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Abstract

The famous k-means++ algorithm of Arthur and Vassilvitskii [SODA 2007] is the most
popular way of solving the k-means problem in practice. The algorithm is very simple: it
samples the first center uniformly at random and each of the following k − 1 centers is then
always sampled proportional to its squared distance to the closest center so far. Afterward,
Lloyd’s iterative algorithm is run. The k-means++ algorithm is known to return a Θ(log k)
approximate solution in expectation.

In their seminal work, Arthur and Vassilvitskii [SODA 2007] asked about the guarantees for
its following greedy variant: in every step, we sample ` candidate centers instead of one and
then pick the one that minimizes the new cost. This is also how k-means++ is implemented in
e.g. the popular Scikit-learn library [Pedregosa et al.; JMLR 2011].

We present nearly matching lower and upper bounds for the greedy k-means++: We prove
that it is an O(`3 log3 k)-approximation algorithm. On the other hand, we prove a lower bound of
Ω(`3 log3 k/ log2(` log k)). Previously, only an Ω(` log k) lower bound was known [Bhattacharya,
Eube, Röglin, Schmidt; ESA 2020] and there was no known upper bound.
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1 Introduction

This paper is devoted to analyzing a natural and frequently-used greedy variant of the famous k-
means++ clustering algorithm [AV07]. The difference between k-means++ and its greedy variant
is very small: k-means++ samples one center in each step while greedy k-means++ samples `
candidate centers and then selects the one that decreases the current cost the most. While it is
well known that the k-means++ algorithm is Θ(log k)-approximate, analyzing its greedy variant
remained wide open. In this paper we show that greedy k-means++ is O(`3 log3 k)-approximate.
Suprisingly, this is nearly tight. Specifically, we prove a lower bound of Ω(`3 log3 k/ log2(` log k)).

Clustering: Clustering is one of the most important tools in unsupervised machine learning. The
task is to divide given input data into clusters of neighboring data points. There are many ways of
formalizing that task, but one of the most popular ones is the k-means problem.

In the k-means problem, we are given a set of points X ⊆ Rd, as well as a parameter k. We are
asked to find a set of k centers K ⊆ Rd that minimizes the sum of squared distances of points of X
to their respective closest centers. Namely, if we define the cost of a point x with respect to a set
of centers C as ϕ(x,C) := minc∈C ||x− c||22, we wish to find a set C with |C| = k that minimizes
the expression ϕ(X,C) :=

∑
x∈X ϕ(x,C).

The k-means problem is NP-hard [ADHP09, MNV09] and also NP-hard to approximate within
some constant factor c > 1 [ACKS15, LSW17]. On the other hand, there is a long line of work
on approximation algorithms, with the current record holder being the algorithm of [CAEMN22]
with approximation ratio of 5.912. Moreover, 1 + ε-approximation can be reached for constant d
[FMS07] and constant k [KSS04].

However, these algorithms are not used in practice. Instead, practitioners rely on the so-called
Lloyd’s heuristic [Llo82] which can start with an arbitrary solution and iteratively makes its cost
smaller, until convergence.

Lloyd’s heuristic is not ideal: it is prone to get stuck in bad local optima [AV07]. In particular,
it is not a constant approximation algorithm. A remedy to this problem is seeding it with a solution
that is already good as the Lloyd’s heuristic can then only make its cost smaller. In practice, such
a seed can be simply a random subset of X of size k. This natural option is for instance one of the
options in the implementation used by Scikit learn [PVG+11] or R [R C13]. Such an approach does
not lead to any approximation ratio guarantees; its approximation ratio can be arbitrarily bad in
some simple instances, e.g. whenever we have k well-separated clusters lying in one line.

k-means++: A major result of Arthur and Vassilvitskii [AV07, ORSS13] is a simple seeding
algorithm known as k-means++ that both works well in practice and has desirable theoretical
worst-case guarantees.

The k-means++ algorithm works as follows. We sample the set C ⊆ X sequentially, one center
at a time. The first center we sample as a uniform point from X. Each next center is sampled
proportional to its current cost. That is, if Ci is the already constructed set of centers, we sample
x ∈ X as the next one with probability ϕ(x,Ci)/ϕ(X,Ci). The pseudocode is in Algorithm 1.

Algorithm 1 k-means++ seeding
Input: X, k

1: Uniformly sample x ∈ X and set C1 = {x}.
2: for i← 1, 2, 3, . . . , k − 1 do
3: Sample x ∈ X w.p. ϕ(x,Ci)

ϕ(X,Ci)
and set Ci+1 = Ci ∪ {x}.

4: return C := Ck
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Arthur and Vassilvitskii proved that Algorithm 1 is Θ(log k) approximate, in expectation1.
Although this approximation guarantee is not even constant, a benchmark achievable by many other
known polynomial-time algorithms [KMN+04, LS19, ANFSW19], the main point of the analysis is
that we cannot construct an adversarial instance where the Lloyd’s heuristic seeded by k-means++
seeding can be arbitrarily bad, as is the case for e.g. the uniform random seeding. On practical
data sets, the k-means++ seeding gives consistently better results than the random seeding [AV07]
and is implemented in popular machine learning libraries like Scikit-learn [PVG+11].

However, it turns out that the algorithm implemented in the popular Scikit-learn library is
not the basic k-means++ (Algorithm 1), but its greedy variant described in Algorithm 2. This
algorithm in fact comes from the original paper of Arthur and Vassilvitskii [AV07] who mention
that it gives better empirical results. They say that their analysis “do[es] not carry over to this
scenario” and that “it would be interesting to see a comparable (or better) asymptotic result”.

The greedy k-means++ algorithm works as follows. In every step, we sample ` candidate centers
c1i+1, . . . , c

`
i+1 from the constructed distribution, not just one. Next, for each candidate center cji+1

we compute the new cost of the solution ϕ(X,C ∪ {cji+1}) if we add this candidate to our set of
centers. Then we pick the candidate center that minimizes this expression.

Algorithm 2 Greedy k-means++ seeding
Input: X, k, `

1: Uniformly independently sample c11, . . . , c
`
1 ∈ X;

2: Let c1 = arg minc∈{c11,...,c`1}
ϕ(X, c) and set C1 = {c1}.

3: for i← 1, 2, 3, . . . , k − 1 do
4: Sample c1i+1, . . . , c

`
i+1 ∈ X independently, sampling x with probability ϕ(x,Ci)

ϕ(X,Ci)
;

5: Let ci+1 = arg minc∈{c1i ,...,c`i}
ϕ(X,Ci ∪ {c}) and set Ci+1 = Ci ∪ {ci+1}.

6: return C := Ck

In [BERS20], the authors show that Algorithm 2 is Ω(` log k) approximate, in expectation. That
is, the enhanced Algorithm 2 has worse theoretical guarantees than the original Algorithm 1! This
should not, however, be so surprising. In fact, if we think about ` going to infinity, the algorithm
becomes essentially deterministic; in every step, it will simply pick the point that decreases the
cost the most. Such an algorithm heuristically makes sense, but lacks worst-case guarantees2. To
see this, imagine two clusters with many points and a single lonely point in between: taking the
lonely point results in a substantial drop of the cost, but it cannot be part of any solution with
bounded approximation factor.

So, we cannot hope that Algorithm 2 gets better guarantees than Algorithm 1. However, in
the words of Arthur and Vassilvitskii, its guarantees could still be “comparable”. This is the main
result of this paper:

Theorem 1.1. Greedy k-means++ (Algorithm 2) is an O(`3 · log3 k)-approximation algorithm, in
expectation.

On the other hand, we provide the following near-matching lower bound.

Theorem 1.2. For every k and ` ≤ k0.1, there exists a point set X ⊆ Rd for some d ∈ N where
Algorithm 2 outputs Ω(`3 log3 k/ log2(` log k)) approximate solution with constant probability.

1In practice, the algorithm is rerun several times, which boosts the guarantee in expectation to a high probability
guarantee.

2Note that the negative cost −ϕ(X,C) is submodular in C, but because of the negative sign we cannot use the
well-known fact that the greedy algorithm yields a 1− 1/e approximation of the optimum.
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We believe that the Θ̃(`3 log3 k)-approximation3 bound is a truly unexpected twist! However
bizarre it may sound now, we hope to give an adequate intuition behind it in Section 2.

Greedy rule is crucial: The second result of this paper is that the greedy heuristic in Algorithm 2
is in fact crucial to getting polylogarithmic approximation. To this end, we generalize Algorithm 2
by allowing each center to be chosen from ` candidates by an arbitrary rule. The approximation
ratio of this general algorithm becomes polynomial in k, unless we know the specifics of the rule.
Concretely, we prove:

Theorem 1.3 (Informal version of Theorem A.1). There exists a point set X ⊆ Rd and a rule R
such that a variant of Algorithm 2 that uses R instead of the greedy rule is Ω(k1−1/`)-approximate
with constant probability.

This theorem also suggests that the greedy heuristic, among all others, makes a lot of sense!
On the other hand, we get the following upper bound.

Theorem 1.4 (Informal version of Theorem B.1). For any rule R, a variant of Algorithm 2 that
uses R instead of the greedy rule is O(k2−1/` · ` log k)-approximate.

We note that from the perspective of Algorithms with Predictions [MV20], Theorem 1.4 shows
that whatever rule we use to generalize the greedy k-means++ algorithm, we still know that the
algorithm remains somewhat comparable to the optimum solution.

The gap between the lower bound and upper bound of Theorems 1.3 and 1.4 can be tightened if
one analyzes a certain natural stochastic process that can be understood without knowing anything
about k-means(++); we defer the discussion of this interesting open problem to Appendix B.2.

Related work: In this section, we list some related work with algorithms derived from k-means++.
To see more work about k-means in general, see for example the introduction of [CAEMN22].

To the best of our knowledge, the only paper exploring Algorithm 2 from the theoretical per-
spective after the seminal paper [AV07] of Arthur and Vassilvitskii, is the paper of Bhattacharya,
Eube, Röglin, and Schmidt [BERS20]. There, the authors show an Ω(` log k) lower bound. They
also consider a problem closely related to analysis of Algorithm 3, we discuss it in greater detail in
Appendix B.

The empirical work related to Algorithm 2 starts with the PhD thesis of Vassilvitskii [Vas07]
that reports experiments with ` = 2, the comparative study of [CKV13] on the other hand advertises
the choice of Θ(log k). This is also the choice taken in the Scikit-learn implementation [PVG+11]
that chooses ` = b2 + ln kc.

Another related work to k-means++ include the following. Lattanzi and Sohler [LS19, CGPR20]
present a variant of k-means++ inspired by the local search algorithm of [KMN+04]. A popular
distributed variant of the k-means++ algorithm is the k-means‖ algorithm of Bahmani, Moseley,
Vattani, Kumar, and Vassilvitskii [BMV+12, BLK17, Roz20, MRS20] that achieves the same guar-
antees as k-means++ in O(log n) Map-Reduce rounds. Other lines of work study bicriteria guaran-
tees of k-means++ [ADK09, Wei16, MRS20], analyze bad instances [BR13], speed-up k-means++
by subsampling [BLHK16b, BLHK16a] or adapt it to the setting with outliers [BVX19, GR20].

Roadmap: In Section 2, we explain intuitively the proofs of Theorems 1.1, 1.2, A.1 and B.1.
Section 3 collects some basic preliminary results that we need to use. In Section 4 we prove
the main result necessary to prove Theorem 1.1 which is then proved in Section 5. In Section 6
we then construct the almost matching lower bound. The analysis of Algorithm 3 is deferred to
Appendices A and B.

3Throughout this paper, we use Õ(f(x)) to denote O(f(x) poly log(f(x))) and Ω̃, Θ̃ are defined analogously.
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2 Intuitive explanations

This section is devoted to an intuitive explanation of Theorems 1.1, 1.2, A.1 and B.1. We start by
reviewing the analysis of the k-means++ algorithm by [AV07] in Section 2.1. Next, in Section 2.2
we identify the issues with generalizing the analysis of k-means++ to its greedy variant from
Algorithm 2. In Section 2.3, we discuss a crucial lemma that essentially says that the greedy rule
implies that not so many candidate centers are sampled in total from each optimal cluster. In
Section 2.4, we show how this lemma implies Theorem 1.1. Finally, we present the lower bound in
Section 2.5.

2.1 Analyzing k-means++

We need to start by reviewing the analysis of the k-means++ algorithm by Arthur and Vassilvitskii.
Reviewing it will allow us to explain which parts of the argument cannot be simply generalized in
the analysis of Algorithm 2.

For K ⊆ X we define ϕ∗(K) = ϕ(K,µ(K)) where µ(K) = (
∑

c∈K c)/|K| is the center of mass
of K. We note that ϕ∗(K) is the optimal k-means cost of K achievable with one center. At the
core of the k-means++ analysis lies the following lemma.

Lemma 2.1 (Informal version of Lemma 3.3). Let X ⊆ Rd be the input point set to the k-means
problem and C ⊆ Rd a set of already selected centers. Let K be an arbitrary subset of X. If we
sample a point of K such that a point c ∈ K is sampled with probability ϕ(c, C)/ϕ(K,C), we have
E[ϕ(K,C ∪ {c})] ≤ 5ϕ∗(K).

Intuitively, the reason why the lemma holds is that either all points C are far away from µ(K)
and then we essentially sample c ∈ K from a uniform distribution; such a distribution would even
lead to E[ϕ(K, {c})] = 2ϕ∗(K) by a simple averaging argument (cf. Lemma 3.2). The other option
is that some point of C is already close to µ(K), but then ϕ(K,C) is already small.

Whenever we use this lemma, we have K to be a cluster of some fixed optimal solution. Here,
given a set of centers C, we define a cluster K ⊆ X of a center c ∈ C as the set of the points for
which c is the closest center, that is, K = {x ∈ X : c = argminc′∈Cϕ(x, c′)}. The usefulness of
Lemma 2.1 comes from its corollary that whenever Algorithm 1 samples the new center ci in the
i-th step and it happens that ci ∈ K, then the cost of K becomes 5-approximated, in expectation.
This holds even though the algorithm itself has no idea about what the optimal clusters are.

So, if it somehow happened that each of the k sampled centers was from a different optimal
cluster, we would get that Algorithm 1 is a 5-approximation. Of course, there can be some clusters
with no sampled center in the end because we happened to hit some other optimal cluster twice or
more. This is the reason behind the final O(log k) approximation.

Let us be more precise now: Given a set of already taken centers Ci, we say that a cluster K
from the optimal solution is covered in the i+ 1th step if K ∩Ci 6= ∅. We accordingly split X into
points in covered and uncovered clusters, i.e., X = XCi tXUi .4 Finally, we say that a step i+ 1 is
good whenever ci+1 is sampled from an uncovered cluster and bad otherwise. It is the bad steps,
where the algorithm really loses ground with respect to the optimal solution. The question is, by
how much?

Intuitively, if there are ui uncovered clusters remaining after i steps and we had a bad i+ 1th
step, in the end we will need to pay in our solution for one of the ui currently uncovered clusters.
The cost of the largest currently uncovered cluster may be as large as ϕ(XUi , Ci). However, we
should hope that we only need to pay the cost of the average one, i.e., ϕ(XUi , Ci)/ui. The reason

4The notation A = B t C means A = B ∪ C and B ∩ C = ∅.
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for that is that we expect the size of the average uncovered cluster to only go down in the future,

i.e., we have E
[
ϕ(XUj , Cj)/uj

]
≤ ϕ(XUi , Ci)/ui for j > i. This is because if each new covered

cluster were chosen from uncovered ones uniformly at random, the average cost of an uncovered
cluster would stay the same. However, we are actually covering the more costly clusters with higher
probability which makes the expected average cost of an uncovered cluster decrease in the future
steps.

So, having a bad step incurs a cost of ϕ(XUi , Ci)/ui. This cost can be huge but, very conveniently,
in that case, the probability of the i + 1-th step being bad was very small to begin with. More
concretely, the probability of having a bad step is equal to ϕ(XCi , Ci)/ϕ(X,Ci). Since the numerator
of that expression is in expectation at most 5OPT by Lemma 2.1, we conclude that the expected
cost incurred by the fact that we may sample from an already covered cluster in step i + 1 is at
most

5OPT

ϕ(X,Ci)
· ϕ(XUi , Ci)

ui
≤ 5OPT

ui
.

The variable ui starts at u0 = k and then decreases in each step by at most one until uk−1 ≥ 1
in the kth step. Thus the contribution to the cost over all k steps can be upper bounded by
O(OPT ) · ( 1k + 1

k−1 + · · ·+ 1
1) = O(OPT · log k).

This concludes the intuitive analysis of Algorithm 1. The formal proof can be found in [AV07]
and a more detailed exposition can be found in lecture notes of Dasgupta [Das19].

2.2 k-means++ strikes back

Here is the main problem with generalizing the k-means++ analysis to Algorithm 2: We can sample
many centers from the same cluster K of the optimal solution, before the greedy heuristic decides to
pick one! In other words: in k-means++ we can simply use Lemma 2.1 to conclude that whenever
we sample a point from an optimal cluster K, we expect its cost to become a 5-approximation of the
optimal cost. But what if we sample a candidate center from K in every step of the algorithm and
the greedy heuristic chooses to actually pick the center only when it results in a bad approximation
for K? In general, we can guarantee only expected 5 · (k`) approximation for the cluster K, when
a center from it is picked, instead of 5 approximation.

In fact, let us now turn this idea into a lower bound. We will now show that with ` = Ω(log k)
there is a rule R such that Algorithm 3 has approximation factor of Ω(k), with constant probability.
A simple generalization of the following argument will then yield Theorem A.1 in Appendix A.

The weighted point set X that we use for the lower bound is in Fig. 1. We can use integer
weights, even though they are not part of the original problem formulation, by replacing an ele-
ment with weight w by w copies with unit weight. We will explain the lower bound in the setup
where the points of X are endowed with an arbitrary metric, not necessarily the Euclidean one.
Generalizations to the Euclidean space are routine and left to the formal proofs.

We start with a point d in the center of the picture that has weight much larger than all the
other points combined; thus with constant probability at least one candidate center is d in the first
step and our rule will then select d as the first center.

In a distance k around d, there are k − 2 dummy points x1, . . . , xk−2, each with weight one.
Moreover, there is an additional pair of points c and b, with c having weight k and b having
weight 1. Their distance from each other is 1 and the distance of c from d is k. The set X =
{d, x1, . . . , xk−2, b, c} is endowed with a tree metric generated by the defined distance (see Fig. 1).

Let us compute the optimal cost of this instance: The optimum solution would take as centers
all points except of b. Its cost is hence w(b) · d(b, c)2 = 1.

5
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Figure 1: Illustration for the lower bound in the adversarial case. Edge weights defining the metric are in
blue while vertex weights are in orange and heavier points have a larger disk. All nodes xi have weight 1.
Consider a rule that does not want to take the point c as a center unless it has to, but it wants to take b
as a center whenever it can. Such a rule takes b a center with constant probability which results in Ω(k)
approximation. Notice that in this case K = {b, c} is an optimal cluster such that we sample a candidate
center from it Ω(k) times but select each candidate as a center only when it results in a bad approximation
of the cost of K.

Now, let us choose the rule R in Algorithm 3 as follows: whenever d or b is sampled as a
candidate center, we select it. On the other hand, we do not select c as a center unless we have to
(which happens only when all candidate centers sampled are c).

We can see that with this rule, with high probability, we select d in the very first step and
then in each of the following k/2 steps we have only negligible probability of adding c to the set
of centers: For that to happen, we would need all candidate centers to be c which happens with

probability at most
(

w(c)
w(c)+k/2·w(x1)

)`
= (2/3)` < 1/poly(k) by our assumption ` = Ω(log k). On

the other hand, the probability of sampling b and thus adding it to the set of centers is Ω(1/k) in
every step (unless b or c is selected as a center), hence it is constant after k/2 steps.

In this case, the solution of the algorithm has to leave some other point from {x1, . . . , xk−2, c}
from the set of centers. If it leaves some xi, it needs to pay w(xi) · d(xi, d)2 = k2. If it leaves c,
it needs to pay w(c) · d(b, c)2 = k. That is, the solution of Algorithm 3 is k-approximate or worse
with constant probability.

A more careful analysis in Theorem A.1 shows that for smaller `, we should choose the weight
of c to be k1−1/`, to get a Ω(k1−1/`) lower bound.

2.3 A new hope

Let us observe that greedy k-means++ would not be fooled by the example from the previous
Section 2.2. Once the point c is sampled as a candidate center, it is also selected as a center by
the greedy rule. This is because it results in a bigger drop in the cost than if we picked any of the
dummy points xj (we assume d is already picked).

So, we may hope that in greedy k-means++ each optimal cluster cannot be hit by many
candidate centers before it becomes covered. Our main technical contribution towards Theorem 1.1
is indeed a proof that each optimal cluster K is not hit by many candidate centers by greedy k-
means++, before it becomes covered or before its cost is comparable with the optimal one.

Recall that a cluster K is covered in the i-th step if K ∩ Ci 6= ∅. We additionally say that K
is solved if ϕ(K,Ci) ≤ 105ϕ∗(K). Finally, we define HIT(K) to be the count of candidate centers
cji ∈ K for all 1 ≤ i ≤ k and 1 ≤ j ≤ ` where we count a hit only when K is not covered or solved
in the respective step. Our result is then the following.

6



Lemma 2.2. For any optimal cluster K we have E[HIT(K)] = O(`2 log2(k)).

Going back to our issue with generalizing the analysis of k-means++, we note that the above
lemma implies that although we can no longer say that the cost of a cluster that just became covered
is 5 approximated in expectation, we can at least expect it to be 5 ·O(`2 log2 k) approximated. This
implies that the final approximation guarantee picks up an additional O(`2 log2 k) factor. This
almost explains the final O(`3 log3 k) guarantee that we achieve in Theorem 1.1 – we pick up the
remaining ` factor inside the main analysis, essentially because the probability of having a bad step
increases by a factor of `. In the rest of this section, we sketch the proof of Lemma 2.2.

An important measure of progress in our analysis is the size of the neighborhood of K. Given
a point set Ci, we define Ri = d(µ(K), Ci) and define the neighborhood Ni of a cluster K in the
i + 1-th step as the set of points closer to µ(K) than Ri (see Fig. 2). Since we assume K is not
solved, i.e., that the current cost ϕ(K,Ci) of K is at least 105ϕ∗(K), we know that the distance
Ri is much larger than the distance of an average point of K from µ(K). This means that most of
the points of K have to lie in Ni. For simplicity, we will next assume that K ⊆ Ni.

We will also, for the sake of simplicity, assume that every point in Ni has distance at most
Ri/10 from µ(K). One reason this assumption makes our life easier is that every point in Ni has
cost between (9Ri/10)2 and (11Ri/10)2. That is, up to small factors we can think of all points of
Ni having the cost R2

i .
In every step of the algorithm, we say that we are either in the easy case or in the hard case.

We say that we are in the easy case if it holds that for c sampled proportionally to its cost we have
ϕ(X,Ci)− ϕ(X,Ci ∪ {c}) ≤ ϕ(Ni, Ci)/2 with probability at least 1− 1/`, otherwise we are in the
hard case. In the following discussions, we explain what needs to be done if all steps are easy and
then if all the steps are hard. The fact that some steps are easy and some are hard does not make
the final analysis more complicated.

Easy case: The reason why the easy case is in fact easy is that in that case, we can verify that
whenever we sample a candidate center from Ni, the greedy rule adds it to the set of centers with
constant probability. This intuitively means that for every hit of K we are getting a lot of progress
in terms of the size of Ni going down rapidly.

More precisely, we first observe that for a fixed 1 ≤ j ≤ `, whenever cji+1 ∈ Ni, we have

ϕ(X,Ci) − ϕ(X,Ci ∪ {cji+1}) ≥ ϕ(Ni, Ci)/2. This inequality holds because of our simplifying
assumption that all points in Ni have distance at most Ri/10 from µ(K): this assumption implies
that the cost of each point x in Ni drops from d(x,Ci)

2 ≥ (9Ri/10)2 to at most (d(cji+1, µ(K)) +
d(µ(K), x))2 ≤ (2Ri/10)2.

This means that whenever we sample a candidate center cji+1 ∈ Ni and we are in the easy case,
we also have constant probability of (1 − 1/`)`−1 ≥ 1/e that all other sampled points result in a
smaller cost drop than cji+1 and thus the greedy rule decides that ci+1 = cji+1. We claim this means
that in the easy case, a sampled point from Ni means a constant probability of |Ni+1| ≤ |Ni|/2. To
see this, let us order the points of Ni in their increasing distance from µ(K) as n1, n2, . . . , n|Ni| (see

Fig. 2). Importantly, if cji+1 = nt, then Ni+1 does not contain any of the points nt+1, nt+2, . . . , n|Ni|.
Recall that all points of Ni have the same cost, up to constant factors. Hence, if we condition on
cji+1 ∈ Ni, we know it is essentially a point of Ni selected uniformly at random. This means that

with constant probability cji+1 ∈ {n1, . . . , n|Ni|/2} and hence |Ni+1| ≤ |Ni|/2, as we wanted.
To conclude, note that whenever we sample a point from Ni, we also hit K with probability

ϕ(K,Ci)/ϕ(Ni, Ci) ≈ |K|/|Ni|. But above discussion shows that a hit of Ni implies that |Ni+1| ≤
|Ni|/2 (with constant probability). Hence, the expected total number of hits of K of the easy case
can be upper bounded by |K||X| + |K|

|X|/2 + · · ·+ |K|
2|K| + |K|

|K| = O(1).
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Hard case: Next, let us turn to the hard case. There, we at least know that with probability
1− (1− 1/`)` ≥ 1− 1/e, at least one candidate center cji+1 for 1 ≤ j ≤ ` makes the cost drop by at
least ϕ(Ni, Ci)/2. We hence get that ϕ(X,Ci)−E[ϕ(X,Ci+1)] ≥ (1−1/e)ϕ(Ni, Ci)/2 ≥ ϕ(Ni, Ci)/4.

Note that whenever it is the case that ϕ(Ni, Ci) ≤ ϕ(X,Ci)/k, this implies that the probability
we sample from Ni (and hence from K) is ϕ(Ni,Ci)

ϕ(X,Ci)
≤ 1/k. Even if we sum up over all k steps,

the total contribution in terms of number of samples from K is negligible. So, let us assume that
ϕ(Ni, Ci) ≥ ϕ(X,Ci)/k.

We will now consider the sequence of sampling steps of the algorithm until a step j when it
selects a center from Ni. Until then, we have for each step i + 1 ≤ i′ < j that Ni = Ni′ , that is,
the neighborhood of K is the same. Notice that the cost of all points in Ni also stays roughly the
same during this time. This is because of our simplifying assumption that all points of Ni have
distance at most Ri/10 from µ(K) and hence the cost of all points of Ni is between (9Ri/10)2 and
(11Ri/10)2. This remains so even after sampling new centers with distance larger than Ri from K.

After ϕ(X,Ci)/ϕ(Ni, Ci) steps, we expect to sample O(`) many candidate centers from Ni.
Meanwhile, the cost of X is expected to drop from ϕ(X,Ci) to 3/4 · ϕ(X,Ci) or smaller.

Recall that we assume that ϕ(Ni, Ci) ≥ ϕ(X,Ci)/k. This means that after expected O(` log k)
candidate centers sampled from Ni, we expect that ϕ(X,Ci′) < ϕ(Ni, Ci′) which is a contradiction.
In other words, when we finally reach the step j when a center is picked from Ni, this center is
some point out of O(` log k) candidate centers sampled from Ni so far between the steps i and j.
Each of these candidates is essentially a uniformly random point of Ni (see Fig. 2).

We can now (as in the easy case) order the points of Ni as n1, . . . , n|Ni| in the order of in-
creasing distance from µ(K). We sampled O(` log k) candidate centers from {n1, . . . , n|Ni|} es-
sentially uniformly at random; hence with constant probability none of them hits the set of
top |Ni|/O(` log k) points {n|Ni|−|Ni|/O(` log k), . . . , n|Ni|}, hence with constant probability we have
|Ni+1| ≤ |Ni|(1− 1/O(` log k)).

That is, the size of |Ni| is expected to drop by 1−1/O(` log k) factor while O(` log k) candidate
centers hit Ni, which corresponds to expected |K|

|Ni| · O(` log k) hits of K. Put differently, after
|K|
|Ni|O(`2 log2 k) hits of K we expect the size of the neighborhood Ni to halve.

Similarly to the easy case, this implies that the total number of hits of K can be upper bounded

by O(`2 log2 k) ·
(
|K|
|X| + |K|

|X|/2 + · · ·+ |K|
2|K| + |K|

|K|

)
= O(`2 log2 k). This finishes the hard case analysis

and hence the whole proof.
The full proof of Lemma 2.2 is in Section 4. The only substantial difference from the above

sketch is that as we do not have the simplifying assumption that all points of Ni are Ri/10-close
to µ(K), we need to work with two sets N small

i , N big
i instead. We remark that one can replace the

term O(`2 log2 k) by O
(
` log OPT (1)

OPT (k)

)
with a substantially easier proof, where OPT (k̃) is the size

of the optimal solution with k̃ centers. We give a proof sketch in Appendix C.

2.4 Return of the guarantees

After proving Lemma 2.2, we are ready to prove the main result, Theorem 1.1. This is proven
by adapting the k-means++ analysis of Arthur and Vassilvitskii [AV07]. As we have seen, their
analysis gives O(log k) approximation guarantee. We pick up additional O(`2 log2 k) factor after
using Lemma 2.2 to conclude that when a cluster K becomes covered, we expect its cost to be
5·E[HIT(K)]·ϕ∗(K) = O(`2 log2 k)·ϕ∗(K). Finally, we need one more ` factor since the probability

of a bad step can now be bounded only by `ϕ(XUi ,Ci)
ϕ(X,Ci)

instead of ϕ(X
U
i ,Ci)

ϕ(X,Ci)
. This results in O(`3 log3 k)

expected approximation guarantee.
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µ(K)c ∈ Ci

X \Ni

Ni
K

n1

n2

O(ℓ log k) sampled
candidate centers

}

|Ni|
O(ℓ log k) points

Ri

n|Ni|

Figure 2: The figure shows an optimal cluster K and its neighborhood Ni. The points of Ni are sorted as
n1, . . . , n|Ni| based on their distance from µ(K). Note that the picture is not to scale as our simplifying
assumption says that even n|Ni| has distance at most Ri/10 from µ(K).
During the steps i′ ≥ i until the step j with Nj 6= Ni, the relative cost ϕ(Ni, Ci′)/ϕ(X,Ci′) of the neigh-
borhood Ni increases from at least 1/k to at most 1, we expect to sample ` log k candidate centers from Ni

(highlighted by red color). One of these samples needs to be chosen as the new center in the step j that
defines the new Nj 6= Ni. Since the red points are chosen essentially uniformly at random, we expect the
top |Ni|/(` log k) points of Ni to be removed from Ni+1.

The above discussion may suggest that everything simply falls in place but there is one important
subtlety that our analysis needs to deal with. In the k-means++ analysis, we paid the cost of
ϕ(XUi , Ci)/ui in every bad step. Recall that this was substantiated by the fact that the size of
an average uncovered cluster is only expected to go down in the future steps, i.e., for k-means++
we can prove that E

[
ϕ(XUi+1, Ci+1)/ui+1

]
≤ ϕ(XUi , Ci)/ui. However, this bound is not necessarily

true for ` > 1. In fact, in the case of an adversarial rule, one can imagine the average size of a
cluster increases substantially during the algorithm. Whether it is indeed so is an exciting open
problem described in Appendix B.2. This is also the reason behind the mismatch in our upper and
lower bounds of Theorems A.1 and B.1.

Fortunately, the fact that our rule is greedy and not an arbitrary one saves us again. To see
this, first assume that instead of the greedy rule we use a different, idealized, rule that picks the
candidate center cji+1 that minimizes the expression ϕ(XUi+1, Ci∪{c

j
i+1}) instead of ϕ(X,Ci∪{cji+1})

like the greedy rule. For such an idealized algorithm we have

E
[
ϕ(XUi+1, Ci+1)/ui+1

]
≤ E

[
ϕ(XUi+1, Ci ∪ {c1i+1})/ui+1

]
≤ ϕ(XUi , Ci)/ui.

The first inequality above is saying that our rule picks the best candidate cji+1 which is at least
as good as the first candidate c1i+1. The second inequality is just the reasoning of the original
k-means++ analysis. Therefore, for this idealized algorithm, the original analysis of k-means++
immediately generalizes.

Fortunately, our greedy rule is almost this idealized algorithm! The difference between the
idealized minimization of ϕ(XUi+1, Ci+1) and the actual greedy minimization of ϕ(X,Ci+1) just
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creates two small mismatches: When the greedy rule considers a candidate center cji+1 ∈ K, it,
in addition to the idealized rule, takes into account 1) the decrease in the cost of already covered
clusters ϕ(XCi , Ci)−ϕ(XCi , Ci∪{c

j
i+1}) and 2) the cost of the newly covered cluster ϕ(K,Ci∪{cji+1}).

To give an example of the point (1), we can have a cluster K with ϕ(K,Ci) ≈ 0 that is very close
to covered clusters. When we sample cji+1 ∈ K and we have ϕ(XCi , Ci ∪ {c

j
i+1}) � ϕ(XCi , Ci); for

the greedy rule then taking cji+1 is an attractive option although taking it increases the average
cost of the remaining uncovered clusters.

Fortunately, the two mismatches can be handled. After some calculations, it turns out that
the first mismatch implies that we need to pay an additional cost of ϕ(XCi , Ci)/ui per step in the
analysis, but fortunately we already pay this term in the original analysis because of the possibility
that the i+ 1th step can be bad.

One can also show that the second mismatch implies that we need to pay additional factor
of
∑

K∈KUi
ϕ(K,Ci)
ϕ(X,Ci)

ϕ∗(K) where KUi is the set of uncovered clusters. Fortunately, if we sum this
expression over all steps, this is simply counting the number of hits to each optimal cluster K. So,
in total, we need to pay additional term

∑
K∈KU0

E[HIT(K)]ϕ∗(K) in the approximation guarantee,
but we are again already paying this term anyway because this is our upper bound on the cost of
a cluster K once it becomes covered.

To conclude, the mismatch between the idealized algorithm and the actual greedy algorithm
can be accounted for and the increase in the approximation factor is asymptotically dominated by
terms we already have to pay in the analysis anyway for different reasons.

2.5 Matching lower bound

At this point, we have already a good understanding of where different terms in the approximation
guarantee O(`3 log3 k) are coming from. This allows us to construct a point set where the above
analysis is close to tight.

Point set definition: We describe the point setX next (see also Fig. 3) and then explain intuitively
what happens when the greedy k-means++ is run on it. We will describe the lengths and weights
here up to factors of size O(log(` log k)) that need to be added to make the construction work.
Given a parameter k, there are 1 + k̃ = O(k1.2) points in X and we ask for a solution with k̃
centers, hence exactly one point of X is going to be excluded. We set t = ` log k.

1. There is a point b for which we have w(b) = 1
t2

.

2. A point c is at distance 1 from b. We have w(c) = 1. The points {b, c} form one cluster of
the optimal solution. While the optimal solution would take c as a center and would not take
b, we will argue that greedy k-means++ takes b as a center with constant probability.

3. We have a set of points N = {n1, n2, . . . , nt+1} and M = {m1, . . . ,mt} defined as follows.
We have d(b, ni) = ki, d(ni,mi) = tki and w(ni) = w(mi) = 1

t . An exception is the point
nt+1 that gets very large weight so that it is selected as a center in the first two steps of the
algorithm.

4. We have E = {e0,
⋃
e∈E1

e, . . . ,
⋃
e∈Et e} where Ei = {ei,1, . . . , ei,√k}. Each point in E \ {e0}

has distance 1 from the point e0 which is very far from {b, c} ∪ N ∪M ∪ A. The point e0
has very large weight so that it is selected as a center in the first two steps of the algorithm.
Each ei,j ∈ Ei has the same weight wi ≈ k2i+2. We postpone the exact definition of wi as it
needs to be quite precise.
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Figure 3: This figure shows the point set X used for the lower bound (up to small changes by poly log(` log k)
factors). The point weights are orange and heavier points are represented by larger disks.
In this intuitive explanation, the metric is not Euclidean but it is a tree (or a bit more precisely forest)
metric induced by the blue edges with the distances given by blue numbers. The image is not to scale, for
example, the distance from b to nt is in fact much larger than the distance from b to m2.
In the first two steps, the points nt+1 and e0 are taken. During the ith phase of the first epoch we mostly
take just points of Ei = {ei,1, . . . , ei,√k} that serve as a “clock”. This clock is ticking for enough time so
that the algorithm samples ni as a candidate. Because of mi, ni is then selected by the greedy rule. This
drastically reduces the costs of the not-yet-taken points of X \ E so that nothing interesting happens until
all points of Ei are taken (the clock for this phase stops ticking) and then we go to the next phase. The aim
of these phases is that in each one of them we have a small probability of 1/t of sampling b and taking it as
the center. As there are t phases, we get constant probability of taking it.
In the second epoch, we simply show that the greedy k-means++ samples and then takes c with constant
probability, which increases the approximation factor by additional ` log k.

5. We have A = {a1, . . . , ak1.2} at distance k from c. The weight of each ai is ` log k
k2

so their total

weight is ` log k
k0.8

.

The optimal solution on X takes all the points except b as centers and hence it pays 1/(`2 log2 k).
Here is an intuitive explanation how greedy k-means++ runs on X. There are two epochs. In

the first epoch, the set A is too small to be discovered by the algorithm, so only {b, c}∪N ∪M ∪E
is relevant. Our aim is to show that with constant probability we reach a situation where only the
points in A ∪ {c} are not taken; when this happens we say that the second epoch starts.

Note that K = {b, c} is a cluster in the optimal solution. Hence, we are proving that in the
first epoch the cost of K under the greedy k-means++ is approximated only by factor Ω(`2 log2 k),
matching the bound in the proof of Lemma 2.2. Moreover, for each i the sets {n1,m1, . . . , ni,mi}
are playing the role of the neighborhood Ni of K in the analysis from Section 2.3, while the set E
plays the role of X \K.

First epoch : Here is what is going to happen in the first epoch. We can split it into t phases
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where at the beginning of the ith phase all the points in N≥i+1 ∪M≥i+2 ∪ E≥i+1
5 are already

selected as centers. During the i-th phase, we do not sample points from A∪E<i as they have too
small a probability of being sampled. Mostly, we sample just points of Ei since each point there has
cost about k2i+2. These points serve as a kind of clock. During the time we are sampling mostly
points of Ei, we also have a small chance of sampling points of {b, c} ∪ N≤i ∪M≤i+1. Since we
start with |Ei| ≥

√
k, before we add all of Ei to the set of centers, we expect to sample the point

c about ` log k times. Similarly, each point in N≤i ∪M≤i+1 is expected to be sampled constantly
many times. The point b has only probability of around (` log k)/t2 = 1/t of being sampled.

Now we can fine-tune the weight of points in Ei so that the drop in the cost if we take e ∈ Ei
is larger than the drop resulting from taking c but smaller than the drop of b (taking b results in
a larger drop than c, since c is further from N≤i ∪M≤i than b). This means that the drop of e is
smaller than the drop of the points {b, ni,mi+1}, but it is larger than the drop of all other points.
In fact, the reason why we always have a pair {ni,mi} is to make the cost drop of ni large: as ni lies
roughly in the center of mass of c and mi, it is a very attractive point to take from the perspective
of the greedy rule. So, during the ith phase we are essentially just waiting until we sample ni.
When we encounter it, we add it to the set of centers which decreases the cost of {b, c}∪N<i∪M≤i
dramatically so that in the rest of the phase only the points of Ei are sampled. Also, the point
mi+1 that is leftover from the previous phase is at some point sampled and selected as a center.

This process is running for t phases and in each phase, we have probability of 1/t of sampling
b. After b is sampled, all other points except for A ∪ {c} are sampled in the following steps; the
weight of all of them is much larger than the weight of points of A ∪ {c}. When this is done, the
first epoch is finished.

Second epoch: While the first epoch corresponds to the bound that we lose in Lemma 2.2 for
not approximating well clusters that get covered, the second epoch corresponds to the rest of the
analysis in which we lose additional ` log k factor because of the fact that some steps are bad. In
our case, a bad step means that we select a point c from the optimal cluster K = {b, c} that we
already covered in the first epoch by selecting b.

The second epoch begins when all points except of A ∪ {c} are already taken as centers. Note
that in the following k1.2−k1.1 steps we have a constant probability that we sample c as a candidate
center. In that case, the greedy heuristic decides to pick c over the other candidates from A. This
is because the cost drop induced by any a ∈ A is simply w(a) ·d(a, b)2 ≈ ` log k, whereas selecting c
makes the cost of each a ∈ A drop by roughly w(a) ·

(
(k + 1)2 − k2

)
≈ ` log k

k2
· k = ` log k

k . However,
there are at least k1.1 points in A, hence the drop of c is larger than the drop of any a ∈ A.

Putting it together: Putting the two epochs together, we get a constant probability that the
greedy k-means++ algorithm first fails by covering K using b, instead of c, and then it fails again
by taking c although K is already covered. This means that one point of A is not covered in the
end and we need to pay ` log k for it, whereas the optimum opts not to take b and hence pays only
1/(`2 log2 k).

One problem with the above analysis is that at each epoch we have a constant probability of
not sampling ni before all points of Ei are added to the set of centers. In that case, our analysis
fails since it is probable that the algorithm will soon afterward sample c and take it as a center.
However, adjusting weights by poly(log t) = poly log(` log k) factors makes the failure probability
of one phase smaller than 1/(2t) so that we can union bound over them.

5The notation N≥i+1 means {ni+1, . . . , nt}.
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3 Preliminaries

We use X for the input point set. In case X is weighted as discussed below in the lower bound
section, every point x ∈ X comes with nonnegative weight w(x), in the unweighted case we have
w(x) = 1. Whenever we talk about an optimal cluster K, we tacitly assume a fixed optimal solution
C∗ and K ⊆ X is a set of points defined by some c ∈ C∗ as K = {x ∈ X : c = argminc′∈C∗ϕ(x, c′)}.

We use d(x, y) to denote the distance between two points x, y rather then ||x − y||, since all
our upper bounds generalize to general metric space (the only difference being that Lemmas 3.2
and 3.3 require larger constant factors in that case).

For x ∈ X we use ϕ(x,C) = w(x) · minc∈C d(x, c)2 and for K ⊆ X we define ϕ(K,C) =∑
x∈K ϕ(x,C). For a cluster K we write ϕ∗(K) = ϕ(Kµ(K)) where µ(K) is the center of mass of

K, i.e., µ(K) = (
∑

x∈K x)/w(K) for w(K) =
∑

x∈K w(x). That is, ϕ∗(K) is the smallest cost of K
achievable if we have just one center.

When we write E≥i+1[X] in relation to Algorithms 1, 2 and 3, we tacitly assume that the
randomness of the first i steps is fixed and the expectation is over the randomness in the rest of
the algorithm. Similarly, Ei+1[X] is an expectation over the randomness in the step i+ 1.

Standard lemmas from [AV07]: We will need some lemmas from [AV07].
First, note that for the squared distance we have the approximate triangle inequality

d(x, z)2 ≤ 2(d(x, y)2 + d(y, z)2) (1)

The following lemmas can be found in [AV07].

Lemma 3.1 (Lemma 2.1 in [AV07]). For any K, c we have ϕ(K, c) = ϕ∗(K) + |K|c2.

Lemma 3.2 (Lemma 3.1 in [AV07]). If c is a uniformly randomly selected point of K, we have
E[ϕ(K, c)] = 2ϕ∗(K).

Lemma 3.3 (Lemma 3.2 in [AV07], Lemma 4.2 in [MRS20]). Fix two point sets K,C and sample
a random points c ∈ K with probability proportional to ϕ(c, C). Then,

E[ϕ(K,C ∪ {c})] ≤ 5ϕ∗(K).

We note that the original version of the lemma from [AV07] had the constant being 8, this was
improved to 5 in the work of [MRS20].

Lemmas for lower bounds: For lower bounds, it will be easier to work with the more general
weighted version of the k-means problem. Any lower bound for the weighted version can be lifted to
an unweighted one by multiplying all weights by a large number and rounding them to the closest
integer.

Even more generally, it will be more convenient to prove our lower bounds for the generalized
k-means problem where the input contains not only a weighted point set X and k, but also a set
of prescribed centers C0. We next use (X, k,C0) to denote input to such generalized problem. We
will use the following fact.

Lemma 3.4. Suppose that any of the algorithms Algorithms 1, 2 and 3 returns at least α-approximate
solution on some k-means instance (X, k,C0) with constant probability. Then there exists an in-
stance (X ′, k+ |C0|, ∅) where the algorithm is still at least α-approximate with constant probability.

Proof Sketch. We simply define X ′ to be X ∪ C0, where we make the weight of each point in C0

substantially larger than the total weight of X so that the first |C0| steps only points of C0 can be
sampled, with high probability.
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Above construction can, in general, substantially increase the weights. However, we only use it
in case |C0| ≤ 2 where this is not the case.

Another useful fact is that if we restrict our solution to k-means to points of X, we lose only a
2-factor in approximation. This lemma follows directly from Lemma 3.2.

Lemma 3.5. Whenever there is some solution Ck to an instance of k-means, there is also a solution
C ′k ⊆ X such that ϕ(X,C ′k) ≤ 2ϕ(X,Ck).

Finally, our lower bounds would be easier if they were proven in general metric spaces. It is
simple, though a bit technical, to make them work in Euclidean spaces. To this end, we need the
following result about embedding a star metric to the Euclidean space.

Fact 3.6. There is a way to arrange d vectors v1, . . . , vd in Euclidean space in such that for any
two vi, vj, we have 〈vi, vj〉 = −1/(d− 1). In particular, we get this property by arranging v1, . . . , vd
as vertices of a d− 1 dimensional simplex.

Few more results: All logarithms in this paper are natural. We will use the following facts.

Fact 3.7. For any x > 0 we have log(x) ≥ 1− 1/x.

Fact 3.8. For any x ∈ [−1, 0] we have
(
1 + x

2

)
≥ ex.

We also need the following lemma that says that if we learn about a random variable that it is
larger than some other independently sampled variables it can only increase its expectation.

Lemma 3.9. Let X,Y1, . . . , Yt be independent random variables. We have

E[X|X = min(X,Y1, . . . , Yt)] ≤ E[X].

Proof. We assume all variables are discrete. Let us consider any (y1, . . . , yt) ∈ Rt, and fix Yi = yi
for all 1 ≤ i ≤ t. We have that the conjunction of the event ∀i : Yi = yi together with the
event X = min(X,Y1, . . . , Yt) is equivalent to the conjunction of the event ∀i : Yi = yi with
X ≤ min(y1, . . . , yt). Hence, we can write

E[X|X = min(X,Y1, . . . , Yt)] =
∑

(y1,...,yt)∈Rt

P(∀i : Yi = yi) · E [X|X = min(X,Y1, . . . , Yt) ∧ ∀i : Yi = yi]

=
∑

(y1,...,yt)∈Rt

P(∀i : Yi = yi) · E [X|X ≤ min(y1, . . . , yt) ∧ ∀i : Yi = yi]

=
∑

(y1,...,yt)∈Rt

P(∀i : Yi = yi) · E [X|X ≤ min(y1, . . . , yt)]

However, for any (y1, . . . , yt) ∈ Rt we have E [X|X ≤ min(y1, . . . , yt)] ≤ E[X] and the lemma
follows.

4 Bounds on cluster hits by greedy k-means++

In this section we give a formal proof of Lemma 2.2. We start by giving preparatory definitions
and the statement of Lemma 4.7 – inductive variant of Lemma 2.2 – in Section 4.1. The lemma is
then proved in Section 4.2.
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4.1 Preparatory definitions and results

We start by formally defining covered and solved clusters.

Definition 4.1 (Covered Cluster). Consider some optimal cluster K. We refer to K as covered
with respect to a set of centers C if K ∩ C 6= ∅.

Definition 4.2 (Solved Cluster). Consider some optimal cluster K. We refer to K as solved with
respect to point set C if

ϕ(K,C) ≤ 105ϕ∗(K).

We also say that C is covered/solved in the i+ 1th step of the algorithm if it is covered/solved
with respect to Ci.

Next, we formally define the object of interest, that is, the number of points we are going to
sample from K during Algorithm 2.

Definition 4.3 (Number of points we will sample). Let HITj
i+1(K) be an indicator variable for

the conjunction of the following three events:

1. cji+1 ∈ K

2. K is not covered with respect to Ci

3. K is not solved with respect to Ci

We further define HITi(K) :=
∑`

j=1 HITj
i (K), HIT≥i(K) =

∑k
ι=i HITι(K) and HIT(K) = HIT≥1(K).

Recall that Lemma 2.2 asks us to prove that HIT(K) = O(`2 log2 k).
We will need a few more definitions to state our main technical result Lemma 4.7 which is an

inductive version of Lemma 2.2. We start with the definition of the parameter Ri. This parameter
is, up to constant factors, equal to the distance d(µ(K), Ci) of the center of mass of K with the
closest center of Ci. However, it may be that Ri = Ri+1 although d(µ(K), Ci) = d(µ(K), Ci+1).
This is because whenever Ri changes, we want it to change by a factor of 10 for a reason explained
later.

We also define the index i0 as the smallest index of a step where the size of K becomes “non-
negligible”. Before step i0, we have only a negligible probability of sampling a point from K. We
note that from now on, we consider the cluster K fixed, so that we can talk about Ri instead of
Ri(K), etc.

Definition 4.4 (Parameters i0 andRi). Fix an optimal cluster K. Let i0 = min{i ∈ {1, 2, . . . , k} : ϕ(K,Ci) ≥
ϕ(X,Ci)/k}. For every i ∈ {i0, i0 + 1, . . . , k}, we define a parameter Ri with

Ri0 = d(µ(K), Ci0)

and for i > i0, we define

Ri =

{
Ri−1 d(µ(K), Ci) > Ri−1/10
d(µ(K), Ci) otherwise.

Note that Ri satisfies

d(µ(K), Ci) ≤ Ri ≤ 10d(µ(K), Ci). (2)
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That is, Ri is roughly equal to the distance of the cluster center to the set Ci. Next, we always
implicitly assume that i ≥ i0, i.e., Ri is well defined.

Based on Ri we also define
N small
i = B(µ(K), Ri/100) (3)

and
N big
i = B(µ(K), Ri/10). (4)

These definitions correspond to the neighborhood Ni from the intuition section in Section 2.3.
We need two different neighborhoods due to technical difficulties like the fact that only for x ∈
N small
i we have d(x,C) = Ω(Ri) (in the proof sketch of Section 2.3 we worked under a simplifying

assumption that all x ∈ N big
i are also in N small

i ). The reason for the slightly weird definition of Ri
is that we want that whenever Ri+1 < Ri, then N big

i+1 ⊆ N small
i .

In the following claim, we summarize several basic properties of the cluster K and its neighbor-
hoods N small

i and N big
i . These claims substantiate some simple intuition about these sets like that

all points in N small
i have essentially the same cost. A careful reader will note that we do not try

to optimize the constants (and we warn that it will get worse).

Claim 4.5. Assume K is not solved with respect to Ci for i ≥ 1. Then, we have:

1. For each point x ∈ N small
i , we have

R2
i /200 ≤ ϕ(x,Ci) ≤ 3R2

i .

and for each point x ∈ N big
i we have

0 ≤ ϕ(x,Ci) ≤ 3R2
i .

2. We have
|N small

i | ·R2
i /200 ≤ ϕ(N small

i , Ci) ≤ 3|N small
i | ·R2

i

and
ϕ(N big

i , Ci) ≤ 3|N big
i | ·R

2
i .

3. We have
|K|R2

i /400 ≤ ϕ(K,Ci) ≤ 2|K|R2
i .

4. At least |K|/2 points of K are in N small
i . Also, ϕ(K ∩N small

i , Ci) ≥ ϕ(K,Ci)/800.

Proof. Let c∗ = argminc∈Cid(µ(K), c). Recall that Eq. (2) implies that

d(µ(K), c) ≤ Ri ≤ 10d(µ(K), c). (5)

1. Consider any x ∈ N big
i . We have

ϕ(x,Ci) ≤ d(x, c∗)2 ≤ 2(d(x, µ(K))2 + d(µ(K), c∗)2) Eq. (1)

≤ 2

((
Ri
10

)2

+R2
i

)
Eq. (5)

≤ 3R2
i

On the other hand, for any x ∈ N small
i , we have

ϕ(x,Ci) ≥ (d(µ(K), c∗)− d(µ(K), x))2

≥ (Ri/10−Ri/100)2

≥ R2
i /200.
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2. This follows by applying bullet point (1) to every point in N small
i and N big

i , respectively.

3. Recall that by Lemma 3.1, we have

ϕ(K,Ci) ≤ ϕ(K, c∗) = |K| · d(µ(K), c∗)2 + ϕ∗(K) ≤ |K|R2
i + ϕ∗(K). (6)

On the other hand,
ϕ(K,Ci) ≥ 105ϕ∗(K)

by Definition 4.2. Hence,

ϕ∗(K) ≤ |K|R
2
i

105 − 1
. (7)

If we plug Eq. (7) back to Eq. (6), we get

ϕ(K,Ci) ≤ |K|R2
i +

|K|R2
i

105 − 1
≤ 2|K|R2

i .

We postpone the proof of the other inequality to the end of the proof.

4. Define d by ϕ∗(K) = |K|d2, that is, d is the average squared distance of a point of K to
µ(K). Note that Eq. (7) implies that d2 ≤ R2

i /(105 − 1). By Markov’s inequality, at most
|K|/2 points can have a cost of at least 2d2, which is at most 2R2

i /(105 − 1) ≤ (Ri/100)2.
Hence, at least |K|/2 points of K need to be in N small

i .

Moreover, using the above result and bullet point (2), we get

ϕ(K ∩N small
i , Ci) ≥

|K|
2
· R

2
i

200

and using the part of bullet point (3) that we have already proven, we have

2|K|R2
i ≥ ϕ(K,Ci).

Combining the two bounds, we get

ϕ(K ∩N small
i , Ci) ≥

|K|R2
i

400
≥ ϕ(K,Ci)

800
.

5. Finally, using the fact that at least |K|/2 points of K are in N small
i by bullet point (4) and

that each point x ∈ N small
i satisfies ϕ(x,Ci) ≥ R2

i /200 by bullet point (1) we infer that
ϕ(K,Ci) ≥ |K|/2 ·R2

i /200 = |K|R2
i /400 and the proof of bullet point (3) is finished.

The reason why we deal with the steps before i0 differently is that for all i ≥ i0 we know that
|N big

i | is at most O(k) times larger then |K|.

Claim 4.6. Let i0 as defined in Definition 4.4. For all i ≥ i0, we have

|N big
i | ≤ 4k|K|.
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Proof. It suffices to prove that |N big
i0
| ≤ 4k|K|, since Definition 4.4 implies that |N big

i+1| ≤ |N
big
i | for

any i.
Recall that Ri0 := d(µ(K), Ci0). Consider any x ∈ N big

i0
. We have

ϕ(x,Ci0) ≥ (d(Ci0 , µ(K))− d(µ(K), x))2 ≥ (Ri0 −Ri0/10)2 ≥ R2
i0/2. (8)

This implies that

ϕ(X,Ci0) ≥ ϕ(N big
i0
, Ci0) ≥ |N big

i0
| ·R2

i0/2. (9)

One the other hand, using bullet point (3) of Claim 4.5 we get that

2|K|R2
i0 ≥ ϕ(K,Ci0). (10)

By definition of i0 we know that ϕ(K,Ci0) ≥ ϕ(X,Ci0)/k. Putting this together with Eqs. (9)
and (10), we get

2|K|R2
i0 ≥ |N

big
i0
| ·R2

i0/(2k)

or
|N big

i0
| ≤ 4k|K|,

as needed.

4.2 Inductive version of the main result

Finally, we are ready to state the technical, inductive version of Lemma 2.2. The lemma is a
potential argument: we cook up three potentials such that their sum in the step i is an upper
bound on how many candidate centers are expected to be sampled from K. The advantage of such
an argument is that once the potentials are written down, checking the correctness of the argument
reduces to algebra. The disadvantage is that it is hard to get an intuition about the high-level
picture (compare with the original analysis of k-means++ and its rewording of Dasgupta [Das19]).
Hence, we first invite the reader to read Section 2.4 where we try to convey the high-level intuition
about the argument. This section is primarily optimized for making it easy to check the correctness
of the proofs.

In Lemma 4.7, we track the number of hits to K using three potentials.

1. The first potential πi is “dropping” a potential of O(`/k) uniformly in every step. This allows
us to argue about some edges cases like when ϕ(K,Ci) < ϕ(X,Ci)/k. In these cases we have
probability of at most `/k of hitting K and the drop in πi can pay for that.

2. Whenever the value of Ri changes, we “refill” the value of potential σi to its maximum value

of O
(
` log k · |K|

|Nsmall
i |

)
. The purpose of ρi is to pay for this refill of σi. Intuitively, we hope

that whenever Ri drops, the size of |N big
i | drops by at least (1− O(1/` log k)) multiplicative

factor (see the intuition in Section 2.3). In that case, the drop in ρi is proportional to exactly

O( `
2 log2 k
` log k ·

|K|
|Nsmall
i |), so it can pay for the refill of σi.

3. The third potential σi is designed to pay for the possibility of hitting K until we redefine
Ri. Intuitively, if we are in the hard case when hitting K does not result in covering it, we
are expecting the cost of our solution to drop. Accordingly, drop in the overall cost ϕ(X,Ci)
results in the drop in σi and this drop is paying for the possibility of hitting K.
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Lemma 4.7. Fix an optimal cluster K. Assume we have already sampled the first i points where
i ∈ {1, 2, . . . , k}.

Then, we have
E≥i+1[HIT≥i+1(K)] ≤ πi + ρi + σi,

where

πi =

(
1− i

k

)
· `+ 1050` log k,

ρi = 1050`2 log2(k) ·

(
4− |K|
|N small

i |
− |K|
|N big

i |

)
and

σi = 1025` · log min

(
105k,

400ϕ(X,Ci)

|K|R2
i

)
· |K|
|N small

i |
This is only when K is neither solved nor covered with respect to Ci. Otherwise, we define πi =
ρi = σi = 0.

Before proving Lemma 4.7, we briefly verify that it implies Lemma 2.2:

Proof of Lemma 2.2. First, note that in the first step we sample at most ` points from K, that is,
HIT1 ≤ `.

Next, we consider running Algorithm 2 until the first time it happens that

ϕ(K,Ci) > ϕ(X,Ci)/k. (11)

Fix some i such that Eq. (11) does not hold and it did not hold for any ι ∈ {1, 2, . . . , i− 1}. Then,
the expected number of points we sample from K in the (i+ 1)-th step is at most

E[HITi+1] ≤
`ϕ(K,Ci)

ϕ(X,Ci)
≤ `

k
. (12)

In fact, the first inequality is an equality, whenever the cluster K is not solved or covered. The
second inequality uses our assumption that ϕ(K,Ci) ≤ ϕ(X,Ci)/k.

Next, consider the first i such that Eq. (11) holds. Then, we apply Lemma 4.7. This lemma
states that E[HIT≥i+1] can be upper bounded by a sum πi + ρi + σi. From the definition of these
quantities in Lemma 4.7 we immediately see that

πi = O(` log k),

ρi = O(`2 log2 k)

and
σi = O(` log k).

Hence, we get that

E[HIT≥1] ≤ `+ k · `
k

+O(`2 log2 k) = O(`2 log2 k).
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The rest of this section is dedicated to the proof of Lemma 4.7.
We prove the statement by (reverse) induction. First, consider the base case i = k. Note that

for the base case it suffices to show that πi, ρi, σi ≥ 0. If K is covered or solved with respect
to Ci, then this directly follows from the definition. Next, assume that K is neither solved nor
covered with respect to Ci. Clearly πk+1 ≥ 0. Using bullet point (4) of Claim 4.5, we conclude
that |N big

k | ≥ |N
small
k | ≥ |K|/2 which implies ρk+1 ≥ 0. Using bullet point (3) of Claim 4.5, we

conclude that ϕ(X,Ck) ≥ ϕ(K,Ck) ≥
|K|R2

k
400 which implies σk+1 ≥ 0.

Next, we consider i < k. Note that the statement trivially holds if K is solved or covered with
respect to Ci. Hence, from now on we consider the case that K is neither solved nor covered with
respect to Ci.

Note that we have

E≥i+1[HIT≥i+1(K)] = Ei+1[
∑̀
j=1

HITj
i+1] + Ei+1 [E≥i+2[HIT≥i+2(K)]] (13)

By definition of HIT and the fact thatK is both uncovered and unsolved, we have Ei+1[
∑`

j=1 HITj
i+1] =

`ϕ(K,Ci)
ϕ(X,Ci)

and we can use induction to bound

Ei+1 [E≥i+2[HIT≥i+2(K)]] ≤ Ei+1[πi+1 + ρi+1 + σi+1]. (14)

Plugging back to Eq. (13), we get

E≥i+1[HIT≥i+1(K)] ≤ `ϕ(K,Ci)

ϕ(X,Ci)
+ Ei+1 [πi+1 + ρi+1 + σi+1] . (15)

Note that the claim we want to prove is

E≥i+1[HIT≥i+1] ≤ πi + ρi + σi, (16)

so it suffices if we prove that

`ϕ(K,Ci)

ϕ(X,Ci)
+ Ei+1 [πi+1 + ρi+1 + σi+1] ≤ πi + ρi + σi.

After rearranging, we get

(πi − Ei+1[πi+1]) + (ρi − Ei+1[ρi+1]) + (σi − Ei+1[σi+1]) ≥
`ϕ(K,Ci)

ϕ(X,Ci)
. (17)

The potential σ is the only one of π, σ, ρ that is not necessarily monotone in i. Hence, to better
understand the term (σi − Ei+1[σi+1]), given the sampled point ci+1, we define σi+1 as

σi+1 = 1025` log min

(
105k,

400ϕ(X,Ci+1)

|K|R2
i

)
|K|
|N small

i |
. (18)

That is, in σi+1 we already change the cost ϕ(X,Ci) to ϕ(X,Ci+1) but we do not replace Ri by
Ri+1 and N small

i by N small
i+1 yet. We can rewrite Eq. (17) and get

(πi − Ei+1[πi+1]) + (ρi − Ei+1[ρi+1]) + (σi − Ei+1[σi+1]) + Ei+1[σi+1 − σi+1] ≥
`ϕ(K,Ci)

ϕ(X,Ci)
. (19)

In the rest of the proof, we will simply need to show that Eq. (19) is satisfied. We will need
to consider several cases and in each one of them, we will have to lower bound the terms on the
left-hand side of Eq. (19). Formally, the proof follows from Claims 4.11 and 4.16 to 4.18 that cover
all possible cases that can occur.
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4.3 Basic properties of potentials

Here we collect some basic claims about the potentials π, ρ and σ. We start with π. Note that we
always have

πi − Ei+1[πi+1] ≥
`

k
(20)

by definition of πi. Note that this is just an inequality. When K becomes solved or covered, we
have

πi − πi+1 ≥ 1050` log k. (21)

We continue with ρ whose changes we handle through the following claim. The main message
of the claim is that whenever we have Ri 6= Ri+1 and, even more, |N big

i+1| ≤ (1−O(1/` log k))|N big
i |,

we have ρi − ρi+1 as large as the maximum size of σi.

Claim 4.8. We have

ρi − ρi+1 ≥ 1050`2 log2 k|K|

(
1

|N small
i+1 |

− 1

|N small
i |

+
1

|N big
i+1|
− 1

|N big
i |

)
(22)

In particular, we always have
ρi − ρi+1 ≥ 0.

Moreover, if we assume that

|N big
i+1| ≤ (1− 1/(1020` log k))|N big

i |,

then we have:

ρi − ρi+1 ≥ 1030` log k
|K|
|N small

i+1 |

Proof. The first inequality follows from the definition of ρ.
Next, assume that

|N big
i+1| ≤ (1− 1/(1020` log k))|N big

i |. (23)

We have(
1

|N small
i+1 |

− 1

|N small
i |

+
1

|N big
i+1|
− 1

|N big
i |

)

≥

(
1

|N small
i+1 |

− 1

|N big
i |

)
N big
i+1 ⊆ N

small
i by definition of Ri

=
|N big

i | − |N small
i+1 |

|N big
i ||N small

i+1 |

≥
1

1020` log k
· |N big

i |

|N big
i ||N small

i+1 |
N small
i+1 ⊆ N big

i+1, Eq. (23)

≥ 1

1020` log k
· 1

|N small
i+1 |

and the claim follows.
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The idea behind σ is that it drops by an amount proportional to the drop in the cost ϕ(X,Ci)−
ϕ(X,Ci+1). This is substantiated by the following claim.

Claim 4.9. Assume that 105k > 400ϕ(X,Ci)
|K|R2

i
. Then for any Ci+1 we have

σi − σi+1 ≥ 1025`
ϕ(X,Ci)− ϕ(X,Ci+1)

ϕ(X,Ci)

|K|
|N small

i |
.

Proof. Using the assumption from the statement we get that σi = 1025` log
(
400ϕ(X,Ci)
|K|R2

i

)
|K|

|Nsmall
i | .

We have

σi − σi+1

1025`|K|/|N small
i |

=

(
log

400ϕ(X,Ci)

|K|R2
i

− log
400ϕ(X,Ci+1)

|K|R2
i

)
= log

ϕ(X,Ci)

ϕ(X,Ci+1)

≥
(

1− ϕ(X,Ci+1)

ϕ(X,Ci)

)
Fact 3.7

=
ϕ(X,Ci)− ϕ(X,Ci+1)

ϕ(X,Ci)

as needed.

Note however, that E[σi+1−σi+1] is not necessarily positive since σi+1 > σi+1 whenever Ri+1 6=
Ri. In these cases, we can bound the difference σi+1 − σi+1 ≤ σi+1 = O(` log k · |K|

|Nsmall
i+1 |). If there

is large enough drop in the size of the neighborhood, we have seen in Claim 4.8 that the drop in ρ
can pay for the negative value of −σi+1 that we need to pay to make the left hand side of Eq. (19)
positive.

This is the point of the first part of the next claim. The second part argues that if we are in the
case ϕ(K,Ci) = O(ϕ(X,Ci)/k), we can also account for the potentially negative term E[σi+1−σi+1].
This time this is because in this special case, the specific value of Ri anyway does not affect the
size of σi which is “maxed out” at value O(` log k · |K|

|Nsmall
i |).

Claim 4.10. 1. Assume that |N big
i+1| ≤ (1− 1/(1020` log k)|N big

i |. Then, we have

ρi − ρi+1 + σi+1 − σi+1 ≥ 0.

2. Assume that 105k ≤ 400ϕ(X,Ci)
|K|R2

i
. Then,

ρi − ρi+1 + σi − σi+1 ≥ 0.

Proof. First, assume that |N big
i+1| ≤ (1− 1

1020` log k
)|N big

i |. In this case, we use Claim 4.8 to get that

ρi − ρi+1 ≥ 1030` log k
|K|
|N small

i+1 |

On the other hand, we certainly have

σi+1 ≤ 1025` log(105k) · |K|
|N small

i+1 |
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Hence, we have

ρi − ρi+1 + σi+1 − σi+1 ≥ 0 (24)

since we can assume k ≥ 2 (for k = 1 there is not much to prove) and we are done.
Next, assume 105k ≤ 400ϕ(X,Ci)

|K|R2
i

. Simplifying the bound Eq. (22) from Claim 4.8 we get

ρi − ρi+1 ≥ 1050`2 log2 k|K|

(
1

|N small
i+1 |

− 1

|N small
i |

)
(25)

On the other hand, by our assumption we have σi = 1025` log(105k) · |K|
|Nsmall
i | and it certainly

has to hold that σi+1 ≤ 1025` log(105k) · |K|
|Nsmall
i+1 | , hence we get

σi+1 − σi ≤ 1025` log(105k) · |K|

(
1

|N small
i+1 |

− 1

|N small
i |

)
(26)

Comparing Eqs. (25) and (26), we infer that ρi − ρi+1 + σi − σi+1 ≥ 0, as needed.

4.4 Hard and easy cases

In this section, we formalize the “hard and easy case” from Section 2.3 and prove the necessary
preparatory results for each case.

At first, we get rid of the special case when ϕ(K,Ci) = O(ϕ(X,Ci)/k).

Claim 4.11. Assume that 105k ≤ 400ϕ(X,Ci)
|K|R2

i
. Then Eq. (19) is satisfied.

Proof. The condition from the statement in other words means that σi has the “maxed out” value
of 1025` log(105 · k) |K|

|Nsmall
i+1 | .

Using Claim 4.10 item (2) we infer that the left hand side of Eq. (19) can be lower bounded by

(πi − E[πi+1]) + 0 ≥ `/k. (27)

On the other hand, for the right-hand side of Eq. (19) we have

`ϕ(K,Ci)

ϕ(X,Ci)
≤ ` · 2|K|R2

i

ϕ(X,Ci)
Claim 4.5 (28)

≤ 2 · 400`

105k
assumption

Eqs. (27) and (28) imply that Eq. (19) holds in this case, as needed.

In the rest of the proof we only consider the case when

105 · k > 400ϕ(X,Ci)

|K|R2
i

(29)

23



Consider the probability distribution over X used to sample in the current, i+ 1th, step. That
is, consider the probability space where a point c ∈ X has probability ϕ(c, Ci)/ϕ(X,Ci). Consider
the random variable δi on this space that assigns the value ϕ(X,Ci)−ϕ(X,Ci∪{c}) to the sampled
point c. That is, δi is the random variable measuring the drop in the cost if we sampled just one
point of X proportional to its individual cost.

We define a value ξi as the 1/(2`)th quantile of the distribution of δi. Formally, ξi is the largest
number such that

P (ϕ(X,Ci)− ϕ(X,Ci ∪ {c}) ≥ ξi) ≥
1

2`
(30)

Definition 4.12 (Easy and hard clusters). We say that K is easy with respect to Ci (or in the
i+ 1th step) if and only if

ξi <
ϕ(N small

i , Ci)

1500
. (31)

Otherwise, K is hard.

The argumentation for the easy and hard cases differs. We will next prove Claim 4.14 that we
rely on in the easy case and Claim 4.15 that we rely on in the hard case.

Claim 4.13. Any point c ∈ N small
i has the property that ϕ(X,Ci)− ϕ(X,Ci ∪ {c}) ≥

ϕ(Nsmall
i ,Ci)
1500 .

Proof. Let us fix some c ∈ N small
i . Consider any point x ∈ N small

i . By Claim 4.5, we have
ϕ(x,Ci) ≥ R2

i /200. On the other hand, we have

d(c, x) ≤ d(c, µ(K)) + d(µ(K), x) ≤ 2 ·Ri/100.

Hence, we get

ϕ(x,Ci)− ϕ(x,Ci ∪ {c}) ≥
R2
i

200
− 4R2

i

104
≥ R2

i

500
(32)

and summing up Eq. (32) for all x ∈ N small
i , we get

ϕ(X,Ci)− ϕ(X,Ci ∪ {c}) ≥ ϕ(N small
i , Ci)− ϕ(N small

i , Ci ∪ {c}) (33)

≥ |N small
i | · R

2
i

500
Eq. (32) (34)

≥ ϕ(N small
i , Ci)

1500
Claim 4.5 item 2 (35)

Claim 4.14 (Claim for the easy case). Assume that K is easy in the i + 1th step. Then, for any
x ∈ N small

i we have that ci+1 = x with probability at least `ϕ(x,Ci)
2ϕ(X,Ci)

. In particular, this implies:

1. ci+1 ∈ N small
i with probability at least `ϕ(Nsmall

i ,Ci)
2ϕ(X,Ci)

,

2. ci+1 ∈ K with probability at least `ϕ(K,Ci)
2000ϕ(X,Ci)

.
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Proof. Fix any x ∈ N small
i . For any 1 ≤ j ≤ ` consider the following event Ej .

Event Ej : We have cji+1 = x. Moreover, for every 1 ≤ j′ ≤ ` with j′ 6= j, we have ϕ(X,Ci) −
ϕ(X,Ci ∪ {cj′}) ≤ ξi.

By independence of all ` samples of candidate centers and definition of ξi, we have that

P(Ej) ≥
ϕ(x,Ci)

ϕ(X,Ci)
· (1− 1/(2`))`−1 (36)

≥ ϕ(x,Ci)

ϕ(X,Ci)
·
(

1− `− 1

2`

)
union bound (37)

≥ ϕ(x,Ci)

2ϕ(X,Ci)
(38)

Note that since K is easy, we have ξi <
ϕ(Nsmall

i ,Ci)
1500 . Hence, we apply Claim 4.13 to conclude

that the event Ej implies that ci+1 = x. The upper bound from K being easy also implies that all
events Ej are disjoint for different j. Thus we get

P(ci+1 = x) ≥
∑̀
j=1

P(Ej) ≥
`ϕ(x,Ci)

2ϕ(X,Ci)
(39)

as needed.
Next, we prove the second part of the claim. The first bullet point is proven by summing up

over all points x ∈ N small
i :

P(ci+1 ∈ N small
i ) ≥

∑
x∈Nsmall

i

`ϕ(x,Ci)

2ϕ(X,Ci)
=
`ϕ(N small

i , Ci)

2ϕ(X,Ci)

Similarly, using Claim 4.5 item 4, we conclude that

P(ci+1 ∈ K) ≥ P(ci+1 ∈ K ∩N small
i ) ≥

∑
x∈K∩Nsmall

i

`ϕ(x,Ci)

2ϕ(X,Ci)
≥ `ϕ(K,Ci)

2000ϕ(X,Ci)
.

Claim 4.15 (Claim for the hard case). Assume K is hard and

105k >
400ϕ(X,Ci)

|K|R2
i

.

Then,

ϕ(X,Ci)− Ei+1[ϕ(X,Ci+1)] ≥
ϕ(N small

i , Ci)

3000
≥ ϕ(K,Ci)

107

and

σi − Ei+1[σi+1] ≥ 1015
`ϕ(K,Ci)

ϕ(X,Ci)
.

Proof. Note that by the definition of ξi as the 1−1/(2`)th quantile, the probability that ϕ(X,Ci)−
ϕ(X,Ci+1) < ξi is at most (1 − 1/(2`))` ≤ 1/3. Hence, with probability at least 2/3 we have
ϕ(X,Ci)− ϕ(X,Ci+1) ≥ ξi and this implies that

ϕ(X,Ci)− Ei+1[ϕ(X,Ci+1)] ≥ 2ξi/3.
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Plugging in that K is hard (Definition 4.12), we get

ϕ(X,Ci)− Ei+1ϕ(X,Ci+1) ≥
ϕ(N small

i , Ci)

3000

≥ ϕ(K,Ci)

107
Claim 4.5 item (4).

Using Claim 4.9, this implies

σi − Ei+1[σi+1] ≥ 1025
`(ϕ(X,Ci)− Ei+1[ϕ(X,Ci+1)])

ϕ(X,Ci)
· |K|
|N small

i |
Claim 4.9

≥ 1025
`ϕ(N small

i , Ci)

3000ϕ(X,Ci)
· |K|
|N small

i |

≥ 1020
`ϕ(N small

i , Ci)

ϕ(X,Ci)
· ϕ(K,Ci)/(2R

2
i )

200ϕ(N small
i , Ci)/R2

i

Claim 4.5

≥ 1015
`ϕ(K,Ci)

ϕ(X,Ci)

as needed.

4.5 Finishing the analysis

We are now ready to do a case distinction where for each case we combine results from the previous
section to verify Eq. (19).

We will first assume that

|N big
i \N

small
i | ≥ 1

1020` log k
|N big

i | (40)

Intuitively, in this case, we are happy since there are many points in N big
i that will not be present

in N big
i+1. This implies a large drop in the potential ρ via Claim 4.8 that can pay for everything.

Claim 4.16. Assume that 105k > 400ϕ(X,Ci)
|K|R2

i
and |N big

i \N small
i | ≥ 1

1020` log k
|N big

i |. Then Eq. (19)

is satisfied.

Proof. First, assume that K is easy. Note that if Ri 6= Ri+1 then we can use the fact that
N big
i+1 ⊆ N small

i and our assumption to conclude that

|N big
i+1| ≤ (1− 1/(1020` log k))|N big

i | (41)

Hence, we may apply the first item in Claim 4.10 and get that

ρi − ρi+1 + σi − σi+1 ≥ 0 (42)

When Ri = Ri+1, the same equation holds since by definition σi+1 ≤ σi.
That is, the sum of all potentials always drops. We write ∗ for the event that ci+1 ∈ K and

compute that
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(πi − E[πi+1]) + (ρi − E[ρi+1]) + (σi − E[σi+1])

= P(∗) (πi − E[πi+1|∗]) + P(¬∗) (πi − E[πi+1|¬∗])
+ (ρi − E[ρi+1]) + (σi − E[σi+1])

≥ P(∗) · 1050` log k + 0 Eqs. (21) and (42)

≥ `ϕ(K,Ci)

2000ϕ(X,Ci)
· 1050` log k Claim 4.14

≥ `ϕ(K,Ci)

ϕ(X,Ci)
.

That is, Eq. (19) is satisfied.
Next, assume K is hard. Then, we use Claim 4.15 to get

σi − Ei+1[σi+1] ≥ 1015
`ϕ(K,Ci)

ϕ(X,Ci)
.

Next, whenever Ri 6= Ri+1, we have necessarily |N big
i+1| ≤ (1− 1/(1020` log k))|N big

i | by Eq. (41)
and using Claim 4.10 item (2) we conclude that

ρi − ρi+1 + σi+1 − σi+1 ≥ 0

If Ri = Ri+1, above equation is also clearly satisfied since in that case σi+1 = σi+1.
In view of the above reasoning, we get

(πi − E[πi+1]) + (σi − E[σi+1]) + (ρi − E[ρi+1]) + (E[σi+1 − σi+1])

≥ 0 + 1015
`ϕ(K,Ci)

ϕ(X,Ci)
+ 0

and Eq. (19) is proven.

It remains to argue about the case when

|N big
i \N

small
i | < 1

1020` log k
|N big

i | (43)

In this case, we have that the two sets N big
i and N small

i are basically the same. This allows us
to carry out the planned argument as promised in Section 2.3.

Let us define M ⊆ N big
i as the set of |N big

i |/(1020` log k) points of M of maximum distance to
µ(K).

We observe that whenever ci+1 ∈ N big
i \M , then for each m ∈ M we have m 6∈ N big

i+1. This

means that ci+1 ∈ N big
i \M implies that

|N big
i+1| ≤ (1− 1/(1020` log k)) · |N big

i |. (44)

Also, since each point x ∈M satisfies ϕ(x,Ci) ≤ 3R2
i by Claim 4.5, item (1), we infer

ϕ(M,Ci) ≤
|N big

i |
1020` log k

· 3R2
i .
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On the other hand, by Claim 4.5, item (2) and the fact that |N small
i | ≥ |N big

i |/2 by Eq. (43), we
have

ϕ(N small
i , Ci) ≥ |N small

i |R2
i /200 ≥ |N big

i |R
2
i /400.

Putting these two facts together, we get

ϕ(M,Ci) ≤
3R2

i · 400ϕ(N small
i , Ci)

1020` log k ·R2
i

≤ ϕ(N small
i , Ci)

1016` log k
. (45)

Since by Eq. (43) we have M ⊇ N big
i \N small

i , we can write

ϕ(N big
i , Ci) ≤ ϕ(N small

i , Ci) + ϕ(M,Ci) ≤ 3ϕ(N small
i , Ci)/2 (46)

Hence, we have two results Eq. (43) and Eq. (46) that both formalize the intuition that we do
not really need to distinguish between N big

i and N small
i . We now consider the easy and the hard

case separately and finish the analysis in the following two claims.

Claim 4.17. Assume that 105k > 400ϕ(X,Ci)
|K|R2

i
and |N big

i \ N small
i | < 1

1020` log k
|N big

i |. Moreover,

assume K is easy. Then Eq. (19) is satisfied.

Proof. Using Claim 4.14 for the set N big
i \M = N small

i \M , we infer that ci+1 ∈ N big
i \M with

probability at least
`ϕ(N big

i \M,Ci)

2ϕ(X,Ci)
≥
`ϕ(N big

i , Ci)

4ϕ(X,Ci)

where we used Eq. (45).

This implies that with probability at least `ϕ(Nbig
i ,Ci)

4ϕ(X,Ci)
we have πi+1 = 0 and using Eq. (21), we

get

πi − E[πi+1] ≥
`ϕ(N small

i , Ci)

4ϕ(X,Ci)
· 1050` log k

Using Eq. (46), we infer that

πi − E[πi+1] ≥
`ϕ(N big

i , Ci)

10ϕ(X,Ci)
· 1050` log k

Next, note that σi+1 ≥ σi only in the case when Ri 6= Ri+1 and in that case we have

σi+1 ≤ 1025` log(105k)
|K|
|N small

i+1 |
≤ 1025` log(105k).

We have P(Ri 6= Ri+1) ≤ P(ci+1 ∈ N big
i ) ≤ `ϕ(Nbig

i ,Ci)
ϕ(X,Ci)

. Hence,

σi − E[σi+1] ≥
`ϕ(N big

i , Ci)

ϕ(X,Ci)
· (−1025` log(105k))
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This implies

πi − E[πi+1] + ρi − E[ρi+1] + σi − E[σi+1]

≥
ϕ(N big

i , Ci)

ϕ(X,Ci)
· 1049`2 log k + 0−

ϕ(N big
i , Ci)

ϕ(X,Ci)
· 1025`2 log(105k)

≥ 1040
ϕ(N big

i , Ci)

ϕ(X,Ci)

≥ ϕ(K,Ci)

ϕ(X,Ci)
Claim 4.5 item 4

as needed.

Claim 4.18. Assume that 105k > 400ϕ(X,Ci)
|K|R2

i
and |N big

i \ N small
i | < 1

1020` log k
|N big

i |. Moreover,

assume K is hard. Then Eq. (19) is satisfied.

Proof. We will lower bound the terms σi − E[σi+1], E[σi+1 − σi+1], and ρi − E[ρi+1].
First, recall that Claim 4.15 imply

σi − Ei+1[σi+1] ≥ 1015`ϕ(K,Ci)/ϕ(X,Ci). (47)

Next, we have that σi+1 > σi+1 only when Ri 6= Ri+1, which happens only when ci+1 ∈ N big
i ,

otherwise we have σi+1 = σi+1. Also, we have σi+1 ≤ 1025` log(105k) |K|
|Nsmall
i+1 | , hence we get

E[σi+1 − σi+1] ≥ P(ci+1 ∈ N big
i ) ·

(
−1025`

|K|
|N small

i+1 |
log(105k)

)
. (48)

We rewrite the right hand side as follows. First, note that

P(ci+1 ∈ N big
i ) = P(ci+1 ∈M) + P(ci+1 ∈ N big

i \M).

We bound the first term as follows:

P(ci+1 ∈M) ≤ P(∃j : cji+1 ∈M)

≤ `ϕ(M,Ci)

ϕ(X,Ci)

≤ `ϕ(N small
i , Ci)

1016` log k · ϕ(X,Ci)
Eq. (45)

Thus we can continue bounding one part of the right hand side of Eq. (48) as

P(ci+1 ∈M) · 1025`
|K|
|N small

i+1 |
log(105k) (49)

≤ ϕ(N small
i , Ci)

1016 log k · ϕ(X,Ci)
· 1025`

|K|
|N small

i |
log(105k) (50)

≤ ϕ(N small
i , Ci)

1016 log k · ϕ(X,Ci)
· 1025`

400ϕ(K,Ci)/R
2
i

ϕ(N small
i , Ci)/(3R2

i )
log(105k) Eq. (46) and Claim 4.5 (51)

≤ 1014
`ϕ(K,Ci)

ϕ(X,Ci)
(52)
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Putting all this together, we get

E[σi+1 − σi+1] ≥ −1014
`ϕ(K,Ci)

ϕ(X,Ci)
− P(ci+1 ∈ N big

i \M) ·

(
1025`

|K|
|N small

i+1 |
log(105k)

)
. (53)

Finally, we bound ρi − E[ρi+1]. Using Claim 4.8 and the fact that if we sample from M , we
have |N big

i+1| ≤ |N
big
i | − |M | ≤ (1− 1/(1020` log k))|N big

i |, we get

ρi − E[ρi+1] ≥ P(ci+1 ∈ N big
i \M) · 1030` log k · |K|

|N small
i+1 |

+ P(ci+1 ∈M) · 0 (54)

= P(ci+1 ∈ N big
i \M) · 1030` log k · |K|

|N small
i+1 |

(55)

Putting Eqs. (47), (53) and (55) together, we get

πi − E[πi+1] + ρi − E[ρi+1] + σi − E[σi+1] + E[σi+1 − σi+1]

≥ 0 + P(ci+1 ∈ N big
i \M) · 1030` log k · |K|

|N small
i+1 |

+ 1015
`ϕ(K,Ci)

ϕ(X,Ci)

− 1014
`ϕ(K,Ci)

ϕ(X,Ci)
− P(ci+1 ∈ N big

i \M) ·

(
1025`

|K|
|N small

i+1 |
log(105k)

)

≥ `ϕ(K,Ci)

ϕ(X,Ci)

and Eq. (19) is proven.

The proof of Lemma 4.7 now follows from Claims 4.11 and 4.16 to 4.18 that cover all possible
cases.

5 Analysis of greedy k-means++

In this section, we prove Theorem 1.1 that we restate here for convenience. The proof relies on
Lemma 2.2 proven in Section 4.

Theorem 1.1. Greedy k-means++ (Algorithm 2) is an O(`3 · log3 k)-approximation algorithm, in
expectation.

We prove the theorem formally by a potential argument. We set up a potential in Definition 5.1
and track it during the algorithm. We prove in Proposition 5.2 that at the beginning the size of
the potential is O(`3 log3 k) ·OPT . At the end of the algorithm, the potential is at least as large as
the cost of the final solution as proved in Proposition 5.3. Finally, in Proposition 5.7 we prove that
we expect the potential only to decrease in between two steps of the algorithm. Together, these
results prove Theorem 1.1.

5.1 The potential and the intuition behind it

In the rest of the section, we prove Theorem 1.1. As in the original proof of [AV07], we introduce
a potential function that assigns each optimal cluster some potential.
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Before we introduce it, recall Definition 4.3 where HITj
i+1(K) is defined as an indicator for

whether in i + 1th step K is uncovered and unsolved and cji+1 ∈ K. We also have HITi+1 =∑`
j=1 HITj

i+1 and HIT≥i+1 =
∑k

ι=i+1 HITι. Also, let bi be the number of bad steps so far where a
step i+ 1 is bad whenever ci+1 is a point of a cluster covered with respect to Ci. In the definition
of Φi we condition on the randomness of the first i steps of the algorithm which makes values like
bi deterministic.

We also use the following notation: K is the set of all clusters of a fixed optimal solution; we
have K = KUi t KCi , i.e., we split the clusters to uncovered and covered with respect to Ci. We
have XUi =

⋃
x∈K∈KUi

x, i.e., XUi is the set of points in uncovered clusters, we have XCi = X \XUi .

Finally, we split the uncovered clusters into unsolved and solved. Formally, KUi = KUUi t KUSi and
XUi = XUUi t XUSi . We do not use the notation ui for the number of uncovered clusters as in
Section 2 since this value is exactly equal to k − i+ bi.

We choose our potential as follows:

Definition 5.1. Fix a step i of Algorithm 3. We define a potential Φi as follows.

Φi = Φ1
i + Φ2

i + Φ3
i (56)

= 1010` (1 +Hk−i) · ϕ(XCi , Ci) (57)

+ 1020`
∑
K∈KUi

(1 + E≥i+1[HIT≥i+1(K)]) · (1 +Hk−i) · ϕ∗(K) (58)

+ bi ·
ϕ(X,Ci)

k − i+ bi
(59)

The intuition behind the potential is as follows. The potential function is very similar to the
potential of [AV07] although our analysis is more complicated. Let us walk through the three terms
Φ1
i ,Φ

2
i ,Φ

3
i of the potential and explain the intuition behind each of them.

The first term of the potential, Φ1
i , can be thought of as follows: every covered cluster K

has potential proportional to (1 + Hk−i)ϕ(K,Ci). In the end, the cluster needs to have potential
ϕ(K,Ci) to pay for itself, so it already has a surplus of Hk−i · ϕ(K,Ci) of potential. This means
that in the i + 1-th step, each covered cluster can “pay” a cost of ϕ(K,Ci)/(k − i). We use this
cost to pay for the fact that i + 1th step can be bad; formally, in that case, Φ3

i increases and we
pay for that increase by the decrease in Φ1

i .
The second term of the potential, Φ2

i , has the following intuition. At the beginning, every
(uncovered) cluster gets potential proportional to E≥1[HIT≥1(K)] · (1 + Hk−i) · ϕ∗(K). In the
original analysis of [AV07] it would be only (1 +Hk−i) · 5ϕ∗(K) and the aim of the potential would
be that if we at some point sample from K, we use the 5 approximation result of Lemma 3.3
to argue that, in expectation, we can now change 5ϕ∗(K) for ϕ(K,Ci+1), which would make the
potential of the newly covered cluster proportional to (1 +Hk−i) · ϕ(K,Ci+1) which is exactly the
potential that every covered cluster is supposed to have.

In our analysis, the additional term E≥1[HIT≥1(K)] allowsK to “pay” the cost (1+Hk−i)ϕ(K,Ci∪
{cji+1}) whenever some candidate center cji+1 happens to be sampled from K. If cji+1 = ci+1, we use

the paid cost to give K enough potential as it is required being now covered. If cji+1 6= ci+1, this
part of the potential that K “paid” is still subtracted from the potential of K although it remains
uncovered.

One additional subtlety is that we replace Hk by Hk−i in the potential of every uncovered
cluster. This allows us to argue that every solved uncovered cluster, i.e., every uncovered cluster
with Φ(K,Ci) ≤ 105ϕ∗(K) also pays the cost proportional to Φ(K,Ci)/(k − i) in every round in
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the same way as uncovered clusters do. We need to use this fact essentially because our random
variable HIT is counting hits of a cluster only until it becomes solved. Hence, we need a small
separate argument for solved clusters inside the proof.

Finally, we come to the last part of the potential, Φ3
i . This part of the potential is paying for

the fact that there were some bad steps. In [AV07], this part of the potential would be equal to

bi ·
ϕ(XUi ,Ci)
k−i+bi and its meaning would be that it can pay for bi “average” uncovered clusters. In the

end, when i = k, it simply pays for all uncovered clusters. The intuition about the new problems
we face here is described in Section 2.4. In summary, there is a mismatch between the optimization
of ϕ(XUi+1, Ci+1) that we wish to optimize for and ϕ(X,Ci+1) that the greedy optimizes for. While
this makes the proof substantially more technical, the definition of the potential Φ3

i is very similar
to that used by [AV07]; the only difference is that we replace the term ϕ(XUi , Ci) by ϕ(X,Ci),
essentially because the greedy rule optimizes for the latter, not the former expression.

5.2 The formal proof

In this section, we give a formal proof of Theorem 1.1. It follows from Propositions 5.2, 5.3 and 5.7.

Proposition 5.2. We have E[Φ1] = O(`3 log3 k) ·OPT .

Proof. Let us go through the three parts of Φ1. There was only one node sampled, hence only
one covered cluster. Using Lemma 3.2, we conclude that E[ϕ(XC1 , C1)] ≤ 2OPT , hence E[Φ1

i ] =
O(` log k) ·OPT . Next, we use Lemma 2.2 to conclude that E[HIT≥1(K)] = O(`2 log2 k) for every
cluster K, hence Φ2

1 = O(`3 log3 k) ·OPT . Finally, b1 = 0 since the first center was certainly picked
from an uncovered cluster, hence Φ3

1 = 0.

Proposition 5.3. We have Φk ≥ ϕ(X,Ck).

Proof. For i = k we have bi/(k − i+ bi) = 1 and hence Φk ≥ Φ3
k = ϕ(X,Ck).

The main part of our proof of Theorem 1.1 is to show that the potential Φi only decreases
in expectation. We prove it in Proposition 5.7 after analyzing all three parts of the potential
Φ1
i ,Φ

2
i ,Φ

3
i .

Proposition 5.4. Fix a step i ≥ 1. We have

∆Φ1
i = Φ1

i − Ei+1[Φ
1
i+1]

≥ 1010`

k − i
· ϕ(XCi , Ci)

− 1015`
∑

K∈KUUi

`ϕ(K,Ci)

ϕ(X,Ci)
· (1 +Hk−i−1) · ϕ∗(K)

− 1015`
∑

K∈KUSi

P(ci+1 ∈ K) · (1 +Hk−i−1) · ϕ∗(K).

The intuition behind ∆Φ1
i is as follows. The first part is proportional to ϕ(XC , Ci)/(k− i); this

is what we are paying for the fact that the i-th step can be bad, i.e., the first term will dominate a
similar, negative, term in ∆Φ3

i . The second and the third part of the difference corresponds to the
fact that some uncovered clusters can become covered and we need to ensure they have potential
proportional to (1 +Hk−i)ϕ(K,Ci+1) on them in this case. We argue differently about the solved
and unsolved clusters, hence two expressions. They are accounted for by the corresponding drop
in the potential ∆Φ2

i .
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Proof. We write

∆Φ1
i /(1010`) =

(
(1 +Hk−i) · ϕ(XCi , Ci)

)
− Ei+1

[
(1 +Hk−i−1) · ϕ(XCi+1, Ci+1)

]
For every K ∈ KCi we upper bound the the term ϕ(K,Ci+1) by ϕ(K,Ci) in the above expression.
However, notice that XCi+1 potentially contains one additional newly covered cluster. We can hence
write:

∆Φ1
i /(1010`) ≥ 1

k − i
· ϕ(XCi , Ci)−

∑
K∈KUi

P(ci+1 ∈ K) · (1 +Hk−i−1) · Ei+1[ϕ(K,Ci+1)|ci+1 ∈ K]

We split the sum on the right hand side to the summation over K ∈ KUSi and K ∈ KUUi . To
bound the first part, consider any K ∈ KUUi and write

P(ci+1 ∈ K) · Ei+1[ϕ(K,Ci+1)|ci+1 ∈ K]

= P(ci+1 ∈ K) ·
∑̀
j=1

P(ci+1 = cji+1|ci+1 ∈ K) · E
[
ϕ(K,Ci ∪ {cji+1})|ci+1 ∈ K ∧ ci+1 = cji+1

]

=
∑̀
j=1

P(cji+1 ∈ K ∧ ci+1 = cji+1) · E
[
ϕ(K,Ci ∪ {cji+1})|c

j
i+1 ∈ K ∧ ci+1 = cji+1

]

≤
∑̀
j=1

P(cji+1 ∈ K ∧ ci+1 = cji+1) · E
[
ϕ(K,Ci ∪ {cji+1})|c

j
i+1 ∈ K ∧ ci+1 = cji+1

]
+ P(cji+1 ∈ K ∧ ci+1 6= cji+1) · E

[
ϕ(K,Ci ∪ {cji+1})|c

j
i+1 ∈ K ∧ ci+1 6= cji+1

]
=
∑̀
j=1

P(cji+1 ∈ K) · E
[
ϕ(K,Ci ∪ {cji+1})|c

j
i+1 ∈ K

]
≤ `ϕ(K,Ci)

ϕ(X,Ci)
· 5ϕ∗(K)

where we used Lemma 3.3 in the last inequality.
On the other hand, for each K ∈ KUSi we can use the definition of solved clusters to get that

P(ci+1 ∈ K) · Ei+1 [ϕ(K,Ci+1)|ci+1 ∈ K]

≤ P(ci+1 ∈ K) · ϕ(K,Ci)

≤ P(ci+1 ∈ K) · 105ϕ∗(K).

We continue with Φ2
i .
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Proposition 5.5. Fix a step i ≥ 1. We have

Φ2
i − Ei+1[Φ

2
i+1] ≥ 1020`

∑
K∈KUUi

`ϕ(K,Ci)

ϕ(X,Ci)
· (1 +Hk−i−1) · ϕ∗(K)

+ 1020`
∑

K∈KUSi

P(ci+1 ∈ K) · (1 +Hk−i−1) · ϕ∗(K)

+
1010`ϕ(XUSi , Ci)

k − i

The intuition behind ∆Φ2
i is as follows. The first part of the potential is saying that whenever a

candidate center cji+1 hits an unsolved cluster K, we can pay the potential for K to become covered.
The second part is saying that whenever a solved cluster K becomes covered, we can also pay the
due potential; this is simple since the cost of K is already small. These two terms dominate the
respective decreases in ∆Φ1

i . Finally, each solved cluster pays a cost proportional to ϕ∗(K)/(k− i)
which is proportional to ϕ(K,Ci)/(k − i) in every step; this is analogous to the first term of ∆Φ1

i .

Proof. We have

∆Φ2
i /(1020`) =

∑
K∈KUi

(1 + E≥i+1[HIT≥i+1(K)]) · (1 +Hk−i) · ϕ∗(K) (60)

− Ei+1

 ∑
K∈KUi+1

(1 + E≥i+2[HIT≥i+2(K)]) · (1 +Hk−i−1) · ϕ∗(K)


We bound this expression as follows:

∆Φ2
i /(1020`) ≥

∑
K∈KUUi

(E≥i+1[HIT≥i+1(K)]− Ei+1[E≥i+2[HIT≥i+2(K)]]) (1 +Hk−i−1) · ϕ∗(K)

(61)

+
∑

K∈KUSi

P (ci+1 ∈ K) · (1 +Hk−i−1) · ϕ∗(K) (62)

+
1

k − i
· ϕ∗(XUi ) (63)

We did the following. For each cluster that is unsolved in the ith step we simply used the fact that
KUi+1 ⊆ KUi and subtracted the two expressions of Eq. (60). For the solved clusters we on the other
hand used that with probability P(ci+1 ∈ K) we have K 6∈ KUi+1. Finally, the last term comes from
the replacement of Hk−i in Φ2

i by Hk−i−1 in Φ2
i+1.

Comparing with the desired bound from the statement, we see that the second term Eq. (62) in
our bound is already what it should be. For the third term Eq. (63), we first use ϕ∗(XUi ) ≥ ϕ∗(XUSi )
and then, by definition of solved clusters, ϕ∗(XUSi ) ≥ 1

105
ϕ(XUSi , Ci).

It remains to deal with the first term Eq. (61). Consider any cluster K ∈ KUi that is also not

solved. Then we have Ei+1[HITj
i+1(K)] = ϕ(K,Ci)

ϕ(X,Ci)
for any 1 ≤ j ≤ ` and we can hence compute
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that

E≥i+1[HIT≥i+1(K)]− Ei+1 [E≥i+2[HIT≥i+2(K)]]

= E≥i+1[HIT≥i+1(K)]−HIT≥i+2(K)]]

= E≥i+1[
∑̀
j=1

HITj
i+1]

=
`ϕ(K,Ci)

ϕ(X,Ci)
.

which concludes the proof.

We finish with the third part of the potential, Φ3
i .

Proposition 5.6. Fix a step i ≥ 1. We have

Φ3
i − Ei+1[Φ

3
i+1] ≥ −

2`ϕ(XCi ∪XUSi , Ci)

k − i
(64)

− 5
∑

K∈KUUi

ϕ(K,Ci)

ϕ(X,Ci)
ϕ∗(K) (65)

The intuition behind ∆Φ3
i is as follows. In the original k-means++ analysis, we would here want

to prove that ∆Φ3
i ≥ −ϕ(XCi , Ci)/(k − i) where the right-hand side corresponds to the probability

of a bad step multiplied by the cost of average uncovered cluster. In our setting, we first lose an
additional `-factor since the probability of having a bad step is ` times larger. We also lose a few
more error terms as discussed in Section 5.1, the important part is that they can be paid for by
∆Φ1

i + ∆Φ2
i .

Proof. We will bound Ei+1[Φ
3
i+1]−Φ3

i instead of Φ3
i−Ei+1[Φ

3
i+1] to make the relevant terms positive.

At first we note that we surely know that

Φ3
i+1 ≤ (bi + 1)

ϕ(X,Ci)

k − (i+ 1) + (bi + 1)
= (bi + 1)

ϕ(X,Ci)

k − i+ bi
(66)

This follows by bounding ϕ(X,Ci+1) ≤ ϕ(X,Ci) and noting that the value of Φi+1 is larger when-
ever bi+1 = bi + 1 as opposed to bi+1 = bi. To see it formally, we note that for any bi > 0 and any
k−(i+1) ≥ 0 the inequality bi

k−(i+1)+bi
≤ bi+1

k−(i+1)+(bi+1) is equivalent to k−(i+1)
k−(i+1)+bi

≥ k−(i+1)
k−(i+1)+(bi+1) .

We start by analysing the special case when ϕ(XUi , Ci) ≤ ϕ(XCi , Ci). In this case, we simply
use this assumption and Eq. (66) to bound

Ei+1[Φ
3
i+1]− Φ3

i (67)

≤ (bi + 1)
ϕ(X,Ci)

k − i+ bi
− bi

ϕ(X,Ci)

k − i+ bi
(68)

=
ϕ(X,Ci)

k − i+ bi
≤ 2

ϕ(XCi , Ci)

k − i+ bi
≤ 2

ϕ(XCi , Ci)

k − i
(69)

and we are done as this term is dominated by the right hand side of Eq. (64).
Next, we assume

ϕ(XUi , Ci) ≥ ϕ(XCi , Ci) (70)
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We start by writing

Ei+1[Φ
3
i+1]− Φ3

i (71)

= Ei+1

[
bi+1

ϕ(X,Ci+1)

k − (i+ 1) + bi+1

]
− bi ·

ϕ(X,Ci)

k − i+ bi
(72)

≤ P(ci+1 ∈ XCi ∪XUSi )

(
(bi + 1)

ϕ(X,Ci)

k − i+ bi
− bi

ϕ(X,Ci)

k − i+ bi

)
(73)

+ P(ci+1 ∈ XUUi ) ·
(
bi

Ei+1[ϕ(X,Ci+1)|ci+1 ∈ XUUi ]

k − (i+ 1) + bi
− bi

ϕ(X,Ci)

k − i+ bi

)
(74)

That is, we distinguish two cases based on where the center ci+1 is picked from. In the first case we
pessimistically bound Φ3

i+1 using Eq. (66), while in the second case we use the fact that ci+1 ∈ XUUi
implies that bi+1 = bi.

To bound the first term, i.e. Eq. (73), we first use that

P(ci+1 ∈ XCi ∪XUSi ) ≤ P(∃j : cji+1 ∈ X
C
i ∪XUSi ) ≤ `ϕ(XCi ∪XUSi , Ci)

ϕ(X,Ci)
.

We also have

(bi + 1)
ϕ(X,Ci)

k − i+ bi
− bi

ϕ(X,Ci)

k − i+ bi
≤ ϕ(X,Ci)

k − i
Hence, the value of Eq. (73) is at most

`ϕ(XCi ∪XUSi , Ci)

ϕ(X,Ci)
· ϕ(X,Ci)

k − i
≤ `ϕ(XCi ∪XUSi , Ci)

k − i

Hence, the first term, corresponding to the case when the step is bad, is conveniently dominated
by Eq. (64).

In the rest of the proof, we analyze the second term Eq. (74) that corresponds to the drift of
the size of the average uncovered cluster.

We start by proving that

Ei+1[ϕ(X,Ci+1)|ci+1 ∈ XUUi ] ≤ Ei+1[ϕ(X,Ci ∪ {c1i+1})|c1i+1 ∈ XUUi ] (75)

That is, we claim that if we reveal that the center ci+1 taken by the greedy rule is from XUUi , we
know that the expected new cost ϕ(X,Ci+1) is smaller than if we simply sampled some candidate
center cji+1 and revealed it is sampled from XUUi . Eq. (75) then allows us to analyze further only
the expression on its right-hand side that does not rely anymore on the greedy rule.

Eq. (75) follows from the fact our rule is greedy; to formally verify it holds, let us first write

Ei+1[ϕ(X,Ci+1)|ci+1 ∈ XUUi ] =
∑
I∈I

P(I|ci+1 ∈ XUUi ) · Ei+1[ϕ(X,Ci+1)|I] (76)

where I is the set of all of at most 2` · ` possible following revelations: For each 1 ≤ j ≤ `, we reveal
whether cji+1 ∈ XUUi , and we also reveal for which index j0 we have ci+1 = cj0i+1. Notice that on the
right hand side of Eq. (76) we used Ei+1[ϕ(X,Ci+1)|I] = Ei+1[ϕ(X,Ci+1)|I ∧ ci+1 ∈ XUUi ] since
ci+1 ∈ XUUi is always either implied by I or it is incompatible with it and then P(I|ci+1 ∈ XUUi ) = 0.

Fixing any revelation I with ci+1 = cj0i+1, we observe that

Ei+1[ϕ(X,Ci+1)|I] ≤ Ei+1[ϕ(X,Ci ∪ {c1i+1})|c1i+1 ∈ XUUi ] (77)
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To see this, first rewrite the equation equivalently as

Ei+1[ϕ(X,Ci ∪ {cj0i+1})|I] ≤ Ei+1

[
ϕ(X,Ci ∪ {cj0i+1})|c

j0
i+1 ∈ X

UU
i

]
. (78)

Observe that the information I can be viewed as describing distributions from which all candidate
centers cji+1 are sampled from, independently, together with the information that after candidate

centers were sampled, it happened that ϕ(X,Ci ∪ {cj0i+1}) ≤ ϕ(X,Ci ∪ {cji+1}) for any j 6= j0. This
means that the correctness of Eq. (78) follows from Lemma 3.9. Plugging Eq. (77) to Eq. (76)
proves Eq. (75).

We now continue with analysing the term Ei+1[ϕ(X,Ci ∪ {c1i+1})|c1i+1 ∈ XUUi ] from Eq. (75)
even further. We write:

Ei+1[ϕ(X,Ci ∪ {c1i+1})|c1i+1 ∈ XUUi ] (79)

≤ ϕ(X,Ci)−
∑

K∈KUUi

ϕ(K,Ci)

ϕ(XUUi , Ci)
·
(
ϕ(K,Ci)− Ei+1

[
ϕ
(
K,Ci ∪ {c1i+1}|c1i+1 ∈ K

)])
(80)

≤ ϕ(X,Ci)−
∑

K∈KUUi

ϕ(K,Ci)

ϕ(XUUi , Ci)
· (ϕ(K,Ci)− 5ϕ∗(K)) Lemma 3.3

(81)

= ϕ(X,Ci)−
∑

K∈KUUi

ϕ2(K,Ci)

ϕ(XUUi , Ci)
+

∑
K∈KUUi

ϕ(K,Ci)

ϕ(XUUi , Ci)
· 5ϕ∗(K) (82)

≤ ϕ(X,Ci)−
ϕ(XUUi )

|KUUi |
+

∑
K∈KUUi

ϕ(K,Ci)

ϕ(XUUi , Ci)
· 5ϕ∗(K) (83)

where the last bound follows from the Cauchy-Schwartz inequality (or AK inequality)
∑n

i=1 x
2
i ≥

(
∑n

i=1 xi)
2 /n.

It is time to reap the fruits of our work. We plug in the bounds from Eqs. (75) and (83) to the
term Eq. (74) and bound P(ci+1 ∈ XUUi ) ≤ 1 there to conclude that

Eq. (74) ≤
(
bi

Ei+1[ϕ(X,Ci+1)|ci+1 ∈ XUUi ]

k − (i+ 1) + bi
− bi

ϕ(X,Ci)

k − i+ bi

)
(84)

≤ bi ·

ϕ(X,Ci)−
ϕ(XUUi )

|KUUi |
+
∑

K∈KUUi
ϕ(K,Ci)

ϕ(XUUi ,Ci)
· 5ϕ∗(K)

k − (i+ 1) + bi
− ϕ(X,Ci)

k − i+ bi

 (85)

This can be further simplified to

Eq. (74) ≤ bi ·

ϕ(X,Ci)−
ϕ(XUUi )

|KUUi |

k − (i+ 1) + bi
− ϕ(X,Ci)

k − i+ bi

+
∑

K∈KUUi

ϕ(K,Ci)

ϕ(XUUi , Ci)
· 5ϕ∗(K) (86)

Note that the last term of the right-hand side is already equal to Eq. (65) so to finish we need to
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analyze the first term of the right-hand side. We do it as follows.

bi ·

ϕ(X,Ci)−
ϕ(XUUi )

|KUUi |

k − (i+ 1) + bi
− ϕ(X,Ci)

k − i+ bi

 (87)

≤ bi ·

ϕ(X,Ci)−
ϕ(XUUi )
k−i+bi

k − (i+ 1) + bi
− ϕ(X,Ci)

k − i+ bi

 |KUUi | ≤ |KUi | (88)

= bi ·

ϕ(XUUi , Ci)−
ϕ(XUUi )
k−i+bi

k − (i+ 1) + bi
− ϕ(XUUi , Ci)

k − i+ bi

+ biϕ(XUSi ∪XCi )

(
1

k − (i+ 1) + bi
− 1

k − i+ bi

)
(89)

= 0 +
biϕ(XUSi ∪XCi )

(k − i+ bi)(k − i+ bi − 1)
(90)

≤ ϕ(XUSi ∪XCi )

k − i
i ≤ k − 1 (91)

Plugging back to Eq. (86) and all the way back to Eq. (71) finishes the proof.

Proposition 5.7. Fix a step i > 1. We have

Φi ≥ Ei+1[Φi+1].

Proof. Putting all bounds of Propositions 5.4 to 5.6 together, we get

Φi − Ei+1[Φi+1] = ∆Φ1
i + ∆Φ2

i + ∆Φ3
i (92)

≥ 1010`

k − i
· ϕ(XCi , Ci) (93)

− 1015`
∑

K∈KUUi

`ϕ(K,Ci)

ϕ(X,Ci)
· (1 +Hk−i−1) · ϕ∗(K) (94)

− 1015`
∑

K∈KUSi

P(ci+1 ∈ K) · (1 +Hk−i−1) · ϕ∗(K) (95)

+ 1020`
∑

K∈KUUi

`ϕ(K,Ci)

ϕ(X,Ci)
· (1 +Hk−i−1) · ϕ∗(K) (96)

+ 1020`
∑

K∈KUSi

P(ci+1 ∈ K) · (1 +Hk−i−1) · ϕ∗(K) (97)

+
1010`ϕ(XUSi , Ci)

k − i
(98)

− 2`ϕ(XCi ∪XUSi , Ci)

k − i
(99)

− 5
∑

K∈KUUi

ϕ(K,Ci)

ϕ(X,Ci)
ϕ∗(K) (100)

≥ 0 (101)
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6 A hard instance for greedy k-means++

In this section we provide a construction of a (weighted) point set where Algorithm 2 returns a solu-

tion with approximation Ω( `3 log3 k
log2(` log k)

) with constant probability. Formally, we prove Theorem 1.2

that we restate here for convenience.

Theorem 1.2. For every k and ` ≤ k0.1, there exists a point set X ⊆ Rd for some d ∈ N where
Algorithm 2 outputs Ω(`3 log3 k/ log2(` log k)) approximate solution with constant probability.

Recall that we already gave an informal description in Section 2.5. We first describe the point
set in Section 6.1. We then give the formal analysis of greedy k-means++ on the point set in
Section 6.2.

6.1 The point set

We start by describing the weighted point set X. In fact, we define the full input instance (X,C0, k̃)
where C0 is the starting set of centers (see Lemma 3.4).

We set

t =
` log k

1000 log(` log k)
.

In the follow-up discussion, we always assume that k is large enough and the expressions like the
one above that defines t are integers. This is for the purpose of readability; it is simple to make
the proof work by adding b c to all definitions that require integer values.

Recall that in the statement of Theorem 1.2 we assume that ` < k0.1; we did not try to optimize
this bound but note that there has to be some since for `� k we have `2 log2 k � ` · k where the
right-hand side is the trivial bound on the number of hits. Note that the lower bound Ω(` log k)
of [BERS20] holds also for large `, hence for ` > k0.1 the greedy k-means++ algorithm already
necessarily has bad, polynomial, approximation guarantee.

We will now describe the point set X, the weights of the points, and the distances between
some pairs of points. Then, we discuss how exactly we embed the points in the Euclidean space.
We next list points of X (the picture to have in mind is Fig. 3).

1. There is a point b for which we have w(b) = 1
t .

2. A point c is at distance 1 from b. We have w(c) = 1/10.

3. We have a set of points N = {n1, n2, . . . , nt+1} and M = {m1, . . . ,mt} defined as follows.
We have d(b, ni) = ki and w(ni) = w(mi) = 1000

t . Each mi lies at distance 10tki from ni. We
put the point nt+1 to C0, that is, we assume that point is already sampled at the beginning.

4. We have A = {a1, . . . , ak1.2} at distance k from c. The weight of each ai is ` log k
k2

so their total

weight is ` log k
k0.8

.

5. We have E = {e0,
⋃
e∈E1

e, . . . ,
⋃
e∈Et e} where Ei = {ei,1, . . . , ei,√k}. Each point in E \ {e0}

has distance 1 from a point e0 which is at distance k2t from b. We include e0 to C0. Since
we also included nt+1 ∈ C0 and we chose d(b, e0) large enough, it will never happen that a
closest center to a point in E is in X \ E or vice versa. Each ei,j ∈ Ei has the same weight
wi. This parameter needs to be set up quite precisely depending on the rest of the instance
so we define it only later.
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The number of points in this point set X is equal to |X| = 1+1+(t+1)+t+k1.2+(1+t ·
√
k) =

O(k1.2). Two points of X, nt+1 and d, are already in C0. We choose the number k̃ = |X|− |C0|−1.
We will work with the input instance (X,C0, k̃). That is, in this instance, the optimal solution
(Lemma 3.5) as well as the solution of greedy k-means++ selects as centers all points of X, except
for one.

Arrangement: We next specify fully how to embed the point set X to the Euclidean space. So far,
we only specified distances of pairs (ni,mi), (b, ni), (b, c), (c, ai), (e0, ei,j), (e0, b) for all i, j. These
distances define a tree metric that we will simulate. Unfortunately, we cannot simulate exactly this
tree metric in a Euclidean space, but we can come sufficiently close to it, using Fact 3.6.

We now describe the configuration. In view of Fact 3.6, vectors (b, c), (b, n1), . . . , (b, nt+1) are
chosen as vertices of a (t+ 1)-dimensional simplex. Each mi lies on the ray (b, ni).

To give an example how this embedding simulates the idealized tree metric up to 1/t loss, let
us verify that d(ni′ , ni) = d(ni, b) + Θ(d(b, ni′)/t):

d(ni′ , ni)
2 = d(ni′ , b)

2 + d(b, ni)
2 + 2d(ni′ , b)d(ni, b)/(t+ 1) = k2i

′
+ k2i +

2

t+ 1
ki+i

′
(102)

where we used the cosine law and Fact 3.6. That is, we have

d(ni′ , ni) ≥
√
k2i + 2ki+i′/(t+ 1) = ki

√
1 + 2ki′−i/(t+ 1) ≥ ki(1 + ki

′−i/(2t)) = ki + ki
′
/(2t)

(103)

Similarly, we can get the following bounds

d(mi′ , ni) ≥ ki + ki
′
/(2t) (104)

d(c, ni) ≥ ki + 1/(2t) (105)

d(c,mi) ≥ (10t+ 1)ki + 1/(2t) (106)

Next, we specify the directions of the points A. Each ai goes partly in the direction of the ray
b, c and partly in a direction orthogonal to everything else. Namely, the ray (c, ai) has direction
1
2(b, c) + 1

2νi where νi is orthogonal to the span of X \ {ai}. Hence, the projection of ai to (b, c) is
at distance k/

√
2 from c. Also, for any i < j we can project to the plane defined by νi, νj to see

that

d(ai, aj) = k (107)

Finally, using cosine law, we get

d(b, ai)
2 = d(c, b)2 + d(c, ai)

2 − d(b, c)d(c, ai) cos 135◦ (108)

= 1 + d(c, ai)
2 + d(c, ai)/

√
2 (109)

≥ d(c, ai)
2 + d(c, ai)/2 (110)

= k2 + k/2 (111)

Finally, each vector (e0, ei,j) is orthogonal to the span of X \ {ei,j}. In particular, we have

d(ei,j , ei′,j′) ≥ d(e0, ei,j) (112)
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for every i, j, i′, j′.

Precise definition of wi: It remains to define wi. We define Si = {b, c, aj , n≤i,m≤i}. Then, we
define

∆(b) = ϕ(Si, {ni+1 ∪ b})− ϕ(Si, {ni+1}) (113)

and

∆(c) = ϕ(Si, {ni+1 ∪ c})− ϕ(Si, {ni+1}) (114)

We define

wi =
∆(b) + ∆(c)

2
. (115)

That is, wi is set up so that, under some assumptions about what centers are already taken (e.g.
ni+1 is but points of Si are not), the drop resulted by taking ei,j as a center is smaller than the drop
when we take b but bigger than the drop when we take c (we are yet to prove that ∆(b) > ∆(c)).
Note that wi satisfies

k2i+2 ≤ wi ≤ 3000k2i+2 (116)

The lower bound follows from ϕ(c, {ni+1}) ≥ k2i+2 using Eq. (105). The upper bound follows
from the fact that w(Si) is dominated by the cost of Ni and Mi and for any x ∈ Si we have
d(ni+1, x) < 1.1ki+1 which follows from looking at Fig. 3.

This concludes the description of the point set X.

Remark 6.1. Although our point set is weighted, we can make it unweighted by scaling all the
weights up by a sufficiently large number and rounding them to the nearest integer.

In fact, we believe, but do not prove, that all weights and positions of points in X from Theo-
rem 1.2 can be made integers of order kO(log k). We do not attempt a formal proof since that would
require tedious arguments about rounding errors.

We note that in view of the O(`O(1) log OPT (1)
OPT (k)) upper bound sketched in Appendix C, the size of

point weights and positions cannot be both improved to kO(1). Namely, for constant `, any instance
where Algorithm 2 is Ω(log3 k/ poly log log k) approximate needs to satisfy

log
OPT (1)

OPT (k)
≥ log2 k/ poly log log k.

Hence, whenever OPT (k) is a positive integer, we get that necessarily

OPT (1) = ϕ(X,µ(X)) ≥ klog k/poly log log k.

6.2 Analysis of greedy k-means++ on the hard point set

In this subsection, we give the formal proof of Theorem 1.2.

First epoch:
We define the first epoch formally as the first k̃ − k1.2 steps of Algorithm 2 (cf. Section 2.5 for

the intuition behind the first epoch). This means our aim is to prove the following claim.

Claim 6.2. After running Algorithm 2 on the instance (X, k̃, C0) for k̃ − k1.2 steps, with positive
probability we have

C
k̃−k1.2 = X \ (A ∪ {c})
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We split the epoch into t phases that we, for notational reasons, index in a decreasing order as
i = t, t − 1, . . . , 1. Our main task is to prove that in each i-th phase the point b is selected as a
center with probability Ω(1/t). The i-th phase is formally defined as follows. With the exception
of the very first phase, it starts when the last point of Ei+1 is taken as a center. Alternatively, we
say that a phase finishes whenever b is taken.

As a first claim, we prove that whenever b is selected as a center, with constant probability, we
finish the first epoch as intended.

Claim 6.3. Assume that in some step ι0 during the first phase we have b ∈ Cι0 and ({c}∪A)∩Cι0 =
∅. Then, with probability at least 1/2, the first phase finishes with

C
k̃−k1.2 = X \ (A ∪ {c}).

Proof. First, we upper bound the total cost of {c}∪A in every step ι ≥ ι0 assuming ({c}∪A)∩Cι = ∅.
We have ϕ(c, b) = 1·12 = 1 and ϕ(A, b) = k1.2 · ` log k

k2
·k2 = `k1.2 log k. That is, ϕ({c}∪A,Cι) ≤ `k1.3.

On the other hand, we claim that any point x ∈ N ∪M ∪ E has always cost ϕ(x,Cι) ≥ k2/t,
unless x ∈ Cι. For the points of N ∪M , this is because their weight is 1000/t and the distance to
the closest other point of X is always at least k. For the points of E, this is because the distance to
the closest already taken point is always 1 (this is the point e0 ∈ C0 ⊆ Cι) and the smallest weight
of a point in E is at least k4 by Eq. (116).

In view of the above computations, we have that the probability we sample a candidate center
from {c} ∪A in step ι is at most

` · `k1.3

(k̃ − k1.2 − ι) · k2/t
≤ 1

(k̃ − k1.2 − ι) · k0.4
.

Union bounding over all k̃ < k2 step leads to a harmonic series summing up to O(log k)/k0.4 < 1/2,
as needed.

Next, let us analyze one phase of the first epoch. Recall that the ith phase starts after step ι
for which Ei+1 ⊆ Cι and finishes when Ei ⊆ Cι or b ∈ Cι. In the next claim, we compare the cost
drops of various points with the “baseline cost drop” of taking a point in Ei.

Claim 6.4. Assume that N≥i+1∪M≥i+2∪E≥i+1 ⊆ Cι while (N≤i∪M≤i∪E≤i∪A∪{b, c})∩Cι = ∅.
Let ∆(x) = ϕ(X,Cι) − ϕ(X,Cι ∪ {x}) be a cost drop of a point x ∈ X. Then, we have for any
i′ < i and any j we have

∆(ni′),∆(mi′),∆(c) < ∆(ei,j) < ∆(b) < ∆(ni),∆(mi+1)

where ei,j is arbitrary point not in Cι.

Proof. First, we prove that ∆(b) > ∆(c). For x ∈ {c} ∪ A we have ϕ(x, c) ≤ ϕ(x, b), whereas for
any x ∈ {b} ∪N≤i ∪M≤i+1 we have ϕ(x, b) ≤ ϕ(x, c).

So, we first upper bound the drop difference for {c} ∪A:

ϕ(c ∪A, b)− ϕ(c ∪A, c) = 1 + ϕ(A, b)− ϕ(A, c)

= 1 + k1.2 · log k

k2
· (1 + d(c, a1)/

√
2)

= O(k0.2 log k)

where we used Eq. (109) and d(c, a1) = k.
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On the other hand, consider just the point n1. Using the cosine law, we have

ϕ(n1, b)− ϕ(n1, c) ≥ 2d(n1, b)d(b, c)/t ≥ k/t

That is, the difference in the cost drop at point n1 dominates all other points where c has a
larger cost drop than b. This means that ∆(b) > ∆(c) and by definition of wi, we already get for
any j that

∆(c) < ∆(ei,j) < ∆(b).

Next, consider the point ni. We will prove that ∆(ni) > ∆(b). The intuitive reason for this is
that mi is sufficiently far away to make the drop difference between ni and b there dominate the
other terms. Concretely, we have

ϕ(mi, b)− ϕ(mi, ni) = 1000/t ·
(
((10t+ 1)ki)2 − (10tki)2

)
≥ 1000/t · 20tk2i ≥ 20000k2i (117)

On the other hand, consider the set T = {b, c}∪A∪N<i∪M<i of points x for which ϕ(x, ni) ≥
ϕ(x, b) (note that ϕ(mi+1, Cι ∪ {b}) = ϕ(mi+1, Cι ∪ {c}) = ϕ(mi+1, ni+1), that is, mi+1 is not
enjoying any cost drop). Using the fact that the largest distance d(x, ni) for x ∈ T is 10tki−1 for
x = mi−1, and the fact that w(T ) ≤ 3000, we get

ϕ(T, ni)− ϕ(T, b) ≤ ϕ(T, ni) ≤ w(T ) · (10tki−1 + ki)2 ≤ 3000 · (2ki)2 = 12000k2i (118)

Comparing with Eq. (117), we conclude that ∆(ni) > ∆(b) as needed.
Next, consider the point mi+1. We have ∆(mi+1) = ϕ(mi+1, Cι) = 1/t · (10tki+1)2 = Ω(k2i+2).

This term dominates ∆(b) = O((tki)2) = O(k2i+0.2) where we used that all points affected by b
have total weight of O(1) and distance from b is at most 10tki. So, we get ∆(mi) > ∆(b), as needed.

Next, consider any point ni′ for i′ < i; we will prove that ∆(ni′) < ∆(c). We have ϕ(x, ni′) <
ϕ(x, c) only for x = ni′ and x = mi′ . Using triangle inequality to bound d(mi′ , c) ≤ d(mi′ , ni′) +
d(ni′ , b) + d(b, c) = (10t+ 1)kj + 1, we get

ϕ(mi′ , c)− ϕ(mi′ , ni′) ≤ 1000/t ·
(
((10t+ 1)kj + 1)2 − (10tkj)2

)
≤ 30000k2i

′

(cf. Eq. (117)) and

ϕ(ni′ , c)− ϕ(ni′ , ni′) = ϕ(ni′ , c) ≤ 2000/t · k2i′

We will show that these terms are dominated by ϕ(ni, ni′) − ϕ(ni, c). First, using the cosine
law, we have

ϕ(ni, ni′)− ϕ(ni, b) = 1000/t ·
(
d(ni, ni′)

2 − d(ni, b)
2
)
≥ 1000/t · 1/t · d(b, ni′)d(b, ni) = 1000ki+i

′
/t2

and

ϕ(ni, c)− ϕ(ni, b) = 1000/t · (2d(b, c)d(b, ni)/t+ d(b, c)2) ≤ 1000ki

Combining the two bounds, we get

ϕ(ni, ni′)− ϕ(ni, c) ≥ 1000ki+i
′
/t2 − 1000ki

Since i > i′ ≥ 1, it is certainly true that 1000ki+i
′
/t2 − 1000ki > 30000k2i

′
+ 2000k2i

′
/t and we

get that ∆(ni′) < ∆(c), as needed.
A very similar argument works for every mi′ with i′ < i and we omit the proof.

43



The only missing point is now mi for which we prove that ∆(mi) < ∆(c). To see that, note
that the only point x for which ϕ(x,mi) < ϕ(x, c) is x = mi itself. We have

ϕ(mi, b)− ϕ(mi,mi) = ϕ(mi, b) = 1000/t · ((1 + 10t)ki)2

On the other hand, we have

ϕ(b,mi)− ϕ(b, b) = ϕ(b,mi) = 1 · ((1 + 10t)ki)2

That is, the cost drop of b if we take b dominates the cost drop of mi if we take mi. Whence
∆(mi) < ∆(b), as needed.

Consider the first k0.5−k0.4 steps of the i-th phase. We will show that what happens with high
probability is that the algorithm select only points of Ei ∪ {mi+1} as new centers, until at some
point it selects ni or b.

Claim 6.5. Fix ι0 to be the first step of phase i. Let ι1 be the first point in time when either there
were at least k0.5 − k0.4 sampling steps of the i-th phase, or until {ni, b} ∩ Cι1 6= ∅.

Then, with probability at least 1− 1/(10000t), we have Cι1 \Cι0 ⊆ Ei ∪ {ni, b,mi+1} and either
{ni,mi+1} ⊆ Cι1 or {b} ⊆ Cι1. Moreover, b ∈ Cι1 with probability at least 1/(107t).

Proof. We will need to upper bound the probability of various bad events. First, we upper bound
the probability of the events that at least one point from E1 ∪ · · · ∪ Ei−1 ∪ A is sampled as a
candidate center. To compute the relevant probabilities, first note that at any point in time ι ≤ ι1,
we have |Ei| ≥ k0.4, hence

ϕ(Ei, Cι) ≥ k0.4wi ≥ k0.4 · k2i+2 (119)

where we used Eq. (116).
On the other hand, we have ϕ(E1 ∪ · · · ∪ Ei−1, Cι) ≤ t

√
kwi−1 ≤ 3000t

√
kk2i using Eq. (116)

and ϕ(A,Cι) ≤ k1.2 · log kk2 · (2k
i+1)2. We get

ϕ(E1 ∪ · · · ∪ Ei−1 ∪A,Cι)
ϕ(X,Cι)

= O(
k2i+1.3

k2i+2.4
) = O(1/k).

Hence, during at most k0.5 − k0.4 = O(
√
k) steps of the phase, the probability of this event is at

most O(
√
k · `/k) = O(1/k0.4).

Another bad event is that in some step of the algorithm none of the ` > 1 points sampled is
from Ei. To compute the probability of this event, we upper bound the following cost:

ϕ({b, c} ∪N≤i ∪M≤i+1 ∪ E1 ∪ · · · ∪ Ei−1 ∪A,Cι)
= O(ϕ(mi+1, ni+1)) cost dominated by the cost of mi+1

= O((10tki+1)2 · 1/t)
= O(tk2i+2)

On the other hand, in view of Eq. (119), we have

P(c1ι+1, c
2
ι+1 6∈ Ei) =

(
O(tk2i+2)

k2i+2.4

)2

= O(1/k0.7)

44



Hence, the probability that this bad event happens in the first k0.5−k0.4 steps is at mostO(k0.5/k0.7) =
1/k0.2.

A final bad event that we need to deal with is that in one sampling step we sample at least
two points from the set {b, ni,mi+1}. We argue just about the probability that ni,mi+1 are
sampled in one sampling step as this event has the largest probability out of the three pairs
{b, ni}, {b,mi+1}, {ni,mi+1}. The probability of this event in one step is at most

`ϕ(ni, Cι)

ϕ(X,Cι)
· `ϕ(mi+1, Cι)

ϕ(X,Cι)
≤
` · 1000t · (2k

i+1)2 · ` · 1000t · (10tki+1)2

(γ · k2i+2)2
= O((`/k0.4)2) = O(1/k0.6)

where we used Eq. (119).
Hence, the probability that this bad event happens in the first k0.5 − k0.4 steps is at most

O(k0.5/k0.6) = 1/k0.1.
In view of the computations above, we may assume that in the first k0.5 − k0.4 steps we always

sample one point from Ei and ` − 1 points from Ei ∪ {b, c} ∪ N≤i ∪M≤i+1. Moreover, we do not
sample more than one point from {b, ni,mi+1} in one sampling step. We now invoke Claim 6.4 and
get that only when the non-Ei point we sample is ni or mi+1 or b, we add that point to the set of
centers. Otherwise, we always select the new center as one of the sampled points from Ei.

We will now prove the claims from the statement. First, we prove that with probability 1 −
O(1/t) we have either both ni and mi+1 in Cι1 , or we have b ∈ Cι1 .

In each step ι, there are at least γ = k0.5 − (ι − ι0) − 3 not-yet-taken points of Ei, since we
already assume that the algorithm chooses a point from Ei ∪ {b, ni,mi+1} as the next center in
each step. The probability that the next point sampled is ni is at least

P(cι+1 = ni) ≥
`ϕ(ni, Cι)

ϕ(X,Cι)

≥ ` · 1000/t · k2i+2

10000k2i+2 + 3000γk2i+2
≥ `

10tγ

where we bounded ϕ({b, c} ∪ A ∪N≤i ∪M≤i+1) ≤ 10000k2i+2, used Eq. (116) and used that since
γ ≥ k0.4, it dominates the constant term 10000. Hence, the probability that we do not take ni nor
b in the k0.5 − k0.4 steps, is at most

k0.4+3∏
γ=k0.5

(1− `/(10tγ)) ≤ e
−

∑k0.4+3

γ=k0.5
`/(10tγ) ≤ e−(` log k)/100t = e− log(` log k) < 1/(100000t)

where we used t = ` log k
1000 log(` log k) and summed up a harmonic series. Similarly, we can bound that

the probability that we take neither mi+1 nor b is at most 1/(1000` log k). The first part of the
claim follows after we also subtract the probabilities of various bad events bounded above from
1− 1/(100000t).

Note that after ni is selected as a center during the phase in some step ι, the cost drop resulted
by adding a point from {b, c} ∪ A ∪ N<i ∪M≤i to Cι is smaller than the cost drop resulted by
adding a point from Ei to Cι. Hence, we have Cι1 \ Cι ⊆ Ei ∪ {mi+1} which consequently implies
Cι1 \ Cι0 ⊆ Ei ∪ {ni, b,mi+1} as required.

Finally, we need to prove that we sample b with probability at least 1/(100t). To see this, let
us condition on b or ni being one of the sampled and taken points in the first n0.5 − n0.4 steps of
the phase. In every step the ratio of the probability we sample b versus that we sample ni is equal
to
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ϕ(b, Cι)/ϕ(ni, Cι) ≥
(

log2(` log k)

1000`2 log2 k
· k2i+2

)
/
(
1000/t · 2k2i+2

)
=

` log k
log(` log k) · log2(` log k)

2 · 106 · `2 log2 k

=
log(` log k)

2 · 106 · ` log k
= 1/(2 · 106 · t)

Hence, after we subtract the probabilities of various bad events from 1/(2 · 106 · t), we get that the
probability that we sample b during the process is at least 1/(107t), as needed.

We are now ready to deduce Claim 6.2.

Proof. We iterate Claim 6.5. As we have only 1/(10000t) probability of various failure modes inside
one phase, the total probability of failing in some phase is at most 1/10000. If we condition on no
bad events happening in a phase, we get probability of at least 1/(107t) of sampling b per phase.
Hence, the total probability of sampling b in at least one phase is at least

1− (1− 1/107t)t ≥ 1− e−1/10
7
> 0

Finally, after b is sampled, we use Claim 6.3 to conclude that with positive probability, at the end
of the first epoch we have C

k̃−k1.2 = X \ (A ∪ {c}) as needed.

It remains to argue about the second epoch. We need to prove that there is constant probability
of sampling c as a candidate center during the first k1.2 − k1.1 steps. Then we need to argue that
in that case c is taken as a center by the greedy rule. We start by lower bounding the probability
of sampling c.

Claim 6.6. Assume that in some step ι0 we have X \Cι0 ⊆ {c}∪A but c 6∈ Cι0. Moreover, assume
that k1.1 ≤ |A|. Then, with probability at least 1− e−1/(6 log k), Algorithm 2 samples the point c as
a candidate center in the following |A|/2 steps.

Proof. In each of the next |A|/2 steps ι0 ≤ ι ≤ ι0 + |A|/2, unless c ∈ Cι, we sample c as a
fixed candidate center cjι with probability at least ϕ(c,b)

ϕ(c,b)+|A|·ϕ(a1,b) ≥
1·12

1·12+|A|· ` log k
k2
·(k+1)2

≥ 1
3|A|` log k .

Hence, the probability that c is not sampled in any of the |A|/2 steps as no candidate center cjι is
at most (

1− 1

3|A|` log k

)`·|A|/2
≤ e−

1
3|A|` log k ·`|A|/2 = e−1/(6 log k)

and we are done.

We can now finish the proof.

Claim 6.7. Assume that C
k̃−k1.2 = X \ (A ∪ {c}). Then, with positive probability we have c ∈ C

k̃
.
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Proof. Consider the first k1.2 − k1.1 steps after the end of the first epoch. We split these steps to
log2

k1.2

k1.1
= 0.1 log2 k batches where the batch i contains k1.2/2i steps. Fix one such i-th batch. We

first prove that whenever the algorithm samples a point c as a candidate center, it also takes it as
a center. To see that, we need to compute the drop in cost ∆(c) of c and ∆(aj) of any aj . First,
we bound the drop of c. We use the fact that each point of at least k1.1 points A that are not yet
taken will have its cost dropped by a small yet non-negligible amount. Namely for the drop in the
cost ∆(c) after taking c as a new center we have

∆(c) ≥
k1.1∑
j=1

ϕ(aj , b)− ϕ(aj , c) ≥ k1.1 ·
` log k

k2
·
(
d(b, a1)

2 − d(c, a1)
2
)

(120)

≥ ` log k

k0.9
· k/2 Eq. (108) (121)

≥ `k0.1 (122)

On the other hand, whenever we take some point aj as a center, the only point whose cost is
dropped is aj itself; this follows from Eq. (107). Thus for the drop in the cost ∆(aj) after taking
aj as a new center we have

∆(aj) = ϕ(aj , b) =
` log k

k2
· k2 = ` log k (123)

That is, for k large enough we get ∆(c) > ∆(aj) and, hence, whenever c is sampled, it is also
taken as a center by the greedy rule of Algorithm 2.

Finally, we use Claim 6.6 to conclude that c is not sampled in any of the 0.1 log2 k batches only

with probability at most
(
e−1/(6 log k)

)0.1 log2 k ≤ e−1/100 < 1.
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Algorithm 3 General k-means++ seeding
Input: X, k, `, and a rule R that picks one point from ` points x1, . . . , x`, given access to X,Ci, k, `.

1: Uniformly independently sample x1, . . . , x` ∈ X;
2: Let x ∈ {x1, . . . , x`} be selected by R and set C1 = {x}.
3: for i← 1, 2, 3, . . . , k − 1 do
4: Sample c1i+1, . . . , c

`
i+1 ∈ X independently w.p. ϕ(x,Ci)

ϕ(X,Ci)
;

5: Let ci+1 ∈ {c1i+1, . . . , c
`
i+1} be selected by R and set Ci+1 = Ci ∪ {ci+1}.

6: return C := Ck

A A hard instance for general k-means++

In this section, we prove the precise version of Theorem 1.3. To this end, we first formally describe
the general version of k-means++ with for an arbitrary seeding rule in Algorithm 3.

The rest of this section is then devoted to the proof of the following theorem.

Theorem A.1. There exists a point set X ⊆ Rd and a rule R such that Algorithm 3 with R is
Ω(k1−1/`)-approximate with constant probability.

We already sketched a proof of this theorem in Section 2.2 for ` = Ω(log k). The generalization
for any ` and to a Euclidean space below is routine.

We remark that we believe one can improve the lower bound from Theorem A.1 to Ω(k1−1/`` log k)
by adding the set A as in the proof of Theorem 1.2.

We begin by describing the input instance (X, k,C0) (recall that in view of Lemma 3.4 we can
assume we start with a non-empty set of centers C0). Throughout the proof, we will assume that
the weights are integers. This is for readability, we could round the numbers to the closest integer
and that would not hurt any asymptotic guarantees. Our instance X is a subset of k+1-dimensional
Euclidean space Rk+1.

We next describe the input weighted point set X.

1. There is a point d ∈ C0 in the origin.

2. There are k − 1 points x1, x2, . . . , xk−1 having weight w(xi) = 1. Moreover each xi has the
coordinate (0, . . . , 0, k, 0, . . . , 0), which has value 0 at each dimension except the i-th. Hence,
d(d, xi) = k for every i ∈ {1, 2, . . . , k − 1}.

3. There is a point c with weight w(c) = k1−1/`

2 at (0, 0, . . . , k, 0). Hence d(d, c) = k.

4. The final point b has weight w(b) = 1 and lies in the plane generated by vectors (0, . . . , 1, 0)
and (0, . . . , 0, 1) in such a position that it holds that d(c, d) = d(b, d) = k and d(b, c) = 1 (i.e.,
d, c, b form an isosceles triangle).

In view of Lemma 3.5, we require the optimal solution C∗ ⊆ X. Then, we have C∗ =
{x1, x2, . . . , xk−1, c} and the cost of it is OPT = ϕ(b, C∗ ∪ C0) = d(c, b)2 · w(b) = 1.

We are going to pick the rule R as follows: whenever we sample b as a candidate, we take it as
a center. Furthermore, we only take c as a center if all of the ` candidate points are c, hence when
we have no other choice.

We will show that with constant probability we will take b as a center after k/2 steps. That
means that at least one of the points in {x1, x2, . . . , xk−1, c} will not be selected as a center at
the end. If one of the xi is not selected as a center, then the cost of the solution will be at least
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w(xi) · d(xi, d)2 = k2, since d is the closest point to any xi. If c is not selected as a center, then the

cost of the solution will be at least w(c) · d(c, b)2 = k1−1/`

2 , since the closest chosen center to c is b.

Hence if we pick b as a center, the approximation factor will be at least k1−1/`

2 .
Let Bi and Ci be the events that b and c are chosen as a center at the i-th step, respectively

and B≤i and C≤i be the events that b and c are chosen as a center in one of the first i steps.
We will calculate the probability of picking b as a center in the first k/2 steps as follows:

P(B≤k/2) = P(B1) + P(B2 | ¬B≤1) · P(¬B≤1) + · · ·+ P(Bk/2 | ¬B≤k/2−1) · P(¬B≤k/2−1)

To calculate a lower bound for P(B≤k/2), we will need a lower bound for P(Bi | ¬B≤i−1) and
P(¬B≤i). We start by showing that with constant probability we do not pick b in the first k/2
steps.

Lemma A.2. For any i ≤ k/2 we have P(¬B≤i) ≥ 1
10 .

Proof. First we show that for any i ≤ k
2 we have P(¬Bi|¬B≤i−1) ≥ 1− 2

k+2 . We have

P(¬Bi | ¬B≤i−1 ∧ ¬C≤i−1) =
k − i+ k1−1/`/2

k − i+ k1−1/`/2 + 1

≥ k/2 + k1−1/`/2

k/2 + k1−1/`/2 + 1

≥ k/2

k/2 + 1
= 1− k/2

k/2 + 1
= 1− 2

k + 2

P(¬Bi | ¬B≤i−1 ∧ C≤i−1) =
(k − i+ 1) · k2

1 + (k − i+ 1) · k2

≥ k3/2

1 + k3/2
= 1− 2

2 + k3
≥ 1− 2

k + 2

Hence P(¬Bi | ¬B≤i−1) ≥ 1 − 2
k+2 . Now we can calculate the probability of not picking b in

the first i steps.

P(¬B≤i) = P(¬B1 ∩ ¬B2 ∩ ¬B3 ∩ · · · ∩ ¬Bi)
= P(¬B1 | ¬B≤0) · P(¬B2 | ¬B≤1) · P(¬B3 | ¬B≤2) · · ·P(¬Bi | ¬B≤i−1)

≥
(

1− 2

k + 2

)i
≥
(

1− 2

k + 2

)k/2
≥
(
e−

4
k+2

)k/2
Fact 3.8

≥
(
e−

2k
k+2

)
≥ 1

10
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Now, to calculate a lower bound for P(Bi | ¬B≤i−1) we split it as follows:

P(Bi | ¬B≤i−1) = P(Bi | ¬B≤i−1 ∧ ¬C≤i−1) · P(¬C≤i−1) + P(Bi | ¬B≤i−1 ∧ C≤i−1) · P(C≤i−1)

≥ P(Bi | ¬B≤i−1 ∧ ¬C≤i−1) · P(¬C≤i−1)

First, we will show that the probability of picking c in a step is at most 1/k.

Lemma A.3. For every i ≤ k/2 we have P(Ci | ¬C≤i−1) ≤ 1/k .

Proof. We will start by showing that the probability of c being selected as a center is higher when
b is not selected as a center. This intuitively makes sense because b lies very close to c.

P(Ci | ¬C≤i−1 ∧B≤i−1) =
k1−1/`

k1−1/` + (k − i+ 1) · k2

≤ k1−1/` + (k3−1/` − k1−1/`)
k1−1/` + (k − i+ 1) · k2 + (k3−1/` − k1−1/`)

≤ k3−1/`

k3−1/` + (k − i+ 1) · k2
= P(Ci | ¬C≤i−1 ∧ ¬B≤i−1)

Now using P(Ci | ¬C≤i−1 ∧B≤i−1) ≤ P(Ci | ¬C≤i−1 ∧¬B≤i−1), we can bound P(Ci | ¬C≤i−1).

P(Ci | ¬C≤i−1) = P(B≤i−1) · P(Ci | ¬C≤i−1 ∧B≤i−1) + P(¬B≤i−1) · P(Ci | ¬C≤i−1 ∧ ¬B≤i−1)
≤ P(B≤i−1) · P(Ci | ¬C≤i−1 ∧ ¬B≤i−1) + P(¬B≤i−1) · P(Ci | ¬C≤i−1 ∧ ¬B≤i−1)
≤ P(Ci | ¬C≤i−1 ∧ ¬B≤i−1)

According to our rule R, for c to be selected as a center, all of the ` samples in a step should
be c.

P(Ci | ¬C≤i−1 ∧ ¬B≤i−1) =

(
k3−1/`/2

k3−1/`/2 + (k − i+ 1) · k2

)`

≤

(
k3−1/`/2

k3−1/`/2 + k/2 · k2

)`

≤

(
k3−1/`/2

k3/2

)`

≤
(

1

k1/`

)`
=

1

k

Hence P(Ci | ¬C≤i−1) ≤ P(Ci | ¬C≤i−1 ∧ ¬B≤i−1) ≤ 1
k

Now we can show that the probability of not picking c as a center in the first k/2 steps is at
least 1/2.

Lemma A.4. For i ≤ k/2, P(¬C≤i) ≥ 1
2
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Proof.

P(C≤i) = P(C1) + P(C2 | ¬C≤1) · P(¬C≤1) + · · ·+ P(Ci | ¬C≤i−1) · P(¬C≤i−1)
≤ P(C1 | ¬C≤0) + P(C2 | ¬C≤1) + P(C3 | ¬C≤2) + · · ·+ P(Ci | ¬Ci−1)

≤ 1

k
+

1

k
+

1

k
+ · · ·+ 1

k
Lemma A.3

≤ i

k
≤ 1

2

Hence, P(¬C≤i) = 1− P(C≤i) ≥ 1
2

Using Lemma A.4 we can finally calculate a lower bound for P(Bi | ¬B≤i−1).

Lemma A.5. For i ≤ k/2, P(Bi | ¬B≤i−1) ≥ 1
4k

Proof.

P(Bi | ¬B≤i−1) = P(Bi | ¬B≤i−1 ∧ ¬C≤i−1) · P(¬C≤i−1) + P(Bi | ¬B≤i−1 ∧ C≤i−1) · P(C≤i−1)

≥ P(Bi | ¬B≤i−1 ∧ ¬C≤i−1) · P(¬C≤i−1)

≥ P(Bi | ¬B≤i−1 ∧ ¬C≤i−1) ·
1

2
Lemma A.4

≥ 1

(k − i) + k1−1/`/2 + 1
· 1

2

≥ 1

2k
· 1

2
=

1

4k

Now we are ready to prove the theorem.

P(B≤k/2) = P(B1) + P(B2 | ¬B≤1) · P(¬B≤1) · · ·+ P(Bk/2 | ¬B≤k/2−1) · P(¬B≤k/2−1)

≥ 1

10
·
(
P(B1 | ¬B≤0) + P(B2 | ¬B≤1) + P(B3 | ¬B≤2) + · · ·+ P(Bk/2 | ¬B≤k/2−1)

)
Lemma A.2

≥ 1

10
· ( 1

4k
+

1

4k
+

1

4k
+ · · ·+ 1

4k
) Lemma A.5

≥ 1

10
· (k/2

4k
)

≥ 1

80

Hence, with constant probability, b will be taken as a center in the first k/2 steps, and as a
result, the algorithm will return a solution with an approximation ratio of at least Ω(k1−1/`).

B Analysis of general k-means++

In this section, we prove the precise version of Theorem 1.4 that we state next.

Theorem B.1. For any rule R, Algorithm 3 is O(k2−1/` · ` log k)-approximate.
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B.1 Hitting optimal clusters

We start by proving an analogue to the Lemma 2.2 that shows that any optimal cluster is expected
to be hit O(`k1−1/`) times. Note that it is trivially hit O(`k) times. The reason we bother proving
this only slightly better (and tight) result is that we wrote the proof before we realized that our
lower and upper bounds for Algorithm 3 are not matching since we could not analyze the sampling
process defined below.

The improvement over the trivial O(`k) bound is based on the fact that if a cluster K dominates
the cost of the whole point set, we have a nontrivial probability of sampling all ` candidate centers
from it.

Lemma B.2. For any rule R in Algorithm 3 and any optimal cluster K we have that E[HIT(K)] =
O(` · k1−1/`).

Proof. We prove this statement by induction. Recall that HIT(K) be the number of points of K
that we sample from K until K becomes covered (Definition 4.1) or solved (Definition 4.2) but for
the purposes of this proof we even drop the “solved” requirement.

We prove that

E≥k−i[HIT≥k−i(K)] ≤ 10`i1−1/`

For i = 0 it clearly holds. Next, assume the equation holds for k − i + 1 and we prove it for
k − i.

Let us define p = ϕ(K,Ci)
ϕ(X,Ci)

. We will now use the fact that whenever we sample all points c1i , . . . , c
`
i

from K, i.e., whenever HITi(K) = `, we have ci ∈ K and K hence becomes covered. Namely, using
induction hypothesis we compute:

E≥k−i[HIT≥k−i(K)] = Ek−i[HITi(K)] + E≥k−i[HIT≥k−i+1(K)) (124)

≤ `p+ P(HITi(K) = `) · 0 + P(HITi(K) 6= `)10`(i− 1)1−1/` (125)

= `p+ (1− p`)10`(i− 1)1−1/` (126)

Next, we compute

(i− 1)1−1/` = i1−1/` · (1− 1/i)1−1/`

≤ i1−1/` · (1− 1/i)1/2 ` ≥ 2

≤ i1−1/` · (1− 1/(4i))

Let us use f(i) = 10`i1−1/` · (1− 1/(4i)). Then, the above computation in Eq. (124) says that

E≥k−i[HIT≥k−i(K)] ≤ `p+ (1− p`)f(i) (127)

Let us analyze the right-hand side of that expression. We have

δ
(
`p+ (1− p`)f(i)

)
δp

= `− `p`−1f(i)

Solving for the right hand side equal to zero, we get 1 − p`−1f(i) = 0, hence p = (1/f(i))1/(`−1).
That is, the right hand side of Eq. (127) is maximized for that p and then it is equal to

` (1/f(i))1/(`−1) +

(
1−

(
(1/f(i))1/(`−1)

)`)
f(i) (128)
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Let us plug in the definition of f(i) to that expression. We start with the first term. We have

` (1/f(i))1/(`−1) = `

(
1

10`i1−1/` · (1− 1/(4i))

)1/(`−1)
≤ `

i1/`

where we used that 10`(1− 1/(4i)) ≥ 1.
Next, we handle the second term as follows:(

1−
(

(1/f(i))1/(`−1)
)`)

f(i) ≤ f(i) ≤ 10`i1−1/` · (1− 1/(4i))

Hence, we can upper bound the expression in Eq. (128) by

10`i1−1/` · (1− 1/(4i)) +
`

i1/`

= 10`i1−1/` ·
(

1− 1/(4i) +
1

10i

)
≤ 10`i1−1/`

and we are done.

As a corollary we get Theorem B.1.

Proof Sketch. The proof is very similar to the proof of Theorem 1.1. In that proof, we are using
the greedy rule in two places:

1. Through Lemma 2.2; instead of that lemma we now use Lemma B.2.

2. Inside Proposition 5.6 we use it to bound how much can the size of the average uncovered
cluster increases during the algorithm. We can very crudely bound this multiplicative increase
by k, hence our approximation guarantee picks up additional k-factor.

B.2 An interesting sampling process

This section is devoted to the explanation of an interesting open problem that, if solved, probably
brings together the upper and lower bounds for Algorithm 3 that are now off by a factor of k. We
note that losing a factor of k because of the drift of the size of the average uncovered cluster looks
very wasteful. In fact, we can replace this factor of k in the upper bound by a function g(k, `)
that we discuss in the rest of this section. We believe that understanding g(k, `) is an exciting
open problem. The problem in the analysis of Theorem B.1 can be distilled into the following
riddle, which one can understand without understanding the details of the analysis of Arthur and
Vassilvitskii.

Definition B.3 (`-point adversarial sampling process). Let ` ∈ N. We define the `-point adver-
sarial sampling process as follows. At the beginning, there is a set E0 of k elements where each
element e ∈ E0 has some nonnegative weight w0(e). The process has k rounds: in each round, we
form the new set Ei+1 from Ei as follows:
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1. We define the distribution Di over Ei where the probability of e is defined as wi(e)/
∑

e∈Ei wi(e).
An adversary chooses an arbitrary number `i that satisfies 0 ≤ `i ≤ `. We sample `i points
e1i , . . . , e

`i
i independently from Di. Next, an adversary chooses a point ei ∈ {e1i , . . . , e

`i
i }. We

set Ei+1 = Ei \ {ei}.

2. An adversary chooses the new weight function wi+1(e) for every element e ∈ Ei+1 as an
arbitrary function that satisfies

0 ≤ wi+1(e) ≤ wi(e).

The relationship between this process and the analysis of Algorithm 3 is as follows. The set Ei
of elements corresponds to a set of uncovered clusters. The steps where we sample `i ≤ ` elements
e1i , . . . , e

`i
i corresponds to the algorithm sampling at most ` centers from uncovered clusters. We

assume that the rule R behaves adversarially and can decide to cover any of the sampled clusters,
i.e., we allow removing any sampled element ei ∈ {e1i , . . . , e

`i
i } from Ei to form Ei+1. The adversarial

decreasing of the element weights in between two sampling steps corresponds to the newly taken
center decreasing the cost of the optimal clusters in an uncontrolled manner.

We note that the analysis of k-means++ from [AV07] implicitly analyzes this game for ` = 1.
This case is qualitatively simpler than the general case: We can in fact even prove that for ` = 1,
the average element size can only decrease between two steps. To see this, we observe that it would
stay the same if we picked each element uniformly at random. Picking heavier elements with higher
probability can only decrease the average size then.

However, this simple approach does not work anymore for ` > 1. In fact, consider as an example
the set E0 consisting of k−1 elements of size one and one element of size k. Choosing ` = Ω(k), the
adversary can prevent us to remove the costly element until the very end, with constant probability.
This increases the average element size from roughly 2 to k, that is, by Ω(k) = Ω(`) factor.

We do not know how much the average can increase but it is clearly at most by a O(k) factor
and by the above reasoning it is at least by Ω(`) factor.

Fact B.4. We define the function g(k, `) as the smallest growing function satisfying the following
condition. Let AVGi be defined as the average weight of an element in the i-th round of the `-point
adversarial sampling process from Definition B.3, i.e., for any 0 ≤ i < k we define

AVGi =

∑
e∈Ei wi(e)

k − i
.

Then, for any adversary and any 0 ≤ i < k, we have

AVGi ≤ g(k, `)AVG0.

Question B.5. What is the value of g(k, `)?

A similar problem to our sampling process was recently considered in [BERS20] where the
authors consider the following related problem. Suppose that we run k-means++, but before each
sampling step, an adversary distorts each probability of taking an element by a multiplicative 1± ε
factor. Does such an algorithm retain O(log k) approximation guarantees for fixed ε < 1? This
question leads to the analysis of a process very similar to Definition B.3; instead of choosing one of `
sampled elements, the power of the adversary is now to distort the sampling distribution pointwise
by 1 ± ε multiplicative factor. In [BERS20], the authors show that the average in this game can
increase only by a multiplicative O(log k) factor. This follows from the fact that all elements larger
than Ω(log k) will be already taken in the first k/2 steps of the process. This implies O(log2 k)
approximation guarantee for the final algorithm. In [GOR] this analysis of the game is improved
to O(1) which implies the tight O(log k) upper bound for k-means++ with noise.
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C An incomparable bound on the number of hits

In this section, we sketch the proof of the following result which is incomparable with Lemma 2.2
but substantially easier to prove. In fact, we used this proof sketch as a way to build intuition
towards the proof of Lemma 2.2 in an earlier draft of this writeup, before we realized Sections 1
and 2 are way too long.

Lemma C.1. For any optimal cluster K we have E[HIT(K)] = O(` log OPT (1)
OPT (K)).

Here, OPT (k̃) is the size of the optimal solution with k̃ centers.

Proof sketch. Fix an optimal cluster K, consider a step i + 1 and assume that for the cost of
K we have ϕ(K,Ci) ≥ 105ϕ∗(K). Being far from the optimum means that all centers of Ci
are very far from most of the points of K. Hence, whenever it happens that a potential center
cji+1 for some 1 ≤ j ≤ ` is sampled from K, we have constant probability that d(µ(K), cji+1) ≤
d(µ(K), Ci)/2, i.e., cji+1 is substantially closer to µ(K) than all other centers in Ci. In that case,

we have ϕ(X,Ci) − ϕ(X,Ci ∪ {cji+1}) ≥ ϕ(K,Ci)/2. That is, adding cji+1 as the new center will
result in the cost drop of at least ϕ(K,Ci)/2.

We will now need to distinguish two cases. Let us consider the distribution over the cost drop
ϕ(X,Ci) − ϕ(X,Ci ∪ {c}) where c is sampled proportional to its current cost ϕ(c, Ci). That is,
we consider the distribution of how the cost drops if we add the candidate center c1i+1 (or any
other fixed candidate center) to the current solution. In the first, easy, case we assume that with
probability 1− 1/`, the cost drop ϕ(X,Ci)− ϕ(X,Ci ∪ {c}) is less than ϕ(K,Ci)/2; otherwise we
are in the hard case.

What is easy in the easy case? The discussion above implies that in that case, whenever we
sample some cji+1 from K, we have constant probability that all other candidate centers create a

cost drop smaller than ϕ(K,Ci)/2, hence the greedy heuristic chooses ci+1 = cji+1. Hence, sampling
a point from K in the easy case can happen only constantly many times, in expectation, before K
becomes covered after which we stop counting the hits to K.

But what do we do in the hard case? There, we at least know that with constant probability the
cost drops by ϕ(K,Ci)/2, concretely we know that ϕ(K,Ci)−E[ϕ(K,Ci+1)] ≥ ϕ(K,Ci)/5. Recall
that we are counting hits to K and each candidate center hits it with probability ϕ(K,Ci)/ϕ(X,Ci).

Our situation is very similar to the following deterministic process where we start with a number
X0 (corresponding to ϕ(X,C1)) and an empty counter H0 = 0 (corresponding to counting hits).
In each step we then choose some number 0 < Ki ≤ Xi (corresponding to the cost of the cluster
ϕ(K,Ci)) and define Xi+1 ← Xi −Ki, while increasing the counter Ci+1 ← Ci + ` ·Ki/Xi. In this
idealized process, it holds that Ci = O(` · logX0/Xi). Intuitively, this is because the case when
Ki = Θ(Xi) in every step is the hardest one.

We can apply similar reasoning to our randomized process to get the expected boundO
(
` log OPT (1)

OPT (k)

)
on the number of hits. Here, we additionally use that 1) the starting cost of our solution ϕ(X,C1)
is expected to be of order OPT (1) by Lemma 2.1 and 2) the final cost ϕ(X,Ck) has to be at least
OPT (k).

57


	1 Introduction
	2 Intuitive explanations
	2.1 Analyzing k-means++
	2.2 k-means++ strikes back
	2.3 A new hope
	2.4 Return of the guarantees
	2.5 Matching lower bound

	3 Preliminaries
	4 Bounds on cluster hits by greedy k-means++
	4.1 Preparatory definitions and results
	4.2 Inductive version of the main result
	4.3 Basic properties of potentials
	4.4 Hard and easy cases
	4.5 Finishing the analysis

	5 Analysis of greedy k-means++
	5.1 The potential and the intuition behind it
	5.2 The formal proof

	6 A hard instance for greedy k-means++
	6.1 The point set
	6.2 Analysis of greedy k-means++ on the hard point set

	A A hard instance for general k-means++
	B Analysis of general k-means++
	B.1 Hitting optimal clusters
	B.2 An interesting sampling process

	C An incomparable bound on the number of hits

