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Abstract

Squares (fragments of the form xx, for some string x) are arguably the most natural type
of repetition in strings. The basic algorithmic question concerning squares is to check if a given
string of length n is square-free, that is, does not contain a fragment of such form. Main and
Lorentz [J. Algorithms 1984] designed an O(n log n) time algorithm for this problem, and proved
a matching lower bound assuming the so-called general alphabet, meaning that the algorithm is
only allowed to check if two characters are equal. However, their lower bound also assumes that
there are Ω(n) distinct symbols in the string. As an open question, they asked if there is a faster
algorithm if one restricts the size of the alphabet. Crochemore [Theor. Comput. Sci. 1986]
designed a linear-time algorithm for constant-size alphabets, and combined with more recent
results his approach in fact implies such an algorithm for linearly-sortable alphabets. Very
recently, Ellert and Fischer [ICALP 2021] significantly relaxed this assumption by designing
a linear-time algorithm for general ordered alphabets, that is, assuming a linear order on the
characters that permits constant time order comparisons. However, the open question of Main
and Lorentz from 1984 remained unresolved for general (unordered) alphabets. In this paper,
we show that testing square-freeness of a length-n string over general alphabet of size σ can
be done with O(n log σ) comparisons, and cannot be done with o(n log σ) comparisons. We
complement this result with an O(n log σ) time algorithm in the Word RAM model. Finally, we
extend the algorithm to reporting all the runs (maximal repetitions) in the same complexity.

1 Introduction

The notion of repetition is a central concept in combinatorics on words and algorithms on strings.
In this context, a word or a string is simply a sequence of characters from some finite alphabet
Σ. In the most basic version, a repetition consists of two (or more) consecutive occurrences of
the same fragment. Repetitions are interesting not only from a purely theoretical point of view,
but are also very relevant in bioinformatics [51]. A repetition could be a square, defined as two
consecutive occurrences of the same fragment, a higher power (for example, a cube), or a run, which
is a length-wise maximal periodic substring. For example, both anan and nana are squares with
two occurrences each in banananas, and they belong to the same run ananana. In this paper, we
start by focusing on squares, then generalize our results for runs.
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The study of squares in strings goes back to the work of Thue published in 1906 [73], who
considered the question of constructing an infinite word with no squares. It is easy to see that any
sufficiently long binary word must contain a square, and Thue proved that there exists an infinite
ternary word with no squares. His result has been rediscovered multiple times, and in 1979 Bean,
Ehrenfeucht and McNulty [9] started a systematic study of the so-called avoidable repetitions, see
for example the survey by Currie [27].

Combinatorics on words. The basic tool in the area of combinatorics on words is the so-called
periodicity lemma. A period of a string T [1..n] is an integer d such that T [i] = T [i + d] for
every i ∈ [1, n − d], and the periodicity lemma states that if p and q are both such periods and
p+ q ≤ n+ gcd(p, q) then gcd(p, q) is also a period [32]. This was generalised in a myriad of ways,
for strings [17,49,74], partial words (words with don’t cares) [11–13,47,50,69,70], Abelian periods
[14,20], parametrized periods [6], order-preserving periods [42,64], approximate periods [2–4]. Now,
a square can be defined as a fragment of length twice its period. The string an contains Ω(n2)
such fragments, thus from the combinatorial point of view it is natural to count only distinct
squares. Fraenkel and Simpson [35] showed an upper bound of 2n and a lower bound of n −
Θ(
√
n) for the maximum number of distinct squares in a length-n string. After a sequence of

improvements [28, 48, 72], the upper bound was very recently improved to n [16]. The last result
was already generalised to higher powers [59]. Another way to avoid the trivial examples such
as an is to count only maximal periodic fragments, that is, fragments with period at most half
of their length and that cannot be extended to the left or to the right without breaking the
period. Such fragments are usually called runs. Kolpakov and Kucherov [52] showed an upper
bound of O(n) on their number, and this started a long line of work on determining the exact
constant [24,25,40,41,67,68], culminating in the paper of Bannai et al. [8] showing an upper bound
of n, and followed by even better upper bounds for binary strings [33,45]. This was complemented
by a sequence of lower bounds [36,62,63,71].

Algorithms on strings. In this paper, we are interested in the algorithmic aspects of detecting
repetitions in strings. The most basic question in this direction is checking if a given length-n
string contains at least one square, while the most general version asks for computing all the runs.
Testing square-freeness was first considered by Main and Lorentz [61], who designed an O(n log n)
time algorithm based on a divide-and-conquer approach and a linear-time procedure for finding all
new squares obtained when concatenating two strings. In fact, their algorithm can be used to find (a
compact representation of) all squares in a given string within the same time complexity. They also
proved that any algorithm based on comparisons of characters needs Ω(n log n) such operations to
test square-freeness in the worst case. Here, comparisons of characters means checking if characters
at two positions of the input string are equal. However, to obtain the lower bound they had to
consider instances consisting of even up to n distinct characters, that is, over alphabet of size n.
This is somewhat unsatisfactory, and motivates the following open question that was explicitly
asked by Main and Lorentz [61]:

Question 1.1. Is there a faster algorithm to determine if a string is square-free if we restrict the
size of the alphabet?

Another O(n log n) time algorithm for finding all repetitions was given by Crochemore [22],
who also showed that for constant-size alphabets testing square-freeness can be done in O(n)
time [23]. In fact, the latter algorithm works in O(n log σ) time for alphabets of size σ with
a linear order on the characters. That is, it needs to test if the character at some position is
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smaller than the character at another position. In the remaining part of the paper, we will refer
to this model as general ordered alphabet, while the model in which we can only test equality
of characters will be called general (unordered) alphabet. Later, Kosaraju [53] showed that in
fact, assuming constant-size alphabet, O(n) time is enough to find the shortest square starting at
each position of the input string. Apostolico and Preparata [7] provide another O(n log n) time
algorithm assuming a general ordered alphabet, based more on data structure considerations than
combinatorial properties of words. Finally, a number of alternative O(n log n) and O(n log σ) time
algorithms (respectively, for general unordered and general ordered alphabets) can be obtained
from the work on online [46, 54, 56] and parallel [5] square detection (interestingly, this cannot be
done efficiently in the related streaming model [65,66]).

Faster algorithms for testing square-freeness of strings over general ordered alphabets were
obtained as a byproduct of the more general results on finding all runs. Kolpakov and Kucherov [52]
not only proved that any length-n string contains only O(n) runs, but also showed how to find them
in the same time assuming linearly-sortable alphabet. Every square is contained in a run, and every
run contains at least one square, thus this in particular implies a linear-time algorithm for testing
square-freeness over such alphabets. For general ordered alphabets, Kosolobov [55] showed that the
decision tree complexity of this problem is only O(n), and later complemented this with an efficient
O(n(log n)2/3) time algorithm [57] (still using only O(n) comparisons). The time complexity was
then improved to O(n log log n) by providing a general mechanism for answering longest common
extension (LCE) queries for general ordered alphabets [39], and next to O(nα(n)) by observing
that the LCE queries have additional structure [26]. Finally, Ellert and Fischer provided an elegant
O(n) time algorithm, thus fully resolving the complexity of square detection for general ordered
alphabets. However, for general (unordered) alphabets the question of Main and Lorentz remains
unresolved, with the best upper bound being O(n log n), and only known to be asymptotically tight
for alphabets of size Θ(n).

General alphabets. While in many applications one can without losing generality assume some
ordering on the characters of the alphabet, no such ordering is necessary for defining what a
square is. Thus, it is natural from the mathematical point of view to seek algorithms that do
not require such an ordering to efficiently test square-freeness. Similar considerations have lead
to multiple beautiful results concerning the pattern matching problem, such as constant-space
algorithms [15, 38], or the works on the exact number of required equality comparisons [18, 19]
More recent examples include the work of Duval, Lecroq, and Lefebvre [29] on computing the
unbordered conjugate/rotation, and Kosolobov [58] on finding the leftmost critical point.

Main results. We consider the complexity of checking if a given string T [1..n] containing σ
distinct characters is square-free. The input string can be only accessed by issuing comparisons

T [i]
?
= T [j], and the value of σ is not assumed to be known. We start by analysing the decision

tree complexity of the problem. That is, we only consider the required and necessary number of
comparisons, without worrying about an efficient implementation. We show that, even if the value
of σ is assumed to be known, Ω(n log σ) comparisons are required.

Theorem 1.1. For any integers n and σ with 8 ≤ σ ≤ n, there is no deterministic algorithm that
performs at most n lnσ − 3.6n = O(n lnσ) comparisons in the worst case, and determines whether
a length-n string with at most σ distinct symbols from a general unordered alphabet is square-free.

Next, we show that O(n log σ) comparisons are sufficient. We stress that the value of σ is not
assumed to be known. In fact, as a warm-up for the above theorem, we first prove that finding
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a sublinear multiplicative approximation of this value requires Ω(nσ) comparisons. This does not
contradict the claimed upper bound, as we are only saying that the number of comparisons used on
a particular input string is at most O(n log σ), but might actually be smaller. Thus, it is not possible
to extract any meaningful approximation of the value of σ from the number of used comparisons.

Theorem 1.2. Testing square-freenes of a length-n string that contains σ distinct symbols from a
general unordered alphabet can be done with O(n log σ) comparisons.

The proof of the above result is not efficient in the sense that it only restricts the overall
number of comparisons, and not the time to actually figure out which comparisons should be used.
A direct implementation results in a quadratic time algorithm. We first show how to improve this
to O(n log σ + n log∗ n) time (while still keeping the asymptotically optimal O(n log σ) number of
comparisons), and finally to O(n log σ). In this part of the paper, we assume the Word RAM model
with word of length Ω(log n). We stress that the input string is still assumed to consist of characters
that can be only tested for equality, that is, one should think that we are given oracle access to a
functions that, given i and j, checks whether T [i] = T [j].

Theorem 1.3. Testing square-freeness of a length-n string that contains σ distinct symbols from
a general unordered alphabet can be implemented in O(n log σ) comparisons and time.

Finally, we also generalize this result to the computation of runs.

Theorem 1.4. Computing all runs in a length-n string that contains σ distinct symbols from a
general unordered alphabet can be implemented in O(n log σ) comparisons and time.

Altogether, our results fully resolve the open question of Main and Lorentz for the case of
general unordered alphabets and deterministic algorithms. We leave extending our lowerbound to
randomised algorithms as an open question.

Overview of the methods. As mentioned before, Main and Lorentz [61] designed an O(n log n)
time algorithm for testing square-freeness of length-n strings over general alphabets. The high-
level idea of their algorithm goes as follows. They first designed a procedure for checking, given
two strings x and y, if their concatenation contains a square that is not fully contained in x nor
y in O(|x| + |y|) time. Then, a divide-and-conquer approach can be used to detect a square in
the whole input string in O(n log n) total time. For general alphabets of unbounded size this
cannot be improved, but Crochemore [23] showed that, for general ordered alphabets of size σ, a
faster O(n log σ) time algorithm exists. The gist of his approach is to first obtain the so-called
f -factorisation of the input string (related to the well-known Lempel-Ziv factorisation), that in a
certain sense “discovers” repetitive fragments. Then, this factorisation can be used to apply the
procedure of Main and Lorentz on appropriately selected fragments of the input strings in such a
way that the leftmost occurrence of every distinct square is detected, and the total length of the
strings on which we apply the procedure is only O(n). The factorisation can be found in O(n log σ)
time for general ordered alphabets of size σ by, roughly speaking, constructing some kind of suffix
structure (suffix array, suffix tree or suffix automaton).

For general (unordered) alphabets, computing the f -factorisation (or anything similar) seems
problematic, and in fact we show (as a corollary of our lower bound on approximating the alphabet
size) that computing the f -factorisation or Lempel-Ziv-factorisation (LZ-factorisation) of a given
length-n string containing σ distinct characters requires Ω(nσ) equality tests. Thus, we need
another approach. Additionally, the O(n) time algorithm of Ellert and Fischer [30] hinges on the
notion of Lyndon words, which is simply not defined for strings over general alphabets. Thus, at first
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glance it might seem that Θ(nσ) is the right time complexity for testing square-freeness over length-
n strings over general alphabets of size σ. However, due to the Ω(n log n) lower bound of Main and
Lorentz for testing square-freeness of length-n string consisting of up to n distinct characters, one
might hope for an O(n log σ) time algorithm when there are only σ distinct characters.

We begin our paper with a lower bound of Θ(n log σ) for such strings. Intuitively, we show
that testing square-freeness has the direct sum property: n

σ instances over length-σ strings can be
combined into a single instance over length-n string. As in the proof of Main and Lorentz, we
use the adversarial method. While the underlying calculation is essentially the same, we need to
appropriately combine the smaller instances, which is done using the infinite square-free Prouhet-
Thue-Morse sequence, and use significantly more complex rules for resolving the subsequent equality
tests. As a warm-up for the adversarial method, we prove that computing any meaningful approx-
imation of the number of distinct characters requires Ω(nσ) such tests, and that this implies the
same lower bound on computing the f -factorisation and the Lempel-Ziv factorisation (if the size of
the alphabet is unknown in advance).

We then move to designing an approach that usesO(n log σ) equality comparisons to test square-
freeness. As discussed earlier, one way of detecting squares uses the f -factorisation of the string,
which is similar to its LZ factorisation. However, as we prove in Corollary 1 and 2, we cannot
compute either of these factorisations over a general unordered alphabet in o(nσ) comparisons.
Therefore, we will instead use a novel type of factorisation, ∆-approximate LZ factorisation, that
can be seen as an approximate version of the LZ factorisation. Intuitively, its goal is to “capture”
all sufficiently long squares, while the original LZ factorisation (or f -factorisation) captures all
squares. Each phrase in a ∆-approximate LZ factorisation consists of a head of length at most ∆
and a tail (possibly empty) that must occur at least once before, such that the whole phrase is at
least as long as the classical LZ phrase starting at the same position. Contrary to the classical LZ
factorisation, this factorisation is not unique. The advantage of our modification is that there are
fewer phrases (and there is more flexibility as to what they should be), and hence one can hope to
compute such factorisation more efficiently.

To design an efficient construction method for ∆-approximate LZ factorisation, we first show
how to compute a sparse suffix tree while trying to use only a few symbol comparisons. This is then
applied on a set of positions from a so-called difference cover with some convenient synchronizing
properties. Then, a ∆-approximate LZ factorisation allows us to detect squares of length ≥ 8∆.

The first warm-up algorithm fixes ∆ depending on n and σ (assuming that σ is known), and
uses the approximate LZ factorisation to find all squares of length at least 8∆. It then finds all the
shorter squares by dividing the string in blocks of length 8∆, and applying the original algorithm
by Main and Lorentz on each block pair. Our choice of ∆ leads to O(n(lg σ+ lg lg n)) comparisons.

The improved algorithm does not need to know σ, and instead starts with a large ∆ = Ω(n),
and then progressively decreases ∆ in at most O(lg lg n) phases, where later phases detect shorter
squares. As soon as we notice that there are many distinct characters in the alphabet, by carefully
adjusting the parameters we can afford switching to the approach of Main and Lorentz on sufficiently
short fragments of the input string. Since we cannot afford Ω(n) comparisons per phase, we use a
deactivation technique, where whenever we perform a large number of comparisons in a phase, we
will discard a large part of the string in all following phases. More precisely, during a given phase,
we avoid looking for squares in a fragment fully contained in a tail from an earlier phase. This
leads to optimal O(n lg σ) comparisons.

The above approach uses an asymptotically optimal number of equality tests in the worst case,
but does not result in an efficient algorithm. The main bottleneck is constructing the sparse suffix
trees. However, it is not hard to provide an efficient implementation using the general mechanism
for answering LCE queries for strings over general alphabets [39]. Unfortunately, the best known

5



approach for answering such queries incurs an additional O(n log∗ n) in the time complexity, even
if the size of the alphabet is constant. We overcome this technical hurdle by carefully deactivating
fragments of the text to account for the performed work.

Many of our techniques can easily be modified to compute all runs rather than detecting squares.
We exploit that the approximate factorisation reveals long substrings with an earlier occurrence.
Hence we compute runs only for the first occurrence of such substrings, while for later occurrences
we simply copy the already computed runs. By carefully arranging the order of the computation,
we ensure that the total time for copying is bounded by the number of runs, which is known to be
O(n). This way, we achieve O(n lg σ) time and comparisons to compute all runs.

2 Preliminaries

Strings. A string of length n is a sequence T [1] . . . T [n] of characters from a finite alphabet Σ
of size σ. The substring T [i..j] is the string T [i] · · ·T [j], whereas the fragment T [i..j] refers to
the specific occurrence of T [i..j] starting at position i in T . If i > j, then T [i..j] is the empty
string. A suffix of T has the form T [i..n]. We say that a fragment T [i′..j′] is properly contained in
another fragment T [i..j] if i < i′ ≤ j′ < j. A substring is properly contained in T [i..j], if it equals a
fragment that is properly contained in T [i..j]. We write T [i..j) a shortcut for T [i..j− 1]. Similarly,
we write [i, j] = [i, j + 1) as a shortcut for the integer interval {i, . . . , j}. Given two positions
i ≤ j, their longest common extension (LCE) is the length of the longest common prefix between
suffixes T [i..n] and T [j..n], formally defined as lce(i, j) = lce(j, i) = max{` ∈ {0, . . . , n− j + 1} |
T [i..i+ `) = T [j..j + `)}.

Definition 2.1. A positive integer p is a period of a string T [1..n] if T [i] = T [i + p] for every
i ∈ {1, . . . n− p}. The smallest such p is called the period of T [1..n], and we call a string periodic
if its period p is at most n

2 .

Computational model. For a general unordered alphabet Σ, the only allowed operation on the
characters is comparing for equality. In particular, there is no linear order on the alphabet. Unless
explicitly stated otherwise, we will only use such comparisons. A general ordered alphabet has a
total order, such that comparisons of the type less-equals are possible.

In the algorithmic part of the paper, we assume the standard unit-cost Word RAM model with
words of length Ω(log n), but the algorithm is only allowed to access the input string T [1..n] by

comparisons T [i]
?
= T [j], which are assumed to take constant time. We say that a string of length

n is over a linearly-sortable alphabet, if we can sort the n symbols of the string in O(n) time. Note
that whether or not an alphabet is linearly-sortable depends not only on the alphabet, but also on
the string. For example, the alphabet Σ = {1, . . . ,mO(1)} is linearly-sortable for strings of length
n = Ω(m) (e.g., using radix sort), but it is unknown whether it is linearly-sortable for all strings of
length n = o(m) [44]. Our algorithm will internally use strings over linearly-sortable alphabets. We
stress that in such strings the characters are not the characters from the input string, but simply
integers calculated by the algorithm. Note that every linearly-sortable alphabet is also a general
ordered alphabet.

Squares and runs. A square is a length-2` fragment of period `. The following theorem is a
classical result by Main and Lorentz [61].

Theorem 2.1. Testing square-freenes of T [1..n] over a general alphabet can be implemented in
O(n log n) time and comparisons.
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The proof of the above theorem is based on running a divide-and-conquer procedure using the
following lemma.

Lemma 1. Given two strings x and y over a general alphabet, we can test if there is a square in
xy that is not fully contained in x nor y in O(|x|+ |y|) time and comparisons.

A repetition is a length-` fragment of period at most `
2 . A run is a maximal repetition. Formally,

a repetition in T [1..n] is a triple 〈s, e, p〉 with s, e ∈ [1, n] and p ∈ [1, e−s+1
2 ] such that p is the

smallest period of T [s..e]. A run is a repetition 〈s, e, p〉 that cannot be extended to the left nor
to the right with the same period, in other words s = 1 or T [s − 1] 6= T [s − 1 + p] and e = n or
T [e+ 1] 6= T [e+ 1− p]. The celebrated runs conjecture, proven by Bannai et al. [8], states that the
number of runs is any length-n string is less than n. Ellert and Fischer [30] showed that all runs in
a string over a general ordered alphabet can be computed in O(n) time. As mentioned earlier, each
run contains a square, and each square is contained in a run. Thus, the string contains a square if
and only if it contains a run, and it follows:

Theorem 2.2. Computing all runs (and thus testing square-freeness) of T [1..n] over a general
ordered alphabet can be implemented in O(n) time.

Lempel-Ziv factorisation. The unique LZ phrase starting at position s of T [1..n] is a fragment
T [s..e] such that T [s..(e−1)] occurs at least twice in T [1..(e−1)] and either e = n or T [s..e] occurs
only once in T [1..e]. The Lempel-Ziv factorisation of T consists of z phrases f1, . . . , fz such that the
concatenation f1 . . . fz is equal to T [1..n] and each fi is the unique LZ phrase starting at position
1 +

∑i−1
j=1 |fj |.

Tries. Given a collection S = {T1, . . . , Tk} of strings over some alphabet Σ, its trie is a rooted
tree with edge labels from Σ. For any node v, the concatenation of the edge labels from the root
to the node spells a string. The string-depth of a node is the length of the string that it spells.
No two nodes spell the same string, i.e., for any node, the labels of the edges to its children are
pairwise distinct. Each leaf spells one of the Ti, and each Ti is spelled by either an internal node
or a leaf.

The compacted trie of S can be obtained from its (non-compacted) trie by contracting each
path between a leaf or a branching node and its closest branching ancestor into a single edge (i.e.,
by contraction we eliminate all non-branching internal nodes). The label of the new edge is the
concatenation of the edge labels of the contracted path in root to leaf direction. Since there are
at most k leaves and all internal nodes are branching, there are O(k) nodes in the compacted trie.
Each edge label is some substring Ti[s..e] of the string collection, and we can avoid explicitly storing
the label by instead storing the reference (i, s, e). Thus O(k) words are sufficient for storing the
compacted trie. Consider a string T ′ that is spelled by a node of the non-compacted trie. We say
that T ′ is explicit, if and only if it is spelled by a node of the compacted trie. Otherwise T ′ is
implicit.

The suffix tree of a string T [1..n] is the compacted trie containing exactly its suffixes, i.e., a
trie over the string collection {T [i..n] | i ∈ {1, . . . , n}}. It is one of the most fundamental data
structures in string algorithmics, and is widely used, e.g., for compression and indexing [43]. The
suffix tree can be stored in O(n) words of memory, and for linearly-sortable alphabets it can be
computed in O(n) time [31]. The sparse suffix tree of T for some set B ⊆ {1, . . . , n} of sample
positions is the compacted trie containing exactly the suffixes {T [i..n] | i ∈ B}. It can be stored in
O(|B|) words of memory.
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We assume that T is terminated by some special symbol T [n] = $ that occurs nowhere else in
T . This ensures that each suffix is spelled by a leaf, and we label the leaves with the respective
starting positions of the suffixes. Note that for any two leaves i 6= j, their lowest common ancestor
(i.e., the deepest node that is an ancestor of both i and j) spells a string of length lce(i, j).

3 Lower Bounds

In this section, we show lower bounds on the number of symbol comparisons required to com-
pute a meaningful approximation of the alphabet size (Section 3.1) and to test square-freeness
(Section 3.2). For both bounds we use an adversarial method, which we briefly outline now.

The present model of computation may be interpreted as follows. An algorithm working on a
string over a general unordered alphabet has no access to the actual string. Instead, it can only
ask an oracle whether or not there are identical symbols at two positions. The number of questions
asked is exactly the number of performed comparisons. In order to show a lower bound on the
number of comparisons required to solve some problem, we describe an adversary that takes over
the role of the oracle, forcing the algorithm to perform as many symbol comparisons as possible.

We use a conflict graph G = (V,E) with V = {1, . . . , n} and E ⊆ V 2 to keep track of the answers
given by the adversary. The nodes directly correspond to the positions of the string. Initially, we
have E = ∅ and all nodes are colorless, which formally means that they have color γ(i) = ⊥. During
the algorithm execution, the adversary may assign colors from the set Σ = {0, . . . , n − 1} to the
nodes, which can be seen as permanently fixing the alphabet symbol at the corresponding position
(i.e., each node gets colored at most once). The rule used for coloring nodes depends on the lower
bound that we want to show (we describe this in detail in the respective sections). Apart from this
coloring rule, the general behaviour of the adversary is as follows. Whenever the algorithm asks
whether T [i] = T [j] holds, the adversary answers “yes” if and only if γ(i) = γ(j) 6= ⊥. Otherwise,
it answers “no” and inserts an edge (i, j) into E. Whenever the adversary assigns the color of a
node, it has to choose a color that is not used by any of the adjacent nodes in the conflict graph.
This ensures that the coloring does not contradict the answers given in the past.

Let us define a set T ⊆ Σn of strings that is consistent with the answers given by the adversary.
A string T ∈ Σn is a member of T if

∀i ∈ V : γ(i) ∈ {⊥, T [i]} ∧ ∀i, j ∈ V : (T [i] = T [j]) =⇒ (i, j) /∈ E.

Note that T changes over time. Initially (before the algorithm starts), we have T = Σn. With
every question asked, the algorithm might eliminate some strings from T . However, there is always
at least on string in T , which can be obtained by coloring each colorless node in a previously
entirely unused color.

3.1 Approximating the Alphabet Size

Given a string T [1..n] of unknown alphabet size σ ≥ 2, assume that we want to compute an
approximation of σ. We show that if an algorithm takes at most nσ

8 comparisons in the worst-case,
then it cannot distinguish strings with at most σ distinct symbols from strings with at least n

2
distinct symbols. Thus, any meaningful approximation of σ requires Ω(nσ) comparisons.

For the sake of the proof, consider an algorithm that performs at most nσ
8 comparisons when

given a length-n string with at most σ ≥ 2 distinct symbols. We use an adversary as described
at the beginning of Section 3, and ensure that the set T of strings consistent with the adversary’s
answers always contains a string with at most σ distinct symbols. Thus, the algorithm terminates
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after at most nσ
8 comparisons. At the same time, we ensure that T also contains a string with

at least n
2 distinct symbols, which yields the desired result. The adversary is equipped with the

following coloring rule. All colors are from {1, . . . , σ}. Whenever the degree of a node in the conflict
graph becomes σ − 1, we assign its color. We avoid the colors of the σ − 1 adjacent nodes in the
conflict graph. At any moment in time, we could hypothetically complete the coloring by assigning
one of the colors {1, . . . , σ} to each colorless node, avoiding the colors of adjacent nodes. This way,
each node gets assigned one of the σ colors, which means that T contains a string with at most
σ distinct symbols. It follows that the algorithm terminates after at most nσ

8 comparisons. Each
comparison may increase the degree of two nodes by one. Thus, after nσ

8 comparisons, there are at
most nσ

8 ·
2

σ−1 ≤
n
2 nodes with degree at least σ − 1. Therefore, at least n

2 nodes are colorless. We
could hypothetically color them in n

2 distinct colors, which means that T contains a string with at
least n

2 distinct symbols. This leads to the following result.

Theorem 3.1. For any integers n and σ with 2 ≤ σ < n
2 , there is no deterministic algorithm

that performs at most nσ
8 equality-comparisons in the worst case, and is able to distinguish length-n

strings with at most σ distinct symbols from length-n strings with at least n
2 distinct symbols.

The theorem implies lower bounds on the number of comparisons needed to compute the LZ
factorisation (as defined in Section 2) and the f -factorisation. In the unique f -factorisation T =
f1f2 . . . fz, each factor fi is either a single symbol that does not occur in f1 . . . fi−1, or it is the
fragment of maximal length such that fi occurs twice in f1 . . . fi.

Corollary 1. For any integers n and σ with 2 ≤ σ < n
4 , there is no deterministic algorithm that

performs at most (n−1)σ
16 equality-comparisons in the worst case, and computes the f -factorisation

of a length-n string with at most σ distinct symbols.

Proof. For some string T = T [1]T [2] . . . T [n2 ] with σ distinct symbols, consider the length-n string
T ′ = T [1]T [1]T [2]T [2] . . . T [n2 ]T [n2 ] with σ distinct symbols constructed by doubling each character
of T . The alphabet size of T is exactly the number of length-one phrases in the f -factorisation
of T ′ starting at odd positions in T ′. Thus, by Theorem 3.1, we need nσ

16 = |T |σ
8 comparisons to

find the f -factorisation of T ′. We assumed that n is even, and account for odd n by adjusting the
bound to (n−1)σ

16 .

Corollary 2. For any integers n and σ with 3 ≤ σ < n
6 +1, there is no deterministic algorithm that

performs at most (n−2)(σ−1)
24 equality-comparisons in the worst case, and computes the Lempel-Ziv

factorisation of a length-n string with at most σ distinct symbols.

Proof. For some string T = T [1]T [2] . . . T [n3 ] with σ − 1 distinct symbols, let T ′ be the length-n
string with σ distinct symbols constructed by doubling every character of T with a separator in
between, i.e., T ′ = T [1]T [1]#T [2]T [2]# . . .#T [n3 ]T [n3 ]#. The first occurrence of character x in T
corresponds to the first occurrence of xx# in T ′, thus the preceding phrase (possibly of length one)
ends at the first x in the first occurrence of xx#, and the subsequent phrase must be x#. Then,
for the later occurrences of xx# we cannot have that x# is a phrase. Consequently, the alphabet
size of T is exactly the number of length-two phrases in the Lempel-Ziv factorisation of T ′ starting
at positions i ≡ 2 (mod 3) in T ′. Thus, by Theorem 3.1, we need n(σ−1)

24 = |T |(σ−1)
8 comparisons

to find the LZ factorisation of T ′. We assumed that n is divisible by 3, and account for this by
adjusting the bound to (n−2)(σ−1)

24 .
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Figure 1: Example conflict graph of the adversary described in Section 3.2. The alphabet {0, . . . , 15} is of
size σ = 16. The blocks are of length σ

4 = 4. The gray nodes are exactly the starting positions of the blocks
and contain the symbols of the ternary Thue-Morse sequence v = 2, 1, 0, 2, 0, 1, 2, . . . , which is square-free.
We assume that the colored nodes were colored in the following order: 2, 6, 8, 7, 15, 16, 14. At the time
of coloring node 8, we had to avoid colors 0, 1, 2 (because they are reserved for the separator positions), 3
(because the adjacent node 2 already has color 3), and 4 (because node 6 is in the same block and already has
color 4). The algorithm has not eliminated all squares yet. For example, nodes 10 and 11 with absent edge
(10, 11) /∈ E are adjacent to nodes of colors {3, 6, 5}∪ {5, 3, 4}. Thus, any of the colors {0, 1, 2}∪ {7, . . . , 15}
can be assigned to both nodes, enforcing the square T [10..11]. As visualized on the right, an edge of length
` eliminates at most ` squares.

3.2 Testing Square-Freeness

In this section, we prove that testing square-freeness requires at least n lnσ − 3.6n comparisons
(even if σ is known). The proof combines the idea behind the original Ω(n lg n) lower bound by
Main and Lorentz [61] with the adversary described at the beginning of Section 3. This time, we
ensure that T always contains a square-free string with at most σ distinct symbols. At the same
time, we try to ensure that T also contains a string with at least one square. We will show that
we can maintain this state until at least n lnσ − 3n comparisons have been performed.

The string (or rather family of strings) constructed by the adversary is organized in
⌈

4n
σ

⌉
non-

overlapping blocks of length σ
4 (we assume σ

4 ∈ N and 8 ≤ σ ≤ n). Each block begins with a
special separator symbol. More precisely, the first symbol of the k-th block is the k-th symbol
of a ternary square-free word over the alphabet {0, 1, 2} (e.g., the distance between the kth and
(k + 1)th occurrence of 0 in the Prouhet-Thue-Morse sequence, also known as the ternary Thue-
Morse-Sequence, see [1, Corollary 1]). Initially, the adversary colors the nodes that correspond to
the separator positions in their respective colors from {0, 1, 2}. All remaining nodes will later get
colors other than {0, 1, 2}. Any fragment crossing a block boundary can be projected on the colors
{0, 1, 2}, and by construction the string cannot contain a square. Thus, the separator symbols
ensure that there is no square crossed by a block boundary, which implies that the string is square-
free if and only if each of its blocks is square-free.

During the algorithm execution, we use the following coloring rule. The available colors are
{3, . . . , σ − 1}. Whenever the degree of a node becomes σ

4 , we assign its color. We avoid not only
the at most σ

4 colors of already colored neighbors in the conflict graph, but also the less than σ
4

colors of nodes within the same block (due to σ ≥ 8, there are at least σ − 3 − σ
2 ≥ 1 colors

available). An example of the conflict graph is provided in Fig. 1. At any moment in time, we
could hypothetically complete the coloring by assigning one of the colors {3, . . . , σ − 1} to each
colorless node, avoiding colors of adjacent nodes and colors of nodes in the same block. Afterwards,
each node holds one of the σ colors, but no two nodes within the same block have the same color.
Thus, each block is square-free, and therefore T always contains a square-free string with at most
σ distinct symbols.

Now we consider the state of the conflict graph after the algorithm has terminated. We are
particularly concerned with consecutive ranges of colorless nodes. The following lemma states that
for each such range, the algorithm either performed many comparisons, or we can enforce a square

10



within the range.

Lemma 2. Let R = {i, . . . , j} ⊂ V be a consecutive range of m = j − i+ 1 colorless nodes in the

conflict graph. Then either
∣∣E ∩R2

∣∣ ≥∑bm/2c`=1
m−2`+1

` , or there is a string T ∈ T with at most σ
distinct symbols such that T [i..j] contains a square.

Proof. We say that an integer interval [x, x + 2` − 1] with i ≤ x < (x + 2` − 1) ≤ j has been
eliminated, if for some y with x ≤ y < x + ` there is an edge (y, y + `) in the conflict graph. If
such an edge exists, then (by the definition of T ) all strings T ∈ T satisfy T [y] 6= T [y + `]. Thus
T [x..x+ 2`− 1] is not a square for any of them.

Now we show that if [x, x + 2` − 1] has not been eliminated, then there exists a string T ∈ T
such that T [x..x+ 2`− 1] is a square. For this purpose, consider any position y with x ≤ y < x+ `,
i.e., a position in the first half of the potential square. Since [x, x+ 2`−1] has not been eliminated,
(y, y + `) is not an edge in the conflict graph. It follows that we could assign the same color to y
and y + `. We only have to avoid the at most 2 · (σ4 − 1) colors of adjacent nodes of both y and
y + ` in the conflict graph. Thus there are σ

2 + 2 appropriate colors that can be assigned to both
nodes. Unlike during the algorithm execution, we do not need to avoid the special separator colors
or the colors in the same block; since we are trying to enforce a square, we do not have to worry
about accidentally creating one. By applying this coloring scheme for all possible choices of y, we
enforce that all strings T ∈ T have a square T [x..x + 2` − 1]. Note that by coloring additional
nodes after the algorithm terminated, we only remove elements from T . Thus, the strings with
square T [x..x + 2` − 1] were already in T when the algorithm terminated. It follows that, if the
algorithm actually guarantees square-freeness, then it must have eliminated all possible intervals
[x, x+ 2`− 1] with i ≤ x < (x+ 2`− 1) ≤ j.

While each interval needs at least one edge to be eliminated, a single edge eliminates multiple
intervals. However, all the intervals eliminated by an edge must be of the same length. Now we
give a lower bound on the number of edges needed to eliminate all intervals of length 2`. Any edge
(y, y + `) eliminates ` intervals, namely the intervals [x, x + 2` − 1] that satisfy x ≤ y < x + `.
Within R, we have to eliminate m−2`+ 1 intervals of length 2`, namely the intervals [x, x+ 2`−1]
that satisfy i ≤ x ≤ j − 2` + 1 (see right side of Fig. 1). Thus we need at least m−2`+1

` edges to
eliminate all squares of length 2`. Finally, by summing over all possible values of `, we need at least∑bm/2c

`=1
m−2`+1

` edges to eliminate all intervals in R. Note that the edges used for elimination have

both endpoints in R, and are thus contained in E∩R2. Consequently, if
∣∣E ∩R2

∣∣ <∑bm/2c`=1
m−2`+1

` ,
then not all intervals have been eliminated, and there is a string in T that contains a square.

Finally, we show that the algorithm either performed at least Ω(n lg σ) comparisons, or there
is a string T ∈ T that contains a square. Let c1, c2, . . . , ck be exactly the colored nodes. Initially
(before the algorithm execution), the adversary colored

⌈
4n
σ

⌉
nodes. Thus k ≥

⌈
4n
σ

⌉
, and there are

k−
⌈

4n
σ

⌉
nodes that have been colored after their degree reached σ

4 . Therefore, the sum of degrees

of all colored nodes is at least (k −
⌈

4n
σ

⌉
) · σ4 ≥

σk−4n−σ
4 ≥ σk−5n

4 . Each comparison may increase

the degree of two nodes by one. Thus, the colored nodes account for at least σk−5n
8 comparisons.

There are k non-overlapping maximal colorless ranges of nodes, namely {ci + 1, . . . , ci+1 − 1} for
1 ≤ i ≤ k with auxiliary value ck+1 = n+1. According to Lemma 2, each respective range accounts

for ei =
∑bmi/2c

`=1
mi−2`+1

` edges, where mi = ci+1 − ci − 1. (No edge gets counted more than once
because the ranges are non-overlapping, and both endpoints of the respective edges are within
the range.) Thus, in order to verify square-freeness, the algorithm must have performed at least∑k

i=1 ei + σk−5n
8 comparisons. The remainder of the proof consists of simple algebra. First, we

provide a convenient lower bound for ei (explained below):
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ei =

bmi/2c∑
`=1

mi − 2`+ 1

`
=

dmi/2e∑
`=1

mi − 2`+ 1

`
≥ (mi + 1)

dmi/2e∑
`=1

1

`

− 1


> (mi + 1) · (ln mi

2
− 1

2
)

= (mi + 1) · ln mi

2
√
e

≥ (mi + 1) · ln mi + 1

2.5
√
e

We can replace bmi/2c with dmi/2e because if mi is odd the additional summand equals zero.
The first inequality uses simple arithmetic operations. The second inequality uses the classical lower
bound (lnx+ 1

2) < Hx of harmonic numbers. The last inequality holds for mi ≥ 4. For mi < 4 the
result becomes negative and is thus still a correct lower bound for the number of comparisons. We
obtain:

k∑
i=1

(mi + 1) · ln mi + 1

2.5
√
e︸ ︷︷ ︸

comparisons within colorless ranges

+
σk − 5n

8︸ ︷︷ ︸
comparisons for
colored nodes

≥ n · ln n

2.5
√
ek

+
σk − 5n

8

= n · ln σ

2.5
√
ex

+
xn− 5n

8

= n · lnσ + n ·
(
x− 5

8
− ln 2.5

√
ex

)
> n · lnσ − 3.12074n

The first step follows from
∑k

i=1(mi + 1) = n and the log sum inequality (see [21, Theorem
2.7.1]). In the second step we replace k by using x = σk

n . The third step uses simple arithmetic
operations. The last step is reached by substituting x = 8, which minimizes the equation. Finally,
we assumed that σ is divisible by 4. We account for this by adjusting the lower bound to n ln(σ −
3)− 3.12074n, which is larger than n lnσ − 3.6n for σ ≥ 8.

Theorem 1.1. For any integers n and σ with 8 ≤ σ ≤ n, there is no deterministic algorithm that
performs at most n lnσ − 3.6n = O(n lnσ) comparisons in the worst case, and determines whether
a length-n string with at most σ distinct symbols from a general unordered alphabet is square-free.

In this section, we consider the problem of testing square-freeness of a given string. We introduce
an algorithm that decides whether or not a string is square-free using only O(n lg σ) comparisons,
matching the lower bound from Section 3.2. Note that this algorithm is not yet time efficient
because, apart from the performed symbol comparisons, it uses other operations that are expensive
in the Word RAM model. A time efficient implementation of the algorithm will be presented in
Section 4, where we first achieve O(n lg σ+n log∗ n) time, and then improve this to O(n lg σ) time.
In Section 5, we generalize the result to compute all runs in the same time complexity.

3.3 Sparse Suffix Trees and Difference Covers

Lemma 3. The sparse suffix tree containing any b suffixes T [i1..n], . . . , T [ib..n] of T [1..n] can be
constructed using O(bσ log b) comparisons plus O(n) comparisons shared by all invocations of the
lemma.
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Proof. We maintain a union-find structure over the positions of T [1..n]. Initially, each position

is in a separate component. Before issuing a query T [x]
?
= T [y], we check if x and y are in the

same component of the union-find structure, and if so immediately return that T [x] = T [y] without
performing any comparisons. Otherwise, we issue the query and if it returns that T [x] = T [y] we
merge the components of x and y. Thus, the total number of issued queries with positive answer,
over all invocations of the lemma, is less than n, and it remains to bound the number of issued
queries with negative answer.

We insert the suffixes T [ij ..n] one-by-one into an initially empty sparse suffix tree. To insert
the next suffix, we descend from the root of the tree to identify the node u that corresponds to the
longest common prefix between T [ij ..n] and any of the already inserted suffixes. We then make u
explicit unless it is explicit already, and add an edge from u to a new leaf corresponding to the
whole T [ij ..n]. We say that the insertion procedure terminates at u. Node u can be identified with
only O(σ log b) comparisons with negative answers as follows. Let v be the current node (initially,
the root of the tree), and let v1, . . . , vd be its children, where d ≤ σ. Here, v can be either explicit
or implicit, in the latter case d = 1. We arrange the children of v so that the number of leaves in
the subtree rooted at v1 is at least as large as the number of leaves in the subtree rooted at any
other child of v. Then, we compare the character on the edge leading to v1 with the corresponding
character of the current suffix. If they are equal we continue with v1, otherwise we compare the
characters on the edges leading to v2, . . . , vd with the corresponding character of the current suffix
one-by-one. Then, we either continue with some vj , j ≥ 2, or terminate at v. To bound the number
of comparisons with negative answer, observe that such comparisons only occur when we either
terminate at v or continue with vj , j ≥ 2. Whenever we continue with vj , j ≥ 2, the number of
leaves in the current subtree rooted at vj decreases at least by a factor of 2 compared to subtree
rooted at v (as the subtree rooted at v1 had the largest number of leaves). Thus, during the whole
descent from the root performed during an insertion this can happen only at most 1 + log b times.
Every time we do not continue in the subtree v1 we might have up to d ≤ σ comparisons with
negative answer, thus the total number of such comparisons is as claimed1.

Now we describe the sample positions that we will later use to compute the approximate LZ
factorisation. A set S ⊆ N is called a t-cover of {1, . . . , n} if there is a constant-time computable
function h such that, for any 1 ≤ i, j ≤ n−t+1, we have 0 ≤ h(i, j) < t and i+h(i, j), j+h(i, j) ∈ S.
A possible construction of t-covers is given by the lemma below, and visualized in Fig. 2.

Lemma 4. For any n and t ≤ n, there exists a t-cover D(t) of {1, . . . , n} with size O(n/
√
t).

Furthermore, its elements can be enumerated in time proportional to their number.

Proof. We use the well-known combinatorial construction known as difference covers, see e.g. [60].
Let r = b

√
tc and define D(t) = {i ∈ {1, . . . , n} : i mod r = 0 or i mod r2 ∈ {0, . . . , r − 1}}. By

definition, |D(t)| ≤ bn/rc + bn/r2cr = O(n/r) = O(n/
√
t). The function h(i, j) is defined as

a + b · r, where a = (r − i) mod r and b = (r − b(j + a)/rc) mod r. Note that i + h(i, j) ≤ n and
j+h(i, j) ≤ n. Then, i+(a+b·r) = 0 (mod r), while b(j+(a+b·r))/rc = b(j+a)/r+bc = 0 mod r
implies j + h(i, j) mod r2 ∈ {0, . . . , r − 1}}, thus i+ h(i, j), j + h(i, j) ∈ D(t) as required.

3.4 Detecting Squares with a ∆-Approximate LZ Factorisation

A crucial notion in our algorithm is the following variation on the standard Lempel-Ziv factorisation:

1In the descent, if all children are sorted according to their subtree size, the number of comparisons decreases to
O(b(σ/ log σ) log b), but this appears irrelevant for our final algorithm.
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Figure 2: Positions in a ∆-difference cover.

T =
s e

T [s..e)︸ ︷︷ ︸T [s..e)

T [s..e] occurs exactly once in T [1..e]

T [s..e) occurs at least twice in T [1..e)

(a) A standard LZ phrase T [s..e].

T =
s

s+d< s+∆
↓ ee′

LZ phrase

head tail T [s+d..e]

︸ ︷︷ ︸
T [s+d..e]

T [s..e′] occurs exactly once in T [1..e′]

T [s+d..e] occurs at least twice in T [1..e]

(b) A ∆-approximate phrase T [s..e]. The (standard) LZ
phrase at position s is T [s..e′], and it holds e′ − 1 < e.

Figure 3: Illustration of the definition of a LZ-phrase and a ∆-approximate phrase.

Definition 3.1 (∆-approximate LZ factorisation). For a positive integer parameter ∆, the frag-
ment T [s..e] is a ∆-approximate LZ phrase if it can be split into a head and a tail T [s..e] =
head(T [s..e])tail(T [s..e]) such that |head(T [s..e])| < ∆ and additionally

• tail(T [s..e]) is either empty or occurs at least twice in T [1..e], and

• the unique (standard) LZ phrase T [s..e′] starting at position s satisfies e′ − 1 ≤ e.

In a ∆-approximate LZ factorisation T = b1b2 . . . bz, each factor bi is a ∆-approximate phrase
T [s..e] with s = 1 +

∑i−1
j=1 |bj | and e =

∑i
j=1 |bj |.

Note that a standard LZ phrase is not a ∆-approximate phrase. Also, while the LZ phrase
starting at each position (and thus also the LZ factorisation) is uniquely defined, there may be
multiple different ∆-approximate phrases starting at each position. This also means that a single
string can have multiple different ∆-approximate factorisations. The definitions of both standard
and ∆-approximate LZ phrases are illustrated in Fig. 3.

The intuition behind the above definition is that constructing the ∆-approximate LZ factori-
sation becomes easier for larger values of ∆. In particular, for ∆ = n one phrase is enough. We
formalise this in the following lemma, which is made more general for the purpose of obtaining the
final result in this section.

Lemma 5. For any parameter ∆ ∈ [1,m], a ∆-approximate LZ factorisation of any fragment
T [x..y] of length m can be computed with O(mσ logm/

√
∆) comparisons plus O(n) comparisons

shared by all invocations of the lemma.

Proof. By Lemma 4, there exists a ∆-cover D(∆) of {1, . . . , n} with size O(n/
√

∆). Let S =
D(∆)∩{x, x+1, . . . , y}. Let S = {i1, i2, . . . , ib}. It is straightforward to verify that the construction
additionally guarantees b = O(m/

√
∆). We apply Lemma 3 on the suffixes T [i1..n], . . . , T [ib..n] to

obtain their sparse suffix tree T with O(bσ log b) comparisons plus O(n) comparisons shared by all
invocations of the lemma. T allows us to obtain the longest common prefix of any two fragments
T [i..y] and T [j..y], for i, j ∈ S, with no additional comparisons. By the properties of D(∆), for any
i, j ∈ {x, x+ 1, . . . , y −∆ + 1} we have 0 ≤ h(i, j) < ∆ and i+ h(i, j), j + h(i, j) ∈ S.
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We compute the ∆-approximate LZ factorisation of T [x..y] phrase-by-phrase. Denoting the
remaining suffix of the whole T [x..y] by T [x′..y], we need to find x′ ≤ y′ ≤ y such that T [x′..y′] is a
∆-approximate phrase. This is done as follows. We iterate over every x′ ≤ x′′ < x′ + ∆ such that
x′′ ∈ S. For every such x′′, we consider every x ≤ a′ < x′ such that a′ ∈ S, and compute the length
` of the longest common prefix of T [x′′..y] and T [a′..y]. Among all such x′′, a′ we choose the pair
that results in the largest value of x′′−x′+`−1 and choose the next phrase to be T [x′..(x′′+`−1)],
with the head being T [x′..(x′′− 1)] and the tail T [x′′..(x′′+ `)− 1]. Finally, if there is no such pair,
or the value of x′′ − x′ + `− 1 corresponding to the found pair is less than ∆− 2, we take the next
phrase to be T [x′..min{x′ + ∆ − 1, y}] (with empty tail). Selecting such a pair requires no extra
comparisons, as for every x′′, a′ ∈ S we can use the sparse suffix tree to compute `. While it is
clear that the generated ∆-approximate phrase has the required form, we need to establish that it
is sufficiently long.

Let T [x′..y′′] be the (unique) standard LZ phrase of T [x..y] that is prefix of T [x′..y]. If y′′ <
x′+∆−1 then we only need to ensure that the generated ∆-approximate phrase is of length at least
min{∆−1, y−x′+1}, which is indeed the case. Therefore, it remains to consider the situation when
y′′ ≥ x′+∆−1. Let T [a..b] be the previous occurrence of T [x′..(y′′−1)] in T [x..y] (because T [x′..y′′]
is a phrase this is well defined). Thus, T [a..b] = T [x′..(y′′−1)] and a < x′. Because y′′ ≥ x′+ ∆−1
and y′′ ≤ y, as explained above 0 ≤ h(a, x′) < ∆ and a+h(a, x′), x′+h(a, x′) ∈ S. We will consider
x′′ = x′ + h(a, x′) and a′ = a + h(a, x′) in the above procedure. Next, T [a′..b] = T [x′′..(y′′ − 1)],
so when considering this pair we will obtain ` ≥ |T [x′′..(y′′ − 1)]|. Thus, for the found pair we will
have x′′ + `− 1 ≥ y′′ − 1 as required in the definition of a ∆-approximate phrase.

Next, we show that even though the ∆-approximate LZ factorisation does not capture all
distinct squares, as it is the case for the standard LZ factorisation, it is still helpful in detecting all
sufficiently long squares. A crucial component is the following property of the ∆-approximate LZ
factorisation.

Lemma 6. Let b1b2 . . . bz be a ∆-approximate LZ factorisation of a string T . For every square
T [s..s + 2`− 1] of length 2` ≥ 8∆, there is at least one phrase bi with |tail(bi)| ≥ `

4 ≥ ∆ such that
tail(bi) and the right-hand side T [s+ `..s+ 2`− 1] of the square intersect.

Proof. Assume that all tails that intersect T [s + `..s + 2` − 1] are of length less than `
4 , then the

respective phrases of these tails are of length at most `
4 + ∆− 1 (because each head is of length less

than ∆). This means that T [s+ `..s+ 2`− 1] intersects at least
⌈
`/( `4 + ∆− 1)

⌉
≥
⌈
`/( `2 − 1)

⌉
= 3

phrases. Thus there is some phrase bi = T [x..y] properly contained in T [s+ `..s+ 2`− 1], formally
s + ` < x ≤ y < s + 2` − 1. However, this contradicts the definition of the ∆-approximate LZ
factorisation because T [x..s + 2`] is the prefix of a standard LZ phrase (due to T [x..s + 2` − 1] =
T [x − `..s + ` − 1]), and the ∆-approximate phrase bi = T [x..y] must satisfy y ≥ s + 2` − 1. The
contradiction implies that T [s+ `..s+ 2`− 1] intersects a tail of length at least `

4 ≥ ∆.

Lemma 7. Given a ∆-approximate LZ factorisation T = b1b2 . . . bz, we can detect a square of size

≥ 8∆ in O
(∑

|tail(bi)|≥∆ |tail (bi)|+ z
)

time and O
(∑

|tail(bi)|≥∆ |tail (bi)|
)

comparisons.

Proof. We consider each phrase bi = T [a1..a3] with head(bi) = T [a1..a2− 1] and tail(bi) = T [a2..a3]
separately. Let k = |tail(bi)|. If k ≥ ∆, we apply Lemma 1 to x1 = T [a2 − 8k..a2 − 1] and
y1 = T [a2..a3 + 4k − 1], as well as x2 = T [a2 − 8k..a3 − 1] and y2 = T [a3..a3 + 4k − 1] trimmed

to T [1..n]. This takes O(|tail(bi)|) time and comparisons, or O
(∑

|tail(bi)|≥∆ |tail (bi)|
)

time and

comparisons for all phrases. We need additional O(z) time to check if k ≥ ∆ for each phrase.
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Now we show that the described strategy detects a square of size at least 8∆. Let T [s..s+2`−1]
be any such square. Due to Lemma 6, the right-hand side T [s+`..s+2`−1] of this square intersects
some tail tail(bi) = T [a2..a3] of length k = |tail(bi)| ≥ `

4 ≥ ∆. Due to the intersection, we have
a2 ≤ s + 2` − 1 and a3 ≥ s + `. Thus, when processing bi and applying Lemma 1, the starting
position of x1 and x2 satisfies a2 − 8k ≤ s+ 2`− 1− 8 `4 = s− 1, while the end position of y1 and

y2 satisfies a3 + 4k − 1 ≥ s + ` + 4 `4 − 1 = s + 2` − 1. Therefore, the square is entirely contained
in the respective fragments corresponding to x1y1 and x2y2. If s < a2 ≤ s + 2` − 1, we find the
square with our choice of x1 and y1. If s < a3 ≤ s + 2`− 1, we find the square with our choice of
x2 and y2. Otherwise, T [s..s + 2` − 1] is entirely contained in tail T [a2..a3], and we find another
occurrence of the square further to the left.

3.5 Simple Algorithm for Detecting Squares

Now we have all the tools to introduce our simple method for testing square-freeness of T [1..n] using
O(n(log σ+ log log n)) comparisons, assuming that σ is known in advance. Let ∆ = (σ log n)2. We
partition T [1..n] into blocks of length 8∆, and denote the kth block by Bk. A square of length at
most 8∆ can be found by invoking Theorem 2.1 on B1B2, B2B3, and so on. This takesO(∆ log ∆) =
O(∆(log σ + log log n)) comparisons for each pair of adjacent blocks, or O(n(log σ + log logn))
comparisons in total. It remains to test for squares of length exceeding 8∆. This is done by first
invoking Lemma 5 to compute a ∆-approximate LZ factorisation of T [1..n] with O(nσ log n/

√
∆) =

O(n) comparisons, and then using Lemma 7, which adds another O(n) comparisons. The total
number of comparisons is dominated by the O(n(log σ + log logn)) comparisons needed to apply
Theorem 2.1 to the block pairs.

3.6 Improved Algorithm for Detecting Squares

We are now ready to describe the algorithm that uses only O(n log σ) comparisons without knowing
the value of σ. Intuitively, we will proceed in phases, trying to “guess” the value of σ. We first
observe that Lemma 5 can be extended to obtain the following.

Lemma 8. There is an algorithm that, given any parameter ∆ ∈ [1,m], estimate σ̃ and frag-
ment T [x..y] of length m, uses O(mσ̃ logm/

√
∆) comparisons plus O(n) comparisons shared by

all invocations of the lemma, and either computes a ∆-approximate LZ factorisation of T [x..y] or
determines that σ > σ̃.

Proof. We run the procedure described in the proof of Lemma 5 and keep track of the number of
comparisons with negative answer. As soon as it exceeds O(mσ̃ logm/

√
∆) (where the constant

follows from the complexity analysis) we know that necessarily σ > σ̃, so we can terminate. Other-
wise, the algorithm obtains a ∆-approximate LZ factorisation with O(mσ̃ logm/

√
∆) comparisons.

Comparisons with positive answer are paid for globally.

Now we describe how to find any square using O(n lg σ) comparisons. We define the sequence

σt = 22dlog logne−t
, for t = 0, 1, . . . , dlog log ne. We observe that σt−1 = (σt)

2, and proceed in phases
corresponding to the values of t. In the tth phase we are guaranteed that any square of length at least
(σt)

2 has been already detected, and we aim to detect square of length less than (σt)
2, and at least

σt. We partition the whole T [1..n] into blocks of length (σt)
2, and denote the kth block by Bk. A

square of length less than (σt)
2 is fully contained within some two consecutive blocks BiBi+1, hence

we consider each such pair B1B2, B2B3, and so on. We first apply Lemma 8 with ∆ = σt/8 and
σ̃ = (σt)

1/4/ log(σt) to find an (σt/8)-approximate LZ factorisation of the corresponding fragment

16



of T [1..n], and then use Lemma 7 to detect squares of length at least σt. We cannot always afford
to apply Lemma 7 to all block pairs. Thus, we have to deactivate some of the blocks, which we
explain when analysing the number of comparisons performed by the algorithm. If any of the calls
to Lemma 8 in the current phase detects that σ > σ̃, we switch to applying Theorem 2.1 on every
pair of blocks BiBi+1 of the current phase and then terminate the whole algorithm.

We now analyse the total number of comparisons, ignoring the O(n) comparisons shared by
all invocations of Lemma 8. Throughout the tth phase, we use O(n · σ̃ log σt/

√
∆) = O(n ·

(σt)
1/4/ log(σt) · log(σt)/

√
σt) = O(n/(σt)

1/4) comparisons to construct the ∆-approximate factori-
sations (using Lemma 8) until we either process all pairs of blocks or detect that σ > (σt)

1/4/ log(σt).
In the latter case, we finish off the whole computation with O(n log(σt)) comparisons (using The-
orem 2.1), and by assumption on σ this is O(n log σ) as required. Until this happens (or until we

reach phase t = dlog logne−3 where σt ≤ 256), we use O(
∑t′

t=0 n/(σt)
1/4) comparisons to construct

the ∆-approximate factorisations, for some 0 ≤ t′ ≤ dlog logne. To analyse the sum, we need the
following bound (made more general for the purpose of the next section).

Lemma 9. For any 0 ≤ x ≤ y and c ≥ 0 we have
∑y

i=x 2ic/22i = O(2xc/22x).

Proof. We observe that the sequence of exponents 2i is strictly increasing from i = 0, hence

y∑
i=x

2ic

22i
≤

2y∑
i=2x

ic

2i
≤
∞∑
i=2x

ic

2i
=

∞∑
i=0

(2x + i)c

2(2x+i)
≤
∞∑
i=0

2xc · (i+ 1)c

2(2x+i)
=

2xc

22x
·
∞∑
i=0

(i+ 1)c

2i
.

∑∞
i=0

(i+1)c

2i
is a series of positive terms, we thus use Alembert’s ratio test (i+2)c

2i+1 · 2i

(i+1)c = 1
2

(i+2)c

(i+1)c

which tends to 1
2 when i goes to the infinity, thus the series converges to a constant.

Corollary 3. For any 0 ≤ t′ ≤ dlog logne, it holds that
∑t′

t=0 n · polylog(σt)/(σt)
1/4 = O(n).

Proof. We have to show that
∑t′

t=0 n logc(σt)/(σt)
1/4) = O(n) for any constant c ≥ 0. We achieve

this by splitting the sum and applying Lemma 9.

t′∑
t=0

n logc(σt)

(σt)1/4
≤

dlog logne∑
t=0

n · (2dlog logne−t)c

(22dlog logne−t
)1/4

=

dlog logne∑
t=0

n · (2t)c

(22t)1/4

= n ·
dlog logne∑

t=0

2tc

22t−2 = n ·

 1

22−2 +
2c

22−1 + 4 ·
dlog logne−2∑

t=0

2tc

22t

 = O(n)

Thus, all invocations of Lemma 8 cause O(
∑t′

t=0 n/(σt)
1/4) = O(n) comparisons.

Deactivating Block Pairs

It remains to analyse the number of comparisons used by Lemma 7 throughout all phases. As
mentioned earlier, we cannot actually afford to apply Lemma 7 to all block pairs. Thus, we
introduce a mechanism that deactivates some of the pairs.

First, note that there are O(
∑t′

t=0 n/(σt)
2) ⊆ O(

∑t′

t=0 n/(σt)
1/4) = O(n) block pairs in all

phases. For each pair, we store whether it has been deactivated or not, where being deactivated
broadly means that we do not have to investigate the pair because it does not contain a leftmost
distinct square. For each block pair BiBi+1 in the current phase t, we first check if it has been
marked as deactivated. If not, we also check if it has been implicitly deactivated, i.e., if any of
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the two pairs from the previous phase that contain BiBi+1 are marked as deactivated. If BiBi+1

has been implicitly deactivated, then we mark it as deactivated and do not apply Lemma 8 and
Lemma 7 (the implicit deactivation serves the purpose of propagating the deactivation to all later
phases). Note that if some position of the string is not contained in any active block pair in some
phase, then it is also not contained in any active block pair in all later phases. This is because it
always holds that σt−1 = (σt)

2 (with no rounding required), which guarantees that block boundaries
of earlier phases do not intersect blocks of later phases.

We only apply Lemma 8 and then Lemma 7 to BiBi+1 if the pair has neither explicitly nor im-
plicitly been deactivated. When applying Lemma 7, a tail T [a..a+ `) contributes O(`) comparisons
if ` ≥ ∆ = σt/8 (and otherwise it contributes no comparisons). As the whole T [a..a + `) occurs
earlier, it cannot contain the leftmost occurrence of a square in the whole T . Thus, any block pair
(of any phase) contained in T [a..a+ `) also cannot contain such an occurrence, and thus such block
pairs can be deactivated.

The mechanism used for deactivation works as follows. Let T [a..a+`) be a tail contributing O(`)
comparisons with ` ≥ ∆ = σt/8 in phase t. We mark all block pairs of phase t+ 2 that are entirely
contained in T [a..a+`) as deactivated. Note that blocks in phase t+2 are of length

√
σt, and consider

the fragment T [a + 2
√
σt..a + ` − 2

√
σt). In phase t + 2, and by implicit deactivation in all later

phases, this fragment overlaps (either partially or fully) only block pairs that have been deactivated.
Thus, after phase t + 1, we will never inspect any of the symbols in T [a + 2

√
σt..a + ` − 2

√
σt)

again. We say that tail T [a..a + `) deactivated the fragment of length ` − 4
√
σt = Ω(`), which is

positive until phase t = dlog logne−3 because σt > 256. Since the number of deactivated positions
is linear in the number of comparisons that the tail contributes to Lemma 7, it suffices to show that
each position gets deactivated at most a constant number of times. In a single phase, any position
gets deactivated at most twice. This is because the tails of each factorisation do not overlap by
definition, but the tails of the two factorisations of adjacent block pairs BiBi+1 and Bi+1Bi+2 can
overlap. If a position gets deactivated for the first time in phase t, then (as explained earlier) we
will not consider it in any of the phases t′ ≥ t + 2. Thus, it can only be that we deactivate the
position again in phase t+ 1, but not in any later phases. In total, each position gets deactivated
at most four times. Hence Lemma 7 contributes O(n) comparisons in total.

We have shown:

Theorem 1.2. Testing square-freenes of a length-n string that contains σ distinct symbols from a
general unordered alphabet can be done with O(n log σ) comparisons.

4 Algorithm

In this section we show how to implement the approach described in the previous section to work
in O(n log σ) time. The main difficulty is in efficiently implementing the sparse suffix tree con-
struction algorithm, and then computing a ∆-approximate factorisation. We first how to obtain an
O(n log σ + n log∗ n) time algorithm that still uses only O(n log σ) comparisons, and then further
improve its running time to O(n log σ).

4.1 Constructing Suffix Tree and ∆-Approximate Factorisation

To give an efficient algorithmic construction of the sparse suffix tree from Lemma 3, we will use
a restricted version of LCEs, where a query ShortLCEx(i, j) (for any positive integer x) returns
min(x, lce(i, j)). The following result was given by Gawrychowski et al. [39]:
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Lemma 10 (Lemma 14 in [39]). For a length-n string over a general unordered alphabet2, a sequence
of q queries ShortLCE4ki for i ∈ {1, . . . , q} can be answered online in total time O(n log∗ n+s) and
O(n+ q) comparisons3, where s =

∑q
i=1(ki + 1).

In the lemma, apart from the O(n log∗ n) time, each ShortLCE4ki query accounts for O(ki + 1)
time. Note that we can answer the queries online, without prior knowledge of the number and
length of the queries. Also, computing an LCE in a fragment T [x..y] of length m trivially reduces
to a ShortLCE4dlog4 me query on T . Thus, we have:

Corollary 4. A sequence of q longest common extension queries on a fragment T [x..y] of length m
over a general unordered alphabet can be answered in O(q logm) time plus O(n log∗ n) time shared
by all invocations of the lemma. The number of comparisons is O(q), plus O(n) comparisons shared
by all invocations of the lemma.

While constructing the sparse suffix tree, we will maintain a heavy-light decomposition using a
rebuilding scheme introduced by Gabow [37]. Let L(u) denote the number of leaves in the subtree
of a node u. We use the following recursive construction of a heavy-light decomposition: Starting
from a node r (initially the root of the tree), we find the deepest descendant node e such that
L(e) ≥ 5

6L(r) (possibly e = r). The path p from the root r(p) = r to e(p) = e is a heavy path. Any
edge (u, v) on this path satisfies L(v) ≥ 5

6L(u), and we call those edges heavy. As a consequence,
a node u can have at most one child v such that (u, v) is heavy. For each edge (u, v) where u is on
the heavy path and v is not, we recursively build a new heavy path construction starting from v.

When inserting a new suffix in our tree, we keep track of the insertion in the following way: for
every root of a heavy path, we maintain I(u) the number of insertions made in the subtree of u
since we built the heavy-light decomposition of this subtree. When I(u) ≥ 1

6L(u) we recalculate
the values of L(v) for all nodes v in the subtree of u and rebuild the heavy-light decomposition for
the subtree of u.

This insures that, despite insertion, for any heavy path starting at node r and a node u on that
heavy path, L(e) ≥ 2

3L(r). When crossing a non-heavy edge the number of nodes in the subtree
reduces by a factor at least 5

6 which leads to the following property:

Observation 4.1. The path from any node to the root crosses at most O(logm) heavy paths.

Additionally, rebuilding a subtree of size s takes O(s) time and adding a suffix T [ij ..y] to the
tree increases I(r) for each path p from the root r to the new leaf. Those are at most O(logm)
nodes, and thus maintaining the heavy path decomposition takes amortized time O(log n) time per
insertion.

With these building blocks now clearly defined, we are ready to describe the construction of the
sparse suffix tree.

Lemma 11. The sparse suffix tree containing any b suffixes T [i1..y], . . . , T [ib..y] of T [x..y] with
m = |T [x..y]| can be constructed using O(bσ log b logm) time plus O(n log∗ n) time shared by all
invocations of the lemma.

Proof. As in the proof of Lemma 3, we consider the insertion of a suffix T [ij ..y] into the sparse
suffix tree with suffixes T [i1..y], T [i2..y] · · ·T [ij−1..y]. At all times, we maintain the heavy path

2Lemma 14 in [39] does not explicitly mention that it works for general unordered alphabet. However, the proof
of the lemma relies solely on equality tests.

3Lemma 14 in [39] does not explicitly mention that it requires O(n+ q) comparisons. However, they use a union-
find approach where there can be at most O(n) comparisons with outcome ”equal”, and each LCE query performs
only one comparison with outcome ”not-equal”, similarly to what we describe in the proof of Lemma 3.
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decomposition. Additionally, we maintain for each heavy path a predecessor data structure, where
given some length `, we can quickly identify the deepest explicit node on the heavy path that spells
a string of length at least `. The data structure can, e.g., be a balanced binary search tree with
insertion and search operations in O(log b) time (the final sparse suffix tree and thus each heavy
path contains O(b) nodes). When rebuilding a subtree of the heavy path decomposition, we also
have to rebuild the predecessor data structure for each of its heavy paths. Thus, rebuilding a
size-q subtree takes O(q log b) time (each node is on exactly one heavy path and has to be inserted
into one predecessor data structure), and the amortized insertion time increases from O(logm) to
O(logm · log b). Whenever we insert a suffix, we make at most one node explicit, and thus have
to perform at most one insertion into a predecessor data structure. The time for this is O(log b),
which is dominated be the previous term.

When inserting T [ij ..y], we look for the node u corresponding to the longest common prefix
between T [ij ..y] and the inserted suffixes, make u explicit if necessary and add a new leaf corre-
sponding to T [ij ..y] attached to u. Let v be the current node (initialized by the root, and always an
explicit node) and v1, · · · , vd be its (explicit) children. If there is a heavy edge (v, va) for 1 ≤ a ≤ d,
let p be the corresponding heavy path. For each heavy path p, we store the label of one leaf (i.e., the
starting position of one suffix) that is contained in the subtree of e(p). Thus, we can use Corollary 4
to compute the longest common extension between the string spelled by e(p) and T [ij ..y]. Now we
use the predecessor data structure on the heavy path to find the deepest (either explicit or implicit)
node v′ on the path that spells a prefix of T [ij ..y]. If v′ is implicit, we make it explicit and add
the leaf. If v′ is explicit and v′ 6= v, we use v′ as the new current node and continue. Otherwise,
we have v′ = v, i.e., the suffix does not belong to the subtree rooted in va. In this case, we issue
d LCE queries between T [ij ..y] and each of the strings spelled by the nodes v1, . . . , vd. This either
reveals that we can continue using one of the va as the new current node, or that we can create a
new explicit node on some (v, va) edge and attach the leaf to it, or that we can simply attach a
new leaf to v.

Now we analyse the time spent while inserting one suffix. We spent O(b · logm · log b) total
time for inserting O(b) nodes into the dynamic heavy path decomposition and the predecessor
data structures. In each step of the insertion process, we either (i) move as far as possible along
some heavy path or (ii) move along some non-heavy edge. For (i), we issue one LCE query and
one predecessor query. For (ii) we issue O(σ) LCE queries. Due to Observation 4.1, both (i)
and (ii) happen at most O(log b) times per suffix. Thus, for all suffixes, we perform O(b log b)
predecessor queries and O(bσ log b) LCE queries. The total time is O(b log2 b) for predecessor
queries, andO(bσ log b logm) for LCE queries (apart from the n log∗ n time shared by all invocations
of Corollary 4).

Lemma 12. For any parameter ∆ ∈ [1,m], a ∆-approximate LZ factorisation of any fragment
T [x..y] of length m can be computed in O(mσ log2m/

√
∆) time plus O(n log∗ n) time shared by all

invocations of the lemma.

Proof. Let T ′ = T [x..y], and let {i1, i2, . . . , ib} be a ∆-cover of {1, . . . ,m}, which implies b =
Θ(m/

√
∆). We obtain a sparse suffix tree of the suffixes T ′[i1..m], . . . , T ′[ib..m], which takes

O(bσ log b logm) ⊆ O(mσ log2m/
√

∆) time according to Lemma 11, plus O(n log∗ n) time shared
by all invocations of the lemma. Now we compute a ∆-approximate LZ factorisation of T ′ from
the spare suffix tree in O(b) time.

In the following proof, we use i1, i2, . . . , ib interchangeably to denote both the difference cover
positions, as well as their corresponding leaves in the sparse suffix tree. Assume that the order
of difference cover positions is i1 < i2 < · · · < ib. First, we determine for each ik > i1, the
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position src(ik) = ih and the length len(ik) = lce(ih, ik), where ih ∈ {i1, . . . , ik−1} is a position
that maximizes lce(ih, ik). This is similar to what was done in [34] for the LZ77 factorisation. We
start by assigning labels from {1, . . . , b} to the nodes of the sparse suffix tree. A node has label k
if and only of ik is its smallest descendant leaf. We assign the labels as follows. Initially, all nodes
are unlabelled. We assign label 1 to each node on the path from i1 to the root. Then, we process
the remaining leaves i2, . . . , ib in increasing order. For each ik, we follow the path from ik to the
root. We assign label k to each unlabelled node that we encounter. As soon as we reach a node
that has already been labelled, say, with label h and string-depth `, we are done processing leaf ik.
It should be easy to see that ih is also exactly the desired index that maximizes lce(ih, ik), and
we have lce(ih, ik) = `. Thus, we have found src(ik) = ih and len(ik) = `. The total time needed
is linear in the number of sparse suffix tree nodes, which is O(b).

Finally, we obtain a ∆-approximate LZ factorisation using src and len. The previously computed
values can be interpreted as follows: ik could become the starting position of a length-len(ik) tail
(with previous occurrence at position src(ik)). For the ∆-approximate LZ factorisation, we will
create the factors greedily in a left-to-right manner. Assume that we already factorised T ′[1..s−1],
then the next phrase starts at position s, and thus the next tail starts within T ′[s..s + ∆) (as a
reminder, the head is by definition shorter than ∆). Let S = {i1, i2, . . . , ib} ∩ {s, . . . , s+ ∆− 1}. If
there is no ik ∈ S with ik + len(ik) > s+ ∆− 1, then the next phrase is simply T ′[s..min(|T ′|, s+
∆ − 1)) with empty tail. Otherwise, the next phrase has (possibly empty) head T ′[s..ik) and
tail T ′[ik..ik + len(ik)) (with previous occurrence src(ik)), where ik is chosen from S such that it
maximizes ik + len(ik). Creating the phrase in this way clearly takes O(|S|) time. Since the next
phrase starts at least at position s+ ∆− 1, none of the positions from S \ {s+ ∆− 1} will ever be
considered as starting positions of other tails. Thus, every ik is considered during the creation of
at most two phrases, and the total time needed to create all phrases is O(b).

It remains to be shown that the computed factorisation is indeed a ∆-approximate LZ factori-
sation, i.e., if we output a phrase T ′[s..e], then the unique (non-approximate) LZ phrase T ′[s..e′]
starting at position s satisfies e′ − 1 ≤ e. First, note that for the created approximate phrases
(except possibly the last phrase of T ) we have s + ∆ − 2 ≤ e. Assume e′ < s + ∆, then
clearly e′ − 1 ≤ e. Thus, we only have to consider e′ > s + ∆ − 1. Since T ′[s..e′] is an LZ
phrase, there is some s′ < s such that lce(s′, s) = e′ − s. Let h be the constant-time com-
putable function that defines the ∆-cover, and let ik′ = s′ + h(s′, s) and ik = s + h(s′, s). Note
that ik′ ∈ {i1, i2, . . . , ik−1} and ik ∈ {i1, i2, . . . , ib} ∩ {s, . . . , s + ∆ − 1}. Therefore, we have
len(ik) ≥ lce(ik′ , ik) = lce(s′, s) − h(s′, s) = (e′ − s) − (ik − s) = e′ − ik. While computing the
∆-approximate phrase T ′[s..e], we considered ik as the starting positions of the tail, which implies
e ≥ ik + len(ik)− 1 ≥ e′ − 1.

Lemma 13. There is an algorithm that, given any parameter ∆ ∈ [1,m], estimate σ̃ and fragment
T [x..y] of length m, takes O(mσ̃ log2m/

√
∆) time plus O(n log∗ n) time shared by all invocations of

the lemma, and either computes a ∆-approximate LZ factorisation of T [x..y] or determines σ > σ̃.

Proof. We simply use Lemma 12 to compute the factorisation. In the first step, we have to con-
struct the sparse suffix tree using the algorithm from Lemma 11. While this algorithm takes
O(mσ log2m/

√
∆) time, it is easy to see that a more accurate time bound is O(md log2m/

√
∆),

where d is the maximum degree of any node in the sparse suffix tree. If during construction the
maximum degree of a node becomes σ̃+ 1, we immediately stop and return that σ > σ̃. Otherwise,
we finish the construction in the desired time.

Now we can describe the algorithm that detects squares in O(n lg σ + n log∗ n) time and
O(n lg σ) comparisons. We simply use the algorithm from Section 3.2, but use Lemma 13 in-
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stead of Lemma 8. Next, we analyse the time needed apart from the O(n log∗ n) time shared
by all invocations of Lemma 13. Throughout the tth phase, we use O(n · σ̃ · log2(σt)/

√
∆) =

O(n · (σt)1/4/ log(σt) · log2(σt)/
√
σt) = O(n log(σt)/(σt)

1/4) comparisons to construct all the ∆-
approximate factorisations. As before, if at any time we discover that σ̃ > (σt)

1/4/ log(σt), then
we use Theorem 2.1 to finish the computation in O(n lg σt) = O(n log σ) time. Until then (or until

we finished all dlog log ne phases), we use O(
∑t′

t=0 n log(σt)/(σt)
1/4) time, and by Corollary 3 this

is O(n). For detecting squares, we still use Lemma 7, which as explained in Section 3.2 takes
O(n) time and comparisons in total, plus additional O(Z) time, where Z is the number of approx-
imate LZ factors considered during all invocations of the lemma. We apply the lemma to each
approximate LZ factorisation exactly once, and by construction each factor in phase t has size
at least ∆ = Ω(σt). Also, each text position is covered by at most two tails per phase. Hence

Z = O(
∑t′

t=0 n/σt), which is O(n) by Corollary 3.
The last thing that remains to be shown is how to implement the bookkeeping of blocks, i.e., in

each phase we have to efficiently deactivate block pairs as described at the end of Section 3.2. We
maintain the block pairs in dlog logne bitvectors of total length O(n), where a set bit means that
a block pair has been deactivated (recall that there are O(n) pairs in total). Bitvector t contains
at position j the bit corresponding to block pair BjBj+1 = T [i..i+ 2(σt)

2) with i = (σt)
2 · (j − 1).

Note that translating between i and j takes constant time. For each sufficiently long tail in phase
t, we simply iterate over the relevant block pairs in phase t + 2 and deactivate them, i.e., we set
the corresponding bit. This takes time linear in the number of deactivated blocks. Since there are
O(n) block pairs, and each block pair gets deactivated at most a constant number of times, the
total cost for this bookkeeping is O(n).

The number of comparisons is dominated by the O(n log σ) comparisons used when finishing
the computation with Theorem 2.1. The only other comparisons are performed by Lemma 7, which
we already bounded by O(n), and by LCE queries via Corollary 4. Since we ask O(n) such queries
in total, the number of comparisons is also O(n). We have shown:

Lemma 14. The square detection algorithm from Section 3.2 can be implemented in O(n lg σ +
n log∗ n) time and O(n log σ) comparisons.

4.2 Final Improvement

For our final improvement we need to replace the LCE queries implemented by Corollary 4 with our
own mechanism. The goal will remain the same, that is, given a parameter ∆ and estimate σ̃ of the
alphabet size, find a ∆-approximate LZ factorisation of any fragment T [x..y] in O(mσ̃ logm/

√
∆)

time, where m = |T [x..y]| (with m = Θ(∆2), as otherwise we are not required to detect anything).
As in the previous section, the algorithm might detect that the size of the alphabet is larger

than σ̃, and in such case we revert to the divide-and-conquer algorithm. Let τ = b
√

∆c.
Initially, we only consider some fragments of T [x..y]. We say that T [i · τ2..i · τ2 + τ) is a dense

fragment. We start by remapping the characters in all dense fragments that intersect T [x..y] to a
linearly-sortable alphabet. This can be done in O(σ̃) time for each position by maintaining a list
of the already seen distinct characters. For each position in a dense fragment, we iterate over the
characters in the list, and possibly append a new character to the list if it is not present. As soon
as the size of the list exceeds σ̃, we terminate the procedure and revert to the divide-and-conquer
algorithm. Otherwise, we replace each character by its position in the list. Overall, there are
O(m/

√
∆) positions in the dense fragments of T [x..y], and the remapping takes O(mσ̃/

√
∆) time.

Next, we construct two generalised suffix trees [43], the first one of all dense fragments, and the
second one of their reversals. (The generalised suffix tree of a collection of strings is the compacted
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i · τ2 (i+ 1) · τ2 (i+ 2) · τ2

T =

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13

D3 D3 D1
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τ

h0 = j · τ h1 = (j + 1) · τ

(a) Sampling dense fragments and cutting the text into chunks. Dotted lines indicate chunk boundaries, and hx =
(j+x) ·τ for some integer j and x ∈ [0, 13] are positions of chunk boundaries. The dense fragments are D1 = T [h2..h3),
D2 = T [h7..h8), and D3 = T [h12..h13). The primary occurrences of dense fragments are grey, while the secondary
occurrences (the ones that we aim to find) are white. A purple box in the text, and the matching purple line underneath
the text, correspond to some substring T [j ·τ−rj−1..j ·τ). Similarly, the orange boxes and lines correspond to substrings
T [j · τ..j · τ + `j).
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(b) The string T ′ used to find all the occurrences of dense fragments. Each position ĥx maps to position hx in
Fig. 4a. The substring indicated by the purple box preceding hx = (j+x)τ and the orange box succeding hx is exactly
T [hx − rj+x−1..hx + `j+x). Each $

x
is a distinct separator symbol that is unique within T ′.

Figure 4: Supplementary drawings for Section 4.2.

trie that contains all suffixes of all strings in the collection.) Again, because we now work with a
linearly-sortable alphabet this takes only O(m/

√
∆) time [31]. We consider fragments of the form

T [i · τ..(i+ 1) · τ) having non-empty intersection with T [x..y]. We call such fragments chunks. We
note that there are O(m/

√
∆) chunks, and their total length is O(m). For each chunk, we find its

longest prefix T [i · τ..i · τ + `i) and longest suffix T [(i + 1) · τ − ri..(i + 1) · τ) that occur in one
of the dense fragments. Fig. 4a visualizes the dense fragments, chunks, and longest prefixes and
suffixes. This can be done efficiently by following the heavy path decomposition of the generalised
suffix tree of all dense fragments and their reversals, respectively. On each current heavy path, we
just naively match the characters as long as possible. In case of a mismatch, we spend O(σ̃) time
to descend to the appropriate subtree, which happens at most O(logm) times due to the heavy
path decomposition. After having found `i and ri, we test square-freenes of T [i · τ..i · τ + `i) and
T [(i+ 1) · τ − ri..(i+ 1) · τ). Because they both occur in dense fragments, and we have remapped
the alphabet of all dense fragments, we can use Theorem 2.2 to implement this in O(`i + ri)
time. Thus, the total time per chunk is thus O(σ̃ logm) plus O(`i + ri). The former sums up to
O(mσ̃ logm/

√
∆), and we will later show that the latter can be amortised by deactivating blocks

on the lower levels.
The situation so far is that we have remapped the alphabet of all dense fragments to linearly-
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sortable, and for every chunk we know its longest prefix and suffix that occur in one of the dense
fragments. We concatenate all fragments of the form T [i·τ−ri−1..i·τ+`i) (intersected with T [x..y])
while adding distinct separators in between to form a new string T ′. We stress that, because we
have remapped the alphabet of all dense fragments, and the found longest prefix and suffix of each
chunk also occur in some dense fragment, T ′ is over linearly-sortable alphabet. Thus, we can build
the suffix tree ST of T ′ in O(|T ′|) time [31]. A visualization of T ′ is provided in Fig. 4b

Let D = {D1, D2, . . .} be the set of distinct dense fragments. We would like to construct the
set of all occurrences of the strings in D in T [x..y]. Using the suffix tree of T ′ we can retrieve all
occurrences of every Dj in T ′. We observe that, because of how we have defined T [i · τ..i · τ + `i)
and T [(i+ 1) · τ − ri..(i+ 1) · τ), this will in fact give us all occurrences of every Dj in the original
T [x..y]. To implement this efficiently, we proceed as follows. First, for every i we traverse ST
starting from its root to find the (explicit or implicit) node corresponding to the dense fragment
T [i · τ2..i · τ2 + τ). This takes only O(mσ̃/

√
∆) time. Then, all leaves in every subtree rooted at

such a node correspond to occurrences of some Dj , and can be reported by traversing the subtree
in time proportional to its size, so at most O(|T ′|) in total. Finally, remapping the occurrences
back to T [x..y] can be done in constant time per occurrence by precomputing, for every position
in T ′, its corresponding position in T [x..y], which can be done in O(|T ′|) time when constructing
T ′. Thus, in O(|T ′|) time, we obtain the set S of starting positions of all occurrences of the strings
in D. We summarize the properties of S below.

Proposition 1. S admits the following properties:

1. For every i ∈ [x, y] such that i = 0 (mod τ2), i ∈ S.

2. For every i ∈ [x, y − τ ], i ∈ S if and only if T [i..i+ τ) ∈ D.

3. |S| ≤ |T ′|.

We now define a parsing of T [x..y]$ based on S. Let i1 < i2 < . . . ik be all the positions in S,
that is, (ij , ij+1) ∩ S = ∅ for every j = 1, 2, . . . , k − 1. For every j = 1, 2, . . . , k − 1, we create the
phrase T [ij ..ij+1 + τ). We add the last phrase T [ik..y]$. We stress that consecutive phrases overlap
by τ characters, and each phrase begins with a length-τ fragment starting at a position in S. This,
together with property 2 of S, implies the following property.

Observation 4.2. The set of distinct phrases is prefix-free.

We would like to construct the compacted trie Tphrase of all such phrases, so that (in particular)
we identify identical phrases. We first notice that each phrase begins with a fragment T [ij ..ij + τ)
that has its corresponding occurrence in T ′. We note that, given a set of positions P in T , we can
find their corresponding positions in T ′ (if they exist) by sorting and scanning in O(|P |+ |T ′|) time.

Thus, we can assume that for each ij we know its corresponding position i′j in T ′. Next, for each
node of ST we precompute its unique ancestor at string depth τ in O(|T ′|) time. Then, for every
fragment T [ij ..ij + τ) we can access its corresponding (implicit or explicit) node of ST . This allows
us to partition all phrases according to their prefixes of length τ . In fact, this gives us the top part
of Tphrase containing all such prefixes in O(m/

√
∆) time, and for each phrase we can assume that

we know the node of Tphrase corresponding to its length-τ prefix.
To build the remaining part of Tphrase, we partition the phrases into short and long. T [ij ..ij+1+τ)

is short when ij+1 ≤ ij + τ (meaning that its length is at most 2τ), and long otherwise.
We begin with constructing the compacted trie T ′phrase of all short phrases. This can be done

similarly to constructing the top part of Tphrase, except that now the fragments have possibly
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different lengths. However, every short phrase T [ij ..ij+1 + τ) occurs in T ′ as T ′[i′j ..i
′
j+1 + τ). We

claim that the nodes of ST corresponding to every T ′[i′j ..i
′
j+1 + τ) can be found in O(|T ′|) time.

This can be done by traversing ST in the depth-first order while maintaining a stack of all explicit
nodes with string depth at least τ on the current path. Then, when visiting the leaf corresponding
to the suffix of T ′ starting at position i′j , we iterate over the current stack to find the sought node.
This takes at most O(|T ′[ij + τ..ij+1 + τ ]|) time, which sums up to O(|T ′|). Having found the node
of ST corresponding to T [ij ..ij+1 + τ), we extract T ′phrase from ST in O(|T ′|) time.

With T ′phrase in hand, we construct the whole Tphrase as follows. We begin with taking the union
of T ′phrase and the already obtained top part of Tphrase, this can be obtained in O(|T ′|) time. For
each long phrase T [ij ..ij+1 + τ), we know the node corresponding to T [ij ..ij + τ) and would like to
insert the whole string T [ij ..ij+1 + τ) into Tphrase. We perform the insertions in increasing order of
ij (this will be crucial for amortising the time later). This is implemented with a dynamic heavy
path decomposition similarly as in Section 4.1, however with one important change. Namely, we
fix a heavy path decomposition of the part of Tphrase corresponding to the union of T ′phrase and the
top part of Tphrase, and maintain a dynamic heavy path decomposition of every subtree hanging
off from this part. Thanks to this change, the time to maintain the dynamic trie and all heavy
path decompositions is O(m logm/

√
∆), as there are only O(m/

√
∆) long phrases. Next, for each

long phrase T [ij ..ij+1 + τ), we begin the insertion at the already known node corresponding to
T [ij ..ij + τ), and continue the insertion by following the heavy paths, first in the static heavy path
decomposition in the part of Tphrase corresponding to T ′phrase, second in the dynamic heavy path
decomposition in the appropriate subtree. On each heavy path, we naively match the characters
as long as possible. The time to insert a single phrase T [ij ..ij+1 + τ) is O(logm) (twice) plus the
length of the longest prefix of T [ij + τ..ij+1 + τ) equal to a prefix of T [ij′ + τ..ij′+1 + τ), for some
j′ < j. The former sums up to another O(m logm/

√
∆), and we will later show that the latter can

be amortised by deactivating blocks on the lower levels.
Tphrase allows us to form metacharacters corresponding to the phrases, and transform T [x..y]

into a string Tparse of length O(|T ′|) consisting of these metacharacters. We build a suffix tree
Sparse over this string over linearly-sortable metacharacters in O(|T ′|) time. Next, we convert
it into the sparse suffix tree S ′parse of all suffixes T [ij ..y] as follows. Consider an explicit node
u ∈ Sparse with children v1, v2, . . . , vd, d ≥ 2. We first compute the subtree Tu of Tphrase induced
by the leaves corresponding to the first metacharacters on the edges (u, vi), for i = 1, 2, . . . , d, and
connect every vi to the appropriate leaf of Tu. This can be implemented in O(d) time, assuming
constant-time lowest common ancestor queries on Tphrase [10] and processing the leaves from left to
right with a stack, similarly as in the Cartesian tree construction algorithm [75]. We note that the
order on the leaves is the same as the order on the metacharacters, and hence no extra sorting is
necessary. Overall, this sums up to O(|T ′|). Next, we observe that, unless u is the root of Sparse,
all metacharacters on the edges (u, vi) correspond to strings starting with the same prefix of length
τ . We obtain the subtree T ′u by truncating this prefix (or taking Tu if u is the root). Finally, we
identify the root of T ′u with u, and every child vi with its corresponding leaf of T ′u. Because we
truncate the overlapping prefixes of length τ , after this procedure is executed on every node of
Sparse we obtain a tree S ′parse with the property that each leaf corresponds to a suffix T [ij ..y]. Also,
by Observation 4.2, the edges outgoing from every node start with different characters as required.

By following an argument from the proof of Lemma 12, S ′parse allows us to determine, for every
suffix T [ij ..y], its longest prefix equal to a prefix of some T [i′..y] with i′ < ij , as long as its length
is at least τ . Indeed, in such case we must have i′ ∈ S by property 2, so in fact i′ = ij′ and it
is enough to maximise the length of the common prefix with all earlier positions in S, which can
be done using S ′parse. Thus, we either know that the length of this longest prefix is less than τ , or
know its exact value (and the corresponding position i′ ∈ S).
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Lemma 15. For any parameter ∆ ∈ [1,m] and estimate σ̃ of the alphabet size, a (∆ + τ)-
approximate LZ factorisation of any fragment T [x..y] can be computed in O(m/

√
∆) time with

m = |T [x..y]| (assuming the preprocessing described earlier in this section).

Proof. Let e ∈ [x, y] and suppose we have already constructed the factorisation of T [x..e − 1] and
are now trying to construct the next phrase. Let e′ be the next multiple of τ2, we have that
e′ − e < τ2 ≤ ∆ and T [e′..e′ + τ) is a dense fragment. Thus, by property 1 we have e′ ∈ S.

The first possibility is that the longest common prefix between T [e′..y] and any suffix starting
at an earlier position is shorter than τ . In this case, we can simply set the head of the new phrase
to be T [e..e′ + τ) and the tail to be empty. Otherwise, we know the length ` of this longest prefix
by the preprocessing described above. We set the head of the new phrase to be T [e..e′) and the
tail to be T [e′..e′′ + `). This takes constant time per phrase, and each phrase is of length at least
τ , giving the claimed overall time complexity. It remains to argue correctness of every step.

Let T [e..s] be the longest LZ phrase starting at position e, to show that we obtain a valid
(∆ + τ)-approximate phrase it suffices to show that s ≤ e′+ max(τ, `). Let the previous occurrence
of T [e..s) be at position p < e. If s− e′ < τ then there is nothing to prove. Otherwise, T [e′..s) is a
string of length at least τ that also occurs starting earlier at position p+ e′− e < e′. Thus, we will
correctly determine that ` ≥ τ , and find a previous occurrence of the string maximising the value
of `. In particular, we will have ` ≥ s− e′ as required.

To achieve the bound of Theorem 1.3, we now proceed as in Section 3.6, except that instead
of Lemma 13 we use Lemma 15. For every T [x..y] with m = |T [x..y]| this takes O(mσ̃ logm/

√
∆)

time plus the time used for computing the longest prefix and suffix of each chunk (the latter also
accounts for constructing the suffix tree ST and other steps that have been estimated as taking
O(|T ′|) in the above reasoning) plus the time for inserting T [ij + τ..ij+1 + τ) into Tphrase when
ij+1 ≥ ij + τ .

We observe that we can deactivate any block pair fully contained in T [i · τ..i · τ + `i) and
T [(i+ 1) · τ − ri..(i+ 1) · τ), as we have already checked that these fragments are square-free. Also,
we can deactivate any block pair fully contained in the longest prefix of T [ij + τ..ij+1 + τ) equal to
T [ij′ + τ..ij′+1 + τ), for some j′ < j, because such fragment cannot contain the leftmost occurrence
of a square.

There are O(m/
√

∆) chunks and long phrases. If a chunk or a long phrase contributes x =
Ω( 4
√

∆) to the total time, then we explicitly deactivate the block pairs in phase t + 3 that are
entirely contained in the corresponding fragment. Block pairs in phase t+ 3 are of length O( 4

√
∆),

and thus we deactivate Ω(x) positions. Therefore, the time spent on such chunks and long phrases
in all phases sums to O(n). The remaining chunks and long phrases contribute O( 4

√
∆) to the

total time, and there are O(m/
√

∆) of them, which adds up to O(m/ 4
√

∆). In every phase, this is
O(n/ 4

√
∆), so O(n) overall by Corollary 3.

5 Computing Runs

Now we adapt the algorithm such that it computes all runs. We start with the algorithm from
Sections 3.2 and 4 without the final improvement from Section 4.2. First, note that the key
properties of the ∆-approximate LZ factorisation, in particular Lemmas 6 and 7, also hold for the
computation of runs. This is expressed by the lemmas below.

Lemma 16. Let b1b2 . . . bz be a ∆-approximate LZ factorisation of a string T . For every run
〈s, e, p〉 of length e − s + 1 ≥ 8∆, there is at least one phrase bi with |tail(bi)| ≥ e−s+1

8 ≥ ∆ such
that tail(bi) and the right-hand side T [s+

⌈
e−s+1

2

⌉
..e] of the run intersect.
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Proof. Let ` = e−s+1
2 and note that `

4 ≥ ∆ and e = s + 2` − 1. Assume that all tails that

intersect T [s + d`e ..e] are of length less than `
4 , then the respective phrases of these tails are of

length at most `
4 + ∆ − 1 ≤ `

2 − 1 (because each head is of length less than ∆). This means that

T [s+ d`e ..e] (of length b`c) intersects at least
⌈
b`c /( `2 − 1)

⌉
≥ 3 phrases (the inequality holds for

` ≥ 4, which is implied by ∆ ≥ 1). Thus there is some phrase bi = T [x..y] properly contained
in T [s + d`e ..e], formally s + d`e < x ≤ y < e. However, this contradicts the definition of the
∆-approximate LZ factorisation because T [x..e + 1] is the prefix of a standard LZ phrase (due to
T [x..e] = T [x− p..e− p]). The contradiction implies that T [s+ d`e ..e] intersects a tail of length at
least `

4 .

Before we show how to algorithmically apply Lemma 16, we need to explain how Lemma 1 extends
to computing runs, and then how this implies that the approach of Main and Lorentz [61] easily
extends to computing all runs. We do not claim this to be a new result, but the original paper only
talks about finding a representation of all squares, and we need to find runs, and hence include a
description for completeness.

Lemma 17. Given two strings x and y over a general alphabet, we can compute all runs in xy
that include either the last character of x or the first character of y using O(|x| + |y|) time and
comparisons.

Proof. Consider a run 〈s, e, p〉 in t = xy that includes either the last character of x or the first
character of y, meaning that s ≤ |x|+ 1 and e ≥ |x|. Let ` = b e−s+1

2 c ≥ p. We separately compute
all runs with s + ` ≤ |x| + 1 and s + ` > |x| + 1. Below we describe the former, and the latter is
symmetric.

Due to s + ` ≤ |x| + 1, the length-p substring x[|x| − p + 1.. |x|] is fully within the run. This
suggests the following strategy to generate all runs with s+` ≤ |x|+1. We iterate over the possible
values of p = 1, 2, . . . , |x|. For a given p, we calculate the length of the longest common prefix of
x[|x| − p+ 1.. |x|]y and y, denoted pref, and the length of the longest common suffix of x[1.. |x| − p]
and x, denoted suf. It is easy to see that t[|x| − p + 1 − suf.. |x| + pref] is a lengthwise maximal
p-periodic substring, and its length is `′ = p+ suf + pref. If pref + suf ≥ p and s+ b`′/2c ≤ |x|+ 1,
then we report the substring as a run. (The latter condition ensures that each run gets reported
by exactly one of the two symmetric cases.)

We use a prefix table to compute the longest common prefixes. For a given string, this table
contains at position i the length of the longest substring starting at position i that is also a prefix
of the string. For computing the values pref, we use the prefix table of y$xy (where $ is a new
character that does not match any character in x nor y). Similarly, for computing the values suf, we
use the prefix table of the reversal of a new string x$x. The tables can be computed in O(|x|+ |y|)
time and comparisons (see, e.g., computation of table lppattern in [61]). Then, each value of p can
be checked in constant time.

Lemma 18. Computing all runs in a length-n string over a general unordered alphabet can be
implemented in O(n log n) time and comparisons.

Proof. Let the input string be T [1..n]. We apply divide-and-conquer. Let x = T [1..bn/2c] and
y = T [bn/2c + 1..n]. First, we recursively compute all runs in x and y. Of the reported runs, we
filter out all the ones that contain either the last character of x or the first character of y, which
takes O(|x| + |y|) time. In this way, if some reported run is a run with respect to x (or y), but
not with respect to xy, then it will be filtered out. We have generated all runs except for the ones
that contain the last character of x or the first character of y (or both). Thus we simply invoke
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Lemma 17 on xy, which will output exactly the missing runs in O(|x|+ |y|) time and comparisons.
There are O(log n) levels of recursion, and each level takes O(n) time and comparisons in total.

Lemma 19. Let T = b1b2 . . . bz be a ∆-approximate LZ factorisation, and χ =
∑
|tail(bi)|≥∆ |tail (bi)|.

We can compute in O (χ+ z) time and O (χ) comparisons a multiset R of size O(χ) of runs with
the property that a run T [s..e] is possibly not in R only if e − s + 1 < 8∆ or there is some tail
tail(bi) = T [a2..a3] with a2 < s and e < a3.

Proof. Let n = |T |. We consider each phrase bi = T [a1..a3] with head(bi) = T [a1..a2 − 1] and
tail(bi) = T [a2..a3] separately. Let k = |tail(bi)|. If k ≥ ∆, we apply Lemma 17 to x1 = T [a2 −
8k..a2−1] and y1 = T [a2..a3 +4k], as well as x2 = T [a2−8k..a3−1] and y2 = T [a3..a3 +4k] trimmed
to T [1..n]. This takes O(|tail(bi)|) time and comparisons and reports O(|tail(bi)|) runs with respect
to x1y1 = x2y2 = T [a2 − 8k..a3 + 4k] (trimmed to T [1..n]). Of these runs, we filter out the ones
that contain any of the positions a2 − 8k (only if a2 − 8k > 1) and a3 + 4k (only if a3 + 4k < n),
which takes O(|tail(bi)|) time. This way, each reported run is not only a run with respect to x1y1,
but also a run with respect to T . In total, we report O(χ) runs (including possible duplicates) and
spend O (χ) time and comparisons when applying Lemma 17. Additional O(z) time is needed to
check if |tail(bi)| ≥ ∆ for each phrase.

Now we show that the described strategy computes all runs of length at least 8∆, except for
the ones that are properly contained in a tail. Let 〈s, e, p〉 be a run of length 2`, where ` ≥ 4∆ is a
multiple of 1

2 . Due to Lemma 16, the right-hand side T [s+ d`e ..e] of this run intersects some tail

tail(bi) = T [a2..a3] of length k = |tail(bi)| ≥ `
4 ≥ ∆. Due to the intersection, we have a2 ≤ e and

a3 ≥ s+ d`e. Thus, when processing bi and applying Lemma 17, the starting position of x1 and x2

satisfies a2−8k ≤ e−8 `4 < s, while the end position of y1 and y2 satisfies a3 +4k ≥ s+d`e+4 `4 > e.
Therefore, the run is contained in the fragment T [a2−8k..a3+4k] (trimmed to T [1..n]) corresponding
to x1y1 and x2y2, and the run does not contain positions a2 − 8k and a3 + 4k. If s ≤ a2 ≤ e, we
find the run when applying Lemma 17 to x1 and y1. If s ≤ a3 ≤ e, we find the run when applying
Lemma 17 to x2 and y2. Otherwise, T [s..e] is entirely contained in T [a2 + 1..a3 − 1] and we do not
have to report the run.

Now we describe how to compute all runs using O(n log σ) comparisons and O(n log σ+n log∗ n)

time. We again use the sequence σt = 22dlog logne−t
, for t = 0, 1, . . . , dlog logne. We observe that

σt−1 = (σt)
2, and proceed in phases corresponding to the values of t. In the tth phase we aim to

compute runs of length at least σt and less than (σt)
2. We stress that this condition depends on

the length of the run and not on its period. We partition the whole T [1..n] into blocks of length
(σt)

2, and denote the kth block by Bk. A run of length less than (σt)
2 is fully contained within

some two consecutive blocks BiBi+1, and there is always a pair of consecutive blocks such that the
run contains neither the first nor the last position of the pair (unless the first position is T [1] or
the last position is T [n] respectively). Hence we consider each pair B1B2, B2B3, and so on. We
first apply Lemma 13 with ∆ = σt/8 and σ̃ = (σt)

1/4/ log(σt) to find an (σt/8)-approximate LZ
factorisation of the corresponding fragment of T [1..n], and then use Lemma 19 to compute all runs
of length at least σt, apart from possibly the ones that are properly contained in a tail. Of the
computed runs, we discard the ones that contain the first or last position of the block pair (unless
the first position is T [1] or the last position is T [n] respectively). This way, each reported run is
a run not only with respect to the block pair, but with respect to the entire T [1..n]. If we do not
report some run of length at least σt and less than (σt)

2 in this way, then it is properly contained
in one of the tails.

We cannot always afford to apply Lemmas 13 and 19 to all block pairs. Thus, we have to
deactivate some of the blocks. During the current phase t, for each tail T [s..e] of length at least ∆,
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we deactivate all block pairs in phase t+ 3 that are contained in T [s+ 1..e− 1]. By similar logic as
in Section 3.2, if a tail contributes e− s+ 1 comparisons and time to the application of Lemma 19,
then it permanently deactivates Ω(e − s + 1) positions of the string, and thus the total time and
comparisons needed for all invocations of Lemmas 13 and 19 are bounded by O(n) (apart from the
additional O(n log∗ n) total time for Lemma 13). Whenever we apply Lemma 13, we add all the
tails of length at least ∆ to a list L, where each tail is annotated with the position of its previous
occurrence. After the algorithm terminates, L contains all sufficiently long tails from all phases.
We have already shown that the total time needed for Lemma 19 is bounded by O(n), and thus
the total length of the tails in L is at most O(n).

If any of the calls to Lemma 13 in the current phase detects that σ > σ̃, or if σ̃ < 256, we
immediately switch to applying Lemma 18 on every pair of blocks BiBi+1 of the current phase,
which takes O(n log σ) time (because the length of a block pair is polynomial in σ̃). Again, after
applying Lemma 13 to BiBi+1, we discard all runs that contain the first or last position of BiBi+1

(unless the first position is T [1] or the last position is T [n], respectively). After this procedure
terminates, we have computed all runs, except for possibly some of the runs that were properly
contained in a tail in list L. We may have reported some duplicate runs, which we filter out
as follows. The number of runs reported so far is r = O(n log σ)4. We sort them in additional
O(n+ r) = O(n log σ) time, e.g., by using radix sort, and remove duplicates. The running time so
far is O(n log σ).

5.1 Copying Runs From Previous Occurrences

Lastly, we have to compute the runs that were properly contained in a tail in L. Consider such a
run 〈rs, re, p〉, and let T [s..e] be a tail in L with s < rs and re < e. If multiple tails match this
criterion, let T [s..e] be the one that maximizes e. In L, we annotated T [s..e] with its previous
occurrence T [s − d..e − d]. Note that 〈rs − d, re − d, p〉 is also a run. Thus, if we compute the
runs in an appropriate order, we can simply copy the missing runs from their respective previous
occurrences. For this sake, we annotate each position i ∈ [1, n] with:

• a list of all the runs 〈i, e, p〉 that we already computed, arranged in increasing order of end
position e. We already sorted the runs for duplicate elimination, and can annotate all position
in O(n) time.

• a pair (e∗, d∗), where e∗ = d∗ = 0 if there is no tail T [s..e] such that s < i < e. Otherwise,
among all tails T [s..e] with s < i < e, we choose the one that maximizes e. Let T [s−d..e−d] be
its previous occurrence, then we use e∗ = e and d∗ = d. As explained earlier, the total length
of all tails in L is O(n), and thus we can simply scan each tail and update the annotation
pair of each contained position whenever necessary.

Observe that, if a position is annotated with (0, 0), then none of the runs starting at position i
is fully contained in a tail, and thus we have already annotated position i with the complete list of
the runs starting at i. Now we process the positions i ∈ [1, n] one at a time and in increasing order.
We inductively assume that, at the time at which we process i, we have already annotated each
j < i with the complete list of runs starting at j. Hence our goal is to complete the list of i such
that it contains all runs starting at i. If i is annotated with (0, 0), then the list is already complete.
Otherwise, i is annotated with (e, d), every missing run 〈i, er, p〉 satisfies er < e, and the annotation
list of i−d already contains the run 〈i− d, er − d, p〉 (due to T [i−1..er+1] = T [i−d−1..er−d+1]

4a more careful analysis would reveal that it is O(n), but this is not necessary for the proof
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and the inductive assumption). For each run 〈i− d, re − d, p〉 in the annotation list of position
i − d, we insert the run 〈i, er, p〉 into the annotation list of i. We perform this step in a merging
fashion, starting with the shortest runs of both lists and zipping them together. As soon as we are
about to insert a run 〈i, er, p〉 with er ≥ e, we do not insert it and abort. Thus, the time needed
for processing i is linear in the number of runs starting at position i. By the runs theorem [8], the
total number of runs is less than n, making the total time for this step O(n).

Apart from the new steps in Section 5.1, the complexity analysis works exactly like in Section 3.2.
Hence we have shown:

Theorem 5.1. Computing all runs in a length-n string that contains σ distinct symbols from a
general unordered alphabet can be implemented in O(n log σ) comparisons and O(n log σ+n log∗ n)
time.

5.2 Final Improvement for Computing Runs

The goal is now to adapt the final algorithm to detect all runs. We can no longer stop as soon as
we detect a square, and we cannot simply deactivate pairs of blocks that occur earlier. However,
Theorem 2.2 is actually capable of reporting all runs in T [i·τ..i·τ+`i) and T [(i+1)·τ−ri..(i+1)·τ)
in O(`i+ri) time, and we do not need to terminate the algorithm if these fragments are not square-
free. Thus, we can indeed deactivate any block pair fully contained in T [i · τ..i · τ + `i) and
T [(i + 1) · τ − ri..(i + 1) · τ). Next, we also deactivate block pairs fully contained in the longest
prefix of T [ij + τ..ij+1 + τ) equal to T [ij′ + τ..ij′+1 + τ), for some j′ < j. Denoting the length of
this prefix by `, we treat T [ij + τ..ij + `) as a tail and add it to the list L (annotated with ij′). The
total length of all fragments added to L is still O(n).

Theorem 5.2. Computing all runs in a length-n string that contains σ distinct symbols from a
general unordered alphabet can be implemented in O(n log σ) comparisons and O(n log σ) time.
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