
On complex roots of the independence polynomial∗

Ferenc Bencs† Péter Csikvári‡ Piyush Srivastava§ Jan Vondrák¶

Abstract
The independence polynomial of a graph is the generating polynomial of all its independent sets. Formally,

given a graph G, its independence polynomial ZG(λ) is given by
∑

I λ
|I|, where the sum is over all independent

sets I of G. The independence polynomial has been an important object of study in both combinatorics and
computer science. In particular, the algorithmic problem of estimating ZG(λ) for a fixed positive λ on an input
graph G is a natural generalization of the problem of counting independent sets, and its study has led to some
of the most striking connections between computational complexity and the theory of phase transitions. More
surprisingly, the independence polynomial for negative and complex values of λ also turns out to be related
to problems in statistical physics and combinatorics. In particular, the locations of the complex roots of the
independence polynomial of bounded degree graphs turn out to be very closely related to the Lovász local
lemma, and also to the questions in the computational complexity of counting. Consequently, the locations of
such zeros have been studied in many works. In this direction, it is known from the work of Shearer [29] and
of Scott and Sokal [27] – inspired by the study of the Lovász local lemma – that the independence polynomial
ZG(λ) of a graph G of maximum degree at most d+1 does not vanish provided that |λ| ≤ dd

(d+1)d+1 . Significant
extensions of this result have recently been given in the case when λ is in the right half-plane (i.e., when ℜλ ≥ 0)
by Peters and Regts [26] and Bencs and Csikvári [9]. In this paper, our motivation is to further extend these
results to find new zero free regions not only in the right half plane, but also in the left half-plane, that is,
when ℜλ ≤ 0.

We give new geometric criterions for establishing zero-free regions as well as for carrying out semi-rigorous
numerical explorations. We then provide two examples of the (rigorous) use of these criterions, by establishing
two new zero-free regions in the left-half plane. We also extend the results of Bencs and Csikvári [9] for the
right half-plane using our framework. By a direct application of the interpolation method of Barvinok [5],
combined with extensions due to Patel and Regts [25], our results also imply deterministic polynomial time
approximation algorithms for the independence polynomial of bounded degree graphs in the new zero-free
regions.

1 Introduction
The independence polynomial, also known as the partition function of the hard core lattice gas in the statistical
physics literature, is the graph polynomial given by

ZG(λ) :=
∑

I:independent set in G

λ|I|.

An independent set in a graph G is subset of its vertices no two of which are adjacent in G. In statistical
mechanics, the polynomial arises in the modeling of adsorption phenomena (usually with G being a lattice);
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while in combinatorics, it is the natural generating function of independent sets of graphs, and offers a natural
generalization to the problem of counting independent sets in a graph. These connections have led to the
polynomial being studied extensively in the setting λ > 0, both in statistical physics and in computational
complexity, and, in particular, has led to some very tight connections between the two fields [32,35].

The setting λ < 0, and more generally, of complex λ is also of interest. In particular, the problem of
understanding where the complex zeros of ZG lie for graphs G in a given class is of special interest. In statistical
mechanics, it relates to the Yang-Lee theory of phase transitions [36]. In the special case when G is a lattice, the
work of Dobrushin and Shlosman [14, 15] also related the question to other, more probabilistic notions of phase
transitions. In combinatorics, the behavior of ZG at negative and complex λ plays an important role in the study
of the Lovász local lemma; for a detailed discussion of this connection, we refer to the work of Shearer [29] as
elucidated by Scott and Sokal [27]. For our purposes, we start with the following result proved in the above two
papers. We denote by G∆ the set of finite graphs with vertex degrees at most ∆, for some fixed ∆ ≥ 3.

Theorem 1.1 ([29], see also Corollary 5.7 and the discussion following it in [27]). Let d ≥ 2 be an
integer. If λ ∈ C is such that |λ| ≤ λ∗(d) := dd

(d+1)d+1 then ZG(λ) ̸= 0 for all graphs G ∈ Gd+1. Further, for
any negative real λ1 < −λ∗(d), there exists a graph G ∈ Gd+1 and λ′ satisfying λ1 < λ′ < −λ∗(d) such that
ZG(λ

′) = 0.

It is also known that the above theorem gives a full description of the zero-free region of ZG, as G varies over
Gd+1, on the negative real line. The emphasis in the works leading to Theorem 1.1 was on obtaining zero-free
regions shaped like disks (or like product of disks – polydisks – in the more general setting of the multivariate
independence polynomial that we will not consider in this paper), and in the univariate setting, Theorem 1.1
essentially characterizes the radius of the largest such zero-free disk centered at the origin. Further, two different
polynomial time approximation algorithms for ZG(λ) for G ∈ Gd+1 and |λ| < λ∗(d) were given by Patel and
Regts [25] and Harvey, Srivastava and Vondrák [20].

Zero-free regions and algorithms. It is well known by now, however, that the actual zero-free region for
ZG as G varies over Gd+1 is not described by a disk. It also turns out that the work towards characterizing this
region is of importance for the algorithmic problem of approximating ZG for an input graph G ∈ Gd+1. In order
to describe this connection, we first recall the work of Peters and Regts [26] on proving a conjecture of Sokal.
There, they considered ZG as G varies over spherically symmetric d-ary trees, and proved that it is non zero as
long as λ ∈ Ud, where Ud is the open region (see fig. 1 for an example drawing of this curve) containing the origin
bounded by the curve

(1.1) ∂Ud :=

{
κ(α) :=

−αdd

(d+ α)d+1

∣∣∣∣ |α| = 1

}
.

Using the results of Peters and Regts [26] on the existence of zeros near the boundary of ∂Ud, Bezáková, Galanis,
Goldberg, and Štefankovič [11] showed that for every complex rational λ outside the closure of Ud that does not
lie on the positive real line, the problem of approximating (up to any polynomial factor) ZG(λ) for graphs G in
Gd+1 is #P-hard.1 On the other hand, due to the results of Barvinok [5] and Patel and Regts [25], the same
problem admits a fully polynomial time approximation scheme (FPTAS) for any complex rational λ if for some
ϵ > 0, the ϵ-neighborhood of the line segment [0, λ] is zero-free for the polynomials ZG for all G ∈ Gd+1.

Known results. In light of the above results, the problem of characterizing the location of the zeros of ZG

for general graph in Gd+1 becomes of interest. Recall that Ud is the zero-free region for spherically symmetric
d-ary trees. Perhaps the first natural question to ask is whether the region Ud is zero-free for ZG even as G varies
over all graphs in Gd+1. The answer to this is no: Buys [12] showed that one can obtain a counterexample for
3 ≤ d + 1 ≤ 9 by considering spherically symmetric trees in which the arity of each vertex depends upon the
distance from the root of the tree. Thus, the location of zeros of ZG for G in Gd+1 inside the region Ud needs to
be studied more closely.

1In contrast, for positive real λ outside Ud, the same problem is NP-hard [18, 32], and is unlikely to be #P-hard for all such λ
unless there is a collapse in the polynomial hierarchy. (The fact that approximate counting with positive weights cannot be #P-hard
under standard complexity theoretic assumptions is a well-known direct consequence of Toda’s theorem [34] and earlier results of
Stockmeyer [33] and Sipser [30]; see, e.g., Ex. 17.5 in [1].)
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In preparation for stating the contributions of this paper, we now turn to describing what is known about the
zero-free region of ZG for graphs in Gd+1. Let λc(d) := dd

(d−1)d+1 be the unique point of intersection of the curve
∂Ud with the positive real line. (We note in passing that this quantity, known as the uniqueness threshold for the
hard core model, has played a central role in the study of the algorithmic estimation of ZG on the positive real
line: in particular, this study led to some of the tightest known connections between statistical mechanics phase
transitions and computational complexity [18, 31, 32, 35].) Peters and Regts [26] showed that for any positive
λ′ < λc(d), there is an ϵ′ = ϵ′(λ′) > 0 such that for any z satisfying |ℑz| ≤ ϵ′ and ℜz = λ′, ZG(z) ̸= 0 for all
G ∈ Gd+1. They also gave explicit lower bounds on ϵ′(λ′) for λ′ ∈ (0, tan(π/(2d))) (note that tan(π/(2d)) > λ∗(d)
for d ≥ 2, so these results are not implied by Theorem 1.1). Bencs and Csikvári [9], using different methods,
improved on the latter lower bounds, and thereby significantly extended the known zero-free region inside Ud in
the right half-plane. In Section 1.3 below, we describe some more recent papers that study phenomena such as
the limit shape (after appropriate scaling) of the zero-free region as d ↑ ∞, and that explore further connections
between zero-freeness and other aspects of the independent set model. However, for specific finite d, none of
these results seem to provide any new zero-free regions in the left half-plane beyond the half-disk implied by
Theorem 1.1.

1.1 Contributions In this paper, we give two geometric criterions (Theorems 4.5 and 4.6) which together give
a framework for rigorously establishing (connected) zero-free regions as well as a way to carry out semi-rigorous
numerical explorations.

We provide several examples of the (rigorous) use of these criterions. We establish two new zero-free regions
in the left half plane: Theorem 6.1 gives a better result in the vicinity of the negative real line, while Theorem 7.1
gives a better result near the imaginary line. When restricted to the imaginary axis, the latter region agrees with
the result of Bencs and Csikvári [9] for the right half-plane. We also extend the previous zero-freeness results of
Bencs and Csikvári [9] for the right-half plane using the geometric criterions developed in this paper (Theorem 8.1,
see also Remark 8.3). We also show that our framework gives a new proof of the Sokal conjecture, which was
first proved by Peters and Regts via a potential function argument [26] (Theorem 5.1). See fig. 1 for a graphical
illustration of these new zero-freeness results.

Algorithmic implications. Following the template provided by the results of Barvinok [5] and Patel and
Regts [25], these new zero-freeness results also immediately lead to new polynomial-time algorithms for the
approximation of ZG(λ) for λ lying in the interior of these regions on graphs G ∈ Gd+1 of maximum degree
at most d + 1. Given complex numbers Z and Ẑ we say that Ẑ is a multiplicative ε-approximation of Z if
e−ε < |Ẑ|

|Z| < e−ε and the angle between Ẑ and Z considered as vectors in C = R2 is at most ε. Then the
algorithmic framework of Barvinok [5] and Patel and Regts [25] combined with our zero-free regions provides

a deterministic algorithm of running time
(

|V |
ε

)Od,λ(1)

for obtaining a multiplicative ε-approximation of ZG(λ)

whenever G = (V,E) has maximum degree d+ 1 and λ is in the interior of the zero-free region provided by this
paper.

Numerical explorations. We now comment briefly on the connections to numerical explorations – alluded
to above – of our work. The naive method to numerically check whether a point λ is in the zero free region
of ZG for all graphs in Gd+1 would be to evaluate ZG(λ) for all such graphs, and to check if it evaluates to
0. Known results allow one to restrict the set of graphs one has to explore to trees in Gd+1 (see Theorem 3.2
below), but the resulting procedure is still computationally infeasible. In contrast, the geometric criterions in
Theorems 4.5 and 4.6 allow one to do the following. Given d and λ, one tries to construct a curve in the complex
plane with certain prescribed properties. The existence of such a curve then certifies that no graph in Gd+1 has
ZG(λ) = 0. What curves would “work” for a given d and λ can then be explored numerically: in fact, many of our
zero-freeness results listed above were obtained by first conjecturing the form of such a curve guided by numerical
experiments, and then rigorously verifying – as done in the proofs of the theorems listed above – that the curve
has the prescribed properties. We want to highlight, however, that although this method is “sound” – in the sense
that producing such a curve as a certificate guarantees zero-freeness – it is not necessarily “complete” – one may
not be able to construct such a curve as a certificate even though λ is in the zero-free region.

1.2 Organization of the paper After a short section of preliminaries, we introduce in Section 3 various
simple criterions to prove that a λ ∈ C is in the zero-free region of independence polynomial of graphs of bounded
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0°

90°

180°

270°

* (d)
1/d

0

tan( /(2d))

tan( /(2d))

c(d)

Figure 1: New zero free regions for d = 9 (graphs of degree at most 10). In the left half plane, the red region corresponds
to Theorem 6.1, while the blue region corresponds to Theorem 7.1. In the right half plane, the yellow region corresponds
to Theorem 8.1. The smaller grey circle around the origin has radius λ∗(d) (the “Shearer radius” from Theorem 1.1), and
the points ±ι tan(π/(2d)) are marked on the imaginary axis. The outer black “cardioid-shaped” curve is the boundary ∂Ud

as defined in eq. (1.1). A magnified version of the red region (corresponding to Theorem 6.1) is given in Figure 5.

degree. Building on this work, we introduce in Section 4 two new criterions (Theorems 4.5 and 4.6) which use
constructions of certain curves in order to prove zero-free regions. The remaining sections are direct applications
of these two criterions, and are independent of each other. Since some of the proofs are somewhat technical,
these sections are arranged in increasing order of difficulty. In Section 5 we give a new proof of Sokal’s conjecture
originally proven by Peters and Regts. In Section 6 we give a new zero-free region in the vicinity of the critical
point dd

(d+1)d+1 . In Section 7 we provide a zero-free region close the imaginary axis. Finally, in Section 8 we prove
a zero-free region in the right half plane.

For those readers who are interested in the ideas in general, but want to avoid technical difficulties we
recommend reading the paper till the end of Section 5 and omitting Theorem 4.6 and its proof.

1.3 Related work The work of Barvinok [3] (see also [5]) pioneered the direct use of zero-free regions for
designing algorithms for approximate counting. However, in most examples, a direct application of Barvinok’s
method gives a quasi-polynomial time algorithm: Patel and Regts [25] showed how to use various combinatorial
tools in order to reduce this quasi-polynomial runtime to a polynomial runtime in various “bounded-degree”
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settings. The method has since then been used to attack a wide variety of approximate counting problems:
see, e.g., [3, 4, 6, 10, 16, 19, 23]. How this method relates to other methods of approximate counting, such as
Markov chain Monte Carlo, or the method of reduction to tree-recurrences and “correlation decay” (first used by
Bandyopadhyay and Gamarnik [2] and Weitz [35]), has also been explored in several papers, see, e.g., [21,22,24,28].
In the statistical physics literature, very strong connections between Markov chain Monte Carlo and zero-freeness
are known in the special case of integer lattices through the work of Dobrushin and Shlosman [14,15].

As already discussed in detail in the previous subsections, the complex zeros of the independence polynomial
have also been studied extensively in the context of its connections to the Lovász local lemma and also in the
context of its computational complexity [11, 20, 25, 27, 29]. Here we describe a few more recent works in this
direction. Recent work of de Boer, Buys, Guerini, Peters, and Regts [13] establishes strong formal connections
between the computational complexity of the hard core model, complex dynamics, and zero-freeness of the
partition function (see Main Theorem of [13]): in particular they prove that the zeros of ZG for graphs in
Gd+1 are dense in the complement of Ud. The limit shapes of the zero-free regions have also been studied: Bencs,
Buys, and Peters [8] show that in the d→ ∞ limit, a rescaled version of zero-free region tends to a bounded 0-star
shaped region, whose boundary intersects limd→∞ d · ∂Ud only at real parameters. In particular, the results of [8]
show that for large enough d the zero-free region is strictly contained in Ud except for the two real parameters.
The problem of fully characterizing the zero-free region of ZG for G ∈ Gd+1 in the complex plane, however, still
remains open.

2 Preliminaries
Branch cuts We adopt the following convention for defining fractional powers and complex logarithms. Given

z = reιθ with r > 0 and θ ∈ (−π, π], we define

log z := log r + ιθ, and(2.1)

zδ := rδ exp(ιδθ), for any δ > 0.(2.2)

We leave the functions undefined when z = 0 (except that we adopt the usual convention that 00 = 1). Note that
with the above definition, log and zδ for non-integral δ are defined but discontinuous on the negative real line.
However, we do have the following identity for all z ̸= 0 and δ ≥ 0:

zδ = exp(δ log z).

Further, for z ̸= 0, we use the convention arg z = ℑ(log z).
Graphs and independence polynomials For the sake of providing a quick reference, we recollect here

some basic notation and terminology about graphs and their independence polynomials that was introduced in
the introduction above. We denote the set of all graphs of degree at most d + 1 by Gd+1. The independence
polynomial ZG(λ) of a graph G is given by

(2.3) ZG(λ) :=
∑

I:independent set in G

λ|I|.

Two quantities of interest with respect to the independence polynomial are the Shearer radius λ∗(d) := dd

(d+1)d+1 ,

and the uniqueness threshold λc(d) := dd

(d−1)d+1 . The former, λ∗(d), is specially connected to the Lovász
local lemma, and also the radius of the largest circular disk around the origin in which ZG is zero-free for
all graphs in Gd+1 (see Theorem 1.1 above). The latter, λc(d), is intimately connected to the complexity of
approximating ZG(λ) for G ∈ Gd+1, for λ on the positive real line: in particular, Weitz [35] gave a deterministic
fully polynomial approximation scheme (FPTAS) for ZG(λ) for G ∈ Gd+1, provided λ < λc(d), while in a series of
works [17,18,31,32] starting with a paper of Sly, it was shown that a randomized fully polynomial approximation
scheme (FPRAS) for the same problem in the regime λ > λc(d) would imply NP = RP. Further, in terms of the
curve ∂Ud of Peters and Regts [26] (see eq. (1.1) above), λc(d) is the unique point of intersection of ∂Ud with the
positive real line, while −λ∗(d) is the unique point of intersection of ∂Ud with the negative real line.
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3 A relaxed recurrence for the independence polynomial
As stated in the introduction, our goal is to study the location of the complex zeros of the (univariate) independence
polynomial

ZG(λ) :=
∑

I⊆V (G) independent
λ|I|.

Recall that we focus on the class of graphs G∆ with degrees at most ∆ for some fixed ∆ ≥ 3. It is more convenient,
however, to work in terms of the notation d := ∆− 1. We now proceed to describe a known characterization of
zero-free regions for the independence polynomial of bounded degree graphs, in preparation for which we introduce
the following definition.

Definition 3.1 (The set Sλ = Sλ(d)). For λ ∈ C, define Sλ ⊆ C as the set of points that can be generated by
the following rules:

• 0 ∈ Sλ(d),

• If z1, . . . , zd ∈ Sλ(d) are such that zi ̸= −1 for 1 ≤ i ≤ d, then

(3.1) f(z1, . . . , zd) =
λ∏d

i=1(1 + zi)

is also in Sλ(d).

(Although the definition of Sλ depends on d, we will often omit this dependence from our notation when the
value of d is clear from the context.)

The following theorem is well known [27,35], and has been used in previous work on the subject (e.g. in [9,26]).
It can most directly be obtained from a result of Bencs [7], who showed that the independence polynomial of
a graph divides (as a polynomial) the independence polynomial of the so-called “self-avoiding walk tree” of the
graph. The zero-free regions of the independence polynomial of a tree can in turn be analyzed in terms of the
“tree recurrences” described in eq. (3.1) [27,35].

Theorem 3.2 (see, e.g., Proposition 2.7 (1) of [7], and Lemma 2.1 of [9]). Fix d ≥ 2. ZG(λ) = 0 for
some graph G ∈ Gd+1 if and only if −1 ∈ Sλ(d).

A standard application of Theorem 3.2 is to define a “trapping region” T such that 0 ∈ T , −1 /∈ T and f maps
T to T . For instance, if |λ| ≤ dd

(d+1)d+1 , then T = {z ∈ C | |z| ≤ 1
d+1} is such a region:∣∣∣∣∣ λ∏d

i=1(1 + zi)

∣∣∣∣∣ ≤ dd

(d+ 1)d+1

d∏
i=1

1

1− 1
d+1

=
1

d+ 1

showing Shearer’s result. In general, it is not easy to handle d variables at the same time. Therefore, in what
follows we try to find sufficient conditions that only require understanding the behaviour of a univariate map.

In the following, we relax the recurrence f(z1, . . . , zd) to allow fractional powers and more than d arguments.
As we will see, this in fact leads to a simplification of the problem.

Definition 3.3 (The set S̃λ = S̃λ(d)). For λ ∈ C, define S̃λ ⊆ C as the set of points that can be generated by
the following rules:

• 0 ∈ S̃λ(d),

• If z1, . . . , zk ∈ S̃λ(d) and δ1, . . . , δk ≥ 0 are such that
∑k

i=1 δi ≤ d and zi ̸= −1 for 1 ≤ i ≤ k, then

(3.2) fδ1,...,δk(z1, . . . , zk) =
λ∏k

i=1(1 + zi)δi

is also in S̃λ(d).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited680

D
ow

nl
oa

de
d 

03
/2

1/
23

 to
 1

93
.2

24
.7

9.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



(As with Sλ, although the definition of Sλ depends on d, we will often omit this dependence from our notation
when the value of d is clear from the context.)

Clearly, we have Sλ(d) ⊆ S̃λ(d), since the new generation rule subsumes f(z1, . . . , zd). Hence, from
Theorem 3.2, we directly obtain the following.

Lemma 3.4. Fix d ≥ 2. If −1 /∈ S̃λ(d), then ZG(λ) ̸= 0 for every G ∈ Gd+1.

The main advantage of the relaxed recurrence is that it allows us to replace the multivariate recurrence by a
univariate one. We do this as follows: Consider the set {log(1 + z) : z ∈ S̃λ}. Note that this is well defined if
−1 ̸∈ S̃λ. If we write wi = log(1 + zi), then the recurrence

fδ1,...,δk(z1, . . . , zk) =
λ∏k

i=1(1 + zi)δi

can be rewritten by substitution as

gδ1,...,δk(w1, . . . , wk) = log(1 + fδ1,...,δk(e
w1 − 1, . . . , ewk − 1))

= log

(
1 + λ

k∏
i=1

e−δiwi

)
= log

(
1 + λe−

∑k
i=1 δiwi

)
.

Hence, a combination of fractional powers in fδ1,...,δk corresponds to a linear combination of the points
wi = log(1 + zi). If we normalize the linear combination by 1

d , and use the fact that 0 is always a possible
choice for wi, we obtain a convex linear combination of w1, . . . , wk in the exponent. This motivates the following
characterization. Note that the characterization is in terms of the behavior of a function of only one complex
variable.

Theorem 3.5. Fix d ≥ 2. The number −1 is not contained in S̃λ(d) if and only if there is a convex set T ⊂ C
containing 0 such that for every w ∈ T ,

g(w) = log(1 + λe−dw)

is well-defined and g(w) ∈ T .

Proof. Suppose first that −1 ̸∈ S̃λ = S̃λ(d). We define

T = conv
{
log(1 + z)|z ∈ S̃λ

}
.

Note that since −1 ̸∈ S̃λ, T is well-defined, and further, is convex by definition. Also, 0 ∈ T , since 0 ∈ S̃λ. Now
consider w ∈ T . By Caratheodory’s theorem, there exist δ1, δ2, δ3 ≥ 0 summing up to d, and z1, z2, z3 ∈ S̃λ, such
that w = 1

d

∑3
i=1 δi log(1 + zi). We thus have λ exp(−dw) = fδ1,δ2,δ3(z1, z2, z3) ∈ S̃λ. Thus, λ exp(−dw) ̸= −1

and hence g(w) = log(1 + λ exp(−dw)) = log(1 + fδ1,δ2,δ3(z1, z2, z3)) is well-defined and lies in T .
Conversely, suppose that T is any arbitrary convex set containing 0, on which the map g(w) = log(1 +

λ exp(−dw)) is well defined, and satisfies g(w) ∈ T for all w ∈ T . We claim that if −1 ∈ S̃λ, then there exists
w ∈ T such that −1 = λ exp(−dw).

To see this, define the depth of every z ∈ S̃λ as follows: depth(0) = 0, and for z ̸= 0, depth(z) is the smallest
integer D such that z can be written as fδ1,δ2,...,δk(z1, z2, . . . , zk) where k is a positive integer, δi ≥ 0 sum to
at most d, and zi ∈ S̃λ have depth at most D − 1. Note that depth(z) ≥ 1 for z ̸= 0. Now, if −1 ∈ S̃(λ), let
D−1 = depth(−1).

We claim now that for all z ∈ S̃λ of depth at most D−1−1, log(1+ z) ∈ T . This is proved by induction on the
depth of z: it is true in the base case depth(z) = 0 (so that z = 0), since 0 ∈ T . Otherwise, from the definition of
depth, we can find z1, z2, . . . zk of depth strictly smaller than z, and δi ≥ 0 summing up to at most d, such that

(3.3) z = fδ1,δ2,...,δk(z1, z2, . . . , zk) = λ exp

(
−d

k∑
i=1

δi
d
log(1 + zi)

)
.

Thus, we have log(1 + z) = g(w) where w is a convex combination of 0 and the quantities log(1 + zi). The latter
quantities are all inductively in T , so that w is also in T (as T is convex). But since T is closed under applications
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of g, this implies that g(w) = log(1 + z) is also in T . This establishes the claim that for every z ∈ S̃λ of depth at
most D1 − 1, log(1 + z) is an element of T .

Now, applying the argument leading to eq. (3.3) with z = −1 (which by assumption has depth D−1), we
conclude that there exists a w ∈ T such that −1 = λ exp(−dw). But this contradicts the hypothesis that
g(w) = log(1 + λ exp(−dw)) is well-defined on T . Thus, it cannot be the case that −1 ∈ S̃λ.

For natural reasons, we call a T as in the statement of the above theorem a trapping region for λ.

Remark: Sometimes it is desirable to avoid −1 even in the closure of Sλ, or S̃λ. By our transformation, this
corresponds to the property that there is a convex set T containing 0 and closed under g(w) = log(1 + λe−dw),
such that ℜ(w) ≥ −K for every w ∈ T and some constant K > 0. This is equivalent to saying that every point
z ∈ S̃λ satisfies |1 + z| ≥ e−K .

4 Criterion in the original complex plane
The previous section shows that we get a rather clean picture when we study the behavior of the extended
recurrence (eq. (3.2)) after a change of variable, w = log(1+ z). However, we can also formulate a criterion using
trapping regions in the original variable z. This criterion looks more intuitive, but it seems we lose a bit in the
transition (in particular, we do not get an equivalence here).

Theorem 4.1. If there is a convex set S ⊂ C containing 0, not containing −1, such that f(z) = λ
(1+z)d

∈ S for
every z ∈ S, then ZG(λ) ̸= 0 for every G ∈ G∆.

In order to prove this statement, we need the following fact about the behavior of arithmetic vs. geometric
averages in the complex plane. While we believe this fact to be standard, we are unable to find an exact reference,
and hence provide a proof for completeness.2

Lemma 4.2 (“geometric averages dominate arithmetic averages”). For any two points z1, z2 ∈ C \ {0} satisfying
|arg(z1)− arg(z2)| ≤ π, and α ∈ [0, 1], there exist β ∈ [0, 1] and t ∈ [0, 1] such that

tzα1 z
1−α
2 = βz1 + (1− β)z2.

Proof. We reduce to the case where z2 = 1, by dividing by z2 and substituting z = z1/z2. Our goal then is to
find t, β ∈ [0, 1] such that

tzα = βz + (1− β).

We can also assume that arg z ∈ [0, π], by complex conjugation if this is not the case.
Now, if arg z = 0 the claim is trivially true because, then, if z = ℜz ≥ 1, we can take β = 0, t = z−α, while

when 0 < z = ℜz < 1, we can take β = 1, t = z1−α. Similarly, when arg z = π, z is a strictly negative real
number, so that we can choose t = 0 and β = 1

1−z ∈ [0, 1].
We can thus assume that θ := arg(z) ∈ (0, π) and r := |z| > 0. Note that arg(zα) = αθ. Let y(α) be the

unique point with argument αθ on the line segment joining 1 and z. From an elementary geometric argument,
we then have

|y(α)| = r sin θ

r sin((1− α)θ) + sinαθ
.

We now define the function f(x) : [0, 1] → R as

f(x) := log
|y(x)|
|zx|

= log
r1−x sin θ

r sin((1− x)θ) + sinxθ
.

Note that the claim of the lemma is equivalent to showing that f(x) ≤ 0 for all x ∈ [0, 1] (the quantity t can then
be taken to ef(α) ∈ [0, 1] and β ∈ [0, 1] is such that βz + 1− β = y(α)).

2Note that, despite the title, the lemma does not contradict the usual inequality between the arithmetic and the geometric means
of positive reals. The lemma is in fact a trivial statement for the case of positive reals.
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To this end, we first note that f(0) = f(1) = 0, so the claim would follow if f is convex on [0, 1]. We verify
this by directly computing the second derivative of f and checking that it is non-negative in [0, 1]:

f ′′(x) =
θ2(1 + r2 − 2r cos θ)

(r sin((1− x)θ) + sinxθ)
2 ≥ 0, when x ∈ [0, 1].

Proof of Theorem 4.1. Suppose that there is a convex set S containing 0, not containing −1, and closed under the
map f(z) = λ

(1+z)d
. We will transform S into a convex set T satisfying the assumptions of Theorem 3.5. Define

T = conv {log(1 + z) : z ∈ S} .

By construction, T is convex and it contains 0 (since 0 ∈ S). We need to prove that g(w) = log(1 + λe−dw)

is well-defined on T and preserves membership in T . Consider w ∈ T , i.e., w =
∑k

i=1 αi log(1 + zi), a convex
combination of points log(1 + zi) such that zi ∈ S. We can set δi = dαi, hence w = 1

d

∑k
i=1 δi log(1 + zi). Then,

g(w) = log(1 + λe−dw) = log

(
1 +

λ∏k
i=1(1 + zi)δi

)
.

Now, we appeal to Lemma 4.2. Note first that 1 + S := {1 + z|z ∈ S} is a convex set containing 1 and not
containing 0, so that by the separating hyperplane theorem, all of 1 + S lies in a halfplane defined by a line
passing through 0, and therefore |arg(1 + u)− arg(1 + v)| ≤ π is true for all u, v ∈ S. Now, we take one pair zi, zj

of points at a time, and consider uij = (1 + zi)
δi

δi+δj (1 + zj)
δj

δi+δj . By Lemma 4.2, there is β ∈ [0, 1] such that
1 + zij = β(1 + zi) + (1− β)(1 + zj) is a point of the same argument and smaller-or-equal modulus as uij . Hence
we can replace both zi and zj by zij and continue. We maintain the property that the argument of

∏
(1 + zi)

δi

remains preserved and the modulus can only decrease. Eventually, we obtain a point z̃ ∈ conv {z1, . . . , zk} ⊆ S
such that arg((1 + z̃)d) = arg(

∏
(1 + zi)) and |(1 + z̃)d| ≤ |

∏
(1 + zi)|. Hence, we can write

g(w) = log

(
1 +

c · λ
(1 + z̃)d

)
,

where c ≤ 1 is a non-negative real number. Now, note that since z̃ ∈ S, we have f(z̃) = λ
(1+z̃)d

∈ S, as S is closed
under applications of f . Then, since 0 ∈ S, and S is convex, we get y := c·λ

(1+z̃)d
∈ S, and further that y ̸= −1, as

−1 ̸∈ S. Thus, by definition of T , g(w) = log(1 + y) ∈ T , as y ∈ S. This proves that T satisfies the assumptions
of Theorem 3.5 and hence −1 is not contained in S̃λ, which implies that ZG(λ) ̸= 0.

Next, we present a more abstract extended version of this criterion, where we allow a “convex” initial segment
h(t), t ∈ [0, 1] rather than a line segment. First we define the following notion:

Definition 4.3 (−1-covered points). A point z ∈ C is −1-covered by z′ ∈ C if arg(1 + z) = arg(1 + z′) and
|1 + z| ≥ |1 + z′|. More generally, a set T is −1 covered by a set S if for every z ∈ T , there is a point z′ ∈ S such
that z is −1-covered by z′.

Geometrically, the above notion captures z being “covered” by z′ when “viewed” from the point −1. The utility
of this definition for our purposes comes from the following simple observation.

Observation 4.4. Fix an integer d ≥ 2 and a λ ∈ C, and consider f(z) := λ
(1+z)d

. If z ∈ C is −1-covered by
w ∈ C, then f(z) = αf(w) for some α ∈ [0, 1].

Proof. If λ = 0, there is nothing to prove, so assume λ ̸= 0. Since z is −1-covered by w, we have |1 + z| ≥ |1 + w|
and arg(1 + w) = arg(1 + z). It follows that arg(f(z)) = arg(f(w)), and |f(z)| ≤ |f(w)|. Thus, f(z) lies on the
segment joining the origin to f(w), and the claim follows.

Next we state and prove our first main geometric criterion for zero-freeness, which will be applied multiple
times in the subsequent sections.
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Theorem 4.5. For λ ∈ C, assume that there is a curve {h(t) : t ∈ [a, b]}, where a < b are real numbers, such that

• h(t) = 0 for some t ∈ [a, b],

• arg(1 + h(t)) is strictly increasing for t ∈ [a, b),

• h(t) is “convex” in the sense that for any t1, t2 ∈ [a, b], α ∈ [0, 1], αh(t1)+ (1−α)h(t2) is −1-covered by h(t)
for some t ∈ [t1, t2].

• for every t ∈ [a, b], f(h(t)) := λ
(1+h(t))d

is −1-covered by h(t′) for some t′ ∈ [a, b].

Then ZG(λ) ̸= 0 for any G ∈ Gd+1.

Proof. By an affine reparameterization of the curve h, if necessary, we assume that a = 0 and b = 1. Given the
curve h(t), t ∈ [0, 1], we define a trapping region, in the sense of Theorem 4.1, as a “shadow of the curve h(t) when
illuminated from the point −1”:

S = {z ∈ C : ∃t ∈ [0, 1] such that z is −1-covered by h(t)}.

This is a convex set, since for any z1, z2 ∈ S, z1 and z2 are −1-covered by h(t1), h(t2) respectively, z =
αz1 + (1− α)z2 is −1-covered by z′ = α′h(t1) + (1− α′)h(t2) (for some α′ ∈ [0, 1]), and z′ in turn is covered by
h(t) for some t ∈ [t1, t2] by the convexity of h(t).

Also, 0 is contained in S because h(t) = 0 for some t ∈ [0, 1]; −1 is not contained in S, since 0 is the only real
value on the curve h(t) (this follows since arg(1 + h(t)) is assumed to be a strictly increasing function of t), so
that S contains only non-negative real numbers.

To apply Theorem 4.1 in order to conclude the proof, it remains to prove that S is closed under the map
f(z) = λ

(1+z)d
. For any z ∈ S, there is a t ∈ [0, 1] such that z is −1-covered by h(t). Observation 4.4 then implies

that f(z) = αf(h(t)) for some α ∈ [0, 1]. By the assumptions of the theorem, we know that f(h(t)) is −1-covered
by some point h(t′), t′ ∈ [0, 1], which implies that f(h(t)) ∈ S. Hence by convexity, since 0 ∈ S, we also get
f(z) = αf(h(t)) ∈ S, as required.

Next, we formulate a more concrete sufficient condition which can be used in numerical experiments.3 The
proof we give here highlights the connections of this result with numerical exploration, even though alternative
proofs may be possible (see Remarks 4.7 and 4.8 following the proof).

Theorem 4.6. For λ ∈ C, ℑ(λ) > 0, define a curve

• h(t) = tλ for t ∈ [0, 1],

• h(t) = λ
(1+h(t−1))d

for t > 1.

If ℑ(h(t)) ≥ 0 for all t ≥ 0, then ZG(λ) ̸= 0 for all G ∈ Gd+1. (See also Figure 2 for an example of the curve h
in the statement of the theorem. )

Proof. Note that the curve h(t) is continuous since it is continuous at t ≤ 1: this is because at t = 1 we have
limt→1− h(t) = limt→1+ h(t) = λ, and by the recursion h is continuous at t if it is continuous at t − 1. By
continuity and the assumption ℑ(h(t)) ≥ 0 for all t ≥ 0 this implies that the continuous functions arg(h(t)) and
arg(1+ h(t)) are also non-negative for t ≥ 0. The identity arg(h(t)) = arg(λ)− d arg(1+ h(t− 1)) for t ≥ 1 (valid
whenever the right hand side lies in (−π, π]) then implies that arg(1 + h(t− 1)) cannot exceed 1

d arg(λ), because
if t is the infimum of points for which arg(1 + h(t − 1)) > 1

d arg(λ) then the identity gives a contradiction to
arg(h(t+ ϵ)) ≥ 0 for some small enough positive ϵ. Since arg(1+h(t− 1)) ≥ 0, the identity then also implies that

(4.1) 0 ≤ arg(h(t)) = arg(λ)− d arg(1 + h(t− 1)) ≤ arg(λ).

Hence the argument of any point of the curve is contained in [0, arg(λ)].

3This was the result stated in a talk at the Simons Institute for the Theory of Computing, UC Berkeley, on March 18, 2019.
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0.00
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0.10
The h curve for d = 9

= * (d) exp(r(d) (d))

Figure 2: The h curve from Theorem 4.6. We set d = 9, and λ∗(d) is the Shearer threshold described in Theorem 1.1.
θ(d) is chosen to be cos−1 1

d+0.5
, while r(d) := min

{
d log(1 + 1

d
), 2d(d+1) sin2(θ/2)

d2+4(d+1) sin2(θ/2)

}
. The choice of these parameters is

based on their use in the later Theorem 6.1, which applies Theorem 4.6.

In order to define a trapping region, we start by defining the following quantity:

(4.2) τ⋆ := sup{t′ : arg(1 + h(t)) is non-decreasing for all t ∈ [0, t′]}.

Note that τ⋆ ≥ 1. We also allow τ⋆ = ∞, although this cannot really happen. We will now show that the region S
in the upper half plane bounded by the line segments [0, h(1)] and [0, h(τ⋆+1)] and the curve {h(t+ 1)|0 ≤ t ≤ τ⋆}
is a trapping region in the sense of Theorem 4.1. Note that by definition 0 ∈ S, while −1 ̸∈ S (since, from
the observations above, arg z ∈ [0, arg λ] for all z ∈ S). It remains to show that (1) S is convex, and (2)
f(z) = λ/(1 + z)d ∈ S for all z in S.

We start by proving that S is convex. Since the curve h lies in the upper half plane (see eq. (4.1)), this will
follow if we establish the following two facts:

1. arg(h(t)) is non-increasing for t ∈ [1, τ⋆ + 1].

2. The curve {h(t) : t ∈ [1, τ⋆ + 1]} is “turning to the right”. More formally, for any t ∈ [1, τ⋆ + 1), there is a
small enough neighborhood Nt of t such that for t1 ≤ t2 in Nt, arg(D− (h) (t1)/D

+ (h) (t2)) ≥ 0. Here D+

and D− denote the right and left one-sided derivatives.

We first prove item 1. This follows since in the interval t ∈ [1, τ⋆ + 1], we have arg(h(t)) = arg(λ)− d arg(1 +
h(t− 1)), which is non-increasing by the definition of τ⋆.

We now consider item 2. Note that h(t) is continuously differentiable in the neighborhood of any t which
is not an integer. Further, for such a t, we have h′(t) = −λd

(1+h(t−1))d+1h
′(t − 1). We now prove the claim for

such t (i.e., non-integral t) using an induction on ⌈t⌉. In the base case, when ⌈t⌉ = 1, we have h′(t) = λ, so
arg(D− (h) (t1)/D

+ (h) (t2)) = arg(1) = 0 for t1, t2 in any small enough neighborhood of t. In the inductive case,
we have, for t1 ≤ t2 in a small enough neighborhood of t,

(4.3) arg
D− (h) (t1)

D+ (h) (t2)
= (d+ 1) arg

1 + h(t2 − 1)

1 + h(t1 − 1)
+ arg

D− (h) (t1 − 1)

D+ (h) (t2 − 1)
.
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The claim now follows since the first term is non-negative due to the definition of τ⋆, while the second is non-
negative by the inductive hypothesis.

We now consider the case of integral t. Here, we find via a direct induction that

(4.4) arg
D− (h) (t)

D+ (h) (t)
= arg

D− (h) (1)

D+ (h) (1)
= arg

λ

(−dλ2)
= π − arg λ ≥ 0.

The proof for item 2 now follows from the already proved case of non-integral t and the fact that the derivative
h′ is a well-defined continuous function except at integral t. As noted earlier, this proves that S is convex. In
fact, from the definition of τ⋆, we also obtain that 0 = arg(1 + h(0)) ≤ arg(1 + z) ≤ arg(1 + h(τ⋆)) for all z ∈ S.
Since arg(1 + h(t)) is non-decreasing for t ∈ [0, τ⋆] and S is convex, it follows that if a line is drawn from z ∈ S
in the direction of −1, it will intersect the boundary of S at some point h(t) for 0 ≤ t ≤ τ⋆.

We can now prove that S satisfies the remaining requirement for being a trapping region, which is, that it is
closed under application of f . Consider any point z ∈ S. As noted above, if a line is drawn from z towards −1,
then it must intersect the boundary of S on a point z̃ of the form h(t) for t ∈ [0, τ⋆]. Hence, there is a point
z̃ = h(t), t ∈ [0, τ⋆] such that arg(1 + h(t)) = arg(1 + z) and |1 + h(t)| ≤ |1 + z|. By construction,

(4.5) f(h(t)) =
λ

(1 + h(t))d
= h(t+ 1)

which is still in S (since t ∈ [0, τ⋆]). Finally, f(z) = λ
(1+z)d

has the same argument as h(t + 1), and possibly
smaller modulus, hence f(z) ∈ S by convexity (since 0 ∈ S).

Thus, S as defined above is a trapping region, and this concludes the proof.

Remark 4.7. We note that the proof of Theorem 4.6 also indicates a numerical approach to check this criterion,
see Figure 3. We do not have to track the curve for t → ∞. It is sufficient to compute h(t) for t ∈ [0, τ⋆ + 1] as
defined above. If arg(1 + h(τ⋆)) ≤ 1

d arg(λ) and arg(1 + h(t)) is non-increasing for t ∈ [τ⋆, τ⋆ + 1], the argument
above implies that S is a trapping region and the entire curve is contained in the upper half-plane.

Remark 4.8. We also remark that it is possible to prove Theorem 4.6 from Theorem 4.5 by considering the curve
from the proof of Theorem 4.6 on the interval [0, τ⋆]. The curve in Theorem 4.5 represents the portion of the
curve in Theorem 4.6 “visible from −1”; i.e., the points h(t) that are not −1-covered by any other point h(t′).

5 Derivation of the Sokal conjecture
Here we provide a short proof using Theorem 4.5 that there are no complex roots close to the positive real axis,
up to the critical point λ∗ = dd

(d−1)d+1 . This was first proved by Peters and Regts [26].

Theorem 5.1. For every fixed d ≥ 2, and every ϵ ∈ (0, 1), there is an ϵ′ > 0 such that ZG(λ) ̸= 0 for G of
maximum degree at most d+ 1 when λ = (1− ϵ) (d−ϵ)d

(d−1)d+1 exp(ιθ) with |θ| ≤ ϵ′.

Proof. Note that z0 := 1−ϵ
d−1 is a fixed point of the map z 7→ λ0

(1+z)d
where λ0 = (1 − ϵ) (d−ϵ)d

(d−1)d+1 . Note also that
λ0 → λ∗ as ϵ → 0. We consider two complex conjugate points z± = 1−ϵ±ιδ

d−1 for some δ > 0 to be fixed later. We
have λ = λ0 exp(ιθ) where θ > 0 is small enough (as a function of ϵ and δ) to be fixed later. We will now use
Theorem 4.5 for the curve defined by

(5.1) h(t) =

{
−tz− if t ∈ [−1, 0)

tz+ if t ∈ [0, 1]
.

The first three conditions required of the curve h in Theorem 4.5 are satisfied by construction (see fig. 4 for an
example sketch). We now proceed to verify the fourth condition. To start with, a direct computation reveals that

f(z−) =
λ

(1 + z−)d
= (1− ϵ)

(d− ϵ)d

(d− 1)d+1

(
1 +

1− ϵ− ιδ

d− 1

)−d

exp(ιθ)(5.2)

=
1− ϵ

d− 1

(
1− ιδ

d− ϵ

)−d

exp(ιθ).(5.3)
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Figure 3: A numerical exploration of points that satisfy the condition of Theorem 4.6 for d = 9. Colors represent the
value of ⌈τ⋆⌉.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.004

0.002

0.000

0.002

0.004

0

z

z +

f(0)

f(z )

f(z + )

h
f(h)

Figure 4: A sketch of the h curve in the proof of Theorem 5.1. In the notation of the theorem, the sketch corresponds to
d := 3, ϵ := 0.1 and δ := 0.01. θ has been set to 0 for simplicity. As before, f is the map z 7→ λ/(1 + z)d. The aspect
ratio in the figure has been chosen to be different from 1 to accentuate features close to the real line.

We have arg(1− δi
d−ϵ ) = − tan−1( δ

d−ϵ ) = − δ
d−ϵ +O(δ2). Therefore,

(5.4) arg(f(z−)) = −d arg
(
1− ιδ

d− ϵ

)
+ θ =

dδ

d− ϵ
+O(δ2) + θ.

In comparison,

(5.5) arg z+ = tan−1

(
δ

1− ϵ

)
=

δ

1− ϵ
+O(δ2).

Thus, for all δ > 0 small enough (depending on ϵ and d) and all θ ≥ 0 small enough (depending on d ≥ 2, δ and
ϵ), we have

(5.6) arg z+ > arg f(z−) > 0.

Observe also that |f(z−)| < | 1−ϵ
d−1 | < |z+|. This implies that f(z−) is −1-covered by some point on the line

segment from 0 to z+, and in particular, 0 ≤ arg(1 + f(z−)) ≤ arg(1 + z+). An essentially symmetric argument
shows that f(z+) is also −1-covered by some point on the line segment between 0 and z−, and in particular,
0 ≥ arg(1 + f(z+)) ≥ arg(1 + z−). The inequality analogous to eq. (5.6) for f(z+) is (again, provided that θ has
small enough magnitude)

(5.7) arg z− < arg f(z+) < 0.

For later use, we also record the following computation. For small positive θ and δ, we have, by a direct
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computation,

arg
f(z+)

1 + f(z+)
= −d(d− 1)

(d− ϵ)2
δ +O(δ2) +O(θ), and(5.8)

arg
z+

1 + z+
=

d− 1

(d− ϵ)(1− ϵ)
δ +O(δ2).(5.9)

In particular, since d ≥ 2, we have

(5.10) arg
f(z+)

1 + f(z+)
+ arg

z+
1 + z+

≥ 0

for all small enough δ > 0 and θ > 0. At this point, we specify our choice of θ and δ: we choose δ < 1 and
θ < π/10 positive and small enough that (i) eq. (5.6), its analogue eq. (5.7) for f(z+), and eq. (5.10) are all
valid, and (ii) |arg z+| = |arg z−| ≤ π/10. In the following, we use these conditions imposed on δ and θ without
comment.

We now claim that the curve {f(tz+) : 0 ≤ t ≤ 1} is also −1-covered by the curve h defined above. To prove
this, we define γ(t) := 1 + f(tz+), and note that we have (for s ∈ (0, 1)) d

ds arg γ(s)|s=t = ℑγ′(t)
γ(t) .

We begin by noting that as t increases from 0 to 1, arg f(tz+) decreases from θ = arg f(0) to arg f(z+) > arg z−
(since arg (1 + tz+) increases as t increases), while |f(tz+)| decreases from λ0 to |f(z+)| < |z−| (again, since
|1 + tz+| increases as t increases). We now compute

(5.11)
d
dt

arg γ(t) = ℑγ
′(t)

γ(t)
= −dℑ

(
z+

1 + tz+
· f(tz+)

1 + f(tz+)

)
.

We will now show that d
dt arg γ(t) ≤ 0 for all t ∈ (0, 1). For any particular t, if arg f(tz+) ≥ 0, then

eq. (5.11) immediately implies that d
dt arg γ(t) < 0 (since arg z+ > 0). For any other t ∈ (0, 1), we must

have arg f(z+) ≤ arg f(tz+) ≤ 0. We then get

arg
f(tz+)

1 + f(tz+)
= tan−1 sin arg f(tz+)

|f(tz+)|+ cos arg f(tz+)
(5.12)

≥ tan−1 sin arg f(z+)

|f(tz+)|+ cos arg f(z+)
since arg f(tz+) ≥ arg f(z+),(5.13)

≥ tan−1 sin arg f(z+)

|f(z+)|+ cos arg f(z+)
since |f(tz+)| ≥ |f(z+)| and arg f(z+) ≤ 0,(5.14)

= arg
f(z+)

1 + f(z+)
≥ − arg

z+
1 + z+

.(5.15)

Here, the last inequality comes from eq. (5.10). Combining this with the observation that arg z+
1+tz+

is strictly
decreasing in t for t ∈ (0, 1), and substituting in eq. (5.11), we get the required claim that d

dt arg γ(t) ≤ 0 for all t
in (0, 1). Thus, arg(1 + f(tz+)) decreases as t increases from 0 to 1. An essentially symmetrical argument shows
that arg(1 + f(tz−)) increases as t increases from 0 to 1. Since we already established that f(z+) and f(z−) are
−1-covered by h, and also that arg z− < arg f(h(t)) < arg z+ for all t ∈ [−1, 1], this establishes that the whole
curve {f(h(t)) | t ∈ [−1, 1]} is −1-covered by h.

We thus see that the fourth condition of Theorem 4.5 is also satisfied for the curve h. We conclude therefore
that ZG(λ) ̸= 0 for all graphs G of maximum degree at most d+ 1.

6 A new zero-free region in the vicinity of the critical point
In this section, we use Theorem 4.6 to establish a new zero-free region for the independence polynomial in the
vicinity of the negative real line. The result in this section applies more generally to points in the left half-plane
away from the imaginary axis; we consider points close to the imaginary axis in Section 7.

We recall that λ∗ = λ∗(d) := dd

(d+1)d+1 is the Shearer threshold. Consider the boundary ∂Ud of the “cardioid-
shaped” region Ud (eq. (1.1)) of Peters and Regts [26]. Near the negative real line, one can calculate that the curve
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0°

90°

180°

270°

* (d)

0

Figure 5: The red region is the zero-free region in Theorem 6.1, plotted here for d = 9 (i.e., for graphs of degree at most
10). The black circle around the origin has radius λ∗(d), and the markings are according to polar coordinates.

∂Ud follows a power law of the following form. Let RU (θ) denote the polar equation of ∂Ud, and let (XU (θ), YU (θ))
denote the corresponding Cartesian coordinates (RU (θ) cos θ,RU (θ) sin θ). In the vicinity of the point −λ∗(d) on
∂Ud, a somewhat tedious but straightforward calculation shows that for small ϕ,

(6.1) XU (π + ϕ) = −λ∗(d)− cd · |ϕ|2/3 + o(|ϕ)|2/3),

where cd is a positive constant depending only on d. While we cannot prove that the true root-free region
matches this exact power law, we have the following result which gives a weaker power law (see fig. 5 for a
pictorial description).

Theorem 6.1. Fix an integer d ≥ 2. If λ = −λ∗ exp(r − ιθ), where θ ∈ (0, cos−1 1
d+0.5 ] and 0 ≤ r ≤

min
{
d log(1 + 1

d ),
2d(d+1) sin2(θ/2)

d2+4(d+1) sin2(θ/2)

}
, then ZG(λ) ̸= 0 for any graph G of degree at most d+ 1.

Before proving the theorem, we briefly describe the power law (analogous to the one stated above for ∂Ud)
that the region described in the theorem follows. Again, we denote by R̃(θ) the polar equation of the boundary
of the region described by the theorem, and let (X̃(θ), Ỹ (θ)) denote the corresponding Cartesian coordinates
(R̃(θ) cos θ, R̃(θ) sin θ). In the vicinity of the point −λ∗(d) = RU (π) = R̃(π), a similar computation as above then
shows that for small ϕ,

(6.2) X̃(π + ϕ) = −λ∗(d)− c̃d · |ϕ|2 + o(|ϕ|2),

where c̃d = λ∗(d)
2d is a positive constant depending only on d.

Proof of Theorem 6.1. We use Theorem 4.6. In particular, we will show that the curve h(t) defined there lies in
the upper half plane {z|ℑz ≥ 0} for every t ≥ 0. (See Figure 2 for an example of this curve for a particular setting
of the parameters d, r and θ.) In fact, we will prove by an induction on ⌈t⌉ that for all t ≥ 0,
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1. |h(t)| ≤ τ := 1
d+1−δ ≤ 1

d+0.5 ≤ 1
2 , and

2. arg h(t) ∈ [0, π − θ],

where δ = δ(d, r, θ) < 1/2 is a fixed non-negative constant. We first verify these for the base case ⌈t⌉ = 1. In this
case, we have |h(t)| = t |λ| ≤ exp(r) dd

(d+1)d+1 ≤ 1
d+1 ≤ τ since r ≤ d log(1+1/d). Further, arg h(t) = arg λ = π−θ.

We now proceed with the induction. For ease of notation, we denote |h(t− 1)| as ρ and arg h(t− 1) as π− α.
From the induction hypothesis, we have ρ ≤ τ and α ∈ [θ, π]. This gives

|1 + h(t− 1)| =
√
1 + ρ2 − 2ρ cosα ≥

√
1 + ρ2 − 2ρ cos θ

≥
√
1 + τ2 − 2τ cos θ = (1− τ)

√
1 + 2τ · 2 sin

2(θ/2)

(1− τ)2

≥ d− δ

d+ 1− δ
·

√
1 +

4(d+ 1) sin2(θ/2)

d2
.(6.3)

Here, for the second inequality we use the fact that the quantity inside the square-root is decreasing in ρ since
ρ ≤ τ ≤ 1

d+0.5 ≤ cos θ, since θ ∈ [0, cos−1(1/(d + 0.5))]. Similarly, the last inequality uses τ ≥ 1
d+1 . Now, note

that since arg h(t− 1) ∈ [0, π], |h(t− 1)| ≤ τ ≤ 1 and |1 + h(t− 1)| > 0, we have

(6.4) arg(1 + h(t− 1)) ≥ 0,

and also

arg(1 + h(t− 1)) ≤ ℑh(t− 1)

1 + ℜh(t− 1)
=

ρ sinα

1− ρ cosα
≤ τ sinα

1− τ cosα

=
sinα

d+ 1− δ − cosα
.(6.5)

From this, using the fact that d sinα+ cosα ≤
√
d2 + 1 for α ∈ [0, π], we deduce that

(6.6) arg(1 + h(t− 1)) ≤ 1/d,

provided that δ ≤ 1/2. Now, we have

(6.7) arg h(t) = arg λ− d arg(1 + h(t− 1)) = π − θ − d arg(1 + h(t− 1)),

so that eqs. (6.4) and (6.6) imply item 2 of the induction hypothesis (since θ ≤ π/2 so that π − θ − 1 ≥ 0). For
item 1, we use eq. (6.3) to calculate

log |h(t)|+ log(d+ 1− δ) = r + d log d− (d+ 1) log(d+ 1)− d log |1 + h(t− 1)|+ log(d+ 1− δ)

≤ r + (d+ 1) log

(
1− δ

d+ 1

)
− d log

(
1− δ

d

)
(6.8)

− d

2
log

(
1 +

4(d+ 1) sin2(θ/2)

d2

)
(6.9)

< r − δ +
dδ

d− δ
− 2d(d+ 1) sin2(θ/2)

d2 + 4(d+ 1) sin2(θ/2)
(6.10)

= r − 2d(d+ 1) sin2(θ/2)

d2 + 4(d+ 1) sin2(θ/2)
+

δ2

d− δ
≤ 0,(6.11)

provided r ≤ 2d(d+1) sin2(θ/2)
d2+4(d+1) sin2(θ/2)

and δ is chosen to be a small enough non-negative constant depending only upon
r, d and θ (note that the second inequality above is strict when δ is positive).
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Figure 6: A sketch of the h curve in the proof of Theorem 7.1. In the notation of the theorem, the sketch corresponds to
d := 3 and φ := 2π/3, and r has been chosen to be 0.99 times the value on the right hand side of eq. (7.1). As before, f
is the map z 7→ λ/(1 + z)d.

7 A zero-free region close to the imaginary axis
The analysis in the previous section was devoted to understanding the behavior of the zero-free region close to
the negative real line. We now turn to understanding the behavior of the zero region close to the imaginary axis.
The theorem below, while it covers all arguments in the third argument, is most interesting when the argument
of the activity λ is closer to π/2 than to π.

Theorem 7.1. Let d ≥ 2. Suppose that λ = reιφ where φ ∈ [π2 , π) and

r <
sin(φ/d) sind(φ)

sin((d− 1)φ/d− dψ∗) sind(φ− ψ∗)
,(7.1)

where ψ∗ = max
(

1
d+1 ((2− 1/d)φ− π) , 0

)
. Then ZG(λ) ̸= 0 for any graph of degree at most d+ 1.

Proof. For a given φ, let us choose r∗, λ∗ so that arg(1 + λ∗) = φ/d and arg(λ∗) = arg(λ) = φ. Note that for
t ∈ [0, 1], φ/d ≥ arg(1 + tλ∗) ≥ 0. As before denote f(z) = λ

(1+z)d
.

We claim that the function h(t) = tλ∗ satisfies the conditions of Theorem 4.5. The first three conditions of
the theorem are satisfied trivially, thus we only have to show that the points f(tλ∗), t ∈ [0, 1] are −1-covered by
the segment

(7.2) {tλ∗ : t ∈ [0, 1]}.

Further, as arg(f(tλ∗)) = φ− d arg(1 + tλ∗) decreases monotonically from φ to 0 as t goes from 0 to 1, it would
be sufficient to prove that arg(1 + f(tλ∗)) is at most φ/d for all t ∈ [0, 1). (See the example sketch in fig. 6.)

To prove this, we investigate the curve γ(t) = 1 + f(tλ∗) for t ∈ [0, 1]. Note first that we have
0 ≤ arg(γ(t)) ≤ arg(f(tλ∗)) ≤ φ for all t ∈ [0, 1]. Further, for all t ∈ [0, 1), we have (here, we denote by
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0
1

γ(t∗)

φ/d

φ− dα

Figure 7: Angles appearing in eq. (7.6).

γ′(t) the right one-sided derivative of γ at t)

(7.3) γ′(t) = − dλλ∗
(1 + tλ∗)d+1

.

Since φ/d ≥ arg(1 + tλ∗) ≥ 0 and arg(−λλ∗) = 2φ− π, we have that as t increases from 0 to 1,

(7.4) arg γ′(t) = 2φ− π − (d+ 1) arg(1 + tλ∗)

decreases monotonically from 2φ− π ∈ [0, π) to (1− 1/d)φ− π ≥ −π + φ/d.
Next, we compute that d

ds arg γ(s)|s=t = ℑγ′(t)
γ(t) has the same sign as sin(arg γ′(t) − arg γ(t)): note that the

existence of this derivative follows since γ(t) and γ′(t) are non-zero, and since arg γ(t) ∈ [0, π) for t ∈ [0, 1).
We now claim that arg(γ(t)) ≤ φ/d for all t ∈ [0, 1]. For the sake of contradiction let us assume that arg γ(t)

can be bigger than φ/d. As arg γ(1) = 0, we then see that there must exist a t∗ ∈ [0, 1) such that arg γ(t∗) = φ/d
and d

ds arg γ(s)|s=t∗ ≤ 0. Using the fact (noted just below eq. (7.4)) that π > arg γ′(t∗) ≥ −π + φ/d and the
expression for the sign of d

ds arg(γ(s))|s=t∗ noted above, these conditions can be written as

(7.5) arg γ(t∗) = φ/d and arg γ′(t∗) ≤ φ/d.

Define α := arg(1 + t∗λ∗) ≥ 0. Equation (7.5), along with the expression for arg γ′(t) in eq. (7.4), and the fact
arg γ(t∗) ≤ arg f(t∗λ∗) = ϕ− dα noted above, gives

(7.6) α ≤ φ

d
(1− 1/d) and α ≥ ψ∗.

The standard sine rule applied to the triangle with vertices 0, 1, γ(t∗) gives us that (see fig. 7)

(7.7)
|γ(t∗)− 1|
sin arg γ(t∗)

=
1

sin (arg (γ(t∗)− 1)− arg γ(t∗))
.

Using the facts that (i) |γ(t∗)− 1| = |f(t∗λ∗)| = r/ |1 + t∗λ∗|d, (ii) arg (γ(t∗)− 1) = arg f(t∗λ∗) = φ − dα, and
(iii) arg γ(t∗) = φ/d, we get

sin(φ/d) =
r sind(φ− α)

sind φ
sin((1− 1/d)φ− dα)

< sin(φ/d)
sind(φ− α) sin((1− 1/d)φ− dα)

sind(φ− ψ∗) sin((1− 1/d)φ− dψ∗)
.(7.8)

But, in conjunction with eq. (7.6), this contradicts the fact that the function

(7.9) x 7→ sind(φ− x) sin((1− 1/d)φ− dx)
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is a strictly decreasing function on (ψ∗, (1− 1/d)φ/d), since its derivative is

(7.10) −d sind−1(φ− x) · sin ((2− 1/d)φ− (d+ 1)x) < 0.

Here, we use the condition x ∈ (ψ∗, (1 − 1/d)φ/d) and the definition of ψ∗ as max
(

1
d+1 ((2− 1/d)φ− π) , 0

)
to

deduce the last inequality.

8 Zero free regions in the right half plane
In this section, we use the framework of Section 4 to establish a zero free region for the independence polynomial
in the right half plane. The results here improve upon those in the manuscript [9] when λ is close to the real axis
and match those results when λ is on the imaginary axis: see Remark 8.3 for a more detailed discussion.

We start with some notation. For any integer d ≥ 2, let θd ∈ (π/(2(d+ 1)), π/2) be the unique solution of

(8.1) tan(2x/d) =
tan((π/2− x)/d)

1− tan((π/2−x)/d)
tan(x)

.

To see that θd exists and is unique, we first note that the left hand side of the above equation is monotone
increasing while the right hand side is monotone decreasing, so that it has at most one solution in the given
interval. To show existence, we note that as x ↓ π/(2(d+ 1)), we have

(8.2) lim
x↓π/(2(d+1))

tan(2x/d) = tan(π/(d(d+ 1))) < lim
x↓π/(2(d+1))

tan((π/2− x)/d)

1− tan((π/2−x)/d)
tan(x)

= ∞,

while as x ↑ π/2 we have

(8.3) lim
x↑π/2

tan(2x/d) = tan(π/d) > lim
x↑π/2

tan((π/2− x)/d)

1− tan((π/2−x)/d)
tan(x)

= 0.

Together, these show that there is a unique solution θd, such that for all x such that π/(2(d + 1)) < x < θd, we
have

(8.4)
tan(2x/d)

sinx
<

tan((π/2− x)/d)

sin(x)− cos(x) tan((π/2− x)/d)
,

while for θd < x < π/2,

(8.5)
tan(2x/d)

sinx
>

tan((π/2− x)/d)

sin(x)− cos(x) tan((π/2− x)/d)
,

For later comparison with results of [9], we also note that at x = π/6 we have (assuming d ≥ 3)

(8.6)
tan(2x/d)

sinx
=

tan(π/(3d))

sin(π/6)
<

tan(π/(3d))

sin(π/6)− cos(π/6)tan(π/(3d))
,

which implies that π/6 < θd for all d ≥ 2 (this conclusion is trivially true for d = 2). We are now ready to state
the main result describing zeros in the right half plane.

Theorem 8.1. Let θ ∈ (0, π/2] and 0 ≤ r ≤ r1,d(θ), where

(8.7) r1,d(θ) =

{
tan(2θ/d)
sin(θ) if θ ≤ θd

tan((θ+β∗)/d)
sin(θ) if θ > θd

,

and where β∗ ∈ (0, θ) is defined as the unique solution of

(8.8)
tan((θ + x)/d)

sin(θ)
=

tan((π/2− θ)/d)

sin(x)− cos(x) tan((π/2− θ)/d)
,

when θ ∈ [θd, π/2) and as β∗ := 0 when θ = π/2. If λ = r exp(ιθ), then ZG(λ) ̸= 0 for any graph G with degree
at most d+ 1.
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Figure 8: An example sketch of the h curve from Lemma 8.2. In the notation of the lemma, the sketch corresponds to
d := 3, β := θ := π/(2(d + 1)), ψ := 2θ/d, r2 := r := tan(2θ/d)/ sin θ and λ := r exp(ιθ). As before, f is the map
z 7→ λ/(1 + z)d.

The proof of this theorem is based on the following technical lemma, which employs the framework of
Theorem 4.5.

Lemma 8.2. Let λ = r exp(ιθ) with θ ∈ (0, π/2] and r > 0. Suppose that there exist r2 ≥ 0 and β, ψ ∈ [0, π/2)
satisfying

1. θ − dψ ≥ −β,

2. r2 ≥ r,

3. r sin(θ) ≤ tanψ,

4. θ + d arg(1 + r2 exp(ιβ)) ≤ π/2, and

5. θ ≥ β.

Then the curve

(8.9) h(t) :=

{
−t · r2 exp(−ιβ) if t ∈ [−1, 0], and

t · tan(ψ)ι if t ∈ [0, 1]

satisfies the conditions of Theorem 4.5.

Proof. Let A denote the point r2 exp(−ιβ), B the point ι tanψ, and O the origin. (See fig. 8 for an example
sketch.) Since h(0) = 0, h satisfies the first condition of Theorem 4.5. Further, the curve h(t) traverses the
directed line segment AO as t varies from −1 to 0 and the line segment OB as t varies from 0 to 1, and this
establishes the second condition of Theorem 4.5 (since β ∈ [0, π/2) and ψ ≥ 0).

A convex combination of any two points h(t1) and h(t2), where t1 < t2, lies either on the curve h (when
0 ̸∈ (t1, t2)), or on the boundary of the triangle with vertices h(t1) ∈ AO, h(0) = 0 and h(t2) ∈ OB (when
0 ∈ (t1, t2)). It is therefore −1 covered by h(t) for some t ∈ [t1, t2]. This establishes the third condition of
Theorem 4.5.

Note that the segment OB of the curve h −1-covers every point in the set

(8.10) L1 := {z : ℜz ≥ 0 and 0 ≤ ℑz ≤ ℑB = tanψ ≥ 0} ,
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while the segment AO −1-covers every point in the set

(8.11) L2 := {z : −π/2 < −β ≤ arg z ≤ 0 and ℑz ≥ ℑA = −r2 sinβ ≤ 0} .

It remains to verify the fourth condition of Theorem 4.5, which is that for every t ∈ [0, 1], f(h(t)) is −1-covered
by some point on the curve h. We do so by proving that for all t ∈ [−1, 1], f(h(t)) ∈ L1 ∪ L2.

Consider first a point f(h(t)) for t ∈ [0, 1]. Note that as t increases from 0 to 1, arg(1 + h(t)) increases from
0 to ψ. From item 1 in the statement of the lemma, we thus get that arg f(h(t)) ∈ [−β, θ], while item 2 gives
|f(h(t))| ≤ r ≤ r2. Together with item 3, these imply that for t ∈ [0, 1],

1. 0 ≤ ℑf(h(t)) ≤ r sin θ ≤ tanψ (when arg f(h(t)) ≥ 0), and

2. 0 ≥ ℑf(h(t)) ≥ −r sinβ ≥ −r2 sinβ (when arg f(h(t)) ≤ 0).

Thus, for all t ∈ [0, 1], f(h(t)) ∈ L1 ∪ L2, and thus is −1-covered by the curve h.
Now, consider a point f(h(t)) for t ∈ [−1, 0]. Define g(t) := f(h(t)). From item 4, we get that

arg g(t) ∈ [θ, π/2] for all t ∈ [−1, 0]. We also have g(0) = λ ∈ L1 (where the last inclusion follows from
item 3). Thus, in order to establish that g(t) ∈ L1 for all t ∈ [−1, 0], it suffices to prove that k(t) := ℑg(t)
has a non-negative right derivative at every t ∈ [−1, 0). The latter in turn would follow if we establish that
arg g′(t) ∈ [0, π) for all t ∈ [−1, 0), where g′(t) denotes the right derivative of g at t.

We now compute, for t ∈ [−1, 0),

(8.12) g′(t) = d · r2 ·
λ

(1− t · r2 exp(−ιβ))d
exp(−ιβ)

(1− t · r2 exp(−ιβ))

so that (after multiplying denominators with conjugates and ignoring positive real factors)

(8.13) arg g′(t) = arg

[exp(ιθ) · (1− t · r2 exp(ιβ))d
]︸ ︷︷ ︸

=:µ

· [exp(−ιβ)− t · r2]︸ ︷︷ ︸
=:ν

 .

Since t ∈ [−1, 0), item 4 in the statement of the lemma then implies that argµ ∈ [θ, π/2]. Further, arg ν ∈ [−β, 0].
Together with θ ≥ β (item 5 in the statement of the lemma), this implies that arg g′(t) = arg (µ · ν) ∈ [0, π/2] ⊆
[0, π). Given the above discussion about the relationship between the functions k and g, this completes the
proof.

With the above lemma, we can now complete the proof of Theorem 8.1.

Proof of Theorem 8.1. We will prove that if r ≤ r1,d(θ), then we can find β, ψ ∈ [0, π/2) and r2 > 0, such that
the conditions of Lemma 8.2 hold. By applying Theorem 4.5 for the curve h obtained from the lemma, we get
the desired statement.

1. Consider first the case θ ≤ θd. Then, let

(8.14) β = θ, ψ =
2θ

d
, r2 = argmax

t≥0

(
arg(1 + t exp(ιθ)) ≤ π/2− θ

d

)
≤ ∞.

Items 1 and 3 to 5 in Lemma 8.2 are satisfied by construction (as discussed below, we might have to redefine
r2 to make sure it is finite). We now show that item 2 holds:

• If θ ≤ π/(2(d + 1)), then r2 = ∞ ≥ r. In this case, we redefine r2 = r, and all of the conditions
continue to hold.

• Otherwise θ > π/(2(d+1)). In this case, we have r2 = tan((π/2−θ)/d)
sin(θ)−cos(θ) tan((π/2−θ)/d) ≥

tan(2θ/d)
sin(θ) = r1,d(θ) ≥

r, where the first inequality follows from eq. (8.4) since π/(2(d+ 1)) < θ ≤ θd.
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2. Consider now the case θ > θd. Then let β be β∗ ∈ [0, θ] as described in the statement of the theorem. By
definition, β∗ = 0 when θ = π/2, so we first show that even when θ ∈ (θd, π/2), this β∗ exists and is unique.
To see this, note that

(8.15) γ1(x) :=
tan((θ + x)/d)

sin(θ)

is continuous, monotone increasing and positive on [0, θ] (when 0 < θ < π/2). On the other hand,

(8.16) γ2(x) :=
tan((π/2− θ)/d)

sin(x)− cos(x) tan((π/2− θ)/d)

is continuous in [0, (π/2− θ)/d)) ∪ ((π/2− θ)/d, θ], negative in [0, (π/2− θ)/d)), and monotone decreasing
in ((π/2− θ)/d, θ]. Further, in the interval ((π/2− θ)/d, θ] we also have

(8.17) γ1((π/2− θ)/d) <∞, and lim
x↓(π/2−θ)/d

γ2(x) = ∞,

at the left endpoint, while at the right endpoint, θ > θd implies γ1(θ) > γ2(θ) (due to eq. (8.5)). The above
observations imply that when θ ∈ (θd, π/2), γ1(x) = γ2(x) has exactly one solution β∗ ∈ [0, θ], which lies in
((π/2− θ)/d, θ].

Then, we define

(8.18)

β = β∗, ψ = (θ + β)/d,

r2 =

argmax
t≥0

(
arg(1 + t exp(ιβ)) ≤ π/2−θ

d

)
<∞ when θ ∈ (θd, π/2),

tan(π/(2d)) when θ = π/2.

Note that r2 is finite when θ ∈ (θd, π/2) since β = β∗ > (π/2− θ)/d.

Again, items 1 and 3 to 5 in Lemma 8.2 are satisfied by construction. We now show that item 2 holds. To
see this, we first note that when θd < θ < π/2, item 2 holds since in that case, eq. (8.18) and the definition
of β∗ give r2 = tan((π/2−θ)/d)

sin(β∗)−cos(β∗) tan((π/2−θ)/d) = tan((θ+β∗)/d)
sin(θ) = r1,d(θ) ≥ r. In the remaining case θ = π/2,

item 2 holds since in that case, eq. (8.18) gives again r2 = tan(π/(2d)) = r1,d(π/2) ≥ r.

Remark 8.3. We remark that the zero-free region established in Theorem 8.1 contains the zero-free region
described in the manuscript [9] when arg λ = θ ≤ θd (recall also from the paragraph just before the statement
of Theorem 8.1 that θd is always greater than π/6). For such θ, the above theorem gives zero-freeness for
all λ with |λ| < tan(2θ/d)/ sin(θ) and arg(λ) = θ. On the other hand, the zero-free region in Theorem 1.4
of [9] requires at least that |λ| ≤ tan(π/(2d)). But when d ≥ 2 and θ ∈ (0, π/2), elementary arguments
involving the convexity of the function θ 7→ tan(2θ/d) − sin(θ) tan(π/(2d)) in the interval (0, π/2) imply that
tan(π/(2d)) < tan(2θ/d)/ sin(θ), showing that Theorem 8.1 gives a larger zero-free region. For the case θ = π/2,
we compute directly that r1,d(π/2) = tan(π/(2d)).

For the case θd < arg λ < π/2, the zero-free region in [9] has only an implicit description, and numerical
calculations show that even in this case, the zero free region described in Theorem 8.1 is better than the one in
[9], except possibly in the close vicinity of θ = π/2.
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