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Almost Tight Bounds for Online Facility Location in the

Random-Order Model

Haim Kaplan∗ David Naori† Danny Raz†

Abstract

We study the online facility location problem with uniform facility costs in the random-
order model. Meyerson’s algorithm [FOCS’01] is arguably the most natural and simple online
algorithm for the problem with several advantages and appealing properties. Its analysis in the
random-order model is one of the cornerstones of random-order analysis beyond the secretary
problem. Meyerson’s algorithm was shown to be (asymptotically) optimal in the standard worst-
case adversarial-order model and 8-competitive in the random order model. While this bound
in the random-order model is the long-standing state-of-the-art, it is not known to be tight, and
the true competitive-ratio of Meyerson’s algorithm remained an open question for more than
two decades.

We resolve this question and prove tight bounds on the competitive-ratio of Meyerson’s
algorithm in the random-order model, showing that it is exactly 4-competitive. Following our
tight analysis, we introduce a generic parameterized version of Meyerson’s algorithm that retains
all the advantages of the original version. We show that the best algorithm in this family is
exactly 3-competitive. On the other hand, we show that no online algorithm for this problem
can achieve a competitive-ratio better than 2. Finally, we prove that the algorithms in this
family are robust to partial adversarial arrival orders.

1 Introduction

In the classical online metric uncapacitated facility location problem, we have a metric space where
facilities can be opened at any point for a given cost (uniform facility cost). A sequence of demand
points arrive one by one over time, and upon arrival of a demand point, it must be irrevocably
assigned to an open facility. A demand point can either be assigned to an existing open facility, or
a new facility can be opened for this purpose. The cost of assigning a demand point to a facility
is the distance between the demand point and the facility. The goal is to minimize the total cost
(assignment cost and facility opening cost) paid for serving all the demand points.

This problem was first considered by Meyerson [29], and it has been studied extensively since
(see e.g., [3, 12, 13, 19, 2, 15, 5] and the survey by Fotakis [14] and references therein). In his
seminal paper [29], Meyerson studied the problem both in the standard worst-case (adversarial
order) model, and mainly in the random-order model, which is particularly suitable for many
applications of the facility location problem.

Meyerson considered what is arguably the most simple and natural online algorithm for the
facility location problem, which we call DistProb: When a demand point arrives, DistProb

randomly decides whether to assign it to an existing open facility, or to open a new facility at the
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demand point. The decision is based only on the distance, d, between the demand point and the
nearest open facility (which is the assignment cost to this facility), and the facility opening cost f .
DistProb opens a new facility with probability min{d/f, 1}, and otherwise, it assigns the demand
point to the nearest open facility.

DistProb has many advantages: it is simple and intuitive, very efficient computationally and
memoryless. It has inspired many studies, and it is used as a building block in algorithms for other
online problems (see e.g., [16, 9, 13, 14, 15]). Meyerson’s elegant analysis of DistProb is one of
the cornerstones of random-order analysis, and is sometimes taught in algorithms classes [35, 17].

In the worst-case adversarial-order model, the facility location problem is considered to be
solved. Shortly after the seminal paper by Meyerson, Fotakis showed that DistProb is optimal
O(log n/ log log n)-competitive in the worst-case [12]. In contrast, this is not the case in the random-
order model. In [29], Meyerson showed that DistProb is 8-competitive, and it remained the
best-known competitive-ratio for the problem until now.

In some cases, tailoring an optimal algorithm in the random-order model compromises its per-
formance in the worst-case, and vice versa [20]. Analyzing a single algorithm in both the worst-case
and the random-order model provides a deeper understanding of its performance in different condi-
tions, and sets new standards in the design of online algorithms [30, 34, 31, 18]. The ideal is to have
the “best-of-both-worlds” algorithm, i.e., a single algorithm with good performance guarantees in
both models. DistProb is a good example for this, it provides the best performance guarantee in
the worst-case (asymptotically), and when the online sequence arrives in random order, it provides
a much better guarantee.

In this paper, we study the online facility location problem in the random order model. We
provide tight bounds on the competitive-ratio ofDistProb. We then design an improved algorithm
that admits a better competitive-ratio while maintaining all the advantages of DistProb. We show
that the performance of our improved algorithm is close to optimal by proving a lower bound on the
performance of any algorithm for the problem. We also prove that the algorithms that we consider
have a nice robustness property to partial adversarial orders. High-level details follow.

1.1 Our Contribution

We provide tight bounds on the performance of DistProb in the random-order model, and show
that its exact competitive-ratio is 4.

Our analysis maintains the elegance in Meyerson’s analysis, and even simplifies some aspects of
it. Like Meyerson’s analysis, our analysis is done per cluster of the optimal solution. The crux of
our analysis lies in pinpointing a probabilistic event of opening a facility which is, roughly speaking,
well placed among the remaining demand points in the cluster. This opened facility provides an
upper bound on the expected distances between the following demand points and their closest open
facility (which, in turn, upper bounds the expected cost incurred by serving these demand points).
On the other hand, we also need to upper bound the cost incurred by serving the demand points
that arrive before this event occurs. The choice of this event carefully balances these two things.

Our analysis sheds new light on the trade-off between assigning demand points to existing
facilities at a low cost, and opening new facilities for future use. It allows us to generalize DistProb

and consider a family of algorithms that open facilities with different probabilities.
More concretely, we consider a generalized version of DistProb that when a demand point

arrives, instead of opening a facility with probability min{d/f, 1}, it opens a facility with probability
g(d), for some function g : R≥0 → [0, 1]. We show that the best functions has the form g(d) = min{q·
d/f, 1} for some q ∈ (0, 1). Our analysis generalizes to provide tight bounds on the competitive-
ratio of this generic algorithm for any value of q. The best competitive-ratio of an algorithm in
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this family is 3 and it is obtained for q = 1/2. We call this algorithm 1/2DistProb. We note
that 1/2DistProb is still (asymptotically) optimal in the worst-case adversarial-order model, and
therefore it has the “best-of-both-worlds” property.

We then prove a lower-bound of 2 on the competitive-ratio of any algorithm for the facility
location problem, which applies even in the weaker online i.i.d. model. In the i.i.d. model, the
demand points are drawn independently from a probability distribution over the points in the
metric space, and the online algorithm has full prior knowledge of this distribution.

Finally, we study how well DistProb performs in a partial adversarial order setting. We
consider a setting in which for a parameter ρ ∈ (0, 1), an adversarially chosen (1 − ρ)-fraction of
the demand points arrive in adversarial order. The remaining demand points in each cluster of
the optimal solution are injected in random positions between the adversarially ordered points of
the cluster. In this setting, we show that the competitive-ratio of DistProb, is within a factor
of at most (2 − ρ)/ρ from its random-order competitive-ratio. For instance, our analysis shows
that 1/2DistProb is 3.66-competitive if 10% of the demand points arrive in adversarial order.
This result can be seen as part of a growing body of work on robust random-order algorithms and
non-uniform arrival orders that aim to weaken the random order assumption [22, 8, 4, 23].

1.2 Additional Related Work

In recent years, the random-order model has been widely adopted for the design and analysis of
online algorithms for various online problems. Some recent examples are the set cover problem [17],
edge coloring [7, 6], weighted bipartite matching, and various other packing problems that generalize
the classical secretary problem [24, 25, 21, 26, 11, 33, 1]. See also the survey by Gupta and Singla [18]
and references therein.

Following the seminal paper by Meyerson [29], the online facility location problem was mostly
considered in the standard worst-case adversarial-order model. In [12], Fotakis gave a lower bound
of Ω(log n/ log log n), and noted that DistProb achieves this bound. Fotakis also presented a
deterministic O(log n/ log log n)-competitive algorithm. Anagnostopoulos et al. [3] presented a
simpler and more computationally efficient deterministic online algorithm, that achieves a worst-
case competitive-ratio of O(log n) for Euclidean spaces of constant dimension. On the other hand,
their algorithm is not constant competitive in the random-order model.

In [13], Fotakis presented a simple deterministic O(log n)-competitive algorithm for the online
facility location problem which is guided by the dual of an LP relaxation for the problem. Later,
Nagarajan and Williamson [32] presented an elegant dual-fitting analysis of Fotakis’ algorithm
which also proves a competitive-ratio of O(log n). They adapted Fotakis’ algorithm to the more
general online facility leasing problem. For other variants of the facility location problem see the
survey by Fotakis [14]. More recently, Cygan et al. [10] modified DistProb to a setting in which
demand points may depart.

In a work related to our results on DistProb in a partial adversarial order setting, Lang [27]
studied DistProb in the t-semi-random order setting. In this setting, the demand points are
initially ordered uniformly at random. Then, the random-order sequence can be manipulated by a
t-bounded adversary. This means that at each point in time, the adversary holds a set of t demand
points from which it can choose the next demand point to arrive in the online sequence. Initially,
the adversary gets the first t demand points in the random-order sequence from which it selects
the first demand point to arrive in the online sequence. Then, at each online round, the next
demand point from the random-order sequence is added to the set of demand points from which
the adversary selects the next demand point to arrive in the online sequence.

Lang shows that DistProb is O(log t/ log log t)-competitive in the t-semi-random order setting,
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and gives a matching lower bound on the competitive-ratio of any algorithm for the facility location
problem in the t-semi-random setting. We note that our partial adversarial order setting and the
t-semi-random setting are not directly comparable. For example, in our partial adversarial order
setting with ρ = 1/2, the adversary can make sure that half of the demand points in the input
(which the adversary can choose) will always arrive in the same relative order in the online sequence.
To achieve this in the t-semi-random setting, we need t = n/2, and no online algorithm can achieve
a constant competitive-ratio for this choice of t (while DistProb achieves a constant competitive-
ratio in our partial adversarial order setting with ρ = 1/2). On the other hand, in the t-semi-random
setting with t = 2, the adversary can make sure that two demand points u1, u2 will always arrive
consecutively in the online sequence. This cannot be achieved in the partial adversarial order
setting that we study in this paper.

The facility location problem has received much recent attention in online settings with predic-
tions [15, 19, 5, 2]. For instance, in [15, 19], upon the arrival of a demand point, the algorithm
receives a prediction on the facility that the demand point is assigned to in the optimal solution.
The goal is to have an algorithm that uses the predictions, and obtains a performance guarantee
that depends on the prediction error: It should be better than the best online worst-case per-
formance guarantee when the predictions are accurate, and close to it when the predictions are
erroneous. The works in [15, 19, 5, 2] achieve this goal with different prediction types and differ-
ent performance guarantees. We note that the algorithms in [19, 15, 2] are based on Meyerson’s
algorithm.

1.3 Organization of the paper

In Section 2 we give a formal definition of the online facility location problem in the random-order
model and establish notations. In Section 3 we present our tight analysis of DistProb in the
random-order model. In Section 4, we introduce our generic version of DistProb, and present
tight bounds on its performance. In Section 5 we prove the hardness result for any algorithm for
online facility location in the i.i.d. model. In Section 6 we introduce the setting of partial adversarial
arrival order, and prove a robustness result for our considered algorithms in this setting. Finally,
we conclude and discuss open questions in Section 7.

2 Problem Definition

In the (metric, uncapacitated) facility location problem, we are given a metric space (M, d) where
M is the set of points, and d : M ×M → R≥0 is a non-negative and symmetric distance function
that satisfies the triangle inequality. We are also given a multiset of demand points U in M, and a
facility opening cost f ∈ R≥0 (uniform facility cost).

Each demand must be assigned to an open facility. A facility can be opened at any point in
the metric space for a cost of f . For F ⊆ M and v ∈ M, d(F, v) is the minimal distance between
a point in F and v, that is, d(F, v) = minu∈F d(u, v). We define d(∅, v) = ∞. Given a set of open
facilities F ⊆ M, the cost of assigning a demand v is d(F, v). The goal is to find a set of facilities
F ⊆ M that minimizes the total cost |F| · f +

∑

v∈U d(F, v). By scaling, we assume throughout this
paper, without loss of generality, that f = 1.

In the online version of the problem, the demands in U arrive one by one. Let v1, . . . , vn
denote the input sequence. The arrival order is determined by the online model, which we specify
thereafter. When a demand point vℓ arrives, the online algorithm must decide immediately, whether
and where to open new facilities. Then, vℓ is irrevocably assigned to its nearest open facility. Let Fℓ

be the set of all facilities that the algorithm opens by the end of online round ℓ ∈ [n] (note that Fℓ
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may be a random variable). The algorithm’s service cost for vℓ is the cost incurred by the algorithm
at online round ℓ, i.e., the facility opening cost and the assignment cost, (|Fℓ| − |Fℓ−1|) + d(Fℓ, vℓ).
The total cost incurred by the algorithm is given by |Fn|+

∑n
ℓ=1 d(Fℓ, vℓ).

In the online random-order model, the input sequence v1, . . . , vn is a uniformly random permu-
tation of the demand points in U.1 For an algorithm ALG and an input instance I = (M, d,U),
let ALG(I) be the random variable that gets the total cost incurred by the algorithm on I, and
let OPT(I) be the cost of an optimal solution. Also, for a multiset of demand points X ⊆ U, let
ALG(X) be the random variable that gets the total service cost of the algorithm for the demand
points in X (i.e., the cost that the algorithm pays at the online rounds when the demand points
from X arrive).

With a slight abuse of notation, we also use OPT(I) to refer to the optimal solution as a family
of clusters, where a cluster is a multiset of demand points that are assigned to the same facility.2

We also refer to the facility of a cluster by the name center. When I is clear from the context, we
omit it from the notation and write OPT instead of OPT(I).

An algorithm ALG is called c-competitive in the random-order model, if for any input instance
I, E [ALG(I)] ≤ c · OPT, where the expectation is taken over the random arrival order of the
demand points, and the internal randomness of ALG.

3 DistProb (Meyerson’s Algorithm) is 4-Competitive

In this section, we analyze the fundamental randomized online algorithm, described in Algorithm 1,
which was first introduced by Meyerson [29]. We refer to this algorithm by the name DistProb.

Algorithm 1: DistProb

1 F0 ← ∅;
2 for a demand vℓ that arrives at round ℓ do
3 d(vℓ)← d(Fℓ−1, vℓ);
4 p(vℓ)← min{d(vℓ), 1};
5 Flip a coin with probability p(vℓ) of Heads;
6 if Heads then

// Open a facility at vℓ
7 Fℓ ← Fℓ−1 ∪ {vℓ};
8 else

9 Fℓ ← Fℓ−1

10 Assign vℓ to its nearest facility in Fℓ;

We bound the cost of DistProb for each cluster of OPT separately. Consider a cluster C∗

in OPT with center c∗. For u ∈ C∗, we denote d∗u = d(c∗, u). The cost of OPT for serving C∗ is
OPT(C∗) = 1 +

∑

u∈C∗ d∗u.
The basic idea of the analysis is to wait until an online round T in which the algorithm opens a

facility at a point vT from C∗, and to use this facility to upper bound the distances of the demand
points in C∗ that arrive after round T from their closest open facility (which, in turn, upper bounds
the expected cost that the algorithm pays for serving these demand points). On the other hand,

1We note that in contrast to other problems in the random-order model, we do not need to assume that n is
known to the online algorithm.

2In case of multiple optimal solutions, we break ties arbitrarily.

5



we also need to upper bound the expected cost that the algorithm pays for serving the demand
points in C∗ that arrive before round T . Roughly speaking, to obtain a good upper bound on the
distances of the demand points in C∗ that arrive after time T from their closest open facility, we
need the facility vT to be well placed among these points. However, being too selective about the
location of vT may result in a high service cost for the demand points in C∗ that arrive before time
T . Hence, the choice of T should carefully balance between these two considerations.

Before discussing how we define T , we establish notations and prove simple lemmas that hold
regardless of the definition of T . This will help in explaining the intuition behind our definition of
T .

For a demand point u ∈ U and online round ℓ ∈ [n], let d(u) be the distance between u and the
closest open facility at the point in time when u arrives, and p(u) = min{d(u), 1} (d(·) and p(·) are
also defined in lines 3 and 4 of Algorithm 1).

Let T be a random variable that gets values in the set {1, . . . , n + 1}. T will get a value of an
online round in which a facility from C∗ is opened. If there is no such online round, T will get the
value n+ 1 (for the analysis we define vn+1 to be a dummy demand point with an arbitrary value
of d∗vn+1

that will not be used). As mentioned earlier, the precise definition of T is deferred.
For an online round ℓ ∈ [n], let C∗

≤ℓ = {v1, . . . , vℓ} ∩ C∗ be the set of demand points from C∗

that arrive before round ℓ, and let C∗
≥ℓ = C∗ ∩ {vℓ, . . . , vn} be the set of remaining demand points

in C∗ at round ℓ. We derive upper bounds on the expected service cost of the algorithm for each
of the subsets, C∗

≤T and C∗
≥T+1, separately.

The next lemma shows that to upper bound the cost that DistProb pays for the service of the

demands in C∗
≤T and C∗

≥T+1, it suffices to upper bound E
[

∑

u∈C∗
≤T

p(u)
]

and E
[

∑

u∈C∗
≥T+1

p(u)
]

,

respectively.

Lemma 3.1. The expected service cost of DistProb for a demand u is at most 2 · E [p(u)]

Proof. Fix u ∈ U. Let ALG(u) be the cost that DistProb pays for serving u. Conditioned
on p(u) = 1, the algorithm open a facility at u and pays 1 < 2 = 2 · p(u) (1 for the facility
opening cost, and 0 for the assignment cost). Now let p ∈ [0, 1). Conditioned on p(u) = p, it
holds that p(u) = d(u), and the algorithm opens a facility at u with probability p and pays 1,
and with probability 1 − p, it serves u through an open facility at distance p and pays p. Hence,
E [ALG(u) | p(u) = p] = p · 1 + (1 − p) · p = 2p − p2 ≤ 2p. The lemma follows by taking the
expectation over p(u).

In the next lemma, we derive a simple upper bound on the cost that the algorithm pays for the
service of the demand points in C∗

≥T+1, as a function of d∗vT . By Lemma 3.1 together with the fact

that p(u) = min{d(u), 1} ≤ d(u) for all u ∈ U, it suffices to bound E
[

∑

u∈C∗
≥T+1

d(u)
]

.

Lemma 3.2. E
[

∑

u∈C∗
≥T+1

d(u)
]

≤ E
[

∑

u∈C∗
≥T

d∗u

]

+ E
[

(|C∗
≥T | − 2)d∗vT

]

.

Proof. Observe that each demand point u ∈ C∗
≥T+1 can be served by the open facility at vT , and

thus E [d(u)] ≤ E
[

d∗vT + d∗u
]

. Hence, we get that

E





∑

u∈C∗
≥T+1

d(u)



 ≤ E





∑

u∈C∗
≥T+1

(

d∗vT + d∗u
)



 = E





∣

∣C∗
≥T+1

∣

∣ d∗vT +
∑

u∈C∗
≥T+1

d∗u





= E



(|C∗
≥T+1| − 1)d∗vT +

∑

u∈C∗
≥T

d∗u



 = E
[

(|C∗
≥T | − 2)d∗vT

]

+ E





∑

u∈C∗
≥T

d∗u



 ,
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where the second equality follows from the fact that C∗
≥T = C∗

≥T+1∪{vT }, and also the last equality
is due to the fact that |C∗

≥T+1| = |C∗
≥T | − 1.

Corollary 3.3. E
[

∑

u∈C∗
≥T+1

p(u)
]

≤ E
[

∑

u∈C∗
≥T

d∗u

]

+ E
[

(|C∗
≥T | − 2)d∗vT

]

.

For a demand point u ∈ U and online round ℓ ∈ [n], let p(ℓ, u) = min{d(Fℓ−1, u), 1}. Recall
that d(Fℓ−1, u) is the distance between u and the closest facility in Fℓ−1 (the set of open facilities
at the beginning of online round ℓ). Note that when u arrives at online round ℓ, i.e., vℓ = u, we
have p(u) = p(ℓ, u), and this is exactly the probability of Heads in line 5 of Algorithm 1 (that is,
the probability that the algorithm opens a facility at u).

Next, we proceed with an intuitive, informal discussion about our definition of T . As dis-
cussed before, we want to choose T in a way that will allow us to obtain good upper bounds on

E
[

∑

u∈C∗
≤T

p(u)
]

and E
[

∑

u∈C∗
≥T+1

p(u)
]

. Corollary 3.3 essentially shows that to get a good upper

bound on E
[

∑

u∈C∗
≥T+1

p(u)
]

, we only need E
[

d∗vT
]

to be small. Instead of strictly requiring vT to

be “close” to c∗, we apply a less stringent probabilistic approach. We allow the facility vT to be
(sometimes) far away from c∗, and require only E

[

d∗vT
]

to be small.
Due to the random arrival order, at each online round ℓ, each remaining demand point in C∗

≥ℓ is
equally likely to arrive. Suppose that for every ℓ ∈ [n], each point u ∈ C∗

≥ℓ had an equal probability
to be opened at online round ℓ (that is, p(ℓ, u) = p(ℓ, u′) for all u, u′ ∈ C∗

≥ℓ). Then, we could simply
define T to be the online round in which the first facility from C∗ is opened by the algorithm.
In this hypothetical case, conditioned on the event that a facility vT ∈ C∗

≥T is opened, each point
u ∈ C∗

≥T was equally likely to be the opened facility vT . Hence, we would have got that the expected

distance d∗vT is the average distance of a point in C∗
≥T from c∗, i.e., E

[

d∗vT
]

= E
[

1
|C∗

≥T
|

∑

u∈C∗
≥T

d∗u

]

.

Also, with this simple definition of T , we have a simple upper bound on E
[

∑

u∈C∗
≤T

p(u)
]

. Using

expected waiting time techniques, as used by Meyerson in [29], we have E
[

∑

u∈C∗
≤T

p(u)
]

≤ 1.

In reality, however, each point u ∈ C∗
≥ℓ may have a different probability to be opened by the

algorithm. With the simple definition of T as the first round in which a facility from C∗ is opened,
an issue arises when demand points farther away from c∗ have higher probabilities to be opened
than points closer to c∗, resulting in a bad upper bound on E

[

d∗vT
]

.
To overcome this issue, we “balance out” the probabilities by randomly ignoring some openings

of facilities in C∗ which are far from c∗. To do so, every time a demand point from C∗ arrives, we
flip an independent coin to decide whether to consider it for the definition of T in case it becomes
an open facility. We define T to be the first round in which a facility from C∗ is opened, and
its coin comes up Heads (the probability of Heads is carefully chosen to balance out the facility
opening probability). When this happens we say that a balanced facility is opened. When vℓ = u
the algorithm opens a facility at u with probability p(ℓ, u), but we define T to be the current time,
and u to be a balanced facility, only with a fraction of this probability. This fraction is chosen to
be no larger than the probabilities of the points that are closer than u to c∗ to be opened (i.e.,
the probabilities p(ℓ, w) for w ∈ C∗

≥ℓ with d∗w ≤ d∗u). More concretely, we take this fraction to
be the minimum opening probability of a demand point in C∗

≥ℓ with distance at most d∗u from c∗

(minw∈C∗
≥ℓ

,d∗w≤d∗u
p(ℓ, w)). By doing so, we get that conditioned on the event that a balanced facility

vT ∈ C∗
≥T is opened, a point u ∈ C∗

≥T is at least as likely to be the opened balanced facility vT ,
as demand points in C∗

≥T farther away from c∗. Hence, we get that the expected distance of d∗vT

is at most the average distance of a point in C∗
≥T from c∗, i.e., E

[

d∗vT
]

≤ E
[

1
|C∗

≥T
|

∑

u∈C∗
≥T

d∗u

]

.

Lemma 3.4 gives the formal statement.
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c∗

vℓ
C∗
≥ℓ

(

d∗vℓ
)

d∗vℓ

w(vℓ)

Fℓ−1 ∋

∈ Fℓ−1

∈ Fℓ−1

p(ℓ, w(vℓ))

p(vℓ)

Figure 1: An illustration of w(vℓ)

To upper bound E
[

∑

u∈C∗
≤T

p(u)
]

, we note that the difference between the actual probability of

u to be opened by the algorithm at round ℓ (conditioned on vℓ = u), i.e., p(ℓ, u), and the probability
that u is opened as a balanced facility at round ℓ, is upper bounded by the difference between the
distance of u from its closest open facility in Fℓ−1, and the distance of some w ∈ C∗

≥ℓ, with d∗w ≤ d∗u,
from its closest open facility, i.e., d(Fℓ−1, u)−d(Fℓ−1, w). We will show that this difference is upper

bounded by 2d∗u. Using this fact, we prove in Lemma 3.5 that the increase in E
[

∑

u∈C∗
≤T

p(u)
]

that we incur by waiting for a balanced facility from C∗ to be opened (instead of any facility in

C∗), is at most 2 · E
[

∑

u∈C∗
≤T

d∗u

]

.

We now proceed to formalize this intuitive discussion and fill in all the details. We start with
some notation and a formal definition of balanced and imbalanced facilities. For an online round
ℓ ∈ [n], recall that C∗

≥ℓ = C∗ ∩ {vℓ, . . . , vn} is the set of remaining demand points in C∗ at round ℓ.
For x ∈ R≥0, let C

∗
≥ℓ (x) = {u ∈ C∗

≥ℓ : d
∗
u ≤ x}, that is, C∗

≥ℓ (x) is the set of demand points in C∗
≥ℓ

whose distance from c∗ is at most x. When a demand point vℓ ∈ C∗
≥ℓ arrives (at online round ℓ),

we consider the demand point

w(vℓ) = argmin
u∈C∗

≥ℓ

(

d∗vℓ

)

p(ℓ, u), (1)

i.e., w(vℓ) is a point in C∗
≥ℓ

(

d∗vℓ
)

with a minimal distance to an open facility (in Fℓ−1).
3 We

illustrate the definition of w(vℓ) in Figure 1. The red points are the open facilities in Fℓ−1 and the
blue points are the demand points in C∗

≥ℓ

(

d∗vℓ
)

. The red lines connect each demand point to its
closest open facility (regardless of the line pattern). With the solid and dotted line patterns, we
highlight two distances of interest. The dotted red line is the shortest distance between a demand
point in C∗

≥ℓ

(

d∗vℓ
)

, and an open facility in Fℓ−1, and the solid red line is the distance between vℓ
and its closest open facility in Fℓ−1.

Recall that the algorithm flips a coin and opens a facility at vℓ with probability p(vℓ). We call this
coin the algorithm coin. To make our distinction, we flip an additional independent coin, which we

3Ties are broken arbitrarily.
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call the analysis coin, with probability p(ℓ, w(vℓ))/p(vℓ) of Heads (note that p(ℓ, w(vℓ))/p(vℓ) ≤ 1).
We say that a balanced facility is opened at vℓ if the algorithm coin comes up Heads (a facility is
opened at vℓ by the algorithm) and the analysis coin comes up Heads. If the algorithm coin comes
up Heads and the analysis coin comes up Tails, we say that an imbalanced facility is opened at vℓ.
Observe that overall, a balanced facility is opened at vℓ if both coins come up Heads which happens
with probability p(vℓ) · p(ℓ, w(vℓ))/p(vℓ) = p(ℓ, w(vℓ)), and an imbalanced facility is opened at vℓ
with probability p(vℓ)− p(ℓ, w(vℓ)).

We are now ready to formally define T . Let T be the online round in which the first balanced
facility from C∗ is opened (that is, a balanced facility vT ∈ C∗

≥T is opened). If there is no such
demand point, we define T = n + 1 (as mentioned before, for the analysis we define vn+1 to be a
dummy demand point with an arbitrary value of d∗vn+1

that will not be used).

We continue with Lemma 3.4 that upper bounds E
[

d∗vT
]

in terms of the average distance of a
point in C∗

≥T from c∗, as promised above.

Lemma 3.4. E
[

|C∗
≥T | · d∗vT

]

≤ E
[

∑

u∈C∗
≥T

d∗u

]

.

Proof. Let ℓ ∈ [n+1]. We condition on the event {T = ℓ}, i.e., that the first balanced facility from
C∗ is opened at online round ℓ (recall that T = n + 1 means that no balanced facility is opened).
Observe that for T = n+ 1, we have C∗

≥T = ∅, and the lemma holds.4

For ℓ ≤ n, we also condition on the online sequence until round ℓ, and on the set of open facilities
at the beginning of online round ℓ, i.e., on vℓ−1 = (v1, . . . , vℓ−1) and Fℓ−1. Let xℓ−1 = (x1, . . . , xℓ−1)
be a sub-sequence of the demand points and let F ⊆ U, such that Pr[T = ℓ,vℓ−1 = xℓ−1, Fℓ−1 =
F] 6= 0. For brevity, we denote the event {T = ℓ,vℓ−1 = xℓ−1, Fℓ−1 = F} by E(xℓ−1,F).

Note that conditioned on E(xℓ−1,F), the random variable p(ℓ, u) is fixed for all u ∈ U, and gets
the value pF(ℓ, u) = min{d(F, u), 1}. Likewise, the set C∗

≥ℓ is also fixed, and gets the value Y =
(U \ {x1, . . . , xℓ−1})∩C∗. Let u1, . . . , uk be the demand points in Y ordered by their distance from
c∗, i.e., d∗u1

≤ d∗u2
≤ · · · ≤ d∗uk

. Note that k = |Y|. For 1 ≤ j ≤ k, let wj = argmin1≤i≤j{pF(ℓ, ui)}.
Note that wj is the value of w(vℓ) (defined in (1)) when uj arrives at round ℓ, i.e., when vℓ = uj .
We have

Pr [vT = uj | E(xℓ−1,F)] =
Pr [vT = uj, T = ℓ | vℓ−1 = xℓ−1, Fℓ−1 = F]

Pr [T = ℓ | vℓ−1 = xℓ−1, Fℓ−1 = F]
. (2)

Since each remaining demand point in U is equally likely to arrive at round ℓ, it holds that uj
arrives at round ℓ with probability 1

n−ℓ+1 , and when vℓ = uj, a balanced facility is opened at uj with
probability pF(ℓ, wj) (by the definition of balanced opening of a facility). Hence, Pr[vT = uj , T =

ℓ | vℓ−1 = xℓ−1, Fℓ−1 = F] = 1
n−ℓ+1 · pF(ℓ, wj) and Pr [T = ℓ | vℓ−1 = xℓ−1, Fℓ−1] =

∑k
i=1

1
n−ℓ+1 ·

pF(ℓ, wi), therefore, by substituting the last expressions in the numerator and denominator of
Equation (2), we obtain

Pr [vT = uj | E(xℓ−1,F)] =
pF(ℓ, wj)

∑k
i=1 pF(ℓ, wi)

.

Now since d∗u1
≤ · · · ≤ d∗uk

, and pF(ℓ, w1) ≥ pF(ℓ, w2) ≥ · · · ≥ pF(ℓ, wk), we get that

E
[

|C∗
≥T | · d∗vT

∣

∣ E(xℓ−1,F)
]

= k · E
[

d∗vT
∣

∣ E(xℓ−1,F)
]

= k ·
k
∑

j=1

d∗uj

pF(ℓ, wj)
∑k

i=1 pF(ℓ, wi)
≤ k · 1

k

k
∑

j=1

d∗uj
=
∑

u∈Y

d∗u.

4For T = n+ 1, we define d∗vT = 0.
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To conclude the proof we take the expectation over T , vT−1 and FT−1, and get that E
[

|C∗
≥T | · d∗vT

]

≤
E
[

∑

u∈CT
d∗u

]

.

We now prove an upper bound for the demand points in C∗
≤T .

Lemma 3.5. E
[

∑

u∈C∗
≤T

p(u)
]

≤ 1 + 2 · E
[

∑

u∈C∗
≤T

d∗u

]

Proof. For 1 ≤ ℓ ≤ n, let Tℓ ≥ ℓ be the first online round (from round ℓ onward) in which
a balanced facility from C∗ is opened by the algorithm, let C∗

[ℓ,Tℓ]
= {vℓ, . . . , vTℓ

} ∩ C∗, and let

Pℓ =
∑

u∈C∗

[ℓ,Tℓ]
p(u). Observe that T1 = T and so C∗

[1,T1]
= C∗

≤T . Therefore, to prove the statement

of the lemma we need to show that E [P1] ≤ 1 + 2 · E
[

∑

u∈C∗
[1,T1]

d∗u

]

.

We condition on the online sequence until round ℓ, and on the set of open facilities at the
beginning of online round ℓ, i.e., on vℓ−1 = (v1, . . . , vℓ−1) and Fℓ−1. We prove by downwards
induction on ℓ that for any F ⊆ U and any sub-sequence of the demand points xℓ−1 = (x1, . . . , xℓ−1)
such that Pr[vℓ−1 = xℓ−1, Fℓ−1 = F] 6= 0, it holds that E [Pℓ | vℓ−1 = xℓ−1, Fℓ−1 = F] ≤ 1 +

2E

[

∑

u∈C∗

[ℓ,Tℓ]
d∗u

∣

∣

∣

∣

vℓ−1 = xℓ−1, Fℓ−1 = F

]

.

For ℓ = n, we have Pn = p(vn) if vn ∈ C∗ and 0 otherwise. Since p(vn) ≤ 1, we have for any
xn−1 and F (such that Pr[vn−1 = xn−1, Fn−1 = F] 6= 0), that E [Pn | vn−1 = xn−1, Fn−1 = F] ≤ 1.

Now let ℓ < n. Let F ⊆ U, and let xℓ−1 = (x1, . . . , xℓ−1) be a sub-sequence of the demand points
of length ℓ−1. As in the proof of Lemma 3.4, conditioned on {Fℓ−1 = F,vℓ−1 = xℓ−1}, the random
variable p(ℓ, u) is fixed for all u ∈ U, and gets the value pF(ℓ, u) = min{d(F, u), 1}. Also C∗

≥ℓ gets
the value Y = (U \ {x1, . . . , xℓ−1})∩C∗. Let u1, . . . , uk be the demand points in Y ordered by their
distance from c∗, i.e., d∗u1

≤ d∗u2
≤ · · · ≤ d∗uk

, and for 1 ≤ j ≤ k, let wj = argmin1≤i≤j{pF(ℓ, ui)}.
As before, note that wj is the value of w(vℓ) (defined in (1)) when uj arrives at round ℓ, i.e., when
vℓ = uj .

In what follows, we further condition on vℓ, and show that the induction step holds for all
possible values of vℓ. We distinguish between two cases, vℓ ∈ Y and vℓ /∈ Y. We begin with the
case vℓ ∈ Y.

For uj ∈ Y, let Bal (uj) be the event that a balanced facility is opened at uj . Likewise, let
ImBal (uj) be the event that an imbalanced facility is opened at uj , and let N (uj) be the event
that no facility is opened at uj. We have

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ−1 = F





= Pr



Bal (uj)

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ−1 = F



 · pF(ℓ, uj)

+ Pr



ImBal (uj)

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ−1 = F







pF(ℓ, uj) + E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}









+Pr



N(uj)

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ−1 = F







pF(ℓ, uj) + E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F







 .

(3)
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By the definition of balanced opening of a facility, the (conditional) probabilities of the events
Bal (uj), ImBal (uj) and N (uj) are pF(ℓ, wj), (pF(ℓ, uj)− pF(ℓ, wj)) and (1− pF(ℓ, uj)), respec-
tively. By substituting these probabilities in Equation (3) and using the induction hypothesis
(twice) and get that

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ−1 = F





≤ pF(ℓ, uj) + (pF(ℓ, uj)− pF(ℓ, wj))






1 + 2E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}













+ (1− pF(ℓ, uj))






1 + 2E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F













= 1 + (pF(ℓ, uj)− pF(ℓ, wj))

+ 2 (pF(ℓ, uj)− pF(ℓ, wj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}







+ 2 (1− pF(ℓ, uj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F






.

(4)

We now upper bound the term (pF(ℓ, uj)− pF(ℓ, wj)). Let d(F, c∗) be the distance between
c∗ (OPT’s center of C∗) and the closest open facility in F. By the triangle inequality, we have
d(F, uj) ≤ d∗uj

+ d(F, c∗) and d(F, c∗) ≤ d(F, wj) + d∗wj
≤ d(F, wj) + d∗uj

. Hence, d(F, uj) ≤
2d∗uj

+ d(F, wj), and so

d(F, uj)− d(F, wj) ≤ 2d∗uj
. (5)

Now since d(F, uj) ≥ d(F, wj), pF(ℓ, uj) = min{d(F, uj), 1} and pF(ℓ, wj) = min{d(F, wj), 1}, it
holds that pF(ℓ, uj)− pF(ℓ, wj) ≤ d(F, uj)− d(F, wj). To see this, observe that if both d(F, uj) ≤ 1
and d(F, wj) ≤ 1, then pF(ℓ, uj) = d(F, uj) and pF(ℓ, wj) = d(F, wj). If both d(F, uj) > 1 and
d(F, wj) > 1 then pF(ℓ, uj)−pF(ℓ, wj) = 0 ≤ d(F, uj)−d(F, wj), and if d(F, uj) > 1 and d(F, wj) ≤ 1,
then pF(ℓ, uj)− pF(ℓ, wj) = 1− d(F, wj) < d(F, uj)− d(F, wj). Hence, we have

pF(ℓ, uj)− pF(ℓ, wj) ≤ d(F, uj)− d(F, wj) ≤ 2d∗uj
. (6)
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Now, observe that

E







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F







= pF(ℓ, wj) · d∗uj
+ (pF(ℓ, uj)− pF(ℓ, wj))






d∗uj

+ E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}













+ (1− pF(ℓ, uj))






d∗uj

+ E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F













= d∗uj
+ (pF(ℓ, uj)− pF(ℓ, wj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}







+ (1− pF(ℓ, uj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F






.

(7)

Thus, by substituting (6) in (4) and using Equation (7), we obtain

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F



 ≤ 1 + 2E







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F






. (8)

For vℓ = u ∈ U \ (Y ∪ {x1, . . . , xℓ−1}), we can consider only whether a facility is opened at u or
not. We have

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F



 = pF(ℓ, u)E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {u}





+ (1− pF(ℓ, u))E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F





≤ 1 + 2 · pF(ℓ, u)E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {u}







+ 2 · (1− pF(ℓ, u))E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F







≤ 1 + 2 · E







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F






,

(9)
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where in the first inequality we used the induction hypothesis, and the last inequality follows by
the fact that, similarly to Equation (7), we have

E







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F






= pF(ℓ, u)E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {u}







+ (1− pF(ℓ, u)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F






.

(10)

To conclude the inductive argument we take the expectation over vℓ.

We are now ready to prove the competitive-ratio of the algorithm.

Theorem 3.6. DistProb is 4-competitive.

Proof. For a cluster C∗ in OPT, we have C∗ = C∗
≤T ∪ C∗

≥T+1. By Lemma 3.5 and Corollary 3.3
together with Lemma 3.1, we get that

E [ALG (C∗)] = E
[

ALG
(

C∗
≤T

)]

+ E
[

ALG
(

C∗
≥T+1

)]

≤ 2 · E





∑

u∈C∗
≤T

p(u)



+ 2 · E





∑

u∈C∗
≥T+1

p(u)





≤ 2 + 4 · E





∑

u∈C∗
≤T

d∗u



+ 2 · E





∑

u∈C∗
≥T

d∗u



+ 2 · E
[

(|C∗
≥T | − 2)d∗vT

]

= 2 + 4 · E





∑

u∈C∗
≤T−1

d∗u



+ 4 · E
[

d∗vT
]

+ 2 · E





∑

u∈C∗
≥T

d∗u



+ 2 · E
[

(|C∗
≥T | − 2)d∗vT

]

= 2 + 4 · E





∑

u∈C∗
≤T−1

d∗u



+ 2 · E





∑

u∈C∗
≥T

d∗u



+ 2 · E
[

(|C∗
≥T |)d∗vT

]

≤ 2 + 4 · E





∑

u∈C∗
≤T−1

d∗u



+ 2 · E





∑

u∈C∗
≥T

d∗u



+ 2 · E





∑

u∈C∗
≥T

d∗u



 = 2 + 4 · E
[

∑

u∈C∗

d∗u

]

.

Where in the last inequality we used Lemma 3.4. Now since OPT(C∗) = 1 +
∑

u∈C∗ d∗u, we
have E [ALG(C∗)] /OPT(C∗) ≤ 4. Since this is true for each cluster C∗ in OPT, we get that
E [ALG] /OPT ≤ 4.

We now show that our analysis of DistProb is tight.

Theorem 3.7. There is an infinite sequence of input instances I1,I2, . . . , with increasing number
of demand points and decreasing distances between the demand points, where the competitive-ratio
of DistProb on Ik approaches 4 as k →∞.

Proof. In the instance Ik the metric space consists of k+1 points {u1, . . . , uk, c∗} where d(ui, uj) =
2δ for all i 6= j and d(ui, c

∗) = δ for all 1 ≤ i ≤ k and δ = 1/(4
√
k) (observe that 2δ < 1 for all
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k ∈ N). The demand points are U = {u1, . . . , uk}. DistProb opens a facility at v1 and pays 1.
Then, for each demand vℓ that arrives at round ℓ ∈ {2, . . . , k} we have d(Fℓ−1, vℓ) = 2δ, regardless
of the decisions of the algorithm in previous rounds. Hence, the expected cost of the algorithm for
serving vℓ is 2δ · 1 + (1− 2δ) · 2δ = 4δ − 4δ2. Hence,

E [ALG(Ik)] = 1 + (k − 1)(4δ − 4δ2).

On the other hand, OPT can open a facility at c∗ and serve each demand by c∗ at a cost of δ.
Thus, E [OPT] ≤ 1 + kδ. To conclude

E [ALG(Ik)]
OPT(Ik)

≥ 1 + (k − 1)(4δ − 4δ2)

1 + kδ
=

1 + (k − 1)(1/
√
k − 1/k)

1 +
√
k/4

,

which approaches 4 as k →∞.

4 Improving DistProb

In this section, we present a modified version of DistProb with an improved competitive-ratio.
Our construction in Theorem 3.7 will be useful to guide us towards the improved algorithm. Ob-
serve that on our constructed instances in Theorem 3.7, after the first facility is opened at v1,
opening additional facilities at future demand points v2, . . . , vn does not reduce the service cost.
Nevertheless, DistProb randomly opens a facility at each arriving demand point vℓ with proba-
bility p(vℓ) = 2δ, which leads to an expected service cost of 4δ − 4δ2, while OPT pays only δ. In
this way, we get the competitive-ratio of 4. On these instances, reducing the probability of opening
a facility results in better performance.

Generally, for any ℓ ∈ [n] we modify the probability of opening a facility at a demand point
vℓ at distance d(vℓ) = d(Fℓ−1, vℓ) and reduce it from min{d(vℓ), 1} to some probability g(d(vℓ)),
for g : R≥0 → [0, 1] (see Algorithm 2 for a formal description). Observe that for d(vℓ) ≥ 1, it is
always better to open a facility (with probability 1), and for d(vℓ) = 0 there is no reason to open
an additional facility. Therefore, we can focus our attention on d(vℓ) ∈ (0, 1).

Algorithm 2: Generic DistProb

1 F0 ← ∅;
2 for a demand vℓ that arrives at round ℓ do
3 d(vℓ)← d(Fℓ−1, vℓ);
4 p(vℓ)← g(d(vℓ));
5 Flip a coin with probability p(vℓ) of Heads;
6 if Heads then

7 Fℓ ← Fℓ−1 ∪ {vℓ};
8 else

9 Fℓ ← Fℓ−1

10 Assign vℓ to the nearest facility in Fℓ;

By our observation above, to improve upon the competitive-ratio of 4, g has to satisfy g(x) < x.
Next, we construct another example to derive a lower bound on g(x). Concretely, we show that
to get an improvement, g must satisfy g(x) > x/4. These two bounds leads us to the choice of a
function g of the form g(x) = q · x for some q ∈ (1/4, 1).
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We now derive the lower bound on g(x). The idea is simple: We construct a family of instances
in which a very large number of demand points arrive at each point in the metric space. This way,
the best approach is to open a facility at each point in the metric space. Hence, on these instances,
larger g(x) provides better performance.

Theorem 4.1. For all δ ∈ (0, 1), there is an infinite sequence of input instances Iδ,1,Iδ,2, . . . ,
in metric spaces with uniform distances of δ, where the competitive-ratio of Algorithm 2 on Iδ,k
approaches 1 + δ/g(δ) − δ as k →∞.

Proof. Let δ ∈ (0, 1). In the instance Iδ,k the metric space consists of k points {c1, . . . , ck} where
d(ci, cj) = δ for all 1 ≤ i < j ≤ k. There are k2 demand points in total, k demand points arrive at
each location ci in the metric space. First, observe that OPT ≤ k as one can open a facility at each
point in the metric space and pay k. On the other hand, the algorithm first opens a facility at the
location ct1 of the first arriving demand point v1 and pays 1. Let ct2 , . . . , ctk be the remaining points
in the metric space. Before a facility is opened at ctj , the expected cost that the algorithm pays for
each demand point that arrive at ctj is g(δ) · 1 + (1 − g(δ)) · δ. Hence, the expected cost that the

algorithm pays for serving the demand points at ctj is
∑k

i=1 (1− g(δ))i−1 (g(δ) + (1 − g(δ))δ) =
(g(δ) + (1− g(δ))δ)

(

1− (1− g(δ))k
)

/g(δ). Therefore, we get that the competitive-ratio of the
algorithm is lower bounded by

1 + (k − 1) (g(δ) + (1− g(δ))δ)
(

1− (1− g(δ))k
)

/g(δ)

k
,

which approaches 1 + δ/g(δ) − δ, as k approaches infinity.

Following Theorem 4.1, to improve upon a competitive-ratio of 4, g must satisfy 1+δ/g(δ)−δ < 4
and so g(δ) > δ/(3 + δ) > δ/4, for all δ ∈ (0, 1).

To sum up, we choose g of the form g(x) = q · x. We note that to simplify our analysis, we
use the continuous function g(x) = min{q · x, 1}, instead of the piecewise function g(x) = q · x,
if x ≤ 1, and g(x) = 1, otherwise. This choice has no impact on the competitive-ratio, and the
same techniques can be used to analyze the piecewise function and gives the same results. Yet, in
practice, it is always better to use the peicewise function. We refer to Algorithm 2 with the choice
g(x) = min{q · x, 1} by the name qDistProb.

From our constructed instances above with the choice g(x) = q ·x, we get that the competitive-
ratio of qDistProb is at most 1 + 1/q − δ, and since we can choose an arbitrarily small δ, we get
the following.

Theorem 4.2. There is an infinite sequence of instances I1,I2, . . . , where the competitive-ratio of
qDistProb on Ik approaches 1 + 1/q as k →∞.

Also, with the instances from the proof of Theorem 3.7, we get the following result.

Theorem 4.3. There is an infinite sequence of instances I1,I2, . . . , where the competitive-ratio of
qDistProb on Ik approaches 2(1 + q) as k →∞.

Together, we have the following corollary.

Corollary 4.4. The competitive-ratio of qDistProb is at least (1 + q)max{2, 1/q} − o(1).

We now move to analyze the performance of qDistProb. We use the same notations from
Section 3, and redefine p(ℓ, u) to be compatible with qDistProb: For a demand u ∈ U and online
round ℓ ∈ [n], let p(ℓ, u) = min{q · d(Fℓ−1, u), 1}. Note that p(ℓ, u) is exactly the probability of
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Heads in line 5 of Algorithm 2 with g(x) = min{q · x, 1} when vℓ = u (also note that for q = 1,
p(ℓ, u) coincides with our original definition for DistProb). Except for the definition of p(ℓ, u),
our definition of the analysis coin as well as the distinction between a balanced and imbalanced
opening of a facility remain the same as in Section 3.

Our analysis for qDistProb is similar to our analysis of DistProb in Section 3, therefore, we
refer to our analysis of DistProb when the details remain the same and apply to qDistProb, and
prove analogues lemmas for qDistProb when it is required.

We bound the cost of qDistProb on each cluster of OPT separately. Consider a cluster C∗ in
OPT with center c∗. Recall that for ℓ ∈ [n], we define C∗

≥ℓ ⊆ C∗ to be the set of the remaining
demand points u ∈ C∗ at round ℓ, and that T is the online round in which the first balanced facility
from C∗ is opened. We partition C∗ in exactly the same way we did in the analysis of DistProb,
that is, C∗ = C∗

≤T ∪ C∗
≥T+1.

We begin by proving an analogue of Lemma 3.1.

Lemma 4.5. The expected cost of qDistProb on a demand u is at most (1 + 1/q) · E [p(u)]

Proof. Fix u ∈ U. Let ALG(u) be the cost that qDistProb pays for serving u. Conditioned on
p(u) = 1, the algorithm open a facility at u and pays 1 ≤ (1+1/q). Now let p ∈ [0, 1). Conditioned
on p(u) = p < 1, it holds that p(u) = q ·d(u) and d(u) = p/q. qDistProb opens a facility at u with
probability p and pays 1, and with probability (1−p), it serves u through an open facility at distance
p/q and pays p/q. Hence, E [ALG(u) | p(u) = p] = p · 1+ (1− p)p/q = p+ p/q− p2/q ≤ (1+ 1/q)p.
The lemma follows by taking the expectation over p(u).

To bound the cost of qDistProb on C∗
≥T+1, we note that Lemma 3.2 and Lemma 3.4 from

Section 3 also apply to qDistProb. With the new definition of p(u), we have for all u ∈ U that
p(u) ≤ q · d(u), so we get the following corollary of Lemma 3.2 (analogously to Corollary 3.3).

Corollary 4.6. E
[

∑

u∈C∗
≥T+1

p(u)
]

≤ q · E
[

∑

u∈C∗
≥T

d∗u

]

+ q · E
[

(|C∗
≥T | − 2)d∗vT

]

.

It remains to derive bounds for the demand points in C∗
≤T . To this end, we prove an analogue

of Lemma 3.5.

Lemma 4.7. E
[

∑

u∈C∗
≤T

p(u)
]

≤ 1 + 2q · E
[

∑

u∈C∗
≤T

d∗u

]

Proof. The proof is very similar to the proof of Lemma 3.5. We use the same definitions and no-
tations as in the proof of Lemma 3.5, except for the new definition of pF(ℓ, u) = min{q · d(F, u), 1}
(instead of min{d(F, u), 1}). With this value of pF(ℓ, u), we prove a more general inductive state-
ment.

Recall that for 1 ≤ ℓ ≤ n, we define Tℓ ≥ ℓ to be the first online round (from round ℓ
onward) in which a balanced facility is opened by the algorithm, C∗

[ℓ,Tℓ]
= {vℓ, . . . , vTℓ

} ∩ C∗, and

Pℓ =
∑

u∈C∗

[ℓ,Tℓ]
p(u). We prove by downwards induction on ℓ that for any F ⊆ U and any sub-

sequence of the demand points xℓ−1 = (x1, . . . , xℓ−1) such that Pr[vℓ−1 = xℓ−1, Fℓ−1 = F] 6= 0, it

holds that E [Pℓ | vℓ−1 = xℓ−1, Fℓ−1 = F] ≤ 1 + 2qE

[

∑

u∈C∗

[ℓ,Tℓ]
d∗u

∣

∣

∣

∣

vℓ−1 = xℓ−1, Fℓ−1 = F

]

.

For ℓ = n, we have Pn = p(vn) if vn ∈ C∗ and 0 otherwise. Since p(vn) ≤ 1, the base case of
the induction holds. For ℓ < n, the proof proceeds as in the proof of Lemma 3.5, until we get to
Equation (3). Now, similarly to Inequality (4), we substitute the probabilities with their respective
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values and use the new induction hypothesis to obtain that

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,
Fℓ−1 = F





≤ pF(ℓ, uj) + (pF(ℓ, uj)− pF(ℓ, wj))






1 + 2qE







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}













+ (1− pF(ℓ, uj))






1 + 2qE







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F













= 1 + (pF(ℓ, uj)− pF(ℓ, wj))

+ 2q (pF(ℓ, uj)− pF(ℓ, wj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {uj}







+ 2q (1− pF(ℓ, uj)) E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj,
vℓ−1 = xℓ−1,

Fℓ = F






.

(11)

We now upper bound the term (pF(ℓ, uj)− pF(ℓ, wj)). To this end we use Inequality (5) (which
still holds), and show that pF(ℓ, uj) − pF(ℓ, wj) ≤ q · (d(F, uj) − d(F, wj)). Recall that d(F, uj) ≥
d(F, wj), pF(ℓ, uj) = min{q·d(F, uj), 1} and pF(ℓ, wj) = min{q·d(F, wj), 1}. We distinguish between
the following cases: If both q · d(F, uj) ≤ 1 and q · d(F, wj) ≤ 1, then pF(ℓ, uj) = q · d(F, uj) and
pF(ℓ, wj) = q · d(F, wj) and the claim holds. If both q · d(F, uj) > 1 and q · d(F, wj) > 1 then
pF(ℓ, uj)− pF(ℓ, wj) = 0 ≤ q · d(F, uj)− q · d(F, wj). Finally, if q · d(F, uj) > 1 and q · d(F, wj) ≤ 1,
then pF(ℓ, uj)− pF(ℓ, wj) = 1− q · d(F, wj) < q · d(F, uj)− q · d(F, wj). Hence, we obtain

pF(ℓ, uj)− pF(ℓ, wj) ≤ 2qd∗uj
. (12)

To conclude, we substitute Inequality (12) and use Equation (7) (which still holds) in Inequal-
ity (11), and get that

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F



 ≤ 1 + 2qE







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = uj ,
vℓ−1 = xℓ−1,

Fℓ = F






. (13)

For vℓ = u ∈ U \Y, similarly to Inequality (9) (with our new induction hypothesis) we also get
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that

E



Pℓ

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F



 = pF(ℓ, u)E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {u}



+ (1− pF(ℓ, u))E



Pℓ+1

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F





≤ 1 + 2q · pF(ℓ, u)E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,
Fℓ = F ∪ {u}







+ 2q · (1− pF(ℓ, u))E







∑

u∈C∗

[ℓ+1,Tℓ+1]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F







≤ 1 + 2q · E







∑

u∈C∗

[ℓ,Tℓ]

d∗u

∣

∣

∣

∣

∣

∣

∣

vℓ = u,
vℓ−1 = xℓ−1,

Fℓ = F






,

where in the last inequality we used Equation (10). To conclude the inductive argument we take
the expectation over vℓ.

We can now put all the pieces together and derive the competitive-ratio of qDistProb.

Theorem 4.8. qDistProb is (1 + q)max{2, 1/q}-competitive.

Proof. Similarly to the proof of Theorem 3.6, for a cluster C∗ in OPT, we have C∗ = C∗
≤T ∪C∗

≥T+1.
By Corollary 4.6 and Lemma 4.7 together with Lemma 4.5, that

E [ALG (C∗)] = E
[

ALG
(

C∗
≤T

)]

+ E
[

ALG
(

C∗
≥T+1

)]

≤ (1 + 1/q)E





∑

u∈C∗
≤T

p(u)



+ (1 + 1/q)E





∑

u∈C∗
≥T+1

p(u)





≤ 1 + 1/q + 2(1 + q)E





∑

u∈C∗
≤T

d∗u



+ (1 + q)E





∑

u∈C∗
≥T

d∗u



+ (1 + q)E
[

(|C∗
≥T | − 2)d∗vT

]

= 1 + 1/q + 2(1 + q)E





∑

u∈C∗
≤T−1

d∗u



+ 2(1 + q)E
[

d∗vT
]

+ (1 + q)E





∑

u∈C∗
≥T

d∗u





+ (1 + q)E
[

(|C∗
≥T | − 2)d∗vT

]

= 1 + 1/q + 2(1 + q)E





∑

u∈C∗
≤T−1

d∗u



+ (1 + q)E





∑

u∈C∗
≥T

d∗u



+ (1 + q)E
[

(|C∗
≥T |)d∗vT

]

≤ 1 + 1/q + 2(1 + q)E





∑

u∈C∗
≤T−1

d∗u



+ (1 + q)E





∑

u∈C∗
≥T

d∗u



+ (1 + q)E





∑

u∈C∗
≥T

d∗u





= 1 + 1/q + 2(1 + q)E

[

∑

u∈C∗

d∗u

]

.
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Where in the last inequality we used Lemma 3.4. Now since OPT(C∗) = 1 +
∑

u∈C∗ d∗u, we have
E [ALG(C∗)] /OPT(C∗) ≤ max{1 + 1/q, 2(1 + q)}. Since this is true for each cluster C∗ in OPT,
we get that E [ALG] /OPT ≤ (1 + q)max{1/q, 2}.

By Corollary 4.4, we get that our analysis of qDistProb is tight for all q ∈ (0, 1). Optimizing
over the choice of q, the best competitive-ratio of qDistProb is obtained for q = 1/2, for which
we get a competitive-ratio of 3.

Corollary 4.9. 1/2DistProb is 3-competitive.

5 Lower Bound

In this section, we show that no online algorithm can have a competitive-ratio better than 2, even
in the weaker online i.i.d. model with full prior knowledge of the distribution.

In the i.i.d. model, we are given the metric space (M, d), and a distribution D over M upfront.
Then, at each online round ℓ ∈ [n], the demand point vℓ is drawn independently from D. In this
model, an algorithm ALG is called c-competitive, if for any input instance I = (M, d,D, n), it
holds that E [ALG(I)] ≤ c · E [OPT(I)], where the expectation is taken over v1, . . . , vn ∼ D, and
the internal randomness of the algorithm.

Theorem 5.1. Let ALG be an algorithm for online facility location in the i.i.d. model, then, the
competitive-ratio of ALG is at least 2− o(1).

Proof. Let m = n2. We construct a metric space with m+
(

m
n

)

points. The metric space consists
of two types of points: The first type consists of m points, x1, . . . , xm, with d(xi, xj) = 1 for all
i, j ∈ [m]. The second type of points are called subset points. For each subset I ⊆ [m] of cardinality
n, there is a point sI with d(sI, xj) = 1/2 if j ∈ I and d(sI, xj) = 1 otherwise. Finally, for two
subset points sI 6= sJ, d(sI, sJ) = 1. For the distribution D, we take the uniform distribution over
{x1, . . . , xm}.

To upper bound the cost of OPT, observe that the set of arriving demand points {v1, . . . , vn}
is a subset of the points in {x1, . . . , xm} of cardinality at most n, and therefore, there is a subset
point sI at distance at most 1/2 from all the arriving demand points. Hence, E [OPT] ≤ 1 + n/2.

We now consider the performance of ALG. When a demand point vℓ arrives at xi, we distinguish
between three cases. First, if there is an open facility at xi, the algorithm can serve the demand
point at no cost. Second, if there is an open facility at a subset point sI for i ∈ I, the algorithm
can assign the demand point to sI at a cost of 1/2. Otherwise, it must pay at least 1 for serving vℓ
(either by opening a facility at vℓ or by assigning it to an open facility).

To lower bound the cost of ALG, we start by charging ALG a cost of 1 for each demand point.
Then, we subtract the cost saved by ALG due to demand points that arrive at the same location,
and due to the opening of subset facilities. At online round ℓ ∈ [n], the probability that vℓ arrives at
the same location as one of the previous demand points {v1, . . . , vℓ−1}, is at most (ℓ−1)/m < n/m.
Hence, the expected cost saved by ALG for serving demand points that arrive at the same location
is at most n2/m = 1.

For the cost saved by subset facilities, when the algorithm opens a subset facility sI at online
round ℓ, it pays an opening cost of 1, and saves a cost of at most 1/2 for the assignment cost of vℓ
(the demand point at round ℓ). Then, at each successive online round j ∈ {ℓ+1, . . . , n}, sI saves a
cost of at most 1/2 if vj arrives at some xi for i ∈ I, which happens with probability n/m. Hence,

the expected cost saved by opening a facility at sI is at most 1/2 + n2

2m − 1 = n2

2m − 1/2 (note that
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we subtract 1 to account for the facility opening cost). Since m = n2, we have n2

2m − 1/2 = 0, and
so, the expected cost of ALG is not reduced by opening subset facilities.

We get that E [ALG] ≥ n− 1. And so, E [ALG] /E [OPT] ≥ (n− 1)/(1 + n/2) = 2− 6/(n+ 2),
which approaches 2 as n approaches infinity.

A simple and well-known result is that any c-competitive online algorithm in the random-order
model, is also c-competitive in the i.i.d. model (see e.g., [17, 28]). Hence, we have the following
corollary.

Corollary 5.2. Let ALG be an algorithm for online facility location, then, the random-order
competitive-ratio of ALG is at least 2− o(1).

6 Mixed Adversarial and Random Arrival Order

Interestingly, Meyerson’s analysis of DistProb in [29] does not fully utilize the random arrival
order of the demand points. More concretely, in [29] the demand points in each cluster of OPT
are partitioned into “close” and “far” points. The close points are half of the demand points which
are closest to the optimal center. The analysis in [29] proves that DistProb is 8-competitive,
regardless of the relative ordering of the close points in each cluster (amongst themselves). It only
requires that each far point arrives in a uniformly random position between the close points. This
result indicates that DistProb is robust to adversarial ordering of the close points within each
cluster.

Since our analysis does not rely on Meyerson’s partition into close and far points, we can prove
a stronger statement regarding the robustness of qDistProb to partial adversarial orders. We
show that for a parameter ρ ∈ (0, 1), with an additional cost of a factor of at most (2 − ρ)/ρ in
the competitive-ratio of qDistProb, our analysis holds even when an arbitrary (1− ρ)-fraction of
the demand points in each cluster are ordered adversarially, and the remaining demand points are
randomly positioned between them.

Formally, for ρ ∈ (0, 1), in the ρ-partial random-order setting, the following process generates
the online sequence:

1. The adversary chooses an input instance, i.e., a metric space (M, d) and the multiset of
demand points U. Let C∗

1, . . . ,C
∗
t be the clusters in an optimal solution, and let nj = |C∗

j |.

2. For each cluster C∗
j , the adversary chooses a subset A∗

j ⊆ C∗
j of cardinality ⌊(1 − ρ) · nj⌋ to

arrive in adversarial order, and let R∗
j = C∗

j \ A∗
j be the subset of remaining demand points.

We call the demand points in A∗
j adversarial-order points, and the points in R∗

j random-order
points.

3. The adversary orders the demand points in ∪ti=1A
∗
i . Then, for each cluster C∗

j , the points in
R∗

j are randomly positioned between the demand points in A∗
j . That is, the relative position

of u ∈ R∗
j among the points in A∗

j is chosen uniformly at random. More concretely, for each
demand point u ∈ R∗

j an index position s ∈ {0, . . . , |A∗
j |} is drawn uniformly at random.

Then, in the online sequence, u must be positioned by the adversary between the sth and
(s + 1)th adversarial points in A∗

j (if s = |A∗
j |, u must be positioned after all the demand

points in A∗
j . The absolute positions of the demand points in ∪ti=1R

∗
i in the online sequence

are then chosen by the adversary, while keeping the relative order between the demand points
in each cluster.
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The definition of the competitive-ratio in this setting is standard. An algorithm ALG is called
c-competitive if for any input instance I = (M, d,U,A∗

1, . . . ,A
∗
t ), E [ALG(I)] ≤ c ·OPT, where the

expectation is taken over the random positioning of the random-order demand points R∗
1, . . . ,R

∗
t ,

and the internal randomness of the algorithm.
To analyze qDistProb in the ρ-partial random-order setting, we bound the expected cost of

qDistProb for the adversarial-order points in terms of the cost for the random-order points. As
before, we focus our attention on a single cluster of OPT, C∗. The idea is simple: Our analysis from
Section 4 applies to the random-order demand points R∗ in the cluster. Then, for each adversarial-
order point u ∈ A∗, if u arrives after a random-order demand point u′ ∈ R∗, we can upper bound
the distance from u to its closest open facility by d(u′)+d∗u′+d∗u. Otherwise, if there are no demand
points in R∗ that arrive before u, we can simply bound the cost paid for the service of u by 1.5 We
formalize this intuition in the next theorem.

Theorem 6.1. for ρ ∈ (0, 1), qDistProb is (1 + q)max{3/ρ − 1, (2/ρ − 1)/q}-competitive in the
ρ-partial random-order setting.

Proof. Let u1, . . . , uk be the demand points in R∗ ordered by their arrival order. We have by
Theorem 4.8 that E [ALG(R∗)] ≤ 1 + 1/q + 2(1 + q)

∑

u∈R∗ d∗u. For the adversarial-order demand
points, we bound E

[
∑

u∈A∗ p(u)
]

(recall that p(u) = min{q · d(u), 1}). We first consider the
distance from the optimal center c∗ to the closest open facility at the online rounds in which
adversarial-order demand points arrive. Let JA ⊆ [n] be the set of online rounds in which an
adversarial demand point from A∗ arrives, and let Z ∈ JA be a random variable that gets a
uniformly random online round in JA. Randomly positioning the random-order online rounds
within the adversarial-order online rounds is equivalent to randomly positioning the adversarial-
order online rounds within the random-order online-rounds. Hence, the probability that Z arrives
between uj and uj+1 is 1/(k + 1), and in this case we have d(FZ−1, c

∗) ≤ d(uj) + d∗uj
, and so,

min{q · d(FZ−1, c
∗), 1} ≤ min{q · d(uj), 1} + q · d∗uj

= p(uj) + q · d∗uj
. We get that

E [min{q · d(FZ−1, c
∗), 1}] ≤ 1

k + 1
+

1

k + 1

k
∑

j=1

(

E [p(uj)] + q · d∗uj

)

.

Now, we can simply upper bound d(vℓ) ≤ d(Fℓ−1, c
∗) + d∗vℓ , and so,

E

[

∑

u∈A∗

p(u)

]

= E

[

∑

u∈A∗

min{q · d(u), 1}
]

≤ E





∑

ℓ∈JA

min{q · (d(Fℓ−1, c
∗) + d∗vℓ), 1}





≤ E





∑

ℓ∈JA

min{q · d(Fℓ−1, c
∗), 1}



 + q
∑

u∈A∗

d∗u

≤ |A∗| ·





1

k + 1
+

1

k + 1

k
∑

j=1

(

E [p(uj)] + q · d∗uj

)



+ q
∑

u∈A∗

d∗u (14)

≤ (1/ρ− 1)

(

1 + E

[

∑

u∈R∗

p(u)

]

+ q
∑

u∈C∗

d∗u

)

,

5We note that to get the upper-bound of 1 on the service cost, we need to choose the piecewise function g(x) = q ·x
if x ≤ 1 and g(x) = 1 otherwise, instead of g(x) = min{q · x, 1}.
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where in the last inequality, we used the fact that |A∗|/(k + 1) = |A∗|/(|R∗|+ 1) ≤ 1/ρ − 1. Now,
similarly to Theorem 4.8 we have E

[
∑

u∈R∗ p(u)
]

≤ 1 + 2q
∑

u∈R∗ d∗u, together with Lemma 4.5,
we get that E [ALG(A∗)] ≤ (1 + 1/q)(1/ρ − 1)(2 + 3q

∑

u∈C∗ d∗u). Finally, we add the cost paid for
the service of the points in R∗, and get that

E [ALG(C∗)] = E [ALG(A∗)] + E [ALG(R∗)]

≤
(

1 +
1

q

)(

1

ρ
− 1

)

(

2 + 3q
∑

u∈C∗

d∗u

)

+ 1 +
1

q
+ 2(1 + q)

∑

u∈R∗

d∗u

≤
(

1 +
1

q

)(

2

ρ
− 1

)

+ (1 + q)

(

3

ρ
− 1

)

∑

u∈C∗

d∗u.

We note that in a similar setting, where the adversarial-order demand points are not chosen by
the adversary, but rather drawn randomly, we can obtain a better upper bound on the performance
of qDistProb.

More formally, consider Step 2 in the random process that generates the online sequence in the
ρ-partial random-order setting, and consider the case where for all j ∈ [t], A∗

j ⊆ C∗
j is a uniformly

random subset of cardinality ⌊(1 − ρ)nj⌋ (instead of an adversarially chosen subset of the same
cardinality), and R∗

j = C∗ \ A∗
j . We refer to this setting by ρ-partial random-order with random

adversarial-order points. With small adaptations in the proof of Theorem 6.1, and by using the
fact that in this setting E

[
∑

u∈R∗ d∗u
]

= |R∗|
|C∗|

∑

u∈C∗ d∗u and E
[
∑

u∈A∗ d∗u
]

= |A∗|
|C∗|

∑

u∈C∗ d∗u we get
the following result.

Theorem 6.2. for ρ ∈ (0, 1), qDistProb is (1 + q)max{4 − 2ρ, (2/ρ − 1)/q}-competitive in the
ρ-partial random-order setting with random adversarial-order points.

The proof of Theorem 6.2 is given in Appendix A. For example, Theorem 6.2 shows that
DistProb is 6-competitive when a random half of the demand points in each cluster arrive in
adversarial order. For comparison, if half of the demand points in each cluster are chosen adver-
sarially, the upper bound that we get from Theorem 6.1 on the competitive-ratio of DistProb is
only 10.

7 Discussion

In this work, we resolve the open question regarding the true performance of Meyerson’s algorithm
(DistProb) in the random-order model. Furthermore, we introduce a general family of algorithms
in the form ofDistProb, and derive the best algorithm in this family, 1/2DistProb, which achieves
the state-of-the-art performance. We prove that 1/2DistProb is 3-competitive and that the best
possible competitive-ratio for this problem is 2.

Several interesting questions remain open for future research. First, the true performance of
Meyerson’s algorithm for non-uniform facility costs in the random-order model remains open. It
would be interesting to see if our techniques can be used to obtain tight analysis for this case too.
Another interesting direction is to study the performance of the simple deterministic algorithm by
Fotakis [13] in the random-order model, which is still unknown. We note that a slight modification
of the instance in the proof of our lower bound (Theorem 5.1) shows that the competitive-ratio of
Fotakis’ algorithm is no better than 3. We prove this result in Appendix B.

Finally, a gap between the lower and upper bounds that we obtain for the facility location
problem with uniform facility costs remains open. To the best of our knowledge, there are no
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candidate online algorithms in the literature which could outperform 1/2DistProb and beat the
competitive-ratio of 3. Hence, if the competitive-ratio of 3 is not optimal, new algorithmic ideas
are needed to beat this bound. Additionally, since our lower bound holds in the weaker i.i.d.
model (with full prior knowledge of the distribution), it would be interesting to study whether a
competitive-ratio of 2 can be achieved in the i.i.d. model.
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A Proof of Theorem 6.2

The proof is very similar to the proof of Theorem 6.1. Let n′ = |C∗|, k = ⌈ρn′⌉ and a = ⌊(1−ρ)n′⌋.
As opposed to the proof of Theorem 6.1, in this setting, R∗ is a random subset. Hence, we
condition on R∗ = Y for some fixed subset Y ⊆ C∗ of cardinality k. The proof proceeds as the
proof of Theorem 6.1, until we reach Inequality (14). Conditioned on the event {R∗ = Y}, we have
A∗ = C∗ \ Y and by substituting |A∗| = a in Inequality (14), we get that

E

[

∑

u∈A∗

p(u)

∣

∣

∣

∣

∣

R∗ = Y

]

≤ a ·





1

k + 1
+

1

k + 1

k
∑

j=1

(

E [p(uj)] + q · d∗uj

)



+ q
∑

u∈C∗\Y

d∗u

=
a

k + 1

(

1 + E

[

∑

u∈Y

p(u)

]

+ q
∑

u∈Y

d∗u

)

+ q
∑

u∈C∗\Y

d∗u,

Now, similarly to Theorem 4.8 we have E
[
∑

u∈Y p(u)
∣

∣ R∗ = Y
]

≤ 1 + 2q
∑

u∈Y d∗u, together
with Lemma 4.5, we get that E [ALG(A∗) | R∗ = Y] ≤ (1 + 1/q) a

k+1(2 + 3q
∑

u∈Y d∗u) + (1 +
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q)
∑

u∈C∗\Y d∗u. Finally, we add the cost paid for the service of the points in R∗, and use the
bound E [ALG(R∗) | R∗ = Y] ≤ 1 + 1/q + 2(1 + q)

∑

u∈Y d∗u. We have

E [ALG(C∗) | R∗ = Y]

= E [ALG(A∗) | R∗ = Y] + E [ALG(R∗) | R∗ = Y]

≤
(

1 +
1

q

)

a

k + 1

(

2 + 3q
∑

u∈Y

d∗u

)

+ (1 + q)
∑

u∈C∗\Y

d∗u + 1 +
1

q
+ 2(1 + q)

∑

u∈Y

d∗u

=

(

1 +
1

q

)(

2a

k + 1
+ 1

)

+ (1 + q)

(

3a

k + 1
+ 2

)

∑

u∈Y

d∗u + (1 + q)
∑

u∈C∗\Y

d∗u.

By taking the expectation over R∗, we get that

E [ALG(C∗)] ≤
(

1 +
1

q

)(

2a

k + 1
+ 1

)

+ (1 + q)

(

3a

k + 1
+ 2

)

E

[

∑

u∈R∗

d∗u

]

+ (1 + q)E

[

∑

u∈A∗

d∗u

]

.

(15)

Now since R∗ ⊆ C∗ is a uniformly random subset of cardinality k, we have E
[
∑

u∈R∗ d∗u
]

=
k
n′

∑

u∈C∗ d∗u, and likewise, E
[
∑

u∈A∗ d∗u
]

= a
n′

∑

u∈C∗ d∗u. By substituting these two equations in
Equation (15), we obtain

E [ALG(C∗)] ≤
(

1 +
1

q

)(

2a

k + 1
+ 1

)

+ (1 + q)

(

3a

k + 1

k

n′
+

2k

n′
+

a

n′

)

∑

u∈C∗

d∗u

≤
(

1 +
1

q

)(

2a

k + 1
+ 1

)

+ (1 + q)

(

4a+ 2k

n′

)

∑

u∈C∗

d∗u

≤
(

1 +
1

q

)(

2

ρ
− 1

)

+ (1 + q) (4− 2ρ)
∑

u∈C∗

d∗u,

where in the last inequality we used the fact that 2a/(k + 1) ≤ 2(1/ρ − 1) and (4a + 2k)/n′ =
(4n′ − 2k)/n′ ≤ 4− 2ρ.

B A Lower Bound on the Random-Order Competitive-Ratio of
Fotakis’ Algorithm

Fotakis’ algorithm maintains a potential for each point z in the metric space M. The potential
of z at online round ℓ is defined by pℓ(z) =

∑ℓ
i=1 max{d(Fℓ−1, vi) − d(z, vi), 0}. The algorithm

operates as follows: When a demand point vℓ arrives at online round ℓ, the algorithm computes
the potentials pℓ(z) of all points z ∈ M. Then, it considers the point zℓ with the largest potential
(ties are broken arbitrarily). If pℓ(zℓ) ≥ 1, it opens zℓ. Then, it assigns the demand point vℓ to its
closest open facility (see [13] and [32] for more details).6

To obtain the lower bound on the competitive-ratio of Fotakis’ algorithm, we modify the con-
structed instance in the proof of Theorem 5.1 as follows. For 0 < δ < 1, we multiply all the

6For convenience, we choose to describe the facility opening criterion with a weak inequality as in [32] (i.e.,
pℓ(zℓ) ≥ 1) instead of a strict inequality as in [13].
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distances in the metric space by a factor of δ. For our purpose, it also suffices to choose m = 2n
(instead of m = n2). Concretely, for m = 2n we construct a metric space with m +

(

m
n

)

points
of two types: The first type consists of m points, x1, . . . , xm, with d(xi, xj) = δ for all i, j ∈ [m].
The second type are the subset points. For each subset I ⊆ [m] of cardinality n, there is a point
sI with d(sI, xj) = δ/2 if j ∈ I and d(sI, xj) = δ otherwise. Finally, for two subset points sI 6= sJ,
d(sI, sJ) = δ. For the input, we can simply take U = {x1, . . . , xn}.

To upper bound the cost of OPT, observe that U is a subset of the points in {x1, . . . , xm} of
cardinality n, and therefore, there is a subset point sI at distance δ/2 from all the demand points
in U. Hence, E [OPT] ≤ 1 + n(δ/2).

We now consider the performance of Fotakis’ algorithm which we denote by ALG. When the
first demand point v1 arrives, ALG opens a facility at v1. Then, the algorithm does not open
additional facilities until a point has a potential of at least 1. First, note that except for the first
demand point v1, the points in {x1, . . . , xm} never have a potential ≥ 1. This is because after v1
is opened, each demand point vℓ (for ℓ > 1) is at distance at most δ from its closest open facility,
i.e., d(Fℓ−1, vℓ) ≤ δ. So it does not contribute to the potential of {x1, . . . , xm} except for its own
potential, for which it contributes δ < 1. Hence, except for v1, no facilities in {x1, . . . , xm} are
opened by the algorithm.

On the other hand, the subset points may accumulate a potential of 1. When a demand point
vℓ = xj arrives, and d(Fℓ−1, vℓ) = δ, it contributes δ/2 to the potential of each subset point sI such
that j ∈ I. Therefore, at online round ℓ = 2/δ+1, there are subset points sI such that d(vi, sI) = δ/2
for all i ≤ ℓ, and so pℓ(sI) = (2/δ) · (δ/2) = 1.7 Since the algorithm chooses to open a facility at
an arbitrary subset point sI with pℓ(sI) = 1, we can assume that it chooses sI which is close only
to the demand points that arrived until round ℓ, and at distance δ from all future demand points
vℓ+1, . . . , vn (for instance, we can choose I = {j : vi = xj , i ≤ ℓ} ∪ {m,m− 1, . . . ,m− (n− ℓ) + 1}).
Then, the potential of all the subset points return to zero, and this process is repeated every 2/δ
online rounds.

To sum up, the algorithm opens 1 + (n− 1)δ/2 facilities. For the assignment cost it pays 0 for
v1, δ/2 for all the demand points that arrive at online rounds in which a facility is opened, and δ
for all other demand points. Hence, the total assignment cost is (n− 1) δ2 · δ2 +(n− 1− (n− 1) δ2) · δ.
Overall, the algorithm pays 1 + (n − 1)3δ2 − (n − 1) δ

2

4 . By taking δ = 1/
√
n− 1, we get that

E [ALG] /E [OPT] approaches 3 as n approaches infinity.

7For convenience, we assume that 2/δ and (n− 1)δ/2 are integers.
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