisfying

|ξ′′j,H | < 1/3.
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Proof. Note that by Parseval’s identity, we have ‖x̂‖2 =
√
N ·‖x‖2 =

√
N · k. Therefore, |x̃fj−x̂fj | ≤

ε‖x̂‖2 ≤ ε
√
N · k ≤

√
k/N as ε = 1/N . Since N = M2dq and M ≥ k, we obtain |x̃fj − x̂fj | ≤

M−(q−1).
Note that ∣∣∣∣ ∑

h>H

(
− 2πi

M

)h 1
h! · Vj,h

∣∣∣∣ ≤ ∑
h>H

(
2π
M

)h 1
h! ·

∑
`∈[k]

〈a`, bj〉h

≤
(

2π
M

)H 1
H! ·

∑
h>H

(
2π
M

)h−H · k · dh
=
(

2π
M

)H 1
H! · kd

H ·
∑
h>H

(
2πd
M

)h−H
.

Since M is sufficiently larger than d, the latter sum can be bounded by 4πd
M , and hence∣∣∣∣ ∑

h>H

(
− 2πi

M

)h 1
h! · Vj,h

∣∣∣∣ ≤ (
2π
M

)H 1
H! ·

4πkdH+1

M ≤ 1

10
·
(

2π
M

)H 1
H! , (5)

using the fact that M = kdC1d for a sufficiently large constant C1 > 0 and H ∈ [d].
We now, using Claim 2, decompose:

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h

=
(
x̃fj − x̂fj

)
+

(
x̂fj −

H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h

)
=
(
x̃fj − x̂fj

)
+ ξ′j +

(
− 2πi

M

)H 1
H! · Vj,H +

∑
h>H

(
− 2πi

M

)h 1
h! · Vj,h.

Recall that |x̃fj − x̂fj | ≤ M−(q−1) and |ξ′j | ≤ M−q. We use H ∈ [d] and our choice of M = kdC1d

and q = C2d for sufficiently large constants C1, C2 > 0 to conclude that M−(q−1) ≤ 1
10 ·

(
2π
M

)H 1
H! .

Together with inequality (5), this gives

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h =

(
− 2πi

M

)H 1
H! ·

(
Vj,H + ξ′′j,H

)
,

for a complex number ξ′′j,H with |ξ′′j,H | < 1/3.

Repeatedly applying the above claim allows us to reconstruct the numbers Vj,0, . . . , Vj,d:

Claim 4. Fix j ∈ [k]. Let ε = 1
N . Given an additive ε‖x̂‖2 =

√
k/N approximation to x̂fj we can

infer the exact values of

Vj,h :=
∑
`∈[k]

〈a`, bj〉h,

for any h ∈ [d], in time poly(d, log k).

Proof. Suppose that we have already computed the sums Vj,h for all 0 ≤ h < H. Then we know the
left hand side of Claim 3. Since |ξ′′j,H | < 1/3, there is a unique integer Vj,H =

∑
`∈[k]〈a`, bj〉H that
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satisfies the equation in Claim 3. Hence, we can infer Vj,H . Therefore, we can iteratively compute
Vj,0, Vj,1, . . . , Vj,d−1.

Note that when evaluating expressions of the form
(
− 2πi

M

)h 1
h! , we can compute them up to pre-

cision ε in time poly(d, log k), since it suffices to perform arithmetic on numbers with poly(d, log k)
digits. This yields another additive error in the same order of magnitude as in the proof of Claim 3.
The same error analysis therefore shows that this precision is sufficient to compute the exact integers
Vj,h.

The above claim postulates that we can infer the values Vj,h for h ∈ [d]. We next show that
these values allow us to determine whether there exists a pair of orthogonal vectors.

Claim 5. Given the values Vh := Vj,h for all h ∈ [d] and some fixed j, we can find out whether
there exists an ` such that 〈a`, bj〉 = 0, in time poly(d, log k).

Proof. This relies on the observation that we can write Vh as

Vh =

d−1∑
r=0

Zr · rh

for
Zr := |{` ∈ [k] | 〈a`, bj〉 = r}| .

In other words, the values Vh are obtained from the values Zr by multiplication with a Vandermonde
matrix. Since this d × d matrix is invertible and all elements of this matrix and Vh are of value
at most k · dd, we can infer the values Zr from the values Vh in poly(d, log k) time. Indeed, we
can compute the inverse of this Vandermonde matrix multiplied by its determinant (so that the
resulting matrix contains integer entries) using poly(d) operations on integers with poly(d, log k)
digits (each such operation takes poly(d, log k) time). Multiplying the vector of Vh’s by this matrix
yields Zr’s multiplied by the determinant of the Vandermonde matrix, which can be computed and
canceled using poly(d, log k) operations by manipulating large integers with poly(d, log k) number
of digits. This yields the value Z0 = |{` | 〈a`, bj〉 = 0}| and thus allows us to decide whether bj ∈ B
is orthogonal to some vector in A.

Using Claims 4 and 5 over all Fourier evaluations {x̂f}f∈F we can determine in time k ·
poly(d, log k) whether whether (A,B) contains an orthogonal pair. Thus, for δ ∈ (0, 1/2) an
algorithm for non-equispaced Fourier transform running in time k2−δ′ poly(log(N/ε)) for ε = 1/N ,
would imply the existence of a k2−δ′ poly(d, log k) time algorithm for OVk,d, since log(N/ε) =
2 logN = O(d2) logM = poly(d, log k) for any choice of constants C1, C2 > 0. For any constant
c > 0, if dimension d = c log k, this running time can be bounded by O(k2−δ) as long as δ′ ≥ 2δ,
contradicting the Orthogonal Vectors Hypothesis (Conjecture 1). Finally, it remains to note that
since d = c log k and

N = M2dq = (kdC1d)2dq = (c log k)C1C2c3 log3 k,

we have that 2c
′(logN/ log logN)1/3 ≤ k ≤ 2c

′′(logN)1/3
as long as c′ is sufficiently small as a function

of c, C1, C2, and c′′ is sufficiently large as required.
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11 Robust analysis of adaptive aliasing filters.

This section is devoted to our technical innovation regarding adaptive aliasing filters. This a delicate
analysis of how the filters act on an arbitrary vector. Such a robustification will be useful in order
to control the amount of energy a measurement receives from the elements outside of the head.
The absence of the properties derived in this section constitutes the restriction that has driven the
“exactly k-sparse” assumption in [KVZ19].

11.1 One-dimensional case.

We first develop the appropriate machinery for the one-dimensional case. Generalizing the idea to
higher dimensions can be done using tensoring, as we shall show in the next subsection. We first
present a standalone computation of the Gram matrix of adaptive aliasing filters corresponding to
a specific tree T ⊆ T full

n .

Lemma 14. (Gram Matrix of adaptive aliasing filters) Consider a tree T ⊆ T full
n , and two distinct

leaves v, v′ of T . Let Gv (resp. Gv′) be the (v, T )-isolating (resp. (v′, T )-isolating) filter, as per
(4). Then,

1. (diagonal terms) the energy of the filter corresponding to v is proportional to 2−wT (v). In
particular,

‖Ĝv‖22 :=
∑
ξ∈[n]

|Ĝv(ξ)|2 =
n

2wT (v)
.

2. (cross terms) the adaptive aliasing filters corresponding to v and v′ are orthogonal, i.e.

〈Ĝv, Ĝv′〉 :=
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ) = 0.

Proof. We prove each bullet separately. Both bullets follow by symmetry considerations: cancella-
tions that occur either by the fact that roots of unity cancel across a poset of a group, or by the
sign change happening to specific complex exponentials at branching points of the tree T . The first
one uses Kraft’s equality.

Proof of Bullet 1. Let f := fv and f ′ := fv′ denote the labels of v and v′, respectively. By (4),
we have

|Ĝv(ξ)|2 = 4−wT (v) ·
∏

`∈Anc(v,T )

(
1 + e

2πi ξ−f
2`+1

)
·
(

1 + e
−2πi ξ−f

2`+1

)
= 4−wT (v) ·

∏
`∈Anc(v,T )

(
2 + e

2πi ξ−f
2`+1 + e

−2πi ξ−f
2`+1

)
= 4−wT (v) ·

∑
S,T⊆Anc(v,T )

S∩T=∅

2|Anc(v,T )|−|S∪T | · e2πi(ξ−f)·
(∑

`∈S
1

2`+1−
∑
`∈T

1

2`+1

)

= 4−wT (v) ·

2wT (v) +
∑

S,T⊆Anc(v,T )
S∩T=∅,S∪T 6=∅

2wT (v)−|S∪T | · e2πi(ξ−f)·
(∑

`∈S
1

2`+1−
∑
`∈T

1

2`+1

)
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Note that the expression exprS,T =
∑

`∈S
1

2`+1 −
∑

`∈T
1

2`+1 inside the complex exponential can
be 0 if and only if S = T , which is precluded by the fact that S ∩ T = ∅, S ∪ T 6= ∅. Thus, this
gives rise to the exponential e2πi(ξ−f)·exprS,T , which cancels out when summing over all ξ. Hence,
we obtain that ∑

ξ∈[n]

|Ĝv(ξ)|2 =
∑
ξ∈[n]

4−wT (v) ·
(

2wT (v) + 0
)

=
n

2wT (v)
.

Proof of Bullet 2. By (4), we have that

〈Ĝv, Ĝv′〉 =
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ)

=
∑
ξ∈[n]

 1

2wT (v)

∏
`∈Anc(v,T )

(
1 + e

2πi ξ−f
2`+1

) ·
 1

2wT (v′)

∏
`∈Anc(v′,T )

(
1 + e

−2πi ξ−f
′

2`+1

)
= 2−wT (v)−wT (v′) ·

∑
ξ∈[n]

∑
S⊆Anc(v,T )
S′⊆Anc(v′,T )

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1

= 2−wT (v)−wT (v′) ·
∑

S⊆Anc(v,T )
S′⊆Anc(v′,T )

∑
ξ∈[n]

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1

:= 2−wT (v)−wT (v′) · (A+B),

where A is sum of the terms that satisfy S 6= S′, and B is sum of terms satisfying S = S′. We will
show that A = B = 0 separately. The equality A = 0 holds by a summation over all ξ and the fact
that roots of unity cancel across a poset of a subgroup, whereas the equality B = 0 by a symmetry
argument which exploits the sign change in the lowest common ancestor of v and v′.

Computing A. We will prove that if S 6= S′ then∑
ξ∈[n]

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1 = 0,

which suffices to establish A = 0. Note that

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1 =

e
2πiξ·(

∑
`∈S

1

2`+1−
∑
`∈S′

1

2`+1 ) · g,

where g = e
2πif ′·

∑
`∈S′

1

2`+1−2πif ·
∑
`∈S

1

2`+1 does not depend on ξ. Summing over all ξ ∈ [n] and
taking into account that

∑
`∈S

1
2`+1 −

∑
`∈S′

1
2`+1 6= 0 by the fact that S 6= S′, yields the desired

result (the summation can also be viewed a summation of the roots of unity over n
2max{S4S′} copies

of a poset of an additive subgroup of size 2max{S4S′}, where 4 denotes symmetric difference of
sets).
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Computing B. This quantity contains only terms corresponding to S = S′. Note that in this
case S ⊆ Anc(v, T ) ∩Anc(v′, T ), and we have

B =
∑

S⊆Anc(v,T )∩Anc(v′,T )

∑
ξ∈[n]

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 =

n ·
∑

S⊆Anc(v,T )∩Anc(v′,T )

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 .

Let u be the lowest common ancestor of v, v′ in tree T , i.e. the node on which the paths from the root
to those two nodes split. Partition the powerset of Anc(v, T ) ∩Anc(v′, T ) to pair (S, S ∪ {lT (u)}),
where lT (u) /∈ S. We shall prove that

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 + e
2πi(f ′−f)·

∑
`∈S∪{lT (u)}

1

2`+1 = 0.

Indeed, by definition of u we have that (f ′− f) ≡ 2lT (u) mod 2lT (u)+1, which in turn gives that

e
2πi(f ′−f)· 1

2lT (u)+1 = e
2πi 2lT (u)

2lT (u)+1 = eπi = −1. This gives

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 + e
2πi(f ′−f)·

∑
`∈S∪{lT (u)}

1

2`+1 =

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 ·
(

1 + e
2πi(f ′−f)· 1

2lT (u)+1

)
= 0.

Thus, we conclude that B = 0, which finishes the proof of this Lemma.

The next lemma proves that for any tree T , the sum of squared values of adaptive aliasing
filters corresponding to all leaves of T is equal to 1 at every frequency. The (v, T )-isolating filters
for different leaves v of T can have very different behaviors and shapes in the Fourier domain,
nevertheless, these filters collectively act as an isometry in the sense that the sum of their squared
values is 1 everywhere in the Fourier domain.

Lemma 15. (Total contribution of adaptive aliasing filters to one frequency) Consider a tree T ⊆
T full
n . For every leaf v of T , let Gv denote the (v, T )-isolating filter as per (4), then it holds that

∀ξ ∈ [n] :
∑

v∈Leaves(T )

|Gv(ξ)|22 = 1.

Proof. Fix ξ ∈ [n]. By (4), we have∑
v∈Leaves(T )

|Ĝv(ξ)|2 =

∑
v∈Leaves(T )

4−wT (v) ·
∏

`∈Anc(v,T )

∣∣∣1 + e2πi(ξ−fv)/2`+1
∣∣∣2 =

∑
v∈Leaves(T )

4−wT (v) ·
∏

`∈Anc(v,T )

(
2 + e2πi(ξ−fv)/2`+1

+ e−2πi(ξ−fv)/2`+1
)

=

∑
v∈Leaves(T )

2−wT (v) ·
∏

`∈Anc(v,T )

(
1 + cos

(
2π(ξ − fv)/2`+1

))
=

∑
v∈Leaves(T )

2−wT (v)
∑

S⊆Anc(v,T )

∏
`∈S

cos

(
2π
ξ − fv
2`+1

)
.
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Thus, it suffices to prove that for all ξ ∈ [n]∑
v∈Leaves(T )

2−wT (v)
∑

S⊆Anc(v,T )

∏
`∈S

cos

(
2π
ξ − fv
2`+1

)
= 1. (6)

We will implicitly interchange the summation between v and S in (6) and carefully group terms
together so that most of them cancel out, due to the sign change in each branching point. In
particular, fix a branching point, i.e. a node u ∈ T with two children. We will estimate the
contribution of all sets S such that max(S) = lT (u) in (6). Let ul be the left child of u in T , and
let ur be the right child of u in T . Note that,

∀f ∈ FreqConeT (ul), f
′ ∈ FreqConeT (ur) : f − f ′ ≡ 2lT (u) mod 2lT (u)+1.

In turn, this implies that for any ξ ∈ [n] and any two f, f ′ as above we have: (ξ−f) ≡ (ξ−f ′)+2lT (u)

mod 2lT (u)+1, which gives the desired change in the branching point:

cos

(
2π

ξ − f
2lT (u)+1

)
= −cos

(
2π

ξ − f ′

2lT (u)+1

)
.

Thus, if we let Tr and Tl denote the subtrees of T rooted at ur and ul, respectively, then the total
contribution of a set S that satisfies max(S) = lT (u) and S ⊆ Anc(v, T ) for some leaf v of T to (6)
can be expressed as

∏
`∈S\{lT (u)}

cos

(
2π
ξ − fu
2`+1

)
·

∑
v∈Tr

1

2wT (v)
−
∑
v∈Tl

1

2wT (v)


=

∏
`∈S\{br}

cos

(
2π
ξ − fu
2`+1

)
· 2−wT (u)

∑
v∈Tr

1

2wTr (v)
−
∑
v∈Tl

1

2wTl (v)

 = 0.

The latter holds since
∑

v∈Tr
1

2wTr (v) = 1 by Kraft’s equality; similarly
∑

v∈Tl
1

2
wTl

(v) = 1.

Thus, we will get cancellation of the contribution of all non-empty sets S by summing over all
branching points. On the other hand, the contribution of the empty set S = ∅ is exactly 2−wT (v),
for each leaf v. The sum of all those contributions is 1, again by Kraft’s equality, giving the lemma.

11.2 Extension to d dimensions.

We are now ready to proceed with the generalization of the robustness properties of the adaptive
aliasing filters given in Section11.1 to high dimensions. The following lemma states that the isolating
filters constructed in Lemma 9, collectively for all leaves, preserve (in particular, do not increase)
the energy of a signal.

Lemma 16. Consider a tree T ⊆ T fullN . If for every leaf v of T we let Ĝv be the Fourier domain
(v, T )-isolating filter constructed in Lemma 9, then for every ξ ∈ [n]d,∑

v∈Leaves(T )

|Ĝv(ξ)|2 = 1.

Proof. The proof is by induction on the dimension d.

38



Base of induction: Lemma 15 precisely proves the inductive claim for d = 1.

Inductive step: Suppose that the inductive hypothesis holds for d − 1 dimensional isolating
filters. Given this inductive hypothesis, we want to prove that the inductive claim holds for d
dimensional filters. Let T be a subtree of T fullN , where N = nd. For every leaf v of tree T , let
v0, v1, · · · vl denote the path from root to v where v0 is the root and vl = v. We let pv denote a
vertex in T , defined as

pv :=

{
vlog2 n if lT (v) ≥ log2 n

v otherwise
.

Now, we construct the tree T ∗ by making a copy of the tree T and then removing every node
which is at distance more than log2 n from the root. Let the nodes of T ∗ be labeled by projecting
the labels of T to their first coordinate as follows,

for every node u ∈ T ∗ : fu = f1, where (f1, f2, · · · fd) is the label of u in T.

One can easily verify that the set P := {pv : v ∈ Leaves(T )} specifies the set Leaves(T ∗). For
every u ∈ P let Hu be a (u, T ∗)-isolating filter, constructed as in Lemma 9.

Moreover, for every leaf u ∈ P we define Tu to be a copy of the subtree of T which is rooted at
u. We label the nodes of the tree Tu by projecting the labels of T to their last d− 1 coordintates
as follows,

for every node z ∈ Tu : fz = (f2, f3, · · · fd), where (f1, f2, · · · fd) is the label of u in T.

For every leaf v of T , let Q̂v be the Fourier domain (v, Tpv)-isolating filter constructed in Lemma 9.
Note that in case pv = v, the tree Tpv will be empty and by convention we define our (v, Tpv)-

isolating filter to be Q̂v ≡ 1. Therefore, using these definitions, for every leaf v ∈ Leaves(T ), the
(v, T )-isolating filter Ĝv constructed in Lemma 9 satisfies

Ĝv(ξ) ≡ Hpv(ξ1) ·Qv(ξ2, ξ3, . . . ξd),

for every ξ = (ξ1, ξ2, . . . , ξd) ∈ [n]d. Hence, we can write∑
v∈Leaves(T )

∣∣∣Ĝv(ξ)
∣∣∣2 =

∑
v∈Leaves(T )

|Hpv(ξ1) ·Qv(ξ2, ξ3, . . . ξd)|2

=
∑
u∈P

∑
v∈Leaves(T )

s.t. pv=u

|Hu(ξ1)|2 · |Qv(ξ2, ξ3, . . . ξd)|2

=
∑
u∈P
|Hu(ξ1)|2

∑
v∈Leaves(T )

s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 .

We proceed by proving that for every u ∈ P ,
∑

v∈Leaves(T )
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 = 1. Recall that for

every leaf v ∈ Leaves(T ), Qv is a (v, Tpv)-isolating filter, constructed in Lemma 9. Therefore, for
every leaf v of T such that pv = u, Qv is indeed a (v, Tu)-isolating filter as per the construction of
Lemma 9. Hence, ∑

v∈Leaves(T )
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 =
∑

v∈Leaves(Tu)

|Qv(ξ2, ξ3, . . . ξd)|2 .
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Now we can invoke the inductive hypothesis because Tu is a subtree of T fullN ′ where N ′ = nd−1.
therefore, ∑

v∈Leaves(T )
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 =
∑

v∈Leaves(Tu)

|Qv(ξ2, ξ3, . . . ξd)|2 = 1.

Consequently, we have,∑
v∈Leaves(T )

∣∣∣Ĝv(ξ)
∣∣∣2 =

∑
u∈P
|Hu(ξ1)|2 =

∑
u∈Leaves(T ∗)

|Hu(ξ1)|2 = 1,

where the last equality follows because Hu is a (u, T ∗)-isolating filter as per the construction of
Lemma 8 and hence by Lemma 15,

∑
u∈Leaves(T ∗) |Hu(ξ1)|2 = 1. This completes the inductive

proof and ergo the Lemma.

We readily find that the following corollary of the above lemma holds,

Corollary 1. The Fourier domain isolating filter Ĝ constructed in Lemma 9 satisfies ‖Ĝ‖∞ ≤ 1.
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12 Robust Sparse Fourier Transform I.

The section is devoted to proving our first result on robust Sparse Fourier transforms, which
illustrates techniques II to IV and partially technique I. We first remind the reader about the high
SNR regime we consider.

k-High SNR Regime. A vector x : [n]d → C satisfies the k-high SNR assumption, if there exists
vectors w, η : [n]d → C such that i) x̂ = ŵ + η̂, ii) supp(ŵ) ∩ supp(η̂) = ∅, iii) |supp(ŵ)| ≤ k and
iv) |ŵf | ≥ 3 · ‖η̂‖2, for every f ∈ supp(ŵ). In the rest of this section we prove the following main
theorem.

Theorem 13 (Robust Sparse Fourier Transform). Given oracle access to x : [n]d → C with
x = w + η in k-high SNR model and parameter ε > 0, we can find using

m = Õ

(
k7/3 +

k2

ε

)
samples from x and in Õ

(
k3

ε

)
time a signal χ̂ such that

‖χ̂− x̂‖22 ≤ (1 + ε) · ‖η̂‖22,

with high probability in N .

For every tree T and node v ∈ T , we let x̂v be the vector x̂FreqCone(v), i.e. signal x̂ supported on
frequencies in the frequency cone of v and zeroed out everywhere else. At all times, for every v ∈ T ,
our algorithm maintains a signal χ̂v : [n]d → C that is supported on FreqConeT (v). This signal will

serve as our estimate for ŵv. Initially, all these vectors are going to be {0}nd . The execution of
our algorithm ensures that we can always keep sparse representations of those vectors. Parameters
and variables n, d and N = nd are treated as global.

Furthermore, for any signal y : [n]d → C and parameter µ ≥ 0 we define

headµ(y) :=
{
j ∈ [n]d : |yj | ≥ 3µ

}
. (7)

Under this notation, we are interested in recovering the set head‖η̂‖2(x̂), as well as obtain accurate
estimations for the values of x̂ on frequencies in set head‖η̂‖2(x̂). Using the notion of headµ(y), one
can see that a signal x is in the k-high SNR regime iff there exists a µ > 0 such that |headµ(x̂)| ≤ k
and µ ≥

∥∥x̂− x̂headµ(x̂)

∥∥
2
.

At all times, we keep a set Est, corresponding to the coordinates in supp(ŵ) that we have
estimated. We define Lv := FreqConeT (v)∩ (supp(ŵ) \ Est), which corresponds to the unestimated
coordinates in the support of w that lie in the frequency cone of v.

Our main algorithm consists of an outer loop that we call RobustSparseFFT and an inner
loop that we call RobustPromiseSFT. Our algorithm also makes use of an auxiliary primitive
for estimating the values of located frequencies as well as a primitive for testing whether a signal
is “heavy” (meaning that it contains a head element). In the rest of this section we first give the
primitives Estimate and HeavyTest together with the guarantee on their performance. Then
we present the main algorithm and prove its performance. The HeavyTest routine is analogous
to ZeroTesT from Section 6. However, the RIP property alone does not suffice (and hence we
cannot pick a deterministic collection of samples). Instead, we use a random collection of samples,
which suffices for upper bounding the contribution of the tail while simultaneously satisfying RIP.
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12.1 Computational Primitives for the Robust Setting.

In this subsection we give some of the primitives that will be used in our algorithms. The proof of
correctness of these primitives is postponed to subsection 12.3.

The very first primitive we present is HeavyTest, see Algorithm 4. This primitive performs a
test on the signal to detect whether a given frequency cone contains heavy elements or not.

Algorithm 4 Test whether v is a frequency-active node, i.e. ‖(x̂− χ)v‖2 > 2‖η̂‖2
1: procedure HeavyTest(x, χ̂, T, v,m, θ)
2: f ← fv
3: (Gv, Ĝv)←MultiDimFilter(T, v, n)
4: //(v, T )-isolating filters as per Lemma 9
5: for z = 1 to 32 logN do
6: RIPzm ← Multiset of m i.i.d. uniform samples from [n]d

7:

8: hz∆ ←
∑
ξ∈[n]d

(
e2πi ξ

>∆
n · χ̂(ξ) · Ĝv(ξ)

)
for every ∆ ∈ RIPzm

9: Hz ← 1
|RIPzm|

∑
∆∈RIPzm

∣∣∣N ·∑j∈[n]d Gv(∆− j) · x(j)− hz∆
∣∣∣2

10: if Medianz∈[32 logN ] {Hz} ≤ θ then
11: //θ = 5‖η̂‖22.
12: return False
13: else
14: return True

Lemma 17 (HeavyTest guarantee). Consider signals x, χ̂ : [n]d → C and an arbitrary subtree

T of T fullN . For an arbitrary leaf v of T , let ŷ := (x̂− χ̂) · Ĝv, where Ĝv be the Fourier domain
(v, T )-isolating filter constructed in Lemma 9. Then the following statements hold, for any θ > 0:

• If there exists a set S ⊆ [n]d such that ‖ŷS‖22 >
11θ
10 , then HeavyTest(x, χ̂, T, v,m, θ) (Al-

gorithm 4) outputs True with probability 1 − 1
N16 , provided that m is a large enough integer

satisfying

m = Ω

(
|S| ·

‖ŷ‖22
‖ŷS‖22

· log2 |S| logN

)
.

• If ‖ŷ‖22 ≤ θ/5, then HeavyTest outputs False with probability 1− 1
N5 .

• The sample complexity of this procedure is Õ
(
2wT (v) ·m

)
.

• The runtime of the HeavyTest procedure is Õ
(
‖χ̂‖0 ·m+ 2wT (v) ·m

)
.

Next, we present the second auxiliary primitive Estimate in Algorithm 4.

Lemma 18 (Estimate guarantee). Consider signals signals x, χ̂ : [n]d → C, a subtree T of T fullN ,
and an integer parameter m. For a subset S ⊆ Leaves(T ), the procedure Estimate(x, χ̂, T, S,m)

(see Algorithm 5) outputs
{
Ĥv

}
v∈S

such that

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≤ 16

m

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ)
∣∣∣2
 ≥ 1− |S|

N8
.
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Algorithm 5 For S ⊆ T , estimates (x̂− χ̂)S by isolating S from every node in T .

1: procedure Estimate(x, χ̂, T, S,m)
2: for v ∈ S do
3: f ← fv
4: (Gv, Ĝv)←MultiDimFilter(T, v, n) . (v, T )-isolating filters as per Lemma 9
5: for z = 1 to 16 logN do
6: RIPzm ← Multiset of B i.i.d. uniform samples from [n]d

7: hzv ←
∑

∆∈RIPzm
e−2πi f

>∆
n
∑
ξ∈[n]d e

2πi ξ
>∆
n · χ̂(ξ) · Ĝv(ξ)

8: Hz
v ← 1

|RIPzm|

(
N ·

∑
∆∈RIPzm

(
e−2πi f

>∆
n
∑
j∈[n]d Gv(∆− j) · x(j)

)
− hzv

)
9: Ĥv ←Medianz∈[16 logN ] {Hz

v} . Median of real and imaginary parts separately

10: return
{
Ĥv

}
v∈S

The sample complexity of this procedure is Õ
(
m ·

∑
v∈S 2wT (v)

)
and the runtime of the procedure is

Õ
(
m ·

∑
v∈S 2wT (v) + |S| ·m · ‖χ̂‖0

)
.

Lastly, we need the following primitive whose objecive is to find a subset of identified leaves
that are cheap to estimate on average.

Claim 6 (ExtractCheapSubset guarantee). For every subtree T of T full
N and every subset

S ⊆ Leaves(T ) that satisfies
∑

u∈S 2−wT (u) ≥ 1
2 , the primitive ExtractCheapSubset(T, S)

(see bottom of Algorithm 7) outputs a non-empty subset L ⊆ S such that

|L| · (8 + 4 log |S|) ≥ max
v∈L

2wT (v).

12.2 Main Algorithm.

In this subsection we present our main sparse FFT algorithm. The algorithms consists of an outer
loop and an inner loop. The outer loop, called RobustSparseFT, always maintains a vector χ̂ a
tree Frontier such that

headµ(x̂− χ̂) ⊆ ∪u∈Frontier FreqCone(u).

At every point in time, we explore the frequency cones of the low-weight Frontier by running the
RobustPromiseSFT algorithm. For the pseudocodes of the routines RobustPromiseSFT and
RobustSparseFT, see Algorithms 6 and 7, respectively.

Overview of RobustPromiseSFT (Algorithm6): Consider an invocation of RobustPromis-
eSFT(x, χ̂in,SideTree, v, b, k, µ). Suppose that ŷ := x̂− χ̂in is a signal in the k-high SNR regime,
i.e., ŷ has k heavy frequencies and the value of each such heavy frequency is at least 3 times higher
than the tail’s norm. More formally, let head ⊆ [n]d denote the set of heavy (head) frequencies of
ŷ and suppose that |head| ≤ k, and the tail norm of ŷ satisfies ‖ŷ − ŷhead‖2 ≤ µ and additionally
suppose that |ŷ(f)| ≥ 3µ for every f ∈ head. If SideTree fully captures the heavy frequencies of
ŷ, i.e., head ⊆ supp(SideTree), and the number of heavy frequencies in frequency cone of node v
is bounded by b, i.e., |head ∩ FreqConeSideTree(v)| ≤ b, then RobustPromiseSFT finds a signal

χ̂v such that supp(χ̂v) = head ∩ FreqConeSideTree(v) := S and ‖ŷS − χ̂v‖22 ≤
µ2

20 . An example of
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v

SideTree

subtree T

yet to be explored subtree

Marked leaves

recovered & subtracted

leaves (frequencies)
head ∩ FreqConeSideTree(v)

Figure 4: Illustration of an instance of RobustPromiseSFT (Algorithm 6). This procedure takes
in a tree SideTree (shown with thin edges) together with a leaf v ∈ Leaves(SideTree) and
adaptively explores/constructs the subtree T rooted at v to find all heavy frequencies that lie
in FreqConeSideTree(v). If head denotes the set of heavy frequencies, then the algorithm finds
head ∩ FreqConeSideTree(v) by exploring T . Once the identity of a leaf is fully revealed, the
algorithm adds that leaf to the set Marked. When the number of marked leaves grows to the point
where marked frequencies can be estimated cheaply, our algorithm estimates them all in a batch,
subtracts off the estimated signal, and removes all corresponding leaves from T .

the input tree SideTree is illustrated in Figure 4 with thin solid black edges. Additionally, one
can see node v which is a leaf of SideTree in this figure.

Algorithm 6 recovers heavy frequencies in the subree of v, i.e., S = head∩FreqConeSideTree(v),
by iteratively exploring the subtree of SideTree rooted at v, which we denote by T , and simul-
taneously updating χ̂v. We show an example of subtree T at some iteration of our algorithm in
Figure 4 with thick solid edges. Our algorithm, in all iterations, maintains a subtree T such that
the frequency cone of each of its leaves contain at least one head element, i.e.,

for every u ∈ Leaves(T ) : FreqConeSideTree∪T (u) ∩ head 6= ∅. (8)

We demonstrate, in Figure 4, the leaves that correspond to set S = head ∩ FreqConeSideTree(v)
via leaves at bottom level of the subtree rooted at v. One can easily verify (8) in this figure by
noting that the frequency cone of each leaf of T contains at least one element from the set head.
Additionally, at every iteration of the algorithm, the union of all frequency cones of subtree T
captures all heavy frequencies that are not recovered yet, i.e.,

S \ supp(χ̂v) ⊆ supp(SideTree ∪ T ). (9)

In Figure 4, we show the set of fully recovered leaves (frequencies), i.e., supp(χ̂v), using red thin
dashed subtrees. These frequencies are subtracted from the residual signal ŷ − χ̂v and their corre-
sponding leaves are removed from subtree T , as well. One can verify that condition 9 holds in the
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example depicted in Figure 4. Moreover, the estimated value of every frequency that is recovered
so far, is accurate up to an average error of µ√

20b
. More precisely, in every iteration of the algorithm

the following property is maintained,∑
f∈supp(χ̂v) |ŷ(f)− χ̂v(f)|2

|supp(χ̂v)|
≤ µ2

20b
. (10)

At the start of the procedure, subtree T is initialized to be the leaf v, i.e., T = {v}. Moreover,
we initialize χ̂v ≡ 0. Trivially, these initial values satisfy (8), (9), and (10). The algorithm also
keeps a subset of leaves denoted by Marked that contains the leaves of T that are fully identified,
that is the set of leaves that are at the bottom level and hence there is no ambiguity in their
frequency content. Initially Marked is empty. We show the set of marked leaves in Figure 4 using
blue squares. The algorithm operates by picking the unmarked leaf of T that has the smallest
weight. Then the algorithm explores the children of this node by running HeavyTest on them to
detect if any heavy frequencies lie in their frequency cone. If a child passes the HeavyTest the
algorithm updates tree T by adding that child to T . As soon as a leaf of T gets to the bottom level
and becomes a leaf of T full

N , the algorithm marks it, i.e., adds that leaf to the Marked set. It can
be seen in Figure 4 that all marked leaves are at the bottom level of the tree. The marked leaves
need not be explored any further because they are at the bottom level and their frequency content
is fully identified. These operations ensure that the invariants (8), (9), and (10) are maintained.

Once the size of set Marked grows sufficiently, the algorithm estimates the values of the marked
frequencies. More precisely, at some point, the size of Marked will be comparable to the maximum
weight of the leaves it contains, and when this happens, the values of all marked frequencies can be
estimated cheaply. Hence, when Marked is a cheap to estimate set of leaves, our algorithm esimates
those frequencies in a batch up to an average error of µ

20b , updates χ̂v accordingly and removes all
estimated (Marked) leaves from T . This ensures that invariants (8), (9), and (10) are maintained.
The estimated leaves are illustrated in Figure 4 using red thin dashed subtrees. We also demontrate
the subtrees of T that contain head element and are yet to be explored by our algorithm using
gray cones and dashed edges in Figure 4. The gray cone means that there are heavy elements in
that frequency cone that need to be identified as that node has not reached the bottom level yet.

Finally, the algorithm keeps tabs on the runtime it spends and ensures that even if the in-
put signal does not satisfy the preconditions for successful recovery, in particular if |head ∩
FreqConeSideTree(v)| > b, the runtime stays bounded. Additionally, the algorithm performs a
quality control by running a HeavyTest on the residual and if the recovered signal is not correct
due to violation of some preconditions, it reflects this in its output.

Overview of Algorithm 7: Consider an invocation of RobustSparseFT(x, k, ε, µ). Suppose
that x̂ is a signal in the k-high SNR regime, i.e., x̂ has k heavy frequencies and the value of each
such heavy frequency is at least 3 times higher than the tail’s norm. More formally, let head ⊆ [n]d

denote the set of heavy (head) frequencies of x̂ and suppose that |head| ≤ k, and the tail norm of
x̂ satisfies ‖x̂ − x̂head‖2 ≤ µ and additionally suppose that |x̂(f)| ≥ 3µ for every f ∈ head. The
primitive RobustSparseFT finds a signal χ̂ such that ‖x̂− χ̂‖22 ≤ (1 + ε)µ2.

Algorithm 7 recovers heavy frequencies of the input signal x̂, i.e., head, by iteratively exploring
the tree that captures the heavy frequencies, which we denote by Frontier, and simultaneously
updating the proxy signal χ̂. At the begining of the procedure, tree Frontier only consists of a
root and will be dynamically changing throughout the execution of our algorithm. Moreover, χ̂ is
initially zero. The algorithm also maintains a subset of leaves denoted by Marked that contains
the leaves of Frontier that are fully identified, that is the set of leaves that are at the bottom
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Algorithm 6 The Inner Loop of Sparse FFT Algorithm

1: procedure RobustPromiseSFT(x, χ̂in,SideTree, v, b, k, µ)
2: . µ: upper bound on tail norm ‖η‖2
3: χ̂out ← {0}n

d
. Sparse vector to approximate (x̂− χ̂in)FreqConeSideTree(v)

4: Marked← ∅ . Set of marked nodes to be estimated later
5: Let T denote the subtree of SideTree rooted at v – i.e., T ← {v}
6: repeat
7: if |Leaves(T )|+ ‖χ̂v‖0 > b then

8: return
(

False, {0}nd
)

. Exit because budget of v is wrong

9: if Marked 6= ∅ and |Marked|
maxu∈Marked 2wT (u) ≥ 1

4+2 log b then

10: . The set of marked frequencies that are cheap to estimate on average

11:

{
Ĥu

}
u∈Marked

← Estimate
(
x, χ̂in + χ̂out,SideTree ∪ T,Marked, 368b

|Marked|

)
12: for u ∈ Marked do
13: χ̂out(fu)← Ĥu

14: Remove node u from T
15: Marked← ∅
16: continue
17: z ← argminu∈Leaves(T )\MarkedwT (u) . Find the minimum weight unmarked leaf in T

18: if z ∈ Leaves(T full
N ) then . Frequency fz and leaf z are fully identified

19: Marked← Marked ∪ {z}
20: else
21: zleft := left child of z and zright := right child of z
22: T ′ ← T ∪ {zleft, zright} . Explore children of z
23: Heavy` ← HeavyTest

(
x, χ̂in + χ̂v,SideTree ∪ T ′, zleft, O(b log3N), 6µ2

)
24: Heavyr ← HeavyTest

(
x, χ̂in + χ̂v,SideTree ∪ T ′, zright, O(b log3N), 6µ2

)
25: if Heavy` then
26: Add zleft as the left child of z to tree T

27: if Heavyr then
28: Add zright as the right child of z to tree T

29: if z 6= v and both Heavy` and Heavyr are False then

30: return
(

False, {0}nd
)

. Exit because budget of v is wrong

31: until T has no leaves besides v
32: if HeavyTest

(
x, χ̂in + χ̂v,SideTree, v, O(k log3N), 6µ2

)
then

33: . The number of heavy coordinates in FreqConeSideTree(v) is more than b

34: return
(

False, {0}nd
)

35: else
36: return (True, χ̂out)

level and hence there is no ambiguity in their frequency content (there is exactly one element in
frequency cone of marked leaves). Tree Frontier, in all iterations of our algorithm, maintains
the invariant that the frequency cone of each of its leaves contain at least one head element and
furthermore the frequency cone of each of its unmarked leaves contain at least b+ 1 head element,
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where b = k1/3, i.e.,

|FreqConeFrontier(v) ∩ head| ≥

{
1 for every v ∈ Marked

b+ 1 for every v ∈ Leaves(Frontier) \Marked
. (11)

Additionally, at every iteration of the algorithm, the union of all frequency cones of tree Frontier
captures all heavy frequencies that are not recovered yet, i.e.,

head \ supp(χ̂) ⊆ supp(Frontier). (12)

The set of fully recovered leaves (frequencies), i.e., supp(χ̂v), are subtracted from the residual
signal x̂− χ̂ by our algorithm and their corresponding leaves get removed from Frontier, as well.
Moreover, the estimated value of every frequency that is recovered so far, is accurate up to an
average error of

√
ε
k · µ. More precisely, in every iteration of the algorithm the following property

is maintained, ∑
f∈supp(χ̂) |x̂(f)− χ̂(f)|2

|supp(χ̂)|
≤ ε

k
· µ2. (13)

At the start of the procedure, Frontier is initialized to only contain a root, i.e., Frontier =
{root}. Moreover, we initialize χ̂ ≡ 0. Trivially, these initial values satisfy (11), (12), and (13).
Also the set of fully identified leaves Marked is initially empty. The algorithm explores Frontier
by picking the unmarked leaf that has the smallest weight, let us call it v. Then the algorithm
explores the children of this node by running RobustPromiseSFT on them to recover the heavy
frequencies that lie in their frequency cone. We denote by vleft and vright the left and right chil-
dren of v. Let us consider exploration of the left child vleft, the right child is exactly the same.
If the number of heavy frequencies in the frequency cone of vleft is bounded by b = k1/3, i.e.,
|head ∩ FreqConeFrontier∪{vleft,vright}(vleft)| ≤ b, then RobustPromiseSFT recovers every fre-

quency in the set head ∩ FreqConeFrontier∪{vleft,vright}(vleft) up to average error µ√
20b

. Note that

this everage estimation error is not sufficient for achieving the invariant (13), hence, instead of di-
rectly using the values that RobustPromiseSFT recovered and update χ̂ at the newly recovered
heavy frequencies, our algorithm adds the leaves corresponding to the recovered set of frequencies,
i.e., head ∩ FreqConeFrontier∪{vleft,vright}(vleft), at the bottom level of Frontier and marks them
as fully identified (adds them to Marked). For achieving maximum efficinecy we employ a new lazy
estimation scheme, that is, the estimation of values of marked leaves is delayed until there is a large
number of marked leaves and thus there exists a subset of them that is cheap to estimate. On the
other hand, if the number of head elements in frequency cone of vleft is more than b then Robust-
PromiseSFT detects this and notifies our algorithms about it and our algorithm adds node vleft

to Frontier. These operations ensure that the invariants (11), (12), and (13) are maintained.
Once the size of set Marked grows sufficiently such that it contains a subset that is cheap to

estimate, our algorithm estimates the values of the cheap frequencies. More precisely, at some point,
Marked will contains a non-empty subset Cheap such that the values of all frequencies in Cheap
can be estimated cheaply and subsequently, our algorithm esimates those frequencies in a batch
up to an average error of

√
ε
k · µ, updates χ̂ accordingly and removes all estimated (Cheap) leaves

from Frontier and Marked. This ensures that invariants (11), (12), and (13) are maintained.

Analysis of RobustPromiseSFT. First we analyze the runtime and sample complexity of
primitive RobustPromiseSFT in the following lemma.

Lemma 19 (RobustPromiseSFT – Time and Sample Complexity). Consider an invocation of
RobustPromiseSFT (x, χ̂in,SideTree, v, b, µ), where SideTree is a subtree of T full

N , v is some
leaf of T , k and b are integers with k > b, µ ≥ 0, and x, χ̂in : [n]d → C. Then
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Algorithm 7 Robust High-dimensional Sparse FFT Algorithm

1: procedure RobustSparseFT(x, k, ε, µ) . µ is an upper bound on tail norm ‖η‖2
2: Frontier← {root}, froot ← 0
3: b← dk1/3e
4: χ̂← {0}nd

5: Marked← ∅ . Set of fully identified leaves (frequencies)
6: repeat
7: if

∑
u∈Marked 2−wFrontier(u) ≥ 1

2 then
8: Cheap← ExtractCheapSubset (Frontier,Marked)
9: . Lazy estimation: We extract from the batch of marked leaves a subset that is

cheap to estimate on average

10:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂,Frontier,Cheap, 32k

ε·|Cheap|

)
11: for u ∈ Cheap do
12: χ̂(fu)← Ĥu

13: Remove node u from tree Frontier
14: Marked← Marked \ Cheap
15: continue
16: v ← argminu∈Leaves(Frontier)\MarkedwFrontier(u)
17: . pick the minimum weight leaf in Frontier which is not in Marked
18: vleft ← left child of v and vright ← right child of v
19: T ← Frontier ∪ {vleft, vright}
20: (IsCorrleft, χ̂left)← RobustPromiseSFT (x, χ̂, T, vleft, b, k, µ)
21: (IsCorrright, χ̂right)← RobustPromiseSFT (x, χ̂, T, vright, b, k, µ)
22: if IsCorrleft then
23: ∀f ∈ supp(χ̂left), add the unique leaf corresponding to f to Frontier and Marked
24: else
25: Add vleft to Frontier

26: if IsCorrright then
27: ∀f ∈ supp(χ̂right), add the unique leaf corresponding to f to Frontier and Marked

28: else
29: Add vright to Frontier

30: if IsCorrleft and IsCorrright then
31: Remove v from Frontier
32: until Frontier has no leaves besides root
33: return χ̂

34: procedure ExtractCheapSubset(T, S)
35: L← ∅
36: while |L| · (8 + 4 log |S|) < maxv∈L 2wT (v) do

37: L← L ∪
{

argminu∈S\LwT (u)
}

38: Return L

• The running time of primitive is bounded by

Õ
(
‖χ̂in‖0 ·

(
b2 + k

)
+ bk + 2wSideTree(v) ·

(
b3 + k

))
.
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• The number of accesses it makes on x is always bounded by

Õ
(

2wSideTree(v) ·
(
b3 + k

))
.

Furthermore, the output signal χ̂v always satisfies ‖χ̂v‖0 ≤ b and supp(χ̂v) ⊆ FreqConeSideTree(v).

Proof. First we prove that Algorithm 6 terminates after a bounded number of iterations. In order
to bound the number of iterations of RobustPromiseSFT, we use a potential function argument.

Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let T (t) denote

the subtree T at the end of tth iteration. Additionally, let Marked(t) and Identified(t) denote the
set Marked (defined in Algorithm 6) at the end of iteration t.

We prove that the algorithm always terminates after O (b · logN) iterations. We prove this by
contradiction. For any integer t, define the following potential function

φt :=
∣∣∣Marked(t)

∣∣∣+ 2 logN ·
∥∥∥χ̂(t)

v

∥∥∥
0

+
∑

u∈Leaves(T (t))

lT (t)(u).

Towards contradiction, suppose that Algorithm 6 does not terminate after 4b logN iterations. We
show that the above potential function increases by at least 1 at every iteration 2 ≤ t ≤ 4b logN ,
i.e., φt ≥ φt−1 + 1. This is enough to conclude the termination of the algorithm because the if-

statement in line 7 ensures that
∣∣∣Marked(t)

∣∣∣ ≤ ∣∣Leaves (T (t)
)∣∣ ≤ b and also

∥∥∥χ̂(t)
v

∥∥∥
0
≤ b, thus,

φt = O(b logN) for any t, which proves that algorithm terminates after O(b logN) iterations.
At any given iteration t of the algorithm, there are 3 possibilities that can happen. We show

that if any of these possibilities happen, then the potential function φt increases by at least 1.

Case 1 – the if-statement in line 9 of Algorithm 6 is True. In this case, the algorithm
constructs T (t) by removing all leaves that are in the set Marked(t−1) from tree T (t−1) and leaving
the rest of the tree unchanged. Furthermore, the algorithm sets Marked(t) ← ∅. By construction,
the level of the leaves that are in Marked(t−1) is at most logN , thus∑

u∈Leaves(T (t))

lT (t)(u) ≥
∑

u∈Leaves(T (t−1))

lT (t−1)(u)− logN ·
∣∣∣Marked(t−1)

∣∣∣
Additionally, in this case, the algorithm computes {Ĥu}u∈Marked(t−1) by running the proce-

dure Estimate in line 11 and then updates χ̂
(t)
v (fu) ← Ĥu for every u ∈ Marked(t−1) and

χ̂
(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ. Therefore,

∥∥∥χ̂(t)
v

∥∥∥
0

=
∥∥∥χ̂(t)

v

∥∥∥
0

+
∣∣∣Marked(t−1)

∣∣∣.
Also,

∣∣∣Marked(t)
∣∣∣ = 0. Hence,

φt − φt−1 ≥ (logN − 1) ·
∣∣∣Marked(t−1)

∣∣∣ ≥ 1,

where the inequality above holds because the if-statement in line 9 of the algorithm is True, ensuring
that Marked(t−1) 6= ∅.

Case 2 – the if-statement in line 9 is False and if-statement in line 18 is True. In this
case, in line 19, the algorithm updates Marked by adding the leaf z to this set, i.e., Marked(t) ←
Marked(t−1) ∪ {z}. Additionally, tree T and signal χ̂v stay unchanged, i.e., χ̂

(t)
v = χ̂

(t−1)
v and

T (t) = T (t−1). Therefore, in this case, φt+1 − φt = 1.
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Case 3 – both if-statements in lines 9 and 18 are False. In this case, either the algorithm
terminates by the if-statement in line 29, which is exactly what we have assumed towards a con-
tradiction that did not happen, or

∑
u∈Leaves(T (t)) lT (t)(u) ≥

∑
u∈Leaves(T (t−1)) lT (t−1)(u) + 1, while∣∣∣Marked(t)

∣∣∣ =
∣∣∣Marked(t−1)

∣∣∣ and
∥∥∥χ̂(t)

v

∥∥∥
0

=
∥∥∥χ̂(t−1)

v

∥∥∥
0

(since we assumed t ≥ 2 and hence z 6= v).

Thus, φt+1 − φt ≥ 1.
So far we have showed that at every iteration, under the cases 1, 2, and 3, the potential

function φt increases by at least one. Now we show that, at every iteration, exactly one of these
three cases happens and hence the algorithm never stalls. For the sake of contradiction suppose
that at iteration t, the algorithm stalls. For this to happen, we must have that all leaves of T (t−1)

are in the set Marked(t−1). By the if-statement in line 7 of Algorithm 6, we are guaranteed that
|Marked(t−1)| ≤ b. Therefore, by Lemma 11, there must exist a subset ∅ 6= L ⊂ Marked(t−1) such

that |L| ≥ 1
4+2 log b ·maxu∈L 2wT (t−1) (u). Hence, it follows from the way our algorithm explores the

nodes of the tree in an increasing order of weights, that there must exist some t′ < t such that
∅ 6= Marked(t′−1) ⊆ Marked(t−1) such that the if-statement in line 9 becomes True on Marked(t′−1).
Therefore, case 1 must have happened at iteration t′, resulting in emptying the set of identified
frequencies, i.e., Marked(t′) ← ∅. This would have resulted in Marked(t′−1) * Marked(t−1) which is
the contradiction we wanted. Therefore the algorithm never stalls and always exactly one of case
1, 2, and 3 happen.

We proved that φt must increase by at least 1 at every iteration. Since φ1 ≥ 0 and we assumed
that the algorithm did not terminate after q = 4b logN iterations, this potential will have a value
of at least 4b logN − 1:

φq ≥ 4b logN − 1, where q = 4b logN.

On the other hand, since the if-statement in line 7 ensures that the number of leaves of T (t) is always

bounded by b−
∥∥∥χ̂(t)

v

∥∥∥
0
, the sum

∑
u∈Leaves(T (t)) lT (t)(u) is always bounded by

(
b−

∥∥∥χ̂(t)
v

∥∥∥
0

)
· logN .

Also, the size of the set Marked(t), which is a subset of Leaves(T (t)), is always bounded by

b −
∥∥∥χ̂(t)

v

∥∥∥
0
. This means that we must have φq ≤ b · (logN + 1) + (logN − 1) ·

∥∥∥χ̂(q)
v

∥∥∥
0
. The

if-statement in line 7 also ensures that
∥∥∥χ̂(q)

v

∥∥∥
0
≤ b which implies that φq ≤ 2b · logN which

contradicts φq ≥ 4b · logN − 1. This proves that the number of iterations of the algorithm must
be bounded by O (b · logN), guaranteeing termination of RobustSparseFT. The termination
quarantee along with the way our algorithm constructs χ̂v and the if-staement in line 7, imply
that the output signal χ̂v always satisfies ‖χ̂v‖0 ≤ b and supp(χ̂v) ⊆ FreqConeSideTree(v). Now we
bound the running time and sample complexity of the algorithm.

Sample Complexity and Runtime: First recall that we proved
∥∥∥χ̂(t)

v

∥∥∥
0
≤ b for every iteration

t. Additionally, the weight of the node z at every iteration of the algorithm is bounded by wT (t)(z) ≤
log(2b). To see this, note that if at some iteration t, the set of identified frequencies (or leaves)
that our algorithm keeps, Marked(t), is such that there exists a leaf u ∈ Marked(t) with wT (t)(u) >
log(2b), then by Lemma 11, Marked(t) contains a non-empty subset that is cheap to estimate. Thus,
at some iteration t′ < t, where ∅ 6= Marked(t′) ⊂ Marked(t) holds, it must have been the case that
the if-statement in line 9 became True on Marked(t′). If this happened, our algorithm would have
estimated Marked(t′) at iteration t′ and so we would have Marked(t′) ∩Marked(t) = ∅ which is a
contradiction.

Given the above inequalities, by Lemma 17, time and sample complexities of every invocation
of HeavyTest in lines 23 and 24 of Algorithm 6 are bounded by Õ

(
‖χ̂in‖0 · b+ 2wSideTree(v) · b2

)
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and Õ
(
2wSideTree(v) · b2

)
, respectively. Also, since ‖χ̂v‖0 ≤ b, the runtime and sample complexity

of the HeavyTest in line 32 of the algorithm are bounded by Õ
(
‖χ̂in‖0 · k + bk + 2wSideTree(v) · k

)
and Õ

(
2wSideTree(v) · k

)
, respectively. Thus, total sample and time complexity of all invocations of

HeavyTest throughout the execution of our algorithm are bounded by Õ
(
2wSideTree(v) · (b3 + k)

)
and Õ

(
‖χ̂in‖0 · (b2 + k) + bk + 2wSideTree(v) · (b3 + k)

)
, respectively

Additionally, by Lemma 18, the sample and time complexity of every invocation of Esti-

mate in line 11 of our algorithm are bounded by Õ

(
b·2wSideTree(v)

|Marked(t−1)| ·
∑

u∈Marked(t−1) 2wT (t−1) (u)

)
and

Õ

(
b·2wSideTree(v)

|Marked(t−1)| ·
∑

u∈Marked(t−1) 2wT (t−1) (u) + b · ‖χ̂‖0
)

, respectively. Because we run Estimate

only when the if-statement in line 9 holds true, the runtime and sample complexity of Estimate can

be further upper bounded by Õ
(∣∣∣Marked(t−1)

∣∣∣ · b · 2wSideTree(v) + b · ‖χ̂‖0
)

and Õ
(∣∣∣Marked(t−1)

∣∣∣ · b · 2wSideTree(v)
)

,

respectively. Using the fact that ∑
t: if-statement in line 9 is True

∣∣∣Marked(t−1)
∣∣∣ = ‖χ̂v‖0 ≤ b,

the total runtime and sample complexity of all invocations of Estimate in all iterations can be
upper bounded by Õ

(
2wSideTree(v) · b2 + b2 · ‖χ̂‖0

)
and Õ

(
2wSideTree(v) · b2

)
, respectively. Therefore,

by adding up the above contributions we can upper bound the total runtime and sample complexity
by Õ

(
‖χ̂in‖0 ·

(
b2 + k

)
+ bk + 2wSideTree(v) ·

(
b3 + k

))
and Õ

(
2wSideTree(v) ·

(
b3 + k

))
which completes

the proof of the lemma.

We are now in a position to present the main invariant of primitive RobustPromiseSFT.

Lemma 20 (RobustPromiseSFT - Invariants). Consider the preconditions of Lemma 19. Let
ŷ := x̂ − χ̂in and S := FreqConeSideTree(v) ∩ headµ(ŷ), where headµ(·) is defined as per (7). If

i) headµ(ŷ) ⊆ supp(SideTree), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
11µ2

10 , and iii) |S| ≤ k, then with probability

at least 1− 1
N4 , the output (Budget, χ̂v) of Algorithm 6 satisfies the following,

1. If |S| ≤ b then Budget = True, supp(χ̂v) ⊆ S, and ‖ŷS − χ̂v‖22 ≤
µ2

20 ;

2. If |S| > b then Budget = False and χ̂v ≡ {0}n
d
.

Proof. We first analyze the algorithm under the assumption that the primitives HeavyTest and
Estimate are replaced with more powerful primitives that succeeds deterministically. Hence, we
assume that HeavyTest correctly tests the “heavy” hypothesis on its input signal with probability
1 and also Estimate achieves the estimation guarantee of Lemma 18 deterministrically. With these
assumptions in place, we prove that the lemma holds deterministically (with probability 1). We
then establish a coupling between this idealized execution and the actual execution of our algorithm,
leading to our result.

We prove the first statement of lemma by induction on the Repeat-Until loop of the algorithm.

Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let T (t) denote

the subtree T at the end of tth iteration. Additionally, let Marked(t) denote the set Marked (defined
in Algorithm 6) at the end of iteration t. We prove that if the precondition of statement 1 (that is
|S| ≤ b) together with i, ii and iii hold, then at every iteration t = 0, 1, 2, . . . of Algorithm 6, the
following properties are maintained,
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P1(t) S \ supp
(
χ̂

(t)
v

)
⊆ supp

(
T (t)

)
:=
⋃
u∈Leaves(T (t)) FreqConeSideTree∪T (t)(u);

P2(t) For every leaf u 6= v of subtree T (t), headµ(ŷ) ∩ FreqConeSideTree∪T (t)(u) 6= ∅;

P3(t)
∥∥∥ŷS(t) − χ̂(t)

v

∥∥∥2

2
≤ |S

(t)|
20b · µ

2, where S(t) := supp
(
χ̂

(t)
v

)
;

P4(t) S(t) ⊆ S and S(t) ∩

(⋃
u∈Leaves(T (t))

u6=v

FreqConeSideTree∪T (t)(u)

)
= ∅;

The base of induction corresponds to the zeroth iteration (t = 0), at which point T (0) = {v}
is a subtree of SideTree that solely consists of node v. Moreover, χ̂

(0)
v ≡ 0. Thus, statement P1(0)

trivially holds by definition of set S. The statement P2(0) holds since there exists no leaf u 6= v in

T (0). Statements P3(0) and P4(0) hold because of the fact that χ̂
(0)
v ≡ 0.

We now prove the inductive step by assuming that the inductive hypothesis, P (t − 1) is
satisfied for some iteration t−1 of Algorithm 6, and then proving that P (t) holds. First, we remark
that if inductive hypotheses P2(t−1) and P4(t−1) hold true, then by the precondition of statement
1 of the lemma (that is |S| ≤ b) the if-statement in line 7 of Algorithm 6 is False and hence lines 7
and 8 of the algorithm can be ignored in our analysis. We proceed to prove the induction by
considering the three cases that can happen in iteration t:

Case 1 – the if-statement in line 9 of Algorithm 6 is True. In this case, the algorithm

computes {Ĥu}u∈Marked(t−1) by running the procedure Estimate in line 11 and then updates

χ̂
(t)
v (fu) ← Ĥu for every u ∈ Marked(t−1) and χ̂

(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ.

Therefore, if we let L :=
{
fu : u ∈ Marked(t−1)

}
, then S(t) \ S(t−1) = L, by inductive hypothe-

sis P4(t − 1). By P3(t − 1) along with Lemma 18 (its deterministic version that succeeds with
probability 1), we find that∥∥∥(χ̂(t)

v − ŷ)S(t)

∥∥∥2

2
=
∥∥∥(χ̂(t)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥(χ̂(t−1)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)L

∥∥∥2

2

≤
∣∣S(t−1)

∣∣
20b

µ2 +
|L|
23b

∑
ξ∈[n]d\supp(SideTree∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2 . (14)
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Now we bound the second term above,∑
ξ∈[n]d\supp(SideTree∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +
∑

ξ∈FreqConeSideTree(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

=
∑

ξ∈[n]d\(supp(SideTree∪T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
(by P1(t− 1), precondition i and definition of S)

≤ 23

20
· µ2 (by P3(t− 1) and P4(t− 1) and precondition |S| ≤ b).

Therefore, by plugging the above bound back to (14) we find that,∥∥∥(χ̂(t)
v − ŷ)S(t)

∥∥∥2

2
≤
∣∣S(t−1)

∣∣
20b

· µ2 +
|L|
23b
·
(

23

20
µ2

)
=

∣∣S(t)
∣∣

20b
· µ2,

which proves the inductive claim P3(t). Moreover, P2(t − 1) implies that L ⊆ S. Thus, the fact
S(t) = S(t−1)∪L together with inductive hypothesis P4(t−1) as well as the construction of T (t) (T (t)

is constructed by removing leaves of Marked(t−1) from tree T (t−1)), imply P4(t). The construction
of T (t) together with the fact that |FreqConeSideTree∪T (t−1)(u)| = 1 for every u ∈ Marked(t−1) give
P1(t) and P2(t).

We now consider the other two cases. Let z ∈ Leaves
(
T (t−1)

)
be the smallest weight leaf

chosen by the algorithm in line 17.

Case 2 – the if-statement in line 9 is False and if-statement in line 18 is True. In this
case, in line 19, the algorithm updates Marked by adding the leaf z to this set, i.e., Marked(t) ←
Marked(t−1) ∪ {z}. Additionally, in this case the tree T and signal χ̂v stay unchanged, i.e., χ̂

(t)
v =

χ̂
(t−1)
v and T (t) = T (t−1). Therefore, P1(t), P2(t), P3(t), and P4(t) all trivially hold because of the

inductive hypothesis P (t− 1).

Case 3 – both if-statements in lines 9 and 18 are False. In this case, the algorithm con-
structs tree T ′ by adding leaves zright and zleft to tree T (t−1) as right and left children of z in line 22.
Then we compute Heavy` and Heavyr in lines 23 and 24 by running the primitive HeavyTest with

inputs
(
x, χ̂

(t−1)
v + χ̂in,SideTree ∪ T ′, zleft, O(b log3N), 6µ2

)
and

(
x, χ̂

(t−1)
v + χ̂in,SideTree ∪ T ′, zright, O(b log3N), 6µ2

)
,

respectively. There are two possibilities that can happen to each of Heavy` and Heavyr. In the
following we focus on analyzing Heavy`, but Heavyr can be analyzed exactly the same way.

Possibility 1) FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) = ∅. Note that, by construction of T ′

we have

FreqConeSideTree∪T (t−1)(z) = FreqConeSideTree∪T ′(zleft) ∪ FreqConeSideTree∪T ′(zright).
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Hence, by inductive hypothesis P4(t− 1) we have,∑
ξ∈[n]d\supp(SideTree∪T ′)

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\(supp(SideTree∪T ′)∪S(t−1))

|ŷ(ξ)|2 +
µ2

20
,

where the last inequality above follows by inductive hypotheses P3(t−1) and P4(t−1) and precon-

dition |S| ≤ b. Therefore, if Ĝ` is a (zleft,SideTree∪ T ′)-isolating filter as per the construction in
Lemma 9, then by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(t−1)

v

)
· Ĝ`

∥∥∥2

2
≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)

∥∥2

2
+

∑
ξ∈[n]d\supp(SideTree∪T ′)

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)

∥∥2

2
+

∑
ξ∈[n]d\(supp(SideTree∪T ′)∪S(t−1))

|ŷ(ξ)|2 +
µ2

20

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
µ2

20

≤ 23

20
· µ2

where the third line above follows from the assumption that FreqConeSideTree∪T ′(zleft)∩headµ(ŷ) =
∅, inductive hypothesis P1(t−1), precondition i of the lemma together with the definition of set S.
This proves that the precondition of the second claim of Lemma 17 holds and therefore by invoking
this lemma (the deterministic version of it that succeeds with probability 1), we have that Heavy`
in line 23 of the algorithm is False. Using a similar argument, if FreqConeSideTree∪T ′(zright) ∩
headµ(ŷ) = ∅, then Heavyr is False.

Possibility 2) Suppose that FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) 6= ∅. If filter Ĝ` is a
(zleft,SideTree ∪ T ′)-isolating filter constructed in Lemma 9, then by Corollary 1 along with
inductive hypothesis P4(t− 1),∥∥∥∥((ŷ − χ̂(t−1)

v

)
· Ĝ`

)
[n]d\S

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝ`)
[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)\S

∥∥2

2
+

∑
ξ∈[n]d\(supp(SideTree∪T ′)∪S)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)
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Additionally, ∥∥∥((ŷ − χ̂(t−1)
v

)
· Ĝ`

)
S

∥∥∥2

2
≥
∥∥∥∥(ŷ − χ̂(t−1)

v

)
FreqConeSideTree∪T ′ (zleft)∩S

∥∥∥∥2

2

=
∥∥ŷFreqConeSideTree∪T ′ (zleft)∩S

∥∥2

2
≥ 9µ2,

which follows by the assumption FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) 6= ∅ along with the defi-
nition of S and headµ(·). Hence, by the above inequalities and the precondition |S| ≤ b, we can
invoke Lemma 17 to conclude that Heavy` in line 23 of the algorithm is True. Using a similar
argument, if FreqConeSideTree∪T ′(zright) ∩ headµ(ŷ) 6= ∅ then Heavyr is True.

Based on the above arguments, according to the values of Heavy` and Heavyr, there are various
cases that can happen. First, it cannot happen that Heavy` and Heavyr are both False unless z = v,
by the inductive hypothesis P (t−1). If Heavy` = Heavyr = False and z = v, the algorithm returns

χ̂
(t)
v ≡ {0}n

d
which satisfies all properties in P (t). The second case corresponds to Heavy` = False

and Heavyr = True. In this case, tree T (t) is obtained from T (t−1) by adding zright as the right
child of z. Therefore, by inductive hypothesis P (t − 1), all properties in P (t) immediately hold.
One can show that P (t) holds in the case of Heavy` = True and Heavyr = False in exactly the
same fashion. Finally, if both of Heavy` and Heavyr are True, then tree T (t) is obtained by adding
leaves zright and zleft as right and left children of z to tree T (t−1). It follows straightforwardly from
the inductive hypothesis P (t− 1) that P (t) holds.

So far we have showed that under cases 1, 2, and 3, the property P (t) is maintained. Recall that
in the proof of Lemma 19 we showed that, at every iteration, exactly one of these three cases happen
and hence the algorithm never stalls. This completess the induction and proves that properties
P (t) are maintained throughout the execution of Algorithm 6, assuming that preconditions i, ii,
and iii of the lemma along with the precondition |S| ≤ b hold.

In Lemma 19 we showed that Algorithm 6 must terminate after some q iterations. When the
algorithm terminates, the condition of the Repeat-Until loop in line 31 of the algorithm must be

True. Thus, when the algorithm terminates, at qth iteration, there is no leaf in subtree T
(q)
v besides

v and as a consequence the set Marked(q) must be empty. This, together with P1(q) imply that the

signal χ̂
(q)
v satisfies,

supp
(
χ̂(q)
v

)
= S = FreqConeSideTree(v) ∩ headµ(ŷ).

Moreover, P3(q) together with precondition |S| ≤ b imply that∥∥∥ŷS − χ̂(q)
v

∥∥∥2

2
≤ |S|

20b
· µ2 ≤ µ2

20
.

Now we analyze the if-statement in line 32 of the algorithm. The above equalities and inequal-

ities on χ̂
(q)
v imply that,∥∥∥∥(ŷ − χ̂(q)

v

)
FreqConeSideTree(v)

∥∥∥∥2

2

=
∥∥ŷFreqConeSideTree(v)\S

∥∥2

2
+
∥∥∥(ŷ − χ̂(q)

v

)
S

∥∥∥2

2

≤
∥∥ŷFreqConeSideTree(v)\headµ(ŷ)

∥∥2

2
+
µ2

20
.

Therefore, if Ĝv is a Fourier domain (v,SideTree)-isolating filter constructed in Lemma 9, then
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by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(q)
v

)
· Ĝv

∥∥∥2

2
≤

∑
ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +

∥∥∥∥(ŷ − χ̂(q)
v

)
FreqConeSideTree(v)

∥∥∥∥2

2

≤
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +
∥∥ŷFreqConeSideTree(v)\headµ(ŷ)

∥∥2

2
+
µ2

20

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
+
µ2

20
≤ 23

20
· µ2.

Thus, the preconditions of the second claim of Lemma 17 hold. So, we can invoke this lemma to
conclude that the if-statement in line 32 of the algorithm is False and hence the algorithm outputs(

True, χ̂
(q)
v

)
. This proves statement 1 of the lemma.

Now we prove the second statement of lemma. Suppose that preconditions i, ii, iii along with
the precondition of statement 2 (that is |S| > b) hold. Lemma 19 proved that the signal χ̂v
always satisfies supp(χ̂v) ⊆ FreqConeSideTree(v) and ‖χ̂v‖0 ≤ b. Therefore, S \ supp(χ̂v) 6= ∅.
Consequently, if Ĝv is a Fourier domain (v,SideTree)-isolating filter constructed in Lemma 9,
then by definition of isolating filters we have∥∥∥∥((ŷ − χ̂v) · Ĝv

)
S∪supp(χ̂v)

∥∥∥∥2

2

≥
∥∥∥(ŷ − χ̂v)S∪supp(χ̂v)

∥∥∥2

2
≥
∥∥ŷS\supp(χ̂v)

∥∥2

2
≥ 9µ2,

which follows from the definition of S and headµ(·). On the other hand,∥∥∥∥((ŷ − χ̂v) · Ĝv
)

[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝv)[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

≤
∥∥∥∥(ŷ · Ĝv)[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeSideTree(v)\S

∥∥2

2
+

∑
ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)

Additionally note that |S ∪ supp(χ̂v)| ≤ k+ b ≤ 2k by preconditions of the lemma and property of
supp(χ̂v) that we have proved. Hence, by invoking the first claim of Lemma 17, the if-statement

in line 32 of the algorithm is True and hence the algorithm outputs
(

False, {0}nd
)

. This proves

statement 2 of the lemma.
Finally, observe that throughout this analysis we have assumed that Lemma 17 holds with

probability 1 for all the invocations of HeavyTest by our algorithm. Moreover, we assumend that
Estimate successfully works with probability 1. In reality, we have to take the fact that these
primitives are randomized into acount of our analysis.

The first source of randomness is the fact that HeavyTest only succeeds with some high prob-
ability. In fact, Lemma 17 tells us that every invocation of HeavyTest succeeds with probability
at least 1− 1/N5. Our analysis in proof of Lemma 19 shows that RobustPromiseSFT makes at
most O (b logN) calls to HeavyTest. Therefore, by a union bound, the overall failure probability

of all invocations of HeavyTest is bounded by O
(
b logN
N5

)
.

The second source of randomness is the fact that Estimate only succeeds with some high
probability. Lemma 18 tells us that every invocation of Estimate on a set Marked, succeeds with
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probability 1− |Marked|/N8. Therefore if the algorithm invokes Estimate at iterations t1, t2, . . . ,
then, by union bound, the total failure probability of all invocations of this primitive will be bounded

by
∑

i
|Marked(ti)|

N8 = |supp(χ̂v)|
N8 ≤ b

N8 .
Finally, by another application of union bound, the overall failure probability of Algorithm 6,

is bounded by 1
N4 . This proves that the lemma holds.

Analysis of RobustSparseFT. Now we present the invariants of RobustSparseFT.

Lemma 21 (Invariant of RobustSparseFT: Signal Containment and Energy Control). For every
integer t ≥ 0, let χ̂(t) and Marked(t) denote the signal χ̂ and the set Marked at the end of iteration t
of Algorithm 7, respectively. Furthermore, let Frontier(t) denote the tree Frontier at the end of
tth iteration and let Est(t) denote the set of “estimated frequencies” so far, i.e., Est(t) := supp

(
χ̂(t)
)
.

Additionaly, for every leaf v of Frontier(t), let L
(t)
v denote the “unestimated” frequencies in support

of x̂ that lie in frequency cone of v, i.e., L
(t)
v := FreqConeFrontier(t)(v)∩headµ(x̂), where headµ(·)

is defined as per (7). If |headµ(x̂)| ≤ k and
∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ, then for every non-negative

integer t the following properties are maintained at the end of tth iteration of Algorithm 7, with
probability at least 1− 4t

N4 ,

P1(t) headµ(x̂) \ Est(t) ⊆ supp
(
Frontier(t)

)
;

P2(t) For every leaf u 6= root of tree Frontier(t),
∣∣∣L(t)
u

∣∣∣ ≥ 1. Additionally, if u /∈ Marked(t), then∣∣∣L(t)
u

∣∣∣ > b;

P3(t)
∥∥x̂Est(t) − χ̂(t)

∥∥2

2
≤ ε · |Est(t)|

k · µ2;

P4(t) Est(t) ⊆ headµ(x̂) and Est(t) ∩ supp
(
Frontier(t)

)
= ∅;

P5(t) In every iteration t > 1, if the if-statement in line 7 of Algorithm 7 is False, then the following
potential function decreases by at least b. Additionally, when the if-statement in line 7 is
True, the potential decreases by at least logN . Furthermore, the potential does not increase
at iteration t = 1.

φt :=
∑

u∈Leaves(Frontier(t))

(
2 logN − lFrontier(t)(u)

)
·
∣∣∣L(t)
u

∣∣∣ ;
Proof. The proof is by induction on the Repeat-Until loop of the algorithm. The base of induction
corresponds to the zeroth iteration (t = 0), at which point Frontier(0) = {root} is a tree that
solely consists of a root and has no other leaves. Moreover, χ̂(0) ≡ 0. The statement P1(t) trivially
holds because FreqConeFrontier(0)(r) = [n]d. The statement P2(t) holds since there exists no leaf

u 6= root in Frontier(0). The statements P3(t) and P4(t) hold because of the facts χ̂(0) ≡ 0 and
Est(0) = ∅.

We now prove the inductive step by assuming that the inductive hypotheses, i.e property
P (t− 1) is satisfied for some iteration t− 1 of Algorithm 7 with probability a least 1− 4(t−1)

N4 , and
then proving that property P (t) holds at the end of iteration t with probabiliy at least 1 − 4t

N4 .
We also show that the value of the quantity φt defined in P5(t), satisfies φt − φt−1 ≤ −b if the
if-statement in line 7 of the algorithm is False in iteration t > 1 and φt − φt−1 ≤ − logN if the
if-statement in line 7 is True in iteration t and also φ1 − φ0 ≤ 0. At any given iteration t of
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the algorithm, there are two possibilities that can happen. We proceed to prove the induction by
considering any of the two possibilities:

Case 1 – the if-statement in line 7 of Algorithm 7 is True. In this case, we have that∑
u∈Marked(t−1) 2−wFrontier(t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap ⊆ Marked(t−1) that
the algorithm computes in line 8 by running the primitive ExtractCheapSubset satisfies the

property that |Cheap|·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap 2wFrontier(t−1) (u). Clearly Cheap 6= ∅,

by Claim 6. Then the algorithm computes {Ĥu}u∈Cheap by running the procedure Estimate in

line 10 and then updates χ̂(t)(fu)← Ĥu for every u ∈ Cheap and χ̂(t)(ξ) = χ̂(t−1)(ξ) at every other
frequency ξ. Therefore, if we let L := {fu : u ∈ Cheap}, then Est(t) \ Est(t−1) = L, by inductive
hypothesis P4(t − 1). By P3(t − 1) along with Lemma 18, we find that with probability at least

1− |Cheap|
N8 ≥ 1− 1

N7 the following holds,∥∥∥χ̂(t) − x̂Est(t)

∥∥∥2

2
=
∥∥∥χ̂(t−1) − x̂Est(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t) − x̂

)
L

∥∥∥2

2

≤ ε|Est(t−1)|
k

µ2 +
ε |L|
2k

∑
ξ∈[n]d\supp(Frontier(t−1))

∣∣∣(χ̂(t−1) − x̂
)

(ξ)
∣∣∣2 . (15)

Now we bound the second term above,∑
ξ∈[n]d\supp(Frontier(t−1))

∣∣∣(x̂− χ̂(t−1)
)

(ξ)
∣∣∣2

=
∑

ξ∈[n]d\(supp(Frontier(t−1))∪Est(t−1))

|x̂(ξ)|2 +
∥∥∥x̂Est(t−1) − χ̂(t−1)

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(x̂)

|x̂(ξ)|2 +
∥∥∥x̂Est(t−1) − χ̂(t−1)

∥∥∥2

2
(by P1(t− 1))

≤ 2µ2 (by P3(t− 1) and P4(t− 1), preconditions of lemma and ε ≤ 1).

Therefore, by plugging the above bound back to (15) we find that,∥∥∥χ̂(t) − x̂Est(t)

∥∥∥2

2
≤ ε · |Est(t−1)|

k
· µ2 + ε · |L|

2k
·
(
2µ2
)

= ε · |Est(t)|
k

· µ2,

which proves the inductive claim P3(t). Moreover, P2(t− 1) implies that L ⊆ headµ(x̂). Thus, the
fact that Est(t) = Est(t−1)∪L together with inductive hypothesis P4(t−1) as well as the construction
of Frontier (Frontier(t) is constructed by removing leaves of Cheap from tree Frontier(t−1)),
imply P4(t). The construction of Frontier(t) together with the fact that |FreqConeFrontier(t−1)(u)| =
1 for every u ∈ Cheap give P1(t) and P2(t). Additionally, we have,

φt − φt−1 = −
∑

u∈Cheap

(2 logN − lFrontier(t−1)(u)) ·
∣∣∣L(t−1)
u

∣∣∣
= −

∑
u∈Cheap

logN ·
∣∣∣L(t−1)
u

∣∣∣
= −

∑
u∈Cheap

logN ≤ − logN,

where the last inequality follows from the fact that Cheap 6= ∅. This proves P5(t).
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Case 2 – the if-statement in line 7 is False. Let v ∈ Leaves(Frontier(t−1)) \Marked(t−1)

be the smallest weight leaf chosen by the algorithm in line 16. The algorithm constructs tree
T by adding leaves vright and vleft to tree Frontier(t−1) as right and left children of v, in
line 19. Then, the algorithm runs RobustPromiseSFT with inputs (x, χ̂(t−1), T, vleft, b, k, µ) and
(x, χ̂(t−1), T, vright, b, k, µ) in lines 20 and 21 respectively. In the following we focus on analyzing
(IsCorrleft, χ̂left) but (IsCorrright, χ̂right) can be analyzed exactly the same way. There are two
possibilities that can happen:

Possibility 1) |FreqConeT (vleft) ∩ headµ(x̂)| ≤ b. In this case, the inductive hypothesis P4(t−
1) implies that |Est(t−1)| ≤ k and hence inductive hypothesis P3(t− 1) along with the assumption
ε ≤ 1

10 gives ∥∥∥x̂Est(t−1) − χ̂(t−1)
∥∥∥2

2
≤ εµ2 ≤ µ2

10
, (16)

hence, headµ
(
x̂− χ̂(t−1)

)
= headµ(x̂) \ Est(t−1). Consequently, if we let ŷ := x̂ − χ̂(t−1), then:

i) headµ(ŷ) ⊆ supp(T ′), by P1(t−1), ii) ‖ŷ−ŷheadµ(ŷ)‖22 ≤
11µ2

10 , by precondition of the lemma along
with (16), and iii) |FreqConeT (vleft) ∩ headµ(ŷ)| ≤ b, by the assumption that |FreqConeT (vleft) ∩ headµ(x̂)| ≤
b. Therefore, all preconditions of the first statement of Lemma 20 hold, and thus, by invoking this
lemma we have that, with probability at least 1 − 1

N4 , IsCorrleft = True, and supp(χ̂left) ⊆
FreqConeT (vleft) ∩ headµ(ŷ), and

∥∥ŷFreqConeT (vleft)∩headµ(ŷ) − χ̂left

∥∥2

2
≤ µ2

20 . This together with in-

ductive hypothesis P4(t − 1) imply that, with probability at least 1 − 1
N4 , IsCorrleft = True and

supp(χ̂left) = FreqConeT (vleft) ∩ headµ(x̂).
So, the if-statement in line 22 of the algorithm is True and consequently the algorithm adds all

leaves that correspond to frequencies in FreqConeT (vleft) ∩ headµ(x̂) to Frontier(t−1) and also
updates

Marked(t) ← Marked(t−1) ∪ {u ∈ Leaves(Frontier) : fu ∈ FreqConeT (vleft) ∩ headµ(x̂)} .

By a similar argument, if |FreqConeT (vright) ∩ headµ(x̂)| ≤ b, then, with probability at least 1− 1
N4 ,

the algorithm adds all leaves corresponding to frequencies in FreqConeT (vright) ∩ headµ(x̂) to

Frontier(t−1) and updates

Marked(t) ← Marked(t−1) ∪ {u ∈ Leaves(Frontier) : fu ∈ FreqConeT (vright) ∩ headµ(x̂)} .

Possibility 2) |FreqConeT (vleft) ∩ headµ(x̂)| > b. Same as in possibility 1, the inductive hy-
pothesis P4(t−1) implies that |Est(t−1)| ≤ k and hence inductive hypothesis P3(t−1) along with the
assumption ε ≤ 1

10 gives (16). Hence, headµ
(
x̂− χ̂(t−1)

)
= headµ(x̂) \ Est(t−1). Consequently, if

we let ŷ := x̂−χ̂(t−1), then it holds that: i) headµ(ŷ) ⊆ supp(T ), by P1(t−1), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
11µ2

10 , by precondition of the lemma along with (16), and iii) |FreqConeT (vleft) ∩ headµ(ŷ)| ≤
|headµ(x̂)| ≤ k, by precondition of the lemma. Additionally, by P4(t− 1), we find that

|FreqConeT (vleft) ∩ headµ(ŷ)| = |FreqConeT (vleft) ∩ headµ(x̂)| > b.

Therefore, all preconditions of the second statement of Lemma 20 hold, and thus, by invoking this
lemma we have that, with probability at least 1 − 1

N4 , IsCorrleft = False, and χ̂left ≡ 0. So, the
if-statement in line 22 of the algorithm is False and consequently the algorithm adds leaf vleft as the
left child of v to tree Frontier(t−1). By a similar argument, if |FreqConeT (vright) ∩ headµ(x̂)| >
b, then, with probability 1 − 1

N4 , the algorithm adds leaf vright as the left child of v to tree

Frontier(t−1).
Based on the above arguments, according to the values of IsCorrleft and IsCorrright, there

are various cases that can happen. From the way tree Frontier(t) and set Marked(t) are obtained
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from Frontier(t−1) and Marked(t−1), it follows that in any case, the first 4 properties of P (t) are
maintained with probability at least 1− 2

N4 . Furthermore, the way tree T (t) is constructed implies
that, ∑

u∈Leaves
(
Frontier

(t)
v

)
∣∣∣L(t)
u

∣∣∣ =
∣∣∣L(t−1)
v

∣∣∣ .
Therefore, for every t > 1, by inductive hypothesis P2(t − 1), the change in potential is bounded
as follows,

φt − φt−1 =
∑

u∈Leaves
(
Frontier

(t)
v

) (2 logN − lFrontier(t)(u)) ·
∣∣∣L(t)
u

∣∣∣− (2 logN − lFrontier(t−1)(v)) ·
∣∣∣L(t−1)
v

∣∣∣
≤ −

∣∣∣L(t−1)
v

∣∣∣ < −b.
Moreover, if t = 1 then the change in potential satisfies φ1 − φ0 ≤ −

∣∣∣L(t−1)
v

∣∣∣ ≤ 0 (because in this

case v = root). This proves the inductive claim P5(t).
We have proved that for every t, if the inductive hypothesis P (t−1) is satisfied then the property

P (t) is maintained with probability at least 1− 2
N4 − 1

N7 ≥ 1− 4
N4 . Therefore, using the inductive

hypothesis that Pr[P (t− 1)] ≥ 1− 4(t−1)
N4 , by using union bound we find that

Pr[P (t)] ≥ Pr[P (t)|P (t− 1)] · Pr[P (t− 1)] ≥ 1− 4t

N4
.

This complets the proof of the lemma.

Now we are in a position to prove the main result of this section.

Proof of Theorem 13. The proof basically follows by invoking Lemma 21 and then analyzing the
runtime and sample complexity of Algorithm 7. If we let µ := ‖η‖2 then because x is a signal in the
k-high SNR regime, we have that |headµ(x̂)| ≤ k and

∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ. Therefore, if we run

the procedure RobustSparseFT (Algorithm 7) with inputs (x, k, ε, µ), then the preconditions of
Lemma 21 hold and hence by invoking this lemma we conclude that all the invariants P1(t) through
P5(t), defined in Lemma 21, hold throughout the execution of Algorithm 7 for every non-negative
integer t.

Using this, we first prove the termination of the algorithm. Let q = O
(
k + k logN

b

)
be some

large enough integer. We show that the algorithm must terminate in q iterations. Note that
the probability that the properties P (t) hold for all iterations t ∈ {0, 1, . . . q} of algorithm Ro-

bustSparseFFT is at least 1− 4(q+1)
N4 ≥ 1− 1

N3 , by Lemma 21. From now on, we condition on the
event corresponding to P (t) holding for all iterations t ∈ {0, 1, . . . q}, which holds with probability
at least 1 − 1

N3 . Conditioned on this event we prove that the algorithm terminates in less than q
iterations.

Note that, the potential function φt defined in P5(t) is non-negative for every t. Moreover, at

the zeroth iteration of the algorithm T (0) = {root} and hence L
(0)
root = headµ(x̂), thus

φ0 ≤ 2k logN.

Therefore, it follows from P5(t) that Algorithm 7 must terminate in at most q = O
(
k + k logN

b

)
iterations.
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When the algorithm terminates, the condition of the Repeat-Until loop in line 32 of the algorithm
must be True. Thus, when the algorithm terminates, there is no leaf in tree T (q) besides the root.
Cosequently, by invariants P1(q) and P3(q), the output of the algorithm satisfies, headµ(x̂) ⊆
supp(χ̂) and ‖x̂Est − χ̂‖22 ≤

ε|Est|
k ·µ

2, where Est = supp(χ̂). Using the invariant P4(q), the latter can

be Further upper bounded as ‖x̂Est − χ̂‖22 ≤ ε · µ2. This together with the k-high SNR assumption
of the theorem gives the approximation guarantee of the theorem ‖x̂− χ̂‖22 ≤ (1 + ε) · ‖η‖22.

Runtime and Sample Complexity. The expensive components of the algorithm are primi-
tive Estimate in line 10 and primitive RobustPromiseSFT in lines 20 and 21 of the algorithm.
We first bound the time and sample complexity of invoking Estimate in line 10. We remark that,
at any iteration t, the algorithm runs primitive Estimate only if case 1 that we mentioned earlier
in the proof happens. Therefore, in this case, the set ∅ 6= Cheap(t) ⊆ Marked(t−1) that our algo-
rithm computes in line 8 by running the primitive ExtractCheapSubset satisfies the property

that
∣∣∣Cheap(t)

∣∣∣ ·(8 + 4 log
∣∣∣Marked(t−1)

∣∣∣) ≥ maxu∈Cheap(t) 2wFrontier(t−1) (u). By P2(t−1), and k-high

SNR assumption, this implies that
∣∣∣Cheap(t)

∣∣∣ · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wFrontier(t−1) (u).

Thus, by Lemma 18, the runtime and sample complexity of every invocation of Estimate in

line 10 of our algorithm are bounded by Õ

(
k

ε·|Cheap(t)|
∑

u∈Cheap(t) 2wFrontier(t−1) (u) + k
ε ‖χ̂

(t−1)‖0
)

and Õ

(
k

ε·|Cheap(t)|
∑

u∈Cheap(t) 2wFrontier(t−1) (u)

)
, respectively. Using P4(t − 1), the runtime and

sample complexity of Estimate can be further upper bounded by Õ
(
k
ε ·
∣∣∣Cheap(t)

∣∣∣+ k2

ε

)
and

Õ
(
k
ε ·
∣∣∣Cheap(t)

∣∣∣), respectively. By property P5(t) we find that the total number of iterations in

which case 1 happens, and hence number of times we run Estimate in line 10 of the algorithm, is

bounded by O(k). Using this together with the fact that
∑

t: if-statement in line 7 is True

∣∣∣Cheap(t)
∣∣∣ =

‖χ̂‖0 ≤ k, the total runtime and sample complexity of all invocations of Estimate in all iterations

can be upper bounded by Õ
(
k3

ε

)
and Õ

(
k2

ε

)
, respectively.

Now we bound the runtime and sample complexity of invoking RobustPromiseSFT in lines 20
and 21 of the algorithm. Note that at any iteration t, the algorithm runs RobustPromiseSFT in
lines 20 and 21 only if case 2 that we mentioned earlier in the proof happens. Since we pick leaf v
in line 16 of the algorithm with smallest weight, and since the number of leaves that are not in the
set Marked(t−1) are bounded by k

b (by invariant P2(t − 1)), we have wT (t−1)(v) ≤ log k
b . Also note

that
∥∥χ̂(t−1)

∥∥
0
≤ k by invariant P4(t− 1) and the k-high SNR assumption.

Therefore, by Lemma 19, the runtime and sample complexity of each invokation of Robust-
PromiseSFT by our algorithm are bounded by Õ

(
k · (b2 + k) + k

b · (b
3 + k)

)
and Õ

(
k
b · (b

3 + k)
)
.

By property P5(t) we find that the total number of iterations in which case 2 happens, and
hence the number of times we run RobustPromiseSFT in lines 20 and 21 of the algorithm, is

bounded by O
(
k logN

b

)
. Therefore, by using b ≈ k1/3, we find that the total runtime and sample

complexity of all invocations of RobustPromiseSFT are bounded by Õ
(
k8/3

)
and Õ

(
k7/3

)
, re-

spectively. Hence, the total time and sample complexity of the algorithm are bounded by Õ
(
k3

ε

)
and Õ

(
k7/3 + k2

ε

)
, respectively.

12.3 Proving the Correctness of our Computational Primitives.

In this subsection, we shall prove Lemmas 17, 18, and Claim 6. We proceed by proving them in
the aforementioned order.

61



Proof of Lemma 17:
By convolution-multiplication theorem, hz∆ computed in line 8 of Algorithm 4 satisfies hz∆ =

N · (χ ? Gv) (∆), and thus

Hz =
1

|RIPzm|
∑

∆∈RIPzm

∣∣∣∣∣∣N ·
∑
j∈[n]d

Gv(∆− j) · x(j)− hz∆

∣∣∣∣∣∣
2

=
N2

|RIPzm|
∑

∆∈RIPzm

|((x− χ) ? Gv) (∆)|2 .

Therefore, by the convolution-multiplication duality and using the definition ŷ := (x̂− χ̂) · Ĝv, if
we let y be the inverse Fourier transform of ŷ, we find that for every z ∈ [32 logN ],

Hz =
N2

|RIPzm|
∑

∆∈RIPzm

|y(∆)|2 .

We first prove the first claim of the Lemma. Let us write ŷ = ŷS+ ŷS̄ , where ŷS ∈ Cnd is defined

as ŷS(f) := ŷ(f) · 1{f∈S} and ŷS̄ ∈ Cnd is defined as ŷS̄(f) := ŷ(f) · 1{f /∈S}. By the assumption of

lemma ‖ŷS‖22 > 11θ
10 . Let yS and yS̄ denote the inverse Fourier transform of ŷS and ŷS̄ respectively.

We have y = yS + yS̄ . Thus we find that,

1

|RIPzm|
∑

∆∈RIPzm

|y(∆)|2 =
1

m

∑
∆∈RIPzm

|yS(∆) + yS̄(∆)|2

=
1

m

∑
∆∈RIPzm

|yS(∆)|2 + |yS̄(∆)|2 + 2<{yS(∆)∗ · yS̄(∆)}

≥ 1

m

∑
∆∈RIPzm

|yS(∆)|2 + 2<{yS(∆)∗ · yS̄(∆)}

First note that since ŷS is |S|-sparse and because we assumed m = Ω
(
|S| log2 |S| logN

)
and because

∆’s are i.i.d. uniform samples from [n]d, by Theorem 9,

Pr

 1

m

∑
∆∈RIPzm

|yS(∆)|2 ≥ 0.99 · ‖ŷS‖
2
2

N2

 ≥ 1− 1

N2
. (17)

Now it suffices to bound the term 1
m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}. First, note that

E

 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

 =
1

m

∑
∆∈RIPzm

E [yS(∆)∗ · yS̄(∆)] + E [yS(∆) · yS̄(∆)∗]

=
1

m

∑
∆∈RIPzm

1

N
〈yS , yS̄〉+

1

N
〈yS̄ , yS〉

=
1

m

∑
∆∈RIPzm

1

N2
〈ŷS , ŷS̄〉+

1

N2
〈ŷS̄ , ŷS〉

= 0,
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where the last line follows because the support of ŷS̄ and ŷS are disjoint. We proceed by bounding
the second moment of the quantity 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)} as follows,

E

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣
2 ≤ E

∣∣∣∣∣∣ 2

m

∑
∆∈RIPzm

yS(∆)∗ · yS̄(∆)

∣∣∣∣∣∣
2

=
4

m
E
[
|yS(∆)∗ · yS̄(∆)|2

]
(By independence of ∆’s)

≤ 4

m
E
[
‖yS‖2∞ |yS̄(∆)|2

]
=

4

m
‖yS‖2∞E

[
|yS̄(∆)|2

]
=

4

m
‖yS‖2∞

‖ŷS̄‖22
N2

By Chebyshev’s inequality we have the following,

Pr

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣ ≥ 1/20 · ‖ŷS‖
2
2

N2

 ≤ 1600N2‖yS‖2∞‖ŷS̄‖22
m‖ŷS‖42

≤ 1600‖ŷS‖21‖ŷS̄‖22
m‖ŷS‖42

≤ 1600|S| · ‖ŷS‖22‖ŷS̄‖22
m‖ŷS‖42

(Cauchy-Schwarz)

=
1600|S| · ‖ŷS̄‖22

m‖ŷS‖22
.

Therefore because we assumed that m = Ω
(
|S| ‖ŷ‖

2
2

‖ŷS‖22

)
, the following holds,

Pr

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣ ≥ 1/20 · ‖ŷS‖
2
2

N2

 ≤ 1/10.

Combining the above inequality with (17) using union bound gives,

Pr
[
Hz ≤ 0.94 · ‖ŷS‖22

]
≤ 1/8.

Since in line 11 of the algorithm we compare Medianz∈[32 logN ] {Hz} to θ, using the fact that

‖ŷS‖22 > 11θ
10 , we have the following,

Pr [HeavyTest = False] ≤ Pr
[
Medianz∈[32 logN ] {Hz} ≤ 10/11 · ‖ŷS‖22

]
≤
(

32 logN

16 logN

)
1

816 logN

≤ 232 logN

816 logN
=

1

N16
.

This completes the proof of the first claim.
The proof of the second claim of the lemma is more straightforward. The expected value

of Hz is,

E[Hz] =
N2

|RIPzm|
∑

∆∈RIPzm

E
[
|y(∆)|2

]
= ‖ŷ‖22.

63



Therefore by Markov’s inequality we find that for every z ∈ [32 logN ],

Pr
[
Hz ≥ 5‖ŷ‖22

]
≤ 1/5.

The assumption of the lemma in this case is that ‖ŷ‖22 ≤ θ/5, thus we have,

Pr [HeavyTest = True] ≤ Pr
[
Medianz∈[32 logN ]

{
Hz
f

}
> 5 · ‖ŷS‖22

]
≤
(

32 logN

16 logN

)
1

516 logN

≤ 232 logN

516 logN
=

1

N5
.

This completes the proof of the second claim of the lemma.

Sample Complexity and Runtime: Computing the filters (Gv, Ĝv) uses O
(
2wT (v) + logN

)
runtime, by Lemma 9. Given filter Ĝv, computing the quantities hz∆ for all ∆ and z in line 8
of the algorithm uses O (‖χ̂‖0 ·

∑
z |RIPzm|) = O (‖χ̂‖0 ·m logN) time. Given filter Gv with

|supp(Gv)| = 2wT (v), computing the quantity Hz for all z requires O
(
2wT (v) ·

∑
z |RIPzm|

)
=

O
(
2wT (v) ·m logN

)
accesses to the signal x and O

(
2wT (v) ·m logN

)
runtime. Therefore, the total

sample complexity of the algorithm is O
(
2wT (v) ·m logN

)
and the total runtime of the algorithm

is O
(
2wT (v) ·m logN + ‖χ̂‖0 ·m logN

)
Proof of Lemma 18: Note that the algorithm constructs (v, T )-isolating filters (Gv, Ĝv) for every
leaf v ∈ S. By Lemma 9, constructing filters Gv and Ĝv takes time O

(
2wT (v) + logN

)
. Moreover,

Lemma 9 tells us that filter Gv has support size |supp(Gv)| = 2wT (v) and Ĝv can be accessed at
any frequency using O(logN) operations.

Therefore, for every fixed v ∈ S, computing hzv =
∑

∆∈RIPzm
e−2πi f

>∆
n
∑
ξ∈[n]d e

2πi ξ
T∆
n · χ̂ξ · Ĝv(ξ) in

line 7 of Algorithm 5 can be done in total timeO (|RIPzm| logN · ‖χ̂‖0) = O (B logN · ‖χ̂‖0) for all z.

By convolution-multiplication duality theorem, hzv satisfies hzv = N ·
∑

∆∈RIPzm
e−2πi f

>∆
n (χ ? Gv) (∆),

and thus, for every leaf v ∈ S:

Hz
v =

1

|RIPzm|
·

N · ∑
∆∈RIPzm

e−2πi f
>∆
n

∑
j∈[n]d

Gv(∆− j) · x(j)

− hzv


=
N

|RIPzm|
∑

∆∈RIPzm

e−2πi f
>∆
n ((x− χ) ? Gv) (∆).

To simplify the notation, let us use yv := (x− χ) ? Gv. Because Gv is (v, T )-isolating, by Def-
inition 12, we have that ŷv(ξ) = 0 for every ξ ∈

⋃
u∈Leaves(T )

u6=v
FreqConeT (u) and also ŷv(f) =

(x̂− χ)(f), where f := fv is the frequency label of the leaf v. Using these facts together with the
above equality and the assumption of the lemma on IsIdentified(T, v) = True, we can write,

Hz
v =

N

|RIPzm|
∑

∆∈RIPzm

e−2πi f
>∆
n yv(∆)

= ŷv(f) +
1

|RIPzm|
∑

∆∈RIPzm

∑
ξ∈[n]d\supp(T )

e2πi
(ξ−f)>∆

n · ŷv(ξ).
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We continue by computing the expectation of the above quantity. Since f ∈ FreqConeT (v), ξ−f 6=
0 for every ξ ∈ [n]d \ supp(T ), which in turn implies that,

E [Hz
v ] = ŷv(f) +

1

|RIPzm|
∑

∆∈RIPzm

∑
ξ∈[n]d\supp(T )

E∆

[
e2πi

(ξ−f)>∆
n

]
ŷv(ξ) = ŷv(f).

In the above expectation we used the fact that ∆ is distributed uniformly on [n]d. Next we compute
the second moment of Hz

v . We have,

E
[
|Hz

v − ŷv(f)|2
]

=
1

|RIPzm|2
∑

∆∈RIPzm

E

∣∣∣∣∣∣
∑

ξ∈[n]d\supp(T )

e2πi
(ξ−f)>∆

n ŷv(ξ)

∣∣∣∣∣∣
2 (by independence of ∆’s)

=
1

|RIPzm|
∑

ξ∈[n]d\supp(T )

|ŷv(ξ)|2 (since ∆ is uniform over [n]d and ξ − f 6= 0)

=
1

B

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 . (by definition of y)

In the final line above we used the fact that the multiset RIPzm defined in Algorithm 5 has size m.
Therefore, Markov’s inequality implies that for every z ∈ [16 logN ],

Pr

|Hz
v − ŷv(f)|2 ≥ 8

m
·

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ 1

8
.

Since in line 9 of Algorithm 5 we set Ĥv = Medianz∈[16 logN ] {Hz
v}, where the median of real and

imaginary parts are computed separately, we find that

Pr

∣∣∣Ĥv − ŷv(f)
∣∣∣2 ≥ 16

m
·

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ (16 logN

8 logN

)
1

88 logN

≤ 216 logN

88 logN
=

1

N8
.

By recalling that ŷv(f) = (x̂− χ)(fv) for every v ∈ S and applying union bound we find that,

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≥ 16

m
·
∑
v∈S

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ |S|

N8
. (18)

In the last step, we bound the quantity
∑

v∈S
∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 as follows,

∑
v∈S

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 =

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ)
∣∣∣2 ·∑

v∈S

∣∣∣Ĝv(ξ)
∣∣∣2

≤
∑

ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ)
∣∣∣2 · ∑

v∈Leaves(T )

∣∣∣Ĝv(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ)
∣∣∣2 , (By Lemma 16)
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hence, plugging the above bound into (18) gives,

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≥ 16

m
·

∑
ξ∈[n]d\supp(T )

∣∣∣(x̂− χ)(ξ)
∣∣∣2
 ≤ |S|

N8
.

Lastly, we prove the correctness of ExtractCheapSubset, and in particular Claim 6.
Proof of Claim 6: First let S′ :=

{
u ∈ S : 2wT (u) ≤ 4|S|

}
. It easily follows that

∑
u∈S′ 2

−wT (u) ≥
1
4 . For every j = 0, 1, . . . blog(4|S|)c, let Lj denote the subset of S′ defined as Lj := {u : u ∈
S′, wT (u) = j}. We can write, ∑

u∈S′
2−wT (u) =

blog(4|S|)c∑
j=0

|Lj |
2j

Therefore, by the fact that
∑

u∈S′ 2
−wT (u) ≥ 1

4 , we have that there must exist an integer j ∈
{0, 1, . . . blog(4|S|)c} such that

|Lj |
2j
≥ 1

4blog(4|S|)c . Hence, there must exist a set L ⊆ S such that |L| ·
(8 + 4 log |S|) ≥ maxv∈L 2wT (v). The primitive ExtractCheapSubset finds this set L efficiently.
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13 Robust Sparse Fourier Transform II.

In this section we present an algorithm that can compute a 1 + ε approximation to the Fourier
transform of a singnal in the k-high SNR regime using a sample complexity that is nearly quadratic
in k and a runtime that is cubic in k, fully making use of techniques I-IV.

Formally we prove the following theorem,

Theorem 4 (Robust Sparse Fourier Transform with Near-quadratic Sample Complexity). 11 Given
oracle access to x : [n]d → C in the k-high SNR model and parameter ε > 0, we can solve the `2/`2
Sparse Fourier Transform problem with high probability in N using

m = Õ

(
k2

ε
+ k2 · 2Θ(

√
log k·log logN)

)
samples from x and Õ

(
k3

ε

)
running time.

We first present a recursive procedure in Algorithm 8 that is the main computational component
of achieving the abovementioned theorem for a constant value of ε = 1

20 . Any sparse χ̂ that satisfies
the approximation guarantee of Theorem 4 for constant ε, by the k-high SNR assumption, must
recover all the head elements of x̂ correctly. Once we have the set of heavy frequencies of x̂ we can
estimate the head vlaues to a higher ε precision for arbitrarily small ε using a simple algorithm.
We present the procedure that achieves such 1 + ε approximation and thus achieves the guarantee
of Theorem 4 in Algorithm 9. We demonstrate the execution of primitive RecursiveRobustSFT
(Algorithm 8) in Figure 5.

Overview of RecursiveRobustSFT (Algorithm 8): Consider an invocation of RecursiveR-
obustSFT(x, χ̂in,Frontier, v, k, α, µ). Suppose that ŷ := x̂ − χ̂in is a signal in the high SNR
regime, i.e., the value of each heavy frequency of signal ŷ is at least 3 times higher than the
tail’s norm. More formally, let head ⊆ [n]d denote the set of heavy (head) frequencies of ŷ
and suppose that the tail norm of ŷ satisfies ‖ŷ − ŷhead‖2 ≤ µ and additionally suppose that
|ŷ(f)| ≥ 3µ for every f ∈ head. If Frontier fully captures the heavy frequencies of ŷ, i.e.,
head ⊆ supp(Frontier), and the number of heavy frequencies in frequency cone of node v is
bounded by k, i.e., |head∩FreqConeFrontier(v)| ≤ k, then RecursiveRobustSFT finds a signal

χ̂v such that supp(χ̂v) = head∩FreqConeFrontier(v) := S and ‖ŷS− χ̂v‖22 ≤
µ2

40 log2
1
α
k
. An example

of the input tree Frontier is illustrated in Figure 5 with thin solid black edges. Additionally, one
can see node v which is a leaf of Frontier in this figure.

Algorithm 8 recovers heavy frequencies of signal ŷ that lie in the subree of v, i.e., set S =
head ∩ FreqConeFrontier(v), by iteratively exploring the subtree of Frontier rooted at v, which
we denote by T , and simultaneously updating the proxy signal χ̂v. We show an example of subtree T
at some iteration of our algorithm in Figure 5 with thick solid edges. The algorithm also maintains a
subset of leaves denoted by Marked that contains the leaves of Frontier that are fully identified,
that is the set of leaves that are at the bottom level and hence there is no ambiguity in their
frequency content (there is exactly one element in frequency cone of marked leaves). We show the
set of marked leaves in Figure 5 using blue squares. Subtree T , in all iterations of our algorithm,
maintains the invariant that the frequency cone of each of its leaves contain at least one head

11proved as Theorem 13 in Section 12
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v

Frontier

subtree T

yet to be explored

Marked leaves

recovered & subtracted

leaves (frequencies)

head ∩ FreqConeFrontier(v)

Figure 5: Illustration of an instance of RecursiveRobustSFT (Algorithm 8). This procedure
takes in a tree Frontier (shown with thin edges) together with a leaf v ∈ Leaves(Frontier) and
adaptively explores/constructs the subtree T rooted at v to find all heavy frequencies that lie in
FreqConeFrontier(v). If head denotes the set of heavy frequencies, then the algorithm finds head∩
FreqConeSideTree(v) by exploring T . Once the identity of a leaf is fully revealed, the algorithm adds
that leaf to the set Marked. When the number of marked leaves grows to the point where there
exists a subset of marked frequencies that can be estimated cheaply, our algorithm estimates the
Cheap subset in a batch, subtracts off the estimated signal, and removes all corresponding leaves
from T and Marked.

element and furthermore the frequency cone of each of its unmarked leaves contain at least b + 1
head element, where b = αk, i.e.,

|FreqConeFrontier∪T (u) ∩ head| ≥

{
1 for every u ∈ Marked

b+ 1 for every u ∈ Leaves(T ) \Marked
. (19)

We demonstrate, in Figure 5, the leaves that correspond to set S = head ∩ FreqConeFrontier(v)
via leaves at bottom level of the subtree rooted at v. Assuming that for the example shown in this
figure b = αk = 2, one can easily verify (19) by noting that the frequency cone of each leaf of T
contains at least one element from the set head and frequency cones of unmarked leaves contain
at least two element of head. Additionally, at every iteration of the algorithm, the union of all
frequency cones of subtree T captures all heavy frequencies that are not recovered yet, i.e.,

S \ supp(χ̂v) ⊆ supp(Frontier ∪ T ). (20)

In Figure 5, we show the set of fully recovered leaves (frequencies), i.e., supp(χ̂v), using red thin

68



dashed subtrees. These frequencies are subtracted from the residual signal ŷ − χ̂v and their corre-
sponding leaves are removed from subtree T , as well. One can verify that condition 20 holds in the
example depicted in Figure 5. Moreover, the estimated value of every frequency that is recovered
so far, is accurate up to an average error of µ√

40k·log 1
α
k
. More precisely, in every iteration of the

algorithm the following property is maintained,∑
f∈supp(χ̂v) |ŷ(f)− χ̂v(f)|2

|supp(χ̂v)|
≤ µ2

40k · log2
1
α

k
. (21)

At the begining of the procedure, subtree T is initialized to be the leaf v, i.e., T = {v}, and
will be dynamically changing throughout the execution of our algorithm. Moreover, we initialize
χ̂v ≡ 0. Trivially, these initial values satisfy (19), (20), and (21).

The algorithm operates by picking the unmarked leaf of T that has the smallest weight. Then
the algorithm explores the children of this node by recursively running RecursiveRobustSFT
on them with a reduced budget to recover the heavy frequencies that lie in their frequency cones.
To be more precise, let us call the unmarked leaf of T that has the smallest weight z. We denote
by zleft and zright the left and right children of z. Let us consider exploration of the left child zleft,
the right child is exactly the same. If the number of heavy frequencies in the frequency cone of zleft

is bounded by b = αk, i.e., |head ∩ FreqConeFrontier∪{zleft,zright}(zleft)| ≤ b, then RecursiveR-
obustSFT(x, χ̂in + χ̂v,Frontier ∪ T ∪ {zleft, zright}, zleft, b, α, µ) recovers every frequency in the
set head ∩ FreqConeFrontier∪{zleft,zright}(zleft) up to an average error of µ√

40b·log 1
α
b
. Note that this

everage estimation error is not sufficient for achieving the invariant (21), hence, instead of directly
using the values that the recursive call of RecursiveRobustSFT recovered to update χ̂v at the
newly recovered heavy frequencies, our algorithm adds the leaves corresponding to the recovered
set of frequencies, i.e., head ∩ FreqConeFrontier∪{vleft,vright}(vleft), at the bottom level of T and
marks them as fully identified (adds them to Marked). It can be seen in Figure 5 that all marked
leaves are at the bottom level of the tree. For achieving maximum efficinecy we employ a new lazy
estimation scheme, that is, the estimation of values of marked leaves is delayed until there is a
large number of marked leaves and thus there exists a subset of them that is cheap to estimate.
On the other hand, if the number of head elements in frequency cone of zleft is more than b then
our algorithm detects this and subsequently adds node zleft to T . These operations ensure that the
invariants (19), (20), and (21) are maintained.

Once the size of set Marked grows sufficiently such that it contains a subset that is cheap to
estimate, our algorithm estimates the values of the cheap frequencies. More precisely, at some
point, Marked will contains a non-empty subset Cheap such that the values of all frequencies in
Cheap can be estimated cheaply and subsequently, our algorithm esimates those frequencies in a

batch up to an average error of O
(

µ√
k·logN

)
, updates χ̂ accordingly and removes all estimated

(Cheap) leaves from Frontier and Marked. This ensures that invariants (19), (20), and (21) are
maintained. The estimated leaves are illustrated in Figure 5 using red thin dashed subtrees. We
also demontrate the subtrees of T that contain head element and are yet to be explored by our
algorithm using gray cones and dashed edges in Figure 5. The gray cone means that there are
heavy elements in that frequency cone that need to be identified as that node has not reached the
bottom level yet.

Finally, the algorithm keeps tabs on the runtime it spends and ensures that even if the in-
put signal does not satisfy the preconditions for successful recovery, in particular if |head ∩
FreqConeFrontier(v)| > k, the runtime stays bounded. Additionally, the algorithm performs a
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quality control by running HeavyTest on the residual and if the recovered signal is not correct
due to violation of some preconditions, it will be reflected in the output of our algorithm.

Analysis of RecursiveRobustSparseFT. Frirst we analyze the runtime and sample complex-
ity of RecursiveRobustSparseFT in the following lemma.

Lemma 22 (RecursiveRobustSFT – Time and Sample Complexity). For every subtree Frontier

of T full
N , every leaf v of Frontier, positive integer k, every α = o

(
1

logN

)
and µ ≥ 0, and every sig-

nals x, χ̂in : [n]d → C, consider an invocation of primitive RecursiveRobustSFT (Algorithm 8)
with inputs (x, χ̂in,Frontier, v, k, α, µ). Then,

• The running time of primitive is bounded by

Õ

((
k2

α
· 2wFrontier(v) +

k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ k2 · ‖χ̂in‖0 + k3

)
.

• The number of accesses it makes on x is always bounded by

Õ

(
k2

α
· 2wFrontier(v) · (2 logN)

log 1
α
k
)
.

Moreover, the output signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v) and ‖χ̂v‖0 ≤ k.

Proof. The proof is by induction on parameter k. The base of induction corresponds to k ≤ 1
α .

For every k ≤ 1
α , Algorithm 8 simply runs PromiseSparseFT(x, χ̂in,Frontier, v, k, d kαe, µ) in

line 2. Therefore, by Lemma19, the runtime and sample complexity of our algorithm are bounded

by Õ
(
k
α · ‖χ̂in‖0 + k2

α · 2
wFrontier(v)

)
and Õ

(
k2

α · 2
wFrontier(v)

)
, respectively. Moreover, by Lemma19,

the output signal χ̂v satisfies ‖χ̂v‖0 ≤ k as well as supp(χ̂v) ⊆ FreqConeFrontier(v). This proves
that the inductive hypothesis holds for every integer k ≤ 1

α , hence the base of induction holds.
To prove the inductive step, suppose that the lemma holds for every k ≤ m − 1 for some

integer m ≥ b 1
αc + 1. Assuming the inductive hypothesis, we prove that the lemma holds for

k = m. First, we prove that Algorithm 8 terminates after a bounded number of iterations. For
the purpose of having a tight analysis of the runtime and sample complexity, we need to have tight
upper bounds on the number of times our algorithm invokes primitive Estimate in line 12 as well
as the number of times our algorithm recursively calls itself in lines 21 and 22. First, we show that
the number of iterations in which the if-staement in line 9 is True, and hence the number of times
we invoke Estimate in line 12, is bounded by O(k). The reason is, everytime the if-staement in
line 9 becomes True the sparsity of χ̂v, i.e., ‖χ̂v‖0, increases by |Cheap| ≥ 1, because the if-staement
in line 9 ensures that preconditions of Claim 6 hold, hence, by invoking this claim, Cheap 6= ∅.
On the other hand, we can see from the way our algorithm operates that the sparity of χ̂v does
not decrease in any of the iterations of our algorithm. Therefore, because the if-statement in line 7
of the algorithm makes sure that ‖χ̂v‖0 does not exceed k, we conclude that the total number of
iterations in which the if-statement in line 9 is True is bounded by O(k). Hence, the number of
times our algorithm calls Estimate in line 12 is O(k).

In order to bound the number of iterations of our algorithm in which the if-statement in line 9

is False, we use a potential function. Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the

algorithm. Furthermore, let T (t) denote the subtree T at the end of tth iteration. Additionally, let
Marked(t) denote the set Marked (defined in Algorithm 8) at the end of iteration t. We prove that
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Algorithm 8 A Recursive Robust High-dimensional Sparse FFT Algorithm

1: procedure RecursiveRobustSFT(x, χ̂in,Frontier, v, k, α, µ) . µ: upper bound on tail
norm ‖η‖2

2: if k ≤ 1
α then return PromiseSparseFT

(
x, χ̂in,Frontier, v, k, d kαe, µ

)
3: Let T denote the subtree of Frontier rooted at v – i.e. T ← {v}
4: χ̂v ← {0}n

d
. Sparse vector to approximate (x̂− χ̂in)FreqConeFrontier(v)

5: b← dαke, Marked← ∅ . Marked: set of fully identified leaves (frequencies)
6: repeat
7: if (b+ 1) · |Leaves(Tv) \Marked|+ |Marked|+ ‖χ̂v‖0 > k then

8: return
(

False, {0}nd
)

. Exit because budget of v is wrong

9: if
∑

u∈Marked 2−wT (u) ≥ 1
2 then

10: Cheap← FindCheapToEstimate (T,Marked)
11: . Lazy estimation: We extract from the batch of marked leaves a subset that is

cheap to estimate on average

12:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂in + χ̂v,Frontier ∪ T,Cheap, 736k·log2 N

|Cheap|

)
13: for u ∈ Cheap do
14: χ̂v(fu)← Ĥu

15: Remove node u from subtree T
16: Marked← Marked \ Cheap
17: continue
18: z ← argminu∈Leaves(T )\MarkedwT (u) . pick the minimum weight leaf in subtree T which

is not in Marked
19: zleft := left child of z and zright := right child of z
20: T ′ ← T ∪ {zleft, zright} . Explore children of z
21: (IsCorrleft, χ̂left)← RecursiveRobustSFT (x, χ̂in + χ̂v,Frontier ∪ T ′, zleft, b, α, µ)

22: (IsCorrright, χ̂right)← RecursiveRobustSFT (x, χ̂in + χ̂v,Frontier ∪ T ′, zright, b, α, µ)

23: if IsCorrleft and IsCorrright and z 6= v and ‖χ̂left‖0 + ‖χ̂right‖0 ≤ b then

24: return
(

False, {0}nd
)

. Exit because budget of v is wrong

25: if IsCorrleft then
26: ∀f ∈ supp(χ̂left), add the unique leaf corresponding to f to subtree T and Marked
27: else
28: Add zleft to subtree T

29: if IsCorrright then
30: ∀f ∈ supp(χ̂right), add the unique leaf corresponding to f to subtree T and Marked

31: else
32: Add zright to subtree T

33: until T has no leaves besides v
34: if HeavyTest

(
x, χ̂in + χ̂v,Frontier, v, O

(
k
α log3N

)
, 6µ2

)
then

35: . The number of heavy coordinates in FreqConeFrontier(v) is more than k

36: return
(

False, {0}nd
)

37: else
38: return (True, χ̂v)
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Algorithm 9 Robust High-dimensional Sparse FFT with Õ(k3) Time and Õ
(
k2+o(1)

)
Samples

1: procedure RobustSFT(x, k, ε, µ)

2: α← 2−
√

log k·log(2 logN)

3: (IsCorr, χ̂)← RecursiveRobustSFT
(
x, {0}nd , {root}, root, k, α, µ

)
4: Let T be the splitting tree corresponding to the set supp(χ̂)

5: χ̂ε ← {0}n
d

6: while tree T has a leaf besides its root do
7: Cheap← FindCheapToEstimate (T,Leaves(T ))
8: . The set of frequencies that are cheap to estimate on average

9:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂ε, T,Cheap, 32k

ε·|Cheap|

)
10: for u ∈ Cheap do
11: χ̂ε(fu)← Ĥu

12: Remove node u from tree T
13: return χ̂ε

the number of iterations in which the if-statement in line 9 of our algorithm is False is bounded by

O
(

logN
α

)
using the following potential function, defined for non-negative integer t:

φt := (logN + 1) · |Marked(t)|+ 2 logN · ‖χ̂(t)
v ‖0 + b ·

∑
u∈Leaves(T (t))\Marked(t)

lT (t)(u).

We prove that assuming the algorithm does not terminate in q iterations, for some integer q, then
in every positive iteration t ≤ q, if the if-statement in line 9 of Algorithm 8 is False, then the above
potential function increases by at least b, i.e., φt ≥ φt−1 + b. Additionally, when the if-statement in
line 9 is True, the potential increases by at least logN−1, i.e., φt ≥ φt−1 +logN−1. We show that
at any given iteration t of the algorithm the potential function φt increases in the abovementioned
fashion.

Case 1 – the if-statement in line 9 of Algorithm 8 is True. In this case, we have that∑
u∈Marked(t−1) 2−wT (t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap(t) ⊆ Marked(t−1) that
the algorithm computes in line 10 by running the primitive FindCheapToEstimate is non-
empty. Then, the algorithm constructs T (t) by removing all leaves that are in the set Cheap(t)

from tree T (t−1) and leaving the rest of the tree unchanged. Furthermore, the algorithm updates
the set Marked(t) by subtracting Cheap(t) from Marked(t−1). Additionally, in this case, the algo-
rithm computes {Ĥu}u∈Cheap(t) by running the procedure Estimate in line 12 and then updates

χ̂
(t)
v (fu)← Ĥu for every u ∈ Cheap(t) and χ̂

(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ. Therefore,

‖χ̂(t)
v ‖0 = ‖χ̂(t)

v ‖0 + |Cheap(t)|. Thus,

φt − φt−1 = (logN − 1) · |Cheap(t)| ≥ logN − 1,

where the inequality follows from Cheap(t) 6= ∅. This proves the potential increase that we wanted.

Case 2 – the if-statement in line 9 is False. In this case, either the algorithm terminates
by the if-statement in line 23, which contradicts with our assumption that the algorithm does not
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terminate after q ≥ t iterations, or the following holds,

|Marked(t)|+ b ·
∑

u∈Leaves(T (t))\Marked(t)

lT (t)(u)

≥ |Marked(t−1)|+ b ·
∑

u∈Leaves(T (t−1))\Marked(t−1)

lT (t−1)(u) + b,

while |Marked(t)| ≥ |Marked(t−1)| and ‖χ̂(t)
v ‖0 = ‖χ̂(t−1)

v ‖0. Thus, in this case, φt+1 − φt ≥ b which
is the potential increase that we wanted to prove.

So far, we proved that φt must increase by at least logN −1 at every iteration of the algorithm.
Moreover, at every iteration of the algorithm where the if-statement in line 9 is False the potential
increases by at least b. Also, the potential function φt is non-negative for every t. On the other
hand, the if-statement in line 7 ensures that at any iteration t ≤ q it must hold that φt ≤ 2k logN .
Therefore, the potential increse that we proved implies that Algorithm 8 must terminate after at
most q = 2k logN iterations, where only in 2 logN

α of the iterations the if-statement in line 9 can
be False. Therefore, the total number of times our algorithm recursively invokes itself in lines 21
and 22 is bounded by 2 logN

α .
Now that we have the termination quarantee, we can use the fact that our algorithm constructs

χ̂v by exclusively estimating the values of frequencies that lie in FreqConeFrontier(v) in line 12, one
can see that the output signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v). Additionally,
the if-staement in line 7, ensures that ‖χ̂v‖0 ≤ k. Now we bound the running time and sample
complexity of the algorithm.

Sample Complexity and Runtime: The expensive components of the algorithm are primitive
Estimate in line 12, the recursive call of RecursiveRobustSFT in lines 21 and 22, and invocation
of HeavyTest in line 34 of the algorithm.

We first bound the time and sample complexity of invoking Estimate in line 12. We remark
that, at any iteration t, the algorithm runs primitive Estimate only if case 1 that we mentioned
earlier in the proof happens. Therefore, by Claim 6, the set ∅ 6= Cheap(t) ⊆ Marked(t−1) that
our algorithm computes in line 10 by running the primitive FindCheapToEstimate satisfies the

property that |Cheap(t)| ·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap(t) 2wT (t−1) (u). By the if-statement

in line 7 of the algorithm, this implies that |Cheap(t)| · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u).
Thus, by Lemma 18, the time and sample complexity of every invocation of Estimate in line 12
of our algorithm are bounded by

Õ

 k

|Cheap(t)|

∑
u∈Cheap(t)

2wFrontier∪T (t−1) (u) + k ·
∥∥∥χ̂(t−1)

v + χ̂in

∥∥∥
0


and Õ

(
k

|Cheap(t)|

∑
u∈Cheap(t) 2wFrontier∪T (t−1) (u)

)
, respectively. Using the fact that ‖χ̂(t−1)

v ‖0 ≤ k,

these time and sample complexities are further upper bounded by

Õ
(
k ·
(

2wFrontier(v) · |Cheap(t)|+ ‖χ̂in‖0
)

+ k2
)

and Õ
(
k · 2wFrontier(v) · |Cheap(t)|

)
, respectively. We proved that the total number of times we run

Estimate in line 12 of the algorithm, is bounded by O(k). Using this together with the fact that

73



∑
t: if-statement in line 9 is True

∣∣∣Cheap(t)
∣∣∣ = ‖χ̂v‖0 ≤ k, the total runtime and sample complexity of all

invocations of Estimate in all iterations can be upper bounded by Õ
(
k3 + k2(‖χ̂in‖0 + 2wFrontier(v))

)
and Õ

(
k2 · 2wFrontier(v)

)
, respectively.

Now we bound the runtime and sample complexity of invoking RecursiveRobustSFT in
lines 21 and 22 of the algorithm. Note that at any iteration t, our algorithm recursively calls
RecursiveRobustSFT only if case 2 that we mentioned earlier in the proof occurs. As we
showed, the total number of times that this happens is bounded by 2 logN

α . Since, in line 18 of
the algorithm, we pick leaf z with the smallest weight, and since the number of leaves of subtree
T (t−1) that are not in the set Marked(t−1) are bounded by k

b+1 (ensured by the if-statement in

line 7), we have wFrontier∪T ′(zleft) = wFrontier∪T ′(zright) ≤ wFrontier(v) + log k
b+1 + 1. Also note

that ‖χ̂(t−1)
v ‖0 ≤ k, ensured by the if-statement in line 7. Therefore, by the inductive hypothesis,

the time and sample complexities of each recursive invocation of RecursiveRobustSFT by our
algorithm are bounded by

Õ

((
b2 · 2wFrontier(v)

α2
+
b

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
b

+ b2 · ‖χ̂in‖0 + kb2

)

and Õ
(
b2

α2 · 2wFrontier(v) · (2 logN)
log 1

α
b
)

. We proved that the total number of iterations in which

case 2 happens, and hence the number of times we run RecursiveRobustSFT in lines 21 and
22 of the algorithm, is bounded by 2 logN

α . Therefore, the total time and sample complexity of all
invocations of PromiseSparseFT in lines 21 and 22 are bounded by

Õ

((
k2

α
· 2wFrontier(v) +

k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ αk2 · ‖χ̂in‖0 + αk3

)
and Õ

(
k2

α · 2
wFrontier(v) · (2 logN)

log 1
α
k
)

, respectively.

Finally, we bound the time and sample complexity of invoking HeavyTest in line 34 of our
algorithm. Since ‖χ̂v‖0 ≤ k, by Lemma 17, the time and sample complexity of the HeavyTest in

line 34 are bounded by Õ
(
‖χ̂in‖0 · kα + k2

α + 2wFrontier(v) · kα
)

and Õ
(
2wFrontier(v) · kα

)
, respectively.

Hence, we find that the total time and sample complexity of our algorithm are bounded by

Õ

((
k2 · 2wFrontier(v)

α
+
k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ k2 · ‖χ̂in‖0 + k3

)

and Õ
(
k2

α · 2
wFrontier(v) · (2 logN)

log 1
α
k
)

, respectively. This proves the inductive step of the proof

and consequently completes the proof of our lemma.

Now we are in a position to present the main invariant of primitive RecursiveRobustSFT.

Lemma 23 (RecursiveRobustSFT - Invariants). Consider the preconditions of Lemma 22. Let
ŷ := x̂ − χ̂in and S := FreqConeT (v) ∩ headµ(ŷ), where headµ(·) is defined as per (7). If i)

headµ(ŷ) ⊆ supp(Frontier), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
21µ2

20 + µ2

20 log 1
α

(k/α) , and iii) |S| ≤ k
α , then with

probability at least 1 − O
((

2 logN
α

)log 1
α
k
·N−4

)
, the output (Budget, χ̂v) of Algorithm 8 satisfies

the following,

1. If |S| ≤ k then Budget = True, supp(χ̂v) ⊆ S, and ‖ŷS − χ̂v‖22 ≤
µ2

40 log2
1/α k

;
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2. If |S| > k then Budget = False and χ̂v ≡ {0}n
d
.

Proof. The proof is by induction on parameter k. The base of induction corresponds to k ≤ 1
α .

For every k ≤ 1
α , Algorithm 8 simply runs PromiseSparseFT

(
x, χ̂in,Frontier, v, k, d kαe, µ

)
in

line 2. Therefore, by Lemma20, the claims of the lemma hold with probability at least 1− 1
N4 . This

proves that the inductive hypothesis holds for every integer k ≤ 1
α , hence the base of induction

holds.
To prove the inductive step, suppose that the lemma holds for every k ≤ m − 1 for some

integer m ≥ b 1
αc + 1. Assuming the inductive hypothesis, we prove that the lemma holds for

k = m. To prove the inductive claim, we first analyze the algorithm under the assumption that the
primitives HeavyTest and Estimate are replaced with more powerful primitives that succeeds
deterministically. Hence, we assume that HeavyTest correctly tests the “heavy” hypothesis on its
input signal with probability 1 and also Estimate achieves the estimation guarantee of Lemma 18
deterministrically. Moreover, we assume that our inductive invocation of RecursiveRobustSFT
in lines 21 and 22 of the algorithm succeed deterministically, hence, we assume that the inductive
hypothesis (the lemma) holds with probability 1. With these assumptions in place, we prove that
the lemma holds deterministically (with probability 1). We then establish a coupling between this
idealized execution and the actual execution of our algorithm, leading to our result.

We prove the first statement of lemma by (another) induction on the Repeat-Until loop of
the algorithm. Note that we are proving the inductive step of an inductive proof using another
induction (two nested inductions). The first (outer) induction was on the integer k and the second

(inner) induction is on the iteration number t of the Repeat-Until loop of our algorithm. Let χ̂
(t)
v

denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let Frontier(t)

denote the subtree T at the end of tth iteration. Also, let Marked(t) denote the set Marked (defined

in Algorithm 8) at the end of iteration t. Additionaly, for every leaf u of subtree T (t), let L
(t)
u

denote the “unestimated” frequencies in support of ŷ that lie in frequency cone of u, i.e., L
(t)
u :=

FreqConeFrontier∪T (t)(u) ∩ headµ(ŷ) We prove that if preconditions i, ii and iii together with
the presondition of statement 1 (that is |S| ≤ k), hold, then at every iteration t = 0, 1, 2, . . . of
Algorithm 8, the following properties are maintained,

P1(t) S \ supp
(
χ̂

(t)
v

)
⊆ supp

(
T (t)

)
:=
⋃
u∈Leaves(T (t)) FreqConeFrontier∪T (t)(u);

P2(t) For every leaf u 6= v of subtree T (t),
∣∣∣L(t)
u

∣∣∣ ≥ 1. Additionally, if u /∈ Marked(t), then
∣∣∣L(t)
u

∣∣∣ > b;

P3(t)
∥∥∥ŷS(t) − χ̂(t)

v

∥∥∥2

2
≤ |S(t)|

40k·log2
1/α k

· µ2, where S(t) := supp
(
χ̂

(t)
v

)
;

P4(t) S(t) ⊆ S and S(t) ∩

(⋃
u∈Leaves(T (t))

u6=v

FreqConeFrontier∪T (t)(u)

)
= ∅;

The base of induction corresponds to the zeroth iteration (t = 0), at which point T (0) is a

subtree that solely consists of node v and has no other leaves. Moreover, χ̂
(0)
v ≡ 0. Thus, statement

P1(0) trivially holds by definition of set S. The statement P2(0) holds since there exists no leaf

u 6= v in T (0). The statements P3(0) and P4(0) hold because of the fact χ̂
(0)
v ≡ 0.

We now prove the inductive step by assuming that the inductive hypothesis, P (t − 1) is
satisfied for some iteration t−1 of Algorithm 8, and then proving that P (t) holds. First, we remark
that if inductive hypotheses P2(t−1) and P4(t−1) hold true, then by the precondition of statement
1 of the lemma (that is |S| ≤ k) the if-statement in line 7 of Algorithm 8 is False and hence lines 7
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and 8 of the algorithm can be ignored in our analysis. We proceed to prove the induction by
considering the two cases that can happen in every iteration t of the algorithm:

Case 1 – the if-statement in line 9 of Algorithm 8 is True. In this case, we have that∑
u∈Marked(t−1) 2−wT (t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap ⊆ Marked(t−1) that the
algorithm computes in line 10 by running the primitive FindCheapToEstimate satisfies the

property that |Cheap| ·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap 2wT (t−1) (u). Clearly Cheap 6= ∅,

by Claim 6. Then the algorithm computes {Ĥu}u∈Cheap by running the procedure Estimate in

line 12 and then updates χ̂(t)(fu) ← Ĥu for every u ∈ Cheap and χ̂(t)(ξ) = χ̂(t−1)(ξ) at every
other frequency ξ. Therefore, if we let L := {fu : u ∈ Cheap}, then S(t) \ S(t−1) = L, by inductive
hypothesis P4(t − 1). By P3(t − 1) along with Lemma 18 (its deterministic version that succeeds
with probability 1), we find that∥∥∥χ̂(t)

v − ŷS(t)

∥∥∥2

2
=
∥∥∥(χ̂(t)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥χ̂(t−1)

v − ŷS(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)L

∥∥∥2

2

≤
∣∣S(t−1)

∣∣ · µ2

40k log2
1/α k

+
|L|

46k log2N

∑
ξ∈[n]d\supp(Frontier∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2 . (22)

Now we bound the second term above,∑
ξ∈[n]d\supp(Frontier∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +
∑

ξ∈FreqConeFrontier(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeFrontier(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

=
∑

ξ∈[n]d\(supp(Frontier∪T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
(by P1(t− 1), precondition i and definition of S)

≤ 21µ2

20
+

µ2

20 log 1
α

(k/α)
+

µ2

40 log2
1
α
k

(by P3(t− 1) and P4(t− 1) and precondition |S| ≤ b)

≤ 23µ2

20
.

Therefore, by plugging the above bound back to (22) we find that,∥∥∥χ̂(t)
v − ŷS(t)

∥∥∥2

2
≤

∣∣S(t−1)
∣∣

40k log2
1
α

k
· µ2 +

|L|
46k log2N

·
(

23

20
µ2

)
≤

∣∣S(t)
∣∣

40k log2
1
α

k
· µ2,

which proves the inductive claim P3(t).
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Moreover, in this case, the algorithm constructs T (t) by removing all leaves that are in the set
Cheap from tree T (t−1) and leaving the rest of the tree unchanged. Furthermore, the algorithm
updates the set Marked(t) by subtracting Cheap from Marked(t−1). Note that, P2(t − 1) implies
that L ⊆ S. Thus, the fact S(t) = S(t−1) ∪ L together with inductive hypothesis P4(t − 1) as
well as the construction of T (t), imply P4(t). The construction of T (t) together with the fact that
|FreqConeFrontier∪T (t−1)(u)| = 1 for every u ∈ Marked(t−1) give P1(t) and P2(t).

Case 2 – the if-statement in line 9 is False. Let z ∈ Leaves
(
T (t−1)

)
\Marked(t−1) be the

smallest weight leaf chosen by the algorithm in line 18. In this case, the algorithm constructs
tree T ′ by adding leaves zright and zleft to tree T (t−1) as right and left children of z in line 20.

Then, the algorithm runs RecursiveRobustSFT with inputs
(
x, χ̂in + χ̂

(t−1)
v , T ′, zleft, b, α, µ

)
and

(
x, χ̂in + χ̂

(t−1)
v , T ′, zright, b, α, µ

)
in lines 21 and 22 respectively. Now we analyze the output

of the recursive invocation of RecursiveRobustSFT in lines 21 and 22. In the following we
focus on analyzing (IsCorrleft, χ̂left) but (IsCorrright, χ̂right) can be analyzed exactly the same
way. There are two possibilities that can happen:

Possibility 1) |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b. In this case, the inductive hypoth-
esis P4(t− 1) implies that |S(t−1)| ≤ k and hence inductive hypothesis P3(t− 1) gives∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
≤ µ2

40 log2
1/α k

, (23)

hence, headµ

(
ŷ − χ̂(t−1)

v

)
= headµ(ŷ) \ S(t−1). Consequently, if we let ĝ := ŷ − χ̂

(t−1)
v , then:

i) headµ(ĝ) ⊆ supp(Frontier ∪ T ′), by (23) along with P1(t − 1), ii) ‖ĝ − ĝheadµ(ĝ)‖22 ≤
21µ2

20 +
µ2

20 log 1
α

(b/α) , by precondition of the lemma along with (23), and iii)

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| ≤ b,

by assumption |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b. Therefore, all preconditions of the first
statement of Lemma 23 hold. Since we invoke primitive RecursiveRobustSFT with sparsity
b ≤ m− 1, by our inducive hypothesis that Lemma 23 holds for any sparsity parameter k ≤ m− 1,
we can invoke this lemma (a deterministic version of it that succeeds with probability 1) and
conclude that, IsCorrleft = True, and supp(χ̂left) ⊆ FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ), and∥∥ĝFreqConeFrontier∪T ′ (zleft)∩headµ(ĝ) − χ̂left

∥∥2

2
≤ µ2

40 log2
1/α b

≤ µ2

10 . This together with inductive hypothe-

sis P4(t− 1) imply that, supp(χ̂left) = FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ).
So, if |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b, then the algorithm adds all leaves that

correspond to frequencies in FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ) to tree T (t−1) as well as set

Marked(t−1). By a similar argument, if |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| ≤ b, then the al-
gorithm adds all leaves corresponding to frequencies in FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ) to

tree T (t−1) and set Marked(t−1).
Possibility 2) |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| > b. Same as in possibility 1, the

inductive hypothesis P4(t− 1) implies that |S(t−1)| ≤ k, hence, inductive hypothesis P3(t− 1) gives

(23). Hence, headµ

(
ŷ − χ̂(t−1)

v

)
= headµ(ŷ) \ S(t−1). Consequently, if we let ĝ := ŷ − χ̂(t−1)

v ,

then we find that i) headµ(ĝ) ⊆ supp(Frontier ∪ T ′), by P1(t− 1), ii) ‖ĝ − ĝheadµ(ĝ)‖22 ≤
21µ2

20 +
µ2

20 log 1
α

(b/α) , by precondition of the lemma along with (23), and iii)

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| ≤ |S| ≤ k,
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by precondition of statement 1 of the lemma. Additionally, by P4(t− 1), we find that

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| = |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| > b.

Since we invoke primitive RecursiveRobustSFT with sparsity b ≤ m − 1, by our inducive hy-
pothesis that Lemma 23 holds for any sparsity parameter k ≤ m− 1, we can invoke this lemma (a
deterministic version of it that succeeds with probability 1) and conclude that, IsCorrleft = False,
and χ̂left ≡ 0.

We remark that since

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)|+ |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| =
∣∣∣L(t−1)
z

∣∣∣ ,
the inductive hypothesis P2(t− 1) along with the above arguments imply that the if-statement in
line 23 of our algorithm cannot be True and hence in the rest of our analysis we can ignore lines 23
and 24 of the algorithm. Furthermore, in this case the algorithm adds leaf zleft as the left child of
v to tree T (t−1). By a similar argument, if |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| > b, then the
algorithm adds leaf zright as the left child of v to tree T (t−1).

Based on the above arguments, according to the values of IsCorrleft and IsCorrright, there are

various cases that can happen. From the way tree T (t) and set Marked(t) are obtained from T (t−1)

and Marked(t−1), it follows that in any case all 4 properties of P (t) are maintained. We have proved
that for every t, if the inductive hypothesis P (t−1) is satisfied then the property P (t) is maintained.
This completess the induction (i.e., the inner induction, recall that we have nested inductions) and
proves that properties P (t) is maintained throughout the execution of Algorithm 8, assuming that
preconditions i, ii, and iii of the lemma along with the precondition |S| ≤ k of statement 1 of the
lemma hold.

Lemma 22 proves that Algorithm 8 must terminate after some q iterations. When the algorithm
terminates, the condition of the Repeat-Until loop in line 33 of the algorithm must be True. Thus,
when the algorithm terminates, at qth iteration, there is no leaf in subtree T (q) besides v and as
a consequence the set Marked(q) must be empty. This, together with P1(q) imply that the signal

χ̂
(q)
v satisfies,

supp
(
χ̂(q)
v

)
= S = FreqConeFrontier(v) ∩ headµ(ŷ).

Moreover, P3(q) together with precondition |S| ≤ k imply that∥∥∥ŷS − χ̂(q)
v

∥∥∥2

2
≤ |S|

40k log2
1/α k

· µ2 ≤ µ2

40 log2
1/α k

.

Now we analyze the if-statement in line 34 of the algorithm. The above equalities and inequal-

ities on χ̂
(q)
v imply that,∥∥∥∥(ŷ − χ̂(q)

v

)
FreqConeFrontier(v)

∥∥∥∥2

2

=
∥∥ŷFreqConeFrontier(v)\S

∥∥2

2
+
∥∥∥(ŷ − χ̂(q)

v

)
S

∥∥∥2

2

≤
∥∥ŷFreqConeFrontier(v)\headµ(ŷ)

∥∥2

2
+
µ2

40
.

Therefore, if Ĝv is a Fourier domain (v,Frontier)-isolating filter constructed in Lemma 9, then
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by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(q)
v

)
· Ĝv

∥∥∥2

2
≤

∑
ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +

∥∥∥∥(ŷ − χ̂(q)
v

)
FreqConeFrontier(v)

∥∥∥∥2

2

≤
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +
∥∥ŷFreqConeFrontier(v)\headµ(ŷ)

∥∥2

2
+
µ2

40

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
+
µ2

40
≤ 11

10
· µ2.

Thus, the preconditions of the second claim of Lemma 17 hold. So, we can invoke this lemma to
conclude that the if-statement in line 34 of the algorithm is False and hence the algorithm outputs(

True, χ̂
(q)
v

)
. This completes the inductive proof of statement 1 of the lemma.

Now we proceed with the inductive step towards proving the second statement of lemma. Sup-
pose that preconditions i, ii, iii along with the precondition of statement 2 (that is |S| > k)
hold. Lemma 22 proved that the signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v) and
‖χ̂v‖0 ≤ k. Therefore, S \ supp(χ̂v) 6= ∅. Consequently, if Ĝv is a Fourier domain (v,Frontier)-
isolating filter constructed in Lemma 9, then by definition of isolating filters we have∥∥∥∥((ŷ − χ̂v) · Ĝv

)
S∪supp(χ̂v)

∥∥∥∥2

2

≥
∥∥∥(ŷ − χ̂v)S∪supp(χ̂v)

∥∥∥2

2
≥
∥∥ŷS\supp(χ̂v)

∥∥2

2
≥ 9µ2,

which follows from the definition of S and headµ(·). On the other hand,∥∥∥∥((ŷ − χ̂v) · Ĝ`
)

[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝ`)[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

≤
∥∥∥∥(ŷ · Ĝ`)[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeFrontier(v)\S

∥∥2

2

+
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)

Additionally note that |S ∪ supp(χ̂v)| ≤ k/α + k ≤ 2k/α by preconditions of the lemma and
property of supp(χ̂v) that we have proved. Hence, by invoking the first claim of Lemma 17, the

if-statement in line 34 of the algorithm is True and hence the algorithm outputs
(

False, {0}nd
)

.

This proves statement 2 of the lemma.
Finally, observe that throughout this analysis we have assumed that Lemma 17 holds with

probability 1 for all the invocations of HeavyTest by our algorithm. Moreover, we assumend that
Estimate successfully works with probability 1. Also we assumed that the inductive hypothesis
(that is Lemma 23 for sparsity parameters k ≤ m− 1) holds deterministically. In reality, we have
to take the fact that these primitives are randomized into acount of our analysis.

The first source of randomness is the fact that HeavyTest only succeeds with some high prob-
ability. In fact, Lemma 17 tells us that every invocation of HeavyTest succeeds with probability
at least 1− 1/N5.

The second source of randomness is the fact that Estimate only succeeds with some high
probability. Lemma 18 tells us that every invocation of Estimate on a set Cheap, succeeds
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with probability 1 − |Cheap|
N8 ≥ 1 − 1

N7 . Since, our analysis in proof of Lemma 22 shows that
RecursiveRobustSFT makes at most k recursive calls to Estimate, by a union bound, the
overall failure probability of all invocations of this primitive will be bounded by k

N7 .
The third and last source of randomness in our algorithm is the recursive invocations of Re-

cursiveRobustSFT in lines 21 and 22 of our algorithm. By the inductive hypothesis (statement of

Lemma 23), the invocation of this primitive succeeds with probability 1−O
((

2 logN
α

)log1/α b ·N−4

)
.

Our analysis in proof of Lemma 22 shows that RecursiveRobustSFT makes at most 2 logN
α recur-

sive calls to RecursiveRobustSFT. Therefore, by a union bound, the overall failure probability

of all invocations of RecursiveRobustSFT is bounded by O

((
2 logN
α

)log1/α k ·N−4

)
.

Finally, by another application of union bound, the overall failure probability of Algorithm 8,

is bounded by O

((
2 logN
α

)log1/α k ·N−4

)
. This completes the proof of the lemma.

Now we are ready to present our main robust sparse Fourier transform algorithm that achieves
the guarantee of Theorem 4 for any ε using a number of samples that is near quadratic in k and a
runtime that is cubic and prove the main result of this section.
Proof of Theorem 4: The procedure that achieves the guarantees of the theorem is presented
in Algorithm 9. The correctness proof basically follows by invoking Lemma 23 and the runtime
and sample complexity follows from Lemma 22. If we let µ := ‖η‖2 then because x is a signal in
the k-high SNR regime, we have that |headµ(x̂)| ≤ k and

∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ. Therefore, the

signal χ̂ that we computed in line 3 of Algorithm 9 by running procedure RecursiveRobustSFT

(Algorithm 8) with inputs
(
x, {0}nd , {root}, root, k, α, µ

)
, then all preconditions of Lemma 23 hold

and hence by invoking the first statement of this lemma we conclude that, with probability at least
1− 1

2N3 , χ̂ satisfies the following properties:

‖x̂− χ̂‖22 ≤
µ2

40
and supp(χ̂) ⊆ headµ(x̂).

This together with the k-high SNR assumption imply that, with probability at least 1 − 1
2N3 ,

supp(χ̂) = headµ(x̂). Therefore, tree T that we construct in line 4 of Algorithm 9 is in fact the
spliting tree of the set headµ(x̂), that is, supp(T ) = headµ(x̂) and |Leaves(T )| = |headµ(x̂)|.

In the rest of the correctness proof we condition on the event that tree T is the spliting tree of
the set headµ(x̂) and analyze the evolution of singal χ̂ε and tree T in every iteration t = 0, 1, 2, ...

of the while loop in Algorithm 9. Let χ̂
(t)
ε denote the signal χ̂ε at the end of iteration t, and let

T (t) denote the tree T at the end of iteration t. In every iteration t, Algorithm 9 computes a
subset Cheap(t) of leaves of the tree T (t−1) by running the primitive FindCheapToEstimate in
line 7 of the algorithm. By Claim 6, the set Cheap(t) ⊆ Leaves

(
T (t−1)

)
satisfies the property that∣∣∣Cheap(t)

∣∣∣ · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u). Clearly Cheap(t) 6= ∅, by Claim 6. Then the

algorithm computes {Ĥu}u∈Cheap(t) by running the procedure Estimate in line 9 and then updates

χ̂
(t)
ε (fu)← Ĥu for every u ∈ Cheap(t) and χ̂

(t)
ε (ξ) = χ̂

(t−1)
ε (ξ) at every other frequency ξ. Moreover,

the algorithm updates the tree T (t) by removing every leaf that is in the set Cheap from tree T (t−1).
Hence, one can readily see that since at each iteration of the while loop, tree T looses at least one
of its leaves, the algorithm terminates after at most

∣∣Leaves (T (0)
)∣∣ = k iterations, since initially

the number of leaves of T (0) equals |headµ(x̂)| = k.
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If we denote by S(t) the set supp
(
χ̂

(t)
ε

)
for every t, then we claim that the following holds,

Pr

[∥∥∥x̂S(t) − χ̂(t)
ε

∥∥∥2

2
≤
ε
∣∣S(t)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t)
∣∣

N8
.

We prove the above claim by induction on iteration number t of the while loop of our algorithm.

One can see that the base of induction trivially holds for t = 0 because χ̂
(0)
ε ≡ 0. To prove the

inductive step, suppose that the inductive hypothesis holds for t− 1, that is,

Pr

[∥∥∥x̂S(t−1) − χ̂(t−1)
ε

∥∥∥2

2
≤
ε
∣∣S(t−1)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t−1)
∣∣

N8
.

If we let L :=
{
fu : u ∈ Cheap(t)

}
, then one can see from the way our algorithm updates signal

χ̂
(t)
ε and tree T (t) that S(t) \S(t−1) = L for every iteration t. Furthermore, by Lemma 18 and union

bound, we find that with probability at least 1− |S
(t−1)|
N8 − |Cheap(t)|

N8 = 1− |S
(t−1)|
N8 the following holds∥∥∥x̂S(t) − χ̂(t)

ε

∥∥∥2

2
=
∥∥∥(x̂− χ̂(t)

ε )S(t−1)

∥∥∥2

2
+
∥∥∥(x̂− χ̂(t)

ε )S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2
+
∥∥∥(x̂− χ̂(t)

ε )L

∥∥∥2

2

≤ ε|S(t−1)|µ2

k
+
ε |L|
2k

∑
ξ∈[n]d\supp(T (t−1))

∣∣∣(x̂− χ̂(t−1)
ε

)
(ξ)
∣∣∣2 . (24)

Now we bound the second term above,∑
ξ∈[n]d\supp(T (t−1))

∣∣∣(x̂− χ̂(t−1)
ε

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\(supp(T (t−1))∪S(t−1))

|x̂(ξ)|2 +
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(x̂)

|x̂(ξ)|2 +
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2
(T was initially the splitting tree of headµ(x̂))

≤ 2µ2 (by the inductive hypothesis).

Therefore, by plugging the above bound back to (24) we find that,

Pr

[∥∥∥x̂S(t) − χ̂(t)
ε

∥∥∥2

2
≤
ε
∣∣S(t)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t)
∣∣

N8
,

which proves the inductive claim. Therefore, by another application of union bound, with proba-
bility at least 1− 1

N3 , the output of the algorithm χ̂ε satisfies ‖x̂− χ̂ε‖22 ≤ (1 + ε) · µ2. This proves
the correctness of Algorithm 9.

Runtime and Sample Complexity. By Lemma 22, the running time and sample complex-
ity of invoking primitive RecursiveRobustSFT in line 3 of the algorithm are bounded by

Õ(k3) and Õ
(
k2 · 22

√
log k·log(2 logN)

)
, respectively. Additionally, by Lemma 18, the runtime and
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sample complexity of every invocation of Estimate in line 9 of our algorithm are bounded by

Õ
(

k
ε|Cheap(t)|

∑
u∈Cheap(t) 2wT (t−1) (u) + k

ε · ‖χ̂
(t−1)
ε ‖0

)
and Õ

(
k

ε|Cheap(t)|

∑
u∈Cheap(t) 2wT (t−1) (u)

)
, re-

spectively. Using the fact that |Cheap(t)| · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u) together with

‖χ̂(t−1)
ε ‖0 ≤ k, these time and sample complexities are further upper bounded by Õ

(
k|Cheap(t)|

ε + k2

ε

)
and Õ

(
k
ε · |Cheap(t)|

)
, respectively. We proved that the total number of iterations, and hence num-

ber of times we run Estimate in line 9 of the algorithm, is bounded by k. Using this together with

the fact that
∑

t

∣∣∣Cheap(t)
∣∣∣ = ‖χ̂ε‖0 = |headµ(x̂)| ≤ k, the total runtime and sample complexity

of all invocations of Estimate in all iterations can be upper bounded by Õ
(
k3

ε

)
and Õ

(
k2

ε

)
,

respectively. Therefore the total time and sample complexities of our algorithm are bounded by

Õ
(
k3

ε

)
and Õ

(
k2

ε + k2 · 22
√

log k·log(2 logN)
)

, respectively.

14 Experiments.

In this section, we empirically show that our FFT backtracking algorithm for high dimensional
sparse signals is extremely fast and can compete with highly optimized software packages such as
the FFTW [Fri99, FJ]. Our experiments mainly focus on a modification of Algorithm 1 which
exploits only one level of FFT backtracking and runs in Õ(k2.5) time. One of the baselines that
we compare our algorithm to is the vanilla FFT tree pruning of [KVZ19], in order to demonstrate
the speed gained by our backtracking technique. Furthermore, we compare our method against
the SFFT 2.0 [HIKP12b, HIKP], which is optimized for 1-dimensional signals, and show that our
method’s performance for small sparsity k is comparable to that of the SFFT 2.0 even in dimension
one.

In a subset of our experiments, we exploit a technique introduced in [GHI+13] to speed up
the high-dimensional Sparse FFT algorithms. This method works as follows. By fixing one of the
coordinates of a d-dimensional signal we get a (d− 1)-dimensional signal whose Fourier transform
corresponds to projecting (aliasing) the Fourier transform of the original signal along the coordinate
that was fixed in time domain. Thus we can effectively project the Fourier spectrum into a (d− 1)-
dimensional plane by computing a (d−1)-dimensional FFT. Using a small number of measurements
(projections with different values of the fixed coordinate) we can figure out which frequencies are
projected without collision and recover them. We use this trick to recover the frequencies that get
isolated under the projection and then run our algorithm on the residual signal. Since the residual
signal is likely to have a smaller sparsity than the original one, this projection technique can speed
up our Sparse FFT algorithms.

Sparse signal classes: In our experiments, we benchmark all methods on the following classes
of k-sparse signals:

1. Random support with overtones: The Fourier spectrum of this signal class is the super-
position of a set of random frequencies and a set of overtones of these frequencies. Specifically,
the support of this signal is supp(x̂) = Srandom ∪ Sovertone, which are defined as follows,

Srandom :=
{
f1,f2, . . .fk/(d+1) ∼ i.i.d. Unif(Zdn)

}
,

Sovertone := {f + (n/2) · ei : ∀f ∈ Srandom, i ∈ [d]} ,
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where ei is the standard basis vector along coordinate i in dimension d. Note that every
f ∈ Srandom will collide with at least one overtone under projection along any coordinate,
thus, Srandom cannot be recovered using the projection trick. We added the overtones precisely
for this reason, i.e., to ensure that the projection trick does no recover the signal entirely and
there will be something left for the Sparse FFT to recover.

2. Randomly shifted d-dimensional Dirac Comb: The Fourier support of a Dirac Comb
(without shift) is the following,

Scomb :=
{(
i1 ·

n

k1/d
, i2 ·

n

k1/d
, . . . id ·

n

k1/d

)
: i1, i2, . . . id ∈ [k1/d]

}
.

We generate a random frequency shift f̃ ∼ Unif(Zdn) and a random phase shift t̃ ∼ Unif(Zdn)
then define the k-sparse x̂ as,

x̂f :=
∑

j∈Scomb

e2πi f
> t̃
n · 1{f=j+f̃}.

Note that the projection trick will not help at all on this signal and thus it is a good test case
for the Sparse FFT algorithms. Additionally, this signal in time domain is also a randomly
shifted Dirac Comb with sparsity N/k and thus distinguishing it from zero with constant
probability would require Ω(k) samples. This makes the Dirac Comb a hard test case for our
tree exploration algorithms which heavily rely on the ZeroTest primitive to distinguish a
sparse signal from a zero signal.

3. Superposition of a k/2-sparse signal with random support and a d-dimensional
Dirac Comb of sparsity k/2: This signal is a mixture of instances defined in (1) and (2)

4. Superposition of two randomly shifted d-dimensional Dirac Combs of sparsity k/2:
This signal is a mixture of two independent instances of the randomly shifted Dirac Comb
defined in (2).

14.1 FFT Backtracking vs Vanilla FFT Tree Pruning.

We first show that our backtracking technique highly improves the runtime of FFT tree pruning
and compare our algorithm against the vanilla tree exploration of Kapralov et al. [KVZ19] as a
baseline. We run both algorithms on a variety of sparse signals of size N = 221 in dimension d = 3.
We tune the parameters of both algorithms to achieve success probabilities of higher than 90% over
100 independent trials with different random seeds. Projection recovery [GHI+13] is turned off for
both algorithms to fairly demonstrate the effect of our backtracking technique. In Figure 6, we
benchmark our methods on 3 different classes of k-sparse signals and observe that our Backtracked
Sparse FFT algorithm consistently achieves a faster runtime and also scales slower as a function of
sparsity k compared to the Vanialla Sparse FFT Tree Pruning of [KVZ19].

14.2 Sparse FFT Backtracking vs FFTW.

Next we compare our algorithm against the highly optimized FFTW 3.3.9 software package and
show that our algorithm outperforms FFTW by a large margin when the signal size N is large. We
run both algorithms on a variety of signals of sparsity k = 32 in dimension d = 3. As in previous
set of experiments, the parameters of our algorithm is tuned to succeed in over 90% of instances.
In Figure 7, we benchmark our method and the FFTW on 4 different classes of k-sparse signals and
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Figure 6: The runtime of recovering: (a) superposition of a k/2-sparse signal with random support
and a 3D Dirac Comb of sparsity k/2, (b) a randomly shifted 3D Dirac Comb with sparsity k, and
(c) mixture of two randomly shifted 3D Dirac Combs of sparsities k/2.

observe that in all cases the runtime of our Backtracked Sparse FFT algorithm scales very weakly
with signal size N , particularly, our runtime grows far slower than that of FFTW. Consequently
our algorithm is orders of magnitude faster than FFTW for any N ≥ 218.

14.3 Comparison to SFFT 2.0 in Dimension One.

Finally, in this set of experiments we compare our modified Algorithm 1 against the SFFT software
package [HIKP] which is highly optimized for 1-dimensional sparse signals and show that we can
achieve comparable performance even in dimension one. We run both algorithms on two classes of
signals with sparsity k = 32 in dimension d = 1. We remark that the runtime of SFFT, which is
implemented based on [HIKP12b], will certainly scale badly in high dimensions due to filter support
increasing. However, since there is no optimized code available for SFFT in high dimensions, we
feel that it is more informative to compare our optimized code to their optimized code in 1D rather
than have a weak extension of their approach as a benchmark.

The SFFT package includes two versions: 1.0 and 2.0. The difference is that SFFT 2.0 adds a
Comb prefiltering heuristic to improve the runtime. The idea of this heuristic is to apply the aliasing
filter, which is very efficient and has no leakage, to restrict the locations of the large coefficients
according to their values mod some number B = O(k). The heuristic, in a preprocessing stage,
subsamples the signal at rate 1/B and then takes the FFT of the subsampled signal.

In Figure 8, we benchmark our method and SFFT (1.0 and 2.0) on 2 different classes of k-sparse
signals and observe that the runtime of our Backtracked Sparse FFT algorithm is comparable to
that of SFFT. In Fig. 8a we run the algorithms on a signal with random Fourier support and
observe that SFFT 2.0 runs slightly faster. Since the support is random, the heuristic trick used
in SFFT 2.0 can recover a large portion of the frequencies and thus SFFT 2.0 owes much of its
speed to the heuristic trick. On the other hand, in Fig. 8b, we run the algorithms on a randomly
shifted Dirac Comb and observe that our method outperforms SFFT 1.0. Note that since the Comb
prefiltering heuristic used in SFFT 2.0 completely fails on a Dirac Comb input, we used SFFT 1.0
in this experiment instead. This result demonstrates that for signals with small sparsity k, our
algorithm can run even faster than SFFT when the input’s support is a multiplicative subgroup of
Zn, such as the Dirac Comb.
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(a) The input signal classes are: (Left) mixture of two randomly shifted 3D Dirac Combs and
(Right) a randomly shifted 3D Dirac Comb
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(b) The input signal classes are: (Left) a random support signal with overtones and (Right)
mixture of random support and a randomly shifted 3D Dirac Comb

Figure 7: The runtime of recovering various signal classes with sparsity k = 32. We consider two
variants of our Backtracked Sparse FFT: (a) purely modified Algorithm 1 with no prefiltering or
projection tricks, (b) enhanced version of modified Algorithm 1 which first applies the projection
trick.
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A Analysis of the Cubic Time Tree Exploration Algorithm.

This section is devoted to proving the correctness and runtime of Algorithm 10.
The idea behind Algorithm 10 is to recover all non-zero leaves in the subtree of T full

N rooted at
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Figure 8: The runtime of recovering: (a) k-sparse signal with random support and (b) a randomly
shifted Dirac Comb with sparsity k.

v, given that |HeavyLeaves(v)| ≤ b and v is isolated by Found and Excluded. Algorithm 10 is
essentially a slightly modified version of [KVZ19], but since in this paper we work with an abstracted
problem, we still present the proof of its correctness and runtime. One of the useful tools for this
algorithm is Lemma 10, which states that for any tree T , the minimum weight wT (`) of a leaf ` in
T is at most logL, where L is the number of leaves of T .

Theorem 14 (Theorem 5, restated). If |HeavyLeaves(v)| ≤ b and v is isolated by Found and
Excluded, then the procedure SlowExactSparseRecovery returns the correct estimates for all
HeavyLeaves(v).

Proof. Assume for the moment that the check in line 3 is not made. We will show inductively
that the following invariant holds at the end of each repeat loop: all estimated values in Foundout
are correct, and HeavyLeaves(v) \ Foundout ⊂ Leaves(Frontierv). Then the correctness would
follow from the fact that Frontierv = ∅ at the end of the procedure.

It is easy to see that invariants hold before the loop starts. Now, suppose that at the start of an
arbitrary iteration the invariants hold for current sets Foundout and Frontierv. Because the in-
variants hold, the node z picked in line 5 is isolated by Found+Foundout and Excluded∪Frontierv.
If z is a leaf in T full

N , because z is isolated, Estimate produces the correct estimate for z, therefore,
the invariants still hold at the end of the loop. If z is not a leaf in T full

N , then because z is isolated
and HeavyLeaves(z) ⊆ HeavyLeaves(v), the prerequisites for calling ZeroTest are fulfilled,
and its output is correct. If it says True, we can just delete z from Frontierv without violat-
ing the invariants, and otherwise we add both it’s children instead. Since HeavyLeaves(zleft) ∪
HeavyLeaves(zright) = HeavyLeaves(z), the invariants still hold.

Finally, even if we do the check in line 3, the execution will still be the same, since we do at
most 3b logN iterations. Notice that each node gets added at most once to Frontierv, and
on each iteration one node is removed from Frontierv. Also notice that if for the node z,
HeavyLeaves(z) = ∅, it’s children will not be added to Frontierv, because ZeroTest would
return True. Since there is at most b logN vertices z such that HeavyLeaves(z) 6= ∅, and each
of them have only 2 children, there is at most 3b logN vertices that can be added to Frontierv,
hence the maximum number of iterations is 6b logN .
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Algorithm 10 SlowExactSparseRecovery(Found,Excluded, v, b)

1: Frontierv ← {v} , Steps← 1 , Foundout ← ∅
2: repeat
3: if Steps > 6 · b logN then . Have explored more than the expected sparsity
4: return ∅
5: z := vertex in Frontierv with the minimum weight with respect to Frontierv.
6: Frontierv = Frontierv \ {z}, Steps← Steps + 1
7: Excluded′ ← Excluded ∪ Frontierv, Found

′ ← Found + Foundout
8: if z is a leaf in T full then
9: Foundout(z)← Estimate(Found′,Excluded′, z)

10: else if ZeroTest(Found′,Excluded′, z, b) = False then . Leaves(z) contains heavy leaves
11: zleft ← left child of z
12: zright ← right child of z
13: Frontierv ← Frontierv ∪ {zleft, zright}

. Leaves(z) has no heavy leaves we simply remove it from Frontier, (see line 6).
14: until Frontierv = ∅
15: return Foundout

Theorem 15 (Theorem 7, restated). If Leaves(v) ∩ Leaves(Excluded) = ∅, the running time of
SlowExactSparseRecovery is upper bounded by

Õ
(
|Found| · b2 + 2wExcluded(v) · b3

)
.

Proof. First, notice that since Leaves(v) ∩ Leaves(Excluded) = ∅, for all z in the subtree of v at
any iteration, wExcluded∪Frontierv(z) = wFrontierv(z) + wExcluded(v). Because of the check in line 3,
the algorithm runs for at most 6b logN iterations, and, consequently, |Frontierv| ≤ 6b logN . By
Lemma 10, for each chosen z, 2wFrontierv (z) ≤ 6b logN . Similarly, |Foundout| ≤ 6b logN . Therefore,
each call to ZeroTest uses

Õ(2wExcluded∪Frontierv (z) · b+ |Found + Foundout| · b) = Õ(2wExcluded(v) · b2 + |Found| · b+ b2)

operations. Summing over all iterations, we find that the total runtime of all calls to ZeroTest is
bounded by Õ(2wExcluded(v)b3 + |Found| · b2).

Similarly, each call of Estimate spends Õ(2wExcluded∪Frontierv (z) + |Found + Foundout|) operations,
which accumulates to Õ(2wExcluded(v) · b2 + |Found| · b) across all iteration.

Finally, notice that to maintain the set Excluded′ and its tree T (Excluded), we first need to
copy it from Excluded and add v. However, because we only work inside the subtree of v, we can
reduce the tree T (Excluded) and, respectively, it’s set to only contain the path to v and all of the
children of the vertices in this path. This can be done in time O(logN + wExcluded(v)). Then, on
each iteration, Excluded′ is only modified by removing one vertex from it, which can be done in
time O(logN). Hence, the total time spent on maintaining Excluded′ is Õ(b+ wExcluded(v)).

Since runtime of each iteration is dominated by the calls to ZeroTest and/or Estimate, the
total running time is Õ(2wExcluded(v) · b3 + |Found| · b2).

B Proof of Lemma 4.

Proof. Observe that the set of edges of tree T = T (S1 ∪ S2 ∪ {v}) is the union of the sets of edges
of trees T1 = T (S1 ∪ {v}) and T2 = T (S2 ∪ {v}). Consider the set of all ancestors of v with two
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children. For ancestor u, one of those children, say z, lies on the path from the v to the root, and,
therefore, the edge (u, z) is a part of both of the trees T1, T2. Now consider the other child of u, z′.
Because edge (u, z′) exists in T , it also exists in one of the trees T1 or T2. But then u also has two
children in that tree. Therefore, each ancestor of v with two children has two children in T1 or T2

as well. Therefore, by definition of wT , we get that wT (v) ≤ wT1(v) + wT2(v), which is equivalent
to the desired inequality.
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