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Abstract

We consider problems related to finding short cycles, small cliques, small independent sets, and small
subgraphs in geometric intersection graphs. We obtain a plethora of new results. For example:

• For the intersection graph of n line segments in the plane, we give algorithms to find a 3-cycle in
O(n1.408) time, a size-3 independent set inO(n1.652) time, a 4-clique in near-O(n24/13) time, and
a k-clique (or any k-vertex induced subgraph) in O(n0.565k+O(1)) time for any constant k; we can
also compute the girth in near-O(n3/2) time.

• For the intersection graph of n axis-aligned boxes in a constant dimension d, we give algorithms
to find a 3-cycle in O(n1.408) time for any d, a 4-clique (or any 4-vertex induced subgraph) in
O(n1.715) time for any d, a size-4 independent set in near-O(n3/2) time for any d, a size-5 inde-
pendent set in near-O(n4/3) time for d = 2, and a k-clique (or any k-vertex induced subgraph) in
O(n0.429k+O(1)) time for any d and any constant k.

• For the intersection graph of n fat objects in any constant dimension d, we give an algorithm to find
any k-vertex (non-induced) subgraph in O(n log n) time for any constant k, generalizing a result
by Kaplan, Klost, Mulzer, Roddity, Seiferth, and Sharir (1999) for 3-cycles in 2D disk graphs.

A variety of techniques is used, including geometric range searching, biclique covers, “high-low” tricks,
graph degeneracy and separators, and shifted quadtrees. We also prove a near-Ω(n4/3) conditional lower
bound for finding a size-4 independent set for boxes.

1 Introduction

In computational geometry, many subquadratic-time algorithms have been developed about finding pairs
of geometric objects satisfying some conditions. For example, given n red/blue line segments in 2D, we
can find a bichromatic pair of intersecting segments in O(n4/3) time [3, 62, 32, 30]. Such results are
closely related to geometric range searching [7, 63, 39, 4], and research into subquadratic-time algorithms
with fractional exponents for different types of geometric ranges has been explored for decades, and has
continued to this day (for just one recent example, see [6]).

But what about problems about finding triples of geometric objects satisfying some pairwise condi-
tions?1 For example, given n red/blue/green line segments in the plane, how fast can we find a trichromatic

*Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). Work supported in part by
NSF Grant CCF-2224271.

1In other words, we seek a triple (v1, v2, v3) of objects such that some conditions are satisfied concerning the pairs (v1, v2),
(v2, v3), and (v1, v3). In contrast, if the conditions more generally are dependent on the whole triple, we may encounter 3SUM-hard
geometric problems that have near-quadratic conditional lower bounds (e.g., see [50, 45]).

1

ar
X

iv
:2

21
1.

05
34

5v
1 

 [
cs

.C
G

] 
 1

0 
N

ov
 2

02
2



triple of line segments such that every two of them intersect? In other words, how fast can we find a trichro-
matic 3-cycle in the intersection graph? Here, the intersection graph of a set of geometric objects is the
undirected graph in which the vertices are the objects and an edge joins two objects iff they intersect. (A
3-cycle is also known as a “triangle” in graph-theoretic terminology, although throughout this paper, except
in the title, we will use “3-cycle” or “C3”, to avoid confusion with triangles as geometric objects.) We can
ask similar questions about quadruples, e.g., finding 4-cycles (C4) and 4-cliques (K4) in intersection graphs,
and k-tuples, e.g., finding k-cycles (Ck), k-cliques (Kk), and (induced or not-necessarily-induced) copies
of other k-vertex subgraphs.

Problems about finding C3 and other small subgraphs for general dense or sparse graphs have been ex-
tensively studied in the algorithms literature [14, 70, 56, 71, 40, 69, 38] and are well familiar to the SODA
audience. In the computational geometry literature, there have been works studying certain standard algo-
rithmic problems on geometric intersection graphs, e.g., connected components [11, 21], all-pairs shortest
paths [27, 28], diameter [17], cuts [18], and matchings [16], but surprisingly not as much on the equally
fundamental problems of finding C3 and other small subgraphs. One can easily envision applications for
studying these problems on graphs that are defined geometrically. For example, cycles with a small number
of turns in a road network correspond to short cycles in a line-segment intersection graph, and finding a
subset in a point set that roughly resembles a fixed pattern may be formulated as finding a small subgraph in
some geometric graph. Counting C3’s or small cliques provides a popular statistic about graphs in general,
and would also be useful for geometric graphs that commonly arise in applications such as unit disk graphs.

Previous work. The problem of finding C3 in geometry-related graphs has been explicitly addressed in at
least three previous papers that we are aware of:

• Kaplan et al. [54] in ESA’19 described an O(n log n)-time algorithm for finding a 3-cycle in the
intersection graph of n disks in 2D. (They also considered a certain weighted variant of the problem,
and related problems such as girth.)

• Agarwal, Overmars, and Sharir [9] in SODA’04 described an O∗(n4/3)-time2 algorithm for finding a
size-3 (or a size-4) independent set in the intersection graph of n unit disks in 2D. This problem is
related, since a size-k independent set, which we will denote by “Ik”, corresponds to a k-clique in the
complement of the unit disk graph (and of course, a 3-clique is the same as a 3-cycle). Alternatively, in
the uncomplemented graph, it can be viewed as an induced copy of the graph consisting of k isolated
vertices. (Agarwal et al.’s original motivation was in selecting k “maximally separated” points among
n given points.)

• Agarwal and Sharir [10] in SoCG’01 gave an O∗(n5/3)-time algorithm for finding a congruent (i.e.,
translated and rotated) copy of a fixed triangle T0 among n given points in 3D. For example, if T0 is
the unit equilateral triangle, then this problem is the same as finding a C3 in the “unit distance graph”.
Note, though, that this particular problem is very sensitive to precision issues, since it is about finding
an exact match. (Agarwal and Sharir’s paper for the most part was actually devoted to a combinatorial
problem, called the “Erdős–Purdy problem”, of bounding the maximum number of occurrences of a
fixed triangle or simplex in a point set.)

In combinatorial geometry, there have been a large body of work (e.g., [47, 48, 64]) about C3-free,
Kk-free, or Kk,k-free geometric intersection graphs or string graphs, for example, bounding the maximum

2Throughout this paper, the O∗ and Ω∗ notation hide nε factors for an arbitrarily small constant ε > 0, and the Õ notation hides
logO(1) n factors.
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number of edges, or chromatic number, or establishing the existence of good separators. However, the
algorithmic question of testing C3-freeness or Kk,k-freeness was not directly addressed in those papers
(although some of the techniques there are potentially useful, as we will see).

There have been a few results in computational geometry about finding k-cliques for general k. For
example, Eppstein and Erickson [42] gave an algorithm to find a Kk in the intersection graph of n unit
disks in 2D in O(n log n+ k2n log k) time (their motivation was in the related problem of finding k points
with minimum diameter among n given points). For any constant k and constant d, they also obtained
an O(n log n)-time algorithm for finding a Kk in the intersection graph of unit balls in dD (the hidden
dependence on k is exponential). Finding a Kk in an intersection graph of n boxes3 in dD reduces to
computing the maximum depth, which can be solved in O(n log n) time for d = 2 and Õ(nd/2) time for
d ≥ 3 by techniques for Klee’s measure problem [25]. On the other hand, finding a size-k independent
set in an intersection graph of n objects in 2D such as rectangles and line segments takes nO(

√
k) time

by using planar-graph separators, or in an intersection graph of n fat objects in dD in nO(k1−1/d) time by
using Smith and Wormald’s geometric separators [67]. Nearly matching lower bounds [59, 60] of the form
nΩ(k1−1/d−ε) are known even for 2D unit squares or unit disks, assuming the Exponential Time Hypothesis
(ETH), implying that such problems are not fixed-parameter tractable with respect to k. (There is also an
extensive body of work on approximation algorithms for independent set and clique in geometric intersection
graphs, which are not directly relevant here and will be ignored.)

Despite all the works noted above, surprisingly there were still no subquadratic algorithms known (to
the best of our knowledge) for finding the simplest patterns, like C3, in intersection graphs of line segments.
This paper will rectify the situation.

New results. We obtain a plethora of new results, as summarized in Table 1. The 23 new upper bounds
are derived from 19 different algorithms or theorems/corollaries! We focus only on the detection versions
of these problems: deciding whether a pattern occurs, and if so, reporting one occurrence. We focus on the
most basic types of geometric objects, namely, boxes in dD, line segments in 2D, and fat objects in dD;
throughout this paper, the dimension d is always considered a constant. Though not necessarily indicated in
the table, some (but not all) of the results hold for more general classes of geometric graphs, and for colored
variants of the problems; readers are referred to the theorem statements for the details.

As can be seen from the table, we have identified a rich class of problems in computational geometry
that are solvable in polynomial time with interesting exponents, going beyond traditional problems about
finding pairs of geometric objects. As one can predict, some of these fractional exponents come from the
use of geometric range searching, but in far less obvious ways.

A little more surprising, at least at first glance, is that unusual exponents arise even in the case of
boxes (e.g., see our results for K4 and I4), as problems about boxes typically require only orthogonal
range searching, which are easier and admit polylogarithmic-time data structures. On the other hand, the
aforementioned known results about fixed parameter intractability in terms of k, which hold even for 2D unit
squares, indicate that time bounds for Ik eventually have to be super-linear as the constant k gets sufficiently
large (though with Marx et al.’s intractability proofs [59, 60], it seems k needs to be fairly large). We prove
that finding C3 for 3D boxes or I4 for 6D boxes already requires Ω∗(n4/3) time, under certain hypotheses
from fine-grained complexity. This lower bound for I4 in 6D complements nicely with the near-linear upper
bounds for I3 for any dimension d, as well as for I4 in 5D.

Some of our algorithms use fast (square or rectangular) matrix multiplication, but some do not. Even for
those that use it, weaker but still nontrivial upper bounds can be obtained with naive matrix multiplication.

3Throughout this paper, all boxes, rectangles, hypercubes, and squares are axis-aligned.
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objects pattern run time ref. notes
boxes in dD C3 O(n1.408) Thm. 4.6 (Ω∗(n4/3) Thm. 2.1)

I3 Õ(n) Thm. 10.1
C4 Õ(n) Thm. 6.1
K4 or any induced X4 O(n1.715) Thm. 5.6
I4 Õ(n3/2) Thm. 10.2 (Ω∗(n4/3) Thm. 2.2)
Ck for k ≡ 0 mod 4 Õ(n2−4/k) Thm. 6.1
Ck for k ≡ 2 mod 4 Õ(n2−4/(k+2)) Thm. 6.1
Ck for k odd O(n2−2/(k+1)) Thm. 4.6
Kk, Ik, or any induced Xk O(n0.429k+O(1)) Cor. 5.7

boxes in 5D I4 Õ(n) Thm. 10.3
boxes in 2D I5 Õ(n4/3) Thm. 10.5
line segments in 2D C3 O(n1.408) Thm. 4.7

I3 O(n1.652) Thm. 5.3
trichromatic C3 O∗(n7/4) Thm. 5.1
C4 Õ(n) Thm. 6.2
K4 O∗(n24/13) Thm. 5.9
Ck for k even O(n1.187) Thm. 7.1
Ck for k odd O(n2−2/(k+1)) Thm. 4.7
girth Õ(n3/2) Thm. 7.2
Kk or any induced Xk O(n0.565k+O(1)) Cor. 5.11

fat objects in dD Ck, Kk, or any (non-induced) Xk O(n log n) Thm. 8.3
translates in 2D C3 or I3 Õ(n3/2) Thm. 9.1
translates in 3D C3 or I3 Õ(n9/5) Thm. 9.1

Table 1: Time complexity for finding a small subgraph in a geometric intersection graph. Here, d and k
are constants; Ck denotes a k-cycle; Ik denotes a size-k independent set; Kk denotes a k-clique; and Xk

denotes an arbitrary fixed k-vertex subgraph. “Translates” refer to translated copies of a fixed geometric
object of constant description complexity.

See some of the theorem statements for the time bounds expressed in terms of the matrix multiplication
exponent ω < 2.373 [12]. There have been several previous examples of the usage of fast matrix mul-
tiplication in computational geometry, e.g., on dynamic geometric connectivity [21, 26], shortest paths in
geometrically weighted graphs [23], colored orthogonal range counting [55], . . . , and our work may be
viewed as a continuation of this interesting line of research.

Our results on K4 for boxes and line segments should be compared with the current best time bound
on K4 for general graphs, which is O(nω(1,2,1)) ≤ O(n3.252) [40].4 Our results on Kk for boxes and
line segments should be compared with the current best bound on Kk for general graphs, which is about
O(nkω/3+O(1)) ≤ O(n0.791k+O(1)) [40]. Our algorithm on Kk for boxes is faster than the aforementioned
Õ(nd/2) algorithms if k is small relative to d. While nO(

√
k) algorithms were known for Ik for 2D boxes

and line segments as mentioned, no no(k) algorithms were known for Ik, e.g., for arbitrary 3D boxes.
4Here, ω(a, b, c) denotes the rectangular matrix multiplication exponent. In other words, let M(n1, n2, n3) be the complexity

of multiplying an n1 × n2 with an n2 × n3 matrix; we have M(na, nb, nc) = Θ∗(nω(a,b,c)).
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Our Õ(n3/2) upper bound for computing the girth (i.e., the shortest cycle length) for line-segment
intersection graphs contrasts with a recent near-quadratic lower bound on computing the diameter for line-
segment intersection graphs by Bringmann et al. [17].

Our O(n log n) algorithm for finding a (not-necessarily induced) copy of any fixed k-vertex subgraph
in intersection graphs of fat objects in dD, for any constant k and d, greatly generalizes the recent result
by Kaplan et al. [54], which was only for finding C3 in the intersection graph of disks in R2. It is also
interesting to compare our result with Eppstein’s well-known result on finding a fixed subgraph in planar
graphs in linear time [41] from SODA’95: on one hand, every planar graph can be realized as an intersection
graphs of 2D disks by the Koebe–Andreev–Thurston theorem; on the other hand, all of our algorithms
require a geometric realization to be given.

Techniques. For our class of problems, there is actually an abundance of available techniques, and many
different ways to combine them. Our contributions lie in collecting all of these techniques together, and
in finding the best combination to achieve each of the individual results. We will organize the paper by
techniques, which will hopefully help researchers in the future find further improvements and solve more
problems of this kind.

One immediate challenge is that intersection graphs may be dense, and so to obtain subquadratic results
e.g. for C3, we can’t afford to construct the intersection graph explicitly. In Section 4, we describe a known
technique, biclique covers (closely related to range-searching data structures), which provides one conve-
nient way to compactly represent intersection graphs. Biclique covers have been used before to directly
reduce problems about geometric intersection graphs to problems on non-geometric sparse graphs; for ex-
ample, see [21] on geometric connectivity. Some readers may have recognized that the O(n1.408) bounds in
Table 1 for C3 are the same as the current known bounds for C3 in sparse graphs [14]. Indeed, with biclique
covers, we give an easy black-box reduction of Ck for boxes (or monochromatic line segments) to Ck in
sparse graphs. However, the reduction works only for Ck, but not for Kk or other subgraphs. Also, the re-
duction doesn’t work as well for many types of non-orthogonal objects, such as trichromatic line segments,
because the biclique cover complexity is not small enough. Thus, one can’t just blindly apply known results
for general sparse graphs to solve geometric problems involving other patterns and other types of objects.

In Section 5, we combine biclique covers and range searching with another technique that may be
dubbed “high-low tricks”. Many of the known algorithms for finding small subgraphs in sparse graphs work
by dividing into cases based on whether vertices have high degree or low degree. We will do something
similar, but instead classifying edges as high or low. We describe a multitude of new algorithms based on
this idea. This is the most technically sophisticated part of the paper, as there are multiple possiblilities on
how to divide into cases and how to address each case, especially for more complicated patterns such as K4.

In Section 6, we exploit the observation that for certain types of geometric objects and certain patterns
such as C4, the pattern must always occur unless the intersection graph is sparse. But if graph is sparse and,
more precisely, has low degeneracy, faster algorithms exist. In Section 7, we further use the fact that for
the line segment case in the plane, if the intersection graph is sparse, it must have small separators—this
enables efficient divide-and-conquer algorithms. Results in Sections 6 and 7 are less general (for example,
they do not apply to colored variants of the problems), although some might actually prefer algorithms that
exploit fully the geometry of the specific problems.

In Section 8, we present a different approach for fat objects, by using shifted quadtrees plus dynamic
programming. This is more general than Kaplan et al.’s previous approach for disks [54], and conceptually
simpler than Eppstein’s for planar graphs [41] as well.

Lastly, in Section 9, we present yet another approach: a round-robin recursion using geometric cuttings,
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based on one of Agarwal and Sharir’s proofs on the Erdős–Purdy problem [10]. We show that their tech-
nique, originally devised for a combinatorial geometry problem, can also be used to obtain new algorithms.
However, this technique seems more limited, and currently is responsible only for the results on 2D and 3D
translates in Table 1.

We begin with conditional lower bounds in Section 2, as the proofs are short. In particular, the lower
bound proof for I4 is neat; it is based on the Hyperclique Hypothesis [57], which has started to gain promi-
nence in fine-grained complexity and computational geometry (e.g., see [17]).

2 Conditional Lower Bounds

For certain versions of our problems involving nonorthogonal objects, e.g., trichromatic C3 for line seg-
ments, it is not difficult to obtain super-linear conditional lower bounds. For example, the well-known
Hopcroft’s problem (deciding whether there is a point-line incidence among n points and n lines in 2D) is
generally believed to require Ω∗(n4/3) time [43, 44], and it is straightforward to reduce Hopcroft’s problem
to trichromatic C3 for line segments. In this section, we obtain super-linear conditional lower bounds even
for versions of the problems for orthogonal objects, namely, boxes, and even for very small k.

2.1 C3 in 3D box intersection graphs

To warm up, we note an easy reduction fromC3 in sparse graphs toC3 in box intersection graphs. It has been
conjectured that finding a C3 in a graph with m edges requires Ω∗(m4/3) time [2, 1], and so the reduction
implies an Ω∗(n4/3) lower bound for C3 in box intersection graphs under this conjecture. (The running time
of the fastest known algorithm [14] is O(m2ω/(ω+1)) ≤ O(m1.408) under the current matrix multiplication
exponent bound ω < 2.373, and is O∗(m4/3) if ω = 2. A stronger “all-edges” variant of the C3 finding
problem is known to have an Ω∗(m4/3) lower bound under more standard conjectures, such as the 3SUM
Hypothesis and the APSP Hypothesis [66, 68, 29].) The reduction below is similar to a known conditional
lower bound proof for Klee’s measure problem in the 3D case [24].

Theorem 2.1. If there is an algorithm for finding a 3-cycle of n boxes in R3 in T (n) time, then there is an
algorithm for finding a 3-cycle in a sparse directed graph with m edges in O(T (m)) time.

Proof. We are given a directed graph G = (V,E) with m edges. Assume the vertices are numbered
{1, 2, . . . , n}. Create the following boxes in R3, for each (u, v) ∈ E: {u} × {v} × R, and R× {u} × {v},
and {v} × R × {u}. (These boxes are technically axis-parallel lines, but can be thickened to be fully 3-
dimensional.) It is easy to see that the intersection graph of these O(m) boxes has a 3-cycle iff G has a
3-cycle.

Later in Theorem 4.6, we will prove a reduction in the opposite direction, thus showing equivalence (up
to polylogarithmic factors).

2.2 I4 in 6D box intersection graphs

For independent set, we prove an Ω∗(n4/3) lower bound for size 4, under a different conjecture, that finding
a size-k′ hyperclique in a k′′-uniform hypergraph with N vertices requires Ω∗(Nk′) time, for any constants
k′ > k′′ ≥ 3. This conjecture is known as the Hyperclique Hypothesis [57] and has been used in a few recent
papers (e.g., [17]). In our reduction, we only need the case k′ = 4 and k′′ = 3. Our reduction works for
orthants, i.e., d-dimensional boxes with d unbounded sides, one per coordinate axis. (Thus, our reduction
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also works for unit hypercubes, since we can replace orthants with sufficiently large congruent hypercubes,
and then rescale).

As we will see, part of the challenge in devising the reduction is in enforcing equalities of certain
indices. The disjointness of a pair of orthants basically gives rise to one inequality constraint. Naively one
could express each equality as the conjunction of two inequalities, but this is not good enough to make the
reduction work for size-4 independent set (where we have only

(
4
2

)
= 6 inequality constraints in total).

We initially tried reducing from C4 in sparse graphs, unsuccessfully (we can only obtain a lower bound for
size-5 independent set this way), but as it turns out, reducing from hypercliques in 3-uniform hypergraphs
allows for a more symmetric and elegant proof:

Theorem 2.2. If there is an algorithm for finding a size-4 independent set of n orthants in R6 in O(n4/3−ε)
time for some constant ε > 0, then there is an algorithm for finding a size-4 hyperclique in a 3-uniform
hypergraph with N vertices in O(N4−ε′) time for some constant ε′ > 0.

Proof. By a standard color-coding technique [13], it suffices to consider the 4-hyperclique problem for a
4-partite 3-uniform hypergraph G = (V,E). In other words, V is divided into four sets X,Y, Z,W , and we
seek four vertices x ∈ X , y ∈ Y , z ∈ Z, and w ∈W such that xyz, yzw, zwx,wxy ∈ E.

First, by relabeling, assume that the vertices in X are in {1, 2, . . . , N}, the vertices in Y are in {U, 2U,
. . . , NU}, the vertices in Z are in {U2, 2U2, . . . , NU2}, and the vertices inW are in {U3, 2U3, . . . , NU3},
for a sufficiently large integer U (say, U = N + 1).

Create the following orthants in R6 for each xy′z′′, yz′w′′, zw′x′′, wx′y′′ ∈ E, where x, x′, x′′ ∈ X ,
y, y′, y′′ ∈ Y , z, z′, z′′ ∈ Z, and w,w′, w′′ ∈W :

αxy′z′′ = (−∞, y′+z′′)× R × R × (x+y′,∞) ×(−∞, x−z′′)× R
βyz′w′′ = (y+z′,∞) ×(−∞, z′+w′′)× R × R × R ×(−∞, y−w′′)
γzw′x′′ = R × (z+w′,∞) ×(−∞, w′+x′′)× R × (x′′−z,∞) × R
δwx′y′′ = R × R × (w+x′,∞) ×(−∞, x′+y′′)× R × (y′′−w,∞)

(Open intervals are used here, but they can be avoided easily by slight perturbations of the coordinate values.)
We solve the independent set problem on this set S of O(N3) orthants.

To see the correctness of this reduction, suppose that G has a 4-hyperclique {x, y, z, w} with x ∈ X ,
y ∈ Y , z ∈ Z, and w ∈W . Then clearly {αxyz, βyzw, γzwx, δwxy} is a size-4 independent set in S.

The other direction is more interesting. Suppose S has a size-4 independent set. Then it must be of the
form {αxy′z′′ , βyz′w′′ , γzw′x′′ , δwx′y′′} with xy′z′′, yz′w′′, zw′x′′, wx′, y′′ ∈ E and x ∈ X , y ∈ Y , z ∈ Z,
and w ∈ W (since it cannot contain two α’s, nor two β’s, etc.). The pairwise disjointness of these four
orthants implies the following 6 constraints:

y′ + z′′ ≤ y + z′ x− z′′ ≤ x′′ − z
z′ + w′′ ≤ z + w′ y − w′′ ≤ y′′ − w
w′ + x′′ ≤ w + x′

x′ + y′′ ≤ x+ y′

Summing the left 4 constraints yields x′′+ y′′+w′′+ z′′ ≤ x+ y+ z+w. On the other hand, summing the
right 2 constraints yields x + y + z + w ≤ x′′ + y′′ + w′′ + z′′. Thus, we must have equality on all of the
constraints. On the other hand, y′+z′′ = y+z′ implies y′ = y and z′′ = z′, since y′, y ∈ {U, 2U, . . . , NU}
and z′, z′′ ∈ {U2, 2U2, . . . , NU2}. Repeating this argument gives us x = x′ = x′′, y = y′ = y′′,
z = z′ = z′′, and w = w′ = w′′. Thus, xyz, yzw, zwx,wxy ∈ E, i.e., {x, y, z, w} is a 4-hyperclique in G.

Hence, if the size-4 independent set problem for orthants could be solved in O(n4/3−ε) time, then the
4-hyperclique problem could be solved in O((N3)4/3−ε) = O(N4−3ε) time.
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3 Preliminaries

From this section onward, we turn to upper bounds, i.e., algorithms. As mentioned, we focus on the detection
version of the problems.

Some of our algorithms can solve the colored version of the problems, where the geometric objects are
k-colored and we seek a k-chromatic k-vertex pattern. For example, for Ck, we seek a k-cycle that has a
vertex of each of the k colors. By a standard color-coding technique [13], the original version reduces to the
k-colored version while increasing the running time by only an Õ(1) factor (assuming that k is a constant).
Thus, all results on colored problems are automatically applicable to the original monochromatic problems,
but not necessarily vice versa.

Some of our results also hold in a more general setting than intersection graphs. We introduce the
following definition:

Definition 3.1. A k-partite range graph is an undirected graph G = (V,E), where V is divided into k parts
V (1), . . . , V (k), and for each `, `′ ∈ {1, . . . , k} with ` 6= `′, each vertex u ∈ V (`) is associated with a point
p(`,`′)(u) and each vertex v ∈ V (`′) is associated with a geometric range R(`,`′)(v), such that uv ∈ E iff
p(`,`′)(u) ∈ R(`,`′)(v).

Note that since G is undirected, the above definition implicitly requires that p(`,`′)(u) ∈ R(`,`′)(v) iff
p(`′,`)(v) ∈ R(`′,`)(u).

Intersection graphs of boxes can be realized as range graphs, since we can map a box u = [x1, x
′
1]×· · ·×

[xd, x
′
d] ⊂ Rd to a point p(u) = (x1, x

′
1, . . . , xd, x

′
d) ∈ R2d, and another box v = [a1, a

′
1]×· · ·× [ad, a

′
d] ⊂

Rd to a range R(v) = {(x1, x
′
1, . . . , xd, x

′
d) ∈ R2d : ∀i, (ai ≤ xi ≤ a′i) ∨ (ai ≤ x′i ≤ a′i) ∨ (xi ≤

ai ≤ x′i)}. These ranges are all unions of O(1) boxes in 2d dimensions. Similarly, intersection graphs of
axis-aligned orthogonal polyhedra ofO(1) size can be realized as range graphs, where the ranges are unions
of O(1) boxes in a larger constant dimension. The complements of these intersection graphs are also range
graphs.

Intersection graphs of 2D line segments can also be realized as range graphs, since we can map a line
segment u with endpoints (x, y) and (x′, y′), slope ξ, and intercept η to a point p(u) = (x, y, x′, y′, ξ, η) ∈
R6, and we can map another line segment v with endpoints (a, b) and (a′, b′) to a range R(v) consisting
of all points (x, y, x′, y′, ξ, η) ∈ R6 such that (x, y) and (x′, y′) are on different sides of the line through
(a, b) and (a′, b′), and (a, b) and (a′, b′) are on different sides of the line with slope ξ and intercept η. These
ranges are polyhedral regions of O(1) complexity. Although these regions reside in 6D, they actually have
“intrinsic” dimension 2, in the following sense:

Definition 3.2. Recall that a semialgebraic set γ is the set of all points (x1, . . . , xd) ∈ Rd satisfying a
Boolean combination of some finite collection of polynomial inequalities in x1, . . . , xd. We say that γ has
intrinsic dimension d′ if each of these polynomial inequalities depends on at most d′ of the d variables
x1, . . . , xd.

Similarly, intersection graphs of 2D triangles or polygons of O(1) size can be realized as range graphs,
where the ranges are polyhedral regions of O(1) complexity, dimension O(1), and intrinsic dimension 2.
The complements of these intersection graphs are also range graphs.

Note that algorithms for finding k-chromatic Kk in k-partite range graphs can automatically be used to
find k-chromatic induced or non-induced Xk for any k-vertex subgraph Xk for constant k: in k-chromatic
Kk, we seek k vertices v∗1 ∈ V (1), . . . , v∗k ∈ V (k) such that v∗` v

∗
`′ is in the graph for every pair (`, `′), but if

we want v∗` v
∗
`′ to be not present in the graph for certain pairs (`, `′), we can just take the complement of the
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bipartite subgraph induced by V (`) ∪ V (`′), by taking complements of the ranges. (The same cannot be said
for algorithms that are specialized to intersection graphs.)

In all our results concerning intersection graphs, we assume that we are given the geometric representa-
tion, i.e., the geometric objects. For range graphs, we are given the points p(``′)(u) and ranges R(``′)(v).

4 Technique 1: Biclique Covers

Our first technique involves the notion of biclique covers, which provides a compact representation of graphs
and has found many geometric applications (e.g., see [5, 21]):

Definition 4.1. Given a graph G = (V,E), a biclique cover is a collection of pairs of subsets {(A1, B1),
. . . , (As, Bs)}, such that E =

⋃s
i=1(Ai ×Bi). The size of the cover refers to

∑s
i=1(|Ai|+ |Bi|).

For range graphs where the ranges are orthogonal objects (union of O(1) boxes), it is known that there
exist biclique covers of near linear size, by techniques for orthogonal range searching, namely, range trees [7,
39]. (For those familiar with range searching, we think of the right part of the graph as the input point set
and the left part as the queries; the Bi’s are the “canonical subsets” of the data structure, and Ai corresponds
to the set of all queries whose answers involve the canonical subset Bi.)

Lemma 4.2. Consider a bipartite range graph G = (V,E) with n vertices, where where each range is a
union of O(1) boxes in a constant dimension. We can compute a biclique cover {(A1, B1), . . . , (As, Bs)}
of Õ(n) size in Õ(n) time. Furthermore, each vertex appears in Õ(1) subsets Ai and Õ(1) subsets Bi.

For range graphs where the ranges have intrinsic dimension 2, the following lemmas provide two bounds
on biclique covers: the first is lopsided (the Ai’s are sparser than the Bi’s) and the second is balanced. All
but one of our applications will use the first. Both follow from standard techniques on 2D (nonorthogonal)
range searching, namely, multi-level cutting trees [36, 7, 63, 4]. For the sake of completeness, we include
quick proofs in Appendix A.1–A.2.

Lemma 4.3. Consider a bipartite range graph G = (V,E) with n vertices, where each range is a semial-
gebraic set of constant description complexity in a constant dimension, with intrinsic dimension 2. We can
compute a biclique cover {(A1, B1), . . . , (As, Bs)} of O∗(n3/2) size in O∗(n3/2) time. Furthermore, each
vertex appears in Õ(1) subsets Ai, and for any r, the number of subsets Bi of size Θ(n/r) is O∗(r2).

Lemma 4.4. Consider a bipartite range graph G = (V,E) with n vertices, where each range is a semial-
gebraic set of constant description complexity in a constant dimension, with intrinsic dimension 2. We can
compute a biclique cover {(A1, B1), . . . , (As, Bs)} of O∗(n4/3) size in O∗(n4/3) time. Furthermore, for
any r, the number of subsets Ai and Bi of size Θ(n/r) is O∗(r4/3).

Generally, intersection graphs for line segments require biclique cover size O∗(n4/3). But if the graph
is known to be Kk-free, we observe that near-linear size is possible by adapting known techniques based on
segment trees [34]. We include a proof in Appendix A.3.

Lemma 4.5. Let k ≥ 3 be a constant. Consider the intersection graph G of n line segments in R2. We can
either find a k-clique in G, or compute a biclique cover {(A1, B1), . . . , (As, Bs)} of Õ(n) size, in Õ(n)
time. Furthermore, in this cover, each element appears in Õ(1) subsets Ai and Õ(1) subsets Bi.
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4.1 Ck in box range graphs

As a direct application of biclique covers, we obtain the following result on finding k-cycles in box range
graphs, and thus, intersection graphs of boxes. Note that the most obvious way to sparsify a graph using
biclique covers is to create a new vertex per biclique (as was done, e.g., in [46, 21]), but this would reduce
our problem to finding C2k in sparse graphs, which is more expensive than finding Ck.

Theorem 4.6. Let k ≥ 3 be a constant. Consider a k-partite range graph G = (V,E) with n vertices,
where each range is a union of O(1) boxes in a constant dimension. We can find a k-chromatic k-cycle in G
in Õ(Tk(n)) time, where Tk(m) denotes the time complexity for finding a k-cycle in a sparse directed graph
with m edges.

Proof. Assume that V is divided into parts V (1), . . . , V (k). We seek a k-cycle v∗1 · · · v∗k with v∗1 ∈ V (1), . . . ,
v∗k ∈ V (k) (since all k! cases can be handled similarly).

First,5 for each ` ∈ [k], compute a biclique cover {(A(`)
1 , B

(`)
1 ), . . . , (A

(`)
s , B

(`)
s )} of Õ(n) size for the

subgraph of G induced by V (`) ∪ V (`+1), by Lemma 4.2, where A(`)
i ⊆ V (`) and B(`)

i ⊆ V (`+1). (In the
superscripts, k + 1 is considered equivalent to 1.) Define a new directed graph G′:

• For each i ∈ [s] and ` ∈ [k], create a vertex z(`)
i in G′.

• For each ` ∈ [k], for each v ∈ V (`+1), for eachB(`)
i containing v and eachA(`+1)

j containing v, create

an edge from z
(`)
i to z(`+1)

j in G′.

The problem then reduces to finding a k-cycle in G′. Since each vertex appears in Õ(1) subsets A(`+1)
i , the

graph G′ has Õ(n) edges and can be constructed in Õ(n) time.

According to known results on finding short cycles in sparse directed graphs:

• T3(m) = O(m2ω/(ω+1)) ≤ O(m1.408) by Alon, Yuster, and Zwick [14];

• T4(m) = O(m(4ω−1)/(2ω+1)) ≤ O(m1.478) and T5(m) = O(m3ω/(ω+2)) ≤ O(m1.628) by Yuster
and Zwick [71];

• Tk(m) = O(m2−2/k) if k is even, and Tk(m) = O(m2−2/(k+1)) if k is odd, by Alon, Yuster,
and Zwick [14] (see Dalirrooyfard, Vuong, and Vassilevska W. [38] for further small improvements
depending on ω).

4.2 Ck in 2D segment intersection graphs

A similar result can be obtained for intersection graphs of line segments:

Theorem 4.7. Let k ≥ 3 be a constant. Given n line segments in R2, we can find a k-cycle in the intersection
graph in Õ(Tk(n)) time, where Tk(m) denotes the time complexity for finding a k-cycle in a sparse directed
graph with m edges.

5Throughout the paper, [k] denotes {1, . . . , k}.
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Proof. By color coding [13], it suffices to solve a colored version of the problem, where the input line
segments have been colored with k colors, and we seek a k-cycle, under the assumption that there exists a
k-chromatic k-cycle. (The k-cycle found need not be k-chromatic.)

We follow the same approach as in the proof of Theorem 6.1. The only change is that we use Lemma 4.5
for the biclique cover computation. If the lemma fails to compute a cover but instead finds a Kk, then we
have found a k-cycle.

Unfortunately, this approach does not directly yield subquadratic algorithms for trichromatic C3 or I3

for line segments or other types of objects; for example, for C3 for line segments, we could apply the
O∗(n3/2)-size biclique cover from Lemma 4.3 (as we need the property that each vertex appears in Õ(1) of
the Ai’s), but the resulting time bound would be near (n3/2)1.408, which is superquadratic!

5 Technique 2: High-Low Tricks

In this section, we describe algorithms based on combining biclique covers with the following kind of tricks:
dividing into cases based on whether edges in the solution are “high” or “low”, and at the end, choosing
parameters to balance cost of the different cases. There are many options in how to divide into cases and
how to handle these cases efficiently, making it a challenge to find the best time bounds (we have actually
discarded many slower alternatives before arriving at the final algorithms presented here).

One interesting additional idea, used in some of our algorithms for the low cases, is to treat a pair or tuple
of objects as one “compound” object. From these compound objects, we can then apply range searching
results or invoke earlier algorithms to find a smaller pattern involving fewer objects. Here, generalizations
to range graphs become crucial, even if we originally only care about intersection graphs.

5.1 C3 in 2D range graphs

As a first example of the “high-low” approach, we describe an O∗(n7/4)-time algorithm for finding C3 in
range graphs with intrinsic dimension 2. As mentioned, achieving subquadratic time is more challenging
here because the biclique cover size is larger. To address the low case, we will use the idea of treating a pair
as an object. Below, we will state our result in a more general unbalanced setting because it will be needed
in a later algorithm, but the reader may choose to focus on the main case when n′ = n.

Theorem 5.1. Consider a tripartite range graph G = (V,E) where the first two parts have O(n) vertices
and the third part has O(n′) vertices, and each range is a semialgebraic set of constant description com-
plexity in a constant dimension, with intrinsic dimension 2. We can find a 3-cycle inG inO∗(n(n′)3/4) time,
assuming that n4/5 ≤ n′ ≤ n4.

Proof. Assume that V is divided into parts V (1), V (2), V (3). We seek a 3-cycle C∗ = v∗1v
∗
2v
∗
3 with v∗1 ∈

V (1), . . . , v∗3 ∈ V (3).
First, compute a biclique cover {(A1, B1), . . . , (As, Bs)} of O∗(n4/3) size for the subgraph of G in-

duced by V (1) ∪ V (2), by Lemma 4.4, where Ai ⊆ V (1) and Bi ⊆ V (2).
Let r ≤ n be a parameter. Call an edge uv ∈ E low if u ∈ Ai and v ∈ Bi for some i with µi :=

|Ai|+ |Bi| ≤ n/r, and high otherwise. Since the number of i’s with µi = Θ(n/(2jr)) is O∗((2jr)4/3), the
number of low edges is O∗(

∑
j≥0(2jr)4/3(n/(2jr))2) = O∗(n2/r2/3). We consider two cases:6

6Of course, we don’t know C∗ and so don’t know in advance which case holds. What we are saying is that if the statement for
a case is true, then the algorithm for that case is guaranteed to find an answer (though not necessarily C∗ itself). By running the
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• CASE 1: v∗1v
∗
2 is low. For each low edge v1v2, it suffices to test whether there exists v3 ∈ V (3)

such that v1v3 ∈ E and v2v3 ∈ E, i.e., the point (p(3,1)(v3), p(3,2)(v3)) is in the range R(3,1)(v1) ×
R(3,2)(v2). These tests reduce to Q = O∗(n2/r2/3) range searching queries on O(n′) points in a
constant dimension, with intrinsic dimension 2. By known range searching results [61, 62, 8, 7, 63,
4],7 these queries can be answered in time O∗((n′Q)2/3 + n′ + Q) = O∗(n4/3(n′)2/3/r4/9 + n′ +
n2/r2/3).

• CASE 2: v∗1v
∗
2 is high. Guess the index i with µi > n/r, such that (v∗1, v

∗
2) ∈ Ai × Bi. There

are O∗(r4/3) choices for i. For each v3 ∈ V (3), we test whether there exists v1 ∈ Ai such that
v1v3 ∈ E, i.e., v1 is in the range R(3,1)(v3), and similarly test whether there exists v2 ∈ Bi such
that v2v3 ∈ E, i.e., v2 is in the range R(3,2)(v3). If both tests return true, we have found a 3-cycle
v1v2v3 (since there is an edge between any v1 ∈ Ai and any v2 ∈ Bi). These tests reduce to O(n′)
range searching queries on O(µi) points, with intrinsic dimension 2. By known range searching
results, these queries can be answered in O∗((n′µi)

2/3 + n′ + µi) time. Recall that the number
of i’s with µi = Θ(2jn/r) is O∗((r/2j)4/3). Summing over all i, we get the total time bound
O∗(

∑
j≥0(r/2j)4/3 · ((n′(2jn/r))2/3 + n′ + 2jn/r)) = O∗(n2/3(n′)2/3r2/3 + n′r4/3 + nr1/3).

We set r = n3/4/(n′)3/16 to equalize n′r4/3 with n4/3(n′)2/3/r4/9. The terms n2/3(n′)2/3r2/3 and
n2/r2/3 do not dominate if n′ ≥ n4/5.

5.2 I3 in 2D segment intersection graphs

The preceding algorithm can immediately be used to find size-3 independent sets for line-segment intersec-
tion graphs, because the complement graph can be realized as a range graph with intrinsic dimension 2. But
in this subsection, we will present a different high-low division that yields a faster algorithm. It is interesting
that already for k = 3, there are very different ways to apply the high-low trick.

We first note in the following lemma that size-2 independent sets are easy to find for line segments:

Lemma 5.2. Given n red/blue line segments in R2, we can find a bichromatic pair of nonintersecting line
segments in Õ(n) time.

Proof. We seek a red segment s∗1 and a blue segment s∗2 that do not intersect. There are 4 possibilities: (i) s∗1
is above the line through s∗2, (ii) s∗1 is below the line through s∗2, (iii) s∗2 is above the line through s∗1, or
(iv) s∗2 is above the line through s∗1. It suffices to consider case (iv), since the other cases can be handled
similarly.

Let p∗1 and q∗1 be the left and right endpoints of s∗1. Case (i) can be further broken into two subcases:
(a) p∗1 is above the line through s∗2 and the slope of s∗1 is greater than the slope of s∗2, or (b) q∗1 is above the
line through s∗2 and the slope of s∗1 is less than the slope of s∗2. It suffices to consider case (a).

To this end, we maintain the upper hullHµ of the set of the left endpoints p1 of all red segments s1 with
slope greater than µ, as µ decreases from∞ to −∞. The hull undergoes O(n) insertions of points, and can
be maintained in O(log n) time per insertion by a known incremental convex hull algorithm [65]. For each
blue segment s2 with slope m, we just check whether there exists a vertex p1 of Hm that is above the line
through s2, in O(log n) time by binary search. The total running time is O(n log n).

algorithms for all cases, we are guaranteed to find an answer if C∗ exists. If none of the cases succeeds, we can conclude that no
solution exists. A similar comment applies to all the other algorithms in this section.

7Using a data structure with O∗(m) preprocessing time and O∗(n′/
√
m) query time (n′ ≤ m ≤ (n′)2) [61, 62, 7, 63, 4], the

total time to answer Q queries on n′ points is O∗(m + Qn′/
√
m). Choosing m to balance the two terms yields the expression

O∗((n′Q)2/3 + n′ + Q).
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Theorem 5.3. Given n red/blue/green line segments in R2, we can find a trichromatic size-3 independent
set in Õ(n4ω/(2ω+1)) ≤ O(n1.652) time.

Proof. Let G = (V,E) denote the complement of the intersection graph. Let V (1), V (2), V (3) be the color
classes. We seek a 3-cycle C∗ = v∗1v

∗
2v
∗
3 in G with v∗1 ∈ V (1), . . . , v∗3 ∈ V (3).

First, for each ` ∈ [3], compute a biclique cover {(A(`)
1 , B

(`)
1 ), . . . , (A

(`)
s , B

(`)
s )} of O∗(n3/2) size for

the subgraph of G induced by V (`) ∪ V (`+1), by Lemma 4.3. (The “lopsided” form of biclique cover turns
out to be better here. In the superscripts, 4 is considered equivalent to 1.)

Let r ≤ n be a parameter. Call an edge uv ∈ E low if u ∈ A
(`)
i and v ∈ B

(`)
i for some i with

|B(`)
i | ≤ n/r, and high otherwise. The number of low edges is Õ(n2/r), since each vertex appears in Õ(1)

subsets A(`)
i . We consider two cases:

• CASE 1: At least one edge of C∗ is low. Say it is v∗1v
∗
2 . First, for each i, compute the subset

Xi = {v1 ∈ V (1) : v1v2 is a low edge and v2 ∈ A(2)
i }. Since each vertex appears in Õ(1) subsets

A
(2)
i , we have

∑
i |Xi| = Õ(n2/r) and the Xi’s can be generated in Õ(n2/r) time.

Guess the index i such that (v∗2, v
∗
3) ∈ A(2)

i × B
(2)
i . We check whether there exists an edge between

Xi and B(2)
i . By Lemma 5.2, this takes Õ(|Xi| + |B(2)

i |) time. If such an edge is found between
v1 ∈ Xi and v3 ∈ B(2)

i , then since v1 is adjacent to some v2 ∈ A(2)
i , we have found a 3-cycle v1v2v3.

Summing over all i, we get the total time bound O∗(n2/r + n3/2).

• CASE 2: All three edges of C∗ are high. We follow the approach in the proof of Theorem 4.6. Define
a new directed graph G′:

– For each i ∈ [s] and ` ∈ [3] with |B(`)
i | > n/r, create a vertex z(`)

i in G′.

– For each v ∈ V and ` ∈ [3], for each B(`)
i containing v and each A(`+1)

j containing v, if z(`)
i and

z
(`+1)
j exist, create an edge from z

(`)
i to z(`+1)

j in G′.

The problem then reduces to finding a 3-cycle inG′. Since each vertex appears in Õ(1) subsetsA(`+1)
j ,

the graph G′ can be constructed in time Õ(
∑

i,`: |B(`)
i |>n/r

|B(`)
i |) = O∗(

∑
j≥0(r/2j)2 · (2jn/r)) =

O∗(nr) (recalling that the number of i’s with |B(`)
i | = Θ(2jn/r) is O((r/2j)2)). Since G′ has Õ(r2)

vertices, we can detect a 3-cycle in G′ by matrix multiplication in Õ((r2)ω) time.

We set r = n2/(2ω+1) to equalize r2ω with n2/r.

5.3 K4 (and Kk) in box range graphs

We now present a subquadratic algorithm for finding 4-cliques for boxes. The details will now get more
elaborate. The key idea in the low case is to treat a pair as an object so as to reduce to a C3 problem. The
high case has many options; the best way we have come up with is to guess away two edges of K4 so as to
reduce to C4 subproblems.

First, as subroutines, we need variants of the known Õ(m1.408)-time algorithm for C3 and a known
Õ(m3/2)-time algorithm for C4 in a sparse graph by Alon, Yuster, and Zwick [14], when the graph is
3- or 4-partite and is lopsided, as stated in the two lemmas below. The generalizations are straightfor-
ward and are shown in Appendix A.4–A.5. (Note that when m = m′, the expression min∆(m∆ +
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M(m/∆,m/∆,m/∆)) indeed recovers the O(m1.408) bound under the current matrix multiplication ex-
ponent.)

Lemma 5.4. Consider a tripartite graph G, where the vertices are divided into parts V (1), V (2), V (3), and
there are O(m) edges between V (1) and V (2), O(m) edges between V (2) and V (3), and O(m′) edges
between V (3) and V (1). Then we can find a 3-cycle in G in O(m′∆ + M(m/∆,m2/(∆m′),m/∆)) time
for any given ∆, where M(n1, n2, n3) is the complexity of multiplying an n1 × n2 with an n2 × n3 matrix.

Lemma 5.5. Consider a 4-partite graph G, where the vertices are divided into parts V (1), V (2), V (3), V (4),
and there are O(m) edges between V (1) and V (2), O(m′) edges between V (2) and V (3), O(m) edges
between V (3) and V (4), and O(m′) edges between V (4) and V (1). Then we can find a 4-chromatic 4-cycle
in G in O(m

√
m′ +m′

√
m) time.

Theorem 5.6. Consider a 4-partite range graph G = (V,E) with n vertices, where each range is a union
of O(1) boxes in a constant dimension. We can find a 4-clique in G in O(n1.715) time (or in Õ(n12/7) time
if ω = 2).

Proof. Assume that V is divided into parts V (1), . . . , V (4). We seek a 4-clique K∗ = {v∗1, . . . , v∗4} with
v∗1 ∈ V (1), . . . , v∗4 ∈ V (4).

First, for each `, `′ ∈ [4] with ` 6= `′, compute a biclique cover {(A(`,`′)
1 , B

(`,`′)
1 ), . . . , (A

(`,`′)
s , B

(`,`′)
s )}

of Õ(n) size for the subgraph of G induced by V (`) ∪ V (`′), by Lemma 4.2, where A(`,`′)
i ⊆ V (`) and

B
(`,`′)
i ⊆ V (`′).

Let r ≤ n be a parameter. Call an edge uv ∈ E low if u ∈ A
(`,`′)
i and v ∈ B

(`,`′)
i for some i with

µ
(`,`′)
i := |A(`,`′)

i |+ |B(`,`′)
i | ≤ n/r, and high otherwise. The number of low edges is Õ(n2/r). We consider

two cases:

• CASE 1: At least one edge of K∗ is low. Say it is v∗1v
∗
2 . Define a tripartite graph Ĝ:

– Each low edge v1v2 with v1 ∈ V (1) and v2 ∈ V (2) is a vertex in G′. Each vertex in V (3) is a
vertex in Ĝ. Each vertex in V (4) is a vertex in Ĝ.

– Create an edge between v1v2 and v3 ∈ V (3) in Ĝ iff v1v3 ∈ E and v2v3 ∈ E. Create an edge
between v1v2 and v4 ∈ V (4) in Ĝ iff v1v4 ∈ E and v2v4 ∈ E. Create an edge between v3 ∈ V (3)

and v4 ∈ V (4) in Ĝ iff v3v4 ∈ E.

The problem then reduces to finding a 3-cycle in Ĝ. Note that Ĝ can be realized as a range graph, since
the condition “v1v3 ∈ E and v2v3 ∈ E” is true iff the point (p(1,3)(v1), p(2,3)(v2)) lies in the range
R(1,3)(v3)×R(2,3)(v3), iff the point (p(3,1)(v3), p(3,2)(v3)) lies in the range R(3,1)(v1)×R(3,2)(v2).
The condition “v1v4 ∈ E and v2v4 ∈ E” is similar. These ranges are all unions of O(1) boxes in
some constant dimension. We can thus follow the approach in the proof of Theorem 4.6 to reduce
3-cycle detection in Ĝ to 3-cycle detection in some new graph G′. Now, Ĝ is a tripartite graph,
where the first part has Õ(n2/r) vertices and the second and third parts have O(n) vertices. In this
unbalanced scenario, the graph G′ constructed in the proof of Theorem 4.6 is tripartite, where there
are m = O(n) edges between the first and the second part and between the second and third part, and
m′ = Õ(n2/r) edges between the third and first part. By Lemma 5.4, we can solve the problem in
O(n2∆/r +M(n/∆, r/∆, n/∆)) time.
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• CASE 2: All edges of K∗ are high. In particular, v∗1v
∗
3 and v∗2v

∗
4 are high. Guess the index i with

µ
(1,3)
i > n/r, such that (v∗1, v

∗
3) ∈ A(1,3)

i × B(1,3)
i . Guess the index j with µ(2,4)

j > n/r, such that

(v∗2, v
∗
4) ∈ A(2,4)

j × B(2,4)
j . There are Õ(r) choices for i and Õ(r) choices for j. It suffices to solve

the 4-clique detection problem in the subgraph induced by A(1,3)
i ∪A(2,4)

j ∪B(1,3)
i ∪B(2,4)

j , but since

all vertices in A(1,3)
i are adjacent to all vertices in B(1,3)

i and all vertices in A(2,4)
j are adjacent to all

vertices in B(2,4)
j , the problem reduces to detecting a 4-chromatic 4-cycle in this subgraph. We can

follow the approach in the proof of Theorem 4.6 to reduce to 4-cycle detection in a new sparse graph,
where there are O(µ

(1,3)
i ) edges between the first and second part and between the third and fourth

part, and O(µ
(2,4)
j ) edges between the second and third part and between the fourth and first part. By

Lemma 5.5, we can solve the problem in O(µ
(1,3)
i

√
µ

(2,4)
j + µ

(2,4)
j

√
µ

(1,3)
i ) time.

Since
∑

j µ
(2,4)
j = Õ(n) and there are Õ(r) choices for j, we have

∑
j

√
µ

(2,4)
j = Õ(

√
nr). Since∑

i µ
(1,3)
i = Õ(n), we have

∑
i

∑
j µ

(1,3)
i

√
µ

(2,4)
j = Õ(n3/2r1/2). We can sum µ

(2,4)
j

√
µ

(1,3)
i simi-

larly. Thus, the total running time is Õ(n3/2r1/2).

We set ∆ = r3/2/n1/2 to equalize n2∆/r with n3/2r1/2. The overall running time is

Õ(n3/2r1/2 +M((n/r)3/2, (n/r)1/2, (n/r)3/2)) = Õ(n3/2r1/2 + (n/r)3β/2),

where β = ω(1, 1/3, 1) < 2.002 [51]. Setting r = n(3β−3)/(3β+1) gives the bound Õ(n6β/(3β+1)) ≤
O(n1.715).

From this algorithm for K4, we immediately get a result for Kk for larger k by treating (k/4)-tuples of
objects as one compound object (which we can do for range graphs):

Corollary 5.7. Let k be a constant integer divisible by 4. Consider a k-partite range graph G = (V,E)
with n vertices, where each range is a union of O(1) boxes in a constant dimension. We can find a k-clique
in G in O(n0.429k) time.

Proof. Assume that V is divided into parts V (1), . . . , V (k).
Define a 4-partite graph Ĝ:

• The vertices are V̂ (1) ∪ · · · ∪ V̂ (4) where V̂ (`) is the set of all (k/4)-cliques in the subgraph of G
induced by V (`k/4+1) × · · · × V ((`+1)k/4).

• For each `, `′ ∈ [4] with ` 6= `′, create an edge between {v`k/4+1, . . . , v(`+1)k/4} ∈ V̂ (`) and
{v`′k/4+1, . . . , v(`′+1)k/4} ∈ V̂ (`′) iff v`k/4+iv`′k/4+j ∈ E for all i, j ∈ [k/4].

Note that Ĝ is a range graph with O(nk/4) vertices, since v`k/4+iv`′k/4+j ∈ E for all i, j ∈ [k/4]

iff the point (p(`,`′)(v`k/4+1), . . . , p(`,`′)(v`k/4+1), . . . , p(`,`′)(v(`+1)k/4), . . . , p(`,`′)(v(`+1)k/4)) lies in the
range R(`,`′)(v`′k/4+1)× . . .×R(`,`′)(v(`′+1)k/4)× . . .×R(`,`′)(v`′k/4+1)× . . .×R(`,`′)(v(`′+1)k/4). The
ranges are all unions ofO(1) boxes in some constant dimension. By Theorem 5.6, we can solve the problem
in O((nk/4)1.715) time.
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Note that if we were to start from our O(n1.408)-time algorithm for C3 in Theorem 4.6, we would get a
time bound of O((nk/3)1.408) = O(n0.47k) for k divisible by 3, which is worse.

For k not divisible by 4, we can naively round up and get a time bound ofO(n1.715dk/4e) ≤ O(n0.429k+O(1)),
but improvement in the “lower-order” term in the exponent should be possible with more work. There might
be room for further small improvement over the coefficient 0.429 itself, perhaps by analyzing larger patterns
beyond K4 with more (tedious) effort.

As mentioned earlier, algorithms for k-chromatic Kk in range graphs can be used to find induced or
non-induced copies of any k-vertex subgraphs Xk.

5.4 K4 in 2D segment intersection graphs

For K4 for line-segment intersection graphs, we can still get subquadratic time by modifying our earlier
approach for K4 for boxes, since there are still near-linear biclique covers due to Lemma 4.5 (at least when
the graph is Kk free), but the time bound increases.

First we start with a variant of Theorem 5.1 for a special case when near-linear biclique covers exist:

Lemma 5.8. Consider a tripartite range graph G = (V,E) where the first two parts have O(n) ver-
tices and the third part has O(n′) vertices, and each range is a semialgebraic set of constant description
complexity in a constant dimension, with intrinsic dimension 2. Suppose we are given a biclique cover
{(A1, B1), . . . , (As, Bs)} for the subgraph induced by the first two parts with

∑
i(|Ai| + |Bi|) = Õ(n),

and each vertex appears in Õ(1) subsets Ai. We can find a 3-cycle in G in O∗((nn′)4/5) time, assuming
that n2/3 ≤ n′ ≤ n4.

Proof. We re-analyze the algorithm in the proof of Theorem 5.1, using the better biclique cover bound. The
number of low edges is now Õ(n2/r).

• In Case 1, we now have Q = Õ(n2/r) and the time bound becomes O∗((n′Q)2/3 + n′ + Q) =
O∗(n4/3(n′)2/3/r2/3 + n+ n2/r).

• In Case 2, the time bound becomesO∗(
∑

j≥0(r/2j)·((n′(2jn/r))2/3+n′+2jn/r)) = O∗(n2/3(n′)2/3r1/3+
n′r + n).

We set r = n4/5/(n′)1/5 to equalize n′r with n4/3(n′)2/3/r2/3. The terms n2/3(n′)2/3r1/3 and n2/r do
not dominate if n′ ≥ n2/3.

Theorem 5.9. Given n line segments in R2, we can find a 4-clique in the intersection graph inO∗(n24/13) ≤
O(n1.847) time.

Proof. We modify the algorithm in the proof of Theorem 5.6. First we use Lemma 4.5 with k = 4 for the
computation of a biclique cover of Õ(n) size. If the lemma fails to compute a cover but instead finds a Kk,
then we have found a 4-cycle. Otherwise:

• In Case 1, we find a 3-cycle in Ĝ using Lemma 5.8 (with the first and third parts switched). The time
bound is now O∗((n(n2/r))4/5) = O∗(n12/5/r4/5), assuming n2/r ≥ n2/3.

• In Case 2, the same analysis still holds, as the biclique cover still has Õ(n) size. The time bound
remains Õ(n3/2r1/2).

We set r = n9/13 to equalize n3/2r1/2 with n12/5/r4/5.

16



Note that the above theorem applies to segment intersection graphs but not to more general range graphs,
and so it cannot be applied to find Kk for larger k, unlike before. To this end, we will turn to finding K6

next in the range graph setting.

5.5 K6 (and Kk) in 2D range graphs

To find K6 in range graphs with intrinsic dimension 2, we will handle the low case again by treating pairs
as objects so as to reduce to a C3 problem, and we will handle the high case by guessing away 9 of the 15
edges of K6 so as to reduce to C6 subproblems.

Theorem 5.10. Consider a 6-partite range graph G = (V,E) with n vertices, where each range is a
semialgebraic set of constant description complexity in a constant dimension, with intrinsic dimension 2.
We can find a 6-clique in G in Õ(n28(9+ω)/(75+8ω)) ≤ O(n3.389) time.

Proof. Assume that V is divided into parts V (1), . . . , V (6). We seek a 6-clique K∗ = {v∗1, . . . , v∗6} with
v∗1 ∈ V (1), . . . , v∗6 ∈ V (6).

First, for each `, `′ ∈ [6] with ` 6= `′, compute a biclique cover {(A(`,`′)
1 , B

(`,`′)
1 ), . . . , (A

(`,`′)
s , B

(`,`′)
s )}

of O∗(n3/2) size for the subgraph of G induced by V (`) ∪ V (`′), by Lemma 4.3, where A(`,`′)
i ⊆ V (`) and

B
(`,`′)
i ⊆ V (`′).

Let r ≤ n be a parameter. Call an edge uv ∈ E low if u ∈ A
(`,`′)
i and v ∈ B

(`,`′)
i for some i with

|B(`,`′)
i | ≤ n/r, and high otherwise. The number of low edges is Õ(n2/r). We consider two cases:

• CASE 1: At least one edge of K∗ is low. Say it is v∗1v
∗
2 . Define a tripartite graph Ĝ:

– Each low edge v1v2 with v1 ∈ V (1) and v2 ∈ V (2) is a vertex in G′. Each edge v3v4 with
v3 ∈ V (3) and v4 ∈ V (4) is a vertex in Ĝ. Each edge v5v6 in v5 ∈ V (5) and v6 ∈ V (6) is a vertex
in Ĝ.

– Create an edge between v1v2 and v3v4 in Ĝ iff v1v3, v1v4, v2v3, v2v4 ∈ E. Create an edge
between v1v2 and v5v6 in Ĝ iff v1v5, v1v6, v2v5, v2v6 ∈ E. Create an edge between v3v4 and
v5v6 in Ĝ iff v3v5, v3v6, v4v5, v4v6 ∈ E.

Our problem then reduces to finding a 3-cycle in Ĝ. Note that Ĝ can be realized as a range graph,
like before. The ranges all have constant description complexity in some constant dimension, with
intrinsic dimension 2. Now, Ĝ is a tripartite graph, where the first part has Õ(n2/r) vertices and the
second and third parts have O(n2) vertices. By Theorem 5.1 (with the first and third parts switched),
we can solve the problem inO∗(n2(n2/r)3/4) = O∗(n7/2/r3/4) time, assuming that n2/r ≥ (n2)4/5.

• CASE 2: All edges of K∗ are high. Let Z = {(i, j) ∈ [6]2 : i < j} − {(1, 2), (2, 3), (3, 4), (4, 5),

(5, 6), (1, 6)}. For each (`, `′) ∈ Z, guess the index j[`, `′] with |B(`,`′)
j[`,`′]| > n/r, such that (v∗` , v

∗
`′) ∈

A
(`,`′)
j[`,`′] × B

(`,`′)
j[`,`′]; mark all vertices in V (`) − A(`,`′)

j[`,`′] and in V (`′) − B(`,`′)
j[`,`′] as “invalid”. It suffices to

find a 6-chromatic 6-cycle v∗1 · · · v∗6 with v∗1 ∈ V (1), . . . , v∗6 ∈ V (6) in the subgraph of G induced by
the vertices not marked “invalid”. We now follow the approach in the proof of Theorem 4.6. Define a
new directed graph G′ (in the superscripts, 7 and 8 are considered equivalent to 1 and 2):

– For each i ∈ [s] and ` ∈ [6] with |B(`,`+1)
i | > n/r, create a vertex z(`)

i in G′.
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– For each ` ∈ [6], for each v ∈ V (`+1) not marked “invalid”, for each B(`,`+1)
i containing v and

each A(`+1,`+2)
j containing v, if z(`)

i and z(`+1)
j exist, create an edge from z

(`)
i to z(`+1)

j in G′.

The problem then reduces to finding a 6-cycle in G′. Note that G′ has O∗(r2) vertices. We can detect
a 6-cycle in G′ by matrix multiplication in O∗((r2)ω) time [13].

There areO∗(r2) choices for each j[`, `′], and soO∗((r2)9) choices overall (since |Z| =
(

6
2

)
−6 = 9).

The total time is O∗((r2)9 · (r2)ω) = O∗(r2(9+ω)).

We have not yet accounted for the time needed to construct the graph G′ for all O∗((r2)9) choices for
the guesses. Fix ` ∈ [6]. The subgraph of G′′ induced by {z(`)

i : i ∈ [s]} ∪ {z(`+1)
j : j ∈ [s]} can

be naively constructed in O∗(n(r2)2) time. This subgraph is affected by which vertices in V (`+1) are
marked “invalid”, which is dependent only on the guesses for j[`′, `′′] with (`′, `′′) ∈ Z and (`′ = `+1
or `′′ = ` + 1); there are O∗((r2)3) possible values for these three indices. Thus, we can generate
these subgraphs over all choices in O∗(n(r2)2 · (r2)3) = O∗(nr10) time. From these subgraphs, we
can piece together G′ for any sequence of guesses.

We set r = n14/(75+8ω) to equalize r2(9+ω) with n7/2/r3/4. The term nr10 does not dominate.

Corollary 5.11. Let k be a constant integer divisible by 6. Consider a 6-partite range graph G = (V,E)
with n vertices, where each range is a semialgebraic set of constant description complexity in a constant
dimension, with intrinsic dimension 2. We can detect a k-clique in G in O∗(n0.565k) time.

Proof. As in the proof of Corollary 5.7, we apply Theorem 5.10 to a graph with O(nk/6) vertices and solve
the problem in O∗((nk/6)3.389) time.

Note that if we were to start from our O∗(n7/4)-time algorithm for C3 in Theorem 5.1, we would get a
time bound of O((n7k/12) ≤ O(n0.584k) for k divisible by 3, which is worse.

Again, there might be room for further small improvement over the above coefficient 0.565, by analyzing
larger patterns beyond K6 with more effort.

We will see still more algorithms using high-low tricks later in Section 10 on independent sets for boxes.

6 Technique 3: Degeneracy

In this section, we design faster algorithms exploiting the fact that intersection graphs avoiding certain
patterns are sparse and have low degeneracy. Such algorithms are more specialized and do not apply to
k-partite range graphs, however.

Recall that the degeneracy of an undirected graph G is defined as the minimum maximum out-degree
over all acyclic orientations of G.

6.1 Ck in box intersection graphs for even k

Theorem 6.1. Let k ≥ 4 be an even constant. Given n boxes in a constant dimension, we can find a k-
cycle in the intersection graph in O(Tk(Õ(n), Õ(1))) time, where Tk(m,∆) denotes the time complexity
for finding a k-cycle in a sparse undirected graph with m edges and degeneracy ∆.
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Proof. Let ∆ = c logc
′
n for suitable constants c, c′.

We first try to find a subset V ′ of the vertices whose intersection graph has more than |V ′|∆/2 edges.
To this end, we generate up to n∆/2 edges of the original intersection graph G = (V,E); this takes Õ(n∆)
time, by orthogonal range searching. If the number of edges exceeds n∆/2, we can just set V ′ = V and end
the process. Otherwise, pick a vertex of degree at most ∆, delete it from the current graph, and repeat. If we
are unable to find such a vertex during an iteration, then we can set V ′ to be the remaining vertices and end
the process. If we have deleted all vertices, then the original graph G has degeneracy at most ∆, and so we
can solve the problem in Tk(n∆/2,∆) time.

Having found V ′, we compute a biclique cover {(A1, B1), . . . , (As, Bs)} of the intersection graph
G′ of V ′ of Õ(|V ′|) size by Lemma 4.2. If min{|Ai|, |Bi|} ≥ k/2 for some i, then we have found a
Kk/2,k/2, which contains a k-cycle. Otherwise, the number of edges in G′ is bounded by

∑
i |Ai||Bi| ≤

Õ(
∑

i k(|Ai| + |Bi|)) = Õ(|V ′|), which violates the assumption that the number is more than |V ′|∆/2, if
the constants c and c′ are sufficiently large.

According to known results on finding short cycles in low-degeneracy graphs by Alon, Yuster, and
Zwick [14]:

• T4(m,∆) = O(m∆) and T6(m,∆) = O(m3/2∆1/2);

• Tk(m,∆) = O(m2−4/k∆) for k ≡ 0 mod 4, and Tk(m,∆) = O(m2−4/(k+2)∆1−2/(k+2)) for k ≡
2 mod 4.

6.2 C4 in 2D segment intersection graphs

Theorem 6.2. Given n line segments in R2, we can find a 4-cycle in the intersection graph in Õ(n) time.

Proof. We follow the same approach as in the proof of Theorem 6.1 (with T4(m,∆) = O(m∆)). The main
change is that we use Lemma 4.5 with k = 4 for the computation of the Õ(n)-size biclique cover. If the
lemma fails to compute a cover but instead finds a Kk, then we have found a 4-cycle. Also, to generate
Õ(n) edges of the intersection graph in Õ(n) time, we can just use a known output-sensitive algorithm for
line-segment intersection [39].

The above argument implies that any intersection graph of line segments that is C4-free (or more gener-
ally Kk,k-free) must have Õ(n) edges. This combinatorial result was known before; in fact, the number of
edges is O(n) without extra logarithmic factors [47, 64], and so the degeneracy is O(1). It seems plausible
that the proof by Mustafa and Pach [64] could be modified to give an alternative algorithm for Theorem 6.2,
without needing biclique covers.

Although our approach also works for other even lengths for line-segment intersection graphs, we will
give a faster approach in the next section.

7 Technique 4: Separators

In the previous section, we observe that line-segment intersection graphs avoiding Ck for even k must be
sparse. Sparse intersection graphs in the plane, like planar graphs, are known to have small separators (e.g.,
see [47] on separators for string graphs). We exploit this fact to obtain efficient algorithms for finding Ck
by divide-and-conquer.
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7.1 Ck for 2D segment intersection graphs for even k ≥ 6

Theorem 7.1. Let k ≥ 6 be an even constant. Given n line segments in R2, we can find a k-cycle in the
intersection graph in Õ(nω/2) ≤ O(n1.187) time.

Proof. By color coding [13], it suffices to solve a colored version of the problem, where the input line
segments have been colored with k colors, and we seek a k-cycle under the assumption that a k-chromatic
k-cycle exists.

We solve an extension of the problem: given a set S of n line segments in R2, and a subset Q ⊂ S
of q line segments, (i) decide whether S has a k-chromatic k-cycle, and (ii) for every u, v ∈ Q and every
sequence γ of length at most k, compute the Boolean value f (γ)

S [u, v], which is true iff there is a path from u
to v in the intersection graph of S whose sequence of colors (excluding the first vertex u) is equal to γ. The
number of different sequences is O(1) (since k is a constant). The algorithm may stop as soon as a k-cycle
(not necessarily k-chromatic) is found.

First compute a biclique cover {(A1, B1), . . . , (As, Bs)} of the intersection graph G of S of Õ(n) size
by Lemma 4.5. If the lemma fails to compute a cover but instead finds a Kk, then we have found a k-cycle
and can stop. If min{|Ai|, |Bi|} ≥ k/2 for some i, then we have found aKk/2,k/2, which contains a k-cycle,
and can stop. Otherwise, the number of edges in G is bounded by

∑
i |Ai||Bi| ≤ Õ(

∑
i k(|Ai| + |Bi|)) =

Õ(n). We can afford to explicitly build the graphG (by a segment intersection algorithm in Õ(n) time [39]).
Now, consider the planar graph H formed by the arrangement of S, where the vertices are the Õ(n)

segment endpoints and intersection points of S. Initialize the weight of all vertices to 0. Along each segment
s that is incident to d(s) vertices, add 1/d(s) to the weight of each incident vertex. Then the total weight
is n. Apply the planar separator theorem [58] to partition the vertices of H into V1, V2, VB , such that the
total weight of Vi is at most 2n/3 for i ∈ {1, 2}, and |VB| = Õ(

√
n), and no pair of vertices in V1 × V2 are

adjacent; the construction time is Õ(n).
For each i ∈ {1, 2}, let Si be the set of all segments s ∈ S such that all vertices along s are in Vi.

Let SB be the set of all segments s ∈ S such that s contains a vertex in VB . Then |S1|, |S2| ≤ 2n/3 and
|SB| = Õ(

√
n), and no pair of segments in S1 × S2 intersect.

For each i ∈ {1, 2}, recursively solve the problem for Si ∪ SB with the subset (Q∩ Si)∪ SB . After the
recursive calls, we compute f (γ)

S [u, v] as follows (similar to standard approaches to all-pairs shortest paths
or transitive closure by repeatedly squaring matrices):

1. Initialize f (γ,0)
S [u, v] to false for all u, v, γ.

2. For each u, v ∈ (Q ∩ Si) ∪ SB and each color sequence γ of length at most k, if f (γ)
Si∪SB

[u, v] is true,

set f (γ,0)
S [u, v] to true.

3. For j = 1, . . . , dlog ke do:

(a) Initialize f (γ,j)
S [u, v] = f

(γ,j−1)
S [u, v] for all u, v, γ.

(b) For every u, v ∈ Q ∪ SB and every pair of color sequences γ and γ′ with total length at most
k, if

∨
x∈Q∪SB

(f
(γ,j−1)
S [u, x] ∧ f (γ′,j−1)

S [x, v]) is true, then set f (γγ′,j)
S [u, v] to true, where γγ′

denotes the concatenation of γ and γ′.

It is not difficult to see that f (γ)
S [u, v] = f

(γ,dlog ke)
S [u, v] for all u, v ∈ Q ∪ SB .
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To detect a k-chromatic k-cycle in S, if one is not found in the two recursive calls, then it suffices to
detect a k-chromatic k-cycle that passes through an element of SB . This can be done by checking f (γ)

S [u, u]
for all u ∈ SB and all sequences γ that are permutations of the k colors.

Each iteration in step 3 can be done by matrix multiplication in O(|Q ∪ SB|ω) = Õ(qω + nω/2) time.
The total running time satisfies the following recurrence, for some constant c (for all sufficiently large n):

T (n, q) = max
n1, n2 ≤ 0.67n, q1, q2 ≤ q :

n1 + n2 ≤ n+ c
√
n,

q1 + q2 ≤ q + c
√
n

(T (n1, q1) + T (n2, q2) + Õ(qω + nω/2)).

Note that if n1, n2 ≤ 0.67n, n1 + n2 ≤ n+ c
√
n, q1, q2 ≤ q, and q1 + q2 ≤ q + c

√
n, it is not difficult

to see that q2
1 + q2

2 ≤ q2 + (c
√
n)2, and so

(q2
1 + Cn1 log n1) + (q2

2 + Cn2 log n2) ≤ q2 + (c
√
n)2 + C(n+ c

√
n)(log n− log(1/0.67))

≤ q2 + Cn log n

for a sufficiently large constant C (for all sufficiently large n). Thus, T (n, q) ≤ T ′(n, q2 +Cn log n), where

T ′(n,N) = max
n1,n2≤0.67n, N1+N2≤N

(T ′(n1, N1) + T ′(n2, N2) + Õ(Nω/2)).

This recurrence solves to T ′(n,N) = Õ(Nω/2), and so T (n, 0) = Õ(nω/2).

Note that the running time above is near linear if ω = 2.

7.2 Girth for 2D segment intersection graphs

The separator-based approach can also be used to compute the girth (length of the shortest cycle) of line-
segment intersection graphs:

Theorem 7.2. Given n line segments in R2, we can compute the girth of the intersection graph in Õ(n3/2)
time.

Proof. We can check whether the intersection graphG contains a 3-cycle inO(n1.408) time by Theorem 5.1,
or a 4-cycle in Õ(n) time by Theorem 6.2. So, we may assume that the girth is more than 4.

By the argument in the proof of Theorem 7.1, we know that G has Õ(n) edges. We can afford to
explicitly build the graph G.

As in the proof of Theorem 7.1, we can apply the planar separator theorem to partition the set S of line
segments into S1, S2, SB , where |S1|, |S2| ≤ 2n/3 and |SB| = Õ(

√
n), and no pair of segments in S1 × S2

intersect.
There are 2 possible cases: (i) the shortest cycle is entirely contained in Si for some i ∈ {1, 2}, or

(ii) the shortest cycle passes through an element of SB . Case (i) can be handled by recursively solving the
problem for S1 and for S2. For case (ii), we can run breadth-first search from every element s ∈ SB in the
intersection graph to find the shortest cycle through s. Since the graph has Õ(n) edges, the total time for
case (ii) is Õ(|SB|n) = Õ(n3/2). The overall running time satisfies the recurrence

T (n) = max
n1,n2≤2n/3: n1+n2≤n

(T (n1) + T (n2) + Õ(n3/2)),

which solves to T (n) = Õ(n3/2).
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We leave open the question of whether the running time above could be further improved to near-linear,
considering that the girth of a planar graph can be computed in linear time [31]. It is not clear how compute
the girth of a line-segment intersection graph in near-linear time even if it is sparse. In the arrangement, we
are counting the number of “turns” rather than the number of vertices along the cycle, and certain geometric
properties about shortest paths may not hold under this objective function (for example, two shortest paths
may cross a large number of times, even when they are unique).

8 Technique 5: Shifted Quadtrees

In this section, we investigate the case of intersection graphs of fat objects.
There are a number of different ways to define fatness. We use the following (from [20]): a family of

objects is fat if for every hypercube γ of side length r, the subfamily of all objects intersecting γ and having
side length at least r can be stabbed byO(1) points. Here, the side length of an object refers to the maximum
side length of its axis-aligned bounding box.

We will adapt a technique by Chan [20] based on shifted quadtrees and dynamic programming. This
technique was originally used to solve a seemingly different problem: designing approximation algorithms
for independent sets of fat objects. Interestingly, we show that the technique can be used to find a (non-
induced) copy of any fixed constant-size subgraph (in particular, find Ck or Kk) in the intersection graph of
fat objects.

Definition 8.1. A quadtree cell is a hypercube of the form [i1/2
j , (ii + 1)/2j)× · · · × [id/2

j , (id + 1)/2j)
for integers i1, . . . , id, j.

An object with side length r is c-aligned if it is contained inside a quadtree cell of side length at most cr.

The following “shifting lemma” is taken from [20, Lemma 3.2] (based on earlier work [19]):

Lemma 8.2. Let K > d be an odd number. Let t(j) = (j/K, . . . , j/K) ∈ Rd. For any object s in [0, 1)d,
the shifted object s+ t(j) is (2K)-aligned for all but at most d indices j ∈ [K].

8.1 Any fixed pattern in fat-object intersection graphs

Theorem 8.3. Let k be a constant and let Xk be a graph with k vertices. Given n fat objects in a constant
dimension d, we can determine whether Xk is a subgraph of the intersection graph in O(n log n) time.

Proof. Let S be the given set of objects. Assume that S ⊂ [0, 1)d (by rescaling). Assume that the vertices
of X are [k] (by relabeling). We seek an injective mapping φ∗ : [k] → S such that for all i, j ∈ [k], if ij is
an edge of X , then φ∗(i) intersects φ∗(j).

Let K = 2dk + 1, and let t(j) = (j/K, . . . , j/K) ∈ Rd. By Lemma 8.2 and the pigeonhole principle,
there exists j ∈ [K] such that φ∗(i) + t(j) is (2K)-aligned for all i ∈ [k]. We guess such an index j. (There
are only O(1) choices, since k is a constant.) Shift all objects by −t(j). From now on, we can remove all
objects from S that are not (2K)-aligned.

Given a quadtree cell γ of side length r, let Sγ denote the set of all objects of S contained in γ, and let
S∂γ denote the set of all objects of S intersecting the boundary of γ. Because all objects are (2K)-aligned,
the objects in S∂γ all have side lengths at least r/(2K). Because of fatness, we can pierce all these objects
with O(Kd−1) points. If one of these points pierces more than k objects, we have found a Kk, which
contains Xk, and can stop. Thus, we may assume that |S∂γ | is bounded by O(kKd−1), which is O(1).
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From this property, we can then apply dynamic programming to solve the problem, intuitively, because the
“interface” of a quadtree cell has constant size.

More formally, we define the following collection of subproblems:

Given a quadtree cell γ, two subsets of indices I ⊆ [k] and IB ⊆ [k] − I , and an injective
mapping φ : IB → S∂γ , we want to compute fγ [I, IB, φ], which is true iff there exists an
injective mapping φ̂ : I ∪ IB → Sγ ∪ S∂γ which is an extension of φ, with φ̂(I) ⊆ Sγ , such
that for all i, j ∈ I ∪ IB , if ij is an edge of X , then φ̂(i) intersects φ̂(j).

Note that there are only O(1) choices of I , IB , and φ. The original problem corresponds to the case when
γ = [0, 1)d, I = [k], and IB = ∅.

To compute fγ [I, IB, φ]: If Sγ has constant size, the computation trivially takes O(1) time. Otherwise,
“shrink” γ to the smallest quadtree cell γ′ containing all of Sγ , and then split γ′ into D := 2d quadtree cells
γ1, . . . , γD. Initialize fγ [I, IB, φ] to false. Examine each possible partition of I into subsets I1, . . . , ID, I

′
B

such that no pairs of indices in Ii × Ij for distinct i, j ∈ [D] are adjacent in X . Examine each possible
injective mapping φ̃ : I ′B ∪ IB → (Sγ ∩ (S∂γ1 ∪ · · · ∪ S∂γD)) ∪ S∂γ which is an extension of φ, with
φ̃(I ′B) ⊆ Sγ ∩ (S∂γ1 ∪ · · · ∪ S∂γD). There are O(1) choices for I1, . . . , ID, I

′
B, φ̃. Let (Ii)B = {i ∈

I ′B ∪ IB : φ̃(i) ∈ S∂γi}. Let φ̃i be the restriction of φ̃ to Ii∪ (Ii)B . If
∧D
i=1 fγi [Ii, (Ii)B, φ̃i] is true for some

choice, then set fγ [I, IB, φ] to true.
To analyze the running time, let P be the set of corner points of the objects’ bounding boxes. First note

that the quadtree cells generated by the above recursion correspond precisely to the nodes of the compressed
quadtree [53] of P (degree-1 nodes are eliminated because we “shrink” the cell before splitting). It is known
that the compressed quadtree can be constructed inO(n log n) time (in fact,O(n) time [22] if the coordinate
values of P are O(log n) bits long), assuming a reasonable computational model. There are O(n) cells γ
in the tree. At each quadtree cell γ, we need to explicitly generate S∂γ . To this end, for each object s ∈ S,
we find the lowest common ancestor (LCA) of the corner points of s in the quadtree (the tree may not be
balanced, but LCAs can still be done in O(1) time [15]). We can then descend from the LCA to find all
nodes in the tree whose cells intersect the boundary of s, in time proportional to the output size. Since the
total size of S∂γ is O(n), the total time for this step is O(n). Afterwards, the above procedure allows us
to compute all fγ values of a cell γ from the fγi values of its children cells γi in O(1) time per cell. By
evaluating bottom-up, the computation takes O(n) time.

9 Technique 6: Round-Robin Recursion

In this section, we propose yet another technique for finding C3 or I3. It is based on a proof by Agarwal and
Sharir [10] (see also [49]) for a combinatorial problem (bounding the number of congruent copies of a fixed
simplex in a point set). The technique uses a round-robin recursion in combination with cuttings.

The result is limited to a special class of range graphs, where the actual dimension (not the intrinsic
dimension) of the ranges is small, namely, 2 or 3.

9.1 C3 (or I3) in 2D/3D translates intersection graphs

Theorem 9.1. Consider a tripartite graph G = (V,E) with n vertices, where V is divided into parts
V (1), V (2), V (3). Each point v ∈ V is associated with a point p(v) ∈ Rd, and semialgebraic setsR(``′)(v) ⊆
Rd of constant description complexity for each `, ` ∈ [3], such that for each u ∈ V (`) and v ∈ V (`′) with
` 6= `′, we have uv ∈ E iff p(u) ∈ R(``′)(v).
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Then we can find a 3-cycle in G in O∗(n3/2) time if d = 2, or O∗(n9/5) time if d = 3.

Proof. We seek a 3-cycle v∗1v
∗
2v
∗
3 with v∗1 ∈ V (1), . . . , v∗3 ∈ V (3). Let n` = |V (`)| for ` ∈ [3]. Let r be a

parameter.
Let S2 = {R(12)(v2) : v2 ∈ V (2)} and S3 = {R(13)(v3) : v3 ∈ V (3)}. By standard geometric sampling

techniques [36, 35], for d ≤ 3, we can decompose space into rd+o(1) cells (a cutting), such that each cell is
intersected by the boundaries of at most n2/r ranges of S2 and at most n3/r ranges of S3. The construction
takes O(rO(1)n) time. We can further subdivide each cell into subcells (by extra vertical cuts) so that each
subcell contains at most n1/r

d points in {p(v1) : v1 ∈ V (1)}; the number of cells remains rd+o(1).
For each cell γ, let V (1)

γ = {v1 ∈ V (1) : p(v1) ∈ γ}, and for ` ∈ {2, 3}, let V (`)
γ = {v` ∈ V (`) :

the boundary of R(1`)(v`) intersects γ} and let Y (`)
γ = {v` ∈ V (`) : R(1`)(v`) contains γ}.

We guess the cell γ with v∗1 ∈ V
(1)
γ . We consider three cases:

• CASE 1: v∗2 ∈ V
(2)
γ , v∗3 ∈ V

(3)
γ . We just recursively solve the problem for (V

(1)
γ , V

(2)
γ , V

(3)
γ ).

• CASE 2: v∗2 ∈ Y
(2)
γ . We know there is an edge between every v1 ∈ V (1)

γ and every v2 ∈ Y (2)
γ . For

each v3 ∈ V (3), we test whether there exists v1 ∈ V (1)
γ such that v1v3 ∈ E, i.e., p(v1) is in the range

R(13)(v3), and similarly test whether there exists v2 ∈ Y (2)
γ such that v2v3 ∈ E, i.e., p(v2) is in the

rangeR(23)(v3). If both tests return true, we have found a 3-cycle v1v2v3. These tests reduce toO(n3)
range queries on O(n1 +n2) points in d dimensions. By known range searching results [7, 63, 4], the
time complexity is at most O∗((n1 + n2 + n3)2d/(d+1)).

• CASE 3: v∗3 ∈ Y
(3)
γ . Similar to Case 2.

The total running time satisfies the following recurrence:

T (n1, n2, n3) ≤ rd+o(1)T (n1/r
d, n2/r, n3/r) +O∗(rO(1)(n1 + n2 + n3)2d/(d+1)).

By symmetry, we have the following similar recurrences:

T (n1, n2, n3) ≤ rd+o(1)T (n1/r, n2/r
d, n3/r) +O∗(rO(1)(n1 + n2 + n3)2d/(d+1))

T (n1, n2, n3) ≤ rd+o(1)T (n1/r, n2/r, n3/r
d) +O∗(rO(1)(n1 + n2 + n3)2d/(d+1)).

Applying the three in a round-robin manner, we get the recurrence

T (n, n, n) ≤ r3d+o(1)T (n/rd+2, n/rd+2, n/rd+2) +O∗(rO(1)n2d/(d+1)),

which solves to T (n, n, n) = O(n3d/(d+2)+ε) by making r an arbitrarily large constant.

Besides the assumption the actual dimension d is small instead of the intrinsic dimension, another subtle
difference in the above theorem is that each vertex v is associated with just one point p(v), not multiple
points p(``′)(v). These requirements limit the applicability of the theorem. On the other hand, the result
is still interesting, considering the lack of any subquadratic results for nonorthogonal, nonfat objects in 3D
before this section.

One class of graphs that satisfy these requirements is intersection graphs of translates of a fixed shape
S0 in 2D and 3D. The shape need not be fat or convex; it just needs to be semialgebraic with constant
description complexity. We simply note that S0 + u intersects S0 + v iff the point u lies in the region
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(S0 + v) − S0, or equivalently, the point v lies in the region (S0 + u) − S0. (For independent set, we take
the complement of the region.)

For another application, we can solve the following problem: given a set P of n points in Rd with
d ∈ {2, 3} and fixed constants a, b, c, δ, find 3 points p1, p2, p3 ∈ P such that ‖p1 − p2‖ ∈ (a − δ, a + δ),
‖p2− p3‖ ∈ (b− δ, b+ δ), and ‖p3− p1‖ ∈ (c− δ, c+ δ). Here, the ranges of interest are fixed-radii annuli
or spherical shells. This problem can be viewed as an approximate geometric pattern matching problem:
finding three points that almost match a fixed triangle T0 with side lengths a, b, c, allowing translations and
rotations. (A more standard version of approximate geometric pattern matching measures error in terms
of Hausdorff distance [52], but it can be shown that the two versions are related, if T0 is fat, such as an
equilateral triangle. For d = 2, the known algorithm for the Hausdorff-distance version has Õ(n2) running
time, but our algorithm has Õ(n3/2) running time.)

10 Independent Sets for Boxes

We now focus on finding small-size independent sets for boxes, aiming for faster algorithms than the more
general algorithms from Sections 4–5.

The following trivial fact will be useful: two boxes are independent iff they are separable by an axis-
aligned hyperplane. Our results will be obtained by using orthogonal range searching data structures and
applying more high-low tricks. Biclique covers are no longer needed.

10.1 I3 in box intersection graphs

Theorem 10.1. Given n red/blue/green boxes in a constant dimension d, we can find a 3-chromatic size-3
independent set in Õ(n) time.

Proof. Let V (1), V (2), V (3) be the color classes. We seek an independent set {v∗1, v∗2, v∗3} with v∗1 ∈
V (1), . . . , v∗3 ∈ V (3). We know that the boxes v∗2 and v∗3 must be separated by an axis-aligned hyper-
plane; say it is orthogonal to the x-th coordinate axis, and that the right x-th coordinate of v∗2 is smaller than
the left x-th coordinate of v∗3 . (The other cases are similar; we can try them all.)

For each v1 ∈ V (1), we find a box v2 ∈ V (2) that does not intersect v1, while minimizing its right
x-th coordinate. This can be found by an orthogonal range minimum query [7] in a constant dimension.
Similarly, we find a box v3 ∈ V (3) that does not intersect v1, while maximizing its left x-th coordinate. If
these two boxes v2 and v3 do not intersect, we have found a solution {v1, v2, v3}. (To summarize: once v1

is fixed, we can greedily generate candidates for v2 and v3.) In total, we have made O(n) range queries on
O(n) elements, requiring Õ(n) time.

10.2 I4 in box intersection graphs

Theorem 10.2. Given n boxes in a constant dimension d, colored with 4 colors, we can find a 4-chromatic
size-4 independent set in Õ(n3/2) time.

Proof. Let G = (V,E) denote the complement of the intersection graph. Let V (1), . . . , V (4) be the color
classes. We seek a 4-clique {v∗1, . . . , v∗4} in G with v∗1 ∈ V (1), . . . , v∗4 ∈ V (4). For each `, `′ ∈ [4] with
` < `′, we know that the boxes v∗` and v∗`′ must be separated by an axis-aligned hyperplane; say it is
orthogonal to the ξ``′-th coordinate axis. We guess each ξ``′ ∈ [d]. (There are only O(1) guesses; we can
try them all.) Also assume that the right ξ``′-th coordinate of v∗` is smaller than the left ξ``′-th coordinate of
v∗`′ . (Again, we can try all cases.)
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Let r ≤ n be a parameter. Divide the real line into r intervals, each containing O(n/r) of the ξ12-th
coordinates of the boxes. Call an edge v1v2 ∈ E low if the right ξ12-th coordinate of v1 and the left ξ12-th
coordinates of v2 are in the same interval, and high otherwise. The number of low edges is O(n2/r).

• CASE 1: v∗1v
∗
2 is low. Fix a low edge v1v2 with v1 ∈ V (1) and v2 ∈ V (2). We find a box v3 ∈ V (3) that

does not intersect boxes v1 and v2, while minimizing its right ξ34-th coordinate. This can be found by
an orthogonal range minimum query in a constant dimension. Similarly, we find a box v4 ∈ V (4) that
does not intersect boxes v1 and v2, while maximizing its left ξ34-th coordinate. If these two boxes v3

and v4 do not intersect, we have found a solution {v1, . . . , v4}. Totalling over all low edges v1v2, we
have made O(n2/r) range queries on O(n) elements, requiring Õ(n2/r) time.

• CASE 2: v∗1v
∗
2 is high. Then the ξ12-th coordinates of v∗1 and v∗2 are separated by one of the endpoints

of the r intervals. We guess this endpoint x. There are O(r) choices for x. Fix v4 ∈ V (4).

– We find a box v1 ∈ V (1) that has right ξ12-th coordinate less than x and does not intersect v4,
while minimizing its right ξ13-th coordinate. This can be found by an orthogonal range minimum
query.

– Similarly, we find a box v2 ∈ V (2) that has right ξ12-th coordinate greater than x and does not
intersect v4, while minimizing its right ξ23-th coordinate.

– Then we attempt to find a box v3 ∈ V (3) that does not intersect v4, and has left ξ13-th coordinate
greater than v1’s right ξ13-th coordinate, and has left ξ23-th coordinate greater than v2’s right
ξ23-th coordinate.

If such a v3 exists, we have found a solution {v1, . . . , v4}, since none of v1, v2, v3 intersects with
v4, and v1 and v2 don’t intersect, and v1 and v3 don’t intersect, and v2 and v3 don’t intersect. (To
summarize: intuitively, once v4 is fixed, we seek a 3-cycle v1v2v3; and once a separating hyperplane
between v1 and v2 is fixed, we just seek a path v1v3v2, and we can greedily generate candidates for v1

and v2.) Totaling over all v4 ∈ V (4), we have made O(n) range queries on O(n) elements, requiring
Õ(n) time. Summing over all O(r) guesses gives a time bound of Õ(nr).

We set r =
√
n to equalize nr with n2/r.

10.3 I4 in 5D box intersection graphs

Theorem 10.3. Given n boxes in R5, colored with 4 colors, we can find a 4-chromatic size-4 independent
set in Õ(n) time.

Proof. Let G = (V,E) denote the complement of the intersection graph. Let V (1), . . . , V (4) be the color
classes. We seek a 4-clique {v∗1, . . . , v∗4} in G with v∗1 ∈ V (1), . . . , v∗4 ∈ V (4). For each `, `′ ∈ [4] with
` < `′, we know that the boxes v∗` and v∗`′ must be separated by an axis-aligned hyperplane; say it is
orthogonal to the ξ``′-th coordinate axis. We guess each ξ``′ ∈ [5]. (There are only O(1) guesses; we can
try them all.) Also guess that the right ξ``′-th coordinate of v∗` is smaller than the left ξ``′-th coordinate of
v∗`′ . (Again, we can try all cases.)

By the pigeonhole principle, among the six elements ξ``′ ∈ [5], two of them must be equal, say, to 1.
When projecting v∗1, v

∗
2, v
∗
3, v
∗
4 to the 1st coordinate axis, we see two pairs of disjoint intervals (the two pairs

may or may not share an interval); for example, see Figure 1. It follows that (i) one interval is completely to
the left of two other intervals, or (ii) one interval is completely to the right of two other intervals. W.l.o.g.,
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v∗1 v∗4

v∗2

Figure 1: Two pairs of disjoint intervals.

say (i) is true. Suppose that v∗1’s right 1st coordinate is less than v∗4’s left 1st coordinate, which in turn is less
than v∗2’s left 1st coordinate. (All other cases are similar; we can try them all.)

The idea is that if we ensure that v1’s right 1st coordinate is less than v4’s left 1st coordinate, and v4’s
left 1st coordinate is less than v2’s left 1st coordinate, then it is unnecessary to enforce the condition that v1

and v2 do not intersect.
Fix v4 ∈ V (4).

– We find a box v1 ∈ V (1) that has right 1st coordinate less than v4’s left 1st coordinate, while
minimizing its right ξ13-th coordinate. This can be found by an orthogonal range minimum
query.

– Similarly, we find a box v2 ∈ V (2) that has left 1st coordinate greater than v4’s left 1st coordi-
nate, while minimizing its right ξ23-th coordinate.

– Then we attempt to find a box v3 ∈ V (3) that does not intersect v4, and has left ξ13-th coordinate
greater than v1’s right ξ13-th coordinate, and has left ξ23-th coordinate greater than v’s right
ξ23-th coordinate.

If such a v3 exists, we have found a solution {v1, . . . , v4}. (To summarize: intuitively, once v4 is fixed, we
seek a 3-cycle v1v2v3; and since the disjointness between v1 and v2 is automatically enforced, we just seek
a path v1v3v2, and so again we can greedily guess candidates for v1 and v2.) Totaling over all v4 ∈ V (4), we
have made O(n) range queries on O(n) elements, requiring Õ(n) time.

10.4 I5 in 2D box intersection graphs

For an axis-aligned rectangle s = [x1, x2] × [y1, y2], define its SW (resp. NE) extension to be the quadrant
(−∞, x2]× (−∞, y2] (resp. [x1,∞)× [y1,∞)).

Lemma 10.4. Given a set I of disjoint axis-aligned rectangles in R2, there exists a rectangle s ∈ I whose
SW extension is disjoint from all other rectangles in I .

Proof. Call a rectangle in I good if its bottom side is completely visible from below. For example, the
rectangle with the lowest bottom side is good. Let s be the good rectangle with the leftmost left side. If the
SW extension of s intersects another rectangle of I , then let s′ be such a rectangle having the lowest bottom
side. This rectangle s′ is good and is to the left of s, contradicting the leftmost choice of s.

Theorem 10.5. Given n axis-aligned rectangles in R2 colored with 5 colors, we can find a 5-chromatic
size-5 independent set in Õ(n4/3) time.

Proof. Let G = (V,E) denote the complement of the intersection graph. Let V (1), . . . , V (5) be the color
classes. We seek a 5-clique K∗ = {v∗1, . . . , v∗5} in G with v∗1 ∈ V (1), . . . , v∗5 ∈ V (5).

Let r ≤ n be a parameter. Form an r × r grid, where each column contains O(n/r) vertical sides of
the rectangles and each row contains O(n/r) horizontal sides (by standard perturbation arguments, we may
assume that all coordinate values are distinct). Call an edge v1v2 ∈ E low if one of the vertical sides of v1

and one of the vertical sides of v2 lie in the same column, or one of the horizontal sides of v1 and one of the
horizontal sides of v2 lie in the same row. The number of low edges is O(n2/r).
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v∗1

v∗2
v∗3

v∗4

v∗5

(b)(a)

Figure 2: (a) A size-5 independent set of rectangles in R2. (b) A size-3 independent set.

• CASE 1: At least one edge of K∗ is low. Say it is v∗1v
∗
2 . Among the 3 disjoint rectangles v∗3, v

∗
4, v
∗
5 ,

there is a vertical or horizontal line separating one from the other two (because we are in 2D). W.l.o.g,
assume that the separating line is vertical, with v∗3 to the left, and v∗4 and v∗5 to the right, and with v∗4
below v∗5 . (All other cases can be handled similarly.)

Fix a low edge v1v2 with v1 ∈ V (1) and v2 ∈ V (2). We find a rectangle v3 ∈ V (3) that does
not intersect v1 and v2, having the leftmost right side. This can be found by an orthogonal range
minimum query in a constant dimension. Next, we find a rectangle v4 ∈ V (4) that does not intersect
v1 and v2, and is to right of the right side of v3, with the lowest top side. Similarly, we find a rectangle
v5 ∈ V (5) that does not intersect v1 and v2, and is to right of the right side of v3, with the highest
bottom side. These can also be found by orthogonal range searching. If these two rectangles v4 and
v5 do not intersect, we have found a solution {v1, . . . , v5}. Totaling over all low edges v1v2, we have
made O(n2/r) range queries on O(n) elements, requiring Õ(n2/r) time.

• CASE 2: All edges of K∗ are high. By Lemma 10.4, we can take the SW extension of one of the
rectangles in K∗—say it is v∗1—without intersecting the other rectangles of K∗. Similarly, we can
take the NE extension of one of the rectangles in K∗—say it is v∗2—without intersecting the other
rectangles of K∗. (It is easy to see that the these two rectangles can’t be the same.) For example, see
Figure 2(a).

A SW quadrant (−∞, x] × (−∞, y] (resp. NE quadrant [x,∞) × [y,∞)) is called grid-aligned if
(x, y) is one of the r2 grid points. Let ρ∗1 be the smallest grid-aligned SW quadrant containing the
SW extension of v∗1 (in other words, we “round” v∗1’s corner point upward and rightward to a grid
point), and let ρ∗2 be the smallest grid-aligned NE quadrant containing the NE extension of v∗2 (in
other words, we “round” v∗2’s corner point downward and leftward to a grid point). The rectangles
ρ∗1, ρ

∗
2, v
∗
3, v
∗
4, v
∗
5 are pairwise disjoint (because all edges of K∗ are high). Among v∗3, v

∗
4, v
∗
5 , there is

a vertical or horizontal line separating one from the other two. W.l.o.g, assume that the separating
line is vertical, with v∗3 to the left, and v∗4 and v∗5 to the right, and with v∗4 below v∗5 . For example, see
Figure 2(b).

Fix a grid-aligned SW quadrant ρ1 that contains at least one rectangle v1 ∈ V (1). Fix a grid-aligned
NE quadrant ρ2 that contains at least one rectangle v2 ∈ V (2), and does not intersect ρ1. We find
a rectangle v3 ∈ V (3) that does not intersect ρ1 and ρ2, with the leftmost right side. This can be
found by an orthogonal range minimum query in a constant dimension. Next, we find a rectangle
v4 ∈ V (4) that does not intersect ρ1 and ρ2, and is to right of the right side of v3, with the lowest top
side. Similarly, we find a rectangle v5 ∈ V (5) that does not intersect ρ1 and ρ2, and is to right of the
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right side of v3, with the highest bottom side. These can also be found by orthogonal range searching.
If these two rectangles v4 and v5 do not intersect, we have found a solution {v1, . . . , v5}.
There areO(r2) choices of ρ1. However, it suffices to consider the minimal grid-aligned SW quadrants
ρ1 that contain at least one rectangle v1 ∈ V (1), and there are only O(r) choices of such ρ1, since the
corners of the minimal quadrants form a staircase in the grid. Similarly, it suffices to consider O(r)
choices of ρ2. Totaling over all O(r) choices of ρ1 and O(r) choices of ρ2, we have made O(r2)
range queries on O(n) elements, requiring Õ(n+ r2) time.

We set r = n2/3 to equalize r2 with n2/r.

11 Final Remarks

There are still many variants of these problems that we could address but have not in this paper. We briefly
mention the following:

• Counting. For example, the reduction in Theorem 4.6 still works for counting instead of detection.
And the algorithm in Theorem 5.1 also seems suitable for counting.

• Minimizing weight. For vertex weights, the reduction in Theorem 4.6 still works, and we can use
known results on minimum-weight 3-cycles for sparse graphs [37]. And the algorithm in Theo-
rem 5.1, also seems suitable by using range minimum queries. Kaplan et al. [54] considered finding
the minimum-weight C3 in a disk intersection graph with edge weights that are Euclidean distances
between the centers; our algorithm in Theorem 8.3 also seems adaptable to such edge weights, with
some modifications.

• Other geometric objects. Lemmas 4.5 and 5.2 hold not only for line segments but also for triangles or
constant-size convex polygons (with more polylogarithmic factors). So, the algorithm in Theorem 5.3
can be generalized to these objects. (One could also consider certain families of curves: Lemma 4.5
holds for pseudo-line segments, and good separators still exist for sparse intersection graphs of curves,
but not all techniques for line segments are applicable without increasing the time bounds.)

• Other combinations of patterns and objects. For example, we have not yet considered I4 for line-
segment intersection graphs, K5 for boxes or line segments, K4 for 2D translates, etc.

For many of the specific results obtained in this paper, there is room for further improvement in the
upper bounds. It would also be desirable to prove conditional lower bounds for more problems in this class.

A main open question is whether subquadratic algorithms exist for C3 in range graphs with intrinsic
dimension 3 and higher. Our algorithms work in higher dimensions, but the time bound becomes su-
perquadratic (for intrinsic dimension 3, we might still be able to outperform known general O(nω)-time
algorithms under the current value of ω, but the time bound would certainly be worse for intrinsic dimen-
sion 4). Similarly, the algorithm in Theorem 9.1 becomes superquadratic for dimension 4 and higher.

For one specific open question: can length-3 depth cycles [33] be detected in subquadratic time for a
given set of n lines in R3? This problem reduces to finding C3 in a range graph with dimension 4.
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A Appendix

A.1 Proof of Lemma 4.3

The proof is based on multi-level cutting trees [36, 7, 63].
Assume that V is divided into two parts V (1) and V (2). Let n1 = |V (1)| and n2 = |V (2)|. Assume

that each range R(12)(v) ⊆ Rd is expressed as a fixed Boolean combination of ` polynomial inequalities
fv(xξ1 , xη1) ≥ 0, . . . , fv(xξ` , xη`) ≥ 0 (of constant description complexity) over the variables (x1, . . . , xd),
for a constant ` and a fixed sequence of indices ξ1, η1, . . . , ξ`, η` ∈ [d]. There are only O(1) number of such
index sequences, and O(1) number of Boolean combinations.

Let b be a parameter. By standard results on cuttings [36, 35, 7], we can divide the plane into b2+o(1)

cells, such that each cell crosses the boundaries of at most n2/b regions {(xξ` , xη`) ∈ R2 : fv(xξ` , xη`) ≥ 0}
over all v ∈ V (2). The construction takes O(bO(1)n2) time. We can further subdivide each cell (by extra
vertical cuts) so that each subcell contains at most n1/b

2 points in {(xξ` , xη`) : p(12)(u) = (x1, . . . , xd), u ∈
V (1)}; the number of cells remains b2+o(1).

For each cell γ, let V (1)
γ = {u ∈ V (1) : p(12)(u) = (x1, . . . , xd), (xξ` , xη`) ∈ γ}, let V (2)

γ = {u ∈
V (2) : fv = 0 intersects γ}, let Y (2)

γ = {u ∈ V (2) : fv > 0 contains γ}, and let Z(2)
γ = {u ∈ V (2) :

fv < 0 contains γ}.
For each cell γ, we recursively construct a biclique cover for the subgraph induced by V (1)

γ ∪ V (2)
γ , the

subgraph induced by V (1)
γ ∪ Y (2)

γ , and the subgraph induced by V (1)
γ ∪ Z(2)

γ . Note that in second and third
recursive calls, ` decreases by 1 (since the last inequality fv(xξ` , xη`) ≥ 0 has been resolved for Y (2)

γ and
Z

(2)
γ ). Thus, the biclique cover size satisfies a recurrence of the form

S`(n1, n2) ≤ b2+o(1)S`(n1/b
2, n2/b) + b2+o(1)S`−1(n1, n2), (1)

with trivial base cases S0(n1, n2) = O(n1 + n2) and S`(1, n2) = O(n2). Starting from (n1, n2) = (n, n),
the number of subproblems of size (n1, n2) = (n/b2i, n/bi) generated by the recursion is bounded by
min{(b2+o(1))i+`, n}, and so S`(n, n) = O

(∑
i min{b(2+o(1))i, n} · n/bi

)
≤ O(n3/2+ε) for a sufficiently

large constant b. Moreoever, each vertex in V (1) participates in O(log` n) = Õ(1) bicliques. All the
properties stated in the lemma thus follow.

A.2 Proof of Lemma 4.4

We modify the proof of Lemma 4.3. Assume that each range R(12)(v) ⊆ Rd is expressed as a fixed Boolean
combination of `1 polynomial inequalities like before. Assume also that each range R(21)(v) ⊆ Rd is
similarly expressed as a fixed Boolean combination of `2 polynomial inequalities. Let ` = `1 + `2. In
addition to the earlier recurrence (1) on the biclique cover size, we obtain the symmetric recurrence

S`(n1, n2) ≤ b2+o(1)S`(n1/b, n2/b
2) + b2+o(1)S`−1(n1, n2).

Applying the two in succession yields

S`(n, n) ≤ b4+o(1)S`(n/b
3, n/b3) + b4+o(1)S`−1(n, n).

The number of subproblems of size (n/b3i, n/b3i) generated by the recursion is at most (b4+o(1))i+`, and so
S`(n, n) = O(

∑
i: b3i≤n b

(4+o(1))i · n/b3i) ≤ O(n4/3+ε) for a sufficiently large constant b.
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A.3 Proof of Lemma 4.5

The proof is based on segment trees [34].
For a line segment s and a vertical slab σ, we say that s is short in σ if s has an endpoint strictly inside

σ; we say that s is long in σ if s has an endpoint on the left side of σ and another endpoint on the right side
of σ.

Suppose that we are given a set S of line segments, all short in a given vertical slab σ. (Initially, σ is the
entire plane.) Let n be the number of endpoints strictly inside σ. Clearly, |S| ≤ n. We want to construct a
biclique cover for the intersection graph of S.

Divide σ into two subslabs σ1 and σ2 each containing n/2 endpoints. Fix i ∈ {1, 2}. Clip the segments
of S to σi. Let Si be the resulting short segments in σi, and Li be the resulting long segments in σi.
We recursively construct a biclique cover for Si. It remains to take cover intersections involving Li. The
intersection graph of Li is a permutation graph, and there are known straightforward Õ(n)-time algorithms
to color a permutation graph, yielding a proper k-coloring if it does not contain Kk, or outputting a Kk

otherwise. If a Kk is returned, we can stop. Otherwise, take each color class L(j)
i (j ∈ [k]), which is a

disjoint set of long segments. Sort them from bottom to top, and assign such segment s ∈ L
(j)
i its rank

p(s) in the sorted list. Map each segment s′ ∈ Si ∪ Li to an interval I(s′) consisting of the ranks of all
segments in L(j)

i that intersect s′. This is indeed an interval, i.e., a contiguous subsequence of integers,
and its two endpoints can be found by binary search. We can then compute a biclique cover for {(s, s′) ∈
L

(j)
i × (Si ∪ Li) : p(s) ∈ I(s′)} of size Õ(n), e.g., by applying Lemma 4.2 in one dimension.

The total biclique cover size satisfies the recurrence

S(n) ≤ 2S(n/2) + Õ(n),

which solves to Õ(n). Moreoever, each segment participates in O(log n) nodes of the recursion, and thus
participates in Õ(1) bicliques.

Alternatively, one could apply a result from combinatorial geometry by Fox and Pach [48], stating that
line-segment intersection graphs avoiding Kk can be colored with polylogarithmically many colors (though
an algorithmic version of this result would be needed). Then for each pair of colors, one could directly
invoke the bichromatic segment intersection algorithm by Chazelle et al. [34] (of which our algorithm above
is a modification) to obtain a biclique cover of Õ(n) size.

A.4 Proof of Lemma 5.4

We modify the O(m2ω/(ω+1))-time algorithm of Alon, Yuster, and Zwick [14] or finding 3-cycles.
For a vertex v ∈ V (1) ∪ V (3), call v low if it has at most ∆ neighbors in V (2), and high otherwise. For

a vertex v ∈ V (2), call v low if it has at most ∆m′/m neighbors in V (3), and high otherwise. We seek a
3-cycle v∗1v

∗
2v
∗
3 with v∗1 ∈ V (1), v∗2 ∈ V (2), and v∗3 ∈ V (3). We consider two cases:

• CASE 1: v∗1 or v∗3 is low. W.l.o.g., say it is v∗1 . We go through each of the O(m′) edges v1v3 in
V (1) × V (3), and if v1 is low, examine each of its O(∆) neighbors v2 ∈ V (2) and check whether
v1v2v3 is a 3-cycle. The running time is O(m′∆).

• CASE 2: v∗2 is low. We go through each of the O(m) edges v1v2 in V (1) × V (2), and if v2 is low,
examine each of its O(∆m′/m) neighbors v3 ∈ V (3) and check whether v1v2v3 is a 3-cycle. The
running time is O(m ·∆m′/m) = O(m′∆).
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• CASE 3: v∗1, v
∗
2, v
∗
3 are all high. There are at most O(m/∆) high vertices in V (1) ∪ V (3), and at most

O(m/(∆m′/m)) = O(m2/(∆m′)) high vertices in V (2). We can detect a 3-cycle among the high
vertices by rectangular matrix multiplication in O(M(m/∆,m2/(∆m′),m/∆)) time.

A.5 Proof of Lemma 5.5

We modify the O(m3/2)-time algorithm of Alon, Yuster, and Zwick [14] for finding 4-cycles.
W.l.o.g., say m′ ≤ m. For a vertex v in V (2) (resp. V (4)), call v low if it has at most ∆ neighbors in

V (3) (resp. V (1)), and high otherwise. We seek a 4-cycle v∗1v
∗
2v
∗
3v
∗
4 with v∗1 ∈ V (1), . . . , v∗4 ∈ V (4).

• CASE 1: v∗2 and v∗4 are both low. We go through each of the O(m) edges v1v2 in V (1) × V (2), and if
v2 is low, examine each of its ∆ neighbors v3 ∈ V (3) and mark the pair (v1, v3) red. Similarly, we go
through each of the O(m) edges v3v4 in V (3)×V (4), and if v4 is low, examine each of its d neighbors
v1 ∈ V (1) and mark the pair (v1, v3) blue. If a pair is marked both red and blue, we have found a
4-cycle v1v2v3v4. The running time is O(m∆).

• CASE 2: v∗2 or v∗4 is high. W.l.o.g., say it is v∗2 . There are at most O(m′/∆) high vertices in V (2).
From each such vertex v, we run breadth-first search to find a 4-cycle through v. The running time is
O(m′/∆ · (m+m′)) = O(mm′/∆).

Choosing ∆ =
√
m′ yields the result.

Note that there might be room for improvement in Lemma 5.5, by modifying Yuster and Zwick’s
O(m1.48) algorithm for C4 in sparse graphs [71] instead of the O(m3/2) algorithm. This would require
more effort, and the resulting improvement to Theorem 5.6 would likely be very small.
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[49] Nóra Frankl and Andrey Kupavskii. On the Erdős-Purdy problem and the Zarankiewitz problem for semialge-
braic graphs. CoRR, abs/2112.10245, 2021. arXiv:2112.10245.

[50] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational geometry. Comput.
Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

[51] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers of the
Coppersmith-Winograd tensor. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1029–1046, 2018. doi:10.1137/1.9781611975031.67.

[52] Michael T. Goodrich, Joseph S. B. Mitchell, and Mark W. Orletsky. Approximate geometric pattern matching
under rigid motions. IEEE Trans. Pattern Anal. Mach. Intell., 21(4):371–379, 1999. Preliminary version in
SoCG 1994. doi:10.1109/34.761267.

[53] Sariel Har-Peled. Geometric Approximation Algorithms. AMS, 2011.

[54] Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Triangles and
girth in disk graphs and transmission graphs. In Proc. 27th European Symposium on Algorithms (ESA), pages
64:1–64:14, 2019. doi:10.4230/LIPIcs.ESA.2019.64.

[55] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal range counting. SIAM
J. Comput., 38(3):982–1011, 2008. doi:10.1137/070684483.

[56] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs efficiently. Inf.
Process. Lett., 74(3-4):115–121, 2000. doi:10.1016/S0020-0190(00)00047-8.

[57] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for shortest cycles and
paths in sparse graphs. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1236–1252,
2018. doi:10.1137/1.9781611975031.80.

[58] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM J. Comput.,
9(3):615–627, 1980. doi:10.1137/0209046.

[59] Dániel Marx. Parameterized complexity of independence and domination on geometric graphs. In Proc 2nd
International Workshop on Parameterized and Exact Computation (IWPEC), pages 154–165, 2006. doi:10.
1007/11847250\_14.

[60] Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: When 1−1/d is the best
possible exponent for d-dimensional geometric problems. In Proc. 30th Symposium on Computational Geometry
(SoCG), pages 67–76, 2014. doi:10.1145/2582112.2582124.
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