
ar
X

iv
:2

20
7.

05
89

8v
3

 [
qu

an
t-

ph
]

 2
7

O
ct

 2
02

3

Testing and Learning Quantum Juntas Nearly Optimally

Thomas Chen

Columbia University

Shivam Nadimpalli

Columbia University

Henry Yuen

Columbia University

October 30, 2023

Abstract

We consider the problem of testing and learning quantum k-juntas : n-qubit unitary matrices
which act non-trivially on just k of the n qubits and as the identity on the rest. As our main
algorithmic results, we give

1. A Õ(
√
k)-query quantum algorithm that can distinguish quantum k-juntas from unitary

matrices that are “far” from every quantum k-junta; and

2. A O(4k)-query algorithm to learn quantum k-juntas.

We complement our upper bounds for testing and learning quantum k-juntas with near-
matching lower bounds of Ω(

√
k) and Ω(4k/k), respectively. Our techniques are Fourier-analytic

and make use of a notion of influence of qubits on unitaries.

http://arxiv.org/abs/2207.05898v3

1 Introduction

Certifying and characterizing the dynamical behavior of quantum systems is a fundamental task in
physics which is often achieved via quantum process tomography (QPT) [CN97]. However, QPT is
extremely resource-intensive. For example, all known methods for learning a classical description
of an arbitrary n-qubit unitary operator, given black-box query access to it, require Ω(4n) queries
to the unitary [GJ14]. On the other hand, this complexity can be significantly reduced if, instead
of learning the entire description of the unknown unitary, we want to test whether the unitary
satisfies a specific property. This naturally leads us to consider the well-studied property testing
framework in theoretical computer science [Gol10, BY22].

The setup of property testing (in the context of unitary dynamics, as it pertains to this paper) is
as follows: Given oracle access1 to a unitary operator U and its inverse U †, our goal is to determine
whether U has a certain property or is “far”2 from every unitary operator satisfying that property
using a small number of calls to the oracles to U and U †. We also allow for the algorithm to output
an incorrect answer with some small probability. Several natural properties of unitary dynamics
have been studied in this model, such as commutativity, diagonality, membership in the Pauli
basis, etc. We refer the interested reader to Section 5.1 of the survey by Montanaro and de Wolf
on quantum property testing [MdW16] for more information.

The property we are interested in testing here is that of being a k-junta: We say that an n-qubit
unitary U is a k-junta if it acts “non-trivially” on only k of the n-qubits (see Definition 6 for a
formal definition). Like Montanaro and Osborne [MO10], we will refer to a unitary k-junta as a
quantum k-junta, to distinguish it from a k-junta Boolean function (or simply, Boolean k-junta).
As a special case, the notion of quantum k-juntas captures the well-studied problem of testing if a
Boolean function f : {0, 1}n → {0, 1} is a k-junta (cf. Problem 4).

Problem 1 (Testing quantum k-juntas). Given oracle access to a unitary U and its inverse U †

acting on n qubits and ε > 0, decide with probability at least 9/10 if U is a k-junta or if dist(U, V) ≥
ε for all quantum k-juntas V acting on n qubits.

Our first main result is an algorithm for testing if a unitary U is k-junta using Õ(
√
k) queries

to U and U †, where Õ(·) hides polylogarithmic factors of k. Crucially, the query complexity of
the tester is independent of n, the total number of qubits in U . We complement this with a
near-matching lower bound of Ω(

√
k) for the junta testing problem, implying that our algorithm is

optimal up to a polylogarithmic factor in k.

Theorem 2 (Informal version of Theorems 20 and 24). Quantum k-juntas can be tested with
Õ(
√
k) queries. Furthermore, testing quantum k-juntas requires Ω(

√
k) queries.

Our second main result is an algorithm to learn quantum k-juntas with significantly lower
sample complexity than the naive QPT approach; in particular there is no dependence on the total
number of qubits, n.

Theorem 3 (Informal version of Theorems 28 and 31). Given oracle access to a quantum k-junta
U acting on n-qubits and ε > 0, there exists an algorithm that makes O(4k/ε2) queries to U and
outputs with probability 9/10 a unitary Û such that dist(U, Û) ≤ ε. Furthermore, Ω(4k/k) queries
are necessary to learn quantum juntas.

1More formally, an oracle for a unitary U takes in as input a quantum state |ψ〉 and outputs U |ψ〉.
2See Definition 7 for a formal definition of “dist,” the distance metric.

1

Classical Testing Quantum Testing Quantum Learning

f : {0, 1}n → {0, 1} O(k log k) [Bla09]

Ω(k log k) [Sağ18]

Õ(
√
k) [ABRdW16]

Ω(
√
k) [BKT17]

O(2k) [AS07]

Ω(2k) [AS07]

Unitary U ∈ M2n×2n — Õ(
√
k) (Theorem 20)

Ω(
√
k) (Theorem 24)

O(4k) (Theorem 28)

Ω(4
k

k) (Theorem 31)

Table 1: Our contributions and prior work on testing and learning Boolean and quantum k-juntas.

Both our upper bounds (for testing and for learning) are proved via Fourier-analytic techniques
and crucially make use of the notion of influence of qubits on a unitary, first introduced by Mon-
tanaro and Osborne [MO10] in the context of Hermitian unitary matrices. Our lower bound for
testing quantum k-juntas appeals to the lower bound for testing Boolean k-juntas obtained by
Bun, Kothari, and Thaler [BKT17], as well as a new structural result for quantum k-juntas. Our
lower bound for learning quantum k-juntas arises from the communication complexity of the Input

Guessing game [Nay99].

Organization. We briefly recall related work on testing both Boolean and quantum juntas in
Section 1.1, and then give a high-level technical overview of our results in Section 1.2. We prove our
Õ(
√
k) upper bound for testing quantum k-juntas in Section 3, and prove our Ω(

√
k) lower bound

for the same in Section 4. Finally, we present our upper and lower bound on learning quantum
k-juntas in Section 5.

1.1 Related Work

We summarize related work as well as our contributions in Table 1.

Classical Testing of Boolean Juntas. We first note that Problem 1 captures as a special
case its Boolean analog, which we state below as Problem 4. Recall that a Boolean function
f : {0, 1}n → {0, 1} is a k-junta if f(x) = g(xi1 , . . . , xik) for some g : {0, 1}k → {0, 1}. We also say
that for f, g : {0, 1}n → {0, 1},

dist(f, g) := Pr[f(x) 6= g(x)]

for x ∼ {0, 1}n drawn uniformly at random. (In other words, the distance metric we use for Boolean
functions is simply the normalized Hamming distance.)

Problem 4 (Testing Boolean k-juntas). Given classical or quantum query access to a function
f : {0, 1}n → {0, 1} via a unitary Of , decide with constant probability if f is a k-junta or if
dist(f, g) ≥ ε for every k-junta g : {0, 1}n → {0, 1}.

This question has been extensively studied over recent decades, with the first result explicitly
related to testing juntas obtained by Parnas, Ron, and Samorodnitsky [PRS02] who gave a clas-
sical algorithm for testing 1-juntas with O(1) queries. Soon afterwards, Fischer et al. [FKR+04]
introduced classical algorithms for testing k-juntas with Õ(k2) queries. The query complexity of
classically testing juntas was later improved by Blais [Bla09] who gave a nearly optimal tester which
makes Õ(k) queries. Blais’s tester is asymptotically optimal up to a logarithmic factor, given the
Ω(k) lower bound for classically testing k-juntas by [CG04].

2

Quantum Testing and Learning of Boolean Juntas. There has also been a long line of work
on testing Boolean juntas via quantum algorithms, i.e. algorithms with query access to a unitary
Of representing a function f : {0, 1}n → {0, 1}, allowing the algorithm to query superpositions of
inputs. Atıcı and Servedio [AS07] gave an elegant quantum algorithm to test k-juntas using O(k)
queries.3 More recently, Ambainis et al. [ABRdW16] came up with a quantum algorithm to test
juntas that makes only Õ(

√
k) queries. This was shown to be essentially optimal by Bun, Kothari,

and Thaler [BKT17] who proved an Ω̃(
√
k) lower bound for via a reduction from the image size

testing problem. Finally, Atıcı and Servedio [AS07] also gave a O(2k)-sample quantum algorithm
for learning Boolean k-juntas in the PAC model.

Quantum Testing of Quantum Juntas. Returning to Problem 1, Wang [Wan11] gave a tester
for testing whether a unitary operator U is a k-junta or is ε-far from a k-junta that makes O(k)
queries, and their algorithm turns out to be a direct generalization of the tester of Atıcı and Servedio
[AS07].4 Finally, Montanaro and Osborne [MO10] had previously studied a different tester for the
property of being a “dictatorship,” i.e. a 1-junta, but did not prove correctness.

1.2 Our Techniques

In this section, we give a high-level technical overview of our main results.

1.2.1 Testing Quantum Juntas

Our Õ(
√
k)-query tester for quantum k-juntas can be viewed as direct analog of the Õ(

√
k)-query

tester for Boolean k-juntas obtained by Ambainis, et al. [ABRdW16]. Our tester relies crucially
on the notion of influence of qubits on a unitary, which was first introduced by Montanaro and Os-
borne [MO10] for Hermitian unitaries. Informally, the influence of a qubit on a unitary U captures
how non-trivially U acts on that qubit; see Section 2.3 for a formal definition as well as useful
properties of this notion of influence. Our main technical contributions here are an alternate for-
mulation of the influence of a qubit on a unitary and a subroutine Influence-Estimator (cf.
Section 3.1) to estimate this influence. With this in hand, we closely mirror the approach of Am-
bainis et al. [ABRdW16] in Section 3.2. We essentially used their algorithm as a black-box, but our
analysis differs in certain parameters; for completeness, we present the entire analysis with these
modifications.

The Ω(
√
k)-query lower bound for testing quantum k-juntas relies on the Ω(

√
k)-query lower

bound for testing Boolean k-juntas obtained by Bun, Kothari, and Thaler [BKT17]. We do so via
the natural encoding of a Boolean function f : {0, 1}n → {0, 1} as a unitary Uf given by

Uf := diag((−1)f(x)). (1)

It is immediate from Equation (1) that encoding a Boolean k-junta in this way yields a quantum
k-junta. Our main structural result Proposition 25, shows that if a Boolean function f : {0, 1}n →
{0, 1} is far from any Boolean k-junta, then Uf is also far from any quantum k-junta. We start
by first showing that Uf is far from Ug for every Boolean k-junta g : {0, 1}n → {0, 1}, and then
handling arbitrary quantum k-juntas via Lemma 26.

3At the time [AS07] was written, the best classical upper bound on testing juntas was Õ(k2).
4The result originally obtained by Wang had a worse bound of O(k log k), but this can be improved to O(k) by

following the analysis of [AS07] (cf. Section 5.1.6 of [MdW16]). We also note that their query complexity’s dependence
on ε can be improved via a straightforward application of amplitude amplifiaction.

3

1.2.2 Learning Quantum Juntas

Our learning algorithm, Algorithm 6, can be viewed as analogous to the algorithm obtained by
Atıcı and Servedio [AS07] for Boolean k-juntas. We make use of the Choi-Jamio lkowski (CJ)
isomorphism between unitary operators on n qubits and pure states in C

2n × C
2n , allowing us to

techniques used to learn quantum states to learn the unitary U . We start by first determining
the high-influence qubits of the quantum k-junta U via “Pauli sampling,” which is analogous
to the Fourier Sampling subroutine used by [AS07]. We then take the CJ isomorphism of U
and appropriately trace out the qubits with negligible influence, allowing us to use a pure state
tomography procedure to learn the reduced CJ state using O(4n/ε2) samples.

Our lower bound for learning quantum juntas is proved via a reduction to a communication
complexity lower bound, namely a quantum lower bound proved by Nayak [Nay99] on the commu-
nication required for one party to guess the input of another party.

1.3 Future Work

A natural next direction is to consider the testability/learnability of quantum channels acting non-
trivially on k-qubits. Recall that a quantum channel is a completely positive, trace-preserving
linear map; see [Wat18] for a comprehensive introduction to the subject. As noted in [MdW16],
there has not been much work on testing properties of quantum channels.

We also remark that (to our knowledge) there has been no work on tolerant property testing—
for both Boolean functions as well as unitary matrices—via quantum algorithms.5 The best known

classical upper bound for tolerant testing of Boolean k-juntas is 2Õ(
√
k) due to Iyer, Tal, and Whit-

meyer [ITW21]. We also note that a Ω(2
√
k) lower-bound against classical non-adaptive algorithms

for tolerant junta testing was obtained by Pallavoor et al. [PRW19].
Finally, it is unknown whether quantum algorithms offer any advantage in terms of query com-

plexity for the problem of testing Boolean k-juntas in the distribution-free setting.6 In particular,
Belovs [Bel19] gave a O(k) quantum tester for Boolean k-juntas in the distribution-free model,
matching the query complexity of the best classical algorithms for testing Boolean k-juntas in the
distribution-free model due to Bshouty [Bsh19] and Zhang [Zha19].

2 Preliminaries

In this section, we introduce notation and recall useful background. We assume familiarity with
elementary quantum computing and quantum information theory, and refer the interested reader
to [NC10, Wil17] for more background. For n ≥ 1, we will write N = 2n. Given T ⊆ [n], we will
write T := [n] \ T . We will write In to denote the n × n identity matrix; when n is clear from
context, we may write I instead.

2.1 Unitary Operators

We will write MN,N to denote the set of linear operators from C
N to C

N and denote by UN the
set of N -dimensional unitary operators, i.e.

UN :=
{
U ∈ MN,N : UU † = U †U = I

}
.

5Recall that in the tolerant model, the tester is asked to distinguish instances that are ε1-close to the property
from instances that are ε2-far from the property.

6In the distribution-free model, the distance between two functions is measured with respect to a fixed but unknown
distribution.

4

Definition 5. Given a unitary U ∈ UN and S ⊆ [n], we define the operator TrS(U) obtained by
tracing out S to be

TrS(U) =
∑

k∈{0,1}S
(IS ⊗ 〈k|)U(IS ⊗ |k〉).

In the above definition, we write |k〉 for k ∈ {0, 1}S to be the |S| qubit state in the computational
basis corresponding to the bit-string k. Note that Definition 5 aligns with the fact that the trace
of a unitary matrix U is given by

Tr(U) =
∑

k∈{0,1}n
〈k|U |k〉 .

Definition 6 (k-Junta). We say that a unitary U ∈ UN is a quantum k-junta if there exists S ⊆ [n]
with |S| = k such that

U = VS ⊗ IS
for some VS ∈ U2k .

In contrast, classical k-juntas are Boolean functions f : {0, 1}n → {0, 1} that depend on only k
of their n input variables. More formally, a function f : {0, 1}n → {0, 1} is a k-junta if there exists
g : {0, 1}k → {0, 1} such that f(x1, . . . , xn) = g(xi1 , . . . , xik) for some fixed i1, . . . , in ∈ [n] and for
all x ∈ {0, 1}n.

We will viewMN,N as an inner-product space equipped with the Hilbert–Schmidt inner product

〈A,B〉 := Tr
(
A†B

)
.

Recall that the Hilbert–Schmidt inner product induces the Hilbert–Schmidt (or Frobenius) norm,
which is given by

‖A‖2 := Tr
(
A†A

)
=

N−1∑

i,j=0

|A[i, j]|2.

We will use the following metric to compare the distance between unitary matrices. Note that
this metric is not the natural metric induced by the Hilbert–Schmidt norm.

Definition 7 (Distance between unitaries). Given A,B ∈ MN,N , we define

dist(A,B) := min
θ∈[0,2π)

1√
2N
‖eiθA−B‖.

We say that A is ε-far from B if dist(A,B) ≥ ε. More generally, for any P ⊆MN,N and A ∈ MN,N ,
we write

dist(A,P) := min
B∈P

dist(A,B)

and similarly say that A is ε-far from P if dist(A,P) ≥ ε.

It can easily be checked that dist(A,B) ≥ 0, with equality holding if and only if A = eiθB for
some θ ∈ [0, 2π), as well as other standard properties of a metric. Finally, note that dist(V1 ⊗
U, V2 ⊗ U) = dist(V1, V2) for unitaries U, V1, V2.

5

2.2 The Pauli Decomposition

In this section, we introduce a useful orthonormal basis for MN,N (viewed as a C-vector space)
which will be central to what follows. Recall that the set of Pauli operators given by

σ0 =

(
1 0
0 1

)
= I, σ1 =

(
0 1
1 0

)
= X, σ2 =

(
0 −i
i 0

)
= Y, and σ3 =

(
1 0
0 −1

)
= Z

forms an orthonormal basis for M2,2 with respect to the Hilbert–Schmidt inner product. For
x ∈ {0, 1, 2, 3}n ∼= Z

n
4 , we define σx := σx1

⊗ · · · ⊗ σxn and write supp(x) := {i ∈ [n] : xi 6= 0}. It is
then easy to check that the collection

{
1√
N
σx

}

x∈Zn
4

forms an orthonormal basis for MN,N with respect to the Hilbert–Schmidt inner product. We
will frequently refer to this basis as the Pauli basis for MN,N . It follows that we can write any
A ∈ MN,N as

A =
∑

x∈Zn
4

Â(x)σx where Â(x) :=
1

N
〈A, σx〉.

We will sometimes refer to Â(x) as the Pauli coefficient of A on x and will refer to the collection
{Â(x)}x as the Pauli spectrum of A. It is easy to verify that Parseval’s and Plancharel’s formulas
hold in this setting:

1

N
‖A‖2 =

∑

x∈Zn
4

|Â(x)|2 and
1

N
〈A,B〉 =

∑

x∈Zn
4

Â(x)
∗ · B̂(x).

In particular, for U ∈ UN , we have
∑

x∈Zn
4
|Û(x)|2 = 1.

2.3 Influence of Qubits on Unitaries

[MO10] introduced a notion of influence of qubits on unitaries, in the spirit of the well-studied
classical notion of influence of variables on Boolean functions f : {0, 1}n → {0, 1} (cf. Chap-
ter 2 of [O’D14]). This notion of influence will be central to the testing algorithm presented in
Section 3. Although [MO10]’s notion of influence was developed only for Hermitian unitaries (i.e.
“Quantum Boolean Functions”), we first present their formulation as it gives good intuition for what
influence captures, after which we introduce a more general definition of influence that applies to
arbitrary unitaries as well as to more than one qubit.

Definition 8 (Derivative operator). The ith derivative operator Di is a superoperator on MN,N

defined through its action on the Pauli basis element σx, x ∈ Z
n
4 :

Diσx =

{
σx xi 6= 0

0 xi = 0
.

It follows immediately that for A ∈ MN,N , A =
∑

x∈Zn
4
Â(x)σx, we have

DiA =
∑

x:xi 6=0

Â(x)σx (2)

6

Informally, Di isolates the part of the Pauli spectrum that acts non-trivially on the ith qubit (i.e.
the x such that σxi

6= I). We can now introduce the notion of influence of qubits on unitaries
proposed by [MO10].

Definition 9 (Influence of single qubit). Given a unitary U ∈ UN , the influence of the ith qubit on
U , written Inf i[U], is

Inf i[U] := ‖DiU‖2.

At a high level, the influence of the ith qubit on a unitary U captures how non-trivially the
unitary U acts on the ith qubit of a quantum state. Note that it is immediate from Equation (2)
that

Inf i[U] =
∑

x:xi 6=0

|Û(x)|2.

This suggests a natural way to extend the Definition 9 to more than one qubit.

Definition 10 (Influence of multiple qubits). Given a unitary U ∈ UN and S ⊆ [n], the influence
of S on U , written InfS [U], is

InfS [U] =
∑

x:supp(x)∩S 6=∅
|Û (x)|2. (3)

The above definition is analogous to the “Fourier formula” for the the influence of a set of
variables on a Boolean function (cf. Section 2.4 of [ABRdW16]). Furthermore, as stated earlier,
note that these definitions apply to arbitrary unitaries (i.e. we do not require them to be Hermitian).
We present an alternative characterization of InfS [U] (which we will not require, but may be of
independent interest) in Appendix A. We have the following lemma.

Lemma 11. For S, T ⊆ [n] and a unitary U ∈ UN , we have

1. Monotonicity: If S ⊆ T , InfS[U] ≤ InfT [U]; and

2. Subadditivity: InfS∪T [U] ≤ InfS [U] + InfT [U].

Note that monotonicity is immediate from the analytic interpretation of influence (cf. Equa-
tion (3)), and subadditivity follows from the fact that

{(S ∪ T) ∩ supp(x)} = {S ∩ supp(x)} ∪ {T ∩ supp(x)}.

As mentioned before, Wang [Wan11] implicitly used this notion of influence to test quantum
k-juntas. In particular, Wang proved the following.

Lemma 12 ([Wan11]). Given a unitary U ∈ UN , if U is ε-far from every quantum k-junta V , then
for all T ⊆ [n] with |T | ≤ k, we have that

InfT [U] ≥ ε2

4
.

7

2.4 Query Complexity of the Composition of Quantum Algorithms

Our upper bound for quantum junta testing will compose quantum algorithms, each having some
probability of error. We will invoke the following lemma about the query complexity of composed
algorithms.

Lemma 13 ([ABRdW16], Corollary 2.12). With D ⊂ {0, 1}n, let F : D → {0, 1} and Gj be partial
Boolean functions ∀j ∈ [n]. Let Q(F) denote the bounded-error quantum query complexity of F .
Let T equal to the objective value of a feasible solution (Xj) to the adversarial bound in (2.3) of
[ABRdW16]. We let an input variable j be irrelevant for input z ∈ D if and only if Xj [z, z] = 0.
Then, we have

Q(F ◦ (G1, ...Gn)) = O

(
T max

j∈[n]
Q(Gj)

)
.

with the function composition done as in Definition 2.10 of [ABRdW16].

First, the result says that we can compose functions without any overhead. Ordinarily, if we
compose two algorithms that have some probability of error, then we may need to amplify the
success probability of each subroutine, inducing a logarithmic overhead in query complexity.

A second important aspect of the result is that functions can be composed in a way where
the top-level function, F , ignores “irrelevant” inputs. In the context of our setting, F is a Group-
Testing algorithm, while each Gj is an instance of an influence tester, applied on a particular subset
of qubits. The formalism of irrelevant variables allows the group tester to ignore certain instances
of influence testers whose behavior is unpredictable. The details of our approach is identical to
that of [ABRdW16], to which we defer the technical details.

2.5 The Choi-Jamiolkowski Isomorphism

In our algorithms, we will encode a unitary as a quantum state using the Choi-Jamio lkowski iso-
morphism [Cho75, Jam72], which is a mapping between N ×N unitary operators and pure states
in C

N ⊗ C
N . Concretely, this mapping associates to every unitary U ∈ UN the Choi-Jamio lkowski

state (which we abbreviate as CJ state):

|v(U)〉 := (U ⊗ I)


 1√

N

∑

0≤i<N

|i〉 |i〉


 =

1√
N

∑

0≤i,j<N

U [i, j] |i〉 |j〉 .

The CJ state |v(U)〉 can be prepared by first creating the maximally entangled state of dimension
N , and then querying U on half of the maximally entangled state. Since N = 2n, this is equivalent
to preparing n EPR pairs (which altogether forms 2n qubits) and applying the unitary U to the
n qubits coming from the first half of each of the EPR pairs. As such, each qubit of the unitary
U corresponds to two qubits of the state |v(U)〉. We will refer to qubits in {1, . . . , n} as the ones
acted on by the unitary U , and qubits in {n+ 1, . . . , 2n} as the ones acted on by I. We introduce
the following notation for convenience.

Notation 14. For each qubit ℓ ∈ [n] acted on by the unitary U , there is a pair of corresponding
qubits (ℓ, ℓ̃) ∈ [n] × {n + 1, . . . , 2n} in the state |v(U)〉. In particular, ℓ̃ and ℓ are related as they
formed an EPR pair at the synthesis of the CJ state.

8

3 Testing Quantum k-Juntas with Õ(
√
k) Queries

As suggested by Lemma 11, the notion of influence for unitaries behaves analogously to the “usual”
notion of influence for Boolean functions, which was crucial to the Õ(

√
k)-query k-junta tester for

Boolean functions obtained by Ambainis et al. [ABRdW16]. This motivates an analog of the
algorithm obtained by Ambainis et al. for quantum juntas, and this is indeed how we obtain
a Õ(

√
k)-tester for quantum k-juntas. In Section 3.1, we present an unbiased estimator for the

influence of qubits on a unitary, which we then combine with Ambainis et al.’s tester in Section 3.2
to obtain our quantum k-junta tester.

3.1 An Influence Tester for Unitaries

We start by describing a subroutine Raw-Influence-Estimator(cf. Algorithm 1) that allows us
to estimate the influence of a set of variables S ⊆ [n] on a unitary U .

Input: Oracle access to U ∈ UN , S ⊂ [n]

Output: X ∈ {0, 1}

Raw-Influence-Estimator(U,S):

1. Prepare the Choi-Jamiolkowski state |v(U)〉 given by

|v(U)〉 =
1√
N

∑

0≤i,j<N

U [i, j] |i〉 |j〉 .

This is prepared by querying U once on the maximally entangled state.

2. Measure the 2|S| qubits in the registers S ∪ {ℓ̃ : ℓ ∈ S} in the Bell basis, {|v(σx)〉}x∈Zn
4
,

and let |φ〉 denote the post-measurement state.

(a) Test if |φ〉 is equal to |EPR〉⊗|S|, return 0.

(b) Otherwise, return 1.

Algorithm 1: Influence Estimator for Quantum Unitaries

Lemma 15. Let X denote the output of Raw-Influence-Estimator(U,S) for U ∈ UN and
S ⊆ [n] as described in Algorithm 1. Then

E[X] = InfS [U].

Proof. Recall that U can be written in the Pauli basis as U =
∑

x∈Zn
4
Û(x)σx. Thus, |v(U)〉 can be

9

written as

|v(U)〉 =
∑

x∈Zn
4

Û(x) |v(σx)〉

=
∑

x:supp(x)∩S=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩S 6=∅
Û(x) |v(σx)〉

=
∑

x:supp(x)∩S=∅
Û(x) |v(σx

S
)〉 |v(I⊗|S|)〉+

∑

x:supp(x)∩S 6=∅
Û(x) |v(σx

S
)〉 |v(σxS

)〉 .

Where xS ∈ Z
S
4 is notation for the restriction of x onto the qubits in S. Similarly, σxS

is the Pauli
basis vector given by the tensor product of |S| Pauli matrices according to xS. Thus, for any x ∈ Z

n
4

such that supp(x) ∩ S 6= ∅, the state |v(σxS
)〉 is orthogonal to the state |v(I⊗|S|)〉 = |EPR〉⊗|S|.

Because {|Û (x)|2}x∈Zn
4

forms a probability distribution, when Algorithm 1 measures the qubits in

S ∪ {ℓ̃ : ℓ ∈ S}, it will return 1 with the following probability.

E[X] = Pr[X = 1]

=
∑

x:supp(x)∩S 6=∅
|Û (x)|2

= InfS[U]

This completes the proof.

Note that we can boost the probability that Raw-Influence-Estimator outputs 1 via am-
plitude amplification (see, for example, Section 2.2 of [MO10]). In particular, we can amplify the
probability of Raw-Influence-Estimator outputting 1 from δ to an arbitrary constant (say 0.9)
via O(1/

√
δ) calls to the oracles for the unitary U . Thus, we have the following lemma.

Input: Oracle access to U ∈ UN , S ⊆ [n], δ ∈ (0, 1]

Output: X ∈ {0, 1}

Influence-Estimator(U,S, δ):

1. Use amplitude amplification with O(1/
√
δ) calls to Raw-Influence-Estimator(U,S).

2. Return the same value as Raw-Influence-Estimator(U,S).

Algorithm 2: Influence Estimator via Amplitude Amplification

Lemma 16. Let U ∈ UN and S ⊆ [n]. If InfS [U] ≥ δ, then Influence-Estimator(U,S, δ)
as described in Algorithm 2 outputs 1 with probability at least 9/10, and if InfS[U] = 0, then
Influence-Estimator(U,S, δ) always outputs 0. Furthermore, the number of queries made to U
is O(1/

√
δ).

3.2 Reducing to Gapped Group Testing

Using our influence estimator Influence-Estimator, we can now reduce the problem of testing
quantum juntas to that of Gapped Group Testing (GGT), which we define below. Our approach

10

closely follows that of Ambainis et al. [ABRdW16], who reduce the problem of testing k-juntas
to GGT. We remark that certain parameters in our adaptation of Ambainis et al.’s algorithm will
be worse by a square-root factor, resulting in an overall query complexity of Õ(

√
k/ε) for testing

quantum k-juntas as opposed to Õ(
√
k/ε) as obtained by Ambainis et al. for testing classical

juntas.
We first define the exact version of Group Testing.

Definition 17 (EGGT). Let k and d be positive integers, X consist of all subsets of [n] with size
k, and Y consist of all subsets of [n] of size k + d. In the Exact Gapped Group Testing (EGGT)
problem, we are given oracle access to the function IntersectsA, A ∈ X ∪Y and must decide whether
A ∈ X or if A ∈ Y

The exact GGT will be referenced in the analysis. However, the actual algorithm we will use
in our algorithm solves a more general version of EGGT.

Definition 18 (GGT). Let k and d be positive integers. Define two families of functions

X̃ =
{
f : {0, 1}n → {0, 1} | ∃A ∈ X ∀S ⊂ [n] : S ∩A = ∅ =⇒ f(S) = 0

}

Ỹ =
{
f : {0, 1}n → {0, 1} | ∃B ∈ Y ∀S ⊂ [n] : S ∩B 6= ∅ =⇒ f(S) = 1

}

In an instance of GGT(k, d), given oracle access to some function f ∈ X̃ ∪Ỹ, decide whether f ∈ X̃
or f ∈ Ỹ.

Note that if the function f is in X̃ , then sets S such that S ∩A 6= ∅ do not restrict f . They are
“irrelevant.” Similarly, if f is in Ỹ, sets S such that S ∩ B = ∅ are “irrelevant” (cf. Section 2.4).
More precisely, the sets that are deemed irrelevant follow from the adversary bound and is explained
in more detail in Observation 3.9 of [ABRdW16]. Also, note that if we replace implication symbols
in Definition 18 with equivalence symbols, we recover the EGGT problem. Thus, EGGT is a special
case of GGT.

To get some intuition for Definition 18, consider the following scenario: Given n soldiers, some
of which are sick, you would like to determine whether there are at most k sick soldiers, or if there
are at least k+d sick soldiers. You are allowed to test this by pooling blood samples from subsets of
the n soldiers, where the pooled test returns positive if the group contains at least one sick soldier.

More precisely, for an unknown A ⊆ [n], we would like to decide if |A| ≤ k or |A| ≥ k+ d given
access to the following oracle

IntersectsA(S) :=

{
1 A ∩ S 6= ∅
0 otherwise

.

We briefly explain the connection to junta testing: Given a unitary U and a fixed thresh-
old δ > 0, let Sδ ⊆ [n] be the set of qubits whose influence is at least δ. Note then that
Influence-Estimator(U, T, δ) will will return 1 with high probability if at least one variable
in S is in Sδ. In this sense, we have that

Influence-Estimator(U, T, δ) ≈ IntersectsSδ
(T)

By examining various settings of δ, we can use GGT to infer the “distribution” of influence of a
unitary U among its qubits. We will make use of the following quantum algorithm obtained by
Ambainis et al. for GGT.

11

Input: Oracle access to U , parameter k

Output: “Yes” or “No”

Unitary-Junta-Tester(U, k)

1. Run Tester-I(U, k, l) for l ∈ {0, . . . , ⌊log(200k)⌋}.

2. Run Tester-II(U, k).

3. Output “Yes” if all ⌊log(200k)⌋ + 2 testers above accept, and output “No” otherwise.

Algorithm 3: Quantum k-Junta Tester

Input: Oracle access to U , parameter k, parameter l

Output: “Yes” or “No”

Tester-I(U, k, l):

1. Let dl = 2l and δl = ε2

2l+5 log(400k)
.

2. Run Quantum-GGT with parameters k and d = dl, and query access to the following
oracle:

Given S ⊆ [n], output Influence-Estimator(U,S, δl)

3. Output “Yes” if GGT accepts, and “No” otherwise.

Algorithm 4: Tester of the First Kind

Theorem 19 (Theorem 3.6 of [ABRdW16]). There exists a quantum algorithm Quantum-GGT

that solves GGT(k, d) using O(
√

1 + k/d) queries.

Our algorithm for quantum junta testing and analysis thereof closely follow the structure of
Ambainis et al.’s algorithm for junta testing and its analysis; we include complete details below for
completeness but refer the interested reader to Section 4 of [ABRdW16] for the original algorithm.

Note that because our Influence-Estimator serves as a subroutine to the GGT algorithm,
there is a need for a careful analysis of the properties of their composition. This is addressed
in Section 2.4 at a high level and addressed in more detail in [ABRdW16].

Theorem 20. Given U ∈ UN , with high probability 9/10, the algorithm Unitary-Junta-Tester(U)
outputs “Yes” if U is a k-junta, and outputs “No” if U is ε-far from every quantum k-junta. Fur-

thermore, Unitary-Junta-Tester(U) makes O
(√

k log k
ε log k

)
calls to the unitary U and has

two-sided error.

Proof. The setup and analysis of the algorithm (Lemmas 21 to 23) is almost the same as in
[ABRdW16], with a few constants changed.

Without loss of generality, we assume that the first K qubits are the most influential ones and
are ordered in decreasing amount of influence.

Inf1[U] ≥ Inf2[U] ≥ . . . ≥ InfK [U] > 0 = InfK+1[U] = . . . = Infn[U].

12

Input: Oracle access to U , parameter k

Output: “Yes” or “No”

Tester-II(U, k):

1. Estimate acceptance probability of following subroutine up to additive error 0.05:

• Generate S ⊂ [n] by adding i ∈ [n] to S with probability 1/k independently.

• Run Influence-Estimator(U,S, δ) where δ := ε2

16k .

2. Output “Yes” if estimated acceptance probability is at most 0.8, and “No” otherwise.

Algorithm 5: Tester of the Second Kind

Of course, the tester does not know this order. The primary challenge is in showing that if U is ε-far
from every quantum k-junta, then at least one of the two subroutines Tester-I and Tester-II

will output “No” with significant probability. The ⌊log(200k)⌋ + 2 tests in the main Algorithm 3
are tailored for this purpose; in particular, we have the two following cases when U is ε-far from
every quantum k-junta:

1. Case 1:
∑200k

j=k+1 Inf j [U] ≥ ε2/8. This case is further split into ⌊log 200k⌋ + 1 subcases:

∣∣∣∣∣∣

{
j ∈ [n] : Inf j[U] ≥ ε2

2l+5 log(400k)

}∣∣∣∣∣∣
≥ k + 2l

for l ∈ {0, ..., ⌊log(200k)⌋}. We say that a unitary U is a non-junta of the first kind if this is
the case for some l ∈ {0, ..., ⌊log(200k)⌋}.

2. Case 2:
∑200k

j=k+1 Inf j [U] ≤ ε2/8. We say U is a non-junta of the second kind if this is the
case.

Lemma 21 says that any unitary U that is ε-far from every quantum k-junta satisfies at least
one of the two cases above. The correctness and query complexity of Algorithm 3 now follows from
Lemmas 21 to 23.

Finally, we prove the auxiliary lemmas used in the proof of the above theorem. Lemmas 21
to 23 are analogous to Lemmas 4.3 to 4.5 of [ABRdW16].

Lemma 21. Every U that is ε-far from being a quantum k-junta satisfies one of the two cases
above.

Proof. It suffices to show that if U is a non-junta of the first kind, then at least one of the ⌊log 200k⌋+
1 sub-cases holds. By definition, we have

200k∑

j=k+1

Inf j [U] ≥ ε2/8.

Define

ε′ =
ε2

32 log(400k)

13

and consider the partition of [0, 1] given by

A∞ =

[
0,

ε′

2⌊log 200k⌋

)
, A0 = [ε′, 1], Al =

[
ε′

2l
,
ε′

2l−1

)

where l ∈ {⌊log 200k⌋, . . . , 1}. Define Bl := {j ∈ {k + 1, ..., 200k} : Inf j[U] ∈ Al}, and note that
each j ∈ [n] is included in exactly one of the Bl. Writing

Wl =
∑

j∈Bl

Inf j[U] we have
∑

l

Wl ≥ ε2/8

as U is a non-junta of the first kind. We also have that

W∞ < 200k

(
ε2

32 · 2⌊log 200k⌋

)
<
ε2

16
.

Since the maximum of the Wl’s is at least their average, there exists l∗ ∈ {0, 1, ...⌊log 200k⌋} such
that

Wl∗ ≥
ε2

16 log 400k
,

which in turn implies

|Bl| ≥
ε2

16 log 400k

ε2·21−l

32 log 400k

= 2l.

Every variable j ∈ Bl has influence at least ε′

2l
=: δl. Furthermore, since the influence of variables

are ordered in decreasing order, each variable j ∈ [k] also has at least δl influence. Thus, there are
at least k + 2l indices j such that Inf j[U] ≥ δl, and U satisfies the first case for this particular l.

Lemma 22. If U is a k-junta, then all calls to Tester-I will accept with high probability. If U
is a non-junta of the first kind, then one of the calls to Tester-I will reject with high probability.
Finally, the overall query complexity of all ⌊log 200k⌋ + 1 testers of the first kind is

O

(√
k log k

ε
log k

)
.

Proof. The composition in Tester-I is done as described in Definition 2.10 of [ABRdW16] which
allows for a tight query-complexity. Towards this definition, F and (Gj) are defined as follows: The
partial function F is the EGGT function from Definition 17. F takes in a function h and outputs
0 if h = IntersectsA, |A| = k and 1 if h = IntersectsA, |A| = k + d. In other cases, F is undefined.
For each S ⊂ [n], the partial function GS is our Influence-Estimator on set S. GS is partial in
that it equals 1 if InfS [U] ≥ δ, equals 0 if InfS [U] = 0, but is undefined for anything in between.
Thus, Tester-I is equivalent to the following composition:

U → (G∅(U), G{1}(U), G{2}(U), ...G[n](U)) (4)

The irrelevant variables to the function F correspond to the sets S that do not impact its output;
that is, whatever Influence-Estimator outputs on these sets do not matter to F . Because we use
the same GGT algorithm, derived from the same solution to the adversary bound as [ABRdW16],
we have the same irrelevant variables.

14

1. If the input A is in X (|A| = k), a set S ⊂ [n] is irrelevant if S ∩ A 6= ∅. That is, if U is a
k-Junta, Tester-I only looks at sets such that S ∩A = ∅.

2. If the input A is in Y(|A| = k + d), a set S ⊂ [n] is irrelevant if |S ∩A| 6= 1. In particular, if
U is ε−far from a k-Junta, Tester-I ignores sets such that S ∩A = ∅

Suppose U is a non-junta of the first kind, satisfying case l, in the sense of Lemma 21. By
definition, there is an A ⊂ [n], |A| = k + 2l such that for all j ∈ A, Inf j[U] ≥ δl. By the
monotonicity of influence, InfS[U] ≥ δ for all S that intersect A. Finally, because the sets that are
disjoint from A are irrelevant in the non-junta case, Tester-I’s oracle behaves like an IntersectA
oracle that depends on at least k + 2l indices. Thus, this instantiation of Algorithm 4’s GGT will
reject with high probability.

Finally, if U is a k-junta, then there is a set A ⊂ [n], |A| ≤ k such that if S ∩ A = ∅, then
InfS[U] = 0. Because all sets S ∩ A 6= ∅ are irrelevant in the k-junta case, Tester-I’s oracle
behaves like an IntersectA oracle that depends on k indices. Thus, all the Tester-I’s will accept
with high probability as there are at most k influential variables.

Thus, the tester of the first kind, a group tester instantiated with d = 2l and δl, will be able to
distinguish between this case from case where U is a k-junta, where the set of variables of influence
at least δl is size at most k.

Finally, for a particular value of l, the query complexity of the influence tester is O(δl
−1/2) while

the query complexity of the corresponding group tester instance is O(
√
k/dl). It then follows by

Lemma 13 that the complexity of any tester of the first kind is

O

(√
k

2l
·
√

2l log 400k

ε2

)
= O

(√
k log k

ε

)

giving an overall query complexity of

O

(√
k log k

ε
log k

)

for all ⌊log(200k)⌋ + 1 testers of the first kind.

Lemma 23. Algorithm 5 accepts if U is a k-junta and rejects if U is a non-junta of the second
kind, and its query complexity is O(

√
k/ε)

Proof. We show that the procedure described in Item 1 of Algorithm 5 has acceptance probability
at most 0.75 if U is a k-junta, and has acceptance probability at least 0.85 if U is a non-junta of
the second kind.

Suppose U is a k-junta. Then the probability that the set S does not intersect the set J of
relevant variables is (

1− 1

k

)|J |
≥
(

1− 1

k

)k

≥ 1

4
.

Therefore, with probability at least 0.25, we have S ∩ J = ∅ in which case InfS [U] = 0. It follows
then that the acceptance probability above is at most 0.75.

Now suppose U is a non-junta of the second kind. For j ∈ [n], define

Inf j[U] :=





0 j ≤ 200k∑
x:supp(x)∩{200k+1...j}={j} |Û(x)|2 otherwise

.

15

For S ⊂ [n], define InfS [U] :=
∑

j∈S Inf j[U]. It is easy to see that

InfS [U] ≤ InfS[U],

and that for S, T ⊆ [n] with S ∩ T = ∅, we have

InfS∪T [U] = InfS [U] + InfT [U].

Now, because U is ε-far from every quantum k-junta, by Lemma 12, we have that

Inf{k+1...K}[U] ≥ ε2/4, (5)

and since U is a non-junta of the second kind,

200k∑

j=k+1

Inf j[U] ≤ ε2

8
. (6)

Combining Equations (5) and (6) we get that

Inf [n][U] = Inf{200k+1...K}[U]

≥ Inf{k+1...K}[U]−
200k∑

j=k+1

Inf j [U]

≥ ε2

8
. (7)

Consider now the random variable InfS[U] where S is drawn as described in Algorithm 5. We
have

µ := E
S

[
InfS [U]

]
=

1

k
· Inf [n][U] ≥ ε2

8k
.

We also have

σ2 := Var
[
InfS[U]

]
≤ 1

k

∑

j

Inf j [U]2

≤ 1

k

(
max

j
Inf j [U]

)
· Inf [n][U]

≤ 1

k
·
(

ε2

4 · 200k

)
Inf [n][U]

≤ µ2

100
.

It then follows by Chebyshev’s inequality that

Pr

[
InfS[U] <

ε2

16k

]
≤ Pr

[
|InfS[U]− µ| > µ

2

]
(8)

≤ Pr
[
|InfS[U]− µ| > 5σ

]
(9)

≤ 1

25
. (10)

16

In other words, the probability InfS[U] > ε2/16k is at least 0.96. So the acceptance probability
of the subroutine described in Item 1 of Algorithm 5 on S is at least 0.9 × 0.96 > 0.85 if U is a
non-junta of the second kind.

Finally, the subroutine of the tester of the second kind only makes queries to Influence-Estimator

on δ = ε2

16k , which requires complexity O(
√
k/ε2), and the outer estimation overhead is a con-

stant.

4 An Ω(
√
k) Lower Bound for Testing Quantum k-Juntas

In this section, we obtain an Ω(
√
k) lower bound for testing quantum k-juntas, which shows that the

algorithm obtained in Section 3 is essentially optimal (up to polylogarithmic factors in k). Our lower
bound follows via a natural reduction from testing classical k-juntas to testing quantum k-juntas,
combined with the Ω(

√
k) lower bound for testing classical k-juntas obtained by Bun, Kothari, and

Thaler [BKT17]. The key technical insight here is in Lemma 26, which shows that every quantum
k-junta is (in a certain sense) “close” to a quantum Boolean function (i.e. a Hermitian quantum
unitary).

In what follows, we say that an algorithm is a (k, ε)-classical (respectively quantum) junta tester
if, given query access to a Boolean function f : {0, 1}n → {0, 1} (respectively unitary U ∈ UN),
with probability at least 9/10 it outputs

• “Yes” if f (respectively U) is a k-junta; and

• “No” if f (respectively U) is ε-far from every k-junta.

Theorem 24. Every T -query (k,
√
ε/2)-quantum junta tester is also a T -query (k, ε)-classical

junta tester.

Note that Theorem 24 together with the Ω(
√
k) lower bound for quantum testing of k-juntas by

Bun, Kothari, and Thaler [BKT17] implies the desired lower bound. Before proving Theorem 24,
we first introduce some notation. Given a Boolean function f : {0, 1}n → {0, 1}, we will write

Uf := diag
(

(−1)f(x)
)

(11)

as a diagonal matrix whose diagonal entries are the 2n values of the function f . Note that Uf is
unitary as its singular values are ±1. Also, given a matrix A, we will use A[i, j] to mean the entry
of A at row i and column j.

The transformation we use to reduce Boolean functions to quantum Boolean functions (towards
the goal of proving Theorem 24) is the natural one given by Equation (11). First, if a function
f : {0, 1}n → {0, 1} is a k-junta, then Uf is also a quantum k-junta. To see this, suppose without
loss of generality that the last k bits of f are the relevant ones7, i.e. we have

f(x) = f̃(xn−k+1, . . . , xn)

for some f̃ : {0, 1}k → {0, 1}. It then follows that

Uf = I⊗(n−k) ⊗ U
f̃
.

The following lemma shows that an analogous statement holds when f is far from being a
k-junta, from which Theorem 24 is immediate.

7We will use this indexing convention for the remaining sections as well.

17

Proposition 25. If f : {0, 1}n → {0, 1} is ε-far from every k-junta, then Uf is
√
ε/2-far from

every quantum k-junta.

Proof. We will first show if g : {0, 1}n → {0, 1} is a k-junta, then

dist(Uf , Ug) ≥
√

2ε. (12)

As f is ε-far from g, we have that
Pr [f 6= g] ≥ ε.

Consider Ug, the unitary whose diagonal entries are the values of g, as we did with f above. The
distance between Ug and Uf is at least

dist(Uf , Ug)2 =
1

2N
·min

θ
‖eiθUf − Ug‖2

= min

(
1

2N
‖Uf − Ug‖2,

1

2N
‖ − Uf − Ug‖2

)
(13)

= min


 2

N

∑

x∈{0,1}n

(
f(x)− g(x)

2

)2

,
2

N

∑

x∈{0,1}n

(
f(x) + g(x)

2

)2



= 2 min
(
Pr[f 6= g],Pr[f = g]

)

≥ 2ε. (14)

Equation 13 holds because Uf and Ug are both diagonal with real entries, so the only possible
phases that would minimize the Frobenius norm of their difference are θ = 0 or π. Equation 14
holds because k-juntas are closed under negation; in more detail, if g is a k-junta, then 1− g is also
a k-junta and so

Pr[f = g] = Pr[f 6= 1− g] ≥ ε.
We thus have that dist(Uf , Ug) ≥

√
2ε. In order to prove the lemma, it suffices to show

that for any quantum k-junta V , there exists a Boolean k-junta g : {0, 1}n → {0, 1} such that
dist(V,Ug) ≤ dist(V,Uf). This is proved in Lemma 26.

To see why this suffices, note that if this were the case, then by the triangle inequality,

dist(V,Uf) + dist(V,Ug) ≥ dist(Uf , Ug).

However, as dist(Uf , Ug) ≥
√

2ε by Equation (14), and as dist(V,Ug) ≤ dist(V,Uf) by Lemma 26,
we have that

2 · dist(V,Uf) ≥
√

2ε

and so the result follows.

Lemma 26. Suppose f : {0, 1}n → {0, 1} is ε-far from every k-junta. Then, for every quantum
k-junta V ∈ UN , there exists some Boolean function g : {0, 1}n → {0, 1} that is a k-junta for which

dist(V,Ug) ≤ dist(V,Uf).

Proof. We can assume without loss of generality that V is a quantum k-junta on the last k qubits.
We define g : {0, 1}n → {0, 1} as follows: Writing V = I⊗(n−k) ⊗ Ṽ , let

g̃ = arg min
h∈{0,1}2k

dist
(
Ṽ ,diag((−1)h(x))

)
= arg min

h∈{0,1}2k

(
min
θ
‖eiθṼ − diag((−1)h(x))‖

)
(15)

18

and set g := g̃ where we interpret g̃ : {0, 1}n → {0, 1} as a k-junta. We claim that dist(Uf , V) ≥
dist(Ug, V). First, note that because Uf and Ug are both diagonal matrices, the off-diagonal
contributions to

‖Uf − V ‖2 =
∑

0≤i,j<N

|Uf [i, j] − V [i, j]|2

is the same as that to ‖Ug − V ‖2. Moreover, if we multiply the off-diagonal terms of V by a phase
eiθ, their contribution to the sum will still be the same as Uf and Ug are zero on their off-diagonal
entries. It therefore suffices to compare the diagonal terms of these two quantities. With this in
mind, we define the following quantity: For A,B ∈ C

2n×2n , let dist(A,B) be the sum of diagonal
contributions to the Frobenius norm of A−B, i.e. we have

dist(A,B)2 :=
1

2N
min
θ

∑

0≤i<N

|eiθA[i, i] −B[i, i]|2.

We then have that

dist(Uf , V)2 =
1

2N
min
θ

2n−k−1∑

j=0

2k−1∑

l=0

∣∣∣eiθV [j · 2k + l, j · 2k + l]− Uf [j · 2k + l, j · 2k + l]
∣∣∣
2

(16)

≥ 1

2N

2n−k−1∑

j=0

min
θj

2k−1∑

l=0

∣∣∣eiθjV [j · 2k + l, j · 2k + l]− Uf [j · 2k + l, j · 2k + l]
∣∣∣
2

≥ 1

2n−k

2n−k−1∑

j=0

dist(Ug̃, Ṽ)2 (17)

= dist(Ug̃, Ṽ)2

= dist(Ug, V)2.

In particular, Equation (16) rewrites the sum by considering 2n−k blocks of 2k × 2k matrices
on the diagonal of eiθV − Uf , and Equation (17) follows from the choice of g as a minimizer in
Equation (15). Because the off-diagonal contributions to the expressions for distance are the same
for Uf and Ug, dist(Uf , V) ≥ dist(Ug, V), completing the proof.

5 Learning Quantum k-Juntas

We present algorithm to learn quantum k-juntas in Section 5.1, and our lower bound for learning
quantum k-juntas in Section 5.2.

5.1 Learning Upper Bound

In this section, we present our algorithm for learning quantum k-juntas. Our algorithm can be
viewed as analogous to the quantum algorithm of Atıcı and Servedio [AS07] for learning classical
k-juntas; as such, we start be briefly recalling their high-level approach.

Given query access to a function f : {0, 1}n → {0, 1}, the algorithm of [AS07] first determines
the set of all relevant variables of non-negligible influence via “Fourier sampling” from f .8 It then

8Recall that Fourier sampling from f : {0, 1}n → {0, 1} refers to drawing S ⊆ [n] (identified with its 0/1 indicator

vector with probability |f̂(S)|2.

19

Input: Oracle access to quantum k-junta U , error parameter ε > 0

Output: Classical description of U (as a 2n × 2n matrix)

Quantum-Junta-Learner(U, ε):

1. Let S := Pauli-Sample
(
U, ε

2

4k , k
)

.

2. Set t := O(4
k

ε2
). Call Quantum-State-Preparation(U,S) 10t times

to obtain at least t copies of |ψS〉.

3. Let |ψ̂〉 := Tomography
(
|ψS〉 〈ψS |⊗t , ε

2

4

)
.

4. Return the unitary encoded by |ψ̂〉 tensored with I⊗(n−k)

Algorithm 6: Quantum k-Junta Learner

learns the truth table of the function f restricted to the at most k relevant variables by querying f
on each of the 2k possible input strings on the relevant variables. Given membership query access
to a unitary U , our algorithm proceeds analogously by first learning a set S of relevant qubits
with non-negligible influence via “Pauli sampling”, a subroutine analogous to Fourier Sampling.9

Then, we learn an approximation to the part of U that acts only on the subset S, the qubits with
nonnegligible influence. We do this by reducing the problem to learning a quantum state, a task
known as quantum state tomography.

The connection between learning the unknown unitary U and learning quantum states comes
via the Choi-Jamio lkowski isomorphism (described in Section 2.5). In our learning algorithm we
will use the following procedure to perform pure state tomography on (copies of) the CJ state
|v(U)〉 in order to learn a description of U :

Proposition 27 (Pure state tomography). There exists a procedure Tomography 10 that, given
O(d/ε) samples of an unknown d-dimensional pure state |ψ〉, outputs with high probability a
classical description of a pure state |ψ̂〉 ∈ C

d such that

∣∣∣
〈
ψ
∣∣∣ ψ̂
〉 ∣∣∣

2
≥ 1− ε .

Our quantum junta learning algorithm is presented in Algorithm 6 and its properties are estab-
lished in Theorem 28.

Theorem 28. Given oracle access to a quantum k-junta U ∈ UN and a ε > 0, Quantum-

Junta-Learner(U, ε) (cf. Algorithm 6) outputs, with probability 9/10, a unitary Û such that

dist(U, Û) ≤ ε. Furthermore, Quantum-Junta-Learner makes O
(
k
ε + 4k

ε2

)
queries to U .

Proof. We will analyze the closeness guarantee and the query complexity separately, starting with
the former.

9This subroutine is also implicit in [Wan11].
10This procedure was first devised by Derka, Bužek, and Ekert [DBE98] (and whose sample complexity was deter-

mined by Bruß and Machiavello [BM99]).

20

Input: Oracle access to unitary U , S ⊆ [n]

Output: The quantum state |ψS〉 or “error”

Quantum-State-Preparation(U,S):

1. Prepare the state |v(U)〉 =
∑

x∈Zn
4
Û(x) |v(σx)〉.

2. Measure qubits in S̄ ⊆ [n] and {l̃ : l ∈ S̄} in the Pauli basis
{
|v(σx)〉

}
x∈Zn−|S|

4

.

(a) If the measurement result is |v(I⊗(n−|S|))〉, let |ψS〉 be the the unmeasured state
on 2|S| qubits tensored with (k − |S|) EPR pairs. Return |ψS〉.

(b) Otherwise, return “error”.

Algorithm 7: The Quantum State Preparation Subroutine (cf. Step 2 of Algorithm 6)

Input: Oracle access to quantum k-junta U on n qubits, threshold γ > 0

Output: S ⊆ [n]

Pauli-Sample(U, γ, k):

1. Initialize S = ∅.

2. Repeat the following O
(
log k
γ

)
times:

(a) Prepare the |v(U)〉 and measure all qubits in the Pauli basis, {|v(σx)〉}x∈Zn
4
.

(b) Given the measurement outcome |v(σx)〉, set S ← S ∪ supp(x)

3. Return S.

Algorithm 8: The Pauli Sampling Subroutine (cf. Step 1 of Algorithm 6)

Consider the state |ψS〉 obtained by running Quantum-State-Preparation in Step 2 of
Algorithm 6. |ψS〉 is a pure state with 2k qubits; as such, it encodes k-qubit unitary matrix V
acting on the qubits in the relevant set R ⊂ [n], |R| = k. We have that

dist
(
U, V ⊗ I⊗(n−k)

)
≤ ε

2
(18)

by Lemma 29.
Let Û be the output of Algorithm 6, and let Û := W ⊗ I⊗(n−k), for a k-qubit unitary W on

qubits in the relevant set R. To show that Û is close to U , we will now show that with probability
at least 99/100,

dist(V,W) ≤ ε

2
. (19)

It would then follow from the triangle inequality and Equations (18) and (19) that

dist(Û , U) ≤ ε.

21

To show that V and W are close, consider the output of Tomography in Step 3 of Algorithm 6.

By Proposition 27, we have that with O
(

4k/ε2
)

copies of |ψS〉,
∣∣∣
〈
ψS

∣∣∣ ψ̂
〉 ∣∣∣

2
≥ 1− ε2/4

Note that |ψ̂〉 encodes W and that |ψS〉 encodes V . Writing K := 2k, we have that

|ψ̂〉 =
∑

0≤i,j<K

W [i, j]√
K
|i〉 |j〉 and |ψS〉 =

∑

0≤i,j<K

V [i, j]√
K
|i〉 |j〉 .

We then have that

dist(V,W)2 = min
θ

1

2K
‖eiθV −W‖2

=
1

2
min
θ

∑

0≤i,j<K

∣∣∣∣∣
eiθV [i, j]√

K
− W [i, j]√

K

∣∣∣∣∣

2

=
1

2
min
θ

∑

0≤i,j<K



∣∣∣∣∣
eiθV [i, j]√

K

∣∣∣∣∣

2

+

∣∣∣∣
W [i, j]√

K

∣∣∣∣
2

− 2 ·Re

(
eiθ

K
V [i, j]W [i, j]∗

)


=
1

2
min
θ


2− 2 ·Re


 ∑

0≤i,j<K

eiθ

K
V [i, j]W [i, j]∗







=
1

2


2− 2

∣∣∣∣∣∣
∑

0≤i,j<K

1

K
V [i, j]W [i, j]∗

∣∣∣∣∣∣




= 1− | 〈ψS | ψ̂〉 |
≤ ε2/4,

Finally, we turn to the query complexity of Algorithm 6. By Lemma 30, the query complexity
of Step 1 of Algorithm 6 (Pauli-Sample) is

log k
ε2

4k

= O

(
k log k

ε2

)
.

The number of copies required for the tomography subroutine is

t := O

(
4k

ε2

)
.

As Quantum-State-Preparation has a small probability of error (O(ε2)), we can show by
Markov’s inequality that with 10t calls to Quantum-State-Preparation, we will obtain at least
t copies of |ψS〉 with high probability. In more detail, let Y be the random variable indicating the
number of failed executions of Quantum-State-Preparation. Then,

E[Y] ≤ 10t · ε
2

4
and so Pr[Y > 9t] ≤ 5ε2

18
≪ 0.01.

Because each call to Quantum-State-Preparation makes one call to U , the total query com-

plexity of Algorithm 6 is O
(
k log k
ε2 + 4k

ε2

)
, completing the proof.

22

We now prove the following lemma that we used in the proof of Theorem 28.

Lemma 29. Let V denote the unitary whose Choi-Jamiolkowski isomorphism is given by |ψS〉, as
obtained from the call to Quantum-State-Preparation in Step 2 of Algorithm 6. Then

dist
(
U, V ⊗ I⊗(n−k)

)
≤ ε

2
.

Proof. Since U is a k-junta, let R ⊂ [n] be the set of k relevant variables. Let S ⊂ R be the set of
qubits with nonnegligible influence outputted by Pauli-Sample in Step 1 of Algorithm 6.

Let U = UR ⊗ IR̄, where UR is a k-qubit unitary acting only on the relevant qubits in R. It is
sufficient to show that dist(UR, V) ≤ ε

2 . First, note that

|v(U)〉 = |v(UR)〉 |v(I⊗(n−k))〉

Thus, when we measure qubits in R̄ and {ℓ̃ : ℓ ∈ R̄}, we always obtain |v(I⊗(n−k))〉, as U acts
trivially on qubits outside of R.

Now we will consider what happens when we measure qubits in R−S. We will use the following
decomposition of |v(UR)〉.

|v(UR)〉 =
∑

x∈Zk
4

ÛR(x) |v(σx)〉 (20)

=
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩(R−S)6=∅
Û(x) |v(σx)〉 (21)

By Lemma 30, S will contain all the qubits with influence larger than ε2

4k with high probability.
Further, each qubit in S has nonzero influence. This implies that with high probabilty,

∑

x:supp(x)∩(R−S)6=∅
|Û(x)|2 = Inf S̄[U] ≤

∑

i∈S̄
Inf i[U] ≤ k · ε

2

4k

By the decomposition in Equation (21), measuring qubits in (R − S) ∪ {ℓ̃ : ℓ ∈ R − S} yields

the state |v(I⊗(|R|−|S|))〉 with probability at least 1− ε2

4 . Conditioned on this event, the 2k−qubit
post measurement state is as follows:

|ψS〉 =
1√

1− InfR−S [U]

∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉 ⊗ |EPR〉⊗(k−|S|)

Let α := 1√
1−InfR−S [U]

. Note that 1 ≤ α ≤ 1√
1− ε2

4

. Then,

23

2 dist2(V,UR) = || |ψS〉 − |v(UR)〉 ||2

= ||
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉+

∑

x:supp(x)∩(R−S)6=∅
Û(x) |v(σx)〉

− α
∑

x:supp(x)∩S̄=∅
Û(x) |v(σx)〉 ||2

= (α − 1)2
∑

x:supp(x)∩S̄=∅
|Û(x)|2 +

∑

x:supp(x)∩(R−S)6=∅
|Û(x)|2

≤ (
1√

1− ε2

4

− 1)2 + InfR−S [U]

≤ 2
ε2

4

This shows that dist(V ⊗ I⊗(n−k), U) = dist(V,UR) ≤ ε/2.

The following lemma is analogous to Lemma IV.4 in [AS07].

Lemma 30. Let U ∈ UN be a unitary acting non-trivially on qubits in R ⊂ [n]. Then Pauli-

Sample(U, ε, |R|) makes t = O
(
log |R|

ε

)
membership queries to U and outputs with high probability

a list S ⊂ [n] that satisfies the following properties:

1. S contains all qubits i ∈ [n] such that Inf i[U] ≥ ε; and

2. All qubits i in S have nonzero influence, i.e. Inf i[U] > 0.

Proof. If Inf i[U] ≥ ε, then the probability i does not occur in S is at most (1 − ε)t ≤ 1
100|R| . By

the union bound, S will contain every i such that Inf i[U] ≥ ε with probability at least 99/100.
The second item follows from the fact that if i ∈ [n] is Pauli-sampled, there must exist x ∈ Z

n
4 , i ∈

supp(x) such that Û(x) 6= 0.

5.2 Learning Lower Bound

Finally, we present a nearly-matching lower bound for the query complexity of learning quantum
juntas. Although it is commonly stated that process tomography requires Ω(4n) queries, we have
not been able to identify in the literature a formal lower bound proof. Thus, we provide the
following proof for completeness.

Theorem 31. Any algorithm for learning quantum k-juntas with error ε requires Ω(4k log(1/ε)/k)
queries.

Proof. We prove this lower bound via a communication complexity argument. In particular, we
reduce the Input Guessing game to learning quantum juntas. The Input Guessing game with
domain size K is a two-party communication task where one party (named Alice) receives an
uniformly random input x from {1, 2, . . . ,K} and the other party (named Bob) has to output
a guess for x after engaging in two-way communicating with Alice. We consider the model of
quantum communication, where Alice and Bob can exchange qubits with each other. A classic
result of Nayak [Nay99] implies the following lower bound on the communication complexity of the
Input Guessing game.

24

Theorem 32 (Lower bound for Input Guessing game [Nay99]). Any quantum communication
protocol that solves the Input Guessing game with domain size K and success probability p
requires exchanging logK − log 1

p qubits between the parties.

Let A denote an algorithm that learns quantum k-juntas, assuming it is told which k of the n
qubits are relevant. Note that the problem of learning quantum k-juntas without this additional
information is at least as hard. Without loss of generality, assume the first k qubits are relevant.

Suppose A makes q queries, achieves error ε and achieves constant success probability. Then
we construct a quantum communication protocol for the Input Guessing game with domain

size K = Ω
(

(1/ε)4
k
)

, communication complexity O(kq), and constant success probability. By

Theorem 32, this implies that

kq ≥ Ω(logK) = Ω(4k log(1/ε))

which implies the desired lower bound.
Let K denote the size of a maximal ε-packing of the space of k-qubit unitary matrices, with

respect to the distance measure dist(·, ·). In other words, this is the maximal number of disjoint ε-
balls in the space of k-qubit unitaries. By standard volume arguments (see [Sza97]), since dist(·, ·)
is a unitarily invariant distance measure, K is at least Ω

(
(1/ε)4

k
)

. Let {U1, . . . , UK} denote an

enumeration of the maximal ε-packing.
Suppose Alice gets a random input x ∈ {1, 2, . . . ,K}. Bob will simulate the algorithm A.

Whenever A has to make a query to the oracle, Bob sends the first k qubits of his query register to
Alice, then Alice applies the k-qubit unitary Ux to the register, and then sends the register back.
Indeed, if A’s query register is on n qubits total, then the effective n-qubit unitary applied in this
simulated execution of A is U = Ux ⊗ I where Ux acts on the first k qubits and I acts on the
remaining n−k qubits. Bob continues in this fashion until the algorithm A terminates and outputs
(with constant probability) a classical description of a unitary V such that dist(Ux ⊗ I, V) ≤ ε
where, by the correctness of the algorithm A, V is a quantum k-junta V ′ ⊗ I that acts trivially on
all qubits except the first k. Thus we have that dist(Ux, V

′) ≤ ε, and by definition of an ε-packing,
Ux is the unique member of the packing that has distance ε to V ′. Thus Bob can uniquely identify
Alice’s input x with constant probability. The total communication complexity of this protocol is
2kq.

Acknowledgements

S.N. is supported by NSF grants CCF-1563155 and by CCF-1763970. H.Y. is supported by AFOSR
award FA9550-21-1-0040, NSF CAREER award CCF-2144219, and the Sloan Foundation. The
authors would like to thank Rocco A. Servedio and Xi Chen for helpful discussions. We would
also like to thank Zongbo Bao for pointing out an error in Algorithm 1 in an earlier version of this
paper, as well as Vishnu Iyer and Michael Whitmeyer for helpful comments.

References

[ABRdW16] Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Effi-
cient quantum algorithms for (gapped) group testing and junta testing. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 903–922. SIAM, 2016. 2, 3, 7, 8, 9, 11, 12, 13, 14

25

[AS07] Alp Atıcı and Rocco A. Servedio. Quantum algorithms for learning and testing juntas.
Quantum Inf. Process., 6(5):323–348, 2007. 2, 3, 4, 19, 24

[Bel19] Aleksandrs Belovs. Quantum algorithm for distribution-free junta testing. In René van
Bevern and Gregory Kucherov, editors, Computer Science - Theory and Applications -
14th International Computer Science Symposium in Russia, CSR 2019, Novosibirsk,
Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer
Science, pages 50–59. Springer, 2019. 4

[BKT17] Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back:
Tight quantum query bounds via dual polynomials. CoRR, abs/1710.09079, 2017. 2,
3, 17

[Bla09] Eric Blais. Testing juntas nearly optimally. In Michael Mitzenmacher, editor, Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 151–158. ACM, 2009. 2

[BM99] Dagmar Bruß and Chiara Macchiavello. Optimal state estimation for d-dimensional
quantum systems. Physics Letters A, 253(5-6):249–251, 1999. 20

[Bsh19] Nader H. Bshouty. Almost optimal distribution-free junta testing. In Amir Shpilka,
editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019,
New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. 4

[BY22] Arnab Bhattacharyya and Yuichi Yoshida. Property Testing - Problems and Tech-
niques. Springer, 2022. 1

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process.
Lett., 90(6):301–305, 2004. 2

[Cho75] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra
and its Applications, 10(3):285–290, 1975. 8

[CN97] Isaac L Chuang and Michael A Nielsen. Prescription for experimental determination
of the dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455–
2467, 1997. 1

[DBE98] Radoslav Derka, Vladimir Bužek, and Artur K Ekert. Universal algorithm for op-
timal estimation of quantum states from finite ensembles via realizable generalized
measurement. Physical Review Letters, 80(8):1571, 1998. 20

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Test-
ing juntas. J. Comput. Syst. Sci., 68(4):753–787, 2004. 2

[GJ14] Gus Gutoski and Nathaniel Johnston. Process tomography for unitary quantum chan-
nels. Journal of Mathematical Physics, 55(3):032201, 2014. 1

[Gol10] Oded Goldreich. A brief introduction to property testing. In Oded Goldreich, editor,
Property Testing - Current Research and Surveys, volume 6390 of Lecture Notes in
Computer Science, pages 1–5. Springer, 2010. 1

26

[ITW21] Vishnu Iyer, Avishay Tal, and Michael Whitmeyer. Junta distance approximation
with sub-exponential queries. In Valentine Kabanets, editor, 36th Computational
Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 24:1–24:38. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. 4

[Jam72] A. Jamio lkowski. Linear transformations which preserve trace and positive semidefi-
niteness of operators. Reports on Mathematical Physics, 3(4):275–278, 1972. 8

[MdW16] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing. Theory
Comput., 7:1–81, 2016. 1, 3, 4

[MO10] Ashley Montanaro and Tobias Osborne. Quantum boolean functions. Chic. J. Theor.
Comput. Sci., 2010, 2010. 1, 2, 3, 6, 7, 10

[Nay99] Ashwin Nayak. Optimal lower bounds for quantum automata and random access
codes. In 40th Annual Symposium on Foundations of Computer Science, pages 369–
376. IEEE, 1999. 2, 4, 24, 25

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, 2010. 4

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
6

[PRS02] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM J. Discret. Math., 16(1):20–46, 2002. 2

[PRW19] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approx-
imating the distance to monotonicity of boolean functions. volume abs/1911.06924,
2019. 4

[Sağ18] Mert Sağlam. Near log-convexity of measured heat in (discrete) time and conse-
quences. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 967–978, 2018. 2

[Sza97] Stanislaw J Szarek. Metric entropy of homogeneous spaces. arXiv preprint
math/9701213, 1997. 25

[Wan11] Guoming Wang. Property testing of unitary operators. Physical review. A, Atomic,
molecular, and optical physics, 84(5), November 2011. 3, 7, 20

[Wat18] John Watrous. The Theory of Quantum Information. Cambridge University Press,
2018. 4

[Wil17] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2017. 4

[Zha19] Xiaojin Zhang. Near-optimal algorithm for distribution-free junta testing. ArXiv,
abs/1911.10833, 2019. 4

27

abs/1911.10833

A An Alternative Characterization of Influence

Below is an alternative characterization of the influence of a set of variables on a unitary. Our learn-
ing and testing algorithms do not make use of this characterization, but it may be of independent
interest.

Lemma 33. (Equivalent characterization of influence) Given U ∈ UN and j ∈ [n], we have

Inf j[U] = 1− 1

2n+1
Tr
(

(TrjU
†)(TrjU)

)
.

More generally, for S ⊆ [n], we have

InfS [U] = 1− 1

2n+|S|Tr
(

(TrSU
†)(TrSU)

)
.

Proof. Note that for S ⊆ [n] and x ∈ Z
n
4 , we have that

TrS(σx) = 0 if and only if S ∩ supp(x) 6= ∅.

This is immediate from the fact that the only Pauli matrix with non-zero trace is σ0 = I. Writing
U in the Pauli basis, TrS(U) has the following form

TrS(U) = TrS



∑

x∈Zn
4

Û(x)σx


 = 2|S|

∑

x:supp(x)∩S=∅
Û(x)σx. (22)

Using this characterization, it follows that

1

2n−|S|Tr
(

TrS(U)†TrS(U)
)

=
1

2n−|S|
〈
TrS(U),TrS(U)

〉

= 22|S|
∑

x:supp(x)∩S=∅
|Û(x)|2

= 22|S|
(
1− InfS [U]

)

where the second equality follows from Parseval’s formula and equation 22, while the final equality is
because ‖U‖2 = N for all unitaries U ∈ UN . The lemma follows by rearranging the final expression
above.

28

	Introduction
	Related Work
	Our Techniques
	Testing Quantum Juntas
	Learning Quantum Juntas

	Future Work

	Preliminaries
	Unitary Operators
	The Pauli Decomposition
	Influence of Qubits on Unitaries
	Query Complexity of the Composition of Quantum Algorithms
	The Choi-Jamiolkowski Isomorphism

	Testing Quantum k-Juntas with O"0365O(k) Queries
	An Influence Tester for Unitaries
	Reducing to Gapped Group Testing

	An (k) Lower Bound for Testing Quantum k-Juntas
	Learning Quantum k-Juntas
	Learning Upper Bound
	Learning Lower Bound

	An Alternative Characterization of Influence

