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Abstract

We provide a unified framework to study hierarchies of relaxations for Constraint Sat-
isfaction Problems and their Promise variant. The idea is to split the description of a
hierarchy into an algebraic part, depending on a minion capturing the “base level”, and a
geometric part – which we call tensorisation – inspired by multilinear algebra. We exploit
the geometry of the tensor spaces arising from our construction to prove general proper-
ties of hierarchies. We identify certain classes of minions, which we call linear and conic,
whose corresponding hierarchies have particularly fine features. We establish that the
(combinatorial) bounded width, Sherali-Adams LP, affine IP, Sum-of-Squares SDP, and
combined “LP + affine IP” hierarchies are all captured by this framework. In particular,
in order to analyse the Sum-of-Squares SDP hierarchy, we also characterise the solvability
of the standard SDP relaxation through a new minion.

1 Introduction

What are the limits of efficient algorithms and where is the precise borderline of tractability?
The constraint satisfaction problem (CSP) offers a general framework for studying such fun-
damental questions for a large class of computational problems [49,50,79] but yet for a class
that is amenable to identifying the mathematical structure governing tractability. Canonical
examples of CSPs are satisfiability or “not-all-equal” satisfiability of 3-CNF formulas (called
3-Sat and 3-Nae-Sat, respectively), linear equations, several variants of (hyper)graph col-
ourings, and the graph clique problem. All CSPs can be seen as homomorphism problems
between relational structures [61]: Given two relational structures X and A, is there a ho-
momorphism from X to A? Intuitively, the structure X represents the variables of the CSP
instance and their interactions, whereas the structure A represents the constraint language;
i.e., the alphabet and the allowed constraint relations.

The most studied types of CSPs are so-called non-uniform CSPs [16,61,70,76], in which
the target structure A is fixed whereas the source structure X is given on input; this com-
putational problem is denoted by CSP(A). From the examples above, 3-Sat, 3-Nae-Sat,

∗An extended abstract of this work appeared in the Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms (SODA’23) [45]. The research leading to these results has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714532). The paper reflects only the authors’ views and not the views of the
ERC or the European Commission. The European Union is not liable for any use that may be made of the
information contained therein. This work was also supported by UKRI EP/X024431/1. For the purpose of
Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. All data is provided in full in the results section of this paper.
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(hyper)graph colourings with constantly many colours, linear equations of bounded width
over finite fields, and linear equations of bounded width over the rationals are all examples
of non-uniform CSPs, all on finite domains except the last one [18, 22, 23]. For instance, in
the graph c-colouring problem the target structure A is a c-clique and the structure X is the
input graph. The existence of a homomorphism from a graph to a c-clique is equivalent to the
existence of a colouring of the graph with c colours. The graph clique problem is an example
of a CSP with a fixed class of source structures [64,89] but an arbitrary target structure and,
thus, it is not a non-uniform CSP.

We will be concerned with polynomial-time tractability of CSPs. Studied research direc-
tions include investigating questions such as: Is there a solution [37,97]? How many solutions
are there, exactly [36, 48, 59] or approximately [38, 41]? What is the maximum number of
simultaneously satisfied constraints, exactly [47, 69, 94] or approximately [7, 56, 91]? What
is the minimum number of simultaneously unsatisfied constraints [54, 72]? Given an almost
satisfiable instance, can one find a somewhat satisfying solution [14,52,53]? In this paper, we
will focus on the following question:

Given a satisfiable instance, can one find a solution that is satisfying in a weaker sense [9,
12,26]?

This was formalised as promise constraint satisfaction problems (PCSPs) by Austrin, Guruswami
and H̊astad [9] and Brakensiek and Guruswami [26]. Let A and B be two fixed relational
structures1 such that there is a homomorphism from A to B, indicated by A → B. Intu-
itively, the structure A represents the “strict” constraints and the structure B represents
the corresponding “weak” constraints. An instance of the PCSP over the template (A,B),
denoted by PCSP(A,B), is a relational structure X such that there is a homomorphism from
X to A. The task is to find a homomorphism from X to B, which exists by the composition
of the two promised homomorphisms. What we described above is the search variant of the
PCSP. In the decision variant, one is given a relational structure X and the task is to decide
whether there is a homomorphism from X to A or whether there is not a homomorphism
from X to B. Note that since homomorphisms compose, if X → A then also X → B. Thus,
the two cases cannot happen simultaneously. It is known that the decision variant of the
PCSP reduces to the search variant [12], but it is not known whether there is a reduction in
the other direction for all PCSPs. In this paper, we shall use the decision variant.

PCSPs are a vast generalisation of CSPs including problems that cannot be expressed as
CSPs. The work of Barto, Buĺın, Krokhin, and Opršal [12] lifted and greatly extended the
algebraic framework developed for CSPs [17, 35, 70] to the realm of PCSPs. Subsequently,
there has been a series of recent works on the computational complexity of PCSPs building
on [12], including applicability of local consistency and convex relaxations [5,25,30,39,44] and
complexity of fragments of PCSPs [2, 11, 15, 27, 31, 66, 80, 90]. Strong results on PCSPs have
also been established via other techniques than those in [12], mostly analytical methods, e.g.,
hardness of various (hyper)graph colourings [8, 58,68,73] and other PCSPs [20,21,28,33].

An example of a PCSP, identified in [9], is (in the search variant) finding a satisfying as-
signment to a k-CNF formula given that a g-satisfying assignment exists; i.e., an assignment
that satisfies at least g literals in each clause. Austrin et al. established that this problem
is NP-hard if g/k < 1/2 and solvable via a constant level of the Sherali-Adams linear pro-

1Unless otherwise stated, we shall use the word “structure” to mean finite-domain structures; if the domain
is allowed to be infinite, we shall say it explicitly.
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gramming relaxation otherwise [9]. This classification was later extended to problems over
arbitrary finite domains by Brandts et al. [31].

A second example of a PCSP, identified in [26], is (in the search variant) finding a “not-
all-equal” assignment to a monotone 3-CNF formula given that a “1-in-3” assignment is
promised to exist; i.e., given a 3-CNF formula with positive literals only and the promise
that an assignment exists that satisfies exactly one literal in each clause, the task is to find
an assignment that satisfies one or two literals in each clause. This problem is solvable in
polynomial time via a constant level of the Sherali-Adams linear programming relaxation [26]
but not via a reduction to finite-domain CSPs [12].

A third example of a PCSP is the well-known approximate graph colouring problem: Given
a c-colourable graph, find a d-colouring of it, for constants c and d with c ≤ d. This corres-
ponds to PCSP(Kc,Kd), where Kp is the clique on p vertices. Despite a long history dating
back to 1976 [62], the complexity of this problem is only understood under stronger assump-
tions [32,57,66] and for special cases [12,24,65,68,71,73,80]. It is believed that the problem
is NP-hard already in the decision variant [62], i.e., deciding whether a graph is c-colourable
or not even d-colourable, for each 3 ≤ c ≤ d. By using the framework developed in the
current work, non-solvability of approximate graph colouring through standard algorithmic
techniques was established in the follow-up works [42,43].

Like all decision problems, PCSPs can be solved by designing tests. If a test, applied to
a given instance of the problem, is positive then the answer is Yes; if it is negative then the
answer is No. The challenge is then to find tests that are able to guarantee a low number –
ideally, zero – of false positives and false negatives. Clearly, a test is itself a decision problem.
However, its nature may be substantially different, and less complicated, than the nature of
the original problem.

Given a PCSP template (A,B), we may use any (potentially infinite) structure T to make
a test for PCSP(A,B): We simply let the outcome of the test on an instance structure X be
Yes if X → T, and No if X 6→ T. In other words, CSP(T) is a test for PCSP(A,B). Let
X be an instance of PCSP(A,B). If X → T whenever X → A, the test is guaranteed not to
generate false negatives, and we call it complete. Since homomorphisms compose, if A → T

the test is automatically complete. If X → B whenever X → T, the test is guaranteed
not to generate false positives, and we call it sound. If both of these conditions hold, we
say that the test solves PCSP(A,B). Notice that, in this case, one obtains a reduction
from PCSP(A,B) to CSP(T). These two types of computational problems – the original
problem and the test – have different algebraic natures. The complexity of both CSPs and
PCSPs was shown to be determined by higher-order symmetries of the solution sets of the
problems, known as polymorphisms, denoted by Pol(A) for CSP(A) [35] and by Pol(A,B) for
PCSP(A,B) [12]. For CSPs, polymorphisms form clones; in particular, they are closed under
composition. This means that some symmetries may be obtainable through compositions of
other symmetries, so that one can hope to capture properties of entire families of CSPs
(e.g., bounded width, tractability, etc.) through the presence of a certain polymorphism
and, more generally, to describe their complexity through universal-algebraic tools. A chief
example of this approach is the positive resolution of the dichotomy conjecture for CSPs by
Bulatov [37] and Zhuk [97], establishing that finite-domain non-uniform CSPs are either in P
or are NP-complete. For PCSPs, however, polymorphisms are not closed under composition,
and the algebraic structure they are endowed with – known as minion – is much less rich
and, apparently, harder to understand through the lens of universal algebra.
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To make a test T useful as a polynomial-time algorithm to solve a PCSP, one requires that
CSP(T) should be tractable. It was conjectured in [25] that every tractable (finite-domain)
PCSP is solved by a tractable test. In other words, if the conjecture is true, tests are the sole
source of tractability for PCSPs. For the conjecture to be true, one needs to admit tests on
infinite domains: As shown in [12], the PCSP template (1-in-3,NAE) does not admit a finite-
domain tractable test; i.e., there is no (finite) structure T such that 1-in-3 → T → NAE

and CSP(T) is tractable.
For a PCSP template (A,B), one would ideally aim to build tests for PCSP(A,B) in a

systematic way. One method to do so is by considering tests associated with minions and,
in particular, their free structures. The free structure FM (A) of a minion M generated by
a structure A [12] is a (potentially infinite) structure obtained, essentially, by simulating the
relations in A on a domain consisting of elements of M . Then, we define TestM (X,A) = Yes

if X → FM (A), and No otherwise. (Note that X is the input to the problem; the minion M

and the relational structure A, coming from a PCSP template, are (fixed) parameters of the
test.)

For certain choices of M , TestM is a tractable test; i.e., CSP(FM (A)) is tractable for any
A. This is the case for the minions H = Pol(Horn-3-Sat) (whose elements are nonempty
subsets of a given set), Qconv (whose elements are stochastic vectors), and Zaff (whose ele-
ments are affine integers vectors). As it was shown in [12], these three minions correspond to
three well-studied algorithmic relaxations: TestH is Arc Consistency (AC) [87], TestQconv

is
the Basic Linear Programming relaxation (BLP) [81], and TestZaff

is the Affine Integer Pro-
gramming relaxation (Zaff) [25]. In [30], the algorithm BLP+AIP (which we shall call BA
in this work) corresponding to a combination of linear and integer programming was shown
to be captured by a certain minion MBA. In summary, several widely used algorithms for
(P)CSPs are minion tests; in particular, Arc Consistency, which is the simplest example of
consistency algorithms, and standard algorithms based on relaxations.

Convex relaxations have been instrumental in the understanding of the complexity of many
variants of CSPs, including constant approximability of Min-CSPs [54,60] and Max-CSPs [74,
91], robust satisfiability of CSPs [14,81,98], and exact solvability of optimisation CSPs [77,95].
An important line of work focused on making convex relaxations stronger and stronger via the
so-called “lift-and-project” method, which includes the Sherali-Adams LP hierarchy [93], the
SDP hierarchy of Lovász and Schrijver [86], and the (stronger) SDP hierarchy of Lasserre [82],
also known as the Sum-of-Squares hierarchy (see [83] for a comparison of these hierarchies).
The study of the power of various convex hierarchies has led to several breakthroughs, e.g., [1,
40,63,78,84,96].

In the same spirit as lift-and-project hierarchies of convex relaxations, the (combinatorial)
k-consistency algorithm (also known as the k-bounded width algorithm) has a central role
in the study of tractability for constraint satisfaction problems [3, 61]. Here k is an integer
bounding the number of variables considered in reasoning about partial solutions; the case
k = 1 corresponds to Arc Consistency mentioned above. The notion of local consistency,
in addition to being one of the key concepts in constraint satisfaction, has also emerged
independently in finite model theory [75], graph theory [67], and proof complexity [4]. The
power of local consistency for CSPs is now fully understood [10,13,34]. Recent work identified
a necessary condition on local consistency to solve PCSPs [5].
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Contributions The main contribution of this work is the introduction of a general frame-
work for refining algorithmic relaxations of (P)CSPs. Given a minion M , we present a
technique to systematically turn TestM into the corresponding hierarchy of minion tests: a
sequence of increasingly tighter relaxations TestkM for k ∈ N.

The technique we adopt to build hierarchies of minion tests is inspired by multilinear
algebra. We describe a tensorisation construction that turns a given structure X into a
structure X

k○
on a different signature, where both the domain and the relations are multi-

dimensional objects living in tensor spaces. Essentially, TestkM works by applying TestM to
tensorised versions of the structuresX and A rather than toX andA themselves. This allows
us to study the functioning of the algorithms in the hierarchy by describing the geometry of
a space of tensors – which can be accomplished by using multilinear algebra. As far as we
know, this approach has not appeared in the literature on Sherali-Adams, bounded width,
Sum-of-Squares, hierarchies of integer programming, and related algorithmic techniques such
as the high-dimensional Weisfeiler-Leman algorithm [6,39].2

One key feature of our framework is that it is modular, in that it allows splitting the
description of a hierarchy of minion tests into an algebraic part, corresponding to the minion
M , and a geometric part, entirely dependent on the tensorisation construction and hence
common to all hierarchies. By considering certain well-behaved families of minions, which we
call linear and conic, we can then deduce general properties of the corresponding hierarchies
by only focussing on the geometry of spaces of tensors.

Letting the minion M be H (resp., Qconv, Zaff), we shall retrieve in this way the bounded
width hierarchy (resp., the Sherali-Adams LP hierarchy, the affine integer programming hier-
archy). Additionally, we describe a new minion S capturing the power of the basic semidef-
inite programming relaxation (SDP),3 and we show that Testk

S
coincides with the Sum-of-

Squares hierarchy. As a consequence, our framework is able to provide a unified description of
all these four well-known hierarchies of algorithmic relaxations. In addition to casting known
hierarchies of relaxations as hierarchies of minion tests, this approach can be used to design
new hierarchies. In particular, we describe an operation that we call semi-direct product of
minions, which consists in combining multiple minions to form a new minion associated with
a stronger relaxation. In practice, this method can be used to design an algorithm that com-
bines the features of different known algorithmic techniques. We show that the minion MBA

associated with the BA relaxation from [30] is the semi-direct product of Qconv and Zaff , and
we formally introduce the BAk hierarchy as the hierarchy TestkMBA

.
The scope of this framework is potentially not limited to constraint satisfaction: The

multilinear pattern that we found at the core of different algorithmic hierarchies appears to
be transversal to the constraint satisfaction setting and, instead, inherently connected to the
algorithmic techniques themselves, which can be applied to classes of computational problems
living beyond the realms of (P)CSPs.

Subsequent work The tensorisation methodology introduced in this paper has later been
used by the authors in follow-up work on the applicability of relaxation hierarchies to specific

2Butti and Dalmau [39] recently characterised for CSPs when the k-th level of the Sherali-Adams LP
programming hierarchy accepts in terms of a construction different from the one introduced in this work.
Unlike the tensorisation, the construction considered in [39] yields a relational structure whose domain includes
the set of constraints of the original structure.

3In the recent paper [29], Brakensiek, Guruswami, and Sandeep independently provided a characterisation
for the power of SDP that is similar to the one we obtain in the current work.
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problems. In particular, they have shown that the approximate graph colouring problem is
not solved by the affine integer programming hierarchy [42] and not even by the (stronger)
hierarchy for the combined basic linear programming and affine integer programming relaxa-
tion [43]. In the very recent paper [55], various concepts introduced in this work – in particular,
the concept of conic minions – were shown to play an important role for the description of a
certain type of reductions between (P)CSPs (cf. Remark 45).

2 Background

Notation We denote by N the set of positive integers. For k ∈ N, we denote by [k] the set
{1, . . . , k}. We indicate by ei the i-th standard unit vector of the appropriate size (which will
be clear from the context); i.e., the i-th entry of ei is 1, and all other entries are 0. 0p and 1p
denote the all-zero and all-one vector of size p, respectively, while Ip and Op,q denote the p×p
identity matrix and the p × q all-zero matrix, respectively. Given a matrix M , we let tr(M)
and csupp(M) be the trace and the set of indices of nonzero columns of M , respectively. The
symbol ℵ0 denotes the cardinality of N.

Promise CSPs A signature σ is a finite set of relation symbols R, each with arity ar(R) ∈
N. A σ-structure A consists of a domain (universe) A and, for each R ∈ σ, a relation
RA ⊆ Aar(R). A σ-structure A is finite if the size |A| of its domain A is finite. In this case,
we often assume that the domain of A is A = [n].

Let A and B be σ-structures. A homomorphism from A to B is a map h : A → B such
that, for each R ∈ σ with r = ar(R) and for each a = (a1, . . . , ar) ∈ Ar, if a ∈ RA then
h(a) = (h(a1), . . . , h(ar)) ∈ RB. We denote the existence of a homomorphism from A to
B by A → B. A pair of σ-structures (A,B) with A → B is called a promise constraint
satisfaction problem (PCSP) template. The PCSP problem parameterised by the template
(A,B), denoted by PCSP(A,B), is the following computational problem: The input is a
σ-structure X and the goal is to answer Yes if X → A and No if X 6→ B. The promise is
that it is not the case that X 6→ A and X → B. We write CSP(A) for PCSP(A,A), the
classic (non-promise) constraint satisfaction problem.

Relaxations and hierarchies The following relaxations of (P)CSPs shall be mentioned
in this paper: Arc Consistency (AC) is a propagation algorithm that checks for the exist-
ence of assignments satisfying the local constraints of the given (P)CSP instance [87]; the
basic linear programming (BLP) relaxation looks for compatible probability distributions on
assignments [81]; the affine integer programming (AIP) relaxation turns the constraints into
linear equations, that can be solved over the integers using (a variant of) Gaussian elimina-
tion [25]; the basic semidefinite programming (SDP) relaxation is essentially a strengthening
of BLP, where probabilities are replaced by vectors satisfying orthogonality requirements [91];
the combined basic linear programming and affine integer programming (BA) relaxation is a
hybrid algorithm blending BLP and AIP [30].

In this work, we shall mainly focus on algorithmic hierarchies. The bounded width (BWk)
hierarchy (also known as local consistency checking algorithm) refines AC by propagating
local solutions over bigger and bigger portions of the instance, while the Sherali-Adams LP
(SAk), affine integer programming (AIPk), Sum-of-Squares (SoSk), and combined basic linear
programming and affine integer programming (BAk) hierarchies strengthen the BLP, AIP,
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SDP, and BA relaxations, respectively, by looking for compatible distributions over bigger
and bigger assignments.

The five hierarchies mentioned above, as well as the SDP relaxation, are described in
Section 4.2 (see also the discussion in Appendix A). We refer to [12] for AC, BLP, and AIP,
and to [30] for BA.

Algebraic approach to PCSPs The algebraic theory of PCSPs developed in [12] relies on
the notions of polymorphism and minion. Let A be a σ-structure. For L ∈ N, the L-th power
of A is the σ-structure AL with domain AL whose relations are defined as follows: Given
R ∈ σ and an L×ar(R) matrix M such that all rows of M are tuples in RA, the columns of M

form a tuple in RAL
. An L-ary polymorphism of a PCSP template (A,B) is a homomorphism

from AL to B. Minions were defined in [12] as sets of functions with certain properties. We
shall use here the abstract definition of minions, as first done in [30], cf. also [44]. A minion
M consists in the disjoint union of nonempty sets M (L) for L ∈ N equipped with (so-called
minor) operations (·)/π : M (L) → M (L′) for all functions π : [L] → [L′], which satisfy

M/ id = M and, for π : [L] → [L′] and π̃ : [L′] → [L′′], (M/π)/π̃ = M/π̃◦π for all M ∈ M (L).

Example 1. The set Pol(A,B) of all polymorphisms of a PCSP template (A,B) is a minion
with the minor operations defined by f/π(a1, . . . , aL′) = f(aπ(1), . . . , aπ(L)) for f : AL → B

and π : [L] → [L′]. In this minion, the minor operations correspond to identifying coordinates,
permuting coordinates, and introducing dummy coordinates (of polymorphisms).

Example 2. Other examples of minions that shall appear frequently in this work are Qconv,
Zaff , and H , capturing the power of the algorithms BLP, AIP, and AC, respectively. The L-
ary elements of Qconv are rational vectors of size L that are stochastic (i.e., whose entries are
nonnegative and sum up to 1), with the minor operations defined as follows: For q ∈ Qconv

(L)

and π : [L] → [L′], q/π = Pq, where P is the L′×Lmatrix whose (i, j)-th entry is 1 if π(j) = i,
and 0 otherwise. Zaff is defined similarly to Qconv, the only difference being that its L-ary
elements are affine integer vectors (i.e., their entries are integer – possibly negative – numbers
and sum up to 1). H is the minion of polymorphisms of the CSP template Horn-3-Sat,
i.e., the Boolean structure whose four relations are “x∧ y ⇒ z”, “x∧ y ⇒ ¬z”, {0}, and {1}.
Equivalently (cf. [12]), H can be described as follows: For any L ∈ N, the L-ary elements
of H are Boolean functions of the form fZ(x1, . . . , xL) =

∧

z∈Z xz for any Z ⊆ [L], Z 6= ∅;
the minor operations are defined as in Example 1. We shall also mention the minion MBA

capturing the algorithm BA. Its L-ary elements are L × 2 matrices whose first column u

belongs to Qconv
(L) and whose second column v belongs to Zaff

(L), and such that if the i-th
entry of u is zero then the i-th entry of v is also zero, for each i ∈ [L]. The minor operation
is defined on each column individually; i.e., [ u v ]/π = [ u/π v/π ].

For two minions M and N , a minion homomorphism ξ : M → N is a map that preserves
arities and minors: Given M ∈ M (L) and π : [L] → [L′], ξ(M) ∈ N (L) and ξ(M/π) = ξ(M)/π.
We denote the existence of a minion homomorphism from M to N by M → N .

We will also need the concept of free structure from [12]. Let M be a minion and let A
be a (finite) σ-structure. The free structure of M generated by A is a σ-structure FM (A)
with domain M (|A|) (potentially infinite). Given a relation symbol R ∈ σ of arity r, a tuple

(M1, . . . ,Mr) of elements of M (|A|) belongs to RFM (A) if and only if there is some Q ∈ M (|RA|)

such that Mi = Q/πi
for each i ∈ [r], where πi : R

A → A maps a ∈ RA to its i-th coordinate
ai. The definition of free structure may at this point strike the reader as rather abstract. We
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shall see that if we consider certain quite general classes of minions then this object unveils
an interesting geometric description of linear and multilinear nature.

3 Overview of results and techniques

Let (A,B) be a PCSP template. As discussed in Section 1, any (potentially infinite) structure
T on the same signature as A and B can be viewed as a test for the computational problem
PCSP(A,B): Given an instance X, the test returns Yes if X → T, and No otherwise. As
the next definition illustrates, minions provide a systematic method to build tests for PCSPs.

Definition 3. Let M be a minion. The minion test TestM is the computational problem
defined as follows: Given two σ-structures X and A, return Yes if X → FM (A), and No

otherwise.

IfX is an instance of PCSP(A,B) for some template (A,B), we write TestM (X,A) = Yes

if TestM applied to X and A returns Yes (i.e., if X → FM (A)), and we write TestM (X,A) =
No otherwise. Note that, in the expression “TestM (X,A)”, X is the input structure of the
PCSP, while A is the fixed structure from the PCSP template.

Leaving SDP aside for the moment, it turns out that the algebraic structure lying at the
core of all relaxations mentioned in Section 2, of seemingly different nature, is the same, as
all of them are minion tests for specific minions.

Theorem 4 ([12,30]). AC = TestH , BLP = TestQconv
, AIP = TestZaff

, BA = TestMBA
.

One reason why minion tests are an interesting type of tests is that they are always
complete.

Proposition 5. TestM is complete for any minion M ; i.e., for any X and A with X → A,
we have X → FM (A).

A second feature of minion tests is that their soundness can be characterised algebraically,
as stated in the next proposition and shown easily using a compactness argument from [88],
cf. [12].

Proposition 6. Let M be a minion and let (A,B) be a PCSP template. Then, TestM solves
PCSP(A,B) if and only if M → Pol(A,B).

3.1 A minion for SDP

The first contribution of this work is to design a minion S capturing the power of SDP, thus
showing that, similarly to AC, BLP, AIP, and BLP+AIP, also SDP is a minion test.

Definition 7. For L ∈ N, let S (L) be the set of real L× ℵ0 matrices M such that

(C1) csupp(M) is finite (C2) MMT is a diagonal matrix (C3) tr(MMT ) = 1. (1)

Given a function π : [L] → [L′] and a matrix M ∈ S (L), we let M/π = PM , where P is the

L′×L matrix whose (i, j)-th entry is 1 if π(j) = i, and 0 otherwise. We set S =
⊔

L∈N S (L).

In Section 6, we shall prove that the object defined above is indeed a minion and that it
captures the power of the SDP relaxation, as stated below.
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Proposition 8. SDP = TestS . In other words, given two σ-structures X and A, SDP(X,A) =
Yes if and only if X → FS (A).

Using Proposition 6, we obtain a characterisation of the power of the SDP relaxation.

Theorem 9. Let (A,B) be a PCSP template. Then, SDP solves PCSP(A,B) if and only
if S → Pol(A,B).

3.2 Tensorisation

As discussed earlier, minions give a systematic method for designing tests for (P)CSPs. We
now describe a construction, which we call tensorisation, that provides a technique to sys-
tematically refine minion tests, thus creating hierarchies of progressively stronger algorithms.

Let S be a set and let k ∈ N. For n = (n1, . . . , nk) ∈ Nk, T n(S) denotes the set of all
functions from [n1] × · · · × [nk] to S, which we visualise as hypermatrices or tensors. Many
of the tensors appearing in this paper are cubical, which means that n = n · 1k = (n, . . . , n)
is a constant tuple.4

For k ∈ N and a signature σ, σ
k○

is the signature consisting of the same symbols as σ
such that each symbol R of arity r in σ has arity rk in σ

k○
.

Definition 10. The k-th tensor power of a σ-structure A is the σ
k○
-structure A

k○
hav-

ing domain Ak and relations defined as follows: For each symbol R ∈ σ of arity r in

σ, we set RA
k○

=
{

a
k○
: a ∈ RA

}

, where, for a ∈ RA, a
k○

is the tensor in T r·1k(Ak)

defined as follows: For any (i1, i2, . . . , ik) ∈ [r]k, the (i1, i2, . . . , ik)-th element of a
k○

is
(ai1 , ai2 , . . . , aik).

5,6

Notice that A
1○
= A. Also, the function RA → RA

k○
given by a 7→ a

k○
is a bijection, so

the cardinality of RA
k○

equals the cardinality of RA.

Example 11. Let us describe the third tensor power of the 3-clique – i.e., the structure
K

3○
3 . The domain of K

3○
3 is [3]3, i.e., the set of tuples of elements in [3] having length

3. Let R be the symbol corresponding to the binary edge relation in K3, so that RK3 =

{(1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3)}. Then, RK
3○
3 has arity 23 = 8 and it is a subset of

T 2·13([3]3). Specifically, RK
3○
3 = {(1, 2)

3○
, (2, 1)

3○
, (2, 3)

3○
, (3, 2)

3○
, (3, 1)

3○
, (1, 3)

3○
} where,

e.g., (2, 3)
3○
=

[

(2, 2, 2) (2, 2, 3) (3, 2, 2) (3, 2, 3)
(2, 3, 2) (2, 3, 3) (3, 3, 2) (3, 3, 3)

]

.7

We say that a σ-structure A is k-enhanced if σ contains a k-ary symbol Rk such that
RA

k = Ak. Observe that any two σ-structures A and B are homomorphic if and only if the
structures Ã and B̃ obtained by adding Rk to their signatures are homomorphic. Hence,

4See Section 4.1 for further details on the terminology for tensors.
5Using the terminology for tensors that we shall introduce in Section 4.1, a

k○
can be more compactly defined

as follows: Ei ∗ a
k○

= ai for any i ∈ [r]k.
6We can visualise a

k○
as the formal Segre outer product of k copies of a (cf. [85]).

7The vertical line separates the two 2× 2 layers of the 2× 2× 2 tensor.
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PCSP(A,B) is equivalent to PCSP(Ã, B̃), and considering k-enhanced structures results in
no loss of generality. We now give the main definition of this work.

Definition 12. For a minion M and an integer k ∈ N, the k-th level of the minion test
TestM , denoted by Testk

M
, is the computational problem defined as follows: Given two

k-enhanced σ-structures X and A, return Yes if X
k○
→ FM (A

k○
), and No otherwise.

Comparing Definition 12 with Definition 3, we see that TestkM (X,A) = TestM (X
k○
,A

k○
).

In other words, the k-th level of a minion test is just the minion test applied to the tensor
power of the structures. We have seen (cf. Proposition 5) that a minion test is always complete.
It turns out that this property keeps holding for any level of a minion test.

Proposition 13. TestkM is complete for any minion M and any integer k ∈ N.

The proof of Proposition 13 relies on the fact that homomorphisms between structures
are in some sense invariant under the tensorisation construction, as formally stated in Pro-
position 28.

It is well known that each of the hierarchies of relaxations mentioned in Section 2 has the
property that higher levels are at least as powerful as lower levels. As the next result shows,
this is in fact a property of all hierarchies of minion tests.

Proposition 14. Let M be a minion, let k, p ∈ N be such that k > p, and let X,A be two
k- and p-enhanced σ-structures. If Testk

M
(X,A) = Yes then Testp

M
(X,A) = Yes.

It follows from Proposition 14 that, if some level of a minion test is sound for a template
(A,B) (equivalently, if it solves PCSP(A,B)), then any higher level is sound for (A,B)
(equivalently, it solves PCSP(A,B)).

The next theorem is the second main result of this paper. It shows that the framework
defined above is general enough to capture each of the five hierarchies for (P)CSPs mentioned
in Section 2.

Theorem 15 (Informal). If k ∈ N is at least the maximum arity of the template,

• BWk = TestkH

• SAk = TestkQconv

• AIPk = TestkZaff

• SoSk = TestkS

• BAk = TestkMBA
.

3.3 Linear minions

Certain features of the hierarchies of minion tests from Definition 12 – in particular, the fact
that they are complete (Proposition 13) and progressively stronger (Proposition 14) – hold
true for any minion, as they only depend on basic properties of the tensorisation construc-
tion. In order to prove Theorem 15, however, it is necessary to dig deeper by investigating
how the tensorisation construction interacts with the free structure. In other words, we need
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to understand the object FM (A
k○
). To that end, we isolate a property shared by all min-

ions mentioned in this work: Their objects can be interpreted as matrices, and their minor
operations can be expressed as matrix multiplications. We call such minions linear.

Definition 16. A minion M is linear if there exists a semiring S with additive identity 0S
and multiplicative identity 1S and a number d ∈ N ∪ {ℵ0} (called depth) such that

1. the elements of M (L) are L× d matrices whose entries belong to S, for each L ∈ N;

2. given L,L′ ∈ N, π : [L] → [L′], and M ∈ M (L), M/π = PM , where P is the L′ × L
matrix such that, for i ∈ [L′] and j ∈ [L], the (i, j)-th entry of P is 1S if π(j) = i, and
0S otherwise.

Observe that pre-multiplying a matrix M by P amounts to performing a combination of
the following three elementary operations to the rows of M : swapping two rows, replacing
two rows with their sum, and inserting a zero row. Hence, we may equivalently define a linear
minion as a collection of matrices over S that is closed under such elementary operations.

As illustrated in the next proposition, the family of linear minions is rich enough to include
the minions associated with all minion tests studied in the literature on PCSPs, including
SDP.

Proposition 17. The following minions are linear:8

• H , with S = ({0, 1},∨,∧) and d = 1 • Qconv, with S = Q and d = 1

• Zaff , with S = Z and d = 1 • S , with S = R and d = ℵ0

• MBA, with S = Q and d = 2.

Recall that, as per Definition 3, the minion test associated with a minion M works by
checking whether a given instance is homomorphic to the free structure of M ; in other words,
TestM for a template (A,B) is essentially CSP(FM (A)). It is then worth checking what the
latter object looks like in the case that M is linear. The next remark shows that, in this case,
FM (A) has a simple matrix-theoretic description.

Remark 18. Given a linear minion M with semiring S and depth d, and a σ-structure A,
the free structure FM (A) of M generated by A has the following description:

• The elements of its domain M (|A|) are |A| × d matrices having entries in S.

• For R ∈ σ of arity r, the elements of RFM (A) are tuples of the form (P1Q, . . . , PrQ),

where Q ∈ M (|RA|) is a |RA| × d matrix having entries in S and, for i ∈ [r], Pi is the
|A| × |RA| matrix whose (a,a)-th entry is 1S if ai = a, and 0S otherwise.9

8It is not hard to verify that also the minion C capturing the power of the CLAP algorithm from [44] is
linear, with S = Q and d = ℵ0.

9We shall often write 0 and 1 for 0S and 1S to avoid cumbersome notation. The relevant semiring S will
always be clear from the context.
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Figure 1: A tensor M ∈ RF from Example 19, corresponding to the uniform distribution on
the set of edges of K3. The opacity of a cell is proportional to the value of the corresponding
entry: = 1

3 , = 1
6 , = 0.

3.4 Multilinear tests

We say that a test is multilinear if it can be expressed as TestkM for some linear minion M and
some integer k. In the same way as, for a template (A,B), TestM is essentially CSP(FM (A)),

it follows from Definition 12 that TestkM is essentially CSP(FM (A
k○
)), as it checks for the

existence of a homomorphism between the tensor power of the instance and the free structure
of M generated by the tensor power of A.

In Section 8, we show that, if M is linear, FM (A
k○
) is a space of tensors endowed

with relations that can be described through a tensor operation called contraction. Hence,
the matrix-theoretic description in Remark 18 is naturally extended to a tensor-theoretic
description. To give a first glance of this object, we illustrate below the structure of FM (A

k○
)

in the case that M = Qconv, k = 3, and A = K3.

Example 19. Let us denote FQconv
(K

3○
3 ) by F. The domain of F is the set of nonnegative

tensors in T 3·13(Q) whose entries sum up to 1. The relation RF is the set of those tensors
M ∈ T 2·13(T 3·13(Q)) = T 6·13(Q) such that there exists a stochastic vector q = (q1, . . . , q6) ∈

Qconv
(6) (which should be interpreted as a probability distribution over the elements of RK3 ,

i.e., over the directed edges in K3) for which the i-th block Mi of M satisfies Mi = q/πi
for

each i ∈ [2]3. It will follow from the results in Section 8 that, for example,

M(1,1,1) =





q1 + q6 0 0 0 0 0 0 0 0
0 0 0 0 q2 + q3 0 0 0 0
0 0 0 0 0 0 0 0 q4 + q5



,

M(2,1,2) =





0 0 0 0 q1 0 0 0 q6
q2 0 0 0 0 0 0 0 q3
q5 0 0 0 q4 0 0 0 0



.

Figure 1 illustrates the tensor M ∈ RF corresponding to the uniform distribution q = 1
6 · 16.

In Section 8, we investigate the geometry of FM (A) for a linear minion M . As hinted
by Example 19, we shall see that this object is a space of sparse tensors, whose nonzero
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entries form regular patterns (cf. Lemma 31). This feature becomes more evident for higher

values of the level k. In turn, the geometry of FM (A
k○
) is reflected in the properties of

the homomorphisms ξ from X
k○

to it – which, by virtue of Definition 12, are precisely the
solutions sought by Testk

M
. For instance, Proposition 36 distils the requirements of the BWk,

SAk, AIPk, SoSk, and BAk hierarchies enforcing compatibility between partial assignments10

from X to A into the single tensor equation

ξ(xi) = Πi

k
∗ ξ(x).

For k = 1, the equation is vacuous, since in this case Πi is the identity matrix and xi = x

(cf. Section 4.1 for the notation). As k increases, it produces a progressively richer system
of symmetries that must be satisfied by ξ, which corresponds to a progressively stronger
relaxation. Concretely, we shall use all results obtained in Section 8 on the geometry of
FM (A

k○
) to prove Theorem 15.

3.5 Conic minions

A primary message of this work is that the tensorisation construction establishes a corres-
pondence between the algebraic properties of a minion and the algorithmic properties of the
hierarchy of tests built on the minion. For example, we have seen that if the minion is linear
some general properties of the solutions of the hierarchy can be deduced by studying the
geometry of FM (A

k○
). Now, the bounded width hierarchy has the property that it only seeks

assignments that are partial homomorphisms; similarly, the Sherali-Adams, Sum-of-Squares,
and BAk hierarchies only assign a positive weight to solutions satisfying local constraints.
The next definition identifies the minion property guaranteeing this algorithmic feature.

Definition 20. A linear minion M of depth d is conic if, for any L ∈ N and for any
M ∈ M (L), (i) M 6= OL,d, and (ii) for any V ⊆ [L], the following implication is true:11

∑

i∈V MTei = 0d ⇒ MTei = 0d ∀i ∈ V.

Paraphrasing Definition 20, a linear minion M is conic if any matrix in M is nonzero and
has the property that, whenever some of its rows sum up to the zero vector, each of those
rows is the zero vector. All minions appearing in Proposition 17 are conic, with the exception
of Zaff .

Proposition 21. H , Qconv, S , and MBA are conic minions,12 while Zaff is not.

It turns out that this simple property guarantees that the hierarchies of tests built on conic
minions only look at assignments yielding partial homomorphisms (cf. Proposition 38). It also
follows that conic hierarchies are not fooled by small instances: Proposition 39 establishes
that the k-th level of such hierarchies is able to correctly classify instances on k (or fewer)
elements13 – as it is well known for the bounded width, Sherali-Adams, and Sum-of-Squares
hierarchies. Moreover, we shall see that any linear minion can be transformed into a conic
minion – whose hierarchy enjoys the features mentioned above – via the semi-direct product
construction (cf. Proposition 40).

10Cf. the “closure under restriction” property of BWk and the requirements ♣2 and ♠3 in Section 4.2.
11As usual, the sum, product, 0, and 1 operations appearing in this definition are to be meant in the semiring

S associated with the linear minion M .
12The minion C associated with the CLAP algorithm from [44] can be easily shown to be conic as well.
13We may informally express this fact by saying that conic hierarchies are “sound in the limit”.
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Organisation The rest of the paper contains full details and proofs of the statements
presented in this Overview. Section 4 includes relevant terminology for tensors as well as
a description of the relaxations and hierarchies used throughout the paper (see also Ap-
pendix A). Section 5 gives some basic results on minion tests. Section 6 shows that the power
of SDP is captured by the minion S . Sections 7, 8, and 9 are the technical core of the paper;
they provide a description of hierarchies of tests built on arbitrary minions, linear minions,
and conic minions, respectively. Section 10 describes the semi-direct product of minions,
needed to capture the BAk hierarchy. The machinery assembled in the previous sections is
finally used in Section 11 to prove Theorem 15.

4 Preliminaries

4.1 Terminology for tensors

Tuples Given a set S, two integers k, ℓ ∈ N, a tuple s = (s1, . . . , sk) ∈ Sk, and a tuple
i = (i1, . . . , iℓ) ∈ [k]ℓ, si shall denote the projection of s onto i, i.e., the tuple in Sℓ defined
by si = (si1 , . . . , siℓ). Given two tuples s = (s1, . . . , sk) ∈ Sk and s̃ = (s̃1, . . . , s̃ℓ) ∈ Sℓ,
their concatenation is the tuple (s, s̃) = (s1, . . . , sk, s̃1, . . . , s̃ℓ) ∈ Sk+ℓ. We also define {s} =
{s1, . . . , sk}. Given two sets S, S̃ and two tuples s = (s1, . . . , sk) ∈ Sk, s̃ = (s̃1, . . . , s̃k) ∈ S̃k,
we write s ≺ s̃ if, for any α, β ∈ [k], sα = sβ implies s̃α = s̃β. The expression s 6≺ s̃ shall
mean the negation of s ≺ s̃. Notice that the relation “≺” is preserved under projections: If
s ≺ s̃ and i ∈ [k]ℓ, then si ≺ s̃i.

Semirings A semiring S consists of a set S equipped with two binary operations “+” and
“·” such that

• (S,+) is a commutative monoid with an identity element “0S” (i.e., (r+s)+t = r+(s+t),
0S + r = r + 0S = r, and r + s = s+ r);

• (S, ·) is a monoid with an identity element “1S” (i.e., (r · s) · t = r · (s · t) and 1S · r =
r · 1S = r);

• “·” distributes over “+” (i.e., r · (s+ t) = (r · s) + (r · t) and (r+ s) · t = (r · t) + (s · t));

• “0S” is a multiplicative absorbing element (i.e., 0S · r = r · 0S = 0S).

Examples of semirings are Z, Q, and R with the usual addition and multiplication operations,
or the Boolean semiring ({0, 1},∨,∧).

Let V be a finite set, and choose an element sv ∈ S for each v ∈ V . We let the formal
expression

∑

v∈V sv equal 0S if V = ∅. To increase the readability, we shall usually write 0
and 1 for 0S and 1S ; the relevant semiring S will always be clear from the context.

Tensors As anticipated in Section 3, given a set S, an integer k ∈ N, and a tuple n =
(n1, . . . , nk) ∈ Nk, by T n(S) we denote the set of functions from [n1]× · · · × [nk] to S, which
we visualise as hypermatrices or tensors having k modes, where the i-th mode has size ni for
i ∈ [k]. If n = n ·1k = (n, . . . , n) is a constant tuple, T n(S) is a set of cubical tensors, each of
whose modes has the same length n. For example, if n = n · 12 = (n, n), T n(S) is the set of
n × n matrices having entries in S. We sometimes denote an element of T n(S) by T = (ti),
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where i ∈ [n1]×· · ·× [nk] and ti is the image of i under T . Moreover, given two tuples n ∈ Nk

and ñ ∈ Nℓ, we sometimes write T n,ñ(S) for T (n,ñ)(S), where (n, ñ) is the concatenation of
n and ñ. Whenever k ≥ 2 and ni = 1 for some i ∈ [k], we can (and will) identify T n(S) with
T n̂(S), where n̂ ∈ Nk−1 is obtained from n by deleting the i-th entry.

Contraction Take a semiring S. For k, ℓ,m ∈ N, take n ∈ Nk, p ∈ Nℓ, and q ∈ Nm. The

contraction of two tensors T = (ti) ∈ T n,p(S) and T̃ = (t̃i) ∈ T p,q(S), denoted by T
ℓ
∗ T̃ , is

the tensor in T n,q(S) such that, for i ∈ [n1]× · · · × [nk] and j ∈ [q1]× · · · × [qm], the (i, j)-th

entry of T
ℓ
∗ T̃ is given by

∑

z∈[p1]×···×[pℓ]

t(i,z)t̃(z,j)

(where the addition and multiplication are meant in the semiring S). This notation straight-
forwardly extends to the cases when k = 0 or m = 0, i.e., when we are contracting over all

modes of T or T̃ . In such cases, we write T ∗ T̃ for T
ℓ
∗ T̃ . We shall use the convention of

always contracting from the left to the right, so that the expression T1 ∗ T2 ∗ T3 is a synonym
for the expression (T1 ∗ T2) ∗ T3. The reason for this is that the contraction operation is not
associative in general. For instance, for T and T̃ as above and T̂ ∈ T n,q(S), the expression

(T
ℓ
∗ T̃ )

k+m
∗ T̂ = (T

ℓ
∗ T̃ )∗ T̂ is well defined, while changing the order of the contractions results

in an expression that is not well defined in general. On the other hand, it is not hard to check
that the order in which the contractions are performed is irrelevant if the contractions are
taken over disjoint sets of modes.

Example 22. Given two vectors u,v ∈ T p(R) and two matrices M ∈ T n,p(R), N ∈ T p,q(R),

we have that u
1
∗ v = u ∗ v = uTv (the dot product of u and v), M

1
∗ u = M ∗ u = Mu (the

matrix-vector product of M and u), and M
1
∗N = MN (the matrix product of M and N).

For i ∈ [n1]× · · · × [nk], we denote by Ei the i-th standard unit tensor ; i.e., the tensor in
T n(S) all of whose entries are 0S , except the i-th entry that is 1S . Given T ∈ T n(S), notice

that Ei

k
∗T = Ei ∗T is the i-th entry of T . The support of T is the set of indices of all nonzero

entries of T ; i.e., the set supp(T ) = {i ∈ [n1]× · · · × [nk] : Ei ∗ T 6= 0S}.

Remark 23. The definition of tensors straightforwardly extends to the case that ni = ℵ0 for
some i ∈ [k].

4.2 Relaxations and hierarchies

In this section, we define the standard semidefinite programming relaxation as well as the
bounded width, Sherali-Adams LP, affine integer programming, Sum-of-Squares, and com-
bined basic linear programming and affine integer programming hierarchies. We refer to
Appendix A for a more detailed discussion, as well as for a comparison with different formu-
lations of these algorithms appearing in the literature on (P)CSPs.

Given two σ-structures A and B and a subset S ⊆ A, a partial homomorphism from A

to B with domain S is a homomorphism from A[S] to B, where A[S] is the substructure
of A induced by S – i.e., it is the σ-structure whose domain is S and, for any R ∈ σ,
RA[S] = RA ∩ Sar(R). Recall that, for k ∈ N, we say that a σ-structure A is k-enhanced if
the signature σ contains a k-ary symbol Rk such that RA

k = Ak.
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BWk Given two σ-structuresX,A, we say that the k-th level of the bounded width algorithm
accepts when applied toX andA, and we write BWk(X,A) = Yes, if there exists a nonempty
collection F of partial homomorphisms from X to A with at most k-element domains such
that (i) F is closed under restrictions, i.e., for every f ∈ F and every V ⊆ dom(f), f |V ∈ F ,
and (ii) F has the extension property up to k, i.e., for every f ∈ F and every V ⊆ X with
|V | ≤ k and dom(f) ⊆ V , there exists g ∈ F such that g extends f and dom(g) = V .

We say that BWk solves a PCSP template (A,B) if X → B whenever BWk(X,A) = Yes.
(Note that the algorithm is always complete: If X → A then BWk(X,A) = Yes.)

SAk, AIPk, and BAk Given two k-enhanced σ-structures X,A, we introduce a variable
λR,x,a for every R ∈ σ, x ∈ RX, a ∈ RA. Consider the following system of equations:

(♣1)
∑

a∈RA

λR,x,a = 1 R ∈ σ,x ∈ RX

(♣2)
∑

a∈RA,ai=b

λR,x,a = λRk ,xi,b R ∈ σ,x ∈ RX, i ∈ [ar(R)]k,b ∈ Ak

(♣3) λR,x,a = 0 R ∈ σ,x ∈ RX,a ∈ RA,x 6≺ a.14

(2)

We say that the k-th level of the Sherali-Adams linear programming hierarchy accepts
when applied to X and A, and we write SAk(X,A) = Yes, if the system (2) admits a
solution such that all variables take rational nonnegative values. Similarly, we say that the
k-th level of the affine integer programming hierarchy accepts when applied to X and A, and
we write AIPk(X,A) = Yes, if the system above admits a solution such that all variables take
integer values. Moreover, we say that the k-th level of the combined basic linear programming
and affine integer programming hierarchy accepts when applied to X and A, and we write
BAk(X,A) = Yes, if the system above admits both a solution such that all variables take
rational nonnegative values and a solution such that all variables take integer values, and
the following refinement condition holds: Denoting the rational nonnegative and the integer

solutions by the superscripts (B) and (A), respectively, we require that λ
(A)
R,x,a = 0 whenever

λ
(B)
R,x,a = 0, for each R ∈ σ,x ∈ RX,a ∈ RA.

We say that SAk solves a PCSP template (A,B) if X → B whenever SAk(X,A) = Yes.
The definition for AIPk and BAk is analogous. (Note that the three algorithms are always
complete: If X → A then SAk(X,A) = AIPk(X,A) = BAk(X,A) = Yes.)

SDP Given two σ-structures X,A, let ω = |X| · |A| +
∑

R∈σ |R
X| · |RA|. We introduce a

variable λx,a taking values in Rω for every x ∈ X, a ∈ A, and a variable λR,x,a taking values

14The condition x 6≺ a formalises the requirement that the same variables (elements of x) should not be
assigned different values (elements of a). Some papers avoid this requirement by imposing that (P)CSP
instances should have no repetition of variables in constraints scopes; i.e., elements of x are all distinct.
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in Rω for every R ∈ σ,x ∈ RX,a ∈ RA. Consider the following system of equations:

(♦1)
∑

a∈A

‖λx,a‖
2 = 1 x ∈ X

(♦2) λx,a · λx,a′ = 0 x ∈ X, a 6= a′ ∈ A
(♦3) λR,x,a · λR,x,a′ = 0 R ∈ σ,x ∈ RX,a 6= a′ ∈ RA

(♦4)
∑

a∈RA

ai=a

λR,x,a = λxi,a R ∈ σ,x ∈ RX, a ∈ A, i ∈ [ar(R)].

(3)

We say that the standard semidefinite programming relaxation accepts when applied to X

and A, and we write SDP(X,A) = Yes, if the system (3) admits a solution. We say that
SDP solves a PCSP template (A,B) if X → B whenever SDP(X,A) = Yes. (Note that the
algorithm is always complete: If X → A then SDP(X,A) = Yes.)

SoSk Given two k-enhanced σ-structures X,A, let ω =
∑

R∈σ |R
X| · |RA|. We introduce a

variable λR,x,a taking values in Rω for every R ∈ σ,x ∈ RX,a ∈ RA. Consider the following
system of equations:

(♠1)
∑

a∈RA

‖λR,x,a‖
2 = 1 R ∈ σ,x ∈ RX

(♠2) λR,x,a · λR,x,a′ = 0 R ∈ σ,x ∈ RX,a 6= a′ ∈ RA

(♠3)
∑

a∈RA,ai=b

λR,x,a = λRk ,xi,b R ∈ σ,x ∈ RX, i ∈ [ar(R)]k,b ∈ Ak

(♠4) ‖λR,x,a‖
2 = 0 R ∈ σ,x ∈ RX,a ∈ RA,x 6≺ a.

(4)

We say that the k-th level of the Sum-of-Squares semidefinite programming hierarchy
accepts when applied to X and A, and we write SoSk(X,A) = Yes, if the system (4) admits a
solution. We say that SoSk solves a PCSP template (A,B) if X → B whenever SoSk(X,A) =
Yes. (Note that the algorithm is always complete: If X → A then SoSk(X,A) = Yes.)

5 Minion tests

In this section, we present some basic results on minion tests (introduced in Definition 3).
In particular, we show that a minion test TestM is always complete, and its power can
be characterised algebraically through the existence of a homomorphism from M to the
polymorphism minion of the template.

We start off with a simple lemma, implicitly proved in [12] for the case of minions of
operations.

Lemma 24. Let M be a minion and let A be a σ-structure. Then, A → FM (A).

Proof. Take a unary element M ∈ M (1), and consider the map

f : A → M
(n)

a 7→ M/ρa

where ρa : [1] → [n] = A is defined by ρa(1) = a. Take R ∈ σ of arity r, and consider a
tuple a = (a1, . . . , ar) ∈ RA. Let m = |RA|, and consider the function π : [1] → [m] defined
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by π(1) = a. Let Q = M/π ∈ M (m). For each i ∈ [r], consider the function πi : [m] → [n]

defined by πi(b) = bi, where b = (b1, . . . , br) ∈ RA. Observe that ρai = πi ◦π for each i ∈ [r].
We obtain

f(a) = (f(a1), . . . , f(ar)) = (M/ρa1
, . . . ,M/ρar

) = (M/π1◦π, . . . ,M/πr◦π)

= ((M/π)/π1
, . . . , (M/π)/πr

) = (Q/π1
, . . . , Q/πr

) ∈ RFM (A),

thus showing that f is a homomorphism from A to FM (A).

Proposition (Proposition 5 restated). TestM is complete for any minion M ; i.e., for any
X and A with X → A, we have X → FM (A).

Proof. It immediately follows from Lemma 24 that, if X and A are two σ-structures such
that X → A, then X → FM (A), thus witnessing that TestM (X,A) accepts.

We now prove Proposition 6, which establishes that the power of minion tests can be
characterised algebraically. Our proof follows the lines of [12, Remark 7.13], where the same
result is derived from Kőnig’s Lemma for locally countable minions – i.e., minions M having
the property that M (L) is countable for any L. Since the minion S described in Definition 7
is not locally countable, we shall need this stronger version of the result when proving that
S provides an algebraic characterisation of the power of SDP (cf. Theorem 9).

First, we need the following result on compact structures, which is a consequence of the
(uncountable version of the) compactness theorem of logic (cf. [88]). We say that a potentially
infinite σ-structure B is compact if, for any potentially infinite σ-structure A, A → B if and
only if A′ → B for every finite substructure A′ of A.

Theorem 25 ([92]). Every (finite) σ-structure is compact.

Proposition (Proposition 6 restated). Let M be a minion and let (A,B) be a PCSP tem-
plate. Then, TestM solves PCSP(A,B) if and only if M → Pol(A,B).

Proof. We first observe that the condition M → Pol(A,B) is equivalent to the condition
FM (A) → B by [12, Lemma 4.4] (see also [44] for the proof for abstract minions).

Suppose that FM (A) → B. Given an instance X, if TestM (X,A) = Yes then X →
FM (A), and composing the two homomorphisms yields X → B. Hence, TestM is sound on
the template (A,B). Since, as noted above, TestM is always complete, we deduce that TestM
solves PCSP(A,B).

Conversely, suppose that TestM solves PCSP(A,B). Let F be a finite substructure of
FM (A), and notice that the inclusion map yields a homomorphism from F to FM (A). Hence,
TestM (F,A) = Yes, so F → B. Since B is compact by Theorem 25, we deduce that
FM (A) → B, as required.

6 A minion for SDP

The goal of this section is to show that the relaxation SDP is a minion test and that its power
can be captured algebraically.14 To this end, we start by showing that the object introduced
in Definition 7 is indeed a minion. Then, it will easily follow from its construction that it is
in fact a linear minion.

14We remark that a characterisation for the power of SDP, similar to the one we describe in this section,
was also obtained independently by Brakensiek, Guruswami, and Sandeep in [29].
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Proposition 26. S is a linear minion.

Proof. We first show that S is a minion. Observe that, for π : [L] → [L′] and M ∈ S (L),
M/π = PM ∈ T L′,ℵ0(R) and csupp(PM) is finite. One easily checks that (i) P T1L′ = 1L, and

(ii) PP T is a diagonal matrix. Using that both MMT and PP T are diagonal, we find that
M/π(M/π)

T = PMMTP T is diagonal, too. Moreover, since the trace of a diagonal matrix
equals the sum of its entries, we obtain

tr(M/π(M/π)
T ) = 1TL′M/π(M/π)

T1L′ = 1TL′PMMTP T1L′ = 1TLMMT1L = tr(MMT ) = 1.

It follows that M/π ∈ S (L′). Furthermore, one easily checks that M/id = M and, given
π̃ : [L′] → [L′′], (M/π)/π̃ = M/π̃◦π, which concludes the proof that S is a minion. The fact
that S is linear directly follows from Definition 16.

Recall from Remark 18 that, for a σ-structure A, a symbol R ∈ σ of arity r, and a number
i ∈ [r], Pi is the |A| × |RA| matrix whose (a,a)-th entry is 1 if ai = a, and 0 otherwise. In
order to show that SDP is a minion test corresponding to the minion S , we shall use the
following simple description of the entries of Pi.

Lemma 27 ([44]). Let A be a σ-structure, let R ∈ σ of arity r, and let i ∈ [r], a ∈ A. Then,

eTa Pi =
∑

a∈RA

ai=a

eTa .

In order to prove that SDP = TestS , we essentially need to encode the vectors λ witnessing
an SDP solution as rows of matrices belonging to S . To this end, we need to solve the
following “size problem”: The vectors λ live in a vector space having a fixed, finite dimension
– namely, the number ω = |X| · |A|+

∑

R∈σ |R
X| · |RA|. On the other hand, the matrices in

S have rows of infinite size, living in Rℵ0 . This issue is easily solved by considering an ω-
dimensional subspace of Rℵ0 and working in an orthonormal basis of such subspace, through
a standard orthonormalisation argument.

Proposition (Proposition 8 restated). SDP = TestS . In other words, given two σ-structures
X and A, SDP(X,A) = Yes if and only if X → FS (A).

Proof. Suppose that SDP(X,A) = Yes, and let the family of vectors λx,a,λR,x,a ∈ Rω

witness it, for x ∈ X, a ∈ A,R ∈ σ,x ∈ RX,a ∈ RA, where ω = |X| · |A|+
∑

R∈σ |R
X| · |RA|.

Consider the map ξ : X → S (n) defined by

eTa ξ(x)ej =

{

eTj λx,a if j ≤ ω

0 otherwise
x ∈ X, a ∈ A, j ∈ N.

We claim that ξ is well defined. For each x ∈ X, we have ξ(x) ∈ T n,ℵ0(R). Moreover,
ξ(x)ej = 0 for each j > ω, so C1 is satisfied. Given a, a′ ∈ A,

eTa ξ(x)ξ(x)
T ea′ =

∑

j∈N

eTa ξ(x)eje
T
j ξ(x)

Tea′ =
∑

j≤ω

eTj λx,aλ
T
x,a′ej = λx,a · λx,a′ .

If a 6= a′, this quantity is zero by ♦2, so C2 is satisfied. Finally,

tr(ξ(x)ξ(x)T ) =
∑

a∈A

eTa ξ(x)ξ(x)
T ea =

∑

a∈A

‖λx,a‖
2 = 1
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by ♦1, so C3 is also satisfied and the claim is true. We now show that ξ yields a homo-
morphism from X to FS (A). Take R ∈ σ of arity r and x = (x1, . . . , xr) ∈ RX. Consider the

matrix Q ∈ T |RA|,ℵ0(R) defined by

eTaQej =

{

eTj λR,x,a if j ≤ ω

0 otherwise
a ∈ RA, j ∈ N.

Using the same arguments as above, we check that Q satisfies C1 and that eTaQQTea′ =
λR,xa · λR,x,a′ , so C2 follows from ♦3 and C3 from point (ii) of Proposition 55. Therefore,

Q ∈ S (|RA|). We now claim that ξ(xi) = Q/πi
for each i ∈ [r]. Indeed, for a ∈ A and j ∈ [ω],

we have

eTa ξ(xi)ej = eTj λxi,a =
∑

a∈RA

ai=a

eTj λR,x,a =
∑

a∈RA

ai=a

eTaQej = eTa PiQej = eTaQ/πi
ej,

where the second and fourth equalities follow from ♦4 and Lemma 27, respectively. Also,
clearly,

eTa ξ(xi)ej = eTaQ/πi
ej = 0

if j ∈ N \ [ω]. As a consequence, the claim holds. It follows that ξ(x) ∈ RFS (A), so that ξ is
a homomorphism.

Conversely, let ξ : X → FS (A) be a homomorphism. For R ∈ σ of arity r and x =

(x1, . . . , xr) ∈ RX, we can fix a matrix QR,x ∈ S (|RA|) satisfying ξ(xi) = QR,x/πi
for each

i ∈ [r]. Consider the sets S1 = {ξ(x)T ea : x ∈ X, a ∈ A} and S2 = {QT
R,xea : R ∈ σ,x ∈

RX,a ∈ RA}, and the vector space U = span(S1 ∪ S2) ⊆ Rℵ0 . Observe that dimU ≤
|S1 ∪ S2| ≤ |S1| + |S2| ≤ |X| · |A| +

∑

R∈σ |R
X| · |RA| = ω. Consider a vector space V of

dimension ω such that U ⊆ V ⊆ Rℵ0 . Using the Gram-Schmidt process,15 we find a projection
matrix Z ∈ T ℵ0,ω(R) such that ZTZ = Iω and ZZTv = v for any v ∈ V. Consider the family
of vectors

λx,a = ZT ξ(x)Tea x ∈ X, a ∈ A,
λR,x,a = ZTQT

R,xea R ∈ σ,x ∈ RX,a ∈ RA.
(5)

We claim that (5) witnesses that SDP(X,A) = Yes. To check ♦1, observe that

∑

a∈A

‖λx,a‖
2 =

∑

a∈A

eTa ξ(x)ZZT ξ(x)T ea =
∑

a∈A

eTa ξ(x)ξ(x)
T ea = tr(ξ(x)ξ(x)T ) = 1,

where the second equality follows from the fact that ξ(x)Tea ∈ S1 ⊆ U ⊆ V and the fourth
from C3. In a similar way, using C2, we obtain

λx,a · λx,a′ = eTa ξ(x)ZZT ξ(x)T ea′ = eTa ξ(x)ξ(x)
T ea′ = 0,

λR,x,a · λR,x,a′ = eTaQR,xZZTQT
R,xea′ = eTaQR,xQ

T
R,xea′ = 0

15We note that the Gram-Schmidt process also applies to vector spaces of countably infinite dimension.
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if a 6= a′ ∈ A and a 6= a′ ∈ RA. This shows that ♦2 and ♦3 hold. Finally, to prove ♦4, we
observe that

∑

a∈RA

ai=a

λR,x,a =
∑

a∈RA

ai=a

ZTQT
R,xea =

(

∑

a∈RA

ai=a

eTaQR,xZ
)T

=
(

eTa PiQR,xZ
)T

=
(

eTa ξ(xi)Z
)T

= ZT ξ(xi)
T ea = λxi,a,

where the third equality follows from Lemma 27. Therefore, the claim is true and the proof
is complete.

Using Propositions 8 and 6, we immediately have the following algebraic characterisation
of the power of SDP.

Theorem (Theorem 9 restated). Let (A,B) be a PCSP template. Then, SDP solves PCSP(A,B)
if and only if S → Pol(A,B).

7 Hierarchies of minion tests

In this section, we start studying the hierarchies of minion tests introduced in Definition 12,
by describing two properties that are common to all such hierarchies: They are complete, and
they become tighter as the level increases. A finer description will be available in the next
sections, where we will focus on hierarchies built on minions having a linear or conic form.

The next proposition shows that the tensorisation construction described in Definition 10
does not alter whether two structures are homomorphic or not. We let Hom(A,B) denote
the set of homomorphisms from A to B.

Proposition 28. Let k ∈ N and let A,B be two σ-structures. Then

(i) A → B if and only if A
k○
→ B

k○
;

(ii) if A is k-enhanced, there is a bijection ρ : Hom(A,B) → Hom(A
k○
,B

k○
).

Proof. Let f : A → B be a homomorphism, and consider the function f∗ : Ak → Bk defined

by f∗((a1, . . . , ak)) = (f(a1), . . . , f(ak)). Take R ∈ σ of arity r, and consider a
k○

∈ RA
k○
,

where a ∈ RA. Let b = f(a). Since f is a homomorphism, b ∈ RB, so b
k○
∈ RB

k○
. For any

i ∈ [r]k, we have

Ei ∗ f
∗
(

a
k○
)

= f∗
(

Ei ∗ a
k○
)

= f∗(ai) = f(ai) = (f(a))i = bi = Ei ∗ b
k○
,

which yields f∗(a
k○
) = b

k○
∈ RB

k○
. Hence, f∗ : A

k○
→ B

k○
is a homomorphism.

Conversely, let g : A
k○

→ B
k○

be a homomorphism. We define the function g∗ : A → B
by setting g∗(a) = eT1 g((a, . . . , a)) for each a ∈ A. Take R ∈ σ of arity r, and consider a

tuple a = (a1, . . . , ar) ∈ RA. Since a
k○

∈ RA
k○

and g is a homomorphism, we have that

g(a
k○
) ∈ RB

k○
. Therefore, g(a

k○
) = b

k○
for some b = (b1, . . . , br) ∈ RB. For each j ∈ [r],

consider the tuple i = (j, . . . , j) ∈ [r]k and observe that

g((aj , . . . , aj)) = g(ai) = g
(

Ei ∗ a
k○
)

= Ei ∗ g(a
k○
) = Ei ∗ b

k○
= bi = (bj , . . . , bj).
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Hence, we find

g∗(a) =
(

eT1 g((a1, . . . , a1)), . . . , e
T
1 g((ar , . . . , ar))

)

= (b1, . . . , br) = b ∈ RB.

Therefore, g∗ : A → B is a homomorphism. This concludes the proof of (i).

To prove (ii), observe first that, if A 6→ B, then Hom(A,B) = Hom(A
k○
,B

k○
) = ∅,

so there is a trivial bijection in this case. If A → B, consider the map ρ : Hom(A,B) →

Hom(A
k○
,B

k○
) defined by f 7→ f∗ and the map ρ′ : Hom(A

k○
,B

k○
) → Hom(A,B) defined

by g 7→ g∗. For f : A → B and a ∈ A, we have

(f∗)∗(a) = eT1 f
∗((a, . . . , a)) = eT1 (f(a), . . . , f(a)) = f(a)

so that ρ′ ◦ ρ = idHom(A,B). Consider now g : A
k○

→ B
k○
, and take a = (a1, . . . , ak) ∈ Ak.

Using the assumption that A is k-enhanced, we have a ∈ RA
k , which implies a

k○
∈ RA

k○

k .

Hence, g(a
k○
) ∈ RB

k○

k , so g(a
k○
) = b

k○
for some b = (b1, . . . , bk) ∈ RB

k ⊆ Bk. For j ∈ [k]
and i = (j, . . . , j) ∈ [k]k, we have

g((aj , . . . , aj)) = g(ai) = g
(

Ei ∗ a
k○
)

= Ei ∗ g
(

a
k○
)

= Ei ∗ b
k○
= bi = (bj , . . . , bj).

Letting i′ = (1, . . . , k) ∈ [k]k, we obtain

(g∗)
∗(a) = (g∗(a1), . . . , g∗(ak)) =

(

eT1 g((a1, . . . , a1)), . . . , e
T
1 g((ak, . . . , ak))

)

= (b1, . . . , bk)

= b = bi′ = Ei′ ∗ b
k○
= Ei′ ∗ g

(

a
k○
)

= g
(

Ei′ ∗ a
k○
)

= g(ai′) = g(a),

so that ρ ◦ ρ′ = id
Hom(A

k○
,B

k○
)
, which concludes the proof of (ii).

Remark 29. Part (ii) of Proposition 28 does not hold in general if we relax the require-
ment that A be k-enhanced. More precisely, in this case, the function ρ : Hom(A,B) →

Hom(A
k○
,B

k○
) defined in the proof of Proposition 28 still needs to be injective, but may not

be surjective. Therefore, we have |Hom(A,B)| ≤
∣

∣

∣Hom(A
k○
,B

k○
)
∣

∣

∣, and the inequality may

be strict.
For example, consider the Boolean structure A having a unique unary relation RA

1 =
A = {0, 1}. So, A is 1-enhanced but not 2-enhanced. Observe that |Hom(A,A)| = 4. The
tensorised structure A

2○
has domain {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and its (unary)

relation is RA
2○

1 = {0
2○
, 1

2○
} = {(0, 0), (1, 1)}. Therefore, each map f : {0, 1}2 → {0, 1}2 such

that f((0, 0)) ∈ {(0, 0), (1, 1)} and f((1, 1)) ∈ {(0, 0), (1, 1)} yields a proper homomorphism

A
2○
→ A

2○
. It follows that

∣

∣

∣
Hom(A

2○
,A

2○
)
∣

∣

∣
= 64, so Hom(A,A) and Hom(A

2○
,A

2○
) are

not in bijection.

It readily follows from Proposition 28 that hierarchies of minion tests are always complete.

Proposition (Proposition 13 restated). TestkM is complete for any minion M and any integer
k ∈ N.

Proof. LetX andA be two k-enhanced σ-structures and suppose thatX → A. Proposition 28
yields X

k○
→ A

k○
, while Lemma 24 yields A

k○
→ FM (A

k○
). The composition of the two

homomorphisms witnesses that Testk
M
(X,A) = Yes, as required.
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We conclude the section by showing that hierarchies of minion tests become tighter as the
level increases.

Proposition (Proposition 14 restated). Let M be a minion, let k, p ∈ N be such that
k > p, and let X,A be two k- and p-enhanced σ-structures. If TestkM (X,A) = Yes then
Testp

M
(X,A) = Yes.

Proof. Let ξ : X
k○

→ FM (A
k○
) be a homomorphism witnessing that Testk

M
(X,A) = Yes.

Since k > p, we can choose two tuples v ∈ [k]p and w ∈ [p]k such that wv = (1, . . . , p). (For
instance, we may take v = (1, . . . , p) and w = (1, . . . , p, . . . , p).) Consider the map τ : Ak →
Ap defined by a 7→ av. We claim that the map ϑ : Xp → M (np) defined by x 7→ ξ(xw)/τ yields

a homomorphism from X
p○

to FM (A
p○
), thus witnessing that Testp

M
(X,A) = Yes. To that

end, for R ∈ σ, take x ∈ RX and observe that, since ξ is a homomorphism and x
k○
∈ RX

k○
,

ξ(x
k○
) ∈ RFM (A

k○
). Therefore, there exists Q ∈ M (|RA|) satisfying ξ(xi) = Q/πi

for each

i ∈ [r]k. If we manage to show that ϑ(xj) = Q/πj
for each j ∈ [r]p, we would deduce that

ϑ(x
p○
) ∈ RFM (A

p○
), thus proving the claim. Observe that

ϑ(xj) = ξ(xjw)/τ = (Q/πjw
)/τ = Q/τ ◦πjw

,

so we are left to show that τ ◦ πjw = πj. Indeed, given any a ∈ RA,

(τ ◦ πjw)(a) = τ(πjw(a)) = τ(ajw) = ajwv
= aj = πj(a),

as required.

As noted in Section 3, it follows from Proposition 14 that if a PCSP template is solved by
some level of a minion test, then it is also solved by any higher level.

8 Hierarchies of linear minion tests

By the Definition 12 of a hierarchy of minion tests, TestkM applied to an instance X of

PCSP(A,B) checks for the existence of a homomorphism from X
k○

to FM (A
k○
). Therefore,

to describe the hierarchy and get knowledge on its functioning it is necessary to study the
structure FM (A

k○
). This is done by investigating how the tensorisation construction interacts

with the free structure of the minion M on which the hierarchy is built. In this section, we
show that, if we consider minions having a “matrix form” – namely, the linear minions of
Definition 16 – FM (A

k○
) is a space of highly structured tensors, which we can describe using

the tools of multilinear algebra. Restricting the focus on this class of minions may strike as
artificial. The next result argues that the choice is in fact quite natural, as all the minions that
have been hitherto utilised in the literature on (P)CSPs to capture the power of algorithms
(including the minion S introduced in this work) are linear. In particular, the machinery we
build in this section (and in Section 9, where we consider an even more specialised minion
class) shall be crucial to show that the framework of hierarchies of minion tests captures
various well-known hierarchies of relaxations (cf. Theorem 15).

Proposition (Proposition 17 restated). The following minions are linear:

• H , with S = ({0, 1},∨,∧) and d = 1 • Qconv, with S = Q and d = 1

• Zaff , with S = Z and d = 1 • S , with S = R and d = ℵ0

• MBA, with S = Q and d = 2.
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Proof. The result for Qconv, Zaff , and MBA directly follows from their definitions in Ex-
ample 2, while the result for S is clear from Proposition 26.

As for H , recall its description given in Example 2. Given L ∈ N and ∅ 6= Z ⊆ [L], we
identify the Boolean function fZ =

∧

z∈Z xz ∈ H (L) with the indicator vector vZ ∈ {0, 1}L

whose i-th entry, for i ∈ [L], is 1 if i ∈ Z, and 0 otherwise. To conclude, we need to show
that, under this identification, the minor operations of H correspond to the minor operations
given in part 3 of Definition 16. In other words, we claim that the function fZ/π corresponds
to the vector PvZ for any L′ ∈ N and any π : [L] → [L′], where P is the L′ × L matrix given
in Definition 16. First, observe that

fZ/π(x1, . . . , xL′) = fZ(xπ(1), . . . , xπ(L)) =
∧

z∈Z

xπ(z) =
∧

t∈π(Z)

xt = fπ(Z)(x1, . . . , xL′),

so fZ/π = fπ(Z). To conclude, we need to show that PvZ = vπ(Z), where vπ(Z) is the indicator
vector of the nonempty set π(Z) ⊆ [L′]. Notice that the matrix multiplication is performed
in the semiring S = ({0, 1},∨,∧). For any i ∈ [L′], we have

eTi PvZ =
∨

j∈[L]

(

(eTi Pej) ∧ (eTj vZ)
)

=
∨

j∈Z
π(j)=i

1 =
∨

i∈π(Z)

1 = eTi vπ(Z),

as required.

Let M be a linear minion. We have seen in Section 3 (cf. Remark 18) that in this case
the structure lying at the core of TestM – i.e., the free structure FM (A) generated by a
σ-structure A – consists in a space of matrices with relations defined through specific matrix
products. We now describe the geometry of the structure lying at the core of the multilinear
test TestkM – which, by virtue of Definition 12, is FM (A

k○
). Given a semiring S, a symbol

R ∈ σ of arity r, and a tuple i ∈ [r]k, consider the tensor Pi ∈ T n·1k,|R
A|(S) defined by

Ea ∗ Pi ∗ Ea′ =

{

1 if a′i = a

0 otherwise
∀a ∈ Ak,a′ ∈ RA. (6)

Observe that the tensor Pi is the multilinear equivalent of the matrix Pi from Remark 18.
Let M be a linear minion with semiring S and depth d. The domain of FM (A

k○
) is M (nk),

which we visualise as a subset of T n·1k,d(S). Given a symbol R ∈ σ of arity r, consider a
block tensor M = (Mi)i∈[r]k ∈ T r·1k(T n·1k,d(S)) = T rn·1k,d(S). From the definition of free

structure, we have that M ∈ RFM (A
k○
) if and only if there exists Q ∈ M (|RA|) such that

Mi = Q/πi
= Pi

1
∗Q for each i ∈ [r]k.

We now show that the entries of Pi satisfy the following simple equality, analogous to
Lemma 27.

Lemma 30. Let k ∈ N, let A be a σ-structure, let R ∈ σ of arity r, and consider the tuples
a ∈ Ak and i ∈ [r]k. Then

Ea ∗ Pi =
∑

b∈RA

bi=a

Eb.
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Proof. For any a′ ∈ RA, we have









∑

b∈RA

bi=a

Eb









∗Ea′ =
∑

b∈RA

bi=a

(Eb ∗ Ea′) =
∑

b∈RA

bi=a
b=a′

1 =

{

1 if a′i = a

0 otherwise
= (Ea ∗ Pi) ∗ Ea′ ,

from which the result follows.

The next lemma shows that certain entries of a tensor in the relation RFM (A
k○
) (i.e., the

interpretation of R in the free structure of M generated by A
k○
) need to be zero.

Lemma 31. Let M be a linear minion, let k ∈ N, let A be a σ-structure, let R ∈ σ of arity

r, and suppose M = (Mi)i∈[r]k ∈ RFM (A
k○
). Then Ea ∗Mi = 0d for any i ∈ [r]k, a ∈ Ak such

that i 6≺ a.

Proof. Observe that there exists Q ∈ M (|RA|) such that Mi = Q/πi
for each i ∈ [r]k. Using

Lemma 30, we obtain

Ea ∗Mi = Ea ∗Q/πi
= Ea ∗ (Pi

1
∗Q) = Ea ∗ Pi ∗Q =

∑

b∈RA

bi=a

Eb ∗Q = 0d,

where the last equality follows from the fact that bi = a implies i ≺ a; indeed, in that case,
iα = iβ implies aα = biα = biβ = aβ.

It follows from Lemma 31 and the previous discussion that, if M is linear, FM (A
k○
) can

be visualised as a space of sparse and highly symmetric tensors (see also Example 19 and
Figure 1). The geometry of this space is reflected in the properties of the homomorphisms

from the k-th tensor power of an instance X to FM (A
k○
) – which correspond to solutions of

Testk
M
, cf. Definition 12. Lemma 32, Lemma 33, and Proposition 36 highlight certain features

of such homomorphisms that will be used to prove Theorem 15 in Section 11.

Lemma 32. Let M be a linear minion, let k ∈ N, let X,A be two k-enhanced σ-structures,
and let ξ : X

k○
→ FM (A

k○
) be a homomorphism. Then Ea ∗ ξ(x) = 0d for any x ∈ Xk,

a ∈ Ak such that x 6≺ a.

Proof. From x ∈ Xk = RX
k , we derive x

k○
∈ RX

k○

k ; since ξ is a homomorphism, this yields

ξ(x
k○
) ∈ R

FM (A
k○
)

k . Writing ξ(x
k○
) in block form as ξ(x

k○
) = (ξ(xi))i∈[k]k and applying

Lemma 31, we obtain Ea ∗ ξ(xi) = 0d for any i ∈ [k]k such that i 6≺ a. Write x = (x1, . . . , xk)
and a = (a1, . . . , ak). Since x 6≺ a, there exist α, β ∈ [k] such that xα = xβ and aα 6= aβ . Let
i′ ∈ [k]k be the tuple obtained from (1, . . . , k) by replacing the β-th entry with α. Observe
that xi′ = x and i′ 6≺ a. Hence,

0d = Ea ∗ ξ(xi′) = Ea ∗ ξ(x),

as required.
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Using Lemma 32, we obtain some more information on the image of a homomorphism
from X

k○
to FM (A

k○
). Given a signature σ, we let armax(σ) denote the maximum arity of

a relation symbol in σ.

Lemma 33. Let M be a linear minion, let k ∈ N, let X,A be two k-enhanced σ-structures
such that k ≥ armax(σ), and let ξ : X

k○
→ FM (A

k○
) be a homomorphism. For R ∈ σ of arity

r, let x ∈ RX and a ∈ RA be such that x 6≺ a. Let Q ∈ M (|RA|) be such that Q/πi
= ξ(xi)

for each i ∈ [r]k. Then Ea ∗Q = 0d.

Proof. Write x = (x1, . . . , xr) and a = (a1, . . . , ar). Since x 6≺ a, there exist α, β ∈ [r] such
that xα = xβ and aα 6= aβ. Using that k ≥ r, we can take the tuple i = (1, 2, . . . , r, r, . . . , r) ∈
[r]k. Consider xi ∈ Xk, ai ∈ Ak. Notice that xiα = xα = xβ = xiβ and aiα = aα 6= aβ = aiβ ,
so xi 6≺ ai. Applying Lemma 32, we find

0d = Eai
∗ ξ(xi) = Eai

∗Q/πi
= Eai

∗ Pi ∗Q.

Using Lemma 30, we conclude that

0d =
∑

b∈RA

bi=ai

Eb ∗Q = Ea ∗Q,

where the last equality follows from the fact that bi = ai if and only if b = a.

If X and A are k-enhanced σ-structures, any homomorphism ξ from X
k○

to FM (A
k○
)

must satisfy certain symmetries that ultimately depend on the fact that ξ preserves Rk. As
shown below in Proposition 36, these symmetries can be concisely expressed through a tensor
equation. Given a tuple i ∈ [k]k, we let Πi ∈ T n·12k(S) be the tensor defined by

Ea ∗ Πi ∗ Ea′ =

{

1 if a′i = a

0 otherwise
∀a,a′ ∈ Ak. (7)

The tensor defined above satisfies the following simple identity, which should be compared to
the one in Lemma 30 concerning the tensor Pi.

Lemma 34. For any a ∈ Ak and i ∈ [k]k,

Ea ∗ Πi =
∑

b∈Ak

bi=a

Eb.

Proof. For any a′ ∈ Ak, we have








∑

b∈Ak

bi=a

Eb









∗Ea′ =
∑

b∈Ak

bi=a

(Eb ∗ Ea′) =
∑

b∈Ak

bi=a
b=a′

1 =

{

1 if a′i = a

0 otherwise
= (Ea ∗ Πi) ∗ Ea′ ,

from which the result follows.

Remark 35. It is clear from the expressions (6) and (7) that, for any i ∈ [k]k, Πi coincides
with the tensor Pi associated with the relation symbol Rk.
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Proposition 36. Let M be a linear minion, let k ∈ N, let X,A be two k-enhanced σ-
structures, and let ξ : Xk → M (nk) be a map. Then, ξ preserves Rk if and only if

ξ(xi) = Πi

k
∗ ξ(x) for any x ∈ Xk, i ∈ [k]k. (8)

Proof. Suppose that ξ preserves Rk, and take x ∈ Xk = RX
k . It follows that x

k○
∈ RX

k○

k ,

so ξ(x
k○
) ∈ R

FM (A
k○
)

k . This means that there exists Q ∈ M (|RA
k |) = M (nk) such that

ξ(xi) = Q/πi
= Πi

k
∗Q for each i ∈ [k]k (where we have used Remark 35). Consider now the

tuple j = (1, . . . , k) ∈ [k]k, and observe that xj = x. Noticing that the contraction by Πj acts
as the identity, we conclude that

ξ(x) = ξ(xj) = Πj

k
∗Q = Q,

which concludes the proof of (8).

Conversely, suppose (8) holds and take x ∈ RX
k = Xk. We need to show that ξ(x

k○
) ∈

R
FM (A

k○
)

k . Take Q = ξ(x) ∈ M (nk) = M (|RA
k |). Using again Remark 35, we observe that, for

any i ∈ [k]k,

ξ(xi) = Πi

k
∗ ξ(x) = ξ(x)/πi

= Q/πi
,

whence the result follows.

9 Hierarchies of conic minion tests

The machinery developed in Section 8 applies to hierarchies of tests built on any linear
minion. It turns out that certain finer features of hierarchies of minion tests can be deduced
if we assume that the minion is conic; i.e., that, in addition to being linear, it enjoys a sort
of nonnegativity requirement described in Definition 20. As we establish next, all minions
considered in this work are conic, with the notable exception of Zaff .

Proposition (Proposition 21 restated). H , Qconv, S , and MBA are conic minions, while
Zaff is not.

Proof. The fact that Qconv is conic trivially follows by noting that its elements are nonnegative
vectors whose entries sum up to 1. Similarly, using the description of H as a linear minion on
the semiring ({0, 1},∨,∧) (cf. the proof of Proposition 17), the fact that H is conic follows
from the fact that

∨

i∈V xi = 0 means that xi = 0 for each i ∈ V . (Observe also that the
vectors in H are nonzero, as they are the indicator vectors of nonempty sets.) To show that
S is conic, take L ∈ N and M ∈ S (L), and notice first that M 6= OL,ℵ0

by C3 in Definition 7.
Take now V ⊆ [L]. If

∑

i∈V MTei = 0ℵ0
, using that MMT is a diagonal matrix by C2, we

find

0 = (
∑

i∈V

MT ei)
T (
∑

j∈V

MTej) =
∑

i,j∈V

eTi MMTej =
∑

i∈V

eTi MMTei =
∑

i∈V

‖MT ei‖
2,

which means that MTei = 0ℵ0
for any i ∈ V , as required. As for MBA, we shall see in

Section 10 (cf. Example 43) that this minion can be obtained as the semi-direct product of
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Qconv and Zaff . Then, the fact that MBA is conic is a direct consequence of the fact that
semi-direct products of minions are always conic (cf. Proposition 40). Finally, the element
(1,−1, 1) ∈ Zaff witnesses that Zaff is not conic.

It turns out that Lemma 33 can be slightly strengthened if we are dealing with conic
minions, in that the level k for which it holds can be decreased down to 2. As a consequence,
the algebraic description of the Sherali-Adams and Sum-of-Squares hierarchies in terms of the
tensorisation construction can be extended to lower levels, cf. Remark 51. As in Section 8,
the letter d shall denote the depth of the relevant minion in all results of this section. (Recall
that a conic minion is linear, by definition).

Lemma 37. Let M be a conic minion, let 2 ≤ k ∈ N, let X,A be two k-enhanced σ-
structures, and let ξ : X

k○
→ FM (A

k○
) be a homomorphism. For R ∈ σ of arity r, let

x ∈ RX and a ∈ RA be such that x 6≺ a. Let Q ∈ M (|RA|) be such that Q/πi
= ξ(xi) for each

i ∈ [r]k. Then Ea ∗Q = 0d.

Proof. Take α, β ∈ [r] such that xα = xβ and aα 6= aβ, and consider the tuple j =
(α, . . . , α, β) ∈ [r]k. Using that k ≥ 2, we have xj 6≺ aj, since xjk−1

= xα = xβ = xjk
and ajk−1

= aα 6= aβ = ajk . From Lemma 32 and Lemma 30 we obtain

0d = Eaj
∗ ξ(xj) = Eaj

∗Q/πj
= Eaj

∗ Pj ∗Q =
∑

b∈RA

bj=aj

Eb ∗Q.

Using that M is a conic minion, we deduce that Eb ∗ Q = 0d for any b ∈ RA such that
bj = aj. In particular, Ea ∗Q = 0d, as required.

The following result shows that hierarchies of tests built on conic minions only give a
nonzero weight to those assignments that yield partial homomorphisms.

Proposition 38. Let M be a conic minion, let k ∈ N, let X,A be two k-enhanced σ-
structures such that k ≥ min(2, armax(σ)), and let ξ : X

k○
→ FM (A

k○
) be a homomorphism.

Let R ∈ σ have arity r, and take x ∈ Xk, a ∈ Ak, and i ∈ [k]r. If xi ∈ RX and ai 6∈ RA,
then Ea ∗ ξ(x) = 0d.

Proof. From xi ∈ RX we have x
k○
i ∈ RX

k○
and, thus, ξ(x

k○
i ) ∈ RFM (A

k○
). It follows that

there exists Q ∈ M (|RA|) such that ξ(xij) = Q/πj
for each j ∈ [r]k. Proposition 36 then yields

Πij

k
∗ ξ(x) = ξ(xij) = Q/πj

= Pj

1
∗Q. (9)

Consider, for each α ∈ [k], the set Sα = {β ∈ [r] : iβ = α}, and fix an element β̂ ∈ [r]. The

tuple j ∈ [r]k defined by setting jα = minSα if Sα 6= ∅, jα = β̂ otherwise satisfies iji = i.
Indeed, for any β ∈ [r], we have Siβ 6= ∅ since β ∈ Siβ , so jiβ = minSiβ ∈ Siβ , which means
that ijiβ = iβ , as required. We obtain

Eaij
∗ Pj ∗Q =

∑

b∈RA

bj=aij

Eb ∗Q =
∑

b∈RA

xi≺b
bj=aij

Eb ∗Q, (10)
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where the first equality comes from Lemma 30 and the second from Lemma 33 or Lemma 37
(depending on whether k ≥ armax(σ) or k ≥ 2). We claim that the sum on the right-hand
side of (10) equals 0d. Indeed, let b ∈ Ar satisfy xi ≺ b and bj = aij. Since iji = i, for any

α ∈ [r] we have xiα = xijiα
and, hence, bα = bjiα . It follows that b = bji = aiji

= ai 6∈ RA,

which proves the claim. Combining this with (9), (10), and Lemma 34, we find

0d = Eaij
∗ Pj ∗Q = Eaij

∗ (Pj

1
∗Q) = Eaij

∗ (Πij

k
∗ ξ(x)) = Eaij

∗Πij ∗ ξ(x)

=
∑

b∈Ak

bij
=aij

Eb ∗ ξ(x)

so, in particular, Ea ∗ ξ(x) = 0d since M is a conic minion.

The next result shows that hierarchies of tests built on conic minions are “sound in the
limit”, in the sense that they correctly classify all instances whose domain size is less than or
equal to the hierarchy level.

Proposition 39. Let M be a conic minion, let 2 ≤ k ∈ N, let X,A be two k-enhanced
σ-structures such that |X| ≤ k, and suppose that TestkM (X,A) = Yes. Then X → A.

Proof. Let ξ : X
k○

→ FM (A
k○
) be a homomorphism witnessing that TestkM (X,A) = Yes,

and assume without loss of generality that X = [ℓ] with ℓ ∈ [k]. Take the tuple v =
(1, . . . , ℓ, ℓ, . . . , ℓ) ∈ [ℓ]k, and notice that ξ(v) 6= Onk,d since M is a conic minion. Therefore,

there exists some a ∈ Ak such that Ea ∗ ξ(v) 6= 0d. Consider the function f : X → A defined
by x → ax for each x ∈ X. We claim that f yields a homomorphism from X to A.

Let R ∈ σ be a relation symbol of arity r, take a tuple x ∈ RX, and suppose, for the sake of
contradiction, that f(x) 6∈ RA. Notice that x ∈ [ℓ]r ⊆ [k]r and that f(x) = ax. Since x ∈ RX,

we have x
k○

∈ RX
k○
. Being ξ a homomorphism, this implies that ξ(x

k○
) ∈ RFM (A

k○
).

Therefore, ∃Q ∈ M (|RA|) such that ξ(xi) = Q/πi
for each i ∈ [r]k. Observe that

Eaxi
∗ ξ(xi) = Eaxi

∗Q/πi
= Eaxi

∗ (Pi

1
∗Q) = Eaxi

∗ Pi ∗Q =
∑

c∈RA

ci=axi

Ec ∗Q =
∑

c∈RA

ci=axi
x≺c

Ec ∗Q,

(11)

where the fourth equality comes from Lemma 30 and the fifth from Lemma 37. On the other
hand, noting that vx = x, Proposition 36 and Lemma 34 yield

Eaxi
∗ ξ(xi) = Eaxi

∗ ξ(vxi
) = Eaxi

∗ (Πxi

k
∗ ξ(v))

= Eaxi
∗ Πxi

∗ ξ(v) =
∑

b∈Ak

bxi
=axi

Eb ∗ ξ(v). (12)

If Eaxi
∗ ξ(xi) = 0d, using that M is a conic minion, we would deduce from (12) that

Eb ∗ ξ(v) = 0d for any b ∈ Ak such that bxi
= axi

; in particular, Ea ∗ ξ(v) = 0d, a
contradiction. Therefore, Eaxi

∗ ξ(xi) 6= 0d. Then, it follows from (11) that, for each i ∈ [r]k,

there exists some c = (c1, . . . , cr) ∈ RA such that ci = axi
and x ≺ c. Choose i so that
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{x} = {xi}. Since c ∈ RA and ax 6∈ RA, we have c 6= ax; so, cp 6= axp for some p ∈ [r].
From xp ∈ {x} = {xi}, we obtain xp = xit for some t ∈ [k]. Since x ≺ c, this yields cp = cit .
Therefore, cit = cp 6= axp = axit

, so ci 6= axi
, a contradiction. We conclude that f(x) ∈ RA,

so f yields a homomorphism from X to A, as claimed.

10 The semi-direct product of minions

Is it possible for multiple linear minions to “join forces”, to obtain a new linear minion
corresponding to a stronger relaxation? The natural way to do so is to take as the elements of
the new linear minion block matrices, whose blocks are the elements of the original minions.
Let M and N be two linear minions that we wish to “merge”. A zero row in a matrix of M

corresponds to zero weight assigned to the variable associated with the row by the relaxation
given by M . Ideally, we would like to preserve this information when we run the relaxation
given by the second minion N . In other words, we require that zero rows in M should be
associated with zero rows in N . For this to make sense (i.e., for the resulting object to be a
linear minion), we need to assume that M is conic. Under this assumption, it turns out that
the new linear minion is conic, too. Therefore, this construction yields a method to transform
a linear minion into a conic one, by taking its product with a fixed conic minion (for instance,
Qconv). Equivalently, the semi-direct product provides a way to turn a hierarchy of linear
tests into a more powerful hierarchy of conic tests – which enjoys the appealing properties
described in Section 9.

Proposition 40. Let M be a conic minion with semiring S and depth d, let N be a linear
minion with semiring S and depth d′, and consider, for each L ∈ N, the set (M ⋉ N )(L) =
{[ M N ] : M ∈ M (L), N ∈ N (L), and NTei = 0d′ for any i ∈ [L] such that MTei = 0d}.

Then M ⋉ N =
⋃

L∈N(M ⋉ N )(L) is a conic minion with semiring S and depth d+ d′.

Definition 41. Let M and N be a conic minion and a linear minion, respectively, over the
same semiring. The semi-direct product of M and N is the conic minion M ⋉N described
in Proposition 40.

Remark 42. If the minions M and N in Definition 41 have different semirings S and S ′,
we cannot in general use the definition to build their semi-direct product. However, it is
immediate to check that a linear minion over S is also a linear minion over any semiring of
which S is a sub-semiring. Hence, if S is a sub-semiring of S ′ (or vice-versa), M ⋉N is well
defined (see Example 43 below). In general, however, we might not be able to find a common
semiring of which S and S ′ are both sub-semirings. In particular, it is not true in general that
the direct sum of semirings admits homomorphic injections from the components, see [51].
To be able to define M ⋉ N also in this case, we would need to redefine linear minions
by allowing each of the d columns of the matrices in a linear minion of depth d to contain
entries from a possibly different semiring. In this way, the requirement in Definition 41 can
be circumvented – which, for example, makes it possible to define the minion H ⋉ Zaff (see
Remark 52).

Example 43. Since Z is a sub-semiring of Q, we can view Qconv and Zaff as a conic minion
and a linear minion over the same semiring Q, respectively. It is easy to check that their
semi-direct product Qconv ⋉ Zaff is precisely the minion MBA from [30].
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Proof of Proposition 40. We start by showing that M ⋉N is a linear minion of depth d+d′.
Notice that each set (M ⋉N )(L) consists of L× (d+ d′) matrices having entries in S. Given
π : [L] → [L′] and [ M N ] ∈ (M ⋉ N )(L), we claim that P [ M N ] = [ PM PN ]

belongs to (M ⋉N )(L
′), where P is the L′×L matrix corresponding to π as per Definition 16.

First, since M and N are both linear minions, we have that PM = M/π ∈ M (L′) and

PN = N/π ∈ N (L′). Let j ∈ [L′] be such that (PM)T ej = 0d. We find

0d = MTP T ej =
∑

i∈π−1(j)

MTei.

Using that M is conic, we obtain MTei = 0d for each i ∈ π−1(j). By the definition of
(M ⋉ N )(L), this means that NTei = 0d′ for each i ∈ π−1(j). Therefore,

0d′ =
∑

i∈π−1(j)

NTei = NTP Tej = (PN)T ej,

which proves the claim. It follows that M ⋉ N is indeed a linear minion.
To show that M ⋉ N is conic, we first note that no element of M ⋉ N is the all-zero

matrix, since M is conic. If
∑

i∈V [ M N ]Tei = 0d+d′ for some L ∈ N, [ M N ] ∈

(M ⋉ N )(L), and V ⊆ [L], we find in particular that
∑

i∈V MTei = 0d, which implies that

MTei = 0d for each i ∈ V by the fact that M is conic. By the definition of (M ⋉ N )(L),
this yields NTei = 0d′ for each i ∈ V , so

[ M N ]T ei =

[

MT ei
NTei

]

=

[

0d
0d′

]

= 0d+d′

for each i ∈ V , as required.

The next result – crucial for the characterisation of the BAk hierarchy in Theorem 15,
cf. the proof of Proposition 50 – shows that homomorphisms corresponding to the semi-direct
product of two minions factor into homomorphisms corresponding to the components.

Proposition 44. Let M be a conic minion with semiring S and depth d, let N be a linear
minion with semiring S and depth d′, let k ∈ N, and let X,A be k-enhanced σ-structures such
that k ≥ armax(σ). Then there exists a homomorphism ϑ : X

k○
→ FM⋉N (A

k○
) if and only

if there exist homomorphisms ξ : X
k○

→ FM (A
k○
) and ζ : X

k○
→ FN (A

k○
) such that, for

any x ∈ Xk and a ∈ Ak, Ea ∗ ξ(x) = 0d implies Ea ∗ ζ(x) = 0d′ .

Proof. To prove the “if” part, take two homomorphisms ξ and ζ as in the statement of the
proposition, and consider the map

ϑ : Xk → (M ⋉ N )(n
k)

x 7→ [ ξ(x) ζ(x) ].

Observe that ϑ is well defined since we are assuming that Ea ∗ ξ(x) = 0d implies Ea ∗ ζ(x) =

0d′ for any x ∈ Xk and a ∈ Ak. We claim that ϑ yields a homomorphism from X
k○

to

FM⋉N (A
k○
). To this end, take R ∈ σ of arity r and x ∈ RX, so x

k○
∈ RX

k○
. We need

to show that ϑ(x
k○
) ∈ RFM⋉N (A

k○
); equivalently, we need to find some W ∈ (M ⋉ N )(m)
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such that ϑ(xi) = W/πi
for each i ∈ [r]k, where m = |RA|. Using that ξ is a homomorphism,

we have that ξ(x
k○
) ∈ RFM (A

k○
), so there exists Q ∈ M (m) for which ξ(xi) = Q/πi

for

each i ∈ [r]k. Similarly, using that ζ is a homomorphism, we can find Z ∈ N (m) for which
ζ(xi) = Z/πi

for each i ∈ [r]k. We now show that [ Q Z ] ∈ (M ⋉N )(m). To this end, take

a ∈ RA such that Ea ∗Q = 0d; we need to prove that Ea ∗ Z = 0d′ . Using the assumption
that k ≥ r, let us pick the tuple j = (1, 2, . . . , r, 1, 1, . . . , 1) ∈ [r]k. Notice that this choice
guarantees that {b ∈ RA : bj = aj} = {a}. Hence,

Eaj
∗ ξ(xj) = Eaj

∗Q/πj
= Eaj

∗ Pj ∗Q =
∑

b∈RA

bj=aj

Eb ∗Q = Ea ∗Q,

where the third equality follows from Lemma 30. Similarly, Eaj
∗ ζ(xj) = Ea ∗Z. Then, from

our assumption Ea ∗ Q = 0d it follows that Eaj
∗ ξ(xj) = 0d. Using the hypothesis of the

proposition, we deduce that Eaj
∗ ζ(xj) = 0d′ , and we thus conclude that Ea ∗ Z = 0d′ , as

wanted. Call W = [ Q Z ]. For each i ∈ [r]k, we find

ϑ(xi) = [ ξ(xi) ζ(xi) ] = [ Q/πi
Z/πi

] = [ Pi

1
∗Q Pi

1
∗ Z ] = Pi

1
∗ [ Q Z ] = W/πi

,

as required. This concludes the proof that ϑ is a homomorphism.
Conversely, let ϑ : X

k○
→ FM⋉N (A

k○
) be a homomorphism. For each x ∈ Xk, write

ϑ(x) ∈ (M ⋉ N )(n
k) as ϑ(x) = [ M(x) N(x) ], where M(x) ∈ M (nk) and N(x) ∈ N (nk).

Using the same argument as in the previous part of the proof, we check that the assignment
x 7→ M(x) (resp. x 7→ N(x)) yields a homomorphism from X

k○
to FM (A

k○
) (resp. to

FN (A
k○
)), and that the implication Ea ∗ ξ(x) = 0d ⇒ Ea ∗ ζ(x) = 0d′ is met for each

x ∈ Xk and a ∈ Ak.

Remark 45. In recent work [55], Dalmau and Opršal used the notion of conic minions in
the context of reductions between PCSPs. For a minion M , they construct a new minion
ω(M ) that they use to characterise the applicability of arc-consistency reductions. If M is
linear, ω(M ) coincides with the semi-direct product between H and M (cf. Remark 42).
It is not hard to show that a linear minion M satisfies M → H ⋉ M if and only if it is
homomorphically equivalent to a conic minion. Using this fact, it can be shown16 that the
k-consistency reductions from [55] and the k-th level of a hierarchy of minion tests as defined
in this paper are equivalent for conic minions.

11 A proof of Theorem 15

In this section, we prove Theorem 15 using the machinery developed in Sections 7, 8, 9,
and 10.

Theorem (Theorem 15 restated – Informal). If k ∈ N is at least the maximum arity of the

16Personal communication with Jakub Opršal.
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template,

• BWk = TestkH

• SAk = TestkQconv

• AIPk = TestkZaff

• SoSk = TestkS

• BAk = TestkMBA
.

The five parts of the theorem will be formally stated and proved separately, in Proposi-
tions 46, 47, 48, 49, and 50. The statements in Propositions 47 and 49, concerning SAk and
SoSk, are actually slightly stronger than Theorem 15, as they do not require that the level k
of the hierarchy be at least the maximum arity of the template (cf. Remark 51).

Proposition 46. Let k ∈ N and let X,A be k-enhanced σ-structures such that k ≥ armax(σ).
Then BWk(X,A) = TestkH (X,A).

Proof. Given two sets S, T , an integer p ∈ N, and two tuples s = (s1, . . . , sp) ∈ Sp, t =
(t1, . . . , tp) ∈ T p such that s ≺ t, we shall consider the function fs,t : {s} → T defined by
fs,t(sα) = tα for each α ∈ [p]. Also, we denote by ǫ : ∅ → A the empty mapping.

Suppose BWk(X,A) = Yes and let F be a nonempty collection of partial homomorphisms
from X to A witnessing it. Recall from Section 4.1 that the space of tensors T n·1k,1({0, 1})
can be identified with T n·1k({0, 1}). Define the map ξ : Xk → T n·1k({0, 1}) by setting, for
x ∈ Xk and a ∈ Ak, Ea ∗ ξ(x) = 1 if x ≺ a and fx,a ∈ F , Ea ∗ ξ(x) = 0 otherwise. We claim

that ξ yields a homomorphism from X
k○

to FH (A
k○
). Take R ∈ σ of arity r and y ∈ RX, so

y
k○
∈ RX

k○
. We need to show that ξ(y

k○
) ∈ RFH (A

k○
). Since k ≥ r, we can write y = xi for

some x ∈ Xk, i ∈ [k]r. Given a ∈ RA, consider the set Ba = {b ∈ Ak : bi = a and x ≺ b}.

We define a vector q ∈ T |RA|({0, 1}) by letting, for each a ∈ RA, the a-th entry of q be 1

if fx,b ∈ F for some b ∈ Ba, 0 otherwise. We now show that q ∈ H (|RA|); i.e., that q is
not identically zero. Observe first that, since F is nonempty and closed under restrictions,
it contains the empty mapping ǫ. Applying the extension property to ǫ, we find that there
exists some f ∈ F whose domain is {x} – that is, there exists some c ∈ Ak such that x ≺ c

and fx,c = f ∈ F . Notice that y ∈ RX ∩ {x}r = RX[{x}] (where we recall that X[{x}]
is the substructure of X induced by {x}). Using that fx,c is a partial homomorphism, we

obtain ci = fx,c(xi) = fx,c(y) ∈ RA. We then conclude that eci ∗ q = 1, so q ∈ H (|RA|),
as required. If we manage to show that q/πℓ

= ξ(yℓ) for any ℓ ∈ [r]k, we can conclude that

ξ(y
k○
) ∈ RFH (A

k○
), thus proving the claim. Recall from Proposition 17 that H is a linear

minion on the semiring ({0, 1},∨,∧). For a ∈ Ak, using Lemma 30, we find

Ea ∗ q/πℓ
= Ea ∗ Pℓ ∗ q =

∑

c∈RA

cℓ=a

Ec ∗ q =
∨

c∈RA

cℓ=a

Ec ∗ q. (13)

It follows that the expression in (13) equals 1 if

∃c ∈ RA s.t. cℓ = a and fx,b ∈ F for some b ∈ Bc, (⋆)

0 otherwise. On the other hand, Ea ∗ ξ(yℓ) equals 1 if

yℓ ≺ a and fyℓ,a ∈ F , (•)
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0 otherwise. We now show that the conditions (⋆) and (•) are equivalent, which concludes
the proof of the claim. Suppose that (⋆) holds. Since b ∈ Bc, we have x ≺ b, which yields
xiℓ ≺ biℓ as “≺” is preserved under projections. Using the restriction property applied to
fx,b, we find that fxiℓ

,biℓ
∈ F . Then, (•) follows by observing that xiℓ = yℓ and, since b ∈ Bc

and cℓ = a, biℓ = a. Suppose now that (•) holds. Using the extension property applied to
fyℓ,a = fxiℓ

,a we find that fx,b ∈ F for some b ∈ Ak such that x ≺ b and biℓ = a. Since fx,b

is a partial homomorphism from X to A, RA ∋ fx,b(y) = fx,b(xi) = bi. Calling c = bi, we
obtain (⋆).

Conversely, suppose that ξ : X
k○

→ FH (A
k○
) is a homomorphism witnessing that

TestkH (X,A) accepts, and consider the collection F = {fx,a : x ∈ Xk,a ∈ supp(ξ(x))} ∪ {ǫ}.
Notice that F is well defined by virtue of Lemma 32, as a ∈ supp(ξ(x)) implies that x ≺ a,
and it is nonempty. We claim that any function fx,a ∈ F is a partial homomorphism from
X to A. (Notice that ǫ is trivially a partial homomorphism.) Indeed, given R ∈ σ of
arity r and y ∈ RX[{x}] = RX ∩ {x}r, we can write y = xi for some i ∈ [k]r. Then,
fx,a(y) = fx,a(xi) = ai ∈ RA, where we have used Proposition 38 (which applies to H since,
by Proposition 21, H is a conic minion). To show that F is closed under restrictions, take
f ∈ F and V ⊆ dom(f); we need to show that f |V ∈ F . The cases f = ǫ or V = ∅ are
trivial, so we can assume f = fx,a (which means that dom(f) = {x}) and write V = {xℓ} for
some ℓ ∈ [k]k. Observe that fx,a|V = fxℓ,aℓ

. We claim that Eaℓ
∗ ξ(xℓ) = 1. Otherwise, using

Proposition 36 and Lemma 34, we would have

0 = Eaℓ
∗ ξ(xℓ) = Eaℓ

∗ (Πℓ

k
∗ ξ(x)) = Eaℓ

∗Πℓ ∗ ξ(x) =
∨

b∈Ak

bℓ=aℓ

Eb ∗ ξ(x).

This would imply that Eb ∗ ξ(x) = 0 whenever b ∈ Ak is such that bℓ = aℓ; in particular,
Ea ∗ ξ(x) = 0, a contradiction. So Eaℓ

∗ ξ(xℓ) = 1, as claimed, and it follows that fxℓ,aℓ
∈ F .

We now claim that F has the extension property up to k. Take f ∈ F and V ⊆ X such
that |V | ≤ k and dom(f) ⊆ V ; we need to show that there exists g ∈ F such that g extends
f and dom(g) = V . If f = ǫ and V = ∅, the claim is trivial; if f = ǫ and V 6= ∅, we can
write V = {x} for some x ∈ Xk, and the claim follows by noticing that, by the definition of
H , supp(ξ(x)) 6= ∅. Therefore, we can assume that f 6= ǫ, so f = fx,a for some x ∈ Xk,
a ∈ supp(ξ(x)). Since V 6= ∅, we can write V = {y} for some y ∈ Xk. Then, dom(f) ⊆ V
becomes {x} ⊆ {y}, so x = yℓ for some ℓ ∈ [k]k. Using Proposition 36 and Lemma 34, we
find

1 = Ea ∗ ξ(x) = Ea ∗ ξ(yℓ) = Ea ∗ Πℓ ∗ ξ(y) =
∨

b∈Ak

bℓ=a

Eb ∗ ξ(y),

which implies that Eb ∗ ξ(y) = 1 for some b ∈ Ak such that bℓ = a. It follows that fy,b ∈ F .
Notice that dom(fy,b) = {y} = V , and fy,b|{x} = fx,a, so the claim is true. Hence, F

witnesses that BWk(X,A) = Yes.

Proposition 47. Let k ∈ N and let X,A be k-enhanced σ-structures such that k ≥ min(2, armax(σ)).
Then SAk(X,A) = TestkQconv

(X,A).

Proof. Suppose SAk(X,A) = Yes and let the rational numbers λR,x,a witness it, for R ∈ σ,
x ∈ RX, and a ∈ RA. Consider the map ξ : Xk → T n·1k(Q) defined by Ea ∗ ξ(x) = λRk,x,a
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for any x ∈ Xk, a ∈ Ak. We claim that ξ yields a homomorphism from X
k○

to FQconv
(A

k○
).

Notice first that, for any x ∈ Xk, ξ(x) is an entrywise nonnegative tensor in the space
T n·1k(Q) (which can be identified with T n·1k,1(Q)). Moreover, using ♣1, we find

∑

a∈Ak

Ea ∗ ξ(x) =
∑

a∈RA
k

λRk,x,a = 1.

It follows that ξ(x) ∈ Qconv
(nk). We now prove that ξ yields a homomorphism from X

k○
to

FQconv
(A

k○
). Take a symbol R ∈ σ of arity r and a tuple x ∈ RX, so that x

k○
∈ RX

k○
. We

need to show that ξ(x
k○
) ∈ RFQconv (A

k○
). Equivalently, we seek some vector q ∈ Qconv

(|RA|)

such that ξ(xi) = q/πi
for any i ∈ [r]k. Consider the vector q ∈ T |RA|(Q) defined by

Ea ∗ q = λR,x,a for any a ∈ RA. Similarly as before, ♣1 implies that q ∈ Qconv
(|RA|). For

i ∈ [r]k and a ∈ Ak, we have

Ea ∗ ξ(xi) = λRk ,xi,a =
∑

b∈RA

bi=a

λR,x,b =
∑

b∈RA

bi=a

Eb ∗ q = Ea ∗ Pi ∗ q = Ea ∗ q/πi
,

where the second equality is ♣2 and the fourth follows from Lemma 30. We deduce that ξ is
a homomorphism, as claimed, which means that Testk

Qconv
(X,A) = Yes.

Conversely, suppose that ξ is a homomorphism from X
k○

to FQconv
(A

k○
) witnessing that

TestkQconv
(X,A) = Yes. We associate with any pair (R,x) such that R ∈ σ and x ∈ RX

a vector qR,x ∈ Qconv
(|RA|) defined as follows. Using that x

k○
∈ RX

k○
and ξ is a homo-

morphism, we deduce that ξ(x
k○
) ∈ RFQconv (A

k○
) – i.e., there exists q ∈ Qconv

(|RA|) such
that ξ(xi) = q/πi

= Pi ∗ q for each i ∈ [r]k, where r is the arity of R. We set qR,x = q.

We now build a solution to SAk(X,A) as follows: For any R ∈ σ, x ∈ RX, and a ∈ RA,
we set λR,x,a = Ea ∗ qR,x. Notice that each λR,x,a is a rational number in the interval [0, 1].
Moreover, for R ∈ σ and x ∈ RX, we have

∑

a∈RA

λR,x,a =
∑

a∈RA

Ea ∗ qR,x = 1

since qR,x ∈ Qconv, thus yielding ♣1. Observe that, for any y ∈ Xk, we have qRk,y = ξ(y).
Indeed, letting j = (1, . . . , k) ∈ [k]k, we have

qRk ,y = Πj ∗ qRk,y = Pj ∗ qRk ,y = qRk,y/πj
= ξ(yj) = ξ(y), (14)

where the first equality follows from the fact that the contraction by Πj acts as the identity
(cf. the proof of Proposition 36) and the second from Remark 35. Then, ♣2 follows by noticing
that, for i ∈ [r]k and b ∈ Ak,

∑

a∈RA

ai=b

λR,x,a =
∑

a∈RA

ai=b

Ea ∗ qR,x = Eb ∗ Pi ∗ qR,x = Eb ∗ ξ(xi) = Eb ∗ qRk ,xi
= λRk,xi,b,

where the second and fourth equalities follow from Lemma 30 and (14), respectively. Recall
from Proposition 21 that Qconv is a conic minion. Using either Lemma 33 or Lemma 37
(depending on whether k ≥ armax(σ) or k ≥ 2), if a ∈ RA is such that x 6≺ a, we obtain

λR,x,a = Ea ∗ qR,x = 0,

thus showing that ♣3 is satisfied, too. It follows that SAk(X,A) = Yes, as required.
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Proposition 48. Let k ∈ N and let X,A be k-enhanced σ-structures such that k ≥ armax(σ).
Then AIPk(X,A) = Testk

Zaff
(X,A).

Proof. The proof is analogous to that of Proposition 47, the only difference being that
Lemma 37 cannot be applied in this case since Zaff is not a conic minion (cf. Proposition 21).
As a consequence, unlike in Proposition 47, we need to assume that k ≥ armax(σ).

The proof of Theorem 15 for SoSk, given in Proposition 49 below, follows the same scheme
as that of Proposition 47. There is, however, one additional complication due to the fact that
the objects in the minion S are matrices having infinitely many columns and finite, but
arbitrarily large, csupp. We deal with this technical issue through the orthonormalisation
argument we already used for the proof of Proposition 8: We find an orthonormal basis for
the finitely generated vector space defined as the sum of the row-spaces of the matrices in S

appearing as images of a given homomorphism.

Proposition 49. Let k ∈ N and let X,A be k-enhanced σ-structures such that k ≥ min(2, armax(σ)).
Then SoSk(X,A) = TestkS (X,A).

Proof. Suppose that SoSk(X,A) = Yes and let the family of vectors λR,x,a ∈ Rω witness it,
where ω =

∑

R∈σ |R
X| · |RA|. Consider the map ξ : Xk → T n·1k,ℵ0(R) defined by

Ea ∗ ξ(x) =

[

λRk,x,a

0ℵ0

]

x ∈ Xk,a ∈ Ak.

We claim that ξ yields a homomorphism from X
k○

to FS (A
k○
). First of all, we need to

show that ξ(x) ∈ S (nk) for each x ∈ Xk. The requirement C1 is trivially satisfied since, by
construction, the j-th entry of Ea ∗ ξ(x) is zero whenever j > ω. Given a,a′ ∈ Ak,

(Ea ∗ ξ(x))
T (Ea′ ∗ ξ(x)) = λRk ,x,a · λRk,x,a′ .

If a 6= a′, this quantity is zero by ♠2, so C2 is satisfied. Finally,
∑

a∈Ak

(Ea ∗ ξ(x))
T (Ea ∗ ξ(x)) =

∑

a∈Ak

‖λRk ,x,a‖
2 = 1

by ♠1, so C3 is also satisfied. Therefore, ξ(x) ∈ S (nk). To show that ξ is in fact a ho-

momorphism, take R ∈ σ of arity r and x ∈ RX, so x
k○

∈ RX
k○
. We need to show that

ξ(x
k○
) ∈ RFS (A

k○
). Consider the matrix Q ∈ T |RA|,ℵ0(R) defined by

QTea =

[

λR,x,a

0ℵ0

]

a ∈ RA.

Using the same arguments as above, we check that Q satisfies C1 and that eTaQQTea′ =

λR,xa · λR,x,a′ , so C2 follows from ♠2 and C3 from ♠1. Therefore, Q ∈ S (|RA|). We now
claim that ξ(xi) = Q/πi

for each i ∈ [r]k. Indeed, observe that, for each a ∈ Ak,

Ea ∗Q/πi
= Ea ∗ Pi ∗Q =

(

∑

b∈RA

bi=a

Eb

)

∗Q = QT
(

∑

b∈RA

bi=a

eb
)

=
∑

b∈RA

bi=a

QTeb

=

[∑

b∈RA

bi=a

λR,x,b

0ℵ0

]

=

[

λRk,xi,a

0ℵ0

]

= Ea ∗ ξ(xi),
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where the second and sixth equalities are obtained using Lemma 30 and ♠3, respectively. It

follows that the claim is true, so ξ(x
k○
) ∈ RFS (A

k○
), which concludes the proof that ξ is a

homomorphism and that TestkS (X,A) = Yes.

Conversely, let ξ : X
k○
→ FS (A

k○
) be a homomorphism witnessing that TestkS (X,A) =

Yes. Take R ∈ σ of arity r and x ∈ RX. We have that x
k○

∈ RX
k○
, so ξ(x

k○
) ∈ RFS (A

k○
)

since ξ is a homomorphism. As a consequence, we can fix a matrix QR,x ∈ S (|RA|) satisfying
ξ(xi) = QR,x/πi

for each i ∈ [r]k. Consider the set S = {QT
R,xea : R ∈ σ,x ∈ RX,a ∈ RA} and

the vector space U = span(S) ⊆ Rℵ0 , and observe that dim(U) ≤ |S| ≤
∑

R∈σ |R
X| · |RA| = ω.

Choose a vector space V of dimension ω such that U ⊆ V ⊆ Rℵ0 . Using the Gram–Schmidt
process, we find a projection matrix Z ∈ Rℵ0,ω such that ZTZ = Iω and ZZTv = v for any
v ∈ V. Consider the family of vectors

λR,x,a = ZTQT
R,xea ∈ Rω R ∈ σ,x ∈ RX,a ∈ RA. (15)

We claim that (15) witnesses that SoSk(X,A) = Yes. Take R ∈ σ of arity r and x ∈ RX.
Recall from Proposition 21 that S is a conic minion. Using either Lemma 33 or Lemma 37
(depending on whether k ≥ armax(σ) or k ≥ 2), given a ∈ RA such that x 6≺ a, we find

λR,x,a = ZTQT
R,xea = ZT0ℵ0

= 0ω,

so ♠4 holds. ♠1 follows from

∑

a∈RA

‖λR,x,a‖
2 =

∑

a∈RA

eTaQR,xZZTQT
R,xea =

∑

a∈RA

eTaQR,xQ
T
R,xea = tr(QR,xQ

T
R,x) = 1,

where the second equality is true since QT
R,xea ∈ S ⊆ U ⊆ V and the fourth follows from C3.

Similarly, using C2, we find that, if a 6= a′ ∈ RA,

λR,x,a · λR,x,a′ = eTaQR,xZZTQT
R,xea′ = eTaQR,xQ

T
R,xea′ = 0,

so ♠2 holds. We now show that QRk,y = ξ(y) for any y ∈ Xk. Indeed, using the same
argument as in (14), letting j = (1, . . . , k) ∈ [k]k, we have

QRk,y = Πj

k
∗QRk,y = QRk,y/πj

= ξ(yj) = ξ(y). (16)

Given i ∈ [r]k and b ∈ Ak = RA
k , we have

∑

a∈RA

ai=b

λR,x,a =
∑

a∈RA

ai=b

ZTQT
R,xea =

∑

a∈RA

ai=b

Ea ∗QR,x ∗ Z = Eb ∗ Pi ∗QR,x ∗ Z = Eb ∗QR,x/πi
∗ Z

= Eb ∗ ξ(xi) ∗ Z = Eb ∗QRk,xi
∗ Z = ZTQT

Rk,xi
eb = λRk,xi,b,

where the third and sixth equalities follow from Lemma 30 and (16), respectively. This shows
that ♠3 holds, too, so that (15) yields a solution for SoSk(X,A), as claimed.

Proposition 50. Let k ∈ N and let X,A be k-enhanced σ-structures such that k ≥ armax(σ).
Then BAk(X,A) = Testk

MBA
(X,A).
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Proof. Recall from Section 4.2 that BAk(X,A) = Yes is equivalent to the existence of a ra-
tional nonnegative solution (denoted by the superscript (B)) and an integer solution (denoted
by the superscript (A)) to the system (2), such that

λ
(B)
R,x,a = 0 ⇒ λ

(A)
R,x,a = 0 (17)

for each R ∈ σ, x ∈ RX, and a ∈ RA. Note that requiring (17) for each R ∈ σ is equivalent to
only requiring it for R = Rk. Indeed, take some R ∈ σ of arity r, x ∈ RX, and a ∈ RA, and
consider the tuple i = (1, 2, . . . , r, 1, 1, . . . , 1) ∈ [r]k, which is well defined as k ≥ r. Noting
that {b ∈ RA : bi = ai} = {a}, we find from ♣2 that

λ
(B)
R,x,a =

∑

b∈RA

bi=ai

λ
(B)
R,x,b = λ

(B)
Rk ,xi,ai

and, similarly, λ
(A)
R,x,a = λ

(A)
Rk,xi,ai

. As a consequence, if (17) holds for Rk, it also holds for

R. Therefore, it follows from Propositions 47 and 48 that BAk(X,A) = Yes is equivalent

to the existence of homomorphisms ξ : X
k○

→ FQconv
(A

k○
) and ζ : X

k○
→ FZaff

(A
k○
) such

that supp(ζ(x)) ⊆ supp(ξ(x)) for each x ∈ Xk. By virtue of Proposition 44, this happens

precisely when X
k○
→ FQconv⋉Zaff

(A
k○
). Since MBA = Qconv ⋉ Zaff (cf. Example 43), this is

equivalent to X
k○
→ FMBA

(A
k○
); i.e., to TestkMBA

(X,A) = Yes.

Remark 51. The characterisations of SAk and SoSk in Propositions 47 and 49 hold for any
higher level than the first, unlike the characterisation of AIPk in Proposition 48. This is due
to the fact that Qconv and S are conic minions, so Lemma 37 applies, while Zaff is not. As
for BWk, Proposition 46 requires k ≥ armax(σ) even if H is a conic minion. The reason for
this lies in the definition of the bounded width hierarchy. Essentially, any constraint whose
scope has more than k distinct variables does not appear among the constraints of the partial
homomorphisms witnessing acceptance of BWk, while it does appear in the requirements of
SAk and SoSk. Finally, assuming k ≥ armax(σ) is also required in the characterisation of
BAk in Proposition 50, in order to make use of Proposition 44 and of the characterisation of
AIPk.

Remark 52. As it was shown in Section 9, hierarchies of relaxations built on conic minions
(such as BWk, SAk, SoSk, and BAk) are “sound in the limit”, in that their k-th level correctly
classifies instances X with |X| ≤ k (cf. Proposition 39). This is not the case for the non-
conic hierarchy AIPk, as it was established in the follow-up work [42]. In [19], a stronger
affine hierarchy was proposed, which – contrary to AIPk – requires that the variables in the
relaxation should be partial homomorphisms and is thus sound in the limit. By virtue of
Proposition 38, this requirement can be captured by taking the semi-direct product of any
conic minion and Zaff . In particular, it follows that the hierarchy in [19] is not stronger
than the hierarchy built on the minion H ⋉ Zaff (cf. Remark 42). In recent work [46], a
different algorithm for (P)CSPs has been proposed. The relationship of [46] with our work is
an interesting direction for future research.
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A Notes on relaxations and hierarchies

In this appendix, we discuss some basic properties of the relaxations, and hierarchies thereof,
presented in Section 4.2.

A.1 SAk

The hierarchy defining SAk given by the system (2) slightly differs from the one described
in [39]. For completeness, we report below the hierarchy in [39] and we show that it is
equivalent to the one adopted in this work.

Given two σ-structures X,A, introduce a variable µV (f) for every subset V ⊆ X with
1 ≤ |V | ≤ k and every function f : V → A, and a variable µR,x(f) for every R ∈ σ, every
x ∈ RX, and every f : {x} → A. The k-th level of the hierarchy defined in [39] is given by
the following constraints:

(♥1)
∑

f :V→A

µV (f) = 1 V ⊆ X such that 1 ≤ |V | ≤ k

(♥2) µU (f) =
∑

g:V→A, g|U=f

µV (g) U ⊆ V ⊆ X such that 1 ≤ |V | ≤ k, U 6= ∅, f : U → A

(♥3) µU (f) =
∑

g:{x}→A, g|U=f

µR,x(g) R ∈ σ,x ∈ RX, U ⊆ {x} such that 1 ≤ |U | ≤ k, f : U → A

(♥4) µR,x(f) = 0 R ∈ σ,x ∈ RX, f : {x} → A such that f(x) 6∈ RA.

(18)

Lemma 53. Let k ∈ N, let X,A be two σ-structures, and let X̃ (resp. Ã) be the structure

obtained from X (resp. A) by adding the relation RX̃
k = Xk (resp. RÃ

k = Ak). Then the
system (18) applied to X and A is equivalent to the system (2) applied to X̃ and Ã.

Proof. Let λ be a solution to (2) applied to X̃ and Ã. Given V ⊆ X with 1 ≤ |V | ≤ k and
f : V → A, let x ∈ Xk be such that V = {x} and set µV (f) = λRk,x,f(x). We claim that
this assignment does not depend on the choice of x; i.e., we claim that λRk ,x,f(x) = λRk,y,f(y)

whenever x,y ∈ Xk are such that {x} = {y}. The latter condition implies that x = yi and
y = xj for some i, j ∈ [k]k. Using ♣2 and ♣3, we find

λRk,y,f(y) = λRk,xj,f(xj) =
∑

a∈Ak

aj=f(xj)

λRk,x,a =
∑

a∈Ak

aj=f(xj)
x≺a

λRk,x,a = λRk ,x,f(x) +
∑

a∈Ak

aj=f(xj)
x≺a

a 6=f(x)

λRk,x,a.

The claim then follows if we show that there is no a ∈ Ak such that aj = f(xj), x ≺ a, and
a 6= f(x). If such a exists, using that x = xji , we find that for some p ∈ [k]

ap 6= f(xp) = f(xjip ) = ajip .

Since x ≺ a, this implies that xp 6= xjip , a contradiction. Therefore, the claim is true.

Additionally, given R ∈ σ, x ∈ RX, and f : {x} → A, we set µR,x(f) = λR,x,f(x) if f(x) ∈ RA,
µR,x(f) = 0 otherwise. It is straightforward to check that µ satisfies all constraints in the
system (18) applied to X and A.
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Conversely, let µ be a solution to (18) applied to X and A. As in the proof of Proposi-
tion 46, given two sets S, T , an integer p ∈ N, and two tuples s ∈ Sp, t ∈ T p such that s ≺ t,
we define the map fs,t : {s} → T by fs,t(sα) = tα for each α ∈ [p]. For every R ∈ σ, x ∈ RX,
and a ∈ RA, we set λR,x,a = µR,x(fx,a) if x ≺ a, λR,x,a = 0 otherwise. Additionally, for every

x ∈ Xk = RX̃
k and a ∈ Ak = RÃ

k , we set λRk,x,a = µ{x}(fx,a) if x ≺ a, λRk,x,a = 0 otherwise.

It is easily verified that λ yields a solution to (2) applied to X̃ and Ã.

We also note that [5] has yet another definition of the Sherali-Adams hierarchy. However,
it was shown in [39, Appendix A] that the hierarchy given in [5] interleaves with the one
in [39] and, by virtue of Lemma 53, with the hierarchy used in this work. In particular, the
class of PCSPs solved by constant levels of the hierarchy is the same for all definitions.

A.2 SDP

Remark 54. The relaxation defined by (3) is not in semidefinite programming form, because
of the constraint ♦4. However, it can be easily translated into a semidefinite program by
introducing ω additional variables µ1, . . . ,µω taking values in Rω, and requiring that the
following constraints are met:

(♦4′) µp · µq = δp,q p, q ∈ [ω]

(♦4′′)
∑

a∈RA

ai=a

λR,x,a · µp = λxi,a · µp R ∈ σ,x ∈ RX, a ∈ A, i ∈ [ar(R)], p ∈ [ω]

where δp,q is the Kronecker delta. One easily checks that the requirements ♦4′ and♦4′′ are to-
gether equivalent to the requirement ♦4, and they are expressed in semidefinite programming
form.

Proposition 55. Let X,A be two σ-structures. The system (3) implies the following facts:

(i) ‖
∑

a∈A

λx,a‖
2 = 1 x ∈ X;

(ii)
∑

a∈RA

‖λR,x,a‖
2 = ‖

∑

a∈RA

λR,x,a‖
2 = 1 R ∈ σ,x ∈ RX;

(iii)
∑

a∈RA

ai=a, aj=a′

‖λR,x,a‖
2 = λxi,a · λxj ,a′ R ∈ σ,x ∈ RX, a, a′ ∈ A, i, j ∈ [ar(R)].

If, in addition, X and A are 2-enhanced,17

(iv)
∑

a∈A

λx,a =
∑

a∈A

λx′,a x, x′ ∈ X.

Proof. (i) We have

‖
∑

a∈A

λx,a‖
2 =

(

∑

a∈A

λx,a

)

·

(

∑

a′∈A

λx,a′

)

=
∑

a,a′∈A

λx,a · λx,a′ =
∑

a∈A

‖λx,a‖
2 = 1,

where the third equality comes from ♦2 and the fourth from ♦1.

17Assuming that X and A are 2-enhanced does not result in a loss of generality. Indeed, X → A if and only

if X̃ → Ã, where X̃ (resp. Ã) is obtained from X (resp. A) by adding the relation R
X̃
2 = X

2 (resp. RÃ
2 = A

2).
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(ii) We have

∑

a∈RA

‖λR,x,a‖
2 =

∑

a,a′∈RA

λR,x,a · λR,x,a′ =





∑

a∈RA

λR,x,a



 ·





∑

a′∈RA

λR,x,a′



 = ‖
∑

a∈RA

λR,x,a‖
2

= ‖
∑

a∈A

∑

a∈RA

a1=a

λR,x,a‖
2 = ‖

∑

a∈A

λx1,a‖
2 = 1,

where the first equality comes from ♦3, the fifth from ♦4, and the sixth from part (i)
of this proposition.

(iii) We have

λxi,a · λxj ,a′ =









∑

a∈RA

ai=a

λR,x,a









·











∑

a′∈RA

a′j=a′

λR,x,a′











=
∑

a,a′∈RA

ai=a, a′j=a′

λR,x,a · λR,x,a′

=
∑

a∈RA

ai=a, aj=a′

‖λR,x,a‖
2,

where the first equality comes from ♦4 and the third from ♦3.

(iv) If X and A are 2-enhanced, we have

∑

a∈A

λx,a =
∑

a∈A

∑

a∈RA
2

a1=a

λR2,(x,x′),a =
∑

a∈RA
2

λR2,(x,x′),a =
∑

a∈A

∑

a∈RA
2

a2=a

λR2,(x,x′),a =
∑

a∈A

λx′,a,

where the first and fourth equalities come from ♦4.

We point out that slightly different versions of the “standard SDP relaxation” appeared
in the literature on CSPs, some of which use parts (i) through (iii) of Proposition 55 as
constraints defining the relaxation. In particular, certain versions require that the scalar
products λx,a · λy,b should be nonnegative for all choices of x, y ∈ X and a, b ∈ A. For
example, this is the case of the SDP relaxation used in [14]. It follows from Proposition 57,
proved in Appendix A.3, that one can enforce nonnegativity of the scalar products by taking
the second level of the SoS hierarchy of the SDP relaxation as defined in this work.

A.3 SoSk

Remark 56. The relaxation defined by (4) can be easily translated into a semidefinite pro-
gram through the procedure described in Remark 54.
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Proposition 57. Let k ∈ N, let X,A be 2k-enhanced σ-structures, suppose that SoS2k(X,A) =
Yes, and let λ denote a solution. Then λ satisfies the following additional constraints:

(i) λR2k,(x,x),(a,a) · λR2k ,(y,y),(b,b) ≥ 0 x,y ∈ Xk,a,b ∈ Ak

(ii) λR2k,(x,x),(a,a) · λR2k ,(y,y),(b,b) = 0
x,y ∈ Xk,a,b ∈ Ak,
ai 6= bj for some i, j ∈ [k]k such that xi = yj

(iii)
λR2k ,(x,x),(a,a) · λR2k,(y,y),(b,b) =

λR2k ,(x̂,x̂),(â,â) · λR2k,(ŷ,ŷ),(b̂,b̂)

x, x̂,y, ŷ ∈ Xk,a, â,b, b̂ ∈ Ak,

(x̂, ŷ)ℓ = (x,y), (â, b̂)ℓ = (a,b)
for some ℓ ∈ [2k]2k such that |{ℓ}| = 2k.

Proof. Observe that, for x,y ∈ Xk and a,b ∈ Ak,

λR2k ,(x,x),(a,a) · λR2k,(y,y),(b,b) =





∑

c∈Ak

λR2k ,(x,y),(a,c)



 ·





∑

c′∈Ak

λR2k,(x,y),(c′,b)





=
∑

c,c′∈Ak

λR2k ,(x,y),(a,c) · λR2k ,(x,y),(c′,b)

= ‖λR2k ,(x,y),(a,b)‖
2, (19)

where the first and third equalities come from ♠3 and ♠2, respectively. Hence, (i) holds. If,
in addition, ai 6= bj for some i, j ∈ [k]k such that xi = yj, we deduce that (xi,yj) 6≺ (ai,bj)
and, therefore,

0 = ‖λR2k ,(xi,yj),(ai,bj)‖
2 = ‖

∑

(c,d)∈A2k

ci=ai,dj=bj

λR2k,(x,y),(c,d)‖
2

=
∑

(c,d)∈A2k

ci=ai,dj=bj

‖λR2k ,(x,y),(c,d)‖
2 ≥ ‖λR2k ,(x,y),(a,b)‖

2, (20)

where the first, second, and third equalities come from ♠4, ♠3, and ♠2, respectively. Com-
bining (19) and (20), we obtain (ii). Suppose now that x, x̂,y, ŷ ∈ Xk and a, â,b, b̂ ∈ Ak

are such that (x̂, ŷ)ℓ = (x,y) and (â, b̂)ℓ = (a,b) for some ℓ ∈ [2k]2k such that |{ℓ}| = 2k.
Using ♠3, we find

λR2k ,(x,y),(a,b) = λR2k ,(x̂,ŷ)ℓ,(â,b̂)ℓ
=

∑

(c,d)∈A2k

(c,d)ℓ=(â,b̂)ℓ

λR2k ,(x̂,ŷ),(c,d) = λR2k,(x̂,ŷ),(â,b̂)
,

where the last equality is due to the fact that |{ℓ}| = 2k. Hence, (iii) follows from (19).

We observe that the relaxation in (4) is formally different from the one described in [96].
However, it can be shown that the 2k-th level of the hierarchy as defined here is at least as
tight as the k-th level of the hierarchy as defined in [96]. Let us denote the two relaxations
by SoS and SoS′, respectively. First of all, each variable in SoS′ corresponds to a subset
S of X and an assignment f : S → A, while in SoS the variables correspond to pairs of
tuples x ∈ RX,a ∈ RA. This is an inessential difference, as one can check through the same
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argument used to prove Lemma 53 – in particular, ♠4 ensures that the only variables having
nonzero weight are those corresponding to well-defined assignments (cf. Footnote 14). The
k-th level of SoS′ contains constraints that, in our language, are expressed as ♠4, ♠1, and
parts (i), (ii), (iii) of Proposition 57. By virtue of Proposition 57, therefore, any solution λ

to the 2k-th level of SoS yields a solution to the k-th level of SoS′ – which means that the
2k-th level of SoS is at least as tight as the k-th level of SoS′.
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[42] Lorenzo Ciardo and Stanislav Živný. Approximate graph colouring and crystals. In Proc.
2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23), pages 2256–2267, 2023.
arXiv:2210.08293, doi:10.1137/1.9781611977554.ch86.
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