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Abstract

In this article, we show that the algorithm of maintaining expander decompositions in graphs
undergoing edge deletions directly by removing sparse cuts repeatedly can be made efficient.

Formally, for an m-edge undirected graph G, we say a cut (S, S) is φ-sparse if |EG(S, S)| <
φ · min{volG(S), volG(S)}. A φ-expander decomposition of G is a partition of V into sets
X1, X2, . . . , Xk such that each cluster G[Xi] contains no φ-sparse cut (meaning it is a φ-expander)
with Õ(φm) edges crossing between clusters. A natural way to compute a φ-expander decompo-
sition is to decompose clusters by φ-sparse cuts until no such cut is contained in any cluster. We
show that even in graphs undergoing edge deletions, a slight relaxation of this meta-algorithm
can be implemented efficiently with amortized update time mo(1)/φ2.

Our approach naturally extends to maintaining directed φ-expander decompositions and
φ-expander hierarchies and thus gives a unifying framework while having simpler proofs than
previous state-of-the-art work. In all settings, our algorithm matches the run-times of previous
algorithms up to subpolynomial factors. Moreover, our algorithm provides stronger guarantees
for φ-expander decompositions. For example, for graphs undergoing edge deletions, our approach
is the first to maintain a dynamic expander decomposition where each updated decomposition is
a refinement of the previous decomposition, and our approach is the first to guarantee a sublinear
φm1+o(1) bound on the total number of edges that cross between clusters across the entire sequence
of dynamic updates. Our techniques also give by far the simplest, deterministic algorithms
for maintaining Strongly-Connected Components (SCCs) in directed graphs undergoing edge
deletions, and for maintaining connectivity in undirected fully-dynamic graphs, both matching
the current state-of-the art run-times up to subpolynomial factors.

∗The research leading to these results has received funding from the grant “Algorithms and complexity for
high-accuracy flows and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation.
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1 Introduction
During the last two decades, expanders and expander decompositions have been central to the
enormous progress on fundamental graph problems.

In static graphs expander decompositions were a fundamental tool to obtain the first near-linear
time Laplacian solvers [ST04] and were used in many recent algorithms for maximum flow and min-
cost flow problems [KLOS14, vdBLN+20, vdBLL+21, BGS22]. This, ultimately, led to an almost-
linear time max flow and min-cost flow algorithm [CKL+22] which crucially relies on techniques
to maintain expanders undergoing edge deletions. Further, expanders have been central to all
deterministic almost-linear time global min-cut algorithms for undirected graphs [KT18, Sar21, Li21],
to compute short-cycle decompositions [CGP+20, PY19, LSY19], to find min-cut preserving vertex
sparsifiers [CDK+21, Liu20], and have found many, many more applications.

In dynamic graphs, i.e. graphs that are undergoing edge insertions and deletions over time,
expanders played an equally important role in recent years. There, they have been behind new worst-
case update time and derandomization results in dynamic connectivity [WN17, NS17, NSWN17,
CGL+20], strongly-connected components [BGS20], single-source shortest paths [CK19, BGS20,
CS21, Chu21, BGS22], approximate (s, t)-max-flow and min-cut algorithms [GRST21], and sparsifiers
against adaptive adversaries [BBG+22]. They were also a key ingredient in the first subpolynomial
update time c-edge connectivity algorithm [JS22].

Given the enormous impact that expander techniques have had on the current state-of-the-art of
graph algorithms, we therefore believe that it is important to further our understanding of expander
maintenance. In this article, we give a new approach that goes well beyond previous techniques
and that we believe is simple and accessible, works well in many settings (in directed graphs or
graphs undergoing vertex splits, and so on), and even obtains stronger properties than previous
algorithms. Concretely, our approach is the first to maintain an expander decomposition where
each updated decomposition is a refinement of the previous one, and the first to achieve a sublinear
bound φm1+o(1) on the total number of edges that cross between partitions summed across the
entire sequence of updates. We also show various interesting applications of our new techniques for
many of the problems mentioned above, leading to simpler algorithms overall.

1.1 Expanders and Expander Decompositions

To advance the discussion let us formally define expanders. As expanders are objects closely related
to flows, we let G generally denote a directed, unweighted multi-graph. We say G is undirected, if
there is a one-to-one correspondence between edges (u, v) ∈ E and (v, u) ∈ E. We let the degree of
a vertex v in G, denoted by degG(v), be the number of incident edges, i.e. edges with v as tail or
head. We define volG(X) for X ⊆ V to be the sum of degrees, i.e. volG(X) = ∑

v∈X degG(v). We
let E(A,B) for A,B ⊆ V denote the edges in E with tail in A and head in B. We let ←−G denote
the graph G with edges reversed, G[X] be the graph induced by vertices in X, and let G/X be the
graph G after contracting the vertices in X into a single super-vertex. We say that a cut (S, S) is
φ-out-sparse if volG(S) ≤ volG(S) and |E(S, S)| < φ · volG(S) and φ-sparse if it is φ-out-sparse in
G or ←−G . This allows us to define the notion of expanders.

Definition 1.1 (Expander). For any φ ∈ (0, 1), we say that G is a φ(-out)-expander if it has no
φ(-out)-sparse cut.

It is straight-forward to see that for undirected graphs, if G is a φ-out-expander, then it also is
a φ-expander, as we have symmetry in the cuts. Given the definition of an expander, we can define
the following decomposition which is the central object of this article.

1



Definition 1.2 (Expander Decomposition). Given a directed graph G and parameters φ ∈ (0, 1], β ≥
1, we say that a tuple (X , ERest) forms an (β, φ)-expander decomposition of G where X is a partition
of V and ERest ⊆ E if (1) for each X ∈ X , cluster G[X] is a φ-expander, and (2) ERest is of size at
most βφm, and (3) G/{Xi}i \ ERest is a DAG.

We sometimes call β the quality of the expander decomposition. Note that for undirected graphs,
we can extend the above set ERest to always include the anti-parallel edge (u, v) if already (v, u)
in ERest, and thus only loose a factor of 2 in the size of ERest, but then obtain the property that
G/{Xi}i \ ERest is a graph containing only self-loops. Put differently, ERest contains all edges
between clusters.

Definition 1.3 (Undirected Expander Decomposition). Given an undirected graphG and parameters
φ ∈ (0, 1], β ≥ 1, we say that a tuple (X , ERest) forms an (β, φ)-expander decomposition of G where
X is a partition of V and ERest ⊆ E if (1) for each X ∈ X , cluster G[X] is a φ-expander, and (2)
ERest is the set of edges not in any cluster and is of size at most 2βφm.

1.2 A Natural Meta-Algorithm for Expander Decomposition

To obtain a (Õ(1), φ)-expander decomposition, the following meta-algorithm is folklore.

Algorithm 1: MetaAlgorithm(G,φ)
1 X ← {V }; ERest ← ∅.;
2 while there is a φ-out-sparse cut (S,X \ S) in G[X] or ←−G [X] for X ∈ X do
3 Replace X in X by sets S and X \ S.;
4 Add to ERest the smaller set of edges EG[X](S,X \ S) or EG[X](X \ S, S).
5 return (X , ERest)

Let us analyze this meta-algorithm. To see that the while-loop terminates, it suffices to observe
that each while-loop iteration decomposes a set X ∈ X further and thus after n− 1 iterations, each
set in X is a singleton set {v} for some vertex v ∈ V . But G[{v}] forms a trivial φ-expander. Let
us next argue that there are at most Õ(φm) edges in ERest by the end of the algorithm: every time
EG[X](S,X \ S) or EG[X](X \ S, S) is added in Line 4, the number of added edges to ERest is at
most φvolG[X](S) ≤ φvolG(S). But each vertex s ∈ S is contained in a cluster with at most half the
number of edges compared to the cluster G[X]. Thus, each vertex v ∈ V can be at most O(log(m))
times on the smaller side of the sparse cut. This implies our bound. It remains to use the condition
of the while-loop to conclude that the output of the algorithm is indeed a (Õ(1), φ)-expander
decomposition.

Implementing the Meta-Algorithm Efficiently. We point out that since finding a O(1)-
approximate φ-out-sparse cut even in an undirected graph is NP-hard [CKK+06] under the Unique
Games Conjecture, any polynomial time implementation of the meta-algorithm has to resort to
relaxing the algorithm to taking approximate sparsest cuts.

The first implementation of this relaxed meta-algorithm was already given in [KVV04] where
expander decompositions were proposed. However, their straight-forward use of a static procedure
to find a Õ(φ)-sparse cut in each while-loop iteration caused them a Ω(mn) run-time since each
iteration might only find a very unbalanced Õ(φ)-sparse cut, leading to recursion depth of Ω(n) in
the worst case.
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Later, near-linear time algorithms were found that implement the meta-algorithm more loosely.
The first such work in undirected graphs was by Spielman and Teng [ST04] who proposed spectral
local methods to locate balanced O(

√
φ)-sparse cuts which allowed them to obtain near-expanders

(a weaker notion of expanders).
The framework by Nanongkai, Saranurak and Wulff-Nilsen [WN17, NS17, NSWN17] finally gave

the first efficient implementation of the meta-algorithm that only used (relatively) balanced no(1)φ-
sparse cuts, resulting in total time m1+o(1) to compute an expander decomposition in undirected
graphs. A key ingredient in their work was the adaption of flow based techniques to obtain improved
approximation guarantees over the framework of Spielman and Teng. These flow techniques were
in turn pioneered in [KRV09, Pen16, OZ14]. The framework in [BGS20] further extended this
technique to directed graphs with similar guarantees (up to subpolynomial factors).

Recently, Saranurak and Wang [SW19] also gave an algorithm to compute (Õ(1), φ)-expander
decompositions in undirected graphs in time Õ(m/φ) which improves on the above runtime for the
important case where φ = Ω̃(1). The algorithm can be seen as an even further refinement of the flow
based techniques in [WN17, NS17, NSWN17] obtaining almost optimal approximation guarantees
and run-time. We point out however that this algorithm relaxes the above meta-algorithm even
further by also using non-sparse cuts when convenient.

The Meta-Algorithm for Dynamic Graphs. Interestingly, the meta-algorithm is also natural
for graphs undergoing edge deletions. More precisely, a natural way to extend the meta-algorithm is
to run its while-loop after each edge deletion on the clusters given from before the deletion. The
same analysis from before can now be made to conclude that even after m deletions, the maximum
number of edges to ever join the set ERest (which is now a monotonically increasing set) is at most
Õ(φm). In fact, the above analysis even holds for graphs G undergoing Õ(m) edge deletions, vertex
splits and self-loop insertions.

The main contribution of this article is to show that the meta-algorithm can even be implemented
efficiently for graphs undergoing edge deletions, vertex splits and self-loop insertions (although at
the additional cost of mo(1) in the sparsest cut approximation). This starkly differs from previous
algorithms to maintain dynamic expander decompositions [HRW20, NS17, NSWN17, WN17, BGS20,
CGL+20, GRST21] which all take non-sparse cuts and have to maintain ERest as a fully-dynamic set
to retain reasonable size where ERest has to undergo up to Õ(m) total changes. This strengthening
of properties on the expander decomposition then allows us to give a unified theorem that combines
various previous results while losing at most subpolynomial factors in quality and run-time of the
algorithm. We give a formal statement of our contribution in the next section and an overview of
techniques in Section 1.4.

1.3 Our Contributions

We summarize our main result in the Theorem below where the Theorem works for both directed
and undirected graphs even though the definitions of expander decompositions differ slightly in
these settings.

Theorem 1.4. [Randomized Dynamic Expander Decomposition] Given an m-edge graph G under-
going a sequence of Õ(m) updates consisting of edge deletions, vertex splits and self-loop insertions,
parameters φ ∈ (0, 1) and 1 ≤ Lmax = O(

√
log logm).

Then, we can maintain a (γ, φ/γ)-expander decomposition X for γ = (log(m))4O(Lmax) with the
properties that at any stage (1) the current partition X is a refinement of all its earlier versions,
and (2) the set ERest is a super-set of all its earlier versions. The algorithm implements the
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meta-algorithm in Algorithm 1 and takes total time Õ(m1+1/Lmaxγ/φ2) and succeeds with high
probability.

In the theorem above, the algorithm works against an adaptive adversary, i.e. the adversary can
design the update sequence to G on-the-go and based on the previous output. Theorem 1.4 can
also be derandomized by replacing a randomized subroutine with a deterministic counterpart (as
was presented in [BGS20]). This comes however at the cost of increasing γ slightly. Still, for some
appropriate choice of Lmax, the algorithm maintains a (mo(1), φ/mo(1))-expander decomposition in
time m1+o(1)/φ2. If vertex splits are disallowed from the update sequence, then the runtime can be
improved to m1+o(1)/φ+mo(1)t/φ2 where t is the number of updates.

We point out that this matches previous state-of-the-art algorithms [HRW20, WN17, NS17,
NSWN17, SW19, CGL+20, BGS20] to maintain φ-expander decompositions up to a subpolynomial
factor in quality and run-time in every setting (i.e. even for the special case of allowing randomization
and considering only undirected, simple graphs undergoing only edge deletions).

Interestingly, φ-expander hierarchies as introduced in [GRST21] can also be maintained straight-
forwardly using the Theorem above (see Application #2 in Section 1.5).

1.4 Techniques

We now give an overview of our techniques. To simplify matters, we present our new algorithm only
for directed graphs G undergoing edge deletions.

High-level Approach. The key ingredient to our algorithm is the maintenance of a witness
graph W for each expander graph G. Intuitively, W is a graph that is easier to work with and that
can be used as an explicit certificate that G is an expander.

When G undergoes a set of edge deletions D, it turns out that we can leverage our knowledge of
W to detect potential sparse cuts in G \D. Moreover, setting up flow problems carefully, we can
then check if one of the potential sparse cuts is indeed a real sparse cut. If so, we return the sparse
cut. Otherwise, we can find a new witness graph W ′.

In contrast to our algorithm, previous approaches to expander maintenance did not use witnesses,
but rather tried to locate sparse cuts in G directly. This however came at the loss of not being
able to locate the real sparse cuts but rather previous algorithms could only identify a subgraph
(G \D)[X] that is still expander (for X being rather large) but could not make more fine-grained
statements.

In the next paragraphs, we define what a witness graph is, then explain how to maintain witnesses
of φ-expanders that are affected by a large number of deletions and finally sketch how to use such
witness maintenance to achieve Theorem 1.4.

Expanders via Witness Graphs. It is well-known in the literature that given a φ-expander G,
one can find a ψ-expander W over the same vertex set as G such that ψ = Ω(1/ log2(m)) and degree
vectors degW ≈ degG, along with a routing ΠW 7→G such that for each edge e = (u, v) ∈ E(W ),
ΠW 7→G(e) maps to a u to v path in G; with the additional property that ΠW 7→G has congestion at
most 1

φψ meaning that no edge in G appears on more than 1
φψ such paths. In fact, for G being

φ-expander, the algorithms in [KRV09, Lou10] compute such a witness W and routing ΠW 7→G in
time Õ(m/φ), w.h.p. even in directed graphs. We point out that W is also a directed graph.

Given such a graph W and routing ΠW 7→G, it is straight-forward to prove that G must be a
Ω(φψ2) = Ω̃(φ)-expander (see Claim 2.2). Therefore W is often called the witness graph.
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Maintaining the Witness Graph of a φ-Expander. In our approach, we are maintaining a
witness graph for each expander graph. The main ingredient towards maintaining the witness graph,
is to handle a (large) batch of updates to the expander graph and recover a witness. We call the
act of handling these deletions one-shot pruning. We give the following Informal Theorem which is
made formal in Section 3.

Informal Theorem 1.5. Given a directed graph G, a ψ-expander witness W (where ψ as above)
over the same vertex set with routing ΠW 7→G of congestion 1

φψ , a set of edges D ⊆ E with |D| � φ|E|,
degG\D(v) ≈ degG(v) for all v ∈ V .

Then there is an algorithm PruneOrRepair that either

• returns a Ω̃(φ)-sparse cut (S, V \ S) in G \D, or

• returns a new Ω(ψ3)-expander W ′ and embedding ΠW ′ 7→G\D with congestion Õ( 1
φ) (and

therefore certifies that G \D is still Ω̃(φ)-expander).

The algorithm runs in time Õ(|D|/φ2).

Here, the rather strange-looking assumption that degG\D(v) ≈ degG(v) is purely to simplify the
presentation below and can be removed entirely.

Our approach to maintaining the witness is straightforward: when an edge eG is added to D
(and hence deleted in G \D), we remove each edge eW of W that was routed through the deleted
edge eG in the embedding ΠW 7→G. To repair the witness, we will attempt to add new edges in W ,
leaving the endpoints of each deleted edge eW . The heads (starting point) of these new edges will
be at the endpoints of edges removed from W , but the tails (endpoints) may be at different nodes.
We call the repaired witness W ′. For technical reasons, we attempt to add a few more edges to the
new witness W ′ than we deleted from the old witness W . However, before adding these edges, we
first want to make sure we can embed them into the updated graph G without too much additional
congestion. To certify that the new edges of W ′ are embeddable into with little congestion, we
introduce a flow problem whose solution will either let us embed these new witness edges into G, or
find a sparse cut in G.

Importantly, we will be able to use a local algorithm to solve the flow problem on G, i.e. we do
not need to explore the entire graph, but can instead run an algorithm that only visits a small part
of G in the neighborhood of D. This is essential to establishing our running time.

Cuts or Witness Maintenance via Flow. We set up a flow problem that lets us implement
the witness repair or one-shot pruning described above. The flow problem asks us to route flow
in the graph G. The flow demands we seek to route are guided by the deletions to G, and chosen
to help us add edges to repair our witness W whenever witness edges embedded into G have been
impacted by a deletion in G.

In the following paragraphs, we set parameters to match, up to polylogarithmic factors, the
parameters in the rest of the article but often simplify by omitting constants since we are relying on
assumptions that are not properly quantified in the overview (for example that degG\D(v) ≈ degG(v)).
We do so to keep the overview intuitive and to avoid overly technical details.

Consider the following flow algorithm on the graph G \D. Let ∆ ∈ NV be the amount of flow
that has to be routed away from vertices in V (i.e. the source vector). Initially, we set ∆ to be the
all-zero vector. Then for each e = (u, v) ∈ D, we find the edges e′ = (x, y) ∈ Π−1

W 7→G(D), i.e. the
edges e′ such that e ∈ ΠW 7→G(e′), and place 8/ψ units of demand at both vertices x and y. The
figure below illustrates such a case where in the left graph, the embedding path ΠW 7→G(e′) is drawn
and can be seen to use the edge (u, v) = e ∈ D.
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We then set-up a sink vector ∇ ∈ NV that we set equal to the degree vector degG\D of the graph
G \D. Finally, we define a capacity vector c = 1

ψ2φ ·1 ∈ RE\D and then try to find a flow f ∈ NE\D
that sends the maximum amount of source flow to the sinks while respecting the capacities. This
can be done using a max-flow algorithm (we use a modification of the blocking flow algorithm which
provides similar guarantees as used below). We use some basic combinatorial properties of the
blocking flow algorithm and our flow problem to ensure the algorithm runs locally, visiting only a
small neighborhood around D. We point out that by the assumption |D| � φ|E|, we make sure
that the flow problem is a diffusion problem, i.e. that ‖∇‖1 ≥ ‖∆‖1.

Finding a Sparse Cut (If Source Flow is not Routed). If f cannot route all the flow away
from the sources, or more formally, if there is a vertex v with [B>f + ∆](v) > ∇(v) where B is
the incident matrix of G \D, then we claim the algorithm can extract a Õ(φ)-sparse cut.

To see this, let (S, S) be the min-cut in the flow network. By the max-flow min-cut theorem, we
have that the total capacity of edges from S to S must be smaller than the total source demand ∆
on S:

c(EG\D(S, S)) < ∆(S).

By our choice of capacities, this immediately gives that:

|EG\D(S, S)| < ψ2φ∆(S) = Õ(φ∆(S)).

Thus, if we can show that ∆(S) ≤ Õ(volG(S)), then we can conclude that (S, S) is indeed a
Õ(φ)-sparse cut (here we implicitly assumed volG(S) ≤ volG(S)).

To this end, we recall that degG\D(v) ≈ degG(v) ≈ degW (v) for all vertices v ∈ V . But note
that the way we constructed ∆(v) is by placing 8/ψ = Õ(1) units on v for each edge incident to v
in W that was removed in our procedure. But since degW (v) ≈ degG(v), we thus get our desired
bound.

Repairing the Witness (If Source Flow is Routed). IfB>f+∆ ≤∇, then the algorithm can
use f to repair the witnessW to obtain a new witnessW ′. Therefore, it initializesW ′ = W \Π−1(D).
Then, it runs a path-decomposition algorithm on f and for each x to y path in the decomposition,
we add a new edge (x, y) to W ′.

Note that this also induces a natural routing ΠW ′ 7→G by routing along the underlying flow path
for each new edge in W ′ \W . It is further not hard to observe that the congestion of ΠW ′ 7→G is at
most the congestion of ΠW 7→G plus an additive term of 1

ψ2φ which stems from the capacity in the
flow problem which upper bounds the number of flow paths routed through the edge.

To verify that degG\D ≈ degW ′ , we can simply use our assumption that degG\D ≈ degG and
the fact that for each edge incident to vertex v in W that was in Π−1

W 7→G(D), we place Θ̃(1) units of
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source flow which then translates to new edges with v as its tail (since we can route f) while on the
other hand, by setting ∇ = degG\D, we ensure that there are at most degG\D(v) new edges with
head in v in W ′.

Finally, we prove that for each cut (S, S) where volW ′(S) ≤ volW ′(S), we have |EW ′(S, S)| =
Ω( 1

ψ3 )volW ′(S). We point out that this will only show that W ′ is a Ω( 1
ψ )-out-expander instead of

showing that it is an expander. However, by applying the same algorithm to the graphs G and W ′
with edges reversed, we can recover and show that either a sparse cuts from this procedure is found
or a graph W ′′ is found that is both out- and in-expander and therefore expander.

We prove the claim on the expansion of (S, S) by a simple case analysis (see Figure 1 for an
illustration of this proof):

• If at least half the edge from EW (S, S) are also in EW ′(S, S): then the claim follows immediately
as this implies

|EW ′(S, S)| ≥ 1
2 |EW (S, S)| ≥ ψ

2 volW (S) ≈ ψ

2 volW ′(S).

• Otherwise: then it is not hard to verify that each of the edges that were removed from W
from the cut EW (S, S) adds 8/ψ units of source demand on a vertex in S, and therefore
∆(S) ≥ 4|EW (S, S)|/ψ.
We can now use that |EW (S, S)|/ψ ≥ volW (S) ≈ volG(S) ≈ volG\D(S). Thus, we can upper
bound the amount of flow that S can absorb by ∇(S) = volG\D(S) . |EW (S, S)|/ψ. Since
the flow f was routed, that means that at least |EW (S, S)|/ψ ≈ volW ′(S) units of source
demand on S were routed to vertices in S and subsequently each such unit of flow added one
edge (x, y) where x ∈ S, y ∈ S to W ′.
Thus, we have that |EW ′(S, S)| & ψvolW ′(S).

Figure 1: (a) and (b) show the old witness graph W and the edges in W crossing the cut from S to
S. The red edges are the edges in W that do not appear in W ′. (a) corresponds to the first case
in our proof and shows that if most edges survive, the expansion of W ′ is still sufficient. In the
other case, depicted in (b), each edge in W \W ′ contributes some demand on S (depicted by the
red points). Then, in the graph G \D given in (c), the demand on S has to be routed and since it
exceeds the sink capacity of S, most source flow is routed to vertices in S. Each such flow path
from S to S is then be converted into a new edge in W ′ that crosses the cut.
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From One-Shot Pruning to Expander Decomposition Maintenance via Batching. Fi-
nally, the reader might wonder how to obtain an algorithm to maintain directed expander decompo-
sitions from the above one-shot pruning algorithm. At a high level, our algorithm maintains an
expander decomposition X = {X1, X2, . . . , Xτ} for graph G by invoking one-shot pruning upon
batches of updates. This batching technique was developed in [WN17, NS17, NSWN17] and was
derived from standard techniques in dynamic algorithms.

In order to make our one-shot pruning work efficiently in this setting, we first have to make it
more resilient: a key problem with one-shot pruning in its current form is that it could return a very
small sparse cut (S, S) (i.e. one where volG(S)� volG(S)), then prompting us to recurse on almost
the same problem again since we want to arrive at some S that is indeed expander again. Thus, we
extend our one-shot pruning algorithm to always either output a large sparse cut or certify that
there is no large sparse cut in the witness. The Informal Theorem below makes this more explicit.
It is a parameterized (in R′) version of the Informal Theorem 1.5 where changes are colored blue.

Informal Theorem 1.6. Given a directed graph G, a ψ-expander witness W (where ψ as above)
over the same vertex set with routing ΠW 7→G of congestion 1

φψ , a set of edges D ⊆ E with |D| � φ|E|,
degG\D(v) ≈ degG(v) for all v ∈ V and a parameter R′ ≥ 0.

Then there is an algorithm PruneOrRepair that either

• returns a Ω̃(φ)-sparse cut (S, V \ S) in G \D with min{volG\D(S), volG\D(V \ S)} ≥ R′, or

• returns a new set D′ ⊆ D, a Ω(ψ3)-expander W ′ and embedding ΠW ′ 7→G\(D\D′) with congestion
Õ( 1

φ) (and therefore certifies that G \ (D \D′) is still Ω̃(φ)-expander) such that |D′| ≤ R′.

The algorithm runs in time Õ(|D|/φ2).

Using this refined version of the Informal Theorem, we can now implement the approach laid
out above efficiently by recursing on a witness with no large sparse cuts where the threshold for
being “large” scales in the depth of the recursion level. In our article, we start the recursion at some
large level Lmax + 1 for some appropriately chosen value Lmax = O(

√
log log(m)) and go down in

level with each level of recursion until we reach level 0.

Formal Set-Up of the Batch-Update Framework. For the sake of concreteness, we now
give a more formal description of the algorithm (without specifying all details yet as this is
rather tedious and does not necessarily help intuition). Our algorithm maintains on each level
l = Lmax+1, Lmax, . . . , 0, for each X ∈ X , a witness graphWX,l. We say that a level l is recomputed
whenever WX,l is changed. We additionally maintain the sets DX,l of adversarial deletions since the
last time level l was recomputed, and sets D′X,l to capture adversarial deletions not handled during
recomputation.

Initially, we use a static routine to compute a φ0-expander decomposition and set all witnesses
WX,l to the corresponding witness, and set all sets DX,l and D′X,l to be empty. Throughout, we
maintain the invariant that each graph WX,l is a witness that G[X] ∪DX,l ∪D′X,l is a φl-expander
where we choose φ ≈ φLmax+1 & φLmax & . . . & φ0 ≈ φ and that |DX,l ∪D′X,l| < ml/Lmax . Note that
this implies that WX,0 proves that G[X] is a φ0 ≈ φ-expander as desired. So, if the invariant holds
after each update, we indeed correctly maintain an expander decomposition.

Let us now describe how we process an adversarial edge deletion. For each deletion to G[X],
we add the deleted edge to all sets DX,Lmax+1, DX,Lmax , . . . , DX,0. We then search for the largest l
where our invariant on the size of DX,l ∪D′X,l is violated. Whenever this is the case, we invoke our
Informal Theorem 1.6 on WX,l−1 with the set of edges DX,l ∪D′X,l−1 and parameter R′ = 1

2m
l/Lmax .
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Let us first consider the case that the algorithm never returns a sparse cut. Then, we have that
Informal Theorem 1.6 returns a set D′ and a new witness W ′. We set WX,l to W ′, set DX,l = ∅ and
D′X,l = D′. Then, we recompute in the same way for all lower levels l − 1, l − 2, . . . , 0 where the
invariant is violated. Note that since the witness W ′ is slightly worse in quality than the original
witness W , we need to choose φl to be slightly worse than φl−1. Using the approach above, we
have that for a level l, we only need to recompute the witness roughly every 1

2m
l/Lmax adversarial

deletions. That is since after each recomputation, the set D′X,l is far from violating the size invariant
and DX,l is empty and thus, it takes many adversarial updates (or a higher level update which
happens very, very few times) until it violates the invariant again.

On the other hand, when we find a sparse cut with smaller side of volume Ω̃(ml/Lmax) as promised
by the Informal Theorem for our choice of R′ at level l, we make a lot of progress. In fact, it is not
hard to see that we only pay Õ(m(l+1)/Lmax/φ2) time to find such a sparse cut by using the fact
that the invariant holds for level l + 1.

We refrain from formalizing this approach even further here and refer the interested reader to
Section 4.

Dealing with Vertex Splits. In the rest of this paper, because we deal with vertex splits (and
edge insertions), maintaining the sets DX,l and D′X,l would not capture all update types and we
would need additional sets to capture vertex splits and edge insertions. Also Informal Theorem
1.6 would be difficult to state in a clean way. We therefore introduce rX,l vectors as a handy
representation to unify update types where rX,l lives in NX≥0.

To understand how we use the rX,l vectors, let us first describe what we do in case of a deletion.
Observe that the crucial piece of information about the deletion of an edge (u, v) in the process of
repairing the witness (or finding a cut) is to find the edges (x, y) ∈WX,l that use (u, v), and then
set up a flow problem adding flow to endpoints x and y.

We suggest to store that information directly by adding one unit to each vertex x and y for
each such edge (x, y) to the corresponding vertices in rX,l. Thus, we increase the `1 sum of rX,l by
Õ(1/φ) for each edge deletion. We deal with edge insertions of an edge (u, v) by simply adding one
unit to rX,l in the components u and v. Finally, when splitting a vertex v into v′ and v′′ (where v′′
has smaller volume), then for each edge (x, y) that embeds into an edge that is now incident to v′′,
we add a unit to rX,l to the vertices x and y. The increase in the `1 sum of rX,l is only increased by
Õ(degG(v′′)/φ) by this operation. This processing of updates to update rX,l vectors can be directly
seen in Algorithm 3.

Using this representation, we can write clean statements and unify proofs about various update
types.

A Subtle Issue in Directed Graphs. Finally, when turning to directed graphs, we want to make
the reader aware of a rather subtle issues that makes proofs rather finicky. To overcome the issue
we introduce γX,l vectors for each X ∈ X and level l. The need for these vectors essentially arises
from the following detail: recall that we define a cut (S, S) to be φ-out-sparse iff volG(S) ≤ volG(S)
and |EG(S, S)| < φ · volG(S). But in directed graphs, it turns out to be more useful to detect cuts
(S, S) that are sparse relative to a set of weights that differ slightly from the original vertex degrees
that are used to define volG(S). We specify these weights using a vector γX,l, and denote the weight
of a set S by γX,l(S) (the sum of the weights of vertices in S). We then look for generalized sparse
cuts where γX,l(S) ≤ γX,l(S) and |EG(S, S)| < φ · volG(S). This is because after some deletions
D, we might have that volG(S) ≤ volG(S) but volG\D(S) > volG\D(S). Thus, we would have to
show that |EG(S, S)| < φ · volG(S). While the above asymmetry does not cause any problems in the
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undirected graph problem, it causes problems when we move to directed graphs. This is because we
run one version of the algorithm in Informal Theorem 1.6 to find φ-out-sparse cuts and another to
find φ-in-sparse cuts. Unfortunately, the above batching can cause the algorithms to be invoked on
slightly different sets D′1 and D′2 of previously deleted edges from higher levels. Then, the issue
above can mean that some φ-out-sparse or φ-in-sparse cuts are not detected properly. By using the
γX,l vectors we can keep cuts fixed in direction. For the vectors γX,l, we can use the original degree
vectors in G[X] which allows us to roughly recover the real φ-out and φ-in-sparse cuts as long as
the total amount of volume in G[X] is not changed by a constant fraction due to the deletions D.
This generalizes seamlessly to insertions and vertex splits.

1.5 Applications

Application #1: A Simple Proof of Decremental Strongly-Connected Components.
In the decremental strongly-connected components problem, the algorithm is given a decremental
m-edge graph G, that is a graph that undergoes only edge deletions. The goal is to maintain the
strongly-connected components (SCCs) in the graph G explicitly over the entire update sequence.

The currently best deterministic algorithm for this problem [BGS20] obtains total update time
mn2/3+o(1). Here, we give an extremely simple algorithm that achieves m1+2/3+o(1) total update
time which matches the previous result for very sparse graphs. We note if randomization is allowed
to solve the above problem, then a Õ(m) algorithm is known [BGWN21].

We first introduce the following proposition which was already used by previous algorithms
for the problem (see [CHI+16, BGS20]). We point out that this proposition is obtained by a very
simple and elegant algorithm itself and we encourage the interested reader to consult [Łąc13].

Theorem 1.7 (see [Łąc13]). Consider an algorithm that for a decremental graph G maintains a set
S ⊆ E(G) that is a super-set of its earlier versions at any time and maintains the SCCs in G \ S.
Then, there is an algorithm that maintains the SCCs of G in additional total time Õ(m|S|).

But this means for the graph G, we can pick φ = m−1/3 and maintain an (mo(1),m−1/3−o(1))-
expander decomposition on G. We let S = R and observe that the fact that expanders have no
sparse cuts implies that X are exactly the connected components of G \ S. Further |S| ≤ m2/3+o(1).
The result follows.

Our dynamic expander decomposition always produces refinements over time, and this exactly
matches the requirements of Theorem 1.7, leading to an extremely simple algorithm. In contrast,
because they lacked this guarantee, [BGS20] needed a much more elaborate approach (spanning
over 80 pages): they maintained for each SCC in G \S an almost-expander that was slowly decaying
in size until it had to be reset. To then certify that a single SCC does not break into two pieces, the
algorithm has to root decremental single-source shortest path data structures from the contracted
set of vertices still in the almost-expanders. New vertices in S were created when distances in an
SCC became large which forced sparse cuts. The many moving parts above made this data structure
complicated to describe, analyze and implement.

We believe that the technique of congestion balancing from [BGS20] can be applied to our
framework rather straight-forwardly, yielding a slightly more complicated algorithm, but still vastly
simpler algorithm, with total update time mn2/3+o(1).

Application #2: A Simple Proof of the Expander Hierarchy. We start by defining an
expander hierarchy which were introduced in [GRST21]. We point out that currently there is no
sensible generalization of expander hierarchies to directed graphs, thus we let all graphs G be
undirected in this section.
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We define G[X]τ to be the graph G induced by vertex set X where each vertex v ∈ X receives
an additional number of dτ · |E({v}, V \X)|e self-loops. For a partition X , we denote by G[X ]τ
the union of the graphs G[X]τ for X ∈ X . This allows us to define Boundary-Linked expander
decompositions.

Definition (Undirected Boundary-Linked Expander Decomposition). Given an undirected graph
G and parameters φ, α ∈ (0, 1], β > 0, we say that a tuple (X , R) forms an (α, β, φ)-expander
decomposition of G where X is a partition of V and R ⊆ E if (1) for each X ∈ X , cluster G[X]α/φ
is a φ-expander, and (2) R is the set of edges not in any cluster and is of size at most βφm.

We can derive the following Corollary from Theorem 1.4, our main result.

Theorem 1.8 (Undirected Boundary-Linked Dynamic Expander Decomposition). Consider an
m-edge undirected graph G undergoing a sequence of O(m) updates consisting of edge deletions,
vertex splits and self-loop insertions, parameters φ ∈ (0, 1) and Lmax ∈ N≥1.

Then, we can maintain a (1/γ, γ, φ/γ)-expander decomposition X for γ = (log(m))5O(Lmax)

with the properties that at any stage (1) the current partition X is a refinement of all its earlier
versions, and (2) the set R is a super-set of all its earlier versions. The algorithm takes total time
m1+1/Lmaxγ/φ2 assuming that at most Õ(m) self-loops are inserted over the course of the algorithm
and succeeds with high probability.

Proof sketch. We run the Dynamic Expander Decomposition of Theorem 1.4 on a copy of G which
we denote by H. When G is changed by a dynamic update, we make the same change to H. But
additionally, in H, we add self-loops to vertices, whenever an edge incident on the vertex enters R.
We call these regularizing self-loops.

When a new edge e enters R, for each of its endpoints u, let Ru be the set of edges in R incident
of u, and let su be the number of regularizing self-loops placed on u in so far. If |Ru| · 1

φ > su, we
add additional regularizing self-loops to u until this is no longer the case. Note that adding these
self-loops may cause further changes to the partition, which may in turn cause additional edges
to be added to R, and this may require us to add yet more regularizing self-loops. However, in a
moment, we will argue that this process does not create too many cut edges. First, though, let us
observe that for each X ∈ X , the regularizing self-loops precisely ensures that G[X]

1
φ = H[X] is a

φ
γ -expander with boundary-linkedness parameter α = 1

γ .
Finally, we need to argue that the addition of regularizing self-loops does not mean that we

cut too many edges. The underlying guarantee of Theorem 1.4 ensures that starting with m edges,
after O(m) updates, we cut at most φm edges (i.e. put them into R). However, this implies that
we add most 2φm · 1

φ = 2m regularizing self-loops. Thus, the addition of self-loops does not exceed
our budget, and still leaves us able to receive further O(m) self-loops updates to G, albeit with a
slightly smaller budget.

Next, we define expander hierarchies using terminology inspired by [GRST21] (but slightly
adapted for convenience).

Definition 1.9 (Undirected Dynamic Expander Hierarchy). An (α, β, φ)-expander hierarchy is
recursively defined to consist of levels 0 ≤ i ≤ k where we have graphs Gi where G0 = G and an
(α, β, φ)-expander decomposition Xi of Gi and we define Gi+1 recursively to be the graph G after
contracting the sets in the expander decomposition Xi+1 and removing self-loops, and finally have
that Gk consists of only a single vertex.

Finally, we can prove the main result of this section.
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Theorem 1.10. Consider an m-edge undirected graph G undergoing a sequence of Õ(m) updates
consisting of edge deletions, vertex splits and edge insertions, parameters φ ∈ (0, 1/4γ) and Lmax ∈
N≥1. We can maintain a (1/γ, 2γ, φ/γ)-expander hierarchy with k = log 2γ

φ
(m) + 1 levels with total

update time O(m1+1/Lmaxγ/φ2). The algorithm works against an adaptive adversary and succeeds
with high probability.

Proof sketch. We construct the dynamic expander hierarchy as follows:
We construct the dynamic expander decomposition of Gi at each level using Theorem 1.8. When

a partition gets refined at level i, this corresponds to a vertex in level i+ 1 splitting into two, with
edges resulting between. We can maintain the graph at level i+ 1 by first inserting self-loops on
the vertex corresponding to the vertex which is about to split, and then splitting the vertex while
turning the self-loops into edges between the vertices. For edge insertions to G, we simply add the
inserted edge directly to the set R of edges in between clusters in all graphs Gi where it crosses.
Whenever there are more than (2γβ)im edges in the set R at a graph Gi, we restart the expander
decompositions on graph Gi, Gi+1, . . . , Gk via Theorem 1.8.

By the guarantees of this theorem, using induction on the level i, we can directly show that Gi
has at most (2γφ)im edges initially, and receives at most Õ(m) updates, all of the forms allowed by
Theorem 1.8.

At level k = logγ/φ(m) + 1, we have < 1 edge left, and so the graph must be a single vertex.
The running time for each time we run Theorem 1.8 at level i is O((γφ)im1+1/Lmaxγ/φ2). It is not
hard to verify that at level i, the algorithm in Theorem 1.8 is restarted at most Õ(1/(γφ)i) times.
It remains to sum over the levels to obtain the run-time guarantees.

Application #3: Dynamic Connectivity with Subpolynomial Worst-Case Update/Query
Times. We can use the fact that we can derandomize Theorem 1.10 by using the deterministic
version of Theorem 1.4, and we can turn amortized update times in worst-case update times by
using standard rebuilding techniques (see for example [GRST21]). Again, both changes come at
the cost of increasing the constant γ, however, we can still find a φ = 1/mo(1) � 1/γ such that the
hierarchy runs with initialization time m1+o(1) and then processes each update in time mo(1).

As discovered in [GRST21], dynamic expander hierarchies immediately imply a simple dynamic
connectivity algorithm. Since we have streamlined the implementation of dynamic expander
hierarchies further, this gives an even simpler dynamic connectivity algorithm.

For convenience, we describe this algorithm here: more precisely, we explain how to use the
expander hierarchy to answer connectivity queries: for any two vertices u, v ∈ V , one can travel
upwards in the hierarchy by going from the vertex x in a graph Gi to the vertex y in Gi+1 where x
is in the expander that was contracted to obtain y. One can then compare the vertices that u and
v reach in graph Gk by traveling upwards repeatedly and if they are the same, u and v must be
connected, otherwise they are not connected. The query can be implemented in k = o(log(m)) time.

2 Preliminaries
Graphs. In this article, we deal with directed, unweighted multi-graphs G. We let E(G) denote
the edge set of G and V (G) the vertex set. While technically in multi-graphs G, an edge e ∈ E(G)
cannot be encoded only by its endpoints, we commonly abuse notation and write e = (u, v) to
mean that e is an edge with tail in u and head in v. We let ←−G denote the graph G where edges are
reversed.
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Dynamic Graphs. We consider dynamic graphs G, that is graph G that undergo updates
consisting of edge deletions and vertex splits. In the case of a vertex split of v, the adversary specifies
the edges incident to v that are moved to a new vertex v′ that is split from v. We assume that the
adversary always specifies a vertex split update such that after the update the degree of v′ is at
most the degree of v. Additionally, we allow for self-loop insertions.

Degree and Volume. We define the degree degG(v) of a vertex v ∈ V (G) to be the number of
edges incident to v where a self-loop counts 2 units towards the volume of v. For any subset S ⊆ V ,
we define the volume volG(S) = ∑

v∈S degG(v).

Cuts. When the context is clear, we define for a vertex subset S in graph G, S = V (G) \ S
and let EG(S, S) be the set of edges in E(G) with tail in S and head not in S. Given a vector
r ∈ NV (G)

≥0 , we generalize the notions and say a cut (S, S) where volG(S) + r(S) ≤ volG(S) + r(S)
is (r, φ)-out-sparse if |EG(S, S)|+ r(S) < φ(volG(S) + r(S)) where r(S) = ∑

s∈S r(s). When the
vector r is not given explicitly, we assume r = 0 (where 0 denotes the all-0 vectors) and also say a
cut is φ-out-sparse or φ-in-sparse.

Expander. We say that a graph G and vector r ∈ NV (G)
≥0 form an (r, φ)-out-expander if there is no

(r, φ)-out-sparse cut. We say that G is a (r, φ)-expander if both G and ←−G are (r, φ)-out-expander.

Embedding. Given graphs G and W over the same vertex set. We say that a function ΠW 7→G is
an embedding of W into G, if for each e = (u, v) ∈ E(W ), ΠW 7→G(e) is a u-to-v path in G. We let
the inverse of an embedding, denoted Π−1

W 7→G map any set of edges E′ ⊆ E(G) to the set of edges
in E(W ) whose embedding paths contain an edge in E′. We define the congestion of ΠW 7→G by
cong(ΠW 7→G) = maxe∈E(G) |{e′ ∈ E(W )|e ∈ ΠW 7→G(e′)}|.

Witness. To prove that a graph G is an expander one can compute a well-known expander W
and embed it into G with low congestion. Thus, W is witnessing that G is expander. Here, we
generalize the concept slightly.

Definition 2.1 (R-Witness). Given a graph G, vectors r,γ ∈ NV (G)
≥0 , parameters φ, ψ ∈ (0, 1) and

R ∈ N≥0, we say that a graph W over the same vertex set as G along with an embedding ΠW 7→G of
W into G is an (R,φ, ψ)-out-witness of (G, r) with respect to γ if

1. ‖r‖1 ≤ R, and

2. we have degW (v) + r(v) ∈ [degG(v), 1
ψ degG(v)].

3. for every cut (S, S) with γ(S) ≤ γ(S), we have |EW (S, S)|+ r(S) ≥ ψ(volW (S) + r(S)), and

4. ΠW 7→G has congestion 1
ψφ , and

We say that W is an (R,φ, ψ)-witness of (G, r) with respect to γ if W it is an (R,φ, ψ)-out-witness
of G w.r.t. γ and ←−W is an (R,φ, ψ)-out-witness of ←−G w.r.t. γ.

Claim 2.2. Given a graph G, if there exists a (R,φ, ψ)-witness W for (G,0) with respect to any γ,
then G is a ψ2φ-expander.
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Proof. Given any cut (S, S) where volG(S) ≤ volG(S). By Definition 2.1, Properties 3 and 2, we
either have γ(S) ≤ γ(S) which implies min{|EW (S, S)|, |EW (S, S)|} ≥ ψvolW (S) ≥ ψvolG(S); or
we have that γ(S) > γ(S) which implies min{|EW (S, S)|, |EW (S, S)|} ≥ ψvolW (S) ≥ ψvolG(S) ≥
ψvolG(S).

That is, in either case, we can conclude min{|EW (S, S)|, |EW (S, S)|} ≥ ψvolG(S). It remains to
use Property Item 4 to argue that |EW (S, S)| ≤ 1

φψ |EG(S, S)| since each edge in G is used on at
most 1

φψ embedding paths of ΠW 7→G. The same argument holds for |EW (S, S)| which completes the
proof.

We use the following result regarding the computation of witnesses. We use ψCMG throughout
the rest of the paper for a fixed input graph.

Theorem 2.3 (see [KRV09, Lou10, CGL+20, BGS20]). There is a randomized algorithm CutOrEmbed(G,φ,R)
that given an m-edge graph G and parameters φ ∈ (0, 1), 0 ≤ R outputs either

1. a set S ⊆ V where R ≤ volG(S) with |EG(S, S)| < φvolG(S), or

2. a vector r ∈ NV (G)
≥0 , and a graph W and embedding ΠW 7→G that form an (R,φ, ψCMG)-witness

of (G, r) w.r.t. γ = degG where ψCMG = Ω(1/ log2(m)).

The algorithm runs in time Õ(m/φ) and succeeds with probability at least 1− n−c for any pre-fixed
constant c > 0.

Flow. A flow-problem I = (G, c,∆,∇) consists of a graph G, with capacities c ∈ NE(G)
≥0 , and

source and sink functions ∆,∇ ∈ NE(V )
≥0 . Letting B be the incidence matrix of G. Then a vector

f ∈ NE(G)
≥0 is a pre-flow if 0 ≤ f ≤ c (entry-wise). Given a pre-flow f for a flow problem I as above,

we define the flow absorption vector absf = min{B>f + ∆,∇} to be the entry-wise minimum.
We define the excess flow exf = B>f + ∆− absf ,. We say that f is an R-flow if it is a pre-flow
and additionally ‖exf‖1 ≤ R. Given a pre-flow f , we define the residual graph Gf to be the graph
obtained by adding for each edge e = (u, v) ∈ E(G), an edge −→e = (u, v) to Gf of residual capacity
c(e)− f(e) and an edge ←−e = (v, u) of capacity f(e). We let cf be the residual capacities on the
residual graph.

Misc. We use [k] to denote the set {0, 1, . . . , k}.

3 One-Shot Pruning
The main result of this section is the following Lemma which either outputs a (large) sparse cut,
or outputs a better witness. Note that the Lemma inputs a witness W but can only output an
out-witness W ′ (we can remedy this by running the algorithm on the same parameters but with G
replaced by ←−G).

Lemma 3.1. Given an n-vertex, m-edge graph G, vectors r,γ ∈ NV (G)
≥0 , an (R,φ, ψ)-witness W of

(G, r) w.r.t. γ, for ψ ≤ ψCMG/8, and a threshold R′ ∈ R≥0 such that R′ ≤ R ≤ ψm/8. Then, the
procedure PruneOrRepair(G, r,W,ΠW 7→G, φ, ψ,R

′) given in Algorithm 2 either outputs

1. a set S ⊆ V (G) with R′ ≤ volG(S) + r(S) ≤ 8R/ψ where |EG(S, S)| < φ(volG(S) + r(S)), or
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2. a new vector r′ ∈ NV (G)
≥0 and a new graph W ′ with embedding ΠW ′ 7→G that form an (R′, φ, ψ′)-

out-witness of (G, r′) w.r.t. γ, for ψ′ = ψ2

6 .

The procedure can be implemented in time Õ(R/(ψ2φ)).

Remark 3.2. Note that γ does not have to be passed as an argument to the procedure.

Algorithm 2: PruneOrRepair(G, r,W,ΠW 7→G, φ, ψ,R
′)

1 Define the flow problem I = (G,∆,∇, c) for c = 16
ψφ · 1; sink ∇ = degG + r and source

function ∆ = 8
ψr.

2 Compute flow f by running Dinitz’s Blocking Flow algorithm for h = 16 log(m)
ψφ rounds on

instance I.
3 if f is an R′-flow then
4 W ′ ←W ; ΠW ′ 7→G ← ΠW 7→G; r′ ← r.
5 Let Pf be flow path decomposition of f .
6 foreach u-to-v path π ∈ Pf do
7 Add edge e = (u, v) to W ′; ΠW ′ 7→G(e) = π; r′(u)← r′(u)− 1.
8 return (W ′,ΠW ′ 7→G, r

′)
9 else

10 S ← {v ∈ V (G)| exf > 0}.
11 while |EG(S, S)| ≥ φ(volG(S) + r(S)) do
12 S ← S ∪ {v ∈ V | distGf

(S, v) = 1}.
13 return S

The algorithm works by setting up a flow instance I that tries to find for each unit r(v) a path
from v to an arbitrary other vertex in the graph while minimizing congestion and the number of
flow paths ending in each vertex. We then run the Blocking Flow algorithm by Dinitz [Din06] for h
rounds on the flow instance I. Our later analysis relies on the following well-known fact.

Fact 3.3. Given a flow instance I and height parameter h, the blocking flow algorithm by Dinitz
run for h rounds outputs a pre-flow f such that in the residual network Gf there is no path from
any vertex s ∈ V where exf (s) > 0 to a vertex t ∈ V , with absf (t) < ∇(t) consisting of at most h
edges.

Note that we do not compute a 0-flow which is achieved when Blocking Flow is run for n rounds.
Instead, we stop after only h = O(log(m)/(ψφ)) rounds to ensure that the subprocedure can be
implemented efficiently. Depending on whether the flow is then an R′-flow or not, we either use the
flow to repair the witness graph W by constructing W ′ from W , or otherwise find a sparse cut S in
G.

We believe that the behaviour of the procedure is best understood by carefully inspecting the
ensuing proof of Lemma 3.1.

Proof of Case 1. Let us first assume that the algorithm enters the else-statement starting in Line 9.
Let us denote by Si the set S constructed in the i-th iteration of the while-loop and by S0 the set S at
initialization. Observe that we can alternatively characterize each Si by S0 = {v ∈ V (G)| exf > 0}
and for i > 0 by Si = {v ∈ V | distGf

(S0, v) ≤ i}. Note that by Fact 3.3 and the definition of ∇,
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we have that Sh absorbed at least volG(Sh) + r(Sh) units of flow. But the total amount of demand
put at all vertices is ‖∆‖1 = 8

ψ‖r‖1 ≤
8
ψR and so we must have volG(Sh) + r(Sh) ≤ 8

ψR.
Let us assume first that the while-loop is terminated after i ≤ h iterations. Then, since

S0 ⊆ Si ⊆ Sh, and since the vertices in S0 are incident to at least R′ units of excess flow, we have
R′ ≤ r(S0) ≤ r(Si) and combined with the while-loop condition, we clearly have that the cut Si
returned in Line 13 is a valid output.

It remains to prove that the while-statement is indeed last entered for some i ≤ h. We prove
by contradiction by showing that Si+1 has significantly larger volume than Si for each i < h and
therefore Sh has volume larger than 8R/ψ which gives a contradiction by the argument above.

More precisely, we use that since, for i ≤ h, Si is not a sparse cut, we have that |EG(Si, Si)| ≥
φ(volG(Si) + r(Si)). We next want to argue that the set EGf

(Si, Si) is of comparable size to argue
that Si+1 is significantly larger in volume than Si. But note that an edge e in EG(Si, Si) does only
not appear in Gf if c = c(e) units of flow are routed in the edge. On the other hand, for any edge
←−e in EG(Si, Si), we have that an anti-parallel edge appears in Gf if any flow is routed on this edge.
But note that the amount of flow leaving Si is clearly upper bound by ∆(Si). Thus,

|EGf
(Si, Si)| ≥

c · |EG(Si, Si)| −∆(Si)
c

≥
c · φ(volG(Si) + r(Si))− 8

ψr(Si)
c

≥ 1
2φ(volG(Si) + r(Si)).

for our choice of c = 16
ψφ . We obtain by definition of Si+1 that volG(Si+1) ≥

(
1 + φ

2

)
(volG(Si) +

r(Si)) ≥
(
1 + φ

2

)
volG(Si). Using induction, we thus get that

volG(Si) + r(Si) ≥
(

1 + φ

2

)i
(volG(S0) + r(S0)).

Note that we can repeat this argument for all i, one can easily calculate that at level h (where we
use that S0 is non-empty since otherwise we would have an R′-flow), we have volG(Sh) + r(Sh) >
m ≥ 8R/ψ. But this gives a contradiction, as desired.

Proof of Case 2. We prove that W ′, r′ and ΠW ′ 7→G form an (R′, φ′, ψ′)-out witness with respect
to γ. Let us therefore prove each property that is required by Definition 2.1 one-by-one:

1. ‖r′‖1 ≤ R′: We initialize r′ to r in Line 4 and then decrease ‖r′‖1 by 1 in each iteration of
Line 7. But since f is an R′-flow, the path decomposition of f holds at least ‖r‖1 −R′ paths,
each resulting in an iteration of the foreach-loop that executes Line 7.

2. ∀v ∈ V (G), we have degW ′(v) + r′(v) ∈ [degG(v), 1
ψ′ degG(v)]: We first use that degW (v) +

r(v) ≥ degG(v) by assumption on W . But note that we have r′(u) being equal to r(u) minus
the number of edges added to W ′ with tail in u, as can be seen from inspection of Line 7.
Thus the lower bound holds.
For the upper bound, we use that each vertex v ∈ V , has sink ∇(v) = degG(v) + r(v). This
upper bounds the number of paths that end in v in the flow path decomposition and thus also
edges added to v with v in its head. Thus, degW ′(v) + r′(v) ≤ 2(degW (v) + r(v)) + degG(v) ≤
3
ψ degG(v) by assumption on W . The last upper bound is significantly tighter than then the
Lemma stipulates and we will use this tighter bound in proving the remaining properties.
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3. Expansion of cuts in W ′: Let us fix any cut (S, S) where γ(S) ≤ γ(S). By assumption
|EW (S, S)|+ r(S) ≥ ψ(volW (S) + r(S)). Let us do a case analysis:

• If |EW (S, S)| ≥ r(S): Since W ′ ⊇ W , we have |EW ′(S, S)| ≥ |EW (S, S)|. At the same
time, we have that volW ′(S) + r′(S) ≤ 3

ψvolG(S) by the previously obtained degree
bound. But from the guarantees on W and r, we thus have that volW ′(S) + r′(S) ≤
3
ψ (volW (S) + r(S)). Combining these insights, we obtain

|EW ′(S, S)| ≥ ψ

2 (volW (S) + r(S)) ≥ ψ2

6 (volW ′(S) + r′(S)).

• If |EW (S, S)| < r(S) and r′(S) > 1
2r(S): We immediately get that

|EW ′(S, S)|+r′(S) > |EW (S, S)|+ 1
2r(S) ≥ 1

2ψ(volW (S)+r(S)) ≥ ψ2

6 (volW ′(S)+r′(S))

where we use in the last inequality that volW (S)+r(S) ≥ degG(v) ≥ ψ
3 (volW ′(S)+r′(S))

by assumption on W and the last property.
• If |EW (S, S)| < r(S) and r′(S) ≤ 1

2r(S): We have 8
ψ (r(S) − r′(S)) ≥ 4

ψr(S) paths in
the flow decomposition (see Line 5) with tails in S. But we also have that at most
∇(S) = volG(S) + r(S) many of these edges have their head in S. The rest has their
heads in S. Thus |EW ′(S, S)| ≥ 4

ψr(S)−∇(S) ≥ 4
ψr(S)− (volG(S) + r(S)).

But by assumption on W and the current case assumption, we have volG(S) ≤ volW (S) +
r(S) ≤ 1

ψ (|EW (S, S)| + r(S)) < 2
ψr(S). Thus, |EW ′(S, S)| ≥ 1

ψr(S) ≥ 1
4(volG(S) +

r(S)) ≥ ψ
12(volW ′(S) + r′(S)) (where we use the degree bound on W ′ from the previous

property in the last inequality).

4. ΠW ′ 7→G has congestion at most 1
ψ′φ : This follows straight-forwardly from the congestion of

ΠW 7→G and the fact that the embedding paths added to embed the new edges in W ′ are taken
from the flow path decomposition where the flow is routed through edges with capacities 16

ψφ .

Runtime Analysis. Let us first analyze the run-time required to find the pre-flow f . We assume
for this section that the reader has basic familiarity with the classic Blocking Flow algorithm by
Dinitz. This algorithm maintains a pre-flow f initialized to carry zero flow on every edge. Then, in
each round a BFS algorithm is performed from an artificial super-source vertex s on the residual
graph G′f obtained from the current Gf after adding the super-source vertex s with an edge from s
to each vertex v with residual capacity set equal to the current excess exf (v). Then, whenever the
BFS discovers a new vertex w with absf (w) < ∇(w), the algorithm can take a new flow path from
the vertex v after s on the BFS tree path between s and w and add the flow path to f where the
amount of flow is equal to the minimum residual capacity of any edge on the path. Any edge that
has its residual capacity during this round decreased to 0 remains removed from the graph that the
BFS is performed on.

Using this implementation, it is straight-forward to see that the BFS only explores out-edges in
G′f incident to s and vertices where absf (w) = ∇(w). But the total volume of the latter set of
vertices is at most O(volG(Sh)) which we analyzed earlier to be at most O(R/ψ). Since the number
of edges incident to s is at most R, we can conclude that each round consist of a BFS over O(R/ψ)
many edges along with the flow routing described above. Using a cut-link tree to route the flows,
each round can thus be executed in time Õ(R/ψ). The run-time for h rounds of Blocking Flow is
thus Õ(R/(ψ2φ)).
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Finally, it is not hard to see that the if-condition in Line 13 and the construction and updates
of the set S in Lines 10 and 12 can be done in volG(S) + r(S) per iteration. But recall that
volG(S) + r(S) ≤ O(R/ψ) and there are at most h for-loop iteration.

4 Maintaining Directed Expander Decomposition via Batching
We now give the algorithm and analysis behind our main result in Theorem 1.4.

High-Level Algorithm. The algorithm for Theorem 1.4 works by maintaining an expander
decomposition X = {X1, X2, . . . , Xτ} for graph G at all times and for each expander Xi it batches
updates to the graph G[Xi] using standard batching techniques. This allows us to leverage the
pruning algorithm from Lemma 3.1 in the most effective way.

More precisely, we maintain Lmax + 1 levels of update batches in the algorithm for each set
X ∈ X . For each X ∈ X , the algorithm maintains

• a family of witness graphs WX = {WX,0,WX,1, . . . ,WX,Lmax}.

• a family of vectors RX = {rX,0, rX,1, . . . , rX,Lmax} where each vector lives in NV (G)
≥0 (but is

supported only on X) and keeps track of the updates that need to be dealt with in each level.

Initialization. To initialize, we set X to consist only of the set V , and set, for each l, WV,l to
the empty graph, rV,l = degG, let ψLmax = ψCMG

2 and ψl = ψ4
l+1

144 for 0 ≤ l < Lmax. We initialize
vector γV = degG and the set R to be the empty set. We then invoke procedure Update(t) for
t = 0 which is described in the next paragraph.

Update. The update algorithm given in Algorithm 3 consists of an utility procedure ApplyUpdate
and the main procedure Update. The procedure ApplyUpdate handles intermediate updates to
the low-level data structures during the processing of an update to the graph G. The procedure
Update computes the new expander decomposition after executing an update to the graph. Again,
we believe that the procedures are best understood by analyzing them.

Analysis (ApplyUpdate). We start by arguing about the procedure ApplyUpdate which
processes updates to G and forwards them to the witness graphs.

Claim 4.1. For any invocation of procedure ApplyUpdate, for any cluster X ∈ X , and level
l ∈ [Lmax], if min{|EWX,l

(S, S) + rX,l(S)|, |EWX,l
(S, S) + rX,l(S)|} ≥ ψl(volWX,l

(S) + rX,l(S))
whenever γX(S) ≤ γX(S) where S = X \ S holds before the invocation, then it also holds after the
invocation for the updates in WX,l and rX,l.

Proof. First, we observe that if the update u satisfies the condition of the if-statement in Line 2,
then no changes are executed and we can therefore ignore the case.

Otherwise, the update u affects a cluster X ∈ X . We use superscripts OLD and NEW to denote
variables in the state just before the invocation and just after the invocation of ApplyUpdate
respectively. Let us consider any cut (S, S) where γ(S) ≤ γ(S). We define Siso ⊆ S to be the
vertices in S that are isolated in WNEW

X,l after ApplyUpdate.
Let us first analyze the case when Siso = ∅. In this case, we have that no vertex v ∈ S, has

entered the while-loop starting in Line 15. Let us do a case analysis for the udpate types:
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Algorithm 3: Pseudocode to Process Updates
1 procedure ApplyUpdate(u)
2 if u encodes the deletion (x, y) where x ∈ X, y ∈ Y for X 6= Y ∈ X then Return
3 else
4 Let X ∈ X be the cluster that the update u is applied to.
5 for l ∈ {0, 1, . . . , Lmax} do
6 if u encodes the deletion of an edge e = (x, y) then
7 foreach (a, b) ∈ Π−1

WX,l 7→G(e) do
8 Increment rX,l(a) and rX,l(b); Delete (a, b) from WX,l.

9 else if u encodes self-loop insertion at vertex x then Increase rX,l(x) by 2.
10 else if u encodes a vertex split of v with new vertex v′ then
11 Let WX,l be the graph over the vertex set X that now includes v′ and with the edge

set obtained by remapping all xy-paths in ΠWX,l 7→G to (x, y) edges in WX,l.
12 rX,l(v)← rX,l(v) + degWX,l

(v′); rX,l(v′)← degWX,l
(v′);γX(v′)← 0.

13 foreach e = (x, y) ∈ E(WX,l) where v′ ∈ ΠWX,l 7→G(e) do
14 Increment rX,l(x) and rX,l(y); Delete e from WX,l.

15 while there exists v ∈ V with degWX,l
(v) + rX,l(v) > degG[X](v)

ψl
do

16 foreach edge (u, v) or (v, u) in E(WX,l) do
17 rX,l(u)← rX,l(u) + 1; Remove the edge from WX,l.
18 rX,l(v)← degG[X](v)/ψl.

19 procedure Update(t)
20 if t > 0 then Invoke ApplyUpdate to the t-th update.
21 while ∃X ∈ X where ∃l ∈ [Lmax] with ‖rX,l‖1 ≥ ψl

8 |E(G[X])|l/Lmax do
22 Let X and l be such that the while condition holds for them and l is the maximum integer for

which the condition holds.
23 if l = Lmax then
24 Run CutOrEmbed(G[X], φ, ψLmax

16 |E(G[X]|) and if it returns a cut, let this cut be
denoted by S; otherwise, set WX,l′ , rX,l′ equal to the returned witness and r vector as
specified in Theorem 2.3 for each l′ ∈ {0, 1, . . . , Lmax} and γX = degG[X].

25 else
26 Run procedures

PruneOrRepair(G[X], rX,l+1,WX,l+1,ΠWX,l+1 7→G[X], φ, ψl+1,
ψl

32 |E(G[X])|l/Lmax),
PruneOrRepair(←−G [X], rX,l+1,WX,l+1,ΠWX,l+1 7→

←−
G [X], φ, ψl+1,

ψl

32 |E(G[X])|l/Lmax); if
either of them returns a cut, let that cut be stored in S; otherwise let the witnesses and
r vectors returned be denoted by (W1, r1) and (←−W2, r2); set WX,l to W1 ∪W2 and rX,l
to r1 + r2.

27 if a cut S was returned then
28 Add the smaller set of edges EG(X \ S, S) or EG(S,X \ S) to R.
29 foreach edge e ∈ EG(X \ S, S) ∪ EG(S,X \ S) do Delete e via ApplyUpdate.
30 Replace X in X by S and X \ S.
31 foreach l ∈ {0, 1, . . . , Lmax} and X ′ ∈ {S,X \ S} do
32 Let WX′,l be assigned the induced graph WX,l[X ′]; let rX′,l be the vector rX,l

restricted to the set X ′; let γX′,l be the vector γX restricted to X ′.
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• For u edge deletion: Since no v ∈ S entered the while-loop in Line 15, we have in this case
that |EWOLD

X,l
(S, S)|+ rOLDX,l (S) ≤ |EWNEW

X,l
(S, S)|+ rNEWX,l (S) since for each deleted edge from

EWOLD
X,l

(S, S), the procedure places one unit to rX,l on an entry in S (and one on an entry in
S). Further, we have volWNEW

X,l
(S) + rNEWX,l (S) = volWOLD

X,l
(S) + rOLDX,l (S) since we add to the

vector rX,l what is lost in volume and do not enter the final while-loop by assumption. Thus

|EWNEW
X,l

(S, S)|+ rNEWX,l (S) ≥ |EWOLD
X,l

(S, S)|+ rOLDX,l (S)

≥ ψl(volWOLD
X,l

(S) + rOLDX,l (S)) ≥ ψl(volWNEW
X,l

(S) + rNEWX,l (S)).

• For u self-loop insertion: This case can be verified straight-forwardly.

• For u a vertex split: Let vertex v be split into v and v′. Recall that we assume that no vertex
s ∈ S is isolated in WNEW

X,l . Thus, since we delete all edges that have v′ on their embedding
path to obtain WNEW

X,l , we must have that v′ 6∈ S.
The remaining case analysis can be made closely to the argument for u being an edge deletion
when paying special attention to the case where v is in S and one has to use that we add
volWX,l

(v′) to rX,l(v).

To prove for the case where Siso 6= ∅, note that we can use the proof above to show that the
claim holds for the set S \ Siso. It then remains to observe that adding a set of isolated vertices to
any set S′ that has the properties of our claim, does not invalidate the claim as it only adds mass
to the rX,l vector. The claim in its full generality follows.

For the rest of the analysis, we often look at the graph maintained internally by our data
structure which is defined below.

Definition 4.2 (Maintained Graph). At any point in the algorithm, we let GU denote the graph G
after applying all the updates to G on which the procedure ApplyUpdate was run (also the ones
issued by the algorithm in Line 29).

Remark 4.3. Technically, the definition of GU is not well-defined for the times spent within the
procedure ApplyUpdate but we avoid such ambiguities by only using GU when talking about
times before or after such procedure calls.

Observe that by the definiton above, we have at the end of each stage, i.e. after processing each
the current update to G, that GU ⊆ G since we invoke ApplyUpdate on each update to G within
the same stage (see Line 20). We start by proving the following rather simple structural claim.

Claim 4.4. Before and after any invocation of ApplyUpdate, we have that for every X ∈ X and
level l ∈ [Lmax], the embedding ΠWX,l 7→G maps each edge (u, v) in WX,l to a u-to-v path in GU [X].

Proof. We note that by our initialization procedure, before the first invocation of Update(t) (i.e.
when t = 0), the claim holds. Next, we note that during each invocation of ApplyUpdate, if u
encodes an edge deletion, we remove all paths from WX,l that are embed into the affected edge (see
the if-case in Line 6). If u encodes a vertex split of v splitting of v′, then each embedding path that
went through v by having an edge (x, v) entering and an edge (v, y) leaving might no longer be a
real path if exactly one of the endpoints is mapped to v′ instead of v. But in this case v′ is on the
embedding path, and it is exactly such embedding paths that are removed in the if-case in Line 10.
Finally, it is easy to see that whenever we compute an entirely new witness and witness embedding
(see Line 26), the embeddings are found in the current graph GU [X] = G[X].
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Analysis (Correctness). Before we can argue about correctness, let us make the following
definitions.

Definition 4.5 (Subcluster). Given a vertex x in G at any stage t, we say that it originates from a
vertex y at an earlier stage t′ ≤ t in G if x was obtained from a sequence of adversarial vertex splits
applied to y. Given a cluster X ∈ X at any stage t and a cluster Y ∈ X at a later stage t′ ≥ t, we
say Y is a subcluster of X if all vertices in Y originate from vertices in X.

Definition 4.6. For any cluster X ∈ X and level l, let XINIT,l be the most recent subcluster of X
such that Line 24 or Line 26 was executed on XINIT,l and l and the witness WXINIT,l,l and vector
rXINIT,l,l were (re-)initialized during the execution of this line.

We can now argue that Algorithm 3 correctly maintains witness graphs.

Invariant 4.7. Every time the condition of the while-loop starting in Line 21 is evaluated, we
have for every X ∈ X and level l ∈ [Lmax], that WX,l is a (∞, φ, ψl)-witness of (G[X], rX,l) with
respect to γX . Whenever WX,l is (re-)initialized, we further have that it is a (∞, φ, 2ψl)-witness of
(G[X], rX,l) with respect to γX .

Proof. We prove the invariant by induction over the times that Line 21 is evaluated.
Base case: Before the first time that the while-loop condition is evaluated, we have by our

initialization procedure that X = {V } and that for each l, vector rV,l = degG (also since Line 20
is skipped when we invoke Update(0)). Thus, we trivially have that WV,l = (V, ∅) is a (∞, φ, ψl)-
witness of (G, rV,l) w.r.t. γV = degG, which establishes the base case.

Inductive Step: For any cluster X ∈ X and l, let XINIT,l, WXINIT,l,l, and rXINIT,l,l be defined
as in Definition 4.6.

Consider first the case that WXINIT,l,l was (re-)initialized after the last time that the invariant
held when the while-loop condition was executed. Then, in between these two times, a single
iteration of the while-loop in Line 21 is performed on exactly X = XINIT,l. We distinguish by cases:

• If WX,l was (re-)initialized in Line 24: Then by Theorem 2.3, we have thatWX,l is a (∞, φ, 2ψLmax)-
witness of (G[X], rX,l) with respect to degG[X] where ψLmax ≥ ψl. Since at the same time,
the algorithm (re-)sets γX = degG[X], the invariant follows.

• Otherwise: we have that WX,l was (re-)initialized in Line 26. But this implies thatWX,l+1 was
not (re-)initialized since the last time that the while-loop condition was executed; and clearly
also G and γX were not changed since then. Using further the maximality of l (see Line 22),
thus, we can use the induction hypothesis to argue that WX,l+1 is a (R,φ, ψl+1)-witness of
(G, rX,l+1) w.r.t. γX for R ≤ ψl+1

8 |E(G[X])|(l+1)/Lmax ≤ ψl+1
8 |E(G[X])|.

Thus, the assumptions of Lemma 3.1 are satisfied when the algorithm invokes the two
procedures executed in Line 26 to obtain WX,l and rX,l, return witnesses W1 and ←−W2 along
with vectors r1 and r2. By Lemma 3.1, W1 (analogously ←−W2) is a (∞, φ, ψ

2
l+1
6 )-out-witness of

(G[X], r1) w.r.t. γX (analogously (
←−−−
G[X], r2)).

It remains to verify that WX,l = W1 ∪W2 is a (∞, φ, ψl/2)-witness of (G, r1 + r2) w.r.t. γX .
We note that the witness properties given in Definition 2.1 are trivial to prove except for
Property 3 which we next prove carefully.

For convenience, we define ψ̂ = ψ2
l+1
6 . Consider first any cut (S, S) where γX(S) ≤ γX(S)

(the vector we use in Lemma 3.1). By properties of W1, we have that |EW1(S, S)|+ r1(S) ≥
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ψ̂(volW1(S) + r1(S)). But note that by the properties of W1 and W2, we have

volWX,l
(S) + rX,l(S) ≤ (volW1(S) + r1(S))(1 + 1

ψ̂
) ≤ 2

ψ̂
· (volW1(S) + r1(S)).

Combining these insights, we can conclude that

|EWX,l
(S, S)|+ rX,l(S) ≥ ψ̂2

2
(
volWX,l

(S) + rX,l(S)
)
.

Using same analysis on W2 establishes that

|EWX,l
(S, S)|+ rX,l(S) ≥ ψ̂2

2
(
volWX,l

(S) + rX,l(S)
)
.

Using that ψ̂2

2 = ψ4
l+1
72 = 2ψl, we can therefore conclude that WX,l is a (∞, φ, ψl)-witness of

(G[X], rX,l).

It remains to argue for the invariant in the case where WXINIT,l,l was not (re-)initialized after
the last time that the invariant held when the while-loop condition was executed).

We consider the following cases:

• If a new stage has started, after the last time that the invariant held: in this case an adversarial
update u was applied toG. We note that ApplyUpdate preserves the cut-expansion properties
by Claim 4.1, and the embedding property follows from Claim 4.4. Further, it is not hard
to see that the quantity degG[X](v) + rX,l(v) does not decrease due to invoking procedure
ApplyUpdate except if the quantity exceeds the degree of v in G[X] by a large quantity in
which case it is normalized (in the while-loop starting in Line 15) which provides us with the
degree preserving property of witness WX,l.

• If no new stage has started: then the underlying graph G[X] was not changed. The only
possible change to the cluster X is that it might have been undergoing changes due to the
updates applied in Line 29 and/or might have been induced. But note that we argued above
that applying updates via ApplyUpdate does not affect correctness, and it is not hard to
verify that inducing does not affect correctness either since we induce in such a way that
already now edge crosses between the newly induced clusters.

Corollary 4.8. At the end of every stage t, for any X ∈ X and level l ∈ {0, 1, . . . , Lmax}, WX,l is
a (ψl8 |E(G[X])|l/Lmax − 1, φ, ψl)-witness of (G[X], rX,l) w.r.t. γX .

Proof. Assuming that the algorithm finishes in finite time, we have that after each while-loop the
claim holds by the while-loop condition and Invariant 4.7.

Overall correctness follows by Corollary 4.8 for all X ∈ X and level 0 combined with Claim 2.2.

Analysis (Set R). From the algorithm, it is clear that R is a set that only grows over time since the
only place in the algorithm where edges are added to R is in Line 28. We further note that whenever
we add edges to R before we decompose X into S and X \ S, by Lemma 3.1, we add a batch of at
most φmin{volG[X](S)+rX,l(S), volG[X](X \S)+rX,l(X \S)} ≤ 2φ

ψl
min{volG[X](S), volG[X](X \S)}

edges where the inequality follows from Corollary 4.8. Thus, we can charge the cut to the edges on
the smaller side. Since each edge appears at most O(logm) times on the smaller side of the cut, we
can bound the total size of R by Õ

(
φ

ψCMGψ0
m
)
.
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Analysis (Run-time). Finally, let us argue about the total run-time of the algorithm.

Claim 4.9. The total amount that the vectors rX,l (over all X and l) are increased in the procedure
ApplyUpdate is Õ(m · L2

max · 1
φψ0

).

Proof. We distinguish by updates. For edge deletions, we increase the vectors rX,l by 2 for each
edge in WX,l embed into the edge deleted. Since we maintain WX,l to be a witness by Corollary 4.8,
we conclude that there are at most 1

φψl
≤ 1

φψ0
such edges, and therefore the total contribution by

all of the at most m edge deletions is O(m · Lmax · 1
φψ0

). Self-loop insertions increase vectors on
each level by 2 and therefore we have total increase O(m · Lmax) from self-loop insertions.

For vertex splits where v is split into v and v′, we add 2volWX,l
(v′) = O( 1

ψ0
volG(v′)) directly

to the vector entries of v and v′ by Corollary 4.8. Additionally, we remove all embedding paths
through the vertex v′. But note that the number of such embedding paths by Corollary 4.8 can be
at most O(volG(v′) · Lmax · 1

φψ0
). But since each edge can be on the side of the vertex split with

smaller volume, i.e. incident to v′, for at most O(log(m)) times, we have that the total increase
from vertex splits is bound by Õ(m · Lmax · 1

φψ0
).

Finally, we account for increases in rX,l vectors due to the while-loop starting in Line 15. We
start by observing that whenever a vertex v is isolated in the while-loop in Line 15, the amount
that we increase the vector rX,l (for v ∈ X) is upper bound by the current degree degWX,l

(v). By
induction on the invocations of ApplyUpdate, we can bound degWX,l

(v) by O(degG[X](v)/ψl).
But note that since we prove that immediately after the re-initialization of each WX,l, we

have that it is a (∞, φ, 2ψl) witness of (G, rX,l) (see invariant 4.7), we have that degWX,l
(v) +

rX,l(v) ≤ degG[X](v)/(2ψl). But since a vertex v only gets isolated in Line 15 if degWX,l
(v) +

rX,l(v) > degG[X](v)/ψl, then either degWX,l
(v) + rX,l(v) has increased by a factor of at least 4/3

or degG[X](v)/ψl has decreased by factor at least 2/3.
Let us first argue about the quantity degWX,l

+rX,l. It is not hard to see that when edges
are deleted from WX,l (either in Line 14 or in Line 17), the algorithm compensates by adding an
additional unit to rX,l at the endpoints of the deleted edge. Thus, degWX,l

+rX,l remains unchanged.
However, the quantity degWX,l

+rX,l might be changed in Line 9 or Line 12. Both times, the quantity
increases, in the former by 2 in the coordinate of the vertex where a new self-loop is added, and in
the latter by the degree of the vertex (in WX,l which is at most O(1/ψl) times the degree of the same
vertex in G) that is split off. We can thus bound the total amount of increases in ‖degWX,l

+rX,l‖1
over all X and l by Õ(Lmax ·m/ψl) since each edge appears at most O(log(m)) times on the smaller
side of a vertex split. By our previous reasoning, this implies that these changes in degWX,l

+rX,l
can increase the vector rX,l over all levels l and clusters X by at most Õ(L2

max ·m/ψ2
0) (here we

use that φ ≤ ψ0 by assumption).
For the total number of changes to ‖degG[X] ‖1 over all X and l, we can further straight-forwardly

obtain the upper bound Õ(m). Using the reasoning from before, we thus obtain a total of at most
Õ(L2

max ·m/ψ0) in increase in vectors rX,l.

Lemma 4.10. The algorithm takes total time Õ(m1+1/Lmax · Lmax · (log(m))4O(Lmax)
/φ2).

Proof. Whenever the procedure PruneOrRepair is run on a set X ∈ X and level l ∈ [Lmax],
it does so since ‖rX,l‖1 ≥ ψl

8 |E(G[X])|l/Lmax by the condition of the while-loop in Line 21. It
then re-sets (WX,l, rX,l) in Line 26 such that ‖rX,l‖1 = ‖r1‖1 + ‖r2‖1 ≤ 2 · ψl32 |E(G[X])|l/Lmax =
ψl
16 |E(G[X])|l/Lmax . Thus, each such computation decreases the `1-sum of all vectors rX′,l′ over all
X ′ and l′ by at least ψl

16 |E(G[X])|l/Lmax .
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But note that the invocation of PruneOrRepair takes time Õ(‖rX,l+1‖1/ψ2
0φ) by Lemma 3.1.

Since we always pick the largest l for which the while-loop condition in Line 21 is satisfied first, this
implies that the run-time is at most Õ(|E(G[X])|(l+1)/Lmax/ψ0φ). Thus, we can charge time spent
in these invocations of Õ(|E(G[X])|1/Lmax/ψ2

0φ) = Õ(m1/Lmax/ψ2
0φ) to each unit that we remove

from rX,l due to this invocation.
Combining this insight with the fact that initially ‖rV,l‖1 = 2m for all levels l and with the

increase bound from Claim 4.9, we can bound the total time spend for all such invocations by
Õ(m1+1/Lmax · L2

max · 1
φ2ψ3

0
).

It remains to observe that by the analysis from Claim 4.9, we can also bound the total run-time
of all invocations of ApplyUpdate by Õ(m · Lmax · 1

φψ0
). The time of all other operations is

subsumed by the time spend on the invocations to either PruneOrRepair or ApplyUpdate.
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