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Abstract. We study a family of Ising perceptron models with t0, 1u-valued activation functions. �is includes the classical
half-space models, as well as some of the symmetric models considered in recent works. For each of these models we show
that the free energy is self-averaging, there is a sharp threshold sequence, and the free energy is universal with respect to
the disorder. A prior work of C. Xu (2019) used very di�erent methods to show a sharp threshold sequence in the half-
space Ising perceptron with Bernoulli disorder. Recent works of Perkins–Xu (2021) and Abbe–Li–Sly (2021) determined the
sharp threshold and limiting free energy in a symmetric perceptron model. �e results of this paper apply in more general
se�ings, and are based on new “add one constraint” estimates extending Talagrand’s estimates for the half-space model
(1999, 2011).
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1. Introduction

�e perceptron is a classical model in high-dimensional probability theory [Cov65, Wen62], which can be inter-
preted as a toy model of a simple neural network [Gar88]. In the simplest version, the Ising (half-space) perceptron
refers to the random set Y de�ned by intersecting the discrete cube t´1,`1u# with " “ #
 i.i.d. random half-
spaces (formal de�nitions below). In the late 1980s it was shown that heuristic analytical tools of statistical physics
(i.e., the “replica method” or “cavity method”) can be applied to derive precise predictions on the limiting behavior of
the perceptron model [Gar88, GD88, KM89, Méz89]. In particular, it was predicted that the free energy #´1 log |Y|
of the model concentrates around an explicit constant (depending on the parameters of the model), and that there is
a sharp threshold 
2 such that ℙp|Y| ą 0q transitions from 1´ >#p1q to >#p1q in an >#p1q window around 
2 .

In contrast with what has been conjectured via physics heuristics, mathematical understanding of Ising perceptron
models remains quite limited. For the half-space Ising perceptron, it follows by a trivial �rst moment calculation that
ℙp|Y| ą 0q “ >#p1q for 
 “ "{# large enough, but this bound is typically not tight. On the other hand, it was
shown by [KR98] (see also [Tal99a]) that ℙp|Y| ą 0q “ 1´ >#p1q for 
 “ "{# small enough. Moreover, for small
enough 
, the free energy concentrates around the value conjectured by physicists [Tal00, Tal11, BNSX21]. A result
of [DS18] shows that, under an additional condition, the random set Y is nonempty with positive probability for any

 smaller than the critical value predicted by physicists [KM89]. �ese results leave open the question of whether
the model has a sharp threshold, and whether the free energy concentrates for general 
.

For the half-space Ising perceptron with Bernoulli disorder — meaning that the half-spaces point in directions
chosen uniformly at random from t´1,`1u# — C. Xu applied Hatami’s pseudo-junta theorem [Hat12] to show
that the model has a sharp threshold sequence [Xu21]. In a di�erent direction, numerous recent works have
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2 S. NAKAJIMA AND N. SUN

studied symmetric perceptron models, which are signi�cantly more tractable than the half-space models and can
be analyzed for much �ner properties [APZ19, PX21, ALS21b, ALS21a, GKPX22]. In particular, for a symmetric
interval variant of the Ising perceptron (intersecting t´1,`1u# with i.i.d. random symmetric slabs rather than
half-spaces), recent work rigorously pinpoints the limiting free energy and sharp threshold [PX21, ALS21b].

In this paper we study a family of Ising perceptron models with t0, 1u-valued activation functions (de�ned more
formally below). �is includes the classical half-space models as well as some of the symmetric models considered
in more recent works. Further, we allow the disorder random variables to come from any subgaussian distribution,
in contrast with previous works which have assumed gaussian or Bernoulli disorder. For each of these models we
show:

‚ �ere is a sharp threshold sequence, meaning that ℙp|Y| ą 0q transitions from 1´ >#p1q to >#p1q in an
>#p1q window of 
 values, although the location of the transition may depend on # .

‚ �e model is self-averaging, meaning that the free energy #´1 log |Y| concentrates around a deterministic
value which may depend on # .

‚ �e free energy and sharp threshold sequence are universal with respect to the disorder.
Our sharp threshold sequence result extends the main theorem of [Xu21], although by very di�erent methods — our
approach does not use Hatami’s theorem or other tools of boolean analysis.

For the half-space Ising perceptron model with gaussian or Bernoulli disorder, the sharp threshold sequence
and self-averaging property appear to be relatively straightforward consequences of “add one constraint” estimates
proved in [Tal99b, Tal11] (and discussed below). While Talagrand does indicate the implications of his estimates for
self-averaging, to the best of our knowledge he does not explicitly address the sharp threshold problem; and one of
the aims of this article is to clearly spell out this simple connection. �e main technical contributions of this paper
are new “add one constraint” estimates for general (not necessarily symmetric) interval perceptron models estimates
with general (subgaussian) disorder. �ese results cannot be deduced by an easy generalization of Talagrand’s ar-
guments, and we describe some of the main ideas in §1.1 below. We then apply our “add one constraint” estimates
to deduce the sharp threshold sequence and free energy concentration results. Lastly we combine these with some
central limit theorem considerations to deduce the universality results. A weaker version of our universality results
(comparing gaussian with Bernoulli disorder, and with additional smoothness assumptions) appears in [Tal11, §9.9].

�e remainder of this introductory section is organized as follows:
‚ In §1.1 we formally de�ne the various perceptron models that we consider. We state our �rst set of results

(�eorems 1.3–1.5) which control the e�ect of adding a single constraint in these perceptron models. We
also describe some of the basic proof ideas.

‚ In §1.2 we state our second set of results (�eorems 1.7–1.11) which address self-averaging, sharp thresholds,
and universality in the perceptron models. �ese may be viewed as consequences of the “add one constraint”
estimates described in §1.1.

‚ In §1.3 we discuss the context given by the surrounding literature on perceptron models.
At the end of this section we give the outline for the rest of the paper.

1.1. “Add one constraint” estimates for perceptron models. In the above we used Y to denote the Ising per-
ceptron solution set, a random subset of t´1,`1u# . In this paper we only consider the size of the random set, and
we herea�er always denote / ” |Y|. We will prove results for the classical Ising perceptron model

/ ” /",#p�,8, �q ”
ÿ

�Pt´1,`1u#

ź

:ď"

1
"

p�: , �q

#1{2 ě �

*

, (1.1)

which we will refer to as the half-space (Ising) perceptron. We also consider more general models of the form

/",#p* ; �q ”
ÿ

�Pt´1,`1u#

ź

:ď"

*

ˆ

p�: , �q

#1{2

˙

(1.2)

where * : ℝ Ñ r0, 1s (measurable) is the activation function. We refer to this as the *-perceptron; most of this
paper concerns the case that * is t0, 1u-valued. We refer to the case *pGq “ 1tG P r0, 1su as the interval (Ising)
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perceptron. �e symmetric interval perceptron mentioned above corresponds to the case 0 “ ´1. We assume
that the �, �: (: ě 1) are i.i.d. random vectors satisfying the following:

Assumption 1.1. �e �8 are i.i.d. random variables with mean zero, unit variance, such that

� expp��8q ď exp
ˆ

�2�
2

˙

for all � P ℝ (that is, the �8 are subgaussian with variance proxy �). �is assumption includes the two most widely
studied cases of the perceptron model: gaussian disorder (the �: are standard gaussian vectors) and Bernoulli
disorder (the �: are sampled uniformly at random from t´1,`1u# ). Note that in general we must have � ě 1,
since the cumulant-generating function Kp�q ” log� expp��8q satis�es K2p0q “ Var �8 “ 1.

We �rst restate a result of Talagrand:

�eorem 1.2 (half-space perceptron, gaussian disorder [Tal99b, Tal11]). Let ( be any subset of t´1,`1u# with
|(| ě expp#�q, where � is a small positive constant. If 6 is a standard gaussian random vector in ℝ# , then

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 ě �

*ˇ

ˇ

ˇ

ˇ

ă
1

exppFq

˙

ď exp
ˆ

´
F

��

˙

.

provided �� ď F ď #{�� , where �� is a large �nite constant that depends only on � and �.

�eorem 1.2 was in fact already proved by Talagrand in the more di�cult se�ing of Bernoulli disorder (see [Tal99b,
Propn. 2.3]). �e result for the gaussian case follows by a simpli�cation of the argument for the Bernoulli case, which
we review in §2.1. Most of the argument for the gaussian case also appears in [Tal11, Ch. 9]. (�e la�er reference
[Tal11] does not appear to treat the case of small �, but this was already done previously in [Tal99b].)

As we discuss further in §2.2–2.3 below, the proof of �eorem 1.2 relies on two main ingredients:
(i) a lower bound on the expected supremum of a stochastic process; and

(ii) a concentration estimate for the supremum of a stochastic process.
In the gaussian se�ing these ingredients are supplied by the well-known Sudakov minoration lower bound and
Borell–TIS (Tsirelson–Ibragimov–Sudakov) concentration inequality, restated in Lemmas 2.1 and 2.2 below.
For more general distributions, however, both of these ingredients can be quite nontrivial.

By contrast, our next result gives a weaker bound than �eorem 1.2, but has the advantage that it uses only the
simplest gaussian versions of the results mentioned above (Sudakov minoration and Borell–TIS). We transfer these
bounds to general distributions by a rather weak form of the multivariate CLT. As a result, the bound of �eorem 1.3
is almost certainly suboptimal, but it has the advantage that it is relatively straightforward to derive, and applies for
a general class of subgaussian distributions. To the best of our knowledge, using existing methods, the argument of
Talagrand for �eorem 1.2 may only be extended to a limited subclass of subgaussian distributions (see §2.2–2.3 for
the details).

�eorem 1.3 (half-space perceptron, general disorder). Let ( be any subset of t´1,`1u# with |(| ě expp#�q, where
� is a small positive constant. Suppose � is a random vector in ℝ# satisfying Assumption 1.1. �en

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě �

*
ˇ

ˇ

ˇ

ˇ

ă
1

exppFq

˙

ď exp
ˆ

´
F

��

˙

.

provided �� ď F ď #1{2{�� , where �� is a large �nite constant that depends only on �, �, and �.

�e next two results concern the *-perceptron (1.2), under the assumption that we have * : ℝ Ñ t0, 1u with
*pGq ě 1tG P r0, 1su for some ´8 ă 0 ă 1 ă 8.

�eorem 1.4 (*-perceptron, gaussian disorder). Let ( be any subset of t´1,`1u# with |(| ě expp#�q where � is a
small positive constant. If 6 is a standard gaussian random vector in ℝ# , then

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 P r0, 1s

*
ˇ

ˇ

ˇ

ˇ

ă
1

exppFq

˙

ď exp
ˆ

´
F

��

˙

provided �� ď F ď #1{2{�� , where �� is a large �nite constant that depends only on 0, 1, and �.
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�eorem 1.5 (*-perceptron, general disorder). Let ( be any subset of t´1,`1u# with |(| ě expp#�q where � is a
small positive constant. Suppose � is a random vector in ℝ# satisfying Assumption 1.1. �en

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 P r0, 1s

*
ˇ

ˇ

ˇ

ˇ

ă
1

exppFq

˙

ď exp
ˆ

´
F

��

˙

provided �� ď F ď #1{3{�� , where �� is a large �nite constant that depends only on 0, 1, �, and �.

We now describe some of the basic ideas that appear in the proofs of �eorems 1.3–1.5. We repeatedly leverage
a basic observation that comes from Talagrand’s proof of �eorem 1.2: if ( is a large subset of t´1,`1u# , then it
must contain many elements that are well separated in Hamming distance. If 6 is a standard gaussian vector inℝ# ,
then the separation guarantee can be used to show that

max
"

p6, �q

#1{2 : � P (
*

is likely to be quite large. �e details of this argument are reviewed in §2.1 below. We point out that it relies on
theorems for gaussian processes, namely, concentration of the supremum and a Sudakov minoration lower bound on
the expectation of the supremum. As we discuss in §2.2–2.3, these do not easily extend to more general subgaussian
distributions.

In this paper we devise a more �exible version of Talagrand’s approach, as follows. First we decompose r#s ”
t1, . . . , #u into ! blocks of size  each, where  ! “ # . Denote the blocks �1 , . . . , �!. For any subset � Ď r#s let
�� ” p�8q8P� ; we will say that two con�gurations �, � P t´1,`1u# are well-separated on � if �� and �� are not too
close (see De�nition 3.1 below). We show that if ( Ď t´1,`1u# is large, then it must contain many elements that
are well-separated on a positive fraction of the blocks — say, on the �nal !� blocks. We then consider the process

":p�q “
1

#1{2

:
ÿ

9“1
p��� , ��9 q (1.3)

for � P (, starting from "0p�q “ 0 and with the goal of having say "!p�q P r0, 1s (for the *-perceptron (1.2),
assuming *pGq ě 1tG P r0, 1su). In the case that � is gaussian, we can apply Talagrand’s estimates for the half-
space model (1.1) to control the increments of ":p�q over the �nal !� steps, using the separation guarantees on
the �nal !� blocks. With this approach we show that, with very good probability, ( must contain many elements �
with "!p�q P r0, 1s.

In the case that � follows a more general subgaussian distribution, we follow a similar strategy of �rst obtaining
estimates for the half-space model (1.1), then using a block decomposition to obtain estimates for the*-perceptron
(1.2). However, as we already noted, it does not appear that Talagrand’s results for the half-space perceptron extend
easily to the full class of subgaussian distributions. Instead, to prove the desired estimates in the half-space model,
we again use the block decomposition approach, combined with a (rather weak) form of the multivariate central
limit theorem which allows us to borrow the estimates from the gaussian se�ing. In particular, we restrict ourselves
to quantities of the form

max
"

p�, �q

#1{2 : � P -
*

for subsets- Ď t´1,`1u# of bounded size, allowing us to apply central limit theorems only in bounded dimensions.
�is results in weaker bounds which can potentially be improved by appealing to stronger forms of the central limit
theorem.

1.2. Self-averaging, sharp threshold sequence, and universality. We next describe the main results which we
obtain as consequences of the “add one constraint” estimates presented in §1.1. To emphasize the dependence on the
“add one constraint” estimates, we state some of our results for a more abstract model of the form

/ ” /",# ”
ÿ

�Pt´1,`1u#

ź

:ď"

Θ:p�q , (1.4)

where the Θ: are a sequence of r0, 1s-valued random functions, adapted to a �ltration pℱ:q:ě0, satisfying a fairly
weak “add one constraint” estimate:
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Assumption 1.6. For the model (1.4), let /"`1 be the partition function that results from introducing one more
factor Θ"`1. Suppose that for all � ą 0 small enough that on the event /" ě expp#�q we have

ℙ

ˆ

/"`1
/"

ď
1

exppFq

ˇ

ˇ

ˇ

ˇ

ℱ"

˙

ď 5�pFq

for all �� ď F ď Fmax, such that the function 5� satis�es the bound
ż Fmax

��

2F 5�pFq 3F ď ��,2 . (1.5)

In the above, �� and ��,2 are �nite constants that depend only on the model and on �, while Fmax can depend on
the model as well as on � and # .

�e half-space and *-perceptron models (1.1) and (1.2) are clearly a special case of the model (1.4). �erefore,
�eorems 1.2–1.5 imply that the perceptron models (1.1) and (1.2) satisfy a stronger condition than Assumption 1.6;
see Assumption 5.1 at the start of Section 5. However, we will show that the weaker Assumption 1.6 su�ces for
some similar results. Denote log#� / ” maxtlog/, #�u.1

�eorem 1.7 (concentration of free energy). For the model (1.4), under Assumption 1.6, we have

lim
#Ñ8

ˇ

ˇ

ˇ

ˇ

log#� / ´� log#� /

ˇ

ˇ

ˇ

ˇ

“ 0

for any positive constant �, where the limit holds in probability as # Ñ8.

Our next result concerns the behavior of the probability ℙp/" ą 0q for the model (1.4). For this question, we
may as well assume that the Θ0 are t0, 1u-valued, since otherwise we can replace Θ0pGq with 1tΘ0pGq ą 0u. We
introduce one more assumption below, which together with Assumption 1.6 ensures thatℙp/" ą 0q has a transition
in the proportional regime " — # . �is assumption is typically easily veri�able in practice:

Assumption 1.8. �ere is a positive constant 2 such that �pΘ:`1 |ℱ:q ď expp´2q almost surely for all : ě 0.

�eorem 1.9 (sharp threshold sequence). For the model (1.4), if the Θ0 are t0, 1u-valued and satisfy Assumptions 1.6
and 1.8, then there is a sharp threshold sequence: that is to say, there is a sequence 
# — 1 such that ℙp/#
,# ą 0q
transitions from 1´ >#p1q to >#p1q in an >#p1q window around 
# .

In particular, by �eorems 1.2–1.5, the results of �eorems 1.7 and 1.9 apply to the perceptron models (1.1) and
(1.2), assuming in the la�er model that * is t0, 1u-valued with *pGq ě 1tG P r0, 1su, and further assuming the �:
satisfy Assumption 1.1. For the sharp threshold question, we can replace *pGq by *̄pGq “ 1t*pGq ą 0u, so we can
allow the original * to take all values in r0,8s. �us �eorem 1.9 implies the following:

Corollary 1.10. For a measurable function * : ℝ Ñ r0, 1s, let *̄pGq “ 1t*pGq ą 0u. If *̄pGq ě 1tG P r0, 1su for
some ´8 ă 0 ă 1 ă 8, and *̄ is not almost everywhere one, then the results of �eorem 1.9 hold for the model (1.2),
provided that the �: satisfy Assumption 1.1.

Proof. Since we are only interested in whether the partition function / of (1.2) is nonnegative, we may assume
without loss that * “ *̄ . By the condition *pGq ě 1tG P r0, 1su, combined with Assumption 1.1 and �eo-
rem 1.5, the model (1.2) satis�es Assumption 5.1. �e condition that* is not almost everywhere one guarantees that
Assumption 1.8 is also satis�ed. �e claim then directly follows from �eorem 1.9. �

Finally, we can combine the above results with some central limit theorem estimates to obtain the following:

�eorem 1.11 (universality). In the perceptron model (1.2), suppose* is t0, 1u-valued and piecewise continuous, and
neither identically one nor identically zero. Suppose the �: are i.i.d. random vectors satis�ng Assumption 1.1. �en the
threshold sequence and free energy are universal with respect to the disorder.

1�is di�ers slightly from the notation of [Tal11, §8.3] which has log� G “ maxtlog G,´�u. We choose a notation which is more convenient
for our choice of normalization.
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1.3. Relatedwork. As mentioned earlier, the perceptron model was analyzed in the (nonrigorous) statistical physics
literature in the 1980s [Gar88, GD88, KM89, Méz89]. We refer to [Cov65, Gar88, MRSY19, MZZ21] for discussions of
statistical motivations for the model.

�ere is an important variant of the perceptron model which is well understood at a rigorous level: the spherical
(half-space) perceptron, de�ned by intersecting the sphere #1{2�#´1 with i.i.d. random spherical caps. When
the spherical caps are exactly hemispheres (pointing in uniformly random directions), the critical threshold 
2 “ 2
was determined by combinatorial arguments [Cov65, Wen62]. Later work showed that as long as the spherical caps
have up to half the volume of the entire sphere, the limiting free energy and critical threshold coincide with the
physics predictions [ST03, Sto13]. �ese results rely crucially on the convex nature of the model. In the regime
where the spherical caps have more than half the volume of the entire sphere, the problem is no longer convex, and
the expected behavior is more complicated [FP16, FPS`17, AS20].

For Ising perceptron models, in comparison with the spherical versions, rather less has been rigorously proved.
Many of the relevant works were already mentioned at the start of the section. �ere has been a very fruitful
line of works investigating symmetric perceptron models, which are much more tractable because the moment
method typically gives fairly sharp results [APZ19, PX21, ALS21b, ALS21a, GKPX22]. Several of these recent works
have investigated algorithmic properties of the solution landscape, inspired in part by conjectures in the physics
literature (see e.g. [BBC`16]). In particular, for a symmetric interval perceptron model — more precisely, the model
(1.2) with *pGq “ 1tG P r´�, �su and gaussian or Bernoulli disorder � — the sharp threshold and free energy
were determined by [PX21, ALS21b]. �e symmetric interval model is also related to the discrepancy minimization
problem; see e.g. [Spe85, Ban10, LM15, TMR20, ALS21c].

For non-symmetric Ising perceptron models, it is much more di�cult to understand the typical size or behavior
of the perceptron solution set (. �e moment method does not give sharp results. Bounds on the critical window
were given by [KR98, Tal99a]; and the free energy was computed for small 
 by [Tal00, Tal11, BNSX21]. A result of
[DS18] shows that, under an additional condition, the random set Y is nonempty with positive probability throughout
the predicted regime; our result allows to improve this statement to high probability. For the half-space model with
Bernoulli disorder, [Xu21] proved a sharp threshold sequence using a characterization of Hatami for low-in�uence
boolean functions [Hat12]. It would be of interest to see if the methods of [Xu21] can be extended to more general
perceptron models, in ways that do not require more precise estimates on these models [Xu22]. With respect to our
current paper, the most closely related previous results are the estimates obtained by Talagrand for the half-space
perceptron model [Tal99b, Tal11].

Organization. �e remainder of this paper is organized as follows:
‚ In Section 2 we review Talagrand’s proof of �eorem 1.2, for the half-space perceptron (1.1) with gaussian

disorder. We indicate the obstructions to extending this result to more general disorder distributions.
‚ In Section 3 we prove our main “add one constraint” estimates, �eorems 1.3–1.5, for the models (1.1) and

(1.1) with general disorder.
‚ In Section 4 we give a weak form of the multivariate central limit theorem, and use it to prove an averaged

universality statement, �eorem 4.1, for the perceptron models (1.1) and (1.2).
‚ In Section 5 we prove �eorems 1.7–1.11.

Acknowledgements. We wish to thank David Belius, Erwin Bolthausen, Ryoki Fukushima, Elchanan Mossel, Joe
Neeman, and Changji Xu for many interesting conversations. S.N. is supported in part by SNSF grant 176918. N.S.
is supported in part by NSF CAREER grant DMS-1940092 and NSF-Simons grant DMS-2031883.

2. Talagrand’s results on the half-space perceptron

In this section we review Talagrand’s results on the half-space perceptron (1.1). We begin with the case of gaussian
disorder, and then discuss the possibility of extending to more general distributions of �:

‚ In §2.1 we review Talagrand’s proof of �eorem 1.2. We highlight two key ingredients in the proof, Lemma 2.1
(Sudakov minoration) and Lemma 2.2 (Borell–TIS).

‚ In §2.2 we discuss extensions of Lemma 2.2 to more general distributions.
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‚ In §2.3 we discuss extensions of Lemma 2.1 to more general distributions.
�roughout this paper we use �, �̄, �1, and �2 to denote absolute constants. Following common convention, the
value of the constant may change from one occurrence to the next, but in a way that does not depend on # or any
of the parameters of the model. We use the di�erent labels �, �̄, �1, and �2 to avoid ambiguities when di�erent
constants interact in the same proof.

2.1. Intersection of cube and half-space with gaussian disorder. In this subsection we review some results
from [Tal99b, Tal11], including the proof of �eorem 1.2. As commented above, the paper [Tal99b] considers the
model (1.1) where the sum goes over G P t´1,`1u# , and the 60 are replaced with �0 which are i.i.d. uniform from
t´1,`1u# . Meanwhile [Tal11, Ch. 9] treats the gaussian case, but presents a simpli�ed argument that does not
appear to handle the small � regime. We present a more complete summary of the gaussian case below. We begin
by recalling two well-known results:

Lemma 2.1 (Sudakov minoration for gaussian processes). Let pD8q8ď= be a centered gaussian process with�rpD8q2s “
1 for all 8, and �pD8D9q ď 1´ & ă 1 for all 8 ‰ 9. �en

�

ˆ

max
8ď=

D8

˙

ě
p& log =q1{2

21{2 .

Proof. See for example [BLM13, �m. 13.4]. �is is discussed further in §2.3 below. �

Lemma 2.2 (Borell–TIS inequality). Let pD8q8ď= be a centered gaussian process with �rpD8q2s “ 1 for all 8. Let
Dmax ” max8ď= D8 . �en, for any B ě 0, we have

max
"

ℙ

´

Dmax ´�Dmax ě B
¯

,ℙ
´

Dmax ´�Dmax ď ´B
¯

*

ď
1

exppB2{2q .

Proof. See for example [BLM13, �m. 5.8]. �e concentration for Dmax is the consequence of a more general concen-
tration result for Lipschitz functionals of gaussian processes; see [BLM13, �m. 5.6]. �is is discussed further in §2.3
below. �

An immediate consequence of the two preceding lemmas is the following:

Corollary 2.3. Let pD8q8ď= be a centered gaussian process with �rpD8q2s “ 1 for all 8, and �pD8D9q ď 1 ´ & ă 1 for
all 8 ‰ 9. Let Dmax ” max8ď= D8 . �en

ℙ

ˆ

Dmax ď
p& log =q1{2

2

˙

ď
1

=&{50 .

Proof. It follows by Lemma 2.1 combined with Lemma 2.2 that

ℙ

ˆ

Dmax ď
p& log =q1{2

2

˙

ď ℙ

ˆ

Dmax ´�Dmax ď ´

ˆ

1
21{2 ´

1
2

˙

p& log =q1{2
˙

ď
1

=&{50 ,

as claimed. �

We next record some basic notations which will be used throughout:

De�nition 2.4. For C “ 1´ &, denote the binary relative entropy function

:2pCq ” �

ˆ

1` C
2

ˇ

ˇ

ˇ

ˇ

1
2

˙

“
1` C

2 logp1` Cq ` 1´ C
2 logp1´ Cq ” log 2´ #2p&q, (2.1)

so 0 ď :2pCq ď log 2 with :2p0q “ 0 and :2p´1q “ :2p1q “ log 2. It will also be useful to recall a simpli�ed bound:
for 0 ď ? ď 1 and 0 ď C? ď 1 we have

�pC? | ?q “ C? log C ` p1´ C?q log
1´ C?
1´ ?

ě C? log C ` p1´ C?q logp1´ C?q ě C? log C
4
, (2.2)

where the last step uses that p1´ Gq logp1´ Gq ě ´G for all G ď 1. (Note however that since the relative entropy is
always nonnegative, the bound (2.2) is vacuous unless C ě 4 .)
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�e following estimate says that in any large subset of t´1,`1u# , most pairs of elements of that subset are
separated in Hamming distance, where the separation guarantee depends on the size of the set:

Lemma 2.5 (rephrasing of [Tal99b, Lem. 2.2]). Let ( be any subset of t´1,`1u# with |(| ě expp#�q. If � denotes
the uniform probability measure on (, then

�b2
ˆ
ˇ

ˇ

ˇ

ˇ

p�p1q , �p2qq

#

ˇ

ˇ

ˇ

ˇ

ě 1´ &

˙

ď
2

expp#�{2q ,

for any & P p0, 1q with #2p&q ď �{2.2

Proof. Abbreviate C ” 1´ &. Conditioning on �p1q, we have

�

ˆ"

�p2q :
ˇ

ˇ

ˇ

ˇ

p�p1q , �p2qq

#

ˇ

ˇ

ˇ

ˇ

ě C

*˙

“
1
|(|

ˇ

ˇ

ˇ

ˇ

"

�p2q P t´1,`1u# :
ˇ

ˇ

ˇ

ˇ

p�p1q , �p2qq

#

ˇ

ˇ

ˇ

ˇ

ě C

*
ˇ

ˇ

ˇ

ˇ

ď
2#

expp#�q
ℙ

ˆ
ˇ

ˇ

ˇ

ˇ

Bin
ˆ

#,
1
2

˙

´
#

2

ˇ

ˇ

ˇ

ˇ

ě
#C

2

˙

ď
2#`1 expp´#:2pCqq

expp#�q
ď

2 expp##2p&qq

expp#�q
.

�e claim follows. �

�e next result is the main ingredient in Talagrand’s proof of �eorem 1.2:

Proposition 2.6 (adaptation of [Tal99b, Propn. 2.1]). Let ( be any subset of t´1,`1u# with |(| ě expp#�q where
� is a positive constant. Let & P p0, 1q with #2p&q ď �{2. �en

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 ě B&1{2
*
ˇ

ˇ

ˇ

ˇ

ď
1

expp�1B2q

˙

ď
1

exppB2&{�1q
,

provided �1 ď B ď p#�q1{2{�1, where �1 is an absolute constant.

Proof. Let � denote the uniform probability measure on (. �e basic idea of the proof is the following. By Lemma 2.5,
�b= gives large weight to well-separated =-tuples of con�gurations. By Corollary 2.3, given a well-separated =-tuple,
it is very unlikely that all = con�gurations violate the new constraint. �is implies the desired bound. �e details
are as follows.

Step 1. First we show that �b= gives large weight to well-separated =-tuples of con�gurations. Let C “ 1 ´ & ą 0
with #2p&q ď �{2 as in Lemma 2.5 above. For any positive integer =, let �= denote the subset of con�gurations in
pt´1,`1u#q= that are pairwise well-separated:

�= “

"

p�p1q , . . . , �p=qq P pt´1,`1u#q= :
p�p8q , �p9qq

#
ď C @8 ‰ 9

*

.

It follows from Lemma 2.5 that �b=p�=q must be large: indeed, a union bound over all pairs 8 ă 9 gives

�b=p�=q ě 1´
ˆ

=

2

˙

�b2
ˆ"

p�p1q , �p2qq :
ˇ

ˇ

ˇ

ˇ

p�p1q , �p2qq

#

ˇ

ˇ

ˇ

ˇ

ě C

*˙

ě 1´
ˆ

=

2

˙

2
expp#�{2q ě

3
4 , (2.3)

where the last inequality holds provided that

1 ď = ď
expp#�{4q

2 . (2.4)

Step 2. Now let�6 denote the set of all � such that p6, �q{#1{2 ě p& log =q1{2{2; we now lower bound the probability
that �p�6q is too small. Let �=,6 denote the subset of con�gurations in pt´1,`1u#q= where all = points lie outside
�6 :

�=,6 “

"

p�p1q , . . . , �p=qq P pt´1,`1u#q= :
p6, �p8qq

#1{2 ă
p& log =q1{2

2 @1 ď 8 ď =

*

“

´

t´1,`1u#z�6

¯=

.

2Note this result is similar to but stronger than [Tal11, Lem. 9.2.1].



SHARP THRESHOLD SEQUENCE AND UNIVERSALITY FOR ISING PERCEPTRON MODELS 9

On the event that �p�6q ď 1{p4=q, the complement of �=,6 has measure at most 1{4 under �b= , so
3
4

(2.3)
ď �b=p�=q ď �b=p�= X �=,6q `

1
4 . (2.5)

Rearranging the above gives �b=p�= X �=,6q ě 1{2 on the event �p�6q ď 1{p4=q. It follows that

ℙ

ˆ

�p�6q ď
1

4=

˙

(2.5)
ď ℙ

ˆ

�b=p�= X �=,6q ě
1
2

˙

ď 2�
”

�b=p�= X �=,6q

ı

ď
2

=&{50 ,

where the intermediate step is by Markov’s inequality, and the last step is by Corollary 2.3. Making a change of
variables B2 “ plog =q{4 gives the claim. �

Proof of �eorem 1.2. If �1 ď B ď p#�q1{2{�1 and B&1{2 ě �, then Proposition 2.6 immediately implies

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 ě �

*
ˇ

ˇ

ˇ

ˇ

ď
1

expp�1B2q

˙

ď
1

exppB2&{�1q
.

�e claim follows. Note that if � ď 0 then the condition B&1{2 ě � holds trivially for all B ě 0, so the �� in the
theorem statement can be taken independently of �. By contrast, if � ą 0 then �� depends on � as well. �

For comparison, the next proposition is a variant of Proposition 2.6 which was also proved by Talagrand but with
di�erent methods. It gives similar although not exactly comparable results. In this paper we will only make use of
Proposition 2.6, so Proposition 2.7 can be skipped by the reader.

Proposition 2.7 (adaptation of [Tal11, �m. 8.2.4]). Let pD8q8ď= be a centered gaussian process with �rpD8q2s “ 1 for
all 8, and �rD8D9s ď 1´ & for all 8 ‰ 9. �en

ℙ

ˆ

1
=

ˇ

ˇ

ˇ

!

8 ď = : D8 ě B&1{2
)
ˇ

ˇ

ˇ ă
1

expp�̄B2{&q

˙

ď
1

exppB2{2q

provided �̄ ď B ď plog =q1{2{�̄, where �̄ is an absolute constant.

Proof. Fix B ą 0 and consider the functions

�pDq ” log
ˆ

ÿ

8ď=

exppBD8q
˙

, �2pDq ” log
ˆ

ÿ

8ď=

expp2BD8q
˙

It follows from [Tal11, Propn. 8.2.2] (based on [Tal11, Lem. 8.2.1]) that if pD8q8ď= and pE8q8ď= are two centered
gaussian processes with �rpD8q2s ě �rpE8q

2s for all 8, and �pD8D9q ď �pE8E 9q for all 8 ‰ 9, then ��pDq ě ��pEq.
In the current se�ing we can take E8 “ p1´ &q1{2I` &1{2I8 where I, I8 are i.i.d. standard gaussian random variables.
It follows by combining with [Tal11, Lem. 8.2.3] that

��pDq ě ��pEq “ log
ˆ

ÿ

8ď=

exppB&1{2I8q

˙

ě log = ` B2&
5 ,

where the last inequality holds provided � ď B&1{2 ď plog =q1{2{�, where � is an absolute constant. Moreover,
gaussian concentration gives

ℙ

´

�pDq ď ��pDq ´ C
¯

ď exp
ˆ

´
C2

4B2

˙

,

and combining the last two bounds implies

ℙ

ˆ

�pDq ě log = ` B2&
10

˙

ď 1´ exp
ˆ

´
B2&
400

˙

.

On the other hand, it follows using Markov’s inequality that

ℙ

ˆ

�2pDq ě log = ` 3B2
˙

ď
� exp �2pDq

= expp3B2q
“

expp2B2q

expp3B2q
“

1
exppB2q

.

It follows by combining the last two bounds that the event

�‹ ”

"

�pDq ě log = ` B2&
10 , �2pDq ď log = ` 3B2

*
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has probability ℙp�‹q ě 1´ 2 expp´B2&{400q. Let P= be the uniform probability measure on t1, . . . , =u, and on the
probability space pr=s, P=q consider the random variable - : 8 ÞÑ -p8q “ exppBD8q. �en E=- “ =´1 exp �pDq and
E=p-2q “ =´1 exp �2pDq, so the Paley–Zygmund inequality implies

P=
ˆ

- ě
E=-

2

˙

ě
pE=-q2

4E=p-2q
“
p=´1 exp �pDqq2

4=´1 exp �2pDq
ě

exppB2&{5q
4 expp3B2q

ě
1

expp3B2q
, (2.6)

where the second-to-last inequality holds on the event �‹, and the last inequality holds using B&1{2 ě �. Moreover,
E=-

2 “
exp �pDq

2= ě
exppB2&{10q

2 ě exp
ˆ

B2&
20

˙

,

where the last inequality again uses B&1{2 ě �. �us, -p8q “ exppBD8q ě E=-{2 implies D8 ě B&{20, so

P=
ˆ

- ě
E=-

2

˙

ď
1
=

ˇ

ˇ

ˇ

ˇ

"

8 ď = : D8 ě
B&
20

*
ˇ

ˇ

ˇ

ˇ

.

Since the bound (2.6) holds on the event �‹, it follows that

ℙ

ˆ

1
=

ˇ

ˇ

ˇ

ˇ

"

8 ď = : D8 ě
B&
20

*
ˇ

ˇ

ˇ

ˇ

ă
1

expp3B2q

˙

ď ℙ

ˆ

P=
ˆ

- ě
E=-

2

˙

ă
1

expp3B2q

˙

ď 1´ ℙp�‹q ď 2 exp
ˆ

´
B2&
400

˙

ď exp
ˆ

´
B2&
800

˙

.

Taking B1 “ B&1{2{20 gives, for � ď 20B1 ď plog =q1{2{�,

ℙ

ˆ

1
=

ˇ

ˇ

ˇ

ˇ

"

8 ď = : D8 ě B1&1{2
*
ˇ

ˇ

ˇ

ˇ

ă
1

expp1200pB1q2{&q

˙

ď exp
ˆ

´
pB1q2

2

˙

.

�e claimed bound follows by se�ing �̄ “ maxt1200, 20�u. �

2.2. Concentration of supremum of canonical processes. In the remainder of this section we discuss the possi-
bility of extending the approach of �eorem 1.2 to more general distributions of the disorder �. �e main conclusion
of this discussion is that the proof of �eorem 1.2 can likely be extended to a limited class of distributions using
results from the existing literature. By contrast, our main results follow a di�erent (and perhaps simpler) approach,
and apply to the wider class of all subgaussian distributions. However, we obtain somewhat weaker bounds than in
�eorem 1.2 (e.g., �eorem 1.2 applies for F ď #{�� while �eorem 1.3 applies for F ď #1{2{��).

�eorem 1.2 can be obtained as a consequence of either Proposition 2.6 or Proposition 2.7. Proposition 2.7 relies on
a gaussian interpolation bound and appears di�cult to extend more generally, so we turn to discussing the possibility
of extending Proposition 2.6. �e proposition relies on two essential ingredients:

(i) �e Sudakov minoration (Lemma 2.1), lower bounding the expected supremum of a gaussian process;
(ii) �e Borell–TIS inequality (Lemma 2.2), giving concentration of the supremum of a gaussian process.

We discuss each of these ingredients separately below, for a stochastic process
ˆ

p�, �q

#1{2 : � P (
˙

, (2.7)

where ( is a subset of ℝ# . �e rescaling of ( by #1{2 is not essential; we chose it to maintain consistency with
the scaling in the rest of this paper, where ( is generally a subset of t´1,`1u# . In the literature, the stochastic
process (2.7) is sometimes termed the “canonical process” for � indexed by ({#1{2. In this subsection we discuss
concentration of the supremum of the process (point (ii) above); in §2.3 we discuss lower bounding the expected
supremum (point (i) above).

For ( Ď ℝ# , let us consider the supremum of the canonical process (2.7) as a function of the disorder �:

5 p�q ” 5

ˆ

�; (

#1{2

˙

” sup
"

p�, �q

#1{2 : � P (
*

. (2.8)
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If ( is any subset of #1{2�2 where �2 is the euclidean unit ball in ℝ# , then 5 : ℝ# Ñ ℝ will be Lipschitz with
respect to the euclidean norm on ℝ# :

5 p�1q “ sup
"

p�, �q

#1{2 `
p�1 ´ �, �q

#1{2 : � P (
*

ď 5 p�q ` }�1 ´ �}2 (2.9)

for any �, �1 P ℝ# . �e Borell–TIS inequality gives concentration for any Lipschitz functional of a gaussian random
variable, hence Lemma 2.2 (since the gaussian process pD8q8ď= can be expressed as pp6, E8qq8ď= , where 6 is a standard
gaussian vector and pE8q8ď= is a collection of unit vectors). We know of similar bounds in two other se�ings:

‚ Suppose �8 has density expp´+pGqq 3G where + is uniformly convex (i.e., the second derivative of + is
uniformly bounded below by a positive constant). �en it follows from [Led01, Propn. 2.18] (see also [Ver18,
�m. 5.2.15]) that (2.9) satis�es a similar concentration bound as Lemma 2.2, for any ( Ď #1{2�2.

‚ If the �8 are almost surely bounded random variables, then it can be deduced via the method of bounded
di�erences (see e.g. [BLM13, �m. 6.2]) that (2.9) satis�es a similar concentration bound as Lemma 2.2, again
for any ( Ď #1{2�2.

For subgaussian distributions, we do not have such strong guarantees, but we have the following lemma which gives
a weaker result under the further assumption ( Ď t´1,`1u# (rather than ( Ď #1{2�2):

Lemma 2.8. Suppose � is a random vector in ℝ# satisfying Assumption 1.1. If ( Ď t´1,`1u# , then

ℙ

ˆˇ

ˇ

ˇ

ˇ

5

ˆ

�; (

#1{2

˙

´� 5

ˆ

�; (

#1{2

˙
ˇ

ˇ

ˇ

ˇ

ě D

˙

ď exp
ˆ

´min
"

D2

4�2 ,
#1{2D

2�

*˙

for 5 as de�ned by (2.8), and � a constant depending only on �.

Proof. Let ℋ8 denote the �-algebra generated by the �rst 8 coordinates p�1 , . . . , �8q, and decompose

5 p�q ´� 5 p�q “
#
ÿ

8“1
p-8 ´ -8´1q

where -8 ” �p 5 p�q |ℋ8q. Let �8 be expectation over �8 only, and let �8 be expectation over all the p�9q9ě8 , so that
we have -8 “ �8`1 5 p�q while -8´1 “ �

8 5 p�q “ �8�8`1 5 p�q. We then have, using Jensen’s inequality,

�8p�q ” �

„

exp
´

�|-8 ´ -8´1|
¯

ˇ

ˇ

ˇ

ˇ

ℋ8´1



“ �8�
8`1 exp

ˆ

�
ˇ

ˇ

ˇ�
8`1

´

5 p�q ´�8 5 p�q
¯
ˇ

ˇ

ˇ

˙

ď �8�
8`1 exp

ˆ

�
ˇ

ˇ

ˇ 5 p�q ´�8 5 p�q
ˇ

ˇ

ˇ

˙

,

Let �p8q denote the vector that results from replacing the 8-th coordinate of � with an independent copy �8 , and let
�p8q denote expectation over �8 only. �en applying Jensen’s inequality again gives

�8p�q ď �8�
8`1 exp

ˆ

�
ˇ

ˇ

ˇ�
p8q
´

5 p�q ´ 5 p�p8qq
¯
ˇ

ˇ

ˇ

˙

ď �8�
8`1�p8q exp

ˆ

�
ˇ

ˇ

ˇ 5 p�q ´ 5 p�p8qq
ˇ

ˇ

ˇ

˙

.

We then note, since we assume ( Ď t´1,`1u# , the bound (2.9) can be re�ned to

5 p�p8qq ď 5 p�q `max
"

p�1 ´ �, �q

#1{2 : � P t´1,`1u#
*

ď 5 p�q `
|�8 ´ �8 |

#1{2 .

Since for any G P ℝ we have expp|G|q ď exppGq ` expp´Gq, we can use Assumption 1.1 to bound

�8p�q ď � exp
ˆ

�|�8 ´ �8 |

#1{2

˙

ď 2 exp
ˆ

�2�
#

˙

.

In particular, taking � “ #1{2 gives �8p#1{2q ď 2 expp�q. Another application of Jensen’s inequality gives that for
� large enough (depending on � only), we have

�8

ˆ

#1{2

�

˙

ď

´

�8p#
1{2q

¯1{�
ď

´

2 expp�q
¯1{�

ď 2 .
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It then follows by the martingale Bernstein inequality (see [Tal11, �m. A.6.1]) that

ℙ

ˆ

ˇ

ˇ

ˇ 5 p�q ´� 5 p�q
ˇ

ˇ

ˇ ě D

˙

ď exp
ˆ

´min
"

D2

4�2 ,
#1{2D

2�

*˙

for all D ě 0, as claimed. �

We note that, for the purposes of �eorem 1.2, Lemma 2.8 can be substituted for Lemma 2.2 with similar results.
�us, in our se�ing, concentration of the supremum of (2.7) does not appear to be a major issue. Rather, as we next
discuss, lowering bounding the expected supremum appears to be the main obstacle to extending the argument of
�eorem 1.2 to more general distributions.

2.3. Sudakov minoration lower bound. We now discuss lower bounding the expected supremum

� 5

ˆ

�,
(

#1{2

˙

“ �

„

sup
"

p�, �q

#1{2 : � P (
*

, (2.10)

for 5 as in (2.8) and ( Ď ℝ# . In the gaussian case, the desired lower bound is given by Lemma 2.1. In the Bernoulli
case a comparable lower bound is given by [Tal93, Propn. 2.2]. Minoration bounds for more general processes do exist
(e.g. [Tal93, Tal94, Lat97, Tal05]), but the dependence on the law of �8 is somewhat complicated. �e most relevant
results come from [Lat97] (see also [Tal05, Ch. 5]), for the situation that the �8 are symmetric random variables such
that the tail probability function

)�pGq ” log 1
ℙp|�8 | ě Gq

(2.11)

is convex. For simplicity, we will restrict most of our discussion to the case that the distribution of �8 has density
expp´|G|
q

I

3G (2.12)

with respect to Lebesgue measure, where 1 ď 
 ă 8 and I
 denotes the normalizing constant. �is is a special case
of the se�ing of [Lat97], and was treated earlier by [Tal93, Tal94].

If �8 follows the distribution (2.12) with 1 ď 
 ď 2, or more generally if )�pGq À G2 for G ě 1 (meaning that
�8 has heavier tails than the gaussian distribution), then it follows from [Lat97, �m. 1] (see also [Tal94, �m. 1.2]
and the discussion around [Tal05, �m. 5.2.6]) that a similar lower bound as Lemma 2.1 holds. In more detail, for an
#-dimensional gaussian vector 6 and for any - Ď ℝ# , it was proved by [Tal87] that

�

„

sup
!

p6, Gq : G P -
)



— �2p-, } ¨ }2q “ inf
p-=q

sup
CP-

ÿ

=ě0
2={2 min

!

}C ´ G}2 : G P -=
)

,

where -= is a subset of - of cardinality at most 22= (�2 is a standard notation in the topic of majorizing measures
or generic chaining). If the �8 are symmetric random variables with )�pGq À G2 for G ě 1, then we have

�

„

sup
!

p�, Gq : G P -
)



Á �2p-, } ¨ }2q — �

„

sup
!

p6, Gq : G P -
)



for any - Ď ℝ# (cf. and [Tal05, �m. 2.1.1 and display (5.44)]). If - is a subset of the unit sphere in ℝ# such that
pG, G1q ď 1´ & for all G ‰ G1 in - , then the right-hand side of the above is lower bounded by Lemma 2.1.3

If �8 follows the distribution (2.12) with 
 ě 2 (so that �8 has lighter tails than the gaussian distribution), then
characterizing the expected supremum is in general more complicated; see [Tal94, �m. 1.3]. A lower bound that is
easier to work with is given by [Tal94, �m. 3.1] (see also [Lat97, �m. 1]) which in fact applies for all 
 ą 1: writing
m ” mp({#1{2q for the quantity in (2.10), and writing � for the dual (Hölder conjugate) of 
, we have

m Á log =
ˆ

(

#1{2 , *�pmq

˙

, (2.13)

3�e resulting lower bound on the le�-hand side may not be tight when 
 ă 2, although this in itself does not appear to be an issue.
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where =p-,*q denotes the number of translates of * needed to cover - , and

*�pDq ”

"

G :
ÿ

8ě1
��pG8q ď D

*

, ��pGq ”

#

G2 for |G| ď 1,
|G|� for |G| ě 1.

Adapting the argument following [Tal94, �m. 3.2] yields the following bound, which (like Lemma 2.8) relies crucially
on the restriction ( Ď t´1,`1u# :

Corollary 2.9. Suppose ( Ď t´1,`1u# , and assume that for all � ‰ � in ( we have |p�, �q|{# ď 1´ &. Suppose �
is an #-dimensional random vector with i.i.d. entries �8 distributed according to (2.12) with 
 ą 1. �en

�

„

sup
"

p�, �q

#1{2 : � P (
*

Á &plog |(|q1{2 .

Proof. As above, we abbreviate m “ mp({#1{2q for the quantity of interest. Let � denote a positive constant.
Applying (2.13) (from [Tal94, �m. 3.1]) with �( in place of ( gives

�m Á log =
ˆ

�(

#1{2 , *�p�mq

˙

.

Suppose two points G, H P r´1{2,`1{2s# are covered by the same translate of *�p�mq. �en there must exist
I P r´1{2,`1{2s# such that both G and H belong to the translate of *�p�mq centered at I: that is,

max
"

ÿ

8ď#

��pG8 ´ I8q,
ÿ

8ď#

��pH8 ´ I8q

*

ď �m .

Since |G8 ´ I8 | ď 1 and |H8 ´ I8 | ď 1 for all 8 ď # , the de�nition of �� implies that both G and H must lie within
euclidean distance p�mq1{2 of I, and so G and H must also be covered by the same translate of p�mq1{2�2, where �2
denotes the unit ball in euclidean norm. �us, as long as �{#1{2 ď 1{2, we have

�m Á log =
ˆ

�(

#1{2 , p�mq
1{2�2

˙

“ log =
ˆ

(

#1{2 ,

ˆ

m
�

˙1{2
�2

˙

.

If m{& ď #1{2{2, then se�ing � “ m{& gives
m2

&
ě log =

ˆ

(

#1{2 , &
1{2�2

˙

“ log |(| ,

since the separation assumption in the statement of the corollary implies that each translate of &1{2�2 can cover at
most one element of (. Otherwise we must have m ě &#1{2{2 Á &plog |(|q1{2, since |(| ď 2# . Combining these
two cases gives the claimed lower bound. �

For simplicity we have stated Corollary 2.9 for the distribution (2.12) with 
 ą 1, so that the bound can be
obtained by applying [Tal94, �m. 3.1]. For the more general se�ing where the function )�pGq of (2.11) is convex,
a similar lower bound as Corollary 2.9 can be obtained by applying [Lat97, �m. 1]. In summary, we have similar
lower bounds for the canonical process (2.7) in the cases

‚ �e �8 are gaussian (Lemma 2.1);
‚ �e �8 are Bernoulli ([Tal93, Propn. 2.2]);
‚ �e �8 are symmetric random variables such that the function )�pGq is convex ([Tal94, �m. 3.1], [Lat97,

�m. 1], and Corollary 2.9).
We do not know of a similar lower bound for the more general class of subgaussian vectors.

Summary of conclusions of §2.2–2.3. �e conclusion of the last two subsections is that, using only existing results
in the literature, it may be possible to extend �eorem 1.2 to cover the case that the �8 are symmetric subgaussian
random variables such that the function )�pGq of (2.11) is convex. One can adapt the argument of �eorem 1.2 with
Corollary 2.9 in place of Lemma 2.1, and Lemma 2.8 in place of Lemma 2.2. To cover all subgaussian distributions,
the main di�culty appears to be in obtaining a lower bound comparable to that of Lemma 2.8.
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In the remainder of this paper we prove versions of �eorem 1.2 for general subgaussian disorder, using as input
only the gaussian results Lemma 2.1 and Lemma 2.2. �is results in weaker (and likely suboptimal) bounds. On the
other hand, our argument is relatively simple, as it bypasses the more di�cult Sudakov minoration bounds proved
by [Tal94, Lat97].

3. Adding a single constraint in perceptron models

In this section we prove our main estimates for the perceptron model, �eorems 1.3–1.5.
‚ In §3.1 we prove a preliminary estimate (Proposition 3.2) towards our main results, which says that large

subsets of t´1,`1u# must contain many pairs of con�gurations that are well-separated within blocks of
the coordinates r#s.

‚ In §3.2 we prove Proposition 3.8, which is a version of Proposition 2.6 for general disorder. �is leads to the
proof of �eorem 1.3.

‚ In §3.3 we apply Proposition 3.8 to give the proof of �eorem 1.5. As we explain at the end of that subsection,
a similar argument (using Proposition 2.6 in place of Proposition 3.8) yields the proof of �eorem 1.4.

3.1. Extraction of subsets with separation on blocks. Recall that we decomposed r#s into blocks �1 , . . . , �!,
each of size  “ #{!. Given ( Ď t´1,`1u# of size |(| ě expp8#�q, our �rst goal is to extract Ω Ď ( large, such
that con�gurations in Ω have “good separation” on some of the blocks � 9 . Formally:

De�nition 3.1. For any subset of coordinates � Ď r#s of size |�| “  , we say that two con�gurations �, � P
t´1,`1u# are &-separated on � if

|p�� , ��q|

 
ď 1´ & .

Equivalently, the euclidean distance between �� and �� is at least p2 &q1{2.

Note that in an extreme case we could have for instance

( “

"

� P t´1,`1u# : �8 “ 1 for all 1 ď 8 ď #

ˆ

1´ 8�
log 2

˙*

,

so in this case |(| ě expp8#�q, but clearly any pair of elements in ( will not be well-separated on most blocks � 9 .
�us it will only be possible to guarantee good separation on a small fraction � (depending on �) of the blocks � 9 .
�e main result of this subsection is the following:

Proposition 3.2. Let ( be any subset of t´1,`1u# with |(| ě expp8#�qwhere � is a small positive constant. Suppose
& and � are positive constants with #2p8&q ď � and � ď �{p2 log 2q. Suppose �1{� ď ! ď #�{�1, and divide r#s
into consecutive blocks �1 , . . . , �! of size  “ #{! each. �en there exists �‹ Ď r!s with |�‹| “ #�, and Ω Ď ( with
|Ω| ě expp#�{!q, such that all pairs � ‰ � in Ω satisfy

|p��9 , ��9 q|

 
ď 1´ &

for all 9 P �‹. �at is to say, all pairs � ‰ � in Ω are &-separated on � 9 for all 9 P �‹.

�e proof of Proposition 3.2 appears at the end of this subsection.

Lemma 3.3. As in Proposition 3.2, assume that ( is any subset of t´1,`1u# with |(| ě expp8#�q; and that we have
#2p8&q ď �, � ď �{p2 log 2q, and �1{� ď ! ď #�{�1. �en

�b2
ˆ

ÿ

9ď!

1
"

|p��9 , ��9 q|

 
ď 1´ 8&

*

ă 2!�
˙

ď
1

expp5#�q
,

where � is the uniform measure on (, and p�, �q is a pair of i.i.d. samples from �.
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Proof. Write C ” 1´ 8&. For � P t´1,`1u# , we can bound

�� ” �

ˆ"

� :
ÿ

9ď!

1
"

|p��9 , ��9 q|

 
ď 1´ 8&

*

ă 2!�
*˙

ď
1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P t´1,`1u# :
ÿ

9ď!

1
"

|p�� 9 , ��9 q|

 
ď 1´ 8&

*

ă 2!�
*
ˇ

ˇ

ˇ

ˇ

.

For any �xed �, if � is sampled uniformly at random from t´1,`1u# , then the scalar product p��9 , ��9 q is equidis-
tributed as 2pBinp , 1{2q ´  {2q, so the chance for |p��9 , �� 9 q| ě  p1´ 8&q is

?̄ ”
1

2 

ˇ

ˇ

ˇ

ˇ

"

��9 P t´1,`1u :
|p��9 , �� 9 q|

 
ď C

*
ˇ

ˇ

ˇ

ˇ

“ ℙ

ˆ
ˇ

ˇ

ˇ

ˇ

Bin
ˆ

 ,
1
2

˙

´  

ˇ

ˇ

ˇ

ˇ

ě
 C

2

˙

ď
2

expp :2pCqq

Moreover the p�� 9 , ��9 q are independent across the di�erent 9, so

�� ď
2#

expp8#�q
ℙ

ˆ

Binp!, ?̄q ě !p1´ 2�q
˙

ď
2#

expp8#�q

ˆ

!

2!�

˙

?̄!p1´2�q .

Combining with the preceding bound on ?̄, and recalling :2pCq “ log 2´ #2p8&q, we obtain

�� ď
2# expp!�p2�qq

expp8#�q

ˆ

2
expp :2pCqq

˙!p1´2�q

ď exp
"

#
´

´ 8� ` #2p8&q ` 2� log 2´ 2�#2p8&q
¯

` !
´

�p2�q ` log 2
¯

*

ď
1

expp5#�q
,

where the last bound holds for parameters �, &, �, ! as in the statement of the lemma. �e result follows by averaging
over � P (. �

Corollary 3.4. In the se�ing of Lemma 3.3 (and with all the same parameters), there must be a subset (1 Ď ( with
|(1| ě expp5#�{2q such that all pairs � ‰ � in (1 are well-separated in the sense that

ÿ

9ď!

1
"

|p��9 , ��9 q|

 
ď 1´ 8&

*

ě 2!� . (3.1)

Proof. Let �p1q , . . . , �p=q be = “ expp5#�{2q i.i.d. samples from � (the uniform measure on (). By Lemma 3.3, the
probability that for any 1 ď 8 ă 9 ď = the con�gurations �8 , � 9 fail to be well-separated is upper bounded by

ˆ

=

2

˙

�b2
ˆ

ÿ

9ď!

1
"

|p��9 , ��9 q|

 
ď 1´ 8&

*

ă 2!�
˙

ď

ˆ

=

2

˙

1
expp5#�q

ď
1
2 ,

where the last bound holds by the choice of =. �erefore the random set t�p1q , . . . , �p=qu satis�es the required
condition with probability at least 1{2; and this implies the existence of the claimed set (1. �

Lemma 3.5. Let (1 Ď t´1,`1u# with |(1| ě expp5#�{2q, such that all pairs � ‰ � in (1 are well-separated in
the sense of (3.1). If � satis�es p2{|(1|q1{! ď � ď 1{2, then there exist �˝ Ď r!s with |�˝| ě 2!�, and ) Ď (1 with
|)| ě �!|(1|, such that we have

1
|)|

ˇ

ˇ

ˇ

ˇ

"

� P ) :
|p��9 , ��9 q|

 
ą 1´ &

*
ˇ

ˇ

ˇ

ˇ

ď 2� . (3.2)

for all � P ) and all 9 P �˝.

Proof. We �rst give the construction of ) and �˝. For � P t´1,`1u# , Ω Ď t´1,`1u# , and 1 ď 9 ď !, denote

)9p�,Ωq ”

"

� P Ω :
p�� 9 , ��9 q

 
ą 1´ &

*

.
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‚ Initial step. Let Ωp0q ” (1. If for all � P Ωp0q and all 9 P r!s we have

max
"

|)9p�,Ωp0qq|

|Ωp0q|
,
|)9p´�,Ωp0qq|

|Ωp0q|

*

ď � ,

then we are done by simply taking) “ Ωp0q and �˝ “ r!s. If this is not the case, then we must have a con�guration
�p1q P Ωp0q Y p´Ωp0qq and an index 9p1q P r!s such that

|)9p1qp�
p1q ,Ωp0qq|

|Ωp0q|
ą � .

�en set Ωp1q “ )9p1qp�
p1q ,Ωp0qq Ď Ωp0q.

‚ Inductive step. Similarly, suppose inductively that we have constructed �p:q, 9p:q, Ωp:q. If for all � P Ωp:q and all
9 P r!szt9p1q , . . . , 9p:qu we have

max
"

|)9p�,Ωp:qq|

|Ωp:q|
,
|)9p´�,Ωp:qq|

|Ωp:q|

*

ď � ,

then we end the process by se�ing ) “ Ωp:q and �˝ “ r!szt9p1q , . . . , 9p:qu. If this is not the case, then we must
have a con�guration �p:`1q P Ωp:q Y p´Ωp:qq and an index 9p:`1q P r!szt9p1q , . . . , 9p:qu such that

|)9p:`1qp�p:`1q ,Ωp:qq|

|Ωp:q|
ą � .

�en set Ωp:`1q “ )9p:`1qp�p:`1q ,Ωp:qq Ď Ωp:q.
We claim that the above construction ends with ) “ Ωp:

1q for some :1 ď ℓ “ !p1 ´ 2�q. Indeed, suppose for
contradiction that it does not. For simplicity of notation, let us re-index such that 9p:q “ : for all :. Now consider
the set � “ Ωpℓ`1q “ )ℓ`1p�pℓ`1q ,Ωpℓqq for ℓ “ !p1 ´ 2�q. If � P �, then for each : ď ℓ ` 1 the con�gurations �
and �p:q must be close on the block of coordinates �: :

}��: ´ p�
p:qq�: }

2

 
“

2 ´ 2p��: , p�p:qq�: q
 

ď 2´ 2p1´ &q “ 2& .

By the assumption �!|(1| ě 2 we must have

|�| “ |Ωp0q|
ℓ`1
ź

:“1

|Ωp:q|

|Ωp:´1q|
ě |(1|�ℓ`1 ě |(1|�! ě 2 ,

so we can �nd a pair of distinct elements � ‰ � in �. For this pair, the triangle inequality gives
}��: ´ ��: }

2

 
ď

´

2p2&q1{2
¯2
“ 8&

for each : ď ℓ ` 1. �is contradicts the assumption that � and � must satisfy (3.1), since they are both elements of
the original set (1. �is veri�es the claim that ) “ Ωp:1q for some :1 ď ℓ “ !p1´ 2�q, and

|)|

|(1|
“

:1
ź

:“1

|Ωp:q|

|Ωp:´1q|
ě �:

1

ě �ℓ ě �! .

Finally, the required bound (3.2) holds because otherwise the above construction would not stop at ) “ Ωp:1q. �

Lemma 3.6. Let ( be any subset of t´1,`1u# with |(| ě expp8#�q where � is a small positive constant. Suppose
#2p8&q ď �, � ď �{p2 log 2q, and �1{� ď ! ď #�{�1. �en there exist a subset �˝ Ď r!s with |�˝| ě 2!�, and a
subset ) Ď ( with |)| ě expp#�q, such that for all � P ) we have

1
|)|

ˇ

ˇ

ˇ

ˇ

"

� P ) :
|p��9 , ��9 q|

 
ą 1´ &

*
ˇ

ˇ

ˇ

ˇ

ď 2 exp
ˆ

´
9#�
4!

˙

for each 9 P �˝.



SHARP THRESHOLD SEQUENCE AND UNIVERSALITY FOR ISING PERCEPTRON MODELS 17

Proof. Let ( be any subset of t´1,`1u# with |(| ě expp8#�q. It follows from Corollary 3.4 that there must be a
subset (1 Ď ( with |(1| ě expp5#�{2q such that all pairs � ‰ � in (1 are well-separated in the sense of (3.1). It then
follows from Lemma 3.5 that if p2{|(1|q1{! ď � ď 1{2, then there exists �˝ Ď r!s with |�˝| ě 2!�, and ) Ď (1 with
|)| ě �!|(1|, such that we have

1
|)|

ˇ

ˇ

ˇ

ˇ

"

� P ) :
|p��9 , ��9 q|

 
ą 1´ &

*
ˇ

ˇ

ˇ

ˇ

ď 2�

for all � P ) and all 9 P �˝. In particular, we can choose � “ expp´9#�{p4!qq, so that

�! “ exp
ˆ

´
9#�

4

˙

ě 2 exp
ˆ

´
5#�

2

˙

ě
2
|(1|

holds for all # large enough, as required. �

Proof of Proposition 3.2. Let ) Ď ( be as given by Lemma 3.6, and let � be the uniform probability measure on ).
Similarly to the proof of Corollary 3.4, let p�p1q , . . . , �p=qq be sampled according to �b= , i.e., uniformly at random
from )= . Let us say that a block �: “fails” if there exists a pair of indices 1 ď 8 ă 9 ď = such that the con�gurations
�p8q and �p9q are not &-separated on the block �: . �e probability that more than half of the blocks in �˝ fail can be
upper bounded with Markov’s inequality:

�b=
ˆ

1
|�˝|

ÿ

9P�˝

1tblock � 9 failsu ě 1
2

˙

ď
2
|�˝|

ÿ

9P�˝

ˆ

=

2

˙

�b2
ˆ

|p��9 , ��9 q|

 
ą 1´ &

˙

ď =2 exp
ˆ

´
9#�
4!

˙

ď
1
2 ,

where the last inequality holds for = ď expp#�{!q. �erefore, with probability at least 1{2, for the random set
t�p1q , . . . , �p=qu we can �nd |�‹| ě !� such that the required properties are satis�ed. If we take = “ expp#�{!q,
then this implies the existence of the claimed set Ω Ď ) Ď (. �

3.2. Intersection of cube and half-space with general disorder. �e main results in this subsection are Propo-
sition 3.8, which is a version of Proposition 2.6 for general disorder, and the proof of �eorem 1.3. �e assumption
of the following is based on the result of Proposition 3.2:

Proposition 3.7. Suppose � is a random vector inℝ# satisfying Assumption 1.1. Suppose � is a small positive constant,
and &, � ď �. Divide r#s into consecutive blocks �1 , . . . , �! of size  “ #{! each. Suppose Ω Ď t´1,`1u# with
|Ω| ě expp#�{!q, such that all pairs � ‰ � are &-separated on � 9 for all for all 9 P �‹ “ rℓ`1, !s, where ℓ “ !p1´�q.
�en we have the bound

ℙ

ˆ

1
|Ω|

ˇ

ˇ

ˇ

ˇ

"

� P Ω :
p�, �q

#1{2 ě
�p!& log ?q1{2

60

*
ˇ

ˇ

ˇ

ˇ

ă
1

2 ¨ p4?q!�

˙

ď 4 exp
ˆ

´
!�2& log ?

60�

˙

,

provided log ? ě �1�{& and �1{� ď ! ď #1{2{p�1 log ?q1{2.

Proof. Let ? be a large integer. Let ℱ: be the �-algebra generated by the vectors ��9 for 1 ď 9 ď :, so that ":p�q
(as de�ned by (1.3)) is measurable with respect to ℱ: . Recall ℓ “ !p1´ �q, and de�ne

Ωpℓq ”

"

� P Ω : "ℓ p�q ě ´
�p!& log ?q1{2

5

*

.

It follows using Markov’s inequality and the subgaussian tail bound that

(I) ” ℙ
ˆ

|Ωpℓq|

|Ω|
ď

1
2

˙

ď ℙ

ˆ

1
|Ω|

ˇ

ˇ

ˇ

ˇ

"

� P Ω : "ℓ p�q ă ´
�p!& log ?q1{2

5

*
ˇ

ˇ

ˇ

ˇ

ě
1
2

˙

ď 2 exp
ˆ

´
!�2& log ?

50�

˙

.

Next, for ℓ ` 1 ď : ď !, suppose inductively that Ωp:q has been de�ned. Let

Ξp:q ”

"

� P Ωp:q :
p��: , ��: q

 1{2 ě
p& log ?q1{2

2

*

Ď Ωp:q .
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We will show below that Ξp:q occupies a constant fraction of Ωp:q with good probability:

ℙ

ˆ

|Ξp:q|

|Ωp:q|
ď

1
4?

˙

ď
4

?&{32 . (3.3)

With this in mind, for ℓ ` 1 ď : ď ! we de�ne the sets

Ωp:`1q “

#

Ξp:q if |Ξp:q| ě |Ωp:q|{p4?q
Ωp:q otherwise.

�e construction guarantees for all ℓ ď : ď ! that

|Ωp:q| ě |Ωp!q| ě
|Ω|

2

ˆ

1
4?

˙!�

ě
1
2 exp

ˆ

#�
!
´ !� logp4?q

˙

ě ? , (3.4)

where the last bound holds by the assumed upper bound on !. Now, turning to the proof of (3.3), from Ωp:q let us
extract disjoint subsets -1 , . . . , -< each of size ?, whose union occupies more than half of Ωp:q — the preceding
bound guarantees that we can do this with < ě 1, since |Ωp:q| ě ?. Combining Corollary 2.3 with the CLT estimate
Corollary 4.4 (deferred to §4.1 below) gives

ℙ

ˆ

max
�P-0

p�, �q

#1{2 ď
p& log ?q1{2

2

˙

“ �

„

ź

�P-0

1
"

p�, �q

#1{2 ď
p& log ?q1{2

2

*

ď ℙ

ˆ

max
�P-0

p6, �q

#1{2 ď
p& log ?q1{2

2

˙

` >#p1q ď
2

?&{50

It then follows by the Markov inequality that

ℙ

ˆ

1
<

ÿ

0ď<

1
!

Ξp:q X -0 “ ∅
)

ě
1
2

˙

ď
4

?&{50 .

On the complementary event we have

|Ξp:q| ě
ÿ

0ď<

1tΞp:q X -0 ‰ ∅u ě <

2 ě
|Ωp:q|

4? ,

which proves (3.3). Next let �‚ denote the subset of indices : P �‹ for which we have Ωp:q “ Ωp:´1q. It follows
from (3.3) that |�‚| is stochastically dominated by a binomial random variable with !� trials and success probability
4{?&{50. It follows by the Cherno� bound and (2.2) that

(II) ” ℙ
ˆ

|�‚| ě
!�

6�

˙

ď exp
"

´ !��

ˆ

1
6�

ˇ

ˇ

ˇ

ˇ

4
?&{50

˙*

ď exp
ˆ

´
!�& log ?

6� ¨ 51

˙

,

where the last bound holds because the restriction log ? ě �1�{& guarantees

C

4
“

1
4
¨

1
6� ¨

?&{50

4 ě ?&{51 .

By a union bound over all subsets � Ď �‹, we have

(III) ” ℙ
ˆ

ÿ

9P�

p��9 , ��9 q

#1{2 ď ´
�p!& log ?q1{2

5 for any � Ď �‹

˙

ď 2!� exp
ˆ

´
!�& log ?

50�

˙

ď exp
ˆ

´
!�& log ?

60�

˙

,
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where the last bound again uses the restriction log ? ě �1�{&. On the complement of the events bounded by (I), (II),
and (III), we have for all � P Ωp!q that

p�, �q

#1{2 “ "!p�q “ "ℓ p�q `
ÿ

9P�

p��9 , ��9 q

#1{2 `
ÿ

9P�‹z�‚

p��9 , ��9 q

#1{2

ě ´
2�p!& log ?q1{2

5 ` !�

ˆ

1´ 1
6�

˙

p& log ?q1{2

2!1{2 ě
�p!& log ?q1{2

60 ,

where the last bound uses that we must have � ě 1 (see Assumption 1.1). �e claim then follows by recalling the
lower bound on |Ωp!q| from (3.4). �

�e next proposition is a version of Proposition 2.6 which applies in the case of general disorder. It has a somewhat
worse &-dependence Proposition 2.6. From our perspective the more important di�erence is that Proposition 3.8
applies for a more limited range of B than Proposition 2.6:

Proposition 3.8. Let ( be any subset of t´1,`1u# with |(| ě expp#�q where � is a small positive constant. Let &
be a positive constant with #2p8&q ď �{9. �en

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě Bp&�q1{2
*
ˇ

ˇ

ˇ

ˇ

ă exp
ˆ

´
�2�B2

2&

˙˙

ď
4

exppB2&q
.

provided �2 ď B ď p#&3{�q1{4{�2, where �2 is a large absolute constant.

Proof. Since we can relabel the constants later, we assume |(| ě expp9#�q and #2p8&q ď �. Recalling the statement
of Proposition 3.2, let � “ &. (For � small enough, the assumption #2p8&q ď � and the choice � “ & together
guarantee that the condition � ď �{p2 log 2q from Proposition 3.2 is satis�ed.) It follows from Proposition 3.2 that
there exists �1 Ď r!s with |�1| “ !�, and Ω1 Ď ( with |Ω1| “ expp#�{!q, such that all pairs � ‰ � in Ω1 are
&-separated on � 9 for all 9 P �1. We can apply Proposition 3.2 again on (zΩ1, and so on, to extract disjoint subsets
Ω1 , . . . ,Ω< Ď (, up to the �rst < such that

ÿ

0ď<

|Ω0 | ě
|(|

2 .

�en for each 0 we will have |Ω0 | “ expp#�{!q, and all pairs � ‰ � in Ω0 will be &-separated on � 9 for all 9 P �0 ,
where �0 Ď r!s with |�0 | “ !�. Recalling the statement of Proposition 3.7, let log ? “ �1�{&, and de�ne

Ξ ”

"

� P ( :
p�, �q

#1{2 ě
�p!& log ?q1{2

60

*

, Ξ0 ” ΞXΩ0 .

By Markov’s inequality and Proposition 3.7, as long as �1{� ď ! ď #1{2{p�1 log ?q1{2, we have

ℙ

ˆ

1
<

ÿ

0ď<

1
"

|Ξ0 |

|Ω0 |
ď

1
2 ¨ p4?q!�

*

ě
1
2

˙

ď 4 exp
ˆ

´
!�2& log ?

60�

˙

.

On the complementary event we must have

|Ξ| ě
ÿ

0ď<

|Ξ0 | ě
<|Ω1|

2 ¨
1

2 ¨ p4?q!�
ě

|(|

8 ¨ p4?q!�
,

so we have shown that, for any ! satisfying �1{� ď ! ď #1{2{p�1 log ?q1{2, we have

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě
�p!& log ?q1{2

60

*
ˇ

ˇ

ˇ

ˇ

ă
1

8 ¨ p4?q!�

˙

ď 4 exp
ˆ

´
!�2& log ?

60�

˙

.

Recalling that log ? “ �1�{&, the above implies

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě
p�1!�q1{2�

60

*
ˇ

ˇ

ˇ

ˇ

ă
1
8 exp

ˆ

´
2�1!��

&

˙˙

ď 4 exp
ˆ

´
�1!�2

60

˙

.
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Making the change of variables B “ p�1!�q1{2{60 gives

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě Bp��q1{2
*
ˇ

ˇ

ˇ

ˇ

ă
1
8 exp

ˆ

´
p2 ¨ 602q�B2

&

˙˙

ď
4

expp60�B2q
.

and the conclusion follows by recalling that we took � “ &. Note that the bounds on B in the statement of the result
guarantee that ! satis�es the requirements �1{� ď ! ď #1{2{p�1 log ?q1{2. �

Proof of �eorem 1.3. Let & be a positive constant with #2p8&q ď �{9. It follows directly from Proposition 3.8 that

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě �

*
ˇ

ˇ

ˇ

ˇ

ă exp
ˆ

´
�2�B2

2&

˙˙

ď
4

exppB2&q
,

provided that B satis�es (with �2 a large absolute constant)

max
"

�2 ,
�`

p&�q1{2

*

ď B ď
1
�2

ˆ

#&3

�

˙1{4
.

�e claim follows by �xing & to satisfy #2p8&q “ �{9, and making the change of variables F “ �2�B2{p2&q. �

3.3. Intersection of cube and slab with general disorder. �e proof of �eorem 1.5 appears at the end of this
subsection. �e next two lemmas are motivated by the following considerations. In view of Proposition 3.2, suppose
we have a large subset Ω Ď t´1,`1u# such that all pairs � ‰ � in Ω are well-separated on the blocks � 9 for 9 P �‹.
By re-indexing, we may suppose without loss that �‹ “ r!szrℓ s for ℓ “ !p1´�q. For � P Ω, recall the process de�ned
by (1.3), and suppose we have |"ℓ p�q| ď B for B large. �en, in order to achieve the desired outcome "!p�q P r0, 1s,
the process ":p�q may need to traverse a distance at most 2B over the �nal !� blocks, : P rℓ ` 1, !s. �is suggests
that we consider the events

"

p6�: , ��: q

#1{2 ě
2B
!�

*

,

"

´
p6�: , ��: q

#1{2 ě
2B
!�

*

so that the process can traverse enough distance on each block. On the other hand, if ":´1p�q P r0, 1s, then we can
ensure ":p�q P r0, 1s by requiring one of the two events

"

0 ď
p6�: , ��: q

#1{2 ď
1 ´ 0

2

*

,

"

0 ď ´
p6�: , ��: q

#1{2 ď
1 ´ 0

2

*

.

�is leads to the statement of the following:

Lemma 3.9. Let " P p0, 1s be a constant. Let ( be any subset of t´1,`1u with |(| ě expp �q where � is a positive
constant. Let & be a positive constant with #2p&q ď �{2.

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 P

„

A&1{2

!1{2 , "

*
ˇ

ˇ

ˇ

ˇ

ď
1

expp2�1B2q

˙

ď
2

exppB2&{�1q
,

provided that the parameters satisfy the bounds

�1 ď A ď B ď min
"

!1{2"

p6�1q1{2
,
p �q1{2

�1

*

.

Proof. It follows directly from Proposition 2.6 that for �1 ď A ď B ď p �q1{2{�1 we have

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 ě
A&1{2

!1{2

*
ˇ

ˇ

ˇ

ˇ

ď
1

expp�1B2q

˙

ď
1

exppB2&{�1q
,

On the other hand, it following using Markov’s inequality and the gaussian tail bound that

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p6, �q

#1{2 ě "

*
ˇ

ˇ

ˇ

ˇ

ě
1

expp2�1B2q

˙

ď
expp2�1B2q

expp"2!{2q ď
1

expp�1B2q
,

where the last bound holds provided that B2 ď !"2{p6�1q. Combining these bounds gives the claim. �

�e following is a version of Lemma 3.9 for general disorder. It has a worse &-dependence and applies in a more
limited range of B, as a consequence of applying Proposition 3.8 in place of Proposition 2.6.
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Lemma 3.10. Let " P p0, 1s be a constant. Let ( be any subset of t´1,`1u with |(| ě expp �q where � is a small
positive constant. Let & be a positive constant with #2p8&q ď �{9. �en

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 P

„

Ap&�q1{2

!1{2 , "

*
ˇ

ˇ

ˇ

ˇ

ă exp
ˆ

´
�2�B2

&

˙˙

ď
5

exppB2&q
,

provided that the parameters satisfy the bounds

�2 ď A ď B ď min
"

p!&q1{2"

2p�2q1{2�
,

1
�2

ˆ

 &3

�

˙1{4*

.

Proof. It follows directly from Proposition 3.8 that for �2 ď A ď B ď p &3{�q1{4{�2 we have

ℙ

ˆ

1
|(|

ˇ

ˇ

ˇ

ˇ

"

� P ( :
p�, �q

#1{2 ě
Ap&�q1{2

!1{2

*
ˇ

ˇ

ˇ

ˇ

ă exp
ˆ

´
�2�B2

2&

˙˙

ď
4

exppB2&q
.

On the other hand, it following using Markov’s inequality and the subgaussian tail bound that

ℙ

ˆ

1
=

ˇ

ˇ

ˇ

ˇ

"

8 ď = : D8

!1{2 ě "

*
ˇ

ˇ

ˇ

ˇ

ě
1

expp�2�B2{&q

˙

ď
expp�2�B2{&q

expp"2!{p2�qq ď exp
ˆ

´
�2�B2

&

˙

,

where the last bound holds provided that B2 ď !"2&{p4�2�2q. Combining these bounds gives the claim. �

�e assumption of the next proposition is based on the result of Proposition 3.2:

Proposition 3.11. Let " ” mint1, p1 ´ 0q{2u. De�ne

'̄2 ”
Ā

�
”

maxt|0|, |1|, �1u
�

. (3.5)

As before, divide r#s into consecutive blocks �1 , . . . , �! of size  “ #{! each, such that ! satis�es

4�2�2 Ā

p"&q2
ď ! ď

p#&q1{3�

�2"2 . (3.6)

Now suppose Ω Ď t´1,`1u# with |Ω| ě expp2#�{!q, such that all pairs � ‰ � are &-separated on � 9 for all for all
9 P �‹ “ rℓ ` 1, !s, where ℓ “ !p1´ �q. �en we have the bound

ℙ

ˆ

1
|Ω|

ˇ

ˇ

ˇ

ˇ

"

� P Ω :
p�, �q

#1{2 P r0, 1s

*ˇ

ˇ

ˇ

ˇ

ď
1
4 exp

ˆ

´
8�2�Ā!

&

˙˙

ď exp
ˆ

´
!&2

2

˙

,

provided that � “ & ď �, and � is small enough.

Proof. We emphasize that all the randomness is in the #-dimensional random vector �. Let ℱ: be the �-algebra
generated by the vectors ��9 for 1 ď 9 ď :, so that ":p�q (as de�ned by (1.3)) is measurable with respect to ℱ: .
Recall ℓ “ p1´ �q!, and de�ne

Ωpℓq ”

"

� P Ω : dist
´

"ℓ p�q, r0, 1s
¯

ď !� ¨
'̄&1{2

!1{2 ¨ �1{2
*

.

Note that if � R Ωpℓq then, by the de�nition (3.5) of '̄, we have

|"ℓ p�q| ě !� ¨
'̄&1{2

!1{2 ¨ �1{2 ´maxt|0|, |1|u ě !� ¨
'̄&1{2

2!1{2 ¨ �
1{2 ,

where the last bound holds by using (3.5) together with the lower bound on ! from (3.6), along with the assumption
� “ & and the fact that � ě 1 (see Assumption 1.1). It follows using Markov’s inequality and the subgaussian tail
bound that

(I) ” ℙ
ˆ

|Ωpℓq|

|Ω|
ď

1
2

˙

ď ℙ

ˆ

1
|Ω|

ˇ

ˇ

ˇ

ˇ

"

� P Ω : |"ℓ p�q| ě !� ¨
'̄&1{2

2!1{2 ¨ �
1{2
*
ˇ

ˇ

ˇ

ˇ

ě
1
2

˙

ď 4 exp
ˆ

´
!'̄2�2&

8

˙

(3.5)
ď 4 exp

ˆ

´
!Ā�&

8

˙

ď
4

expp!&2q
,
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where the last inequality again uses � “ &, and the fact that Ā ě �1 (a large absolute constant) by the de�nition
(3.5). Next, for ℓ ` 1 ď : ď ! let us de�ne recursively the sets

Ωp:q ”

"

� P Ωp:´1q : dist
´

":p�q, r0, 1s
¯

ď p!´ :q ¨
'̄&1{2

!1{2 ¨ �1{2
*

.

For each ℓ ď : ď ! we further de�ne the following bipartition of Ωp:q:

Ωp:q,` ”

"

� P Ωp:q : ":p�q ě
0 ` 1

2

*

, Ωp:q,´ ” Ωp:qzΩp:q,` .

One of these subsets must be at least half the size ofΩp:q; without loss of generality we assume it isΩp:q,`. Assuming
|Ωp:q,`| ě expp �q, we can extract disjoint subsets -1 , . . . , -0 Ď Ω

p:q,` with |-0 | “ expp �q such that the union
of the -0 occupies more than half the mass of Ωp:q,`. De�ne

Ξp:q ”

"

� P Ωp:q,` :
p��:`1 , ��:`1q

#1{2 P

„

p&�q1{2'̄

!1{2 , "

*

.

It follows from the assumption that all pairs � ‰ � in Ω are &-separated on �:`1, so applying Lemma 3.10 gives

ℙ

ˆ

1
<

ÿ

0ď<

1
"

|-0 X Ξ
p:q|

|-0 |
ď exp

ˆ

´
�2�B2

&

˙*

ď
1
2

˙

ď
10

exppB2&q
, (3.7)

provided that the parameters satisfy the bounds

'̄ ď B ď Bmax ”
p!&q1{2"

2p�2q1{2�
ď B2 ”

1
�2

ˆ

 &3

�

˙1{4
. (3.8)

Note that in the restriction (3.6), the lower bound on ! guarantees that we in fact have Bmax ě '̄ above, while the
upper bound on ! guarantees Bmax ď B2. Note that -0 X Ξp:q Ď Ωp:`1q for all 0 ď <. It follows that, on the event
|Ωp:q| ě 2 expp �q, we have

ℙ

ˆ

|Ωp:`1q|

|Ωp:q|
ď

1
4 exp

ˆ

´
�2�B2

&

˙
ˇ

ˇ

ˇ

ˇ

ℱ:

˙

ď
10

exppB2&q
. (3.9)

To apply this bound, we de�ne the stopping time ℓ ď � ď ! by

� ” min
"

: ě ℓ : : “ !, or
|Ωp:q|

2 ă expp �q
*

. (3.10)

Applying (3.9) with B “ Bmax and ℓ ď : ă � gives, on the event |Ωpℓq| ě |Ω|{2, the bound

(II) ” ℙ
ˆ

min
ℓď:ă�

|Ωp:`1q|

|Ωp:q|
ď

1
4 exp

ˆ

´
�2�pBmaxq

2

&

˙
ˇ

ˇ

ˇ

ˇ

ℱℓ

˙

(3.9)
ď

!� ¨ 10
expppBmaxq2&q

“ 10� exp
ˆ

log !´ !&"2

4�2�2

˙

ď 10� exp
ˆ

´
!&"2

8�2�2

˙

,

where the last bound again uses the lower bound on ! from (3.6). We then de�ne the truncated random variables

+:`1 ” min
"

|Ωp:q|

|Ωp:`1q|
, 4 exp

ˆ

�2�pBmaxq
2

&

˙*

.

It follows by simplifying (3.9) that, on the event |Ωp:q| ě 2 expp �q, we have for all B ě '̄ that

ℙ

ˆ

+:`1 ě exp
ˆ

2�2�B2

&

˙ ˇ

ˇ

ˇ

ˇ

ℱ:

˙

ď
10

exppB2&q
.

(More precisely, for '̄ ď B ď Bmax, the above bound holds due to (3.9). For B ě Bmax, the bound holds trivially,
because the truncation in the de�nition of +:`1 implies that the le�-hand side above is zero.) Making the change of
variables C “ exppB2&{2q gives, for all C ě Cmin “ expp'̄2&{2q,

ℙ

ˆ

p+:`1q
&2{p4�2�q ě C

ˇ

ˇ

ˇ

ˇ

ℱ:

˙

ď
10
C2
.
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Recall from the de�nition (3.5), and the assumption � “ &, that '̄2& “ Ā ě �1 (a large absolute constant). Integrating
the above gives the moment bound

�

„

p+:`1q
&2{p4�2�q

ˇ

ˇ

ˇ

ˇ

ℱ:



ď Cmin `

ż 8

Cmin

10
C2
3C “ Cmin `

10
Cmin

ď expp'̄2&q , (3.11)

where the last inequality uses that '̄2& “ Ā is large by (3.5). Consequently, applying Markov’s inequality we obtain,
on the event |Ωpℓq| ě |Ω|{2, for any F ě 0,

ℙ

ˆ

ź

ℓă:ď�

+: ě exp
ˆ

4�2�F2

&

˙ ˇ

ˇ

ˇ

ˇ

ℱℓ

˙

(3.11)
ď

expp!� ¨ '̄2&q

exppF2&q
.

Se�ing F2 “ 2!'̄2� then gives the bound

(III) ” ℙ
ˆ

ź

ℓă:ď�

+: ě exp
ˆ

8�2�!'̄2�

&

˙
ˇ

ˇ

ˇ

ˇ

ℱℓ

˙

ď
1

expp!'̄2�&q

(3.5)
“

1
expp!Ā&q .

Finally, let us note that on the event

K “

"

|Ωpℓq|

|Ω|
ě

1
2 , min

ℓď:ă�

|Ωp:`1q|

|Ωp:q|
ě

1
4 exp

ˆ

´
�2�pBmaxq

2

&

˙

,
ź

ℓă:ď�

+: ď exp
ˆ

8�2�!'̄2�

&

˙*

,

we must have |Ωp:`1q|{|Ωp:q| “ 1{+:`1 for all ℓ ď : ă �. Consequently, recalling  “ #{!, we have

|Ωp�q|

2 “
|Ω|

2 ¨
|Ωpℓq|

|Ω|
¨
ź

ℓă:ď�

1
+:
ě

1
4 exp

ˆ

2 � ´
8�2�!'̄2�

&

˙

ě expp �q ,

where the last inequality uses the upper bound on ! from (3.6). From the de�nition (3.10) of �, this implies � “ !.
Combining the above bounds gives

(IV) ” ℙ
ˆ

|Ωp!q|

|Ω|
ď

1
4 exp

ˆ

´
8�2�!'̄2�

&

˙˙

ď 1´ ℙpKq ď (I)` (II)` (III)

ď
4

expp!&2q
` 10� exp

ˆ

´
!&"2

8�2�2

˙

`
1

expp!Ā&q ď exp
ˆ

´
!&2

2

˙

,

where the last bound holds for & small enough (which is guaranteed by taking � small enough). Finally, recall that
� P Ωp!q implies "!p�q “ p�, �q{#1{2 P r0, 1s as desired, so this concludes the proof. �

Proof of �eorem 1.5. Since we can adjust the constants later, we can assume |(| ě expp9#�q. Recalling the state-
ment of Proposition 3.2, let &, � be positive constants with #2p8&q “ � and � “ &. Assume ! satis�es (3.6). It follows
from Proposition 3.2 that there exists �1 Ď r!s with |�1| “ !�, and Ω1 Ď ( with |Ω1| “ expp#�{!q, such that all
pairs � ‰ � in Ω1 are &-separated on � 9 for all 9 P �1. We can apply Proposition 3.2 again on (zΩ1, and so on, to
extract disjoint subsets Ω1 , . . . ,Ω< Ď (, up to the �rst < such that

ÿ

0ď<

|Ω0 | ě
|(|

2 .

�en for each 0 we will have |Ω0 | “ expp#�{!q, and all pairs � ‰ � in Ω0 will be &-separated on � 9 for all 9 P �0 ,
where �0 Ď r!s with |�0 | “ !�. Let

Ξ ”

"

� P ( :
p6, �q

#1{2 P r0, 1s

*

, Ξ0 ” ΞXΩ0 .

By Markov’s inequality and Proposition 3.11,

ℙ

ˆ

1
<

ÿ

0ď<

1
"

|Ξ0 |

|Ω0 |
ď

1
4 exp

ˆ

´
8�2�Ā!

&

˙*

ě
1
2

˙

ď exp
ˆ

´
!&2

2

˙

.
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On the complementary event we must have

|Ξ| ě
ÿ

0ď<

|Ξ0 | ě
<|Ω1|

2 ¨
1
4 exp

ˆ

´
8�2�Ā!

&

˙

ě
|(|

16 exp
ˆ

´
8�2�Ā!

&

˙

,

so we have shown that, for any ! satisfying (3.6), we have

ℙ

ˆ

|Ξ|

|(|
ď

1
16 exp

ˆ

´
8�2 Ā�!

&

˙˙

ď exp
ˆ

´
!&2

2

˙

.

�e conclusion follows by recalling that we chose � and & depending on �. �

Proof of �eorem 1.4. �is follows essentially by the proof of �eorem 1.5, the main di�erence being that in the proof
of Proposition 3.11 we can apply Lemma 3.9 in place of Lemma 3.10. �us in place of (3.7) we will have

ℙ

ˆ

1
<

ÿ

0ď<

1
"

|-0 X Ξ
p:q|

|-0 |
ď

1
expp2�1B2q

*

ď
1
2

˙

ď
4

exppB2&{�1q
,

where instead of (3.8) we will require (from the conditions of Lemma 3.9)

'̄ ď B ď Bmax ”
!1{2"

p6�1q1{2
ď B2 ”

p �q1{2

�1
.

Since  ! “ # , this explains why we ultimately require F ď #1{2{�� , in contrast with �eorem 1.5 which requires
F ď #1{3{�� . �

4. Universality on average in perceptron models

Most of this section is devoted to the proof of the following theorem, which says that the expectation of the
perceptron free energy (with a suitable truncation) is universal with respect to the disorder. In Section 5 we will
combine this with a concentration result (Proposition 5.4) to yield the proof of �eorem 1.11.

�eorem 4.1. Consider a perceptron model (1.2) where * is t0, 1u-valued and piecewise continuous. Let /p6q be the
partition function with standard gaussian disorder, and let /p�q be the partition function with general disorder, assuming
the p�0q8 are i.i.d. random variables with zero mean, unit variance, and �nite third moment. �en

1
#

ˇ

ˇ

ˇ� log#� /p6q ´� log#� /p�q
ˇ

ˇ

ˇ “ >#p1q .

for any small positive constant �.

�is section is organized as follows:
‚ In §4.1 we give some multivariate central limit theorem estimates. �e main estimate is Corollary 4.4.
‚ In §4.2 we use Corollary 4.4 to prove a version (Proposition 4.5) of �eorem 4.1 for a “positive-temperature”

variant of the model.
‚ In §4.3 we show how to transfer the result of Proposition 4.5 from positive temperature to zero temperature,

leading to the proof of �eorem 4.1.

4.1. Central limit theorem estimates. In this subsection we state and prove a consequence of the multivariate
central limit theorem, Corollary 4.4 below, which was already used in the proof of Proposition 3.7. Corollary 4.4 will
also be used below in the proof of Proposition 4.5, which is a preliminary universality result. We begin with a central
limit theorem for su�ciently smooth functions, which is similar to [Mos10, �m. 4.1]:

Lemma 4.2. Let 6 be a standard gaussian vector in ℝ# . Let � be a random vector in ℝ# with i.i.d. coordinates �8 ,
with mean zero, unit variance, and �nite third moment. If � : ℝ? Ñ ℝ is a bounded function with derivatives up to
third order bounded uniformly by a �nite constant �� , then we have

ˇ

ˇ

ˇ

ˇ

�

„

�

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ6

#1{2

˙
ˇ

ˇ

ˇ

ˇ

ď
?��

#1{2

"

�p|�1|
3q `�p|61|

3q

*

for any matrix Σ P t´1,`1u?ˆ# .
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Proof. Write �pℓq P t´1,`1u# for the ℓ -th row of Σ. Let Σ9 ,˝ denote the ? ˆ # matrix that results from zeroing
the 9-th row of Σ. We interpolate between 6 and � by de�ning / 9 ” p�1 , . . . , �9 , 69`1 , . . . , 6#q. Let / 9 ,˝ denote the
vector that results from zeroing the 9-th entry of / 9 . We then de�ne the ?-dimensional vectors

�9 ”
Σ/ 9

#1{2 “

ˆ 9
ÿ

8“1

�8p�pℓqq8
#1{2 `

#
ÿ

8“9`1

68p�pℓqq8

#1{2

˙

ℓď?

,

�9 ,˝ ”
Σ9 ,˝/ 9 ,˝

#1{2 “

ˆ 9´1
ÿ

8“1

�8p�pℓqq8
#1{2 `

#
ÿ

8“9`1

68p�pℓqq8

#1{2

˙

ℓď?

.

�en the quantity of interest can be bounded as
ˇ

ˇ

ˇ

ˇ

�

”

�p�#q ´ �p�0q
ı

ˇ

ˇ

ˇ

ˇ

ď
ÿ

9ď#

ˇ

ˇ

ˇ

ˇ

�

”

�p�9q ´ �p�9´1q
ı

ˇ

ˇ

ˇ

ˇ

,

so it su�ces to bound |�r�p�9q ´ �p�9´1qs| for each 1 ď 9 ď # . To this end we let

�9 ,ℓ ” �9 ,˝ `
1

#1{2

ˆ

�9p�
p1qq9 , . . . , �9p�

pℓqq9 , 69p�
pℓ`1qq9 , . . . , 69p�

p?qq9

˙

,

�9 ,ℓ ,˝ ” �9 ,˝ `
1

#1{2

ˆ

�9p�
p1qq9 , . . . , �9p�

pℓ´1qq9 , 0, 69p�pℓ`1qq9 , . . . , 69p�
p?qq9

˙

,

and note that �p�9´1q “ �p�9 ,0q while �p�9q “ �p�9 ,?q. It follows that
ˇ

ˇ

ˇ

ˇ

�

”

�p�9q ´ �p�9´1q
ı

ˇ

ˇ

ˇ

ˇ

ď

?
ÿ

ℓ“1

ˇ

ˇ

ˇ

ˇ

�

”

�p�9 ,ℓ q ´ �p�9 ,ℓ´1q
ı

ˇ

ˇ

ˇ

ˇ

.

We then apply the assumption on � to Taylor expand

�p�9 ,ℓ q “ �p�9 ,ℓ ,˝q ` Bℓ�p�9 ,ℓ ,˝q
�9p�pℓqq9

#1{2 `
pBℓ q

2�p�9 ,ℓ ,˝q

2
p�9q2

#
`

'�

#3{2 ,

�p�9 ,ℓ´1q “ �p�9 ,ℓ ,˝q ` Bℓ�p�9 ,ℓ ,˝q
69p�pℓqq9

#1{2 `
pBℓ q

2�p�9 ,ℓ ,˝q

2
p69q

2

#
`

'6

#3{2 ,

where �|'�| ď ���p|�9 |3q and �|'6 | ď ���p|69 |
3q. Matching the �rst and second moments of �9 and 69 gives

ˇ

ˇ

ˇ

ˇ

�

”

�p�9 ,ℓ q ´ �p�9 ,ℓ´1q
ı

ˇ

ˇ

ˇ

ˇ

ď
��

#3{2

"

�

´

|�9 |
3 ` |69 |

3
¯

*

.

Summing over 1 ď ℓ ď ? and 1 ď 9 ď # gives the desired overall bound on |�r�p�#q ´ �p�0qs|. �

Lemma 4.3. Let 6 be a standard gaussian vector in ℝ# . Let � be a random vector in ℝ# with i.i.d. coordinates �8 ,
with mean zero, unit variance, and �nite third moment. If � : ℝ? Ñ ℝ is a bounded continuous function, then

lim
#Ñ8

max
"
ˇ

ˇ

ˇ

ˇ

�

„

�

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ6

#1{2

˙
ˇ

ˇ

ˇ

ˇ

: Σ P t´1,`1u?ˆ#
*

“ 0 .

Proof. For � ą 0 de�ne the smoothed function ��pGq ” ��pG ` �zq where z is a standard gaussian vector in ℝ? .
For any � ą 0 the function �� satis�es the conditions of Lemma 4.2, so we have

(I) ” max
"
ˇ

ˇ

ˇ

ˇ

�

„

��

ˆ

Σ�

#1{2

˙

´ ��

ˆ

Σ6

#1{2

˙
ˇ

ˇ

ˇ

ˇ

: Σ P t´1,`1u#
*

ď
?��,�

#1{2

"

�

´

|�9 |
3 ` |69 |

3
¯

*

. (4.1)

Since � is bounded and continuous, the function �� converges locally uniformly to � as � Ó 0, so we have

(II) ” max
"

�

„
ˇ

ˇ

ˇ

ˇ

��

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ�

#1{2

˙
ˇ

ˇ

ˇ

ˇ

;
}Σ�}8
#1{2 ď '



: Σ P t´1,`1u#
*

ď sup
"

|��pGq ´ �pGq| : }G}8 ď '

*

�Ó0
ÝÑ 0
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for any �nite '. For the complementary event }Σ�}8 ą ', we can use Chebychev’s inequality to bound

(III) ” max
"

�

„
ˇ

ˇ

ˇ

ˇ

��

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ�

#1{2

˙
ˇ

ˇ

ˇ

ˇ

;
}Σ�}8
#1{2 ą '



: Σ P t´1,`1u#
*

ď 2}�}8ℙ
ˆ

}Σ�}8
#1{2 ą '

˙

ď
2?}�}8
'2 ,

which can be made arbitrarily small by choosing ' “ 'p?q large. �e claim follows by combining the estimates for
(I), (II), and (III). �

Corollary 4.4. Let 6 be a standard gaussian vector in ℝ# . Let � be a random vector in ℝ# with i.i.d. coordinates �8 ,
with mean zero, unit variance, and �nite third moment. If 5 : ℝÑ ℝ is a bounded piecewise continuous function, and
we de�ne � : ℝ? Ñ ℝ by �pG1 , . . . , G?q “ 5 pG1q ¨ ¨ ¨ 5 pG?q, then

lim
#Ñ8

max
"
ˇ

ˇ

ˇ

ˇ

�

„

�

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ6

#1{2

˙ˇ

ˇ

ˇ

ˇ

: Σ P t´1,`1u?ˆ#
*

“ 0 .

Proof. As in the proof of Lemma 4.3, consider the smoothed function

��pGq “ ��pG ` �zq “ �

ˆ ?
ź

ℓ“1
5 pGℓ ` �Iℓ q

˙

“

?
ź

ℓ“1
5�pGℓ q .

We then have the approximation result of Lemma 4.2, which gives (as in (4.1))

max
"
ˇ

ˇ

ˇ

ˇ

�

„

��

ˆ

Σ�

#1{2

˙

´ ��

ˆ

Σ6

#1{2

˙
ˇ

ˇ

ˇ

ˇ

: Σ P t´1,`1u#
*

ď
?��,�

#1{2

"

�

´

|�9 |
3 ` |69 |

3
¯

*

. (4.2)

We next bound

�

„
ˇ

ˇ

ˇ

ˇ

��

ˆ

Σ�

#1{2

˙

´ �

ˆ

Σ�

#1{2

˙
ˇ

ˇ

ˇ

ˇ



ď p} 5 }8q
?´1

?
ÿ

ℓ“1
�

„
ˇ

ˇ

ˇ

ˇ

5�

ˆ

p�, �pℓqq

#1{2

˙

´ 5

ˆ

p�, �pℓqq

#1{2

˙
ˇ

ˇ

ˇ

ˇ



, (4.3)

and likewise with 6 in place of �. Recall the assumption that 5 is piecewise continuous, so its set of discontinuities
� 5 is �nite. �erefore, given any � ą 0, we can construct a continuous function Υ : ℝÑ r0, 1s such that Υ “ 1 on
an open set $ 5 Ě � 5 withℝz$ 5 compact, but �Υp61q ď � if 61 is a standard gaussian random variable. Applying
Lemma 4.3 gives, for any �xed choice of $ 5 and Υ,

Δ# ” max
"
ˇ

ˇ

ˇ

ˇ

�

„

Υ

ˆ

p�, �q

#1{2

˙

´ Υ

ˆ

p6, �q

#1{2

˙
ˇ

ˇ

ˇ

ˇ

: � P t´1,`1u#
*

#Ñ8
ÝÑ 0 .

For any �xed � P t´1,`1u# , the scalar product p6, �q{#1{2 is a standard gaussian random variable. It follows that

(I) ” max
"

�

„
ˇ

ˇ

ˇ

ˇ

5�

ˆ

p�, �pℓqq

#1{2

˙

´ 5

ˆ

p�, �pℓqq

#1{2

˙
ˇ

ˇ

ˇ

ˇ

;
p�, �pℓqq

#1{2 P $ 5



: �pℓq P t´1,`1u#
*

ď 2} 5 }8�
„

Υ

ˆ

p�, �q

#1{2

˙

ď 2} 5 }8
"

Δ# `�

„

Υ

ˆ

p6, �q

#1{2

˙*

ď 2} 5 }8
"

Δ# ` �

*

We have 5� converging to 5 uniformly on the compact set ℝz$ 5 , so

(II) ” max
"

�

„
ˇ

ˇ

ˇ

ˇ

5�

ˆ

p�, �pℓqq

#1{2

˙

´ 5

ˆ

p�, �pℓqq

#1{2

˙
ˇ

ˇ

ˇ

ˇ

;
p�, �pℓqq

#1{2 P ℝz$ 5



: �pℓq P t´1,`1u#
*

�Ó0
ÝÑ 0 .

Of course, the estimates for (I) and (II) also hold with 6 in place of �. �e claim follows by substituting those estimates
into (4.3), and combining with (4.2). �
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4.2. Universality at positive temperature. In this subsection we establish universality for a perceptron model at
“positive temperature,” more precisely, of the form (1.2) where log* : ℝ Ñ p´8, 0s is uniformly bounded. Note
that the Azuma–Hoe�ding martingale inequality implies in this case that #´1 log/p* ; �q is exponentially well
concentrated around its mean, although we will not ultimately use this fact. �e following result shows that the
mean value is universal with respect to the disorder model:

Proposition 4.5. For the “positive-temperature” perceptron model (1.2) where log* : ℝ Ñ p´8, 0s is uniformly
bounded and piecewise continuous, let/p* ; 6q be the partition function with standard gaussian disorder, and let/p* ; �q
be the partition function with general disorder, assuming the p�0q8 are i.i.d. random variables with zero mean, unit
variance, and �nite third moment. �en

lim
#Ñ8

1
#

ˇ

ˇ

ˇ� log/p* ; 6q ´� log/p* ; �q
ˇ

ˇ

ˇ “ 0 .

Proof. It follows from Corollary 4.4 that, uniformly over �p1q , . . . , �pℓq P t´1,`1u# , we have

Δ9p�
p1q , . . . , �pℓqq ” �

„ ℓ
ź

:“1
*

ˆ

p� 9 , �p:qq

#1{2

˙

´

ℓ
ź

:“1
*

ˆ

p6 9 , �p:qq

#1{2

˙

#Ñ8
ÝÑ 0 . (4.4)

We interpolate between /p* ; 6q and /p* ; �q by de�ning

/ 9 ”
ÿ

�Pt´1,`1u#

9
ź

8“1
*

ˆ

p�8 , �q

#1{2

˙ "
ź

8“9`1
*

ˆ

p6 8 , �q

#1{2

˙*

,

/ 9 ,˝ ”
ÿ

�Pt´1,`1u#

9´1
ź

8“1
*

ˆ

p�8 , �q

#1{2

˙ "
ź

8“9`1
*

ˆ

p6 8 , �q

#1{2

˙*

.

�en /0 “ /p* ; 6q and /" “ /p* ; �q, so

log/p* ; �q ´ log/p* ; 6q “
ÿ

9ď"

´

log/ 9 ´ log/ 9´1

¯

”
ÿ

9ď"

.9 .

Writing x¨y9 ,˝ for expectation with respect to the Gibbs measure �9 ,˝ corresponding to / 9 ,˝, we have

.9 “ log
/ 9

/ 9 ,˝
´ log

/ 9´1

/ 9 ,˝
“ log

B

*

ˆ

p� 9 , �q

#1{2

˙F

9 ,˝

´ log
B

*

ˆ

p6 9 , �q

#1{2

˙F

9 ,˝

Given any � ă 8 and � ą 0 we can choose ? “ ?p�, �q ă 8 such that

sup
"
ˇ

ˇ

ˇ

ˇ

logp1` Gq ´
ÿ

ℓď?

p´1qℓ`1

ℓ
Gℓ
ˇ

ˇ

ˇ

ˇ

: 1
expp�q ď 1` G ď 0

*

ď �

It follows that |�.ℓ ´ H̄ℓ | ď � where

H̄ 9 ”
ÿ

ℓď?

p´1qℓ`1

ℓ
�

„ˆB

*

ˆ

p� 9 , �q

#1{2

˙F

9 ,˝

´ 1
˙ℓ

´

ˆB

*

ˆ

p6 9 , �q

#1{2

˙F

9 ,˝

´ 1
˙ℓ

.

Let 2?,ℓ denote the coe�cients such that
ÿ

ℓď?

p´1qℓ`1

ℓ
pG ´ 1qℓ “

ÿ

ℓď?

2?,ℓ G
ℓ .

Recalling that �9 ,˝ is the Gibbs measure corresponding to / 9 ,˝, we can rewrite

H̄ 9 “
ÿ

ℓď?

2?,ℓ�

„ˆB

*

ˆ

p� 9 , �q

#1{2

˙F

9 ,˝

˙ℓ

´

ˆB

*

ˆ

p6 9 , �q

#1{2

˙F

9 ,˝

˙ℓ

“
ÿ

ℓď?

2?,ℓ
ÿ

�p1q ,...,�pℓq

Δ9p�
p1q , . . . , �pℓqq

ℓ
ź

:“1
�9 ,˝p�

p:qq ,
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which by (4.4) converges to zero. �e claim follows by recalling that |�.ℓ ´ H̄ℓ | ď �, and � ą 0 was arbitrary. �

4.3. Positive temperature to zero temperature. We �rst review a simple inequality (4.5) which was previously
proved by [Tal11, Lem. 8.3.7]. If G ě H ě 0, then for any Γ ă 0 we have

logΓ H ´ logΓ G “

$

’

’

&

’

’

%

log H ´ log G if G ě H ě exppΓq,
Γ´ log G if G ě exppΓq ě H,
0 if exppΓq ě G ě H.

If we further assume 1 ě G ě H ě 0, then the above quantities are all in rΓ, 0s. It follows that

0 ě logΓ H ´ logΓ G ě max
"

log
H

G
, Γ

*

“ logΓ
H

G
. (4.5)

We will use this inequality in the proof of the next result.

Proposition 4.6. Consider a perceptron model (1.2) where * is t0, 1u-valued and piecewise continuous. Let /p�q
denote the partition function with general disorder, assuming the p�0q8 are i.i.d. random variables with zero mean, unit
variance, and �nite third moment. Let D�pGq ” maxtlog*pGq,´�u. �en for any positive constant � we have

1
#
�

ˇ

ˇ

ˇ log#� /pD�; �q ´ log#� /p�q
ˇ

ˇ

ˇ ď >#p1q ` >�p1q

in the limit # Ñ8 followed by �Ñ8.

Proof. We now interpolate between /p�q and /pD�; �q by de�ning

/ 9 ”
ÿ

�Pt´1,`1u#
exp

" 9
ÿ

8“1
D�

ˆ

p�8 , �q

#1{2

˙*

¨

"
ź

8“9`1
*

ˆ

p6 8 , �q

#1{2

˙

,

/ 9 ,˝ ”
ÿ

�Pt´1,`1u#
exp

" 9´1
ÿ

8“1
D�

ˆ

p�8 , �q

#1{2

˙*

¨

"
ź

8“9`1
*

ˆ

p6 8 , �q

#1{2

˙

.

�en /0 “ /p�q ď /1 ď . . . ď /" “ /pD�; �q, so
1
#

ˇ

ˇ

ˇ log#� /pD�; �q ´ log#� /p�q
ˇ

ˇ

ˇ “
1
#

ÿ

9ď"

´

log#� / 9 ´ log#� / 9´1

¯

”
1
#

ÿ

9ď"

.9 .

Let K 9 ,˝ denote the event that / 9 ,˝ ě expp#�q. Note that / 9 ,˝ ě maxt/ 9 , / 9´1u, so .9 “ 0 on the complement of
K 9 ,˝. It follows that .9 “ 9H 9 ´ :H 9 where

9H 9 ” 1tK 9 ,˝u
´

log#� / 9 ´ log#� / 9 ,˝

¯

“ 1tK 9 ,˝u log max
"

/ 9

/ 9 ,˝
,

expp#�q

/ 9 ,˝

*

,

:H 9 ” 1tK 9 ,˝u
´

log#� / 9´1 ´ log#� / 9 ,˝

¯

“ 1tK 9 ,˝u log max
"

/ 9´1

/ 9 ,˝
,

expp#�q

/ 9 ,˝

*

.

Writing x¨y9 ,˝ for expectation with respect to the Gibbs measure corresponding to / 9 ,˝, we have

:G 9 ”
/ 9´1

/ 9 ,˝
“

B

*

ˆ

p� 9 , �q

#1{2

˙F

9 ,˝

,

9G 9 ”
/ 9

/ 9 ,˝
“

B

exp D�
ˆ

p� 9 , �q

#1{2

˙F

9 ,˝

“ 4´� ` p1´ 4´�q:G 9 ,

and clearly 0 ď :G 9 ď 9G 9 ď 1. Moreover we can bound

1 ď
9G 9

:G 9
“
4´� ` p1´ 4´�q:G 9

:G 9
“ 1`

4´�p1´ :G 9q

:G 9
ď 1` 1

4� :G 9
. (4.6)
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Combining with [Tal11, Lem. 8.3.7] (i.e., the bound (4.5) above) gives

0 ě ´.9 “ :H 9 ´ 9H 9
(4.5)
ě 1tK 9 ,˝u log max

"

:G 9

9G 9
,

expp#�q

/ 9 ,˝

*

(4.6)
ě 1tK 9 ,˝umax

"

´ log
ˆ

1` 1
4� :G 9

˙

,´# log 2
*

. (4.7)

Note logp1 ` Gq ď G for all G ě 0, and logp1 ` Gq ď logp2Gq for G ě 1. Writing Fmax ” #1{3{�� , we herea�er
assume � ě �� , and decompose

(I) ” �
„

.9 ; :G 9 ď
1

exppFmaxq



(4.7)
ď # log 2 ¨ ℙ

ˆ

:G 9 ď
1

exppFmaxq
;K 9 ,˝

˙

,

(II) ” �
„

.9 ;
1

exppFmaxq
ď :G 9 ď

1
4�



(4.7)
ď �

„

1tK 9 ,˝u log
ˆ

2
4� :G 9

˙

; 1
exppFmaxq

ď :G 9 ď
1
4�



,

(III) ” �
„

.9 ;
1
4�
ď :G 9 ď

1
expp��q



(4.7)
ď �

„1tK 9 ,˝u
4� :G 9

; 1
4�
ď :G 9 ď

1
expp��q



.

If * ” 0 there is nothing to prove, so we may assume *pGq ě 1tG P r0, 1su for some ´8 ă 0 ă 1 ă 8. We can
then apply �eorem 1.5 to bound the above quantities:

(I) ď # log 2 ¨ exp
ˆ

´
Fmax
��

˙

,

(III) ď 1
4�

ż expp�q

expp��q

3D

D1{��
ď

1
4�
p4�q1´1{��

1´ 1{��
ď

2
4�{��

.

Lastly, making a change of variables gives

ℙ

ˆ

log
ˆ

2
4� :G 9

˙

ě C;K 9 ,˝
˙

“ ℙ

ˆ

1
:G 9
ě
4�`C

2 ;K 9 ,˝
˙

ď

ˆ

2
4�`C

˙1{��

,

and integrating this tail bound over C ě 0 gives

(II) ď
ż 8

0

ˆ

2
4�`C

˙1{��

3C ď
2��

4�{��
.

Combining the bounds for (I), (II), and (III) gives 0 ď �.9 ď >�p1q ` >#p1q, and the claim follows. �

Proof of �eorem 4.1. Follows by combining Proposition 4.5 with Proposition 4.6. �

�e concentration of the free energy is addressed in the next section; see the proof of �eorem 1.7.

5. Concentration, sharp threshold seqence, and universality

In this section we prove �eorems 1.7–1.11. Recall the abstract model (1.4). Since we mainly consider how the
system behaves as " varies, we will mostly drop # from the notation, e.g. we will abbreviate /" ” /",# . Let ℱ0

be the �-�eld generated by the random functionsΘ1 , . . . ,Θ0 . �e following is a stronger version of Assumption 1.6,
which accommodates the perceptron models considered in this paper:

Assumption 5.1. For the model (1.4), let /"`1 be the partition function that results from adding one more factor
to /" . Suppose for all � ą 0 small enough that on the event /" ě expp#�q we have

ℙ

ˆ

/"`1
/"

ď
1

exppFq

ˇ

ˇ

ˇ

ˇ

ℱ"

˙

ď exp
ˆ

´
F

��

˙

for all �� ď F ď Fmax, where �� is a �nite constant that depends only on the model and on �, and Fmax can depend
on the model as well as on � and # .

In the case of the perceptron model, Assumption 5.1 holds with the following parameters:
(a) For the half-space perceptron (1.1) with gaussian disorder, �eorem 1.2 gives Fmax “ #{�� .
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(b) For the half-space perceptron (1.1) with general disorder, �eorem 1.3 gives Fmax “ #1{2{�� .
(c) For the *-perceptron (1.2) with gaussian disorder, �eorem 1.4 gives Fmax “ #1{2{�� .
(d) For the *-perceptron (1.2) with general disorder, �eorem 1.5 gives Fmax “ #1{3{�� .
(For both (c) and (d) above, we assume * is t0, 1u-valued with *pGq ě 1tG P r0, 1su for some ´8 ă 0 ă 1 ă 8.)
We also will show that the weaker Assumption 1.6 su�ces for our main claims. �is section is organized as follows:

‚ In §5.1 we show that Assumption 1.6 or 5.1 implies that the partition function of the model (1.4) is unlikely
to decrease very sharply a�er the addition of a small linear number of constraints.

‚ In §5.2 we show that Assumption 1.6 or 5.1 implies concentration of the truncated free energy of the model
(1.4), leading to the proof of �eorem 1.7.

‚ In §5.3 we combine the results obtained thus far to give the proof of �eorem 1.9 (on the sharp threshold
sequence) and �nally the proof of �eorem 1.11 (on universality).

5.1. Slow decrease of partition function with new constraints. In this subsection we prove Proposition 5.2,
which says that under Assumption 5.1, the partition function of the model (1.4) is unlikely to decrease very sharply
a�er adding a small linear number of constraints. We also prove Proposition 5.3 which gives a similar but weaker
estimate under Assumption 1.6.

Proposition 5.2. For the model (1.4), under Assumption 5.1, for all � ą 0 there exists �� ą 0 such that for all
0 ď � ď �� we have

ℙ

ˆ

/"`#� ă expp#�q

ˇ

ˇ

ˇ

ˇ

/" ě expp2#�q

˙

ď #� exp
ˆ

´
Fmax
��

˙

` exp
ˆ

´
#�
4��

˙

.

In particular, if Fmax grows faster than log# , then this is >#p1q.

Proof. For 0 ď ℓ ď #� let us abbreviate -ℓ “ /"`ℓ and �ℓ ” ℱ"`ℓ . It follows by Assumption 5.1 that on the
event -ℓ ě expp#�q, we have the bound

ℙ

ˆ

-ℓ`1
-ℓ

ď
1

exppFq

ˇ

ˇ

ˇ

ˇ

�ℓ

˙

ď exp
ˆ

´
F

��

˙

, (5.1)

provided �� ď F ď Fmax. To apply this bound, we de�ne a stopping time 0 ď � ď #� by

� ” min
"

ℓ ě 0 : ℓ “ #� or -ℓ ă expp#�q

*

. (5.2)

Applying (5.1) with F “ Fmax gives, on the event -0 ě expp2#�q,

(I) ” ℙ
ˆ

min
ℓă�

-ℓ`1
-ℓ

ď
1

exppFmaxq

ˇ

ˇ

ˇ

ˇ

�0

˙

ď #� exp
ˆ

´
Fmax
��

˙

. (5.3)

Next de�ne the truncated random variables

+ℓ`1 ” min
"

-ℓ

-ℓ`1
, exppFmaxq

*

“ min
"

/"`ℓ

/"`ℓ`1
, exppFmaxq

*

.

On the event -ℓ ě expp#�q, (5.1) implies the tail bound

ℙ

ˆ

p+ℓ`1q
1{p2��q ě H

ˇ

ˇ

ˇ

ˇ

�ℓ

˙

ď
1
H2 ,

for all H ě expp��{2q. Integrating over H gives the moment bound

�

„

p+ℓ`1q
1{p2��q

ˇ

ˇ

ˇ

ˇ

�ℓ



ď exp
ˆ

��

2

˙

`

ż 8

expp��{2q

3H

H2 ď expp��q . (5.4)

Applying Markov’s inequality gives, on the event /" “ -0 ě expp2#�q,

(II) ” ℙ
ˆ

ź

ℓď�

+ℓ ě expp#�q

ˇ

ˇ

ˇ

ˇ

�0

˙

ď
expp#���q

expp#�{p2��qq
ď exp

ˆ

´
#�
4��

˙

,
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where the last bound holds by taking � ď �� small enough. �us, on the event /" “ -0 ě expp2#�q, we have

ℙ

ˆ

-� ă expp#�q

ˇ

ˇ

ˇ

ˇ

�0

˙

ď (I)` (II) ď #� exp
ˆ

´
Fmax
��

˙

` exp
ˆ

´
#�
4��

˙

.

On the complementary event -� ě expp#�q, it follows from the de�nition (5.2) that we must have � “ #�, which
concludes the proof. �

Proposition 5.3. For the model (1.4), under Assumption 1.6, for all � ą 0 there exists �� ą 0 such that for all
0 ď � ď �� we have

ℙ

ˆ

/"`#� ă expp#�q

ˇ

ˇ

ˇ

ˇ

/" ě expp2#�q

˙

ď #� 5�pFmaxq `
4���,2

#�2 .

In particular, if 5�pFmaxq tends to zero superpolynomially in # , then this is >#p1q.

Proof. Following the �rst few steps of the proof of Proposition 5.2, with -ℓ ” /"`ℓ , �ℓ ” ℱ"`ℓ , and the same
stopping time � as de�ned by (5.2), yields that on the event -0 ě expp2#�q we have

(I) ” ℙ
ˆ

min
ℓă�

-ℓ`1
-ℓ

ď
1

exppFmaxq

ˇ

ˇ

ˇ

ˇ

�0

˙

ď #� 5�pFmaxq .

(instead of (5.3)). Next de�ne the truncated random variables

+ℓ`1 ” min
"

-ℓ

-ℓ`1
, exppFmaxq

*

,

and note that +ℓ`1 ě 1. Assumption 1.6 implies that on the event -ℓ ě expp#�q we have

�

ˆ

log+ℓ`1

ˇ

ˇ

ˇ

ˇ

�ℓ

˙

ď �� `

ż 8

��

5�pFq 3F ď ��,1 .

�

ˆ

plog+ℓ`1q
2
ˇ

ˇ

ˇ

ˇ

�ℓ

˙

ď p��q
2 `

ż 8

��

2F 5�pFq 3F ď ��,2 .

Now consider the Doob martingale decomposition
ℓ
ÿ

:“1
log+: “

ℓ
ÿ

:“1

´

log+: ´�plog+: |�:´1q
¯

`

ℓ
ÿ

:“1
�plog+: |�:´1q ” "ℓ ` �ℓ

It follows from the preceding bounds that 0 ď �� ď #���,1 and�rp"�q
2s ď #���,2. We can take � small enough

to guarantee that ���,1 ă �{2. It follows using Chebychev’s inequality that, on the event -0 ě expp2#�q,

(II) ” ℙ
ˆ

ÿ

:ď�

log+: ě #�

ˇ

ˇ

ˇ

ˇ

�0

˙

ď ℙ

ˆ

"� ě #� ´ #���,1 ě
#�
2

ˇ

ˇ

ˇ

ˇ

�0

˙

ď
4���,2

#�2 .

Combining the above bounds for (I) and (II) gives, on the event -0 ě expp2#�q,

ℙ

ˆ

-� ă expp#�q

ˇ

ˇ

ˇ

ˇ

�0

˙

ď (I)` (II) ď #� 5�pFmaxq `
4���,2

#�2 .

On the complementary event -� ě expp#�q, it follows from the de�nition (5.2) that we must have � “ #�, and
this concludes the proof. �

5.2. Concentration of truncated free energy. �e �rst result below, Proposition 5.4, is fairly similar to the result
of [Tal11, Propn. 9.2.6], and makes use of Assumption 5.1. �e next result, Proposition 5.5, is a similar but weaker
estimate that uses only Assumption 1.6. We conclude the subsection with the proof of �eorem 1.7.

Proposition 5.4. For the model (1.4), under Assumption 5.1, for all � ą 0 we have

ℙ

ˆ

ˇ

ˇ

ˇ log#� / ´� log#� /
ˇ

ˇ

ˇ ě 2#C
˙

ď
" log 2
C

exp
ˆ

´
Fmax
��

˙

` exp
ˆ

´min
"

#C2

4p��q
2 ,
#C

2��

*˙

,

where �� is a large constant which depends only on �� (where �� is the constant appearing in Assumption 5.1). In
particular, if Fmax grows faster than log# , then the above is >#p1q provided C " 1{#1{2.
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Proof. Recall that ℱ: denotes the �-�eld generated by the random functions Θ1 , . . . ,Θ: . Consider the martingale
decomposition

log#� / ´�plog#� /q “
ÿ

:ď"

"

�plog#� / |ℱ:q ´�plog#� / |ℱ:´1q

*

”
ÿ

:ď"

.: ,

Let /:,˝ be the partition function without the :-th factor:

/:,˝ ”
ÿ

�Pt´1,`1u#

ź

ℓď",ℓ‰:

Θℓ p�q .

Since we assumed the Θ functions are t0, 1u-valued, we have / ď /:,˝, so if /:,˝ ď expp#�q then we must have
log#� / “ log#� /:,˝. It follows that

!: ” log#� / ´ log#� /:,˝ “

ˆ

log#� / ´ log/:,˝
˙

1t/:,˝ ě expp#�qu .

Let �: denote expectation over Θ: only, and let �: denote expectation over all the pΘℓ qℓě: . We can then rewrite

.: “ �

ˆ

log#� / ´ log#� /:,˝

ˇ

ˇ

ˇ

ˇ

ℱ:

˙

´�

ˆ

log#� / ´ log#� /:,˝

ˇ

ˇ

ˇ

ˇ

ℱ:´1

˙

“ �:´1p!: ´�:!:q .

For comparison, let us also de�ne H: ” �:´1pℓ: ´�:ℓ:q where

ℓ: ”

ˆ

log#� / ´ log/:,˝
˙

1
"

/:,˝ ě expp#�q; /

/:,˝
ě

1
exppFmaxq

*

Since ´# log 2 ď log#� / ´ log#� /:,˝ ď 0, we can use Assumption 5.1 to bound

(I) ” ℙ
ˆ

ÿ

:ď"

|.: ´ H: | ě #C

˙

ď
1
#C
�

ˆ

ÿ

:ď"

|.: ´ H: |

˙

ď
"# log 2

#C
ℙ

ˆ

/:,˝ ě expp#�q; /

/:,˝
ě

1
exppFmaxq

˙

ď
"# log 2

#C
exp

ˆ

´
Fmax
��

˙

. (5.5)

We will bound, for small enough �, the exponential moment

�

ˆ

expp�|H: |q
ˇ

ˇ

ˇ

ˇ

ℱ:´1

˙

“ �:´1�: exp
"

�
ˇ

ˇ

ˇ�
:´1pℓ: ´�:ℓ:q

ˇ

ˇ

ˇ

*

ď �:´1�: exp
´

�|ℓ: ´�:ℓ: |
¯

ď �:´1
„

´

�: expp�|ℓ: |q
¯

¨ expp�|�:ℓ: |q



ď �:´1
„

´

�: expp�|ℓ: |q
¯2


.

We now proceed to bound �: expp�|ℓ: |q: for � “ 1{p2��q ě 0, Assumption 5.1 gives

�: expp�|ℓ: |q ď �:

„ˆ

/:,˝

/

˙1{p2��q

;/:,˝ ě expp#�q,
/

/:,˝
ď

1
exppFmaxq



ď expp��q ,

by the same calculation as in (5.4). It follows using Jensen’s inequality that for�� a large enough constant (depending
only on ��) we have

�: exp
ˆ

|ℓ: |

��

˙

ď

ˆ

�: exp
ˆ

|ℓ: |

2��

˙˙2��{��

ď exp
ˆ

2p��q
2

��

˙

ď 2 ,

where the last inequality holds by choosing �� large enough (depending only on ��). It follows by the martingale
Bernstein inequality (see [Tal11, �m. A.6.1]) that

(II) ” ℙ
ˆ
ˇ

ˇ

ˇ

ˇ

ÿ

:ď"

H:

ˇ

ˇ

ˇ

ˇ

ě #C

˙

ď exp
ˆ

´min
"

#C2

4p��q
2 ,
#C

2��

*˙

. (5.6)

�e claim follows by combining (5.5) and (5.6). �
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Proposition 5.5. For the model (1.4), under Assumption 1.6, for all � ą 0 we have

ℙ

ˆ

ˇ

ˇ

ˇ log#� / ´� log#� /
ˇ

ˇ

ˇ ě 2#C
˙

ď
" log 2
C

5�pFmaxq `
"��,2

p#Cq2
.

In particular, if 5�pFmaxq tends to zero superpolynomially in # , then this is >#p1q provided C " 1{#1{2.

Proof. Following the �rst few steps of the proof of Proposition 5.4 gives (instead of (5.5))

(I) ” ℙ
ˆ

ÿ

0ď"

|.0 ´ H0 | ě #C

˙

ď
1
#C
�

ˆ

ÿ

0ď"

|.0 ´ H0 |

˙

ď
"# log 2

#C
5�pFmaxq .

Recall that �: denotes expectation over Θ0 only, while �: denotes expectation over all pΘℓ qℓě: . �en

�0rpH0q
2s ď �0rpℓ0q

2s ď �0

„ˆ

log /

/0,˝

˙2
; /

/0,˝
ě

1
exppFmaxq



ď ��,2 ,

by Assumption 1.6. It follows using Chebychev’s inequality that

(II) ” ℙ
ˆ
ˇ

ˇ

ˇ

ˇ

ÿ

0ď"

H0

ˇ

ˇ

ˇ

ˇ

ě #C

˙

ď
"��,2

p#Cq2
.

�e claim follows by combining the bounds on (I) and (II). �

Proof of �eorem 1.7. Follows from Proposition 5.5. In the perceptron model, a sharper concentration result can be
obtained using Proposition 5.4, where Assumption 5.1 is satis�ed by �eorems 1.2–1.5. �

5.3. Sharp threshold sequence and universality. In this subsection we conclude with the proofs of �eorems 1.9
and 1.11. We summarize the results of the preceding subsections with the following assumptions:

Assumption 5.6. For all � ą 0 there exists �� ą 0 such that for all 0 ď � ď �� we have, for all " ě 0,

ℙ

ˆ

/" ě expp2#�q, /"`#� ă expp#�q

˙

ď >#p1q .

(Under Assumptions 5.1 or 1.6, this estimate is implied by Propositions 5.2 and 5.3.)

Assumption 5.7. For all � ą 0 and any constant C ą 0,

ℙ

ˆ

ˇ

ˇ

ˇ log#� / ´� log#� /
ˇ

ˇ

ˇ ě #C

˙

ď >#p1q .

(Under Assumptions 5.1 or 1.6, this estimate is implied by Propositions 5.4 and 5.5.)

Proposition 5.8. For the model (1.4), suppose supt�Θ0pGq : G P t´1,`1u#u ď expp´2q for a positive constant
2. Assumption 5.7 implies a sharp threshold sequence: that is to say, there is a sequence 
# such that ℙp/#
 ą 0q
transitions from 1 ´ >#p1q to >#p1q in an >#p1q window around 
# . Assumption 5.6 further implies 
# — 1 in the
limit # Ñ8.

Proof. Note that /0 “ 2# . �e bound on �Θ0 implies �/" ď 2# expp´"2q, so ℙp/#
 ą 0q “ >#p1q as soon
as 
 ą plog 2q{2. �us ℙp/#
 ą 0q transitions from 1 ´ >#p1q to >#p1q as 
 increases from 0 to 2plog 2q{2.
Now suppose for the sake of contradiction that there is not a sharp threshold sequence: this means that there exists
arbitrarily large # such that we have

& ď inf
"

ℙp/#
 ą 0q : 
 P r
1 , 
2s

*

ď sup
"

ℙp/#
 ą 0q : 
 P r
1 , 
2s

*

ď 1´ & , (5.7)

where the 
8 can depend on # , but 
2 ´ 
1 stays bounded away from zero as # Ñ8. �en

ℙ

ˆ

/#
1 ď exp
ˆ

#p
2 ´ 
1q2

2

˙˙

ď ℙp/#
2 “ 0q ` ℙ
ˆ

/#
1 ď exp
ˆ

#p
2 ´ 
1q2

2

˙

, /#
2 ą 0
˙

ď ℙp/#
2 “ 0q ` exp
ˆ

´
#p
2 ´ 
1q2

2

˙

ď 1´ & ` >#p1q .
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In the above, the second-to-last step is by the assumption on�Θ, and the last step is by (5.7). Rearranging the above
inequality gives

& ´ >#p1q ď ℙ
ˆ

/#
1 ą exp
ˆ

#p
2 ´ 
1q2

2

˙˙

ď ℙp/#
1 ą 0q ď 1´ & .

It follows that for any � ă p
2´ 
1q2{4, the quantity log#� /#
1 is not well-concentrated: with probability at least
& ´ >#p1q it equals #�, but with probability at least & ´ >#p1q it exceeds 2#�. �is contradicts Assumption 5.7.
�is implies that ℙp/#
 ą 0q transitions from 1 ´ >#p1q to >#p1q in an >#p1q window around a sharp threshold
sequence 
# . Finally, Assumption 5.6 implies that 
# stays bounded away from zero in the limit # Ñ8. �

Proof of �eorem 1.9. Follows from Proposition 5.8, where Assumptions 5.6 and 5.7 are satis�ed by Propositions 5.3
and 5.5. �

Proof of �eorem 1.11. For the*-perceptron (1.2), let /p�q be the partition function with general (subgaussian) dis-
order. It follows from the proof of �eorem 1.9 that there is a sharp threshold sequence 
#,� (potentially depending
on the disorder), and the free energy log/#,#
p�q is exponentially large for 
 ă 
#,�. Suppose the threshold
sequence depends nontrivially on the disorder, meaning that on a subsequence # Ñ 8 we have 
#,� ´ 
#,6 ě &
or 
#,6 ´ 
#,� ě &. Without loss suppose 
#,� ´ 
#,6 ě &. �en, for 
#,6 ă 
 ă 
#,�, /#,#
p6q will be expo-
nentially large while /#,#
p�q is zero with high probability. By the concentration result �eorem 1.7, this will yield
a contradiction to �eorem 4.1. It follows /p6q and /p�q share the same sharp threshold sequence 
# . Moreover,
since the partition function must be exponentially large for 
 ă 
# , it follows from �eorem 1.7 and �eorem 4.1
that #´1 log/p�q and #´1 log/p6q are >#p1q-close with high probability for all 
 ă 
# . �
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