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Abstract

The monotone minimal perfect hash function (MMPHF) problem is the following
indexing problem. Given a set S = {s1, . . . , sn} of n distinct keys from a universe U of size u,
create a data structure D that answers the following query:

Rank(q) =

{

rank of q in S q ∈ S

arbitrary answer otherwise.

Solutions to the MMPHF problem are in widespread use in both theory and practice.
The best upper bound known for the problem encodes D in O(n log log log u) bits and per-

forms queries in O(log u) time. It has been an open problem to either improve the space upper
bound or to show that this somewhat odd looking bound is tight.

In this paper, we show the latter: any data structure (deterministic or randomized) for
monotone minimal perfect hashing of any collection of n elements from a universe of size u
requires Ω(n · log log log u) expected bits to answer every query correctly.

We achieve our lower bound by defining a graph G where the nodes are the possible
(

u

n

)

inputs and where two nodes are adjacent if they cannot share the same D. The size of D is then
lower bounded by the log of the chromatic number of G. Finally, we show that the fractional
chromatic number (and hence the chromatic number) of G is lower bounded by 2Ω(n log log log u).
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1 Introduction

The monotone minimal perfect hash function (MMPHF) problem is the following indexing
problem. Given a set S = {s1, . . . , sn} of n distinct keys from a universe U of size u, create a data
structure D that answers the following query:

Rank(q) =

{

rank of q in S q ∈ S

arbitrary answer otherwise.

The name of the problem comes from interpreting the data structure D as a hash function: given
a sorted array A = [a1, . . . , an], D is a function mapping each ai to its position i. Such a hash
function is minimal, meaning that it maps n items to n distinct positions, and monotone, meaning
that whenever ai < aj we have D(ai) < D(aj), and vice versa.

It may seem strange at first glance that D is permitted to return arbitrary answers on negative
queries. A key insight, however, is that this relaxation allows for asymptotic improvements in
space efficiency: whereas the set S would require Ω(n log(u/n)) bits to encode, Belazzougui, Boldi,
Pagh and Vigna [BBPV09] show that it is possible to construct an MMPHF D using as few as
O(n log log log u) bits, while supporting O(log u)-time queries.

The remarkable space efficiency of MMPHF makes it useful for a variety of practical applications
(e.g., in security [BCO11], key-value stores [LFAK11] and information retrieval [Nav14]). A high-
performance implementation can be found in the Sux4J library [BV08,BBPV08]. MMPHF has also
been widely used in the theory community for the design of space-efficient combinatorial pattern-
matching algorithms (see, e.g., [BN14,GNP20,Bel14,BN15,CFP+15,BCKM20,BGMP16,GOR10]).

Despite the widespread use of MMPHF, it remains an open question [BBPV09, Bol15,D+18]
to determine the optimal bounds for solving this problem. The best lower bound achieved so
far [BBPV08,D+18] is Ω(n) bits (which follows immediately from the same lower bound for minimal
perfect hashing [Meh82]). Even disregarding applications (and the running time to answer queries),
the information-theoretic question as to how many bits a MMPHF requires has been posed as a
problem of independent combinatorial interest [D+18].

Our result. We fully settle this question by establishing the following result:

Theorem 1 (Formalized in Theorem 2). Any data structure (deterministic or randomized) for
monotone minimal perfect hashing of any collection of n elements from a universe of size u
requires Ω(n log log log u) expected bits to answer every query correctly. The lower bound holds
whenever u is at least n1+1/

√
logn and at most exp (exp(poly(n))).

Thus, somewhat surprisingly, the O(n log log log u) bound achieved by [BBPV08] is asymptot-
ically optimal. We also note that the boundary conditions on u in Theorem 1 are natural in the
following sense. There are two trivial solutions for the MMPHF. One encodes the entire input
set S in O(u) bits and the other builds a perfect hash table mapping from elements of S to their
rank using O(n log n) expected space. Thus, when u is very small, for example u = O(n), the first
solution achieves O(u) = o(n log log log u) bits. On the other hand, when u is very large, that is
when u is even beyond exp(exp(poly(n))), then the O(n log n)-bit solution uses o(n log log log u)
bits. Our lower bound in Theorem 1 covers almost the entire range in between.

The lower bound achieved by Theorem 1 is remarkably general: it applies independently of the
running time of the data structure; and it applies even to randomized data structures that are
permitted to store their random bits for free.
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Our techniques. The most intuitive approach toward proving a lower bound of d bits on the
size of an MMPHF is to encode a d-bit string into the state of the data structure. This approach
is already hindered by the fact that MMPHFs only support positive queries, however. If the user
already knows which elements are in the input, then the MMPHF encodes no interesting information
— but if the user only has partial information about the input, then the user can only get useful
information from a small portion of possible MMPHF queries. The previous Ω(n) lower bound
of [Meh82,BBPV08,D+18] addresses this as follows: consider any bit-string x ∈ {0, 1}d and define:

S(x) := {3, 6, . . . , 3d} ∪ {3i + 1 | i ∈ [d], xi = 1} ∪ {3i− 1 | i ∈ [d], xi = 0}.

For every i ∈ [d], firstly, 3i belongs to S(x) and thus is a positive query, and secondly, Rank(3i) =
2 · (i − 1) + xi. This allows us to recover x from any MMPHF for S(x), proving a lower bound
of d = Ω(n) bits for MMPHF on size-n subsets of universe [3n + 1]. This approach, however,
seems to be stuck at proving any ω(n) lower bound as these “direct encodings” ignore the delicate
interaction between different elements in the input set1.

To get around these obstacles, we take a fundamentally different approach to proving Theorem 1.
We construct a “conflict graph” G whose vertices are all the possible inputs to an MMPHF problem
for a fixed n and u. Two vertices are adjacent in G if they cannot have the same MMPHF
representation, that is, if the vertices share an element but with a different rank. Any MMPHF
induces a proper coloring of this graph, where the color of a vertex corresponds to its MMPHF
representation. As a result, the chromatic number of the conflict graph is a lower bound on how
many different MMPHF representations we must have, which implies that some input must have
a representation of size at least logχ(G) bits. This reduces our task to the combinatorial problem
of lower bounding χ(G).2

The problem of bounding chromatic number of graphs defined over these types of set-systems has
a rich history in the discrete math literature; see, e.g. [EH66,FHRT92,DLR95,ST11]. For instance,
Erdős and Hajnal [EH66] study shift-graphs that have vertices corresponding to n-element subsets
of [u] and edges between vertices (a1, a2, . . . , an) and (a2, . . . , an, an+1) for all a1 < a2 < . . . < an+1.
They prove that the chromatic number of the shift-graph is (1 + o(1)) · log(n−1)(u), namely, the
(n − 1)-th iterated logarithm of u. The shift-graph is a subgraph of our conflict graph. Thus, by
taking u = 2 ⇈ (n + 1), i.e., the tower of twos of height n + 1, we can have χ(G) = 2ω(n), and
thus prove an ω(n) lower bound for MMPHF on n-subsets of (extremely large) universes of size
u = 2 ⇈ (n+1). This is the starting point of our approach. We now need to dramatically decrease
the size of the universe, while also dramatically increasing the bound on the chromatic number by
considering the conflict graph itself, and not only its shift-subgraph.

To lower bound the chromatic number of the conflict graph, we consider the relaxation of this
problem via fractional colorings (see Section 2.2). Given that this latter problem can be formulated
as a linear program (LP), a natural way for proving a lower bound on its value is to exhibit a
feasible dual solution instead3. This corresponds to the following problem: exhibit a distribution
on vertices of the graph so that for any independent set, the probability that a vertex sampled
from the distribution belongs to the independent set is bounded by p; this then implies that the

1Any lower bound of d bits for a data structure immediately implies an encoding of d-bit strings in the state of
the data structure by just assigning one bit-string to each state. This means that there is never a formal proof that
one cannot encode a bit-string in a data structure and still prove a lower bound.

2Slightly more care must be taken when bounding the expected size of a MMPHF that is permitted to take different
sizes on different inputs.

3This is an inherently different technique than the one used in [EH66] for the shift-graph, as it is known that the
fractional chromatic number of the shift-graph is O(1) (see, e.g. [ST11]).
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fractional chromatic number (and in turn the chromatic number) are lower bounded by 1/p. The
main technical novelty of our work lies in the introduction of a highly non-trivial such distribution
and the analysis of this probability bound for each independent set (we postpone the overview of
this part to Section 4.1 after we setup the required background). This allows us to lower bound
the (fractional) chromatic number of the conflict-graph by Ω(n log n) when the universe is of size

u = 22
poly(n)

which gives an Ω(n log log log u) lower bound for MMPHF on such universes.

Working with fractional colorings, beside being an immensely helpful analytical tool, has several
additional benefits for us. Firstly, unlike standard (integral) colorings, fractional colorings admit
a natural direct product property over a certain union of graphs; this allows us to extend the
lower bound for MMPHF from universes of size doubly exponential in n (which are admittedly
not the most interesting setting of parameters), all the way down to universes of size n1+o(1).
Secondly, unlike the (integral) chromatic number, which yields a lower bound only on the space of
deterministic MMPHFs, we show that lower bounding the fractional chromatic number allows us to
prove a lower bound even for randomized MMPHFs that have access to their randomness for free.
We believe this technique, namely, defining a proper conflict graph and bounding its fractional
coloring by exhibiting a feasible dual solution, may be applicable to many other data structure
problems and is therefore interesting in its own right.

2 Preliminaries

Notation. For any integer t > s > 1, we let [t] := {1, . . . , t} and let [s, t] = {s, . . . , t}. For a tuple
(X1, . . . ,Xt), we further define X<i := (X1, . . . ,Xi−1) and X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xt).

2.1 Problem Definition and Model of Computation

For any integer n, u > 1, we let D(n, u) be an MMPHF indexing algorithm for size-n subsets of [u].
That is, if Sn,u = {S ⊆ [u] s.t. |S| = n} then for all S ∈ Sm,u, D(S) is the MMPHF index for S.

For any fixed choice of random bits r, we use Dr to denote the resulting MMPHF with random
bits r. Note that for any fixed choice of r, Dr is deterministic. For any S ∈ Sn,u and randomness
r, define dr(S) as the size in bits of the MMPHF index Dr(S). Define:

d(n, u) := max
S∈Sn,u

E
r
[dr(S)] .

When n and u are clear, we drop them and refer simply to D and d.

In this definition of size, we are giving the MMPHF a big advantage: we are not charging the
algorithm for storing its randomness. In other words, the algorithm has access to a tape of random
bits chosen independent of the input that it can use for both creating the index as well as answering
the queries. Furthermore, we also allow the algorithm unbounded computation time. Thus, the
only measure of interest for us is the size of the index. Finally, any deterministic MMPHF in this
model is simply a randomized MMPHF that ignores its random bits and thus we will only focus
on randomized MMPHFs from now on.

2.2 Fractional Colorings

A key tool that we use in establishing our lower bound is the notion of a fractional coloring of
a graph. We now review the basics of fractional colorings, which we need in our proofs.

Let G = (V,E) be any undirected graph. A proper coloring of G is any assignment of colors
to vertices of G so that no edge is monochromatic. The chromatic number χ(G) is the minimum
number of colors in any proper coloring of G. The fractional relaxation of chromatic number can
then be defined as follows.
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Let I(G) ⊆ 2V denote the set of all independent sets in G, and for any vertex v ∈ V , define
I(G, v) as the set of all independent sets that contain the vertex v. A fractional coloring of G is any
assignment of x = (x1, . . . , xI(G)), 0 6 xi 6 1, to the independent sets of G satisfying the following
constraint:

for every vertex v ∈ V :
∑

I∈I(G,v)

xI > 1.

The value |x| of a fractional coloring x is given by
∑

I∈I(G,v) xI .

The fractional chromatic number χf (G) is the minimum value of any fractional coloring of
G. This quantity can be formalized as a linear program (LP):

χf (G) := min
x∈RI(G)

>0

∑

I∈I(G)

xI subject to
∑

v∈I(G,v)

xI > 1 ∀v ∈ V. (1)

Any proper coloring of G with k colors induces a solution x of value k to this LP, where xI is
set to 1 for the independent sets I that correspond to color classes in the coloring. Thus the LP
given by Eq (1) is indeed a relaxation of the original coloring problem.

Fact 2.1. For any graph G, χf (G) 6 χ(G).

It is worth mentioning that at the same time χ(G) = O(log |V (G)|) · χf (G) using the standard
randomized rounding argument (we do not use this direction explicitly in our paper).

A primal-dual analysis of the fractional-chromatic-number LP implies the following results.
These results are standard but we provide proofs in Appendix A for completeness.

Proposition 2.2. Let G1 = (V1, E1) and G2 = (V2, E2) be arbitrary graphs. Define G1 ∨G2 as a
graph on vertices V1×V2 and define an edge between vertices (v1, v2) and (w1, w2) whenever (v1, w1)
is an edge in G1 or (v2, w2) is an edge in G2. Then, χf (G1 ∨G2) = χf (G1) · χf (G2).

Proposition 2.2 allows us to determine χf of a product of several graphs by focusing on each
individual graph separately.

Proposition 2.3. For any graph G = (V,E),

χf (G) = max
distribution µ on V

min
I∈I(G)

(

Pr
v∼µ

(v ∈ I)
)−1

.

Proposition 2.3 provides us with a tool to lower bound χf by finding a suitable distribution on
the vertices so that no independent set has a significant probability of being by the distribution.

3 A Lower Bound for MMPHF via Fractional Colorings

We can now formally state the main theorem of this paper.

Theorem 2 (Formalization of Theorem 1). For any n, u ∈ N
+ such that n · 2

√
logn 6 u 6 2n

n2+n
,

and for any MMPHF algorithm D(n, u),

d(n, u) = Ω(n log log log u).

The rest of the paper presents the proof of Theorem 2. We spend the rest of the section
reframing the theorem in terms of the fractional chromatic number of a certain graph associated
with MMPHF problem—we will then show how to lower bound the fractional chromatic number
in the next section.
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3.1 Conflict Graph and its Fractional Chromatic Number

Let m > 1 be an integer and define M := 2m
m2+m

. Define the graph G(m) := (V (m), E(m)) as:

• The vertex set is V (m) = Sm,M , that is, the size-m subsets of [M ]. We denote each vertex
v ∈ V (M) by the m-tuple v := (v1, . . . , vm) where 0 < v1 < v2 < · · · < vm ≤ M .

• The edge set E(m) is defined as follows. Let v = (v1, . . . , vm) and w = (w1, . . . , wm) be any
two vertices in V (M). Then, there is an edge (v,w) ∈ G(m) iff there exists some pair of
indexes i 6= j ∈ [m] such that vi = wj.

We refer to G(m) as the conflict graph of m. The following lemma clarifies our interest in this
graph by showing that fractional chromatic number of G(m) can be used to lower bound size of
any MMPHF (for certain parameters of input).

Lemma 3.1. Let m > 1 be an integer and let M = 2m
m2+m

. Consider any MMPHF D(m,M).
Then

d(m,M) > (log χf (G(m)) − 2)/2.

Proof. Consider any two vertices v,w ∈ G(m). If there is an edge between v and w, then there
exists an element z = vi = wj, i 6= j. Therefore for every choice of randomness r, Dr(v) 6= Dr(w),
because query z must return i on Dr(v) and j on Dr(w). This implies that for every r, the set of
vertices v with the same Dr(v) form an independent set in G(m) (and the collection of these sets
is a coloring of G(m)). We use Ir to denote these independent sets in G(m) for this choice of r.

On the other hand, by Proposition 2.3, there exists a distribution µ on V (m) such that

χf (G(m)) = min
I∈I(G(m))

(

Pr
v∼µ

(v ∈ I)
)−1

. (2)

Let us fix that distribution. Under this distribution, by the definition of d,

d = d(m,M) = max
v∈V (m)

E
r
[dr(v)] > E

v∼µ
E
r
[dr(v)] = E

r
E

v∼µ
[dr(v)] .

An averaging argument now implies that there exists a choice r∗ of random bits such that

E
v∼µ

[

dr
∗
(v)
]

6 d.

By Markov’s inequality, with probability at least 1/2, for v ∼ µ, we have that dr
∗
(v) 6 2d.

Recall that Dr∗(v) corresponds to an independent set in Ir∗. Moreover, there can be at most
22d+1 − 2 independent sets I in Ir∗ such that for all v ∈ I, dr

∗
(v) 6 2d; this is because there are at

most 22d+1 − 2 choices for Dr∗(v) across all v ∈ V (m) that can use up to 2d bits in their index (as
the number of non-empty binary strings of length at most 2d is 22d+1 − 2). Since a random v ∼ µ
belongs to one of these 22d+1 − 2 independent sets with probability at least half, we necessarily
have some independent set I ∈ Ir∗ where

Pr
v∼µ

(v ∈ I) >
1

2 · (22d+1 − 2)
>

1

22d+2
.

Plugging in this bound in Eq (2), we have,

χf (G(m)) 6 22d+2,

which implies that d > (log χf (G(m) − 2)/2, concluding the proof.
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Lemma 3.1 reduces our task of proving Theorem 2 to establishing a lower bound on χ(G(m)).
This will be accomplished by the following lemma, which we prove in Section 4.

Lemma 3.2. There is an absolute constant η > 0 such that for every sufficiently large m > 1,

χf (G(m)) > mη·m.

By plugging in the lower bound of χf (G(m)) from Lemma 3.2 inside Lemma 3.1, we get that

for any sufficiently large n > 1 and universe size u = 2m
m2+m

, the lower bound on the MMPHF
problem is Ω(n log n) = Ω(n log log log u) as log n = Θ(log log log u) here.

Thus Lemmas 3.2 and 3.1 can be combined to prove Theorem 2 modulo a serious caveat: the
lower bound only holds for instances of the problem wherein the universe size is larger than doubly
exponential in n, which is admittedly not the most interesting setting of the parameters. In the
next subsection, we use a simple graph product argument (plus Proposition 2.2) to extend this
lower bound to the whole range of parameters u considered by Theorem 2.

3.2 Extending the MMPHF Lower Bound to Small Universes

For every pair of integers m, ℓ > 1, define G(m, ℓ) = (V (m, ℓ), E(m, ℓ)) as the ℓ-offset conflict

graph where the vertex set V (m, ℓ) is the set of all size-m subsets of [ℓ+ 1,M + ℓ], and the edge
set E(m, ℓ) is defined as in normal conflict graphs. (Thus G(m, 0) = G(m).)

Furthermore, for every integer m,k > 1, we define the k-fold conflict graph, denoted by
G⊕k(m), as the graph:

G⊕k(m) = (V ⊕k(m), E⊕k(m)) := G(m, 0) ∨G(m,M) ∨G(m, 2M) ∨ · · · ∨G(m, (k − 1)M),

where ‘∨’ denotes the graph product in Proposition 2.2. The direct interpretation of the nodes of
V ⊕k(m) is a product of tuples from disjoint ranges, but we can also interpret it as a single tuple of
length k ·m. This way, G⊕k(m) is a subset of the conflict graph on km-size subsets of [k ·M ] and
it makes sense to compute D(v) for any v ∈ V ⊕k(m).

Therefore, by Lemma 3.1, we again have a lower bound of Ω(log χf (G
⊕k(m))) for MMPHF on

tuples of length n = km from a universe of size u = kM .

By Proposition 2.2, combined with Lemma 3.2, we have,

log χf (G
⊕k(m)) = k · log χf (G(m)) > Ω(k ·m · logm) = Ω(n logm).

Consider a choice of

m = (log log n)1/6 and k = n/(log log n)1/6,

which in turn gives us

u = k · 2mm2+m ≪ k · 22m
3

=
n

(log log n)1/6
· 22

√
log log n ≪ n · 2

√
logn.

By the above equation, we have a lower bound of Ω(n log log log u) for MMPHF given that in this
case, logm = Θ(log log log u). Thus, so far, we have proven Theorem 2 on both its boundary cases,

namely, when u = n · 2
√
logn and when u = 2n

n2+n
. The proof can now be extended to the full

range of the parameters in the middle by re-parameterizing k appropriately; see Appendix B for
the complete argument.

We conclude that in order to finish the proof of Theorem 2, we need only establish Lemma 3.2.
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4 Fractional Chromatic Number of Conflict Graphs

In this section, we establish a lower bound on the fractional chromatic number of the conflict graph
G(m) for any (large enough) m > 1, and we thereby prove Lemma 3.2.

Proposition 2.3 gives us a clear path for proving the lower bound on χf (G(m)) given by Lemma 3.2:
we can design a distribution µ on vertices of V (m) and then, for every independent set I ∈ I(G(m)),
we can upper bound the probability that v sampled from µ belongs to I. As χf in Proposition 2.3
is maximum over all possible distributions, our distribution provides a lower bound for χf (G(m)).

To continue, we need the following interpretation of the (maximal) independent sets in G(m).

Observation 4.1. Any maximal independent set I in G(m) can be uniquely identified by a function
fI : [M ] → [m] such that for every vertex v = (v1, . . . , vm) ∈ I, fI(vi) = i.

Proof. Consider any two vertices v,w ∈ I. Since there is no edge between v = (v1, . . . , vm) and
w = (w1, . . . , wm) in G(m), whenever vi = wj, we necessarily have that i = j. Thus, any element
of e ∈ [M ] can only appear in a single index ie ∈ [m] throughout all vertices v ∈ I (or does not
appear at all in v). We can thus define fI(e) to be ie, giving us a functino fI with the desired
property.

We now show that fI uniquely identifies I. If we define I ′ to be the set of vertices v =
(v1, . . . , vm) ∈ I satisfying fI(vi) = i for all i, then I ′ is an independent set satisfying I ⊆ I ′. Since
I is assumed to be maximal, it follows that I = I ′, meaning that we can recover I from fI .

Observation 4.1 allows us to reduce Lemma 3.2 to the following lemma about m-tuples of in-
creasing integers. Proving Lemma 4.2 is the main technical contribution of our work.

Lemma 4.2. There is an absolute constant η > 0 such that for any sufficiently large m > 1 and

M = 2m
m2+m

, the following is true. There exists a distribution on m-tuples of increasing numbers
X1 < · · · < Xm from [M ] such that for any function f : [M ] → [m],

Pr
(X1,...,Xm)

(∀i ∈ [m] : f(Xi) = i) 6 m−η·m.

Before proving Lemma 4.2, we show how it implies Lemma 3.2.

Proof of Lemma 3.2 (assuming Lemma 4.2). Any choice of (X1, . . . ,Xm) in Lemma 4.2 can be
mapped to a unique vertex v ∈ G(m) and vice versa. Thus, (X1, . . . ,Xm) induces a distribution µ
on vertices V (m): sample (X1, . . . ,Xm) and return the vertex v = (v1, . . . , vm) where vi = Xi for
all i ∈ [m]. Moreover, for any maximal independent set I ∈ I(G), by Observation 4.1, the vertex
corresponding to (X1, . . . ,Xm) belongs to I iff fI(Xi) = i for all i ∈ [m]. Thus,

Pr
v∼µ

(v ∈ I) = Pr
(X1,...,Xm)

(∀i ∈ [m] : f(Xi) = i) 6 m−η·m.

As every independent set of G(m) is a subset of some maximal independent set, the upper bound
continues to hold for every independent set in G(m).

By Proposition 2.3,

χf (G(m)) > min
I∈I(G(m))

(

Pr (v ∈ I)
)−1

> mη·m,

concluding the proof.
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The rest of the section proves Lemma 4.2. We start with a high-level overview in Section 4.1.
We then define the distribution that we will use for the proof of Lemma 4.2 (Section 4) and analyze
it to establish Lemma 4.2 (Section 4.3). The probability distribution that we construct in these
sections should be viewed intuitively as a “hard” input distribution on inputs to the MMPHF
problem (in the spirit of Yao’s minimax principle).

4.1 A High-Level Overview of the Proof

The proof of Lemma 4.2 is quite dense and requires both a highly delicate probability distribution
and several intricate technical arguments. Thus, before getting into the details of this proof, we
provide a (very) high-level overview of the logic behind it. In order to convey the intuition, we
omit many details from this subsection, instead limiting ourselves to an informal discussion.

The distribution in Lemma 4.2 is roughly as follows: we start with a “window” Win1 which is
the interval [1 : M ], and then sample X1 uniformly at random from Win1. We then pick window
Win2 to be [X1 + 1 : X1 + w2] for an integer w2 > 1 chosen randomly from a carefully designed
distribution. Similarly to before, X2 will be chosen uniformly from Win2. We continue like this by
picking a new window Wini = [Xi−1 + 1 : Xi−1 + wi] for each i ∈ [m] by sampling each wi from
a distribution that is constructed based on (w1, . . . , wi−1), and then sampling Xi from Wini. Note
that, by design, we will satisfy X1 < X2 < . . . < Xm.

The key property that this distribution achieves can be explained informally as follows. For
any index i ∈ [m], there is a recursive partitioning of the window Wini into “dense” and “sparse”
intervals, where an interval I ⊆ Wini is dense (with respect to the function f and the index i)
if at least an Ω(1/m) fraction of entries j ∈ I satisfy f(j) = i, and otherwise I is sparse. The
central property that our distribution ensures is that, if the random choice of Xi places it in a
dense interval, then (with very high probability) the final window Winm will itself end up being
dense (i.e., for at least a 2/m fraction of j ∈ Winm, f(j) = i).

Establishing this property is quite challenging and involves defining the distribution of wi’s
in a highly non-uniform manner (in terms of their values); this is also the source of the doubly
exponential dependence of range M on the number of indices m. We postpone the details on how
this property can be achieved to the actual proof and focus on why it is a useful property for us.

The analysis of the distribution now uses the property in a potential-function style argument.
For each Xi, it is either sampled from a sparse interval or a dense one. If Xi is sampled from a
sparse interval I, then no matter the past iterations, the probability that f(Xi) = i is at most
(2/m), since at most (2/m) fraction of I can have value f(j) = i by the definition of it being
sparse. On the other hand, if Xi is chosen from a dense interval, then at least a (2/m) fraction of
entries of Winm should be mapped to i by f as well (by our property). Seeing Winm as a potential
function now, we have that this latter step can only happen for (m/2) iterations i ∈ [m]—indeed,
each time that this happens for some i, we commit some (2/m) fraction of indices j ∈ Winm to
having f(j) = i, and these sets indices must be disjoint. As a result, we have that only at least
(m/2) iterations i ∈ [m] sample Xi from a sparse interval. Thus,

Pr(f(X1) = 1, . . . , f(Xm) = m) 6
∏

i: Xi chosen from
a sparse interval

Pr (f(Xi) = i | f(X1) = 1, . . . , f(Xi−1) = (i− 1))

6 O

(

1

m

)m/2

= m−Ω(m),

as desired for the proof of Lemma 4.2.
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The main challenge in formalizing the above argument is the design and analysis of the dis-
tribution so that the property discussed above holds. Note also that the property cannot hold
deterministically—another challenge is to show that it holds with such high probability that the
risk of the property ever failing (across the entire construction) can be ignored.

4.2 The Hard Input Distribution in Lemma 4.2

The distribution is defined as follows.

The distribution in Lemma 4.2:

(i) Let k = mm, S0 = km+1, and X0 = 0.

(ii) For i = 1 to m:

(a) Sample two random numbers Yi from [2Si−1 ] and Zi from [k−1] uniformly at random.

(b) Define the random variables of iteration i as:

Xi = Xi−1 + Yi and Si = Si−1 − km−i+1 · Zi.

(iii) Return (X1, . . . ,Xm) as the resulting random variables.

To avoid ambiguity, we use lower case letters (si, xi, yi, zi) to denote realizations of random
variables (Si,Xi, Yi, Zi) for i ∈ [m].

We have the following basic observation on the range of numbers created in this distribution.

Observation 4.3. Every choice of (X1, . . . ,Xm) and (S1, . . . , Sm) satisfy the following properties:

(i) Monotonicity: for all i ∈ [m], Xi > Xi−1 and Si 6 Si−1 −mm (and Si,Xi are integers).

(ii) Boundedness: for every i ∈ [m], Xm 6 Xi + (m− i) · 2Si and Sm > Si − km−i+1 > 0.

Proof. Monotonicity of Xi’s holds as Yi’s are positive. Monotonicity for Si’s holds because Zi’s are
positive and km−i+1 > km−m+1 > k = mm, meaning that we always have Si 6 Si−1 −mm.

For part (ii), we have,

Xm = Xi +

m
∑

j=i+1

Yj 6 Xi +

m
∑

j=i+1

2Sj−1 6 Xi + (m− i) · 2Si ,

which proves the boundedness of Xi’s. For Si’s,

Sm = Si −
m
∑

j=i+1

km−j+1 · Zj > Si − km · (k − 1) ·
m−1
∑

j=i

k−j > Si − km−i+1.

(as
∑m−1

j=i k−j 6
∑∞

j=i k
−j = k−i+1 · (k − 1)−1)

Finally, by this bound, we have Sm > S0 − km+1 > 0 as S0 = km+1.

When discussing (X1, . . . ,Xm), we will also need some further definitions:
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• For any realization (s<i, x<i), we define the window of iteration i ∈ [m], Wini := Wini(s<i, x<i),
as the support of the random variable Xi conditioned on (s<i, x<i), i.e.,

Wini := Wini(s<i, x<i) = [xi−1 + 1 : xi−1 + 2si−1 ].

Notice that |Wini(s<i, x<i)| = 2si−1 and Wini is determined by (s<i, x<i).

• Similarly, for any fixed choice of (s<i, x<i), consider the following numbers:

wi,j := 2si−1−j·k(m−i+1)
for all j ∈ {0, . . . , k}. (3)

This way, |Wini+1(s<i, x<i)| is chosen uniformly at random from {wi,1, . . . , wi,k−1} (depending
solely on the choice of Zi ∈ [k − 1] which also determines Si). Moreover, the ratio of wi,j and
wi,j+1 is fixed for any j ∈ {0, . . . , k − 1} and we define this quantity as

ri := 2k
m−i+1

=
wi,j

wi,j+1
for any j ∈ {0, . . . , k − 1}. (4)

Observation 4.4. For any fixed (s<i, x<i), the random variables |Wini+1| , . . . , |Winm| will be sup-
ported on the interval [2m

m · wi,Zi+1, wi,Zi ].

Proof. By definition,
|Wini+1| = 2Si = 2Si−1−km−i+1·Zi = wi,Zi .

Moreover, by Observation 4.3, for any j ∈ {i+ 1, . . . ,m}, we have |Winj | 6 |Wini+1|. Thus each of
these windows can have length at most wi,Zi , proving the upper bound side.

For the lower bound, for any j ∈ {i+ 1, . . . ,m}, we have,

|Winj| > |Winm| = 2Sm−1 > 2Si−km−i+1+mm
(by part (ii) of Observation 4.3)

= 2m
m · 2Si · 2−km−i+1

= 2m
m · wi,Zi · r−1

i = 2m
m · wi,Zi+1.

This concludes the proof.

We need one final definition for now:

• For the function f : [M ] → [m], we define the density of index i ∈ [m] in f over a window Win,
denoted by densityf (Win, i), as

densityf (Win, i) :=
|{j ∈ Win : f(j) = i}|

|Win| ,

namely, the fraction of entries of the window that are equal to i.

Observation 4.5. For any choice of (s<i, x<i), we have,

Pr (f(Xi) = i | s<i, x<i) = densityf (Wini(s<i, x<i), i).

Proof. Conditioned on (s<i, x<i), Xi is chosen uniformly at random from Wini(s<i, x<i). The
observation therefore follows from the definition of densityf (Wini(s<i, x<i), i).
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4.3 Analysis of the Hard Distribution – Proof of Lemma 4.2

We prove Lemma 4.2 by individually considering each iteration in the distribution.

Lemma 4.6. For any iteration i ∈ [m] and conditioned on any choice of (s<i, x<i), at least one of
the following two conditions is true:

(i) Pr (f(Xi) = i | s<i, x<i) 6
101

m
or (ii) Pr

(

densityf (Winm, i) <
2

m
| s<i, x<i

)

<
1

k1/3
.

The main bulk of this section is to prove Lemma 4.6. We then show at the end of the section
that this lemma easily implies Lemma 4.2. To continue, we need some definitions.

Definition 4.7. The window-tree of iteration i ∈ [m] for (s<i, x<i), denoted by Ti := T (s<i, x<i),
is the following rooted tree with k + 1 levels (the root is at level 0):

(i) Every non-leaf node α of the tree has ri many child-nodes.

(ii) Every node α at a level ℓ ∈ {0, . . . , k} is associated with a window Win(α) of length wi,ℓ.

(iii) The root αr is associated with the window Win(αr) := Wini(s<i, x<i). The windows associated
with child-nodes of a node α at level ℓ partition Win(α) of length wi,ℓ into equal-size windows
of length wi,ℓ+1 (recall that α has ri = wi,ℓ/wi,ℓ+1 child-nodes). Moreover, the left most child-
node receives the window in the partition with the smallest starting point, the next child-node
on the right receives the next window with smallest part, and so on.

(iv) The density of a node α with respect to any function f : [M ] → [m] is defined as

densityf (α) := densityf (Win(α), i).

One way we use the window-tree in our analysis is to consider the process of sampling Xi (which
is uniform over Wini(s<i, x<i) at this stage) as traversing the window-tree via a root-to-leaf path.
This is formalized in the following observation.

Observation 4.8. The distribution of Xi conditioned on (s<i, x<i) can be alternatively seen as: (i)
Sample a root-to-leaf path α0, α1, . . . , αk where α0 is the root of Ti and where each αℓ+1 is a child-
node of αℓ chosen uniformly at random; then, (ii) sample Xi uniformly at random from Win(αk).
We refer to α0, . . . , αk as the sampling path of Xi.

Proof. Xi is distributed uniformly over Wini and leaf-nodes of Ti form an equipartition of Wini.

In addition, we define a pruning procedure for any window-tree T as follows.

Definition 4.9. Fix a function f : [M ] → [m] and a window-tree Ti for some i ∈ [m]. We say that
a node α ∈ Ti is sparse iff

densityf (α) 6
100

m
.

We have the following procedure for pruning Ti: Start from the root down to the leaf-nodes and
prune any sparse node of the tree, as well as all of that node’s sub-tree. We refer to a sparse node
that was pruned on its own (i.e., any node that is sparse and has no sparse ancestors) as a directly

pruned node and to other pruned nodes (i.e., nodes with sparse ancestors) as indirectly pruned.

Finally, for ℓ ∈ {0, . . . , k}, define pℓ as the fraction of directly pruned nodes at level ℓ of the
tree over all level-ℓ nodes that are not indirectly pruned.
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It is worth noting that pruning is deterministic conditioned on (s<i, x<i).

With these definitions, we can now start proving Lemma 4.6. This will be done by considering
some different cases handled by the following claims. The first (and easiest) case is when most
nodes of the window-tree are pruned, in which case we achieve property (i) of Lemma 4.6.

Claim 4.10 (Case I: “Many Directly Pruned Nodes”). Suppose

k
∏

ℓ=0

(1− pℓ) 6
1

m
.

Then, for any choice of (s<i, x<i),

Pr
Xi

(f(Xi) = i | s<i, x<i) 6
101

m
.

Proof. Let Wrem denote the subset of Wini that remains after removing windows of all pruned
leaf-nodes from Wini. We have that

|Wrem| =
# leaf-nodes of Ti that are not pruned

# leaf-nodes of Ti
· |Wini| =

k
∏

ℓ=0

(1− pℓ) · |Wini| 6
|Wini|
m

,

where the second equality is because at each level ℓ of the tree, the number of not pruned nodes
drops by a factor of (1− pℓ) by the definition of pℓ.

Let DP denote the set of all nodes in the tree Ti that were directly pruned. Note that the
windows Win(α) for α ∈ DP partition Wini \Wrem. This implies that

densityf (Wini, i) =
1

|Wini|
·
(

|Wrem| · densityf (Wrem, i) +
∑

α∈DP
densityf (α) · |Win(α)|

)

(by the definition of densityf (·) function)

6
1

|Wini|
·
(

|Wrem|+
∑

α∈DP

100

m
· |Win(α)|

)

(as densityf (α) 6 100/m by the definition of sparsity, and densityf (Wrem, i) 6 1)

6
1

m
+

100

m
=

101

m
.

(as |Wrem| / |Wini| 6 1/m as established above, and
∑

α∈DP |Win(α)| 6 |Wini|)

By Observation 4.5, we have,

Pr
Xi

(f(Xi) = i | s<i, x<i) = densityf (Wini, i) 6
101

m
,

concluding the proof.

We now consider the complementary case, while also taking the randomness of Zi into account.
Recall that Zi is uniform over [k − 1] and that |Wini+1| = wi,Zi . For any fixed realization zi of Zi,
recall the sampling-path-based process of sampling Xi outlined in Observation 4.8. Consider the
first zi vertices in this path, namely, α0, . . . , αzi−1 that start from the root and end at a level zi− 1
node of Ti.

12



Define Event E(s<i, x<i, zi,Xi) to be the event that none of the nodes in α0, . . . , αzi−1 are
pruned. Event E(s<i, x<i, zi,Xi) depends only on the choice ofXi (to traverse the root-to-leaf path),
and is conditioned on s<i, x<i (which determine the window-tree Ti) and zi (which determines the
level of the tree that we focus on). To avoid clutter, when it is clear from the context, we refer to
this event simply by Ei.

We partition the remaining cases based on whether or not the event Ei happens.
Claim 4.11 (Case II: “A Pruned Node on the Sampling Path”). Fix any choice of zi and (s<i, x<i).
In the case that the event Ei does not happen, we have,

Pr
Xi

(f(Xi) = i | s<i, x<i, zi, E(s<i, x<i, zi,Xi)) 6
100

m
.

Proof. After conditioning on (s<i, x<i, zi), the event Ei is only a function of the sampling process of
Xi outlined in Observation 4.8. Assuming Ei does not happen, we know that there exists a unique
node αj on the path α0, . . . , αzi−1 such that αj is sparse and is directly pruned. By additionally
conditioning on the subpath α0, . . . , αj , we have that Xi is chosen uniformly at random from
Win(αj) at this point. Thus,

Pr
Xi

(f(Xi) = i | s<i, x<i, zi, Ei)

=

zi−1
∑

j=0

∑

(α1,...,αj):
αj is directly pruned

Pr
Xi

(f(Xi) = i ∧ (α1, . . . , αj) is on the sampling path | s<i, x<i, zi, Ei)

(as these subpaths partition all possible choices for Ei to not happen)

=

zi−1
∑

j=0

∑

(α1,...,αj):
αj is directly pruned

Pr
Xi

((α1, . . . , αj) is on the sampling path | s<i, x<i, zi, Ei) ·
|{t ∈ Win(αj) : f(t) = i}|

|Win(αj)|

(as Xi is chosen uniformly from Win(αj) under these conditions)

=

zi−1
∑

j=0

∑

(α1,...,αj):
αj is directly pruned

Pr
Xi

((α1, . . . , αj) is on the sampling path | s<i, x<i, zi, Ei) · densityf (Win(αj), i)

(by the definition of densityf )

6

zi−1
∑

j=0

∑

(α1,...,αj):
αj is directly pruned

Pr
Xi

((α1, . . . , αj) is on the sampling path | s<i, x<i, zi, Ei) ·
100

m
.

(as αj needs to be sparse to be directly pruned)

This can now be further upper bounded by 100/m as the probability terms are summing over all
disjoint events that can lead to Ei (conditioned on this event) and thus add up to one.

Finally, we have the following case which handles the situation when Ei happens. The following
claim is the heart of the proof.

Claim 4.12 (Case III: “No Pruned Nodes on the Sampling Path”). Fix any choice of zi and
(s<i, x<i). In the case that the event Ei happens, we have,

Pr
Xi

(

densityf (Winm, i) <
2

m
| s<i, x<i, zi, E(zi,Xi)

)

< 4 ·
(

pzi + pzi+1 +
m

ri

)

.
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Proof. Throughout this proof, we always condition on s<i, x<i, zi, E(zi,Xi) and thus may not men-
tion this explicitly in the probability terms. Let us first list the information we have so far:

• The node αzi−1 on the sampling path is not pruned as we conditioned on the event E(zi,Xi)
(we emphasize that αzi−1 is a random variable and is not fixed yet just by these conditions).

• Window Winm is going to have size at least 2m
m ·wi,zi+1 and at most wi,zi by Observation 4.4.

• By Observation 4.3,

Xm 6 Xi + (m− i) · 2Si = Xi + (m− i) · wi,zi . (by the definition of wi,zi = 2Si)

• Winm starts at Xm and ends at Xm + |Winm|. We can think of the process of sampling Winm

as first sampling its length |Winm|, then sampling the offset Oi,m := Xm −Xi =
∑m

j=i+1 Yj

conditioned on |Winm|, and then sampling Xi conditioned on Oi,m, and |Winm|.

• We further have that Xi conditioned on Oi,m and |Winm| is still uniform over Win(αzi−1).
This is because |Winm| is only a function of Zi+1, . . . , Zm, and Xm −Xi is only a function of
Yi+1, . . . , Ym, while Xi is only a function of Yi; finally, Yi is independent of Yi+1, . . . , Ym and
Zi+1, . . . , Zm and is chosen uniformly from [2si−1 ].

In the following, we condition on any fixed choice of offset oi,m for Oi,m and on |Winm|. We have
already established that

2m
m · wi,zi+1 6 |Winm| 6 wi,zi and oi,m 6 (m− i) · wi,zi . (5)

Moreover, the distribution of Winm conditioned on oi,m, |Winm| (and s<i, x<i, zi, Ei that we
always condition on in this proof), is Xi+oi,m for Xi chosen randomly from Win(αzi−1). Moreover,

given that oi,m 6 (m − i) · wi,zi while |Win(αzi−1)| = wi,zi−1 = ri · wi,zi and ri = 2k
m−i+1

> 2k as
i 6 m, the distribution of Xi and Xi+ oi,m are quite close to each other modulo a negligible factor.
Thus, for intuition, we can think of Xi itself as the distribution of starting point for Winm in this
context (although we will of course take this difference into account explicitly in the proof). We
now use this information to prove the claim. To simplify the exposition, we are going to separate
the analysis based on level zi and level zi+1 of the window-tree.

Analysis on level zi of the window-tree. Firstly, since |Winm| 6 wi,zi , and each node at level
zi of the window-tree Ti has a window of length wi,zi , we get that Winm intersects with windows of
at most two consecutive nodes at level zi of Ti, which are solely determined by the choice of Xi. We
use β1(Xi) and β2(Xi) to denote these two nodes with β1 being the one where the starting point of
Winm, namely, Xi+oi,m, lies in, and β2(Xi) being the one containing the endpoint Xi+oi,m+|Winm|
(note that it is possible that β2 = β1).

We prove that with high probability, neither of these nodes are pruned. Let us focus on β1(Xi)
first (the analysis is almost identical for β2(Xi) and we can then apply the union bound). For any
ℓ ∈ {0, . . . , k − 1}, let P (ℓ) (resp. DP (ℓ)) denote the set of pruned (resp. directly pruned) nodes at
level ℓ of Ti; similarly, for a node α ∈ Ti, let P (α) (resp. DP (α)) denote the set of child-nodes of α
that are pruned (resp. directly pruned). For any fixed choice of αzi−1 on the sampling path of Xi,

Pr
Xi

(β1(Xi) is pruned | αzi−1) =
∑

β∈P (zi)

Pr
Xi

(

β1(Xi) = β | αzi−1

)

(as β1 is in level zi and P (zi) is the set of all pruned nodes of this level)
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=
∑

β∈P (αzi−1)

Pr
Xi

(

β1(Xi) = β | αzi−1

)

+
∑

β∈
P (zi)\P (αzi−1)

Pr
Xi

(

β1(Xi) = β | αzi−1

)

(by partitioning the nodes in level zi between child-nodes of αzi−1 and remaining ones)

6 |P (αzi−1)| ·
1

ri
+ (m− i) · 1

ri
, (6)

where the last inequality holds because of the following reasoning. Firstly, the probability that
β1(Xi) is equal to any fixed node β at level zi is at most 1/ri. This is because

Pr
(

β1(Xi) = β | αzi−1

)

= Pr (Xi + oi,m ∈ Win(β) | αzi−1) 6
|Win(β)|

|Win(αzi−1)|
=

1

ri
,

because Xi is chosen uniformly from Win(αzi−1), and |Win(β)| = |Win(αzi−1)| /ri as β is at level zi.
This immediately implies the first term in the RHS of Eq (6). For the second term, for β1(X) to
intersect with a node β not in the subtree of αzi−1, we need to have Xi + oi,m /∈ Win(αzi−1), while
we know Xi ∈ Win(αzi−1). As oi,m 6 (m− i) ·wi,zi by Eq (5), and any node at level zi has a window
of length wi,zi , we get that there are most (m − i) choices of β outside child-nodes of αzi−1 that
can also become β1(Xi). The second part of RHS in Eq (6) now follows from this and the upper
bound of 1/ri on the probability of each node.

Finally, by taking the expectation over the choice of αzi−1,

Pr
Xi

(β1(Xi) is pruned) = E
αzi−1

[

Pr
Xi

(β1(Xi) is pruned | αzi−1)

]

(by the law of total probability, over the choice of αzi−1 in the sampling path)

6 E
αzi−1

[ |P (αzi−1)|
ri

]

+
(m− i)

ri
(by Eq (6))

= pzi +
(m− i)

ri
,

where in the final equality, we used the fact that αzi−1 is chosen from non-pruned nodes (by
conditioning on Ei), and thus |P (αzi−1)| /ri is the fraction of pruned nodes over all not indirectly
pruned at level zi, which by definition is pzi .

Doing the same exact analysis, we can bound the probability that β2(Xi) is pruned also as

Pr
Xi

(β2(Xi) is pruned) 6 pzi +
(m− i) + 1

ri
,

where the +1 term in the RHS compared to the one for β1 comes from the fact that β2(Xi) can have
(m− i+ 1) choices outside subtree of αzi−1 (because we are now considering Xi + oi,m + |Winm| 6
Xi + (m− i+ 1) · wi,zi instead). By the union bound on the probabilities for β1(Xi) and β2(Xi),

Pr
Xi

(either of β1(Xi) or β2(Xi) is pruned) 6 2 · pzi + 2 · m
ri
. (7)

Analysis on level zi +1 of the window-tree. For the next step, let γ1(Xi), . . . , γt(Xi) denote
the child-nodes of β1(Xi) and β2(Xi) such that Win(γj(Xi)) is entirely contained in Winm. Again,
the choice of γ1, . . . , γt is only a function of Xi. Moreover, since |Winm| > 2m

m · wi,zi+1 by Eq (5),
while the window of each node at level zi+1 is of size wi,zi+1, we have that t > 2m

m −2 always. We
now bound the probability that each γj is (directly) pruned, for j ∈ [t]. This part of the analysis
is quite similar to that of level zi with only minor changes.
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For any choice of β1(Xi) and β2(Xi),

Pr
Xi

(γj(Xi) is directly pruned | β1, β2) =
∑

γ∈
DP (β1)∪DP (β2)

Pr
Xi

(γj(Xi) = γ | β1, β2)

(because Winm ⊆ Win(β1) ∪ Win(β2) and thus γj has no choice outside child-nodes of β1 or β2)

6

(

|DP (β1)|+ |DP (β2)|
)

· 1
ri
, (8)

where we are again going to argue that the probability that γj(Xi) is equal to any fixed node γ is
at most 1/ri conditioned on the choice of β1 and β2. For γj(Xi) to be equal to a node γ we need to
have that Xi + oi,m + (j − 1) · wi,zi+1 ∈ Win(γ); this is because γj(Xi) appears after (j − 1) nodes
of level zi + 1 that are fully inside Winm and each such window has length wi,zi+1 (note that this
is a necessary but not a sufficient condition). Thus,

Pr
Xi

(γj(Xi) = γ | β1, β2) 6 Pr
Xi

(Xi + oi,m + (j − 1) · wi,zi+1 ∈ Win(γ) | β1, β2) 6
|Win(γ)|
wi,zi

=
1

ri
,

where the last inequality is because conditioned on Winm intersecting with β1, β2, Xi is chosen
uniformly at random from a window of length wi,zi (equal to length of Win(β1) and Win(β2)); the
final equality also uses that |Win(γ)| = wi,zi+1 = wi,zi/ri. Hence (8).

We can now deduce that

E
Xi

[# of γ1(Xi), . . . , γt(Xi) that are directly pruned]

= E
β1,β2

E
Xi

[# of γ1(Xi), . . . , γt(Xi) that are directly pruned | β1, β2]

(by the law of total probability over the choices of β1, β2)

= E
β1,β2

[

|DP (β1)|+ |DP (β2)| ·
t

ri

]

, (9)

where the last inequality is by Eq (8).

Let P (zi) denote the set of not pruned nodes in level zi and let P̂ (zi) denote the set of nodes
in level zi whose parents are not pruned. Since we are conditioning on Ei, we know that Xi is
uniformly random from the interval ∪β∈P̂ (zi)

Win(β). It follows that Xm = Xi + oi,m is uniformly

random in a range whose size is also ℓ =
∑

β∈P̂ (zi)
|Win(β)|. Thus, for any level-zi node β, we have

that

Pr[β1 = β] = Pr[Xm ∈ Win(β)] 6
|Win(β)|

ℓ
=

wi,zi

ℓ
=

1

|P̂ (zi)|
.

Summing over the level-(zi + 1) nodes that are directly pruned, we have that

E |DP (β1)| =
∑

γ∈DP (zi+1)

Pr[β1 is the parent of γ] ≤ |DP (zi + 1)|
|P̂ (zi)|

≤ |DP (zi + 1)|
|P (zi)|

,

using the upper bound established above on the probability that β1 is any fixed node. Note that

pzi+1 =
|DP (zi + 1)|
ri · |P (zi)|

,

i.e., the number of directly pruned nodes in level zi + 1 divided by the number of nodes with not
pruned parents. Therefore, E |DP (β1)| 6 ri ·pzi+1. By the same reasoning (but applied to β2, which
contains the endpoint of Xm), we have that E |DP (β2)| 6 ri · pzi+1.
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Thus, we can use Eq (9) to conclude that

E
Xi

[# of γ1(Xi), . . . , γt(Xi) that are directly pruned] 6 2pzi+1 · t.

By Markov’s inequality,

Pr
Xi

(more than t/2 of γ1(Xi), . . . , γt(Xi) are directly pruned) 6 4 · pzi+1. (10)

Finally, by considering the possibility that at least one of β1 or β2 could be pruned also we have,

Pr
Xi

(more than t/2 of γ1, . . . , γt are pruned)

6 Pr
Xi

(more than t/2 of γ1(Xi), . . . , γt(Xi) are directly pruned)

+ Pr(either of β1 or β2 are pruned)

6 4pzi+1 + 2pzi +
2m

ri
, (11)

by Eq (7) and Eq (10).

Concluding the proof. Let us now condition on the event that at least t/2 of nodes γ1, . . . , γt
are not pruned, namely, the complement of the event in Eq (11). Given that Winm can have
intersection with at most two other level-(zi +1) nodes beside γ1, . . . , γt, conditioned on the above
event, we have,

densityf (Winm, i) >
(t/2) · 100/m

t+ 2
>

100

3m
>

2

m
,

as t > 2m
m − 2 ≫ 1. Thus, by Eq (11), we have,

Pr
Xi

(

densityf (Winm, i) 6
2

m

)

6 2pzi + 4 · pzi+1 +
2m

ri
< 4

(

pzi + pzi+1 +
m

ri

)

,

concluding the proof.

Claims 4.10 to 4.12 now cover all possible cases and allow us to prove Lemma 4.6.

Proof of Lemma 4.6. Fix the tree Ti and consider its pruning process. If
∏k

ℓ=0(1 − pℓ) > 1/m,
we achieve the first condition of the lemma by Claim 4.10 and are thus done. Now consider the
complement case. In this case, we have,

1

m
<

k
∏

ℓ=0

(1− pℓ) 6 exp

(

−
k
∑

ℓ=0

pℓ

)

,

which implies that
∑k

ℓ=0 pℓ 6 lnm. Recall that the choice of Zi in the distribution is uniform over
[k − 1] regardless of conditioning on (s<i, x<i). Thus, we have,

E
Zi

[pZi + pZi+1] 6
1

k − 1
·
k−1
∑

ℓ=1

pℓ +
1

k − 1
·

k
∑

ℓ=2

pℓ 6
2

k − 1

k
∑

ℓ=0

pℓ 6
2 lnm

(k − 1)
.

By Markov’s inequality, we have,

Pr
Zi

(

pZi + pZi+1 >
4 · lnm
k1/2

)

≪ 1

k1/3
.
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We can now condition on any choice zi of Zi such that pzi + pzi+1 6 (4 lnm)/k1/2. At this point,
either event E(zi) does not happen, in which case, by Claim 4.11, we again obtain condition (i) of
the lemma; or the event E(zi) happens, which by Claim 4.12 and the choice of ri in Eq (4) implies

Pr
Xi

(

densityf (Winm, i) 6
2

m
| s<i, x<i

)

6 4 ·
(

4 · lnm
k1/2

+
m

2km−i

)

≪ 1

k1/3
,

as i 6 m− 1 and thus m/2k
m−i

6 m/2k ≪ 1/k1/3, as k = mm. Taking the union bound over the
above two events, we also obtain condition (ii) of the lemma.

Finally, we use this lemma to conclude the proof of Lemma 4.2.

Proof of Lemma 4.2. Let T1, T2 ⊆ [m] denote, respectively, the iterations in which condition (i)
or condition (ii) of Lemma 4.6 happens. Note that T1 and T2 are random variables over the
randomness of Si’s and Xi’s. We first claim that with high probability |T2| < m/2. This is because
for any iteration i ∈ T2 and any choice of (s<i, x<i) of prior iterations, by Lemma 4.6,

Pr
Xi

(

densityf (Winm, i) 6
2

m
| s<i, x<i

)

6
1

k1/3
.

A union bound on at most m choices for indices on T2 then implies that with probability at least
1 − m/k1/3, we have densityf (Winm, i) > 2

m for all i ∈ T2. But then conditioned on this event,
the size of T2 cannot be m/2 or larger as otherwise Winm contains m/2 disjoint sets each of which
contains than a 2/m fraction of the window, which is a contradiction. Thus,

Pr(|T2| > m/2) 6
m

k1/3
≪ 1

k1/4
. (as k = mm)

We condition on the complement of this event in the following, namely, that |T2| < m/2. Let
{

i1, . . . , im/2

}

denote the first m/2 indices of T1 which by the conditioning on the size of T2 is well
defined. We have,

Pr(for all j ∈ [m/2]: f(Xij ) = ij) =
∏

j∈[m/2]

Pr
(

f(Xij) = ij | f(Xi1) = i1, . . . , f(Xij−1) = ij−1

)

6

(

101

m

)m/2

.

(since these are type (i) iterations and we can apply condition (i) of Lemma 4.6)

Putting these two together, combined with the value of k = mm, implies that,

Pr
(X1,...,Xm)

(∀i ∈ [m] : f(Xi) = i) 6
1

k1/4
+

(

101

m

)m/2

6 m−η·m,

for some constant η > 0 (taking η = 1/100 certainly suffices). This concludes the proof.
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Appendix

A Proofs of Standard Results in Fractional Coloring

We prove Propositions 2.2 and 2.3 here for completeness. These proofs are standard; see, e.g. [SU11].
We start by presenting the dual view of fractional colorings that is the key to these proofs.

The dual view of fractional colorings. Given that χf (G) is defined as a solution to an LP,
we can use duality to also express χf (G) via the following LP:

χf (G) := max
y∈RV (G)

>0

∑

v∈G
yv subject to

∑

v∈I
yv 6 1 ∀I ∈ I(G). (12)

This LP is a fractional relaxation of the clique number of G, namely, the size of the largest
clique in G (since, in any integral solution to this LP, the y-values that are 1 must be on the
vertices of a clique). Interestingly, although the chromatic number and clique size are not duals,
their relaxations are.

Proposition (Restatement of Proposition 2.2). Let G1 = (V1, E1) and G2 = (V2, E2) be arbitrary
graphs. Define G1 ∨G2 as a graph on vertices V1 × V2 and define an edge between vertices (v1, v2)
and (w1, w2) whenever (v1, w1) is an edge in G1 or (v2, w2) is an edge in G2. Then, χf (G1 ∨G2) =
χf (G1) · χf (G2).

Proof of Proposition 2.2. We first prove that

χf (G1 ∨G2) > χf (G1) · χf (G2). (13)

Let y1 ∈ R
V1 and y2 ∈ R

V2 be optimal solutions to the dual LP given by Eq (12) for G1 and G2,
respectively. Consider the assignment y ∈ R

V1×V2 where yu1,u2 = y1u1
· y2u2

. We clearly have that

∑

(u1,u2)∈V1×V2

yu1,u2 =





∑

u1∈V1

y1u1



 ·





∑

u2∈V2

y2u2



 = χf (G1) · χf (G2).

We now argue that y is also a valid solution to the dual LP given by Eq (12) for G1 ∨G2. Fix any
independent set I ∈ I(G1 ∧G2). By the definition of the product, we know that I can be written
as a product set, namely, I = I1 × I2 for I1 ∈ I(G1) and I2 ∈ I(G2). Thus,

∑

(u1,u2)∈I
yu1,u2 =





∑

u1∈I1
y1u1



 ·





∑

u2∈I2
y2u2



 6 1 · 1 = 1,

where the inequality is by the constraint of dual LP for y1 and y2 each. Thus, y is a solution to
the dual LP for G1 ∨G2, proving Eq (13).

We now prove that

χf (G1 ∨G2) 6 χf (G1) · χf (G2), (14)

using the primal LP instead. Let x1 ∈ R
I(G1) and x2 ∈ R

I(G2) be optimal solutions to primal LP
from Eq (1) forG1 andG2, respectively. Consider the assignment x ∈ R

I(G1∨G2) where xI = x1I1 ·x
2
I2
,

using the fact from the previous part that I = I1 × I2 for I1 ∈ I(G1) and I2 ∈ I(G2).
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We again clearly have that

∑

(u1,u2)∈I(G1∨G2)

xI =





∑

I1∈I(G1)

x1I1



 ·





∑

I2∈I(G2)

x2I2



 = χf (G1) · χf (G2),

so it remains to prove that x is a valid solution to the primal LP from Eq (1) for G1 ∨G2. Fix any
vertex (u1, u2) ∈ V1 × V2 and consider all independent sets I1 ⊆ V1 that contain u1 and I2 ⊆ V2

that contain u2. Then, I1 × I2 is also an independent set in G1 ∨G2 that contains (u1, u2). Thus,

∑

I∈I(G1∨G2):(u1,u2)∈I
xI >





∑

I1∈I(G1,u1)

x1I1



 ·





∑

I2∈I(G2,u2)

x2I2



 > 1 · 1 = 1,

where the inequality is by the constraint of primal LP from Eq (1) for x1 and x2 each. Thus, x is
a solution to the primal LP from Eq (1) for G1 ∨G2, proving Eq (14).

Proposition (Restatement of Proposition 2.3). For any graph G = (V,E),

χf (G) = max
distribution µ on V

min
I∈I(G)

(

Pr
v∼µ

(v ∈ I)
)−1

.

Proof of Proposition 2.3. Let µ be any distribution on V (G) and define b := maxI∈I(G) Pr(v ∈ I)−1.

Create y ∈ R
V (m) such that yv = b · µ(v) for every vertex v ∈ V (m) where µ(v) is the probability

of vertex v under the distribution µ. We claim that y is a feasible dual solution in Eq (12).

For every independent set I ∈ I(G),

∑

v∈I
yv = b ·

∑

v∈I
µ(v) = b · Pr

v∼µ
(v ∈ I) 6 1,

by the definition of b. Thus y is a feasible dual solution. Moreover,

∑

v∈V (G)

yv = b ·
∑

v∈V (G)

µ(v) = b.

As the dual LP in Eq (12) is a maximization LP, we have that χf (G) > b = maxI∈I(G) Prµ(v ∈ I)−1,
for any distribution µ on the vertices.

Conversely, let y be any optimal solution to the dual LP and let c :=
∑

v∈V yv. Define a
distribution µ on the vertices V by setting µ(v) = yv/c. For any independent set I ∈ I(G), we
have,

Pr
v∈µ

(v ∈ I) =
∑

v∈I
µ(v) =

∑

v∈I
yv/c 6 1/c,

where the final inequality is because y is a feasible dual solution. Thus, there exists a distribution
µ such that χf (G) = c 6 maxI∈I(G) Prµ(v ∈ I)−1.

Combining these two parts concludes the proof.
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B Covering The Full Range of the Universe Size

We now generalize the proof of Theorem 2 to the full parameter range specified in the theorem.
Consider u and n satisfying

n22
√

log log n ≤ u ≤ 2n
n2+n

.

Notice that, on the lower-bound side, we are actually covering a slightly larger range (and therefore
proving a slightly stronger result) than required to establish Theorem 2.

Set
m = (log log u)1/6 and k = n/m = n/(log log u)1/6.

Note that the setting of k implicitly requires that (log log u)1/6 ≤ n, which follows from the fact
that (log log u)1/6 ≤ (n2 + n)1/6 ≤ √

n.

The k-fold conflict graph G⊕k(m) has logχf (G
⊕k(m)) = Ω(n logm) = Ω(n log log log u) as

already argued in Section 3.2. To complete the proof, we must establish that the graph G⊕k(m)
has vertices that are subsets of a universe whose size u′ satisfies u′ ≤ u. Solving for u′, we have
that

u′ = kM =
n

(log log u)1/6
· 2mm2+m ≤ n · 22m

3/2 ≤ n · 22
√

log logu/2
.

On the other hand, u ≥ n · 22
√

log log u
. It follows that

u

u′
≥ 22

√
log log u

22
√

log log u/2
≫ 1,

which completes the proof of Theorem 2 for any choice of u between n · 22
√

log log n
and 2n

n2+n
.

Finally, we remark that the term 2n
n2+n

in the upper bound is not tight and can be replaced
by any other 22

poly(n)
term; this is simply because for any u = 22

poly(n)
, log log log u = Θ(log n) and

thus for any larger universe size u also, we can simply focus on the smallest 2n
n2+n

numbers in the
universe and still obtain the same asymptotic lower bound. The lower bound term is also not tight

and can be replaced with n · 22(log log n)ε

for any constant ε ∈ (0, 1/2) by the same argument.
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