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Abstract

Greedy BST (or simply Greedy) is an online self-adjusting binary search tree defined in the geometric
view ([Lucas, 1988; Munro, 2000; Demaine, Harmon, Iacono, Kane, Patrascu, SODA 2009). Along with
Splay trees (Sleator, Tarjan 1985), Greedy is considered the most promising candidate for being dynam-
ically optimal, i.e., starting with any initial tree, their access costs on any sequence is conjectured to be
within O(1) factor of the offline optimal. However, despite having received a lot of attention in the past
four decades, the question has remained elusive even for highly restricted input.

In this paper, we prove new bounds on the cost of Greedy in the “pattern avoidance” regime. Our new
results include:

• The (preorder) traversal conjecture for Greedy holds up to a factor of O(2α(n)), improving upon the
bound of 2α(n)O(1)

in (Chalermsook et al., FOCS 2015) where α(n) is the inverse Ackermann function
of n. This is the best known bound obtained by any online BSTs.

• We settle the postorder traversal conjecture for Greedy. Previously this was shown for Splay trees
only in certain special cases (Levy and Tarjan, WADS 2019).

• The deque conjecture for Greedy holds up to a factor of O(α(n)), improving upon the bound 2O(α(n))

in (Chalermsook, et al., WADS 2015). This is arguably “one step away” from the bound O(α∗(n)) for
Splay trees (Pettie, SODA 2010).

• The split conjecture holds for Greedy up to a factor of O(2α(n)). Previously the factor of O(α(n)) was
shown for Splay trees only in a special case (Lucas, 1988).

The input sequences in traversal and deque conjectures are perhaps “easiest” in the pattern-avoiding input
classes and yet among the most notorious special cases of the dynamic optimality conjecture. Key to all
these results is to partition (based on the input structures) the execution log of Greedy into several simpler-
to-analyze subsets for which classical forbidden submatrix bounds can be leveraged. We believe that this
simple method will find further applications in doing amortized analysis of data structures via extremal
combinatorics. Finally, we show the applicability of this technique to handle a class of increasingly complex
pattern-avoiding input sequences, called k-increasing sequences.

As a bonus, we discover a new class of permutation matrices whose extremal bounds are polynomially
bounded. This gives a partial progress on an open question by Jacob Fox (2013).
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1 Introduction

The dynamic optimality conjecture postulates that there exists an online binary search tree (BST) whose
cost to serve any input sequence (search, insert, delete) is at most the optimal offline cost of any binary
search tree. The two most promising candidates for being dynamically optimal are Splay trees [ST85]
and Greedy [DHI+09, Mun00, Luc88]. Despite continuing efforts for many decades (see, e.g.,the surveys
and monographs [Iac13, Koz16, CGK+16]), the conjecture remains wide open even for highly restricted
corollaries of the conjecture. We describe some of the most important conjectures that fall under the regime
of pattern avoidance: Splay trees and Greedy satisfy preorder traversal, postoder traversal, deque and split
properties where these properties are defined below.

(Preorder) Traversal Property: An online BST satisfies preorder traversal property if, starting
with any initial BST on n keys, for any input X = (x1, . . . , xn) ∈ [n]n obtained by preorder
traversal of (potentially distinct) binary search tree R on [n], it searches X with O(n) cost.a

aMore formally, xt is searched at time t for all t ∈ [n].

(Postorder) Traversal Property: An online BST satisfies postorder traversal property if, start-
ing with any initial BST on n keys, for any input X = (x1, . . . , xn) ∈ [n]n obtained by pos-
torder traversal of (potentially distinct) binary search tree R on [n], it searches X with O(n)
cost.

Deque Property: An online BST satisfies deque property if, for m > n, starting with any initial
BST on n keys, can serve m operations INSERTMIN, INSERTMAX, DELETEMIN, DELETEMAX
in O(m) time.

Split Property: An online BST satisfies split property if, starting with any initial tree with
n keys, serves a sequence of n SPLIT operations in time O(n) where the operation SPLIT(i)
moves i to the root and then deletes it, leaving two independent binary search (split) trees.

This paper focuses on Greedy’s bounds for such corollaries through the lens of “pattern avoidance” (to
be made precise later). Each of them is of independent interest and therefore has received a lot of attention in
the literature. Resolving these conjectures (especially the preorder conjecture) is considered the “simplest”
step of dynamic optimality conjecture and yet has so far resisted attempts for past three decades.

Bounds on Splay Trees. For deque property, Splay trees have been shown to cost at most O(mα(n))
by Sundar [Sun92] and later O(mα∗(n)) by Pettie [Pet08]. It has remained open whether Splay’s cost is
o(n log n) for preorder and postorder traversals. Special cases when we start inserting preorder or postorder
sequence X from an empty-initial tree were resolved recently by Levy and Tarjan [LT19]. Lucas [Luc92]
showed that the split costs O(nα(n)) in Splay trees when the initial tree is a path.

Bounds on Greedy. The bounds known for Greedy are generally better than the Splay’s counterpart (ex-
cept for deque). For deque property, Greedy is known to cost m2O(α(m,m+n)) [CGK+15a]. For both preorder
and postorder traversal sequences, Greedy is known to cost at most n2α(n)O(1)

[CGK+15b]. We are not
aware of published results for Split conjecture. Greedy algorithm is formally defined in Section 2.

Remark. One can ask popular conjectures of BST in two settings: (1) when the initial BST can be pre-
processed or (2) when it cannot be pre-processed. There is a gap in our understanding of these two settings.
For example, it is not known if Greedy’s cost for preorder traversal is same in both the settings. In setting
(1), Chalermsook et al. [CGK+15b] showed that Greedy takes O(n) for the preorder traversal. One can also
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solve this problem using the ideas in [IL16]. If preprocessing is allowed, then Splay trees cost O(n) for the
preorder traversal [CH93]. We will consider setting (2) in this paper. We also note that Multi-Splay trees
satisfy deque property [Wan06].

Broader context: Amortized analysis and forbidden submatrix theory. Resolving these conjectures rep-
resents a small part of a much broader algorithmic challenge in amortized analysis of online algorithms/data
structures. Amortized analysis is typically done via potential function method, which would be easier when
the algorithm designer is allowed to tailor an algorithm towards a tentative analytical method they have in
mind. However, in the context of analyzing Greedy or Splay, the algorithms are already fixed in advance
(e.g. these are the algorithms that tend to work well in practice), so we have no control on the “design”
part. In such cases, the state-of-the-art understanding of potential function design is much more adhoc and
mostly tailored to specific cases. Indeed, there has been no systematic, efficient way known for the task of
designing a potential function, when an algorithm is fixed in advance. The fact that the aforementioned
conjectures have remained open for decades clearly underlines the lack of understanding on this front.

Extremal combinatorics methods (such as forbidden submatrix theory) have been used successfully in
amortized analysis as an alternative to potential function design. In the context of binary search trees, such
attempts were pioneered by Pettie [Pet08, Pet10] and more recently extended by [CGK+15a, CGK+15b].
Informally speaking, one can encode an execution log of Greedy as a binary matrix. It is a non-trivial fact
that, since the input is restricted, the execution log of Greedy is also restricted. When the execution log
is restricted, it cannot have too many 1’s in the matrix, and thus we can apply the extremal bounds from
forbidden submatrix theory as a black box.

More precisely, forbidden submatrix theory is a collection of theorems of the form: Let π be a matrix
(pattern), and ex(n, π) denotes the extremal bound which equals the maximum number of 1s in any n-by-
n 0/1 matrix that avoids pattern π (a matrix M contains pattern π if it is possible to obtain π from M by
removing rows, columns, and turning ones into zeroes; otherwise, we say that M avoids π), see Figure 1
for illustration. Studying behavior of extremal functions for various matrices π have been a fruitful area of
research in extremal combinatorics.

Figure 1: An example that M contains pattern π1, but avoids π2.

Let X ∈ [n]n be an input sequence. Denote by GX the matrix that “encodes” the execution log of Greedy,
that is, GX(i, j) = 1 if and only if key i is touched by Greedy at time j, implying that the number of 1s in
GX (denoted by |GX |) is equal to the cost of the algorithm. The connection between BSTs and the theory
of forbidden matrices (see, e.g., in [CGK+15a, CGK+15b]) relies on a “reduction statement”, which says
that if X avoids a pattern π of size k, then the Greedy matrix GX avoids a (tensored) pattern π′ of size 3k.
Therefore, existing extremal bounds can be immediately used to upper bound |GX |. Indeed, for preorder
and postorder traversals (that avoid patterns of size 3), GX avoids a pattern of size 9. The bound of n2α(n)O(1)

follows from this generic reduction. Here, we state the known reductions.

Lemma 1 ([CGK+15a, CGK+15b]) Let Q0 =

[
1 1 1

1 1

]
, and let Q1 and Q2 be the following matri-
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ces.

Q1 =


1

1 1
1

1 1
1

1 1

, and Q2 =


1

1 1
1

1 1
1

1 1

.

(we omit zero entries for clarity).

• If X is delete-only deque sequence, then GX avoids Q0. Therefore, |GX | ≤ ex(n, Q0) = O(n2α(n)).

• If X is preorder traversal, then GX avoids Q1. Therefore, |GX | ≤ ex(n, Q1) ≤ n2α(n)O(1)
.

• If X is postorder traversal, then GX avoids Q2. Therefore, |GX | ≤ ex(n, Q2) ≤ n2α(n)O(1)
.

Barrier for Improvements. Given that Lemma 1 provides near optimal deque and traversal sequences for
Greedy up to a factor of 2α(n)O(1)

, it is an intriguing open question to further extend this technique to settle
deque and/or traversal conjectures for Greedy. As suggested by [CGK+15b], the improvement can poten-
tially be made either finding a better pattern that is avoided by Greedy matrix, or improving the analysis of
the extremal bounds for Q1 and Q2. However, there are some inherent limitations to this approach. First,
the lower bounds are known1 for Q1 and Q2. That is, ex(n, Q1) = Ω(nα(n)) and ex(n, Q2) = Ω(nα(n)).
Although they are far from the current upper bounds, these results stop us from obtaining linear upper
bounds.

The second key barrier is due to a counterexample provided in [CGK+15b]. A natural way to prove that
the Greedy matrix G(X) satisfies |G(X)| = O(n) is to show that G(X) avoids a constant-sized permutation
pattern, and applying the upper bound from [MT04]. However, [CGK+15b] shows a family of sequences
X such that G(X) contains every constant-sized permutations even when the input is delete-only deque
sequence. The counterexample also suggests that it is unlikely that the Greedy matrix will avoid some
linear patterns (i.e. pattern π whose extremal bound ex(n, π) = O(n)).

Our Results. In this paper, in order to bypass the barriers, we propose to decompose the Greedy matrix
G(X) into several matrices that are “easier in different ways”. More formally, we write G(X) = ∑`

i=1 Mi
where matrices Mi are chosen based on the structures of X so that each Mi avoids a much smaller pattern
πi (which can be different for distinct i). This would give the upper bound |G(X)| ≤ ∑`

i=1 ex(n, πi). All our
results follow this framework. We believe that our matrix decomposition techniques will inspire further
development of amortized analysis using extremal combinatorics beyond BSTs.

• For preorder traversal input X, we have

|G(X)| ≤ ex

(
n,

[
1

1

])
+ ex

(
n,

[
1 1

1

])
+ 2 · ex

(
n,

[
1 1 1

1 1

])
which impies that |G(X)| ≤ O(n2α(n)) (details in Section 4). We remark that, without the matrix de-

composition technique, the matrix G(X) itself contains pattern
[

1 1 1
1 1

]
(see Appendix A

for a counterexample).

1They contain the pattern

 1
1

1 1

 whose extremal bound is Ω(nα(n)) [FH92].
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Previous known This paper Remark
Preorder n2α(n)O(1)

[CGK+15b] O(n2α(n)) Theorem 1(1)
Postorder n2α(n)O(1)

[CGK+15b] O(n) Theorem 1(2)
Deque O(m2α(m,m+n)) [CGK+15a] O(mα(n)) Theorem 1(3)
Split - O(n2α(n)) Theorem 2
k-Increasing O(nk2) [CGK+15b, Cib13] O(min{nk2, nkα(n)}) Theorem 3

Table 1: Main results for Greedy BSTs.

• For postorder traversal input X, we have

|G(X)| ≤ ex

(
n,

[
1 1

1

])
+ ex

(
n,

[
1 1

1

])
+ 2 · ex

(
n,

[
1

1 1

])
which implies that |G(X)| = O(n) (details in Section 4).

• For delete-only deque input X, we have

|G(X)| ≤ ex

(
n,

[
1 1

1 1

])
+ ex

(
n,

[
1 1

1 1

])
+ O(n)

which implies that |G(X)| ≤ O(nα(n)) (details in Section 3). We remark that, without the matrix de-

composition technique, the matrix G(X) itself contains pattern
[

1 1
1 1

]
and

[
1 1

1 1

]
(see Appendix A for a counterexample). .

We summarize our results in the following.

Theorem 1 The following bounds hold for Greedy:

1. Greedy searches any preorder traversal sequence with cost O(n2α(n)).

2. Greedy searches any postorder traversal sequence with cost O(n).

3. Starting with any initial BST R with n keys, Greedy serves m operations of INSERTMIN, INSERTMAX,
DELETEMIN, DELETEMAX with cost at most O(mα(n)) assuming m > n.

Remark 1 The sequence for preorder and postorder is a permutation sequence of length n. For deque we consider any
sequence of length m > n.

Remark 2 In all our results we consider an initial tree T before the execution of Greedy. If the initial tree is not given,
then problems becomes much ”easier” to solve. For example the cost of sequential access is O(n) with initial tree and
without initial tree but the proof structures are different [CGK+15b, Fox11].

For split conjecture, we in fact prove that the maximum cost of Greedy’s splitting is at most the cost of
searching a preorder traversal and therefore our traversal bound directly gives an upper bound on Greedy’s
serving split tree operations.
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Theorem 2 (Informal) For n ∈ N, let deldeq(n) be the maximum possible costs of Greedy when serving deletion-
only deque operations on n keys, and preorder(n) be the maximum cost

when serving preorder search. Then,

deldeq(n) ≤ split(n) ≤ preorder(n).

Consequently, Greedy can be used as a split tree with cost O(n2α(n)).

As a consequence for Greedy, the traversal property implies the split property, which implies the delete-
only deque property. The implication from traversal to split properties is not known for Splay trees.

One can view this collection of conjectures as the dynamic optimality conjecture on restricted inputs,
where the restriction on the input sequence is defined by pattern avoidance properties. Pattern avoiding
problems are interesting special cases of the dynamic optimality conjecture that have shown interplay be-
tween extremal combinatorics and data structures.

We now define pattern avoidance formally. Consider any input X.2 We say that X = (x1, x2, . . . , xn) con-
tains pattern π = (π1, . . . , πk) if there are indices i1 < . . . < ik such that the subsequence (xi1 , xi2 , . . . , xik ) is
order-isomorphic to π. Otherwise, X avoids π.

The three properties can be (roughly) rephrased in this language as follows. For the preorder traversal
property, we are given an input permutation X that avoids pattern (2, 3, 1), and our goal is to show a binary
search tree that searches this sequence with cost at most O(n). For the postorder traversal property, our goal
is to search an input sequence that avoids (1, 3, 2). For the deque property, if we represent the (delete-only)
input X (where xt is the key deleted at time t), then X avoids patterns (2, 3, 1) and (2, 1, 3). In this way, all
these properties deal with size-3 pattern-avoiding input classes.

Besides the small patterns, recent works have also started exploring the complexity of input classes that
avoid patterns of growing sizes [CGK+15b, GG19, CGK+16]. See the thesis of Kozma [Koz16] for more
detail about this connection and a broader perspective on this class of problems. Our next result shows
the improvement on a pattern-avoiding input class that allow patterns to be growing in terms of k. We
say that an input X is k-increasing (respectively, k-decreasing) if X avoids (k + 1, k, k− 1, . . . , 1) (respectively,
(1, 2, . . . , k, k + 1)). Note that 1-increasing (1-decreasing) sequence corresponds to sequential sequences:
X = (1, . . . , n) (or X = (n, . . . , 1), respectively). The sequential sequence has been studied in the early days
of the dynamic optimality conjecture [Tar85, Elm04] for splay and a bit more recently for Greedy [Fox11].
Note that k-increasing sequence and k-decreasing sequence are symmetric.

Theorem 3 For k-increasing or k-decreasing input X, Greedy serves input X with cost at most O(min{nk2, nkα(n)}).

Previously, the best analysis of Greedy achieves the upper bound of O(nk2) [CGK+15b]. They showed
that the greedy matrix avoids a permutation of size k2. Furthermore, the permutation is layered (i.e., a con-
catenation of decreasing sequences into layers such that each entry of a layer is smaller than the following
layers) and thus it admits O(nk2) bounds by Theorem 1.6 of [Cib13]. Our new result improves the previous
bound whenever k > α(n). Table 1 summarizes our main results.

A New Result in Extremal Combinatorics: Along the way of proving k-increasing bounds for Greedy, we
discover a new result in extremal combinatorics regarding the bounds of “easy” permutation patterns. A
seminal result by Marcus and Tardos [MT04], show that ex(n, P) = O(n2k log k) for any length-k permutation
matrix P. The bounds have been improved to ex(n, P) = n2O(k) by [Fox13, CK17]. Furthermore, Fox
[Fox13] showed (via a randomized construction) that almost all permutation matrices have the bound ≥
n2Ω((k/ log k)1/2) and left open the following conjecture:

Conjecture 1 If π is a permutation that avoids O(1)-sized pattern, ex(n, π) = n · poly(|π|).
2It was argued in [DHIP07] that one can assume w.l.o.g. that the input is a permutation.
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Here, we make a partial progress by showing an approach to determine if the extremal bound of a
permutation matrix P has polynomial dependence on k instead of exponential dependence. As a result, we
discover a new class permutation matrices whose extremal bounds are polynomially bounded.

For any permutation π, denote by dleft(π) (abbreviation for “delete from the left”) the permutation
obtained by removing the point (in the matrix form of π) on the leftmost column as well as its corresponding
row and column; for instance, dleft(1, 3, 4, 2) = dleft(2, 3, 4, 1) = (2, 3, 1). Similarly, we can define dright(π).
We say that a length-k permutation matrix P is left-reducible if it contains a point on one of the two corners
of the first column (i.e., at coordinate (1, 1) or (1, k)). Similarly, we say that P is right-reducible if it contains
a point on one of the two corner of the last columns (i.e., at coordinate (k, 1) or (k, k)).

Definition 1 Let P be a length-k permutation matrix. We say that P is reducible to a permutation matrix Q, denoted
by P→ Q, if one of the followings is true

• Q = dleft(P) and P is left-reducible, or

• Q = dright(P) and P is right-reducible.

Furthermore, we say that P is reducible to Q in t steps, denoted by P t→ Q, if there exist permutation matrices
P1, . . . , Pt−1 such that P→ P1 → . . .→ Pt−1 → Q.

We say that a length-k permutation P is k-linear if ex(n, m, P) = O(k(m + n)) where ex(n, m, P) is
asymmetric extremal bounds of m-by-n matrix avoiding P. Similarly, we say that P is k-polynomial if
ex(n, P) ≤ nkO(1). Our new result is the following.

Theorem 4 If a length-k permutation P is reducible to a k-linear permutation Q in t steps, then ex(n, P) ≤ nkO(t).
In particular, P is k-polynomial whenever t = O(1).

In other words, if we start with a k-linear permutation, we can add a point on one of the corners and
repeat for a few times, then the resulting permutation is k-polynomial. An example of linear permutation
includes an identity matrix (Theorem 7(i) of [BC21]). Another important class of linear permutation is
layered permutation. A layered permutation is a concatenation of decreasing sequences S1, . . . , S` such that
every element of Si is smaller than all elements of Si+1. Layered permutations are known to be linear in k
(Theorem 1.6 of [Cib13]). We refer to [CK17] for more discussion regarding k-linear permutations.

Further Related Work. The “parameterized” pattern avoiding inputs, where one considers an input class
whose avoided pattern has size depending on parameter k, have recently received attention (see e.g.,
[CGK+15b, GG19]). Research questions in this setting aim to first prove the upper bound for OPT(X)
as a function of k and later show that Greedy matches this upper bound. The parameters of interest are
those that generalize the classical special cases of the dynamic optimality conjecture (such as deque and
pre-order traversals). Chalermsook et al. [CGK+15b] showed O(n2α(n)O(|π|)

) upper bound for the cost of
Greedy on inputs avoiding π. Goyal and Gupta proved O(n log k) upper bound on the cost of Greedy on
k-decomposable sequences [GG19] (if one allows “preprocessing”). A stronger bound that subsumes the
k-decomposable bound and the dynamic finger bound [CMSS00, Col00] was shown by [IL16, BDIL16] (see
discussion in [CGK+16].). Besides pattern avoidance, other BST bounds include the unified bound [BCDI07,
Iac01, DS09] and the multi-finger bound [CGK+18, HIM13, DILÖ13]. The original drawback of Greedy was
that, in contrast to Splay whose simplicity made it attractive for practitioners, Greedy does not admit a sim-
ple implementation in the BST model. However, due to a recent work by Kozma and Saranurak [KS19],
there exists a heap data structure (called smooth heap) which matches the cost of Greedy and is imple-
mentable in practice.
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Conclusion and Open Problems. We propose a simple idea of partitioning the execution log of Greedy
into several simpler-to-analyze matrices based on the input structures and leveraging distinct patterns to
upper bound each structured matrix separately. Based on this idea, we derived improved bounds for many
notorious pattern avoidance conjectures (and completely settling the postorder conjecture). We view these
results as a showcase of the decomposition trick, which allows us to extend/strengthen the applications of
forbidden submatrices in amortized analysis of data structures. We believe that this technique would find
further uses in BSTs and more broadly in amortized analysis of data structures.

Paper Organization. We start preliminaries including notations, definitions (the formal definition of Greedy
BSTs in particular), basic facts about Greedy in Section 2. In Section 3, we start with a warm-up section
providing simple proofs of sequential access theorem, and delete-only deque sequence. In Section 4, we
prove Greedy bounds for preorder and postorder traversals. In Section 5, we discuss Deque sequence with
insertions and deletions. We discuss Split conjecture for Greedy in Section 6. In Section 7, we discuss
k-decreasing sequence. In Section 8, we discuss the new result in extremal combinatorics.

2 Preliminaries

Matrix and geometry: Let M be a binary matrix. For geometric reasons, we write matrix entries column-
first, and the rows are ordered bottom-to-top, i.e. the first row is the bottom-most. Strictly speaking, M(i, j)
is the value of i-th column and j-th row of M. The matrix M can be interchangeably viewed as the set of
points P(M) such that (i, j) ∈ P(M) if and only if M(i, j) = 1. We abuse the notation and sometimes write
M (viewing M as both the matrix and the point set corresponding to 1-entries) instead of P(M). Denote by
|M| the number of 1s in M.

For point p ∈ [n] × [m], we use p.x and p.y to refer to the x and y-coordinates of p respectively. Let
I ⊆ [n] and J ⊆ [m] sets of consecutive integers. We refer to R = I × J as a rectangle. We say that matrix M
is empty in rectangle R if M(i, j) = 0 for all (i, j) ∈ R; or equivalently, the rectangle R is M-empty.

Let σ = (σ(1), σ(2), . . . , σ(k)) be a permutation. We can view any permutation σ as a matrix Mσ where
Mσ(σ(i), i) = 1 and other entries are zero.
Pattern avoidance: We say that matrix M contains pattern P if P can be obtained by removing rows,
columns and non-zero entries of M. If M does not contain P, we say that M avoids P. The theory of
forbidden submatrices focuses on understanding the following extremal bound: ex(n, P) is defined as the
maximum number of 1-entries in an n-by-n matrix that avoids P.

We will use the following known bounds from [FH92, Pet11]:

Theorem 5 ([FH92, Pet11]) • ex

(
n,

[
1

1 1

])
= O(n).

• ex

(
n,

[
1 1

1 1

])
= O(nα(n)).

• ex

(
n,

 1
1

1 1

) = O(nα(n)).

• ex

(
n,

[
1 1

1 1 1

])
= O(n2α(n)).
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Greedy algorithm: We consider input in the matrix X, that is, X(i, j) = 1 if and only if key i is accessed
at time j. Notice that each matrix row contains exactly one 1-entry. Denote by Y = GT(X) the matrix
corresponding to the execution log of Greedy on sequence X and initial tree T, that is, Y(i, j) = 1 if and
only if key i is touched by Greedy on initial tree T at time j. We have X ⊆ GT(X) (Greedy always touches
the input). For any two points p, q ∈ R2, we denote �p,q as the minimally closed rectangular area defined
by p and q.

We explain how GT(X) is constructed. Inputs are matrix X (one point per row) and matrix T (n rows and
n columns). The columns of GT(X) are [n] and the rows of are indexed by {−(n− 1), . . . , 0, 1, . . . , m}. The
non-positive rows are exactly by T. Greedy starts adding points into GT(X) by processing rows t = 1, . . . , m
in this order. At time t, we initialize S← ∅. For any key a ∈ [n], we denote τ(a, t) as the last time t′ before t
such that the point (a, t′) was added by Greedy or by the initial tree. Let p be an point in X on t-th row. For
each a ∈ [n], let q = (a, τ(a, t)). If the rectangle �p,q contains only two points p and q, then we add point
(a, t) to S. After we process all keys a, we add points in S to GT(X). See Figure 2 below.

We say that points in X are accessed and points in GT(X) are touched. Moreover, for point p in GT(X)
we say that key p.x is touched at time p.y. Throughout the paper, our statements hold for every initial tree
T, hence we use G(X) instead of GT(X).

Figure 2: An example of GT(X)

We extend the pattern avoidance notation to handle multiple types of points. Let “•” denote each input

point in X and “×” each point in G(X) \ X. The notation Y = G(X) contains
[ a b

t2 •
t1 ×

]
is used in the

most intuitive way: Entry Y(a, t2) contains an input, and Y(b, t1) contains a touched point (or equivalently,
b is touched at time t1).

We are interested in studying the pattern avoidance bound for Greedy. Define gex(n, P) as the maximum
execution cost of Greedy G(X) over all permutation input X that avoids pattern P and over all initial trees
T. This extremal function is a function of n and |P|.
Multi-typed pattern avoidance: For convenience, we extend the pattern avoidance terminology to allow
points to have different types. Let M be a point set and T be the set of type of points. A type function of M
is a mapping f : M→ T. In the matrix view, the type f assigns a value in T to each non-zero entry of M.

Let M be a matrix and P a pattern. Let µ and π be types of M and P respectively. We say that (M, µ)
contains (P, π) if and only if

• M contains P or there exists a submatrix M′ obtained by removing rows, columns, and points of M
such that M′ = P. Also, π′ : M′ → T be the type function π induced on M′.

• For all (i, j) ∈ P, we have π′(i, j) = µ(i, j).
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In this paper, our types are T = {×, •} where × and • are the touched (but non-accessed) and accessed
points respectively. A Greedy matrix G(X) is naturally associated with a type function f : G(X) → T

which assigns × to points in G(X) \ X and • to points in X. Therefore, in the statement

(G(X), f ) avoids
[

×
•

]
we will often omit the types and simply say G(X) instead of (G(X), f ).

If M contains a k-by-q pattern P, then there exist columns c1 ≤ . . . ≤ cq and rows r1 ≤ . . . ≤ rk such
that the induced submatrix of M on those contains P. In such case, we use the following notation to specify
such rows and columns where the pattern appears:

M contains


c1 ... cq

rk
... P(i, j)

r1



Input-revealing properties of Greedy: We use a small matrix gadget that allows us to “reveal” the location
of an input point in X.

Claim 1 (Generic Capture Gadget [CGK+15b]) If G(X) contains
[ a b c

t2 ×
t1 × ×

]
, then the input matrix X

is non-empty in the rectangle [a + 1, c− 1]× [t1 + 1, t2].

Claim 2 (One-sided Capture Gadget) If G(X) contains
[ a b

t2 ×
t1 ×

]
or

[ a b

t2 ×
t1 •

]
, then input matrix X

is non-empty in rectangle [a + 1, ∞)× [t1 + 1, t2]. This holds symmetrically for
[ a b

t2 ×
t1 ×

]
and

[ a b

t2 ×
t1 •

]
.

Proof: Let (c, t′) be a touched point in the rectangle [a + 1, ∞)× [t1 + 1, t2] with smallest t′. We will show
that X is non-empty in the rectangle [a + 1, ∞) × [t1 + 1, t′], which will imply the Claim. Assume the
rectangle [a + 1, ∞)× [t1 + 1, t′] is input-empty. Let p be an input point at time t′ such that p.x ≤ a. Since
c is touched at time t′, the rectangle [p.x, c]× [τ(c, t′), p.y] must be empty. This contradicts to the fact that
(a, t1) ∈ [p.x, c]× [τ(c, t′), p.y].

Figure 3: Illustrations of Claim 1 (left) and Claim 2 (right)
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Corollary 1 If G(X) contains
[ a b

t2 ×
t1 ×

]
or

[ a b

t2 ×
t1 •

]
, then input matrix X is non-empty in rectangle

([b, ∞)× [t1 + 1, t2]) or in ([a + 1, ∞)× [t2, t2]). This holds symmetrically for
[ a b

t2 ×
t1 ×

]
and

[ a b

t2 ×
t1 •

]
.

Proof: Assume the input matrix X is empty in the rectangle ([b, ∞)× [t1 + 1, t2]) and in the rectangle ([a +
1, ∞) × [t2, t2]). Let (c, t′) be the top most input point in [a + 1, b − 1] × [t1 + 1, t2 − 1]. From Claim 2, X
must be non-empty in [a + 1, b− 1]× [t1 + 1, t2 − 1]. This contradicts to the fact that (c, t′) be the top most
input point.

Claim 3 (Monotone Capture Gadget [CGK+15b]) If X avoids (1, 2, ..., k) and G(X) contains


a1 a2 ··· ak+1

tk+1 ×
... · · ·

t2 ×
t1 ×

,

then the input matrix X is non-empty in the rectangle [a1, ak+1 − 1]× [t1 + 1, tk+1].

3 Warm-Up

We present two warm-up proofs before proceeding to our main results: (i) a very short proof for the se-
quential access theorem of Fox [Fox11], and (ii) a proof when a given input sequence avoids both (2, 3, 1)
and (2, 1, 3). This is a special case of both preorder traversal and deque conjectures.

Sequential Access Theorem: Let X be a sequence that avoids (2, 1) (equivalently, X is the permutation
(1, 2, . . . , n)) and G(X) be the Greedy points on X. Notice that the points in X lie on the diagonal line x = y.
Decompose G(X) into X ∪ YL ∪ YR where YL = {q ∈ G(X) | q.y > q.x} and YR = {q ∈ G(X) | q.y < q.x}.
In words, the sets YL and YR are the points strictly on the left and right of the diagonal line respectively.

Observation 1 YL avoids
[
×
×

]
, so |YL| ≤ O(n).

Proof: Assume otherwise that YL contains
[ a b

t2 ×
t1 ×

]
for some time indices t1 < t2 and keys a < b. Let

p = (b, t0) be the input point below (b, t1). Applying Corollary 1, there exists an input point q in the region
(−∞, b− 1]× [t1 + 1, t2]. Notice that p and q form (2, 1) a contradiction.

Claim 4 YR avoids
[
× ×
×

]
. Therefore, |YR| = O(n).

Proof: Assume otherwise that YR contains
[ a b c

t2 × ×
t1 ×

]
for some time indices t1 < t2 and keys a < b <

c. Let q denote an input point at time t2. Because (a, t2) ∈ YR, we have that q.x < a. Applying Claim 2 and

the fact that YR contains
[ b c

t2 ×
t1 ×

]
, we would have that the rectangular region [b + 1, ∞)× [t1 + 1, t2]
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must contain input point p, which cannot be the same point as q; so we have p.y < q.y. The points p and q
induce pattern (2, 1), a contradiction. See Figure 4 for illustration.

Figure 4: Illustrations of the proofs for Claim 4 (left) and Claim 5 (right)

“Deque Access” Theorem: Let X be an input permutation that avoids (2, 3, 1) and (2, 1, 3). This is a special
case of the deque conjecture, roughly equivalent to the case when we are only allowed to delete the mini-
mum and maximum. In fact, as we argue later, this is a special case of preorder traversal, deque, and split
conjectures. In this section, we show that |G(X)| = O(nα(n)).

Let r ∈ X be an input point on the top row of X. We decompose G(X) into X ∪ G< ∪ G> ∪ G= where

• G< = {q ∈ G(X) \ X | q.x < r.x}

• G> = {q ∈ G(X) \ X | q.x > r.x}

• G= = {q ∈ G(X) \ X | q.x = r.x}

To highlight the structure of this sequence, we similarly break X into X = {r} ∪ X< ∪ X> where X< =
{p ∈ X : p.x < r.x}.

Observation 2 The points in X< and X> avoid (2, 1) and (1, 2) respectively.

This means that the input points in X< form an increasing sequence, while those in X> form a decreasing
sequence. Intuitively, we view input points as a triangle without base, then we partition the plane into the
vertical column, left side and right side of the triangle.

Observation 3 |G=| ≤ n.

Next we will show that |G<| ≤ O(nα(n)). The left-right symmetric arguments also hold for upper bound-
ing |G>|. We further decompose G< into YL ∪ YR where YL = {q ∈ G< | ∃s ∈ X with (q.y = s.y) ∧ (q.x <
s.x < r.x)} and YR = G< \ YL. In words, the sets YL and YR are the points that are “outside” and “inside”
the triangle respectively.

Observation 4 YL avoids
[
×
×

]
, so |YL| ≤ O(n).

Claim 5 YR avoids
[
× ×
× ×

]
. Therefore, |YR| = O(nα(n)).

11



Proof: Assume otherwise that YR contains
[ a b c d

t2 × ×
t1 × ×

]
for some time indices t1 < t2 and keys

a < b < c < d. Applying Claim 1 and the fact that YR contains
[ b c d

t2 ×
t1 × ×

]
, we would have that the

rectangular region [b + 1, d − 1] × [t1 + 1, t2] must contain input point p ∈ X<. Because (a, t2) ∈ YR, we

have that p.y < t2. Applying Claim 2 and the fact that YR contains
[ a p.x

t2 ×
p.y •

]
, we can conclude that

the rectangle (−∞, p.x− 1]× [p.y + 1, t2] contains an input point q ∈ X<. The points p and q induce pattern
(2, 1), a contradiction.

4 Bounds for Input Avoiding Size-3 Patterns

There are six patterns of size three. We divide them into three different groups as follows: Π1 = {(1, 2, 3), (3, 2, 1)},
Π2 = {(2, 3, 1), (2, 1, 3)} and Π3 = {(1, 3, 2), (3, 1, 2)}. We argue that, for each such pattern class Πi (for
i = 1, 2, 3), we only need to analyze the cost of Greedy on one pattern in Πi. We make this claim precise
as follows. For each matrix (point set) M with n columns, define the flipped matrix M f lip as a matrix M′

obtained by reflecting M around y-axis, that is, M′(i, j) = M(n− i + 1, j) for all i, j. Therefore, if we define
P1 = (1, 2, 3), P2 = (2, 3, 1) and P3 = (1, 3, 2), we would have Πi = {Pi, P f lip

i }.

Proposition 6 For each i = 1, 2, 3, we have gex(n, Pi) = gex(n, P f lip
i ).

Proof: We first prove that gex(n, Pi) ≤ gex(n, P f lip
i ). Let X and T be the input an initial tree that achieves the

value gex(n, Pi). First, notice that if X avoids Pi, then X f lip avoids P f lip
i . The following claim can be proved

using the fact that Greedy is symmetric:

Observation 5 For any X and initial tree T, we have (GT(X)) f lip = GT f lip(X f lip).

This observation can be proved, for instance, by induction on the number of rows. Therefore, X f lip and T f lip

are the inputs that prove that gex(n, P f lip
i ) ≥ gex(n, Pi). The other direction can be argued symmetrically.

We will use our techniques to prove the following theorems, which are the restatement of Theorem 1 (1
and 2).

Theorem 7 (Preorder Traversal) For P ∈ Π2, gex(n, P) = gex(n, (2, 3, 1)) = O(n2α(n)).

Theorem 8 (Postorder Traversal) For P ∈ Π3, gex(n, P) = gex(n, (1, 3, 2)) = O(n).

As for the input in Π1, a theorem of [CGK+15b] implies that Greedy costs at most O(n). In the following
subsections we prove the above theorems.

4.1 Preorder Traversals

This section is devoted to proving Theorem 7. Let X be an input matrix which corresponds to a permutation
that avoids (2, 3, 1). We partition the Greedy points Y into four parts based on the location of the points
with respect to the input points.

Observation 6 For each point q ∈ Y \ X, there are (unique) input points p1, p2 ∈ X such that p1.x = q.x and
p2.y = q.y.
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Using this observation, for each such point q, if p1.y < q.y, we say that q is a bottom point; otherwise,
we say that it is a top point, so this will partition Y \ X into T ∪ B where T and B are the top and bottom
points respectively. Similarly, we define the left/right partition Y \ X = L ∪ R where L and R are the left
and right points.

These can be used to define our partition as follows: BR = B ∩ R, BL = B ∩ L, TR = T ∩ R, TL = T ∩ L.

Lemma 2 BR avoids
[
×
×

]
. Therefore, |BR| = O(n).

Proof: Assume otherwise that BR contains
[ a b

t2 ×
t1 ×

]
for some time indices t1 < t2 and keys a < b.

Since the point (b, t1) is a touched point in BR, there are input points p and q that are at the bottom and
right of (b, t1) respectively. From Claim 2, the region (−∞, b− 1]× [t1 + 1, t2] must contain an input point
r. The points p, q and r induce pattern (2, 3, 1) in X, a contradiction.

Lemma 3 BL avoids
[
× ×
×

]
. Therefore, |BL| = O(n).

Proof: Assume otherwise that BL contains
[ a b c

t2 × ×
t1 ×

]
for some time indices t1 < t2 and keys a < b <

c. Let p be an input point at the bottom of (b, t1). Let r be an input on the left of (a, t2). Applying Claim 2 and

the fact that BL contains
[ b c

t2 ×
t1 ×

]
, we would have that the rectangular region [b + 1, ∞)× [t1 + 1, t2]

must contain input point q. Notice that q 6= r, so we have that p, q and r induce pattern (2, 3, 1) in X, a
contradiction.

Figure 5: Illustrations of the proofs for BR (left) and BL (right) in preorder

Lemma 4 TL ∪ TR avoids
[
× ×
•

]
.

Proof: Assume otherwise that TL ∪ TR contains
[ a b c

t2 × ×
t1 •

]
. Let r be an input point at the top of

(a, t2). Applying Claim 2 and the fact that TL ∪ TR contains
[ b c

t2 ×
t1 •

]
, we can conclude that the rect-
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angle [b + 1, ∞)× [t1 + 1, t2] contains an input point q. Let p = (b, t1). Notice that p, q and r induce pattern
(2, 3, 1), a contradiction. See Figure 6.

Figure 6: An illustration of the proof for TL ∪ TR in preorder.

Corollary 2 Each TL and TR avoids
[
× × ×
× ×

]
. Therefore, |TL|+ |TR| ≤ O(n2α(n)).

Proof: We only present the proof for TL; the arguments for TR are symmetric. Assume otherwise that TL

contains
[ a b c d e

t2 × × ×
t1 × ×

]
. Applying Claim 1 to the pattern

[ b c d

t2 ×
t1 × ×

]
, there must be an

input point q ∈ [b + 1, d− 1]× [t1 + 1, t2]. If q.y < t2, we would be done since it would contradict Lemma 4,
so assume that q.y = t2. Since a < q.x < e, this implies that (a, t2) ∈ R, a contradiction.

4.2 Postorder Traversals

This section is devoted to proving Theorem 8. Let X be a permutation that avoids (1, 3, 2). We partition the
Greedy points G(X) into four sets BL, BR, TL, TR in the same way as in the last subsection.

Lemma 5 BR avoids
[

×
× ×

]
. Therefore, |BR| ≤ O(n).

Proof: Assume otherwise that BR contains
[ a b c

t2 ×
t1 × ×

]
for some time indices t1 < t2 and keys a <

b < c. Let p = (a, t0) be an input at the bottom of (a, t1). Let q = (c′, t1) be an input on the right of (c, t1).
Using the Claim 1, there must be an input point r in the rectangle [a + 1, c− 1]× [t1 + 1, t2]. The points p, q
and r induce pattern (1, 3, 2) in X, a contradiction.

Lemma 6 BL avoids
[

×
× ×

]
. Therefore, |BL| ≤ O(n).

Proof: Assume for contradiction that BL contains
[ a b c

t2 ×
t1 × ×

]
for some time indices t1 < t2 and

keys a < b < c. Let p = (a, t0) be the input point at the bottom of (a, t1). Applying Corollary 1 with

the submatrix
[ a c

t1 ×
t0 •

]
, it follows that there exists input point q in the rectangle [c, ∞)× [t0 + 1, t1] or
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([a + 1, ∞) × [t1, t1]). Since an input point at time t1 has to be on the left of a, This means q must be in
the rectangle [c, ∞)× [t0 + 1, t1 − 1]. Finally, applying Claim 1, there exists input point r in the rectangle
[a + 1, c− 1]× [t1 + 1, t2]. The points p, q and r induce (1, 3, 2) in X, a contradiction.

Figure 7: Illustrations of the proofs for BR (left) and BL (right) in postorder

Lemma 7 TR avoids
[
× ×
×

]
. Therefore, |TR| ≤ O(n).

Proof: Assume otherwise that TR contains
[ a b c

t2 × ×
t1 ×

]
for some time indices t1 < t2 and keys a <

b < c. Since (c, t2) is in TR, there are input points q and r at the right and top of it respectively. Applying

Claim 2 to the submatrix
[ a b

t2 ×
t1 ×

]
, there must be an input point p in the region (−∞, b]× [t1 + 1, t2].

Since X is a permutation, we have that p.y < q.y (in particular, p 6= q). The points p, q and r induce (1, 3, 2)
in X, a contradiction.

Lemma 8 TL avoids
[
× ×
×

]
. Therefore, |TL| ≤ O(n).

Proof: Assume otherwise that TL contains
[ a b

t2 × ×
t1 ×

]
for time indices t1 < t2 and keys a < b. Let r

be an input at the top of (a, t2), and p be the input at the left of (a, t1). Using Claim 2 for the submatrix[ a b

t2 ×
t1 ×

]
, there must exist point q in the region [b, ∞)× [t1 + 1, t2]. The points p, q and r induce (1, 3, 2)

in X, a contradiction.

5 Dynamic Deque with Insertion and Deletion

In this section we prove Theorem 1(3). We use the model for dynamic update deque sequence with insertion
and deletion from [CGK+15a]. An update sequence S is a set of points where each point is either inserted,
deleted or accessed. For our purposes, our model only deals with insertions and deletions and no access
points.
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Figure 8: Illustrations of the proofs for TR (left) and TL (right) in postorder

Definition 2 (Deque Sequence) An update sequence is a deque sequence if it only consists of INSERTMIN, IN-
SERTMAX, DELETEMIN, DELETEMAX operations.

In this model, each key can be inserted and followed by deletion at most once. In addition, it can be
touched only during the time between insertion and deletion. More precisely, for any key p, let tins(p) and
tdel(p) be an insertion and deletion time of p, respectively. If p is in an initial tree T, tins(p) = 0. The model
ensures that tins(p) < tdel(p). The active time act(p) is the interval of time [tins(p), tdel(p)], and p can be
touched during act(p).

Let Mint and Maxt be the set of keys which are deleted by DELETEMIN and DELETEMAX before time t,
respectively.

Definition 3 (from [CGK+15a] Concentrated Deque Sequence) A deque sequence is concentrated if, for any
time t, the inserted element x is the minimum, then y < x for all y ∈ Mint, and if x is the maximum, then x < y for
all y ∈ Maxt.

Figure 9: An example of concentrated deque sequence

In the succeeding, we will use the following lemma from [CGK+15a] to assume that the updated deque
sequences we work with are always concentrated deque sequences.

Lemma 9 (From [CGK+15a]) For any deque sequence S , there is a concentrated deque sequence S′ such that the
execution of any BST algorithm on S′ and S have the same cost.
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5.1 The O(mα(n)) Bound

Let X with |X| = m be an input instance of concentrated deque with insertion and deletion where xi is the
inserted or deleted key at time i. A key a is touched (excluding deletions) by Greedy at a time t only when
(a,τ(a,t)),(xt ,t) is empty.

Lemma 10 Assuming m ≥ n, then |G(X)| ≤ O(mα(n)).

Let us assume that the initial tree T has k0 active keys. We divide the execution of Greedy into phases.
The first phase starts at time t = 1 and lasts till time t = k0

2 . After the end of the first phase, let k1 be the
number of active keys. Then, our second phase starts at time t = k0

2 + 1 and lasts till time t = k0
2 + k1

2 . This
process continues from one phase to another until no active keys remain or xm is inserted or deleted. When
there are no active keys at the beginning of a phase, we wait for the first key to be inserted and then begin
our phase. Also, we always consider d k

2e for k active keys in any phase but for notation we will use k
2 .

For the first phase, we see Greedy’s execution on X till time k0
2 . At time k0

2 , we divide the touched point
of Greedy into two parts left (denoted as L k0

2
) and right (denoted asR k0

2
) such that both parts contains equal

number of active keys. L k0
2

contains all keys to the left of the divide and R k0
2

contains all the keys to the

right of the divide. We show that the number of touched point in L k0
2

andR k0
2

is O(k0α(n)).

In general, if there are ki active keys at the start of phase i then we show that the number of points
touched by Greedy in phase i is O(kiα(n)). Summing over all phases, ∑

phase i
kiα(n) = O(mα(n)).

5.2 Greedy adds O(kiα(n)) points in phase i

Lemma 11 L ki
2

avoids P =

[ a b c d

t′ × ×
t × ×

]
.

Proof: Let us assume for contradiction that L ki
2

contains P. Applying Claim 1 and the fact that P contains

[ b c d

t′ ×
t × ×

]
we would have that the rectangular region [b+ 1, d− 1]× [t+ 1, t′] must contain an input

point q ∈ X. Since there are at most ki
2 INSERTMAX and DELETEMAX together in phase i, point q cannot

be an operation INSERTMAX or DELETEMAX. Next, we will show that q.y ∈ act(b), which implies that q
cannot be an operation INSERTMIN or DELETEMIN because q.x > b.

To show that q.y ∈ act(b), it suffices to show that tdel(b) ≥ t′. If tdel(b) is not in phase i, the statement
trivially holds. Assume for contradiction that tdel(b) is in phase i and tdel(b) < t′. This means b gets deleted
by operation DELETEMIN. There are two cases: tdel(b) ∈ act(a) and tdel(b) /∈ act(a). In the first case,
DELETEMIN cannot delete b since a is active. In the second case, it means that tins(a) > tdel(b), which
contradicts to the fact that X is concentrated sequence.

Similar to above lemma we can prove thatR ki
2

avoids P′ =
[ a b c d

t′ × ×
t × ×

]
. This implies that the

number of points in L ki
2

and R ki
2

is O( ki
2 α( ki

2 )) (using Theorem 5). Thus, the total number of points added

by Greedy in phase i is O(kiα(
ki
2 )) As n ≥ ki, this quantity is O(kiα(n)).
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6 Split Model

In this section we prove Theorem 2. The geometric view of Greedy is invented for the purpose of search
[DHI+09] and insert/delete [CGK+15a]. We will first define Greedy execution in the split model and show
the relation between this model and the standard search model when X avoids some patterns. Our main
theorem in this section is the following:

Theorem 9 Let X ∈ [n]n be a permutation. Then,

• If X avoids (1, 3, 2) and (2, 3, 1), the cost of Greedy’s deleting X is at most the cost of Greedy’s spliting X.

• For any sequence X, there exists a sequence X′ avoiding (2, 3, 1) such that Greedy’s spliting X costs at most
Greedy’s searching X′.

Corollary 3 For any permutation X, Greedy’s splitting X costs at most O(n2α(n)).

Corollary 4 For Greedy, the traversal conjecture implies the split conjecture, which implies the deque conjecture.

6.1 The Split Model

Let X = (x1, x2, . . . , xn) ∈ [n]n be a permutation input sequence of keys where xi is split at time i. Let
IX = {Ix1 , Ix2 , . . . , Ixn} be the set of intervals defined as follows. First, we create a binary search tree TX by
inserting the keys of X into an empty initial tree where xi is inserted at time i.3 Define Ixi as the minimal
open integer interval containing all keys in the subtree rooted at xi in TX . Notice that Ix1 = (0, n + 1).

See Figure 10 for illustration. These intervals define the “active keys” for each key, that is, Ia is the
interval containing active keys when key a is split.

Figure 10: An example of X and XR obtained from Algorithm 2

Observation 7 For each i ∈ [n], xi ∈ Ixi .

Observation 8 For any i < j, xi /∈ Ixj .

Observation 9 IX is a laminar family of intervals, i.e., two intervals intersect if an only if one is completely con-
tained in another. Furthermore, for j > i, it is either (Ixj ⊂ Ixi ) or (Ixj ∩ Ixi = ∅).

3When inserting xi , we search the current tree TX until a miss occurs, and we insert xi at the corresponding place.
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Let τ(a, t) denote the last touched time of key a before time t. When t is clear from the context, we use
τ(a). Let (a1,b1),(a2,b2)

denote the closed rectangular area defined by two points: (a1, b1) and (a2, b2). We
define the Greedy execution on input X in the split model, GS(X), as in Algorithm 1:

Algorithm 1: Greedy execution in the split model GS(X)

Given X and IX
for i← 1 to |X| do

S = {a ∈ Ixi | (a,τ(a)),(xi ,i) is empty}
∀a ∈ S, add point (a, i) to GS(X)

6.2 Relation to Preorder Traversals

The second part of Theorem 9 follows from the following lemmas.

Lemma 12 Given a permutation input sequence X, there exists a preorder permutation input sequence XR such that
|GS(XR)| = |GS(X)|.

Lemma 13 Let X be a preorder sequence. Then, |GS(X)| ≤ |G(X)|.

Proof of Lemma 12

For a permutation input instance X = (x1, x2, . . . , xn), we denote by XR = (xR
1 , xR

2 , . . . , xR
n ) its rearranged

permutation input instance which we construct in algorithm 2 (Figure 10).
Let B = (b1, . . . , bk). Denote by SWAP(B, i) the operation that swaps bi with bi+1, that is, it returns B′

which is the same as B everywhere except for b′i = bi+1 and b′i+1 = bi. Then XR is obtained by iteratively
applying SWAP. We argue below that XR is a preorder traversal of binary search tree TX .

Algorithm 2: Rearrange X into XR

Function Preorder(B = (b1, ..., bk)):
while ∃i : (bi+1 < bi) ∧ (Ibi

∩ Ibi+1
= ∅) do

B′ ← SWAP(B, i)
return B′

Function Main(X):
XR ← Preorder(X)

return XR

Lemma 14 Let B = (b1, . . . , bk). If Ibi
∩ Ibi+1

= ∅, and B′ is obtained by SWAP(B, i). Then TB = TB′ and hence
IB = IB′ .

In other words, this lemma proves that the BST is invariant under the swap operation.
Proof: Since the intervals Ibi

and Ibi+1
are disjoint, let c be the LCA of TB at the moment before time i (i.e.

before inserting bi). Notice that bi+1 is inserted into the right subtree of c, while bi is inserted into the left
subtree of c, and the order of their insertions do not matter. Therefore, TB and TB′ would be the same after
time i + 1.
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Claim 6 XR is preorder sequence. In particular, it is a preorder traversal of TX .

Proof: First, we argue that XR avoids (2, 3, 1). Assume otherwise that it contains i < j < k such that
xR

i , xR
j , xR

k induce (2, 3, 1), so we must have that bj > bi > bk. Let j′ : j ≤ j′ < k be the minimum integer
such that bj′ > bj′+1 (notice that such j′ must exist). Notice that Ij′ ends before bi while Ij′+1 starts after bi

so they are disjoint. This implies that the swap would have been applied at j′, a contradiction. Since XR is
a preorder permutation, it must be a preorder permutation of TXR . From Lemma 14, we have TX = TXR .

Lemma 15 |GS(B′)| = |GS(B)|.

Proof: Let M[t] denote the row t of matrix M (recall that this paper start indexing from the bottom most
row). It is easy to see that GS(B′)[t] = GS(B)[t] when t < i because both sequences are similar up to time
i− 1. Next, we claim that GS(B′)[i] = GS(B)[i + 1]. This is because Ib′i

= Ibi+1
and GS(B)(p, i) = 0 for all

p ∈ Ibi
. So, for any key a ∈ [n], (a,τ(a)),(b′i ,i)

is empty in GS(B′) if and only if (a,τ(a)),(bi+1,i+1) is empty in
GS(B). Similar argument holds for GS(B′)[i + 1] = GS(B)[i].

Lastly, we claim that GS(B′)[t] = GS(B)[t] when t > i + 1. Let r be the first time after i + 1 such that
GS(B′)[r] 6= GS(B)[r]. We claim that, for any key a ∈ [n], (a,τ(a)),(b′r ,r) is empty in GS(B′) if and only if

(a,τ(a)),(br ,r) is empty in GS(B). There are 4 cases:

1. if τ(a) > i + 1 in GS(B), this is trivial by our assumption.

2. if τ(a) = i + 1 in GS(B), (a,i+1),(br ,r) is empty in GS(B) if and only if (a,i),(b′r ,r) is empty in GS(B′).
This is because GS(B)(p, i) = 0 for all p ∈ Ib′i+1

.

3. when τ(a) = i in GS(B), this is symmetric to the above case.

4. when τ(a) < i in GS(B). Notice that the only difference between GS(B) and GS(B′) before time r are
in rows i and i + 1. One can view (a,τ(a)),(br ,r) as a set of consecutive columns. Since GS(B′)[i] =
GS(B)[i + 1] and GS(B′)[i + 1] = GS(B)[i] , this means (a,τ(a)),(b′r ,r) is empty in GS(B′) if and only if

(a,τ(a)),(br ,r) is empty in GS(B).

Proof of Lemma 13

Figure 11: Illustrations of the proofs of Lemma 16 (left) and Lemma 17 (right)

Lemma 16 Let X be a preorder sequence. For each q ∈ X, there is no point r ∈ X such that r.x < left(Iq) and
r.y > q.y.
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Proof: If left(Iq) ≤ 1, the lemma trivially holds. Consider the case where left(Iq) > 1. Assuming such r
exists. By interval construction, there is an input point p such that p.x = left(Iq) and p.y < q.y. This means
points p, q and r form (2, 3, 1) in X. Contradiction.

Lemma 17 Let X be a preorder sequence. For each r ∈ X, there is no point c ∈ G(X) such that c.x > right(Ir) and
c.y = r.y.

Proof: If right(Ir) ≥ n, the lemma trivially holds. Consider the case where right(Ir) < n. By interval
construction, there is an input point p such that p.x = right(Ir) and p.y < r.y. If p.y = r.y − 1, there is
no such touch point c because (c.x,τ(c.x)),(r.x,r.y) must contain p. If p.y < r.y − 1, assuming there is such
touch point c. Using Claim 2 with p and c, we have that the rectangle [p.x + 1, ∞)× [p.y + 1, r.y− 1] must
contain some input q (q.y 6= r.y because X is permutation). This means points p, q and r form (2, 3, 1) in X.
Contradiction.

For i ∈ [n], let G(i)(X) and G(i)
S (X) denote a set of points in row i of G(X) and GS(X), respectively.

Lemma 18 Let X be a preorder sequence. For i ∈ [n], G(i)(X) ∩ Ixi = G(i)
S (X) ∩ Ixi .

Proof: Let j be the first time that G(j)(X) ∩ Ixj 6= G(j)
S (X) ∩ Ixj . This means there exists a point c ∈ G(X) \

GS(X) such that c.x ∈ Ixj and c.y < j. Let xt be an input point at time c.y. From Observation 9 and the
fact that c /∈ Ixt , we have that Ixt ∩ Ixj = ∅. We divide into two cases: 1) right(Ixt) ≤ left(Ixj) and 2)
right(Ixj) ≤ left(Ixt). In the first case, xt and c contradict Lemma 17. In the second case, xt and xj contradict
Lemma 16.

7 (k− 1)-Decreasing Sequences

This section is devoted to proving Theorem 3. We focus on (k− 1)-decreasing sequences; the argument for
(k − 1)-increasing sequences is symmetric. The O(nk2) bound follows from [CGK+15b] and Theorem 6.1
of [Cib13]. We focus on proving the new O(knα(n)) bound, which is smaller than nk2 whenever k > α(n).

7.1 An O(knα(n)) bound

Let X be (k − 1)-decreasing sequence, i.e., a sequence that avoids Ik = (1, 2, . . . , k). For any two points
p, q, we say that p dominates q (denoted by p � q) if p.x > q.x and p.y > q.y. Let q ∈ G(X) \ X be a
touched, non-input point. We define chain(q) to be zero if q is not dominated by any input points in X.
Otherwise, chain(q) is the maximum length j such that there exists input points p1, . . . , pj ∈ X such that
p1 � . . . � pj � q; we call {p1, . . . , pi} a witness of the fact that chain(q) ≥ i. Since X avoids (1, . . . , k),
we have chain(q) ≤ k − 1 for all q ∈ Y \ X. For i ∈ {0, 1, . . . , k − 1}, we define Gi(X) = {q ∈ G(X) \
X : chain(q) = i}. By definitions, we can partition G(X) into k parts. That is, G(X) \ X =

⋃
0≤i≤k−1 Gi(X),

and thus |G(X)| = |X|+ ∑0≤i≤k−1 |Gi(X)|. So, it suffices to bound each matrix Gi(X) separately.

Proposition 10 For all i, Gi(X) avoids

 ×
•

×

.

Proof: Suppose that Gi(X) contains


a b c

t3 ×
t2 •
t1 ×

 for some keys a < b < c and time indices t1 < t2 <

t3. Denote p = (c, t3), q = (a, t1) and r = (b, t2) ∈ X. Since p ∈ Gi(X), chain(p) = i, and so there are input
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points p1 � . . . � pi that dominate p, which means they dominate r. The set {p1, . . . , pi, r} is a witness that
chain(q) ≥ i + 1, a contradiction.

Corollary 5 For all i, Gi(X) avoids

 ×
×

× ×

. Therefore, |Gi(X)| = O(nα(n)).

Proof: Suppose that Gi(X) contains


a b c d

t3 ×
t2 ×
t1 × ×

. By Claim 1, there is an input (b′, t′2) ∈ X

in the rectangle [a + 1, c − 1] × [t1 + 1, t2]. Therefore, Gi(X) contains


a b′ d

t3 ×
t′2 •
t1 ×

, contradicting to

Proposition 10.

8 Extremal Combinatorics

This section is devoted to proving Theorem 4. Let P be the length-k permutation in the statement. For
the rest of this section, we assume that n is a power of 4k2. This will imply the theorem (removing the
assumption incurs a multiplicative factor of O(k2)).

8.1 Marcus-Tardos Recurrence (Rephrased)

We explain Marcus-Tardos approach [MT04] in our language that would allow us to prove our bounds. We
first introduce another extremal function f that roughly captures the maximum number of rows in a matrix,
avoiding a specified pattern, that contains sufficiently many number of 1s per row.

Definition 4 For any permutation π and integer c, we define f (c, π) to be the maximum number of rows r such that
there exists a matrix M with r rows and c columns such that (i) each row has at least 2|π| many 1’s and (ii) M avoids
π.

Notice that this definition enforces c ≥ 2|π| with a trivial base case:

Observation 10 For any permutation π, we have f (2|π|, π) = |π| − 1.

Let π be any permutation. Let π′ be the permutation matrix after rotating the matrix induced by π by
90 degree counterclockwise. Denote |π| = k. Marcus and Tardos relate the upper bound on ex(n, π) to the
extremal property of f and prove that f (k2, π) = O(k(k2

k )) for any permutation π. We rederive the bound
in terms of f .

Theorem 11 ex(n, π) = O
(
nk3( f (4k2, π) + f (4k2, π′))

)
The rest of this section is devoted to proving Theorem 11.
Their result can be rephrased in the following way:

Lemma 19 ex(n, π) ≤ (2k− 1)2ex(n/4k2, π) + 4nk2 · f (4k2, π) + 4nk2 · f (4k2, π′).
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Proof: The proof closely follows [MT04]. Let M be a matrix that avoids π and |M| = ex(n, π). Let n′ =
n/(4k2). We divide the columns of M into n′ groups of consecutive columns of size 4k2, and similarly we
divide the rows of M into n′ groups of consecutive rows of size 4k2. Let Bij be the submatrix of M formed
by i-th group of columns and j-th group of rows respectively. We can view M as a block matrix (Bij)i,j∈[n′ ].
Each block has size (4k2) × (4k2). We say that a row (or a column) is empty if all entries are all zero. A
matrix is empty if all rows and columns are empty.

For each block Bij, we say that Bij is wide if it contains at least 2k non-empty columns. Also, we say that
Bij is tall if it contains at least 2k non-empty rows. Let M′ be the n′ × n′ matrix where M′(i, j) = 1 if and
only if Bij is non-empty, not wide and not tall. Let T be the n′ × n′ binary matrix where T(i, j) = 1 if and
only if Bij is tall. Let W be the n′ × n′ binary matrix where W(i, j) = 1 if and only if Bij is wide. Observe
that each non-empty block can be tall or wide or neither, the three matrices M′, T, and W covers all blocks
Bij from M. More precisely, we have M′(i, j) = T(i, j) = W(i, j) = 0 if and only if Bij is empty. Therefore,

|M| ≤ (2k− 1)2|M′|+ 16k4|T|+ 16k4|W|. (1)

The coefficient of the term |M′| is (2k− 1)2 because the number of ones in a non-wide and non-tall block is
at most (2k− 1)2. The coefficient for both T and W is 16k4 because every block is 4k2 × 4k2. It remains to
bound the number of 1’s in M′, W and T.

The number of 1’s in M′.

Claim 7 M′ avoids π. Therefore, |M′| ≤ ex(n′, π).

Proof: Suppose M′ contains π. This means that there is a set of non-empty blocks {Bij} in M such that we
can form the pattern π by taking one 1’s per block in the set. Therefore, M contains π, a contradiction.

The number of 1’s in W and in T.

Claim 8 |W| ≤ n′ f (4k2, π), and |T| ≤ n′ f (4k2, π′).

Proof: Since W has n′ columns, it is enough to show that the number of 1’s in each column of W is at most
f (4k2, π). We fix an arbitrary j-th column of W. Let ` be the number of 1’s in the j-th column of W (This
means there are ` wide blocks in the j-th group of column in M.) Assume for the sake of contradiction that
` > f (4k2, π).

For any matrix P, we define the flattening of P (denoted by flat(P)) as a binary row-vector v, where
v(k) = 1 if and only if k-th column of P is non-empty. Let Qj be the binary matrix obtained by flattening
of all the blocks in the j-th column-group. More formally, matrix Qj has (4k2) columns and n′ rows where
each row i ∈ [n′] is a flattening of Bij.

Observation 11 If Qj contains permutation π, then M contains π.

Observe that the number of 1’s in each row of Qj is at least 2k because Bij is wide. Since ` > f (4k2, π),
and each row of Qj has at least 2k many 1’s, Definition 4 implies that Qj contains π, which implies that M
contains π, a contradiction.

We are ready to prove Theorem 11.
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Proof: [Proof of Theorem 11] Let T(n) = ex(n, π), q = 4k2, and g(q) = f2(q, π) + f2(q, π′). By Lemma 19,
we have

T(n) ≤ (2k− 1)2T(n/q) + nq(g(q))

≤ nq(g(q)) +
(2k− 1)2

q
nq(g(q)) + (

(2k− 1)2

q
)2nq(g(q)) + . . .

≤ nq(g(q))(∑
i≥0

(
(2k− 1)2

q
)i)

≤ nq(g(q))k.

The last inequality follows since (2k− 1)2/q = (2k− 1)2/(4k2) < 1.

8.2 An Upper bound for Function f

For any permutation π, denote by dleft(π) (abbreviation for “delete from the left”) the permutation ob-
tained by removing the point (in the matrix form of π) on the leftmost column as well as its corresponding
row and column; for instance, dleft(1, 3, 4, 2) = dleft(2, 3, 4, 1) = (2, 3, 1). Similarly, we can define dright(π).

Theorem 12 (Reduction rules) Let π be a length-k permutation whose corresponding permutation matrix contains
a point on one of the two corners of the first column (i.e. at coordinate (1, 1) or (1, k)). Then f (c, π) = O(c) · f (c, π̂)
where π̂ is any permutation such that dleft(π) = dleft(π̂). Similarly, if π contains a point on two corners of the last
column (i.e. coordinate (k, 1) or (k, k)), then f (c, π) = O(c) · f (c, π̂) where dright(π) = dright(π̂).

The rest of this section is devoted to proving the proof of Theorem 12. We prove the case when the
permutation matrix of π contains (1, 1); other cases are symmetric.

Lemma 20 f (c, π) ≤ f (c− 1, π) + f (c, π̂) + 2

Proof: Let M be the matrix with r rows and c columns that achieve the bound f (c, π), and assume for
contradiction that r > f (c− 1, π) + f (c, π̂) + 2.

Let M1 be the submatrix containing the bottom f (c− 1, π) + 1 rows of M. This implies that there must
be a point p in the first column of M1; otherwise, the submatrix of M1 without its first column would give
a contradiction: It has (c− 1) columns, α points per row and avoids π.

Now let M2 be the f (c, π̂) + 1 top rows of M. We know that this submatrix must contain submatrix P̂;
moreover, the submatrix of M2 without its first column must contain pattern dleft(π̂); let us say that the
points Q ⊆ M2 induce this pattern. This implies that {p} ∪Q induces pattern π, a contradiction.

Now Theorem 12 follows by simply applying the recurrence at most c times to unfold the term f (c, π):

f (c, π) ≤ f (2k, π) + c · f (c, π̂) + 2c

Since f (2k, π) = k, we have that f (c, π) ≤ k + c f (c, π̂) + 2c ≤ 4c · f (c, π̂) as desired.

8.3 Proof of Theorem 4

We first state an important lemma that will be useful for proving Theorem 4. Recall that Q (in the statement
of Theorem 4) is a k-linear permutation. Note that Q′ denotes the rotation of Q by 90 degrees.

Lemma 21 f (c, Q) and f (c, Q′) ≤ c.

24



Proof: Let r = f (c, Q). Let M be a matrix with c columns and r rows and avoids Q. Observe that

2kr ≤ |M| ≤ ex(r, c, Q).

The LHS holds since we have 2k ones per row in M. The RHS follows because M avoids Q. Since Q is
k-linear, ex(r, c, Q) ≤ k(r + c). So, 2kr ≤ k(r + c), and we have r ≤ c. The proof for f (c, Q′) is similar.

We are now ready to prove Theorem 4.
Proof: [Proof of Theorem 4]

we have the following.

ex(n, P) = O(nk3( f (4k2, P) + f (4k2, P′)))

= O(nk3( f (4k2, Q) · (4k2)t + f (4k2, Q′) · (4k2)t))

= O(nk3(4k2)t+1)

= O(n4tk2t+5).

The first inequality follows from Theorem 11. The second inequality follows from Theorem 12 and the fact
that P is reducible to Q in t steps. The third inequality follows from Lemma 21.
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Saranurak. The landscape of bounds for binary search trees. arXiv preprint arXiv:1603.04892,
2016.

[CGK+18] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
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[DILÖ13] Erik D Demaine, John Iacono, Stefan Langerman, and Özgür Özkan. Combining binary search
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A Counterexamples

The counter examples are shown in Figure 12. The definition of Greedy is discussed in Section 2. In Fig-

ure 12 (left), the points (a, t2), (b, t1), (c, t2) and , (d, t1) form the pattern
[

1 1
1 1

]
. In Figure 12

(right), the points (a, t2), (b, t1), (c, t2), (d, t1) and (e, t2) form the pattern
[

1 1 1
1 1

]
.
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Preorder Traversal

𝑎 𝑏 𝑐 𝑒

𝑡2

𝑡1

𝑑𝑎 𝑏 𝑐 𝑑

Delete-only Deque

𝑡2

𝑡1

Figure 12: (Left) Greedy on Delete-only Deque Sequences with initial tree below time t1. (Right) Greedy on
Preorder Traversal with initial tree below time t1 .
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