
ar
X

iv
:2

20
9.

11
66

9v
1

 [
cs

.D
S]

 2
3

Se
p

20
22

Improved Distributed Network Decomposition,

Hitting Sets, and Spanners, via Derandomization

Mohsen Ghaffari

MIT

ghaffari@mit.edu

Christoph Grunau

ETH Zurich

cgrunau@inf.ethz.ch

Bernhard Haeupler

ETH Zurich and CMU

bernhard.haeupler@inf.ethz.ch

Saeed Ilchi

ETH Zurich

saeed.ilchi@inf.ethz.ch

Václav Rozhoň

ETH Zurich

rozhonv@inf.ethz.ch

Abstract

This paper presents significantly improved deterministic algorithms for some of the key problems in
the area of distributed graph algorithms, including network decomposition, hitting sets, and spanners.
As the main ingredient in these results, we develop novel randomized distributed algorithms that we
can analyze using only pairwise independence, and we can thus derandomize efficiently. As our most
prominent end-result, we obtain a deterministic construction for O(log n)-color O(log n · log log log n)-

strong diameter network decomposition in Õ(log3 n) rounds. This is the first construction that achieves
almost log n in both parameters, and it improves on a recent line of exciting progress on deterministic
distributed network decompositions [Rozhoň, Ghaffari STOC’20; Ghaffari, Grunau, Rozhoň SODA’21;
Chang, Ghaffari PODC’21; Elkin, Haeupler, Rozhoň, Grunau FOCS’22].

http://arxiv.org/abs/2209.11669v1

Contents

1 Introduction 1
1.1 Network Decomposition . 1
1.2 Hitting Set . 3

2 Preliminaries 5

3 Improved Network Decomposition, Outline 5

4 Low-Degree Clustering 7
4.1 Computing Delays . 10
4.2 Algorithm Ai,j via Local Derandomization . 16

5 From Low-Degree Clusters to Isolated Clusters 18

6 Clustering More Nodes 21

7 Hitting Set 23
7.1 Problem Definition . 23
7.2 Iterative Sampling . 24
7.3 Implementation . 26

8 Applications of Hitting Set 28
8.1 Spanners . 29
8.2 Approximate Distance Oracles . 30

1 Introduction

This paper is centered on the area of distributed graph algorithms and provides new methods and tools for
developing improved deterministic distributed algorithms.

It has been a central, well-known, and well-studied theme in this area that, for many of the graph
problems of interest, known randomized algorithms outperform their deterministic counterparts. Concretely,
the randomized variants have been much faster and/or achieved better output properties, e.g., approximation
factors. As a prominent example, for several of the key problems of interest—including maximal independent
set, maximal matching, ∆+ 1 vertex coloring—we have known O(log n) round randomized algorithms since
the 1986 work of Luby [Lub86]. In contrast, developing even poly(log n)-time deterministic algorithms
for many of these problems remained open for nearly four decades. See for instance the 2013 book of
Barenboim and Elkin [BE13] which lists numerous such open questions. Only very recently, poly(logn)-
time deterministic algorithms for these problems were developed [RG20, GGR21, CG21, GK21, EHRG22].
However, currently, these deterministic algorithms are still quite far from their randomized counterparts.

In this paper, we focus on two of the most central tools in developing deterministic algorithms for lo-
cal graph problems, namely network decompositions and hitting sets, and we present significantly improved
deterministic distributed constructions of these tools. From a technical perspective, our novelty is in de-
veloping new randomized algorithms for these tools in such a way that we can analyze the algorithm by
assuming only pairwise independence in the randomness it uses. We then describe how one can leverage this
to derandomize the algorithms, i.e., to transform the randomized algorithm into an efficient deterministic
algorithm. We next review the model and then state our contributions in the context of the recent progress.

Model. We work with the standard distributed message-passing model for graph algorithms [Pel00]. The
network is abstracted as an n-node graph G = (V,E) where each node v ∈ V corresponds to one processor
in the network. Communications take place in synchronous rounds. Per round, each processor/node can
send an O(log n)-bit message to each of its neighbors in G. This model is called CONGEST . The relaxed
variant of the model where we allow unbounded message sizes is called LOCAL . At the end of the round,
each processor/node performs some computations on the data that it holds, before we proceed to the next
communication round.

A graph problem in this model is captured as follows: Initially, the network topology is not known to the
nodes of the graph, except that each node v ∈ V knows its own unique O(log n)-bit identifier and perhaps
some of the global parameters of the network, e.g., the number n of nodes in the network or a suitably tight
upper bound on it. At the end of the computation, each node should know its own part of the output, e.g.,
in the graph coloring problem, each node should know its own color. When we discuss a particular graph
problem, we will specify what part of the output should be known by each node.

1.1 Network Decomposition

Perhaps the most central object in the study of deterministic distributed algorithms for local graph problems
has been the concept of network decomposition, which was introduced by Awerbuch, Luby, Goldberg, and
Plotkin [AGLP89]. We next define this concept and explain its usefulness. Then, we discuss its existence
and randomized distributed constructions. Afterward, we review the deterministic distributed constructions,
especially the recent breakthroughs, and state our contributions.

Generally, the vertices of any n-node network can be colored using O(log n) colors such that in the sub-
graph induced by each color, each connected component has diameter O(log n). We call this an O(log n)-color
O(log n)-diameter network decomposition (or sometimes O(log n)-color O(logn)-strong-diameter network de-
composition, to contrast it with a weaker variant which we discuss later). This decomposition enables us to
think of the entire graph as a collection of O(log n) node-disjoint graphs, each of which has a small O(log n)-
diameter per component; the latter facilitates distributed coordination and computation in the component.
As a prototypical example, given such a network decomposition, one easily gets an O(log2 n)-round deter-
ministic algorithm for maximal independent set in the LOCALmodel: we process the color classes one by one,
and per color, in each O(log n)-diameter component, we add to the output a maximal independent set of the
nodes of the component that do not have a neighbor in the independent sets computed in the previous colors.
Each color is processed in O(log n) rounds, as that is the component diameter, and thus the overall process

1

takes O(log2 n) rounds. See [RG20, GKM17, GHK18] for how network decomposition leads to a general
derandomization method in the LOCALmodel, which transforms any poly(log n)-time randomized algorithm
for any locally checkable problem [NS95] (roughly speaking, problems in which any proposed solution can be
checked deterministically in poly(logn)-time, e.g., coloring, maximal independent set, maximal matching)
into a poly(log n)-time deterministic algorithm.

The existence of such a O(log n)-color O(log n)-diameter network decomposition follows by a simple ball-
growing process [AP90]. We build the colors one by one, and each time, we color at least half of the remaining
nodes with the next color. For one color i, start from an arbitrary node and grow its ball hop by hop, so long
as the size is increasing by at least a 2 factor per hop. This stops in at most O(log n) hops. Once stopped,
color the inside of the ball with the current color i, and remove the boundary nodes, deferring them to the
next colors. If we continue doing this from nodes that remain in the graph, in the end, at least half of the
nodes of the graph (which remained after colors 1 to i − 1) are colored in this color i, each carved ball has
diameter O(log n), and different balls are non-adjacent as we remove their boundaries.

Linial and Saks [Lin92] gave a randomized distributed algorithm that computes almost such a network
decomposition in O(log2 n) rounds of the CONGESTmodel. The only weakness was in the diameter guaran-
tee: the vertices of each color are partitioned into non-adjacent clusters so that per cluster, every two vertices
of this cluster have a distance of at most O(log n) in the original graph. This is what we call O(log n) weak-
diameter. In contrast, if the distance was measured in the subgraph induced by the nodes of this color, it
is called a strong-diameter. A O(log2 n)-round CONGEST -model randomized algorithm for O(log n)-color
O(log n)-strong-diameter network decomposition was provided much later, by Elkin and Neiman [EN16],
building on a parallel algorithm of Miller, Peng, and Xu [MPX13].

In contrast, even after significant recent breakthroughs, deterministic constructions for network decompo-
sition are still far from achieving similar measures, and this suboptimality spreads to essentially all applica-
tions of network decomposition in deterministic algorithms. The original work of Awerbuch et al. [AGLP89]
gave a T -round deterministic LOCAL algorithm for c-color and d-strong-diameter network decomposition
where c = d = T = 2O(

√
logn log logn). All these bounds were improved to c = d = T = 2O(

√
logn) by

Panconesi and Srinivasan [PS92]. A transformation of Awerbuch et al. [ABCP96] in the LOCALmodel can
transform these into a O(log n)-color O(log n)-strong-diameter network decomposition, but the time com-

plexity remains 2O(
√
log n) and this remained the state of the art for over nearly three decades.

Rozhoň and Ghaffari [RG20] gave the first poly(logn) time deterministic network decomposition with
poly(logn) parameters. Concretely, their algorithm computes a O(log n)-color O(log3 n)-weak-diameter net-
work decomposition in O(log8 n) rounds of the CONGESTmodel. The construction was improved to a
O(log n)-color O(log2 n)-weak-diameter network decomposition in O(log5 n) rounds of the CONGESTmodel,
by Grunau, Ghaffari, and Rozhoň [GGR21]. Both of these constructions were limited to only a weak-diameter
guarantee. If one moves to the relaxed LOCALmodel with unbounded message sizes, then by combining these
with a known transformation of Awerbuch et al. [ABCP96], one gets O(log n)-color O(log n)-strong-diameter
network decompositions, in a time complexity that is slower by a few logarithmic factors. However, such a
transformation was not known for the CONGESTmodel, until a recent work of Chang and Ghaffari [CG21].
They gave a CONGEST -model reduction, which can transform the weak-diameter construction algorithm of
Grunau et al. [GGR21] into a strong-diameter one, sacrificing some extra logarithmic factors. Concretely,
they achieved a O(log n)-color O(log2 n)-strong-diameter decomposition in O(log11 n) rounds. The time
complexity of decomposition with these parameters was improved very recently by Elkin et al. [EHRG22],
obtaining a O(log n)-color O(log2 n)-strong-diameter decomposition in O(log5 n) rounds.

However, all these constructions are still far from building the arguably right object, i.e., an O(log n)-
color O(log n)-strong-diameter decomposition, in the CONGESTmodel. This was true even if we significantly
relax the time complexity, and as mentioned before, this sub-optimality spreads to all applications.

Our contribution. In this paper, we present a novel deterministic construction of network decomposi-
tion which builds almost the right object, achieving an O(log n)-color O(log n · log log log n)-strong-diameter
decomposition, in poly(logn) rounds. We note that all previous construction techniques seem to require
diameter at least Ω(log2 n); see [CG21] for an informal discussion on this. Our algorithm breaks this barrier
and reaches diameter O(log n · log log logn). The key novelty is in designing a new randomized algorithm
that can be analyzed using only pairwise independence. We can thus derandomize this algorithm efficiently
by using previously known network decompositions in a black-box manner, and in poly(log n) time.

2

Furthermore, if we want faster algorithms, by a black-box combination of our new construction with
the technically-independent recent work of Faour, Ghaffari, Grunau, Kuhn, and Rozhoň [FGG+22] on lo-
cally derandomizing pairwise-analyzed randomized algorithms (roughly speaking, their approach works by a
specialized weighted defective coloring, instead of using network decompositions), our construction becomes
much faster than all the previous constructions, and therefore provides the new state-of-the-art:

Theorem 1.1. There is a deterministic algorithm that, in any n-node network, computes an O(log n)-

color O(log n · log log logn)-strong-diameter decomposition in Õ(log3 n) rounds1 of the CONGESTmodel. The

algorithm performs Õ(m) computations in total, where m denotes the number of edges.

1.2 Hitting Set

While network decomposition is a generic tool for derandomization in the LOCALmodel, and also a key tool
for derandomization in the CONGESTmodel with extensive applications, a more basic tool that captures the
usage of randomness in a range of distributed algorithms is hitting set, as we describe next.

The Hitting Set Problem (basic case). Given a collection of “large” sets in a ground set of elements,
randomness gives us a very simple way of selecting a “small” portion of the elements such that we have at
least one member of each set. The most basic variant is this: consider a bipartite graph G = (A⊔B,E) where
each node on one side A has degree at least k. By using randomness, we can easily define a small subset
B′ ⊆ B which, with high probability, has size O(|B| log n/k) and hits/dominates A, that is, each node a ∈ A
has a neighbor in B′. For that, simply include each element of B in B′ with probability p = O(log n/k). This
randomized selection in fact works in zero rounds. Finding such a small subset B′ in a deterministic manner
is a key challenge in designing efficient deterministic distributed algorithms for many problems. For instance,
Ghaffari and Kuhn [GK18] pointed out that this is the only use of randomness in some classic randomized
algorithms for the construction of spanners and approximations of set cover. Indeed, a variant of this hitting
set problem is a key ingredient even in our construction of the network decompositions mentioned above.

The Hitting Set Problem (general case). Generalizing the problem allows us to capture a much wider
range of applications. In some applications, we need to consider different sizes of the sets. Furthermore, we
may not need to hit all sets, but instead, we would like to minimize the number, or the total cost, of those
not hit. Following the bipartite graph terminology mentioned above, suppose each node a ∈ A has a cost ca,
and its degree is denoted by da. Randomized selection with probability p picks a subset B′ ⊆ B of size p|B|,
in expectation, where the total cost of A-nodes that do not have a neighbor in B′ is

∑
a∈A ca(1 − p)deg(a),

in expectation. As a side comment, we note that in all applications that we are aware of, we may assume
that ca ∈ [1, poly(n)]. Because of this, essentially without loss of generality, we can assume that for each
node a ∈ A we have deg(a) ≤ O(1p · logn). This is because the total expected cost of higher degree nodes is

1/poly(n), which is negligible.
As an instructive example application, by defining ca := deg(a), we get that the total number of edges

incident on A-nodes that are not hit is at most O(|A|/p), in expectation. This particular guarantee is the
sole application of randomness in some distributed constructions, e.g., the celebrated spanner construction
of Baswana and Sen [BS07].

Prior deterministic distributed algorithms for hitting set. There are two known distributed con-
structions for hitting set [GK18, BEG+22], as we review next. Both of these algorithms are based on showing
that a small collection of random bits are sufficient for the randomized algorithm and then using the con-
ditional expectation method to derandomize this. However, both algorithms are computationally inefficient
and use superpolynomial-time computations.

Ghaffari and Kuhn [GK18] observed that O(log n)-wise independence is sufficient for the randomized
algorithm in the basic hitting set problem, and thus O(log2 n) bits of randomness are sufficient for the
algorithm. Then, given a network decomposition with c colors and strong diameter d, we can derandomize
these bits one by one in a total of O(cd log2 n) rounds, by processing the color classes one by one and fixing

1We use the notation Õ(f(x)) = O(f(x) · poly log f(x)).

3

the bits in each color class in O(d) time. However, the resulting algorithm is not computationally efficient:
Each node has to perform nO(logn)-time local computations to calculate the conditional probabilities needed
in the method of conditional expectation.

Parter and Yogev [PY18] pointed out that one can replace the O(log n)-wise independence with a pseu-
dorandomness generator for read-once DNFs and this reduces the number of bits to O(log n(log logn)3)–this
was presented in a different context of spanners in the congested clique model of distributed computing. More
recently, Bezdrighin et al. [BEG+22] further reduced that bound to O(log n log logn), by applying a pseudo-
randomness generator of Gopalan and Yeudayoff [GY20], which is particularly designed for hitting events.
This decreased the round complexity slightly to O(cd log n log logn). However, the conditional probability
computations still remain quite inefficient: they are nO(log logn)-time, which is still super-polynomial.

Our contribution. Instead of viewing the randomized hitting set algorithm as a one-shot process, we turn
it into a more gradual procedure. Concretely, we show that one can turn the natural randomized algorithm
for the general hitting set problem into a number of randomized algorithms (bounded by O(log n)), in such
a way that pairwise independence is sufficient for analyzing each step. Because of this, we can derandomize
each step separately (using an overall potential function that ensures that the result after derandomizing all
steps has the same guarantees as discussed above for the randomized algorithm). Thanks to this, in contrast
to the prior algorithms [GK18, BEG+22] which required super-polynomial computations, our algorithm uses

only Õ(m) computations, summed up over the entire graph, where m denotes the number of edges. Hence,
our distributed algorithm directly provides a near-linear time low-depth deterministic parallel algorithm for
the hitting set problem.

Theorem 1.2 (Informal). There is a deterministic distributed algorithm that in poly(log n) rounds and using

Õ(m) total computations solves the generalized hitting set problem. That is, in the bipartite formulation
mentioned above, the selected subset B′ has size O(p · |B|) and the total weight of nodes of A not hit by B′

is O(
∑

a∈A ca(1 − p)deg(a)).

We present the formal version of this theorem in Theorem 7.10 for the CONGESTmodel of distributed
computing, and in Theorem 7.9 for the PRAM model of parallel computation.

Applications of hitting set. This efficiently derandomized hitting set has significant applications for a
number of graph problems of interest. In this paper, as two examples, we discuss spanners and distance
oracles. In the case of spanners, this deterministic hitting set leads to the first deterministic spanner al-
gorithm with the best-known stretch-size trade-off, polylogarithmic round complexity, that has near-linear
time computations. The best previously known deterministic constructions required superpolynomial com-
putations [BEG+22] (and in the [GK18] case, had extra logarithmic factors in size). The formal statements
are as follows, and the proofs are presented in Section 8.1.

Corollary 1.3. (general stretch spanners, unweighted and weighted) There is deterministic dis-

tributed algorithm that, in poly(logn) rounds of the CONGESTmodel and with total computations Õ(m), for
any integer k ≥ 1, computes a (2k − 1)-spanner with O(nk + n1+1/k log k) and O(nk + n1+1/kk) edges for
unweighted and weighted graphs, respectively.

Corollary 1.4. (ultra-sparse spanners) There is deterministic distributed algorithm that, in poly(logn)

rounds of the CONGESTmodel and with total computations Õ(m), computes a spanner with size (1 + o(1))n
and with stretch logn · 2O(log∗ n) in weighted graphs.

By slight generalizations of our hitting set, we also obtain an efficient parallel derandomization of ap-
proximate distance oracles constructions:

Corollary 1.5. (approximate distance oracle) Given an undirected weighted graph G = (V,E), a set of
sources S ⊆ V with s = |S|, and stretch and error parameters k and ε > 0, there is a deterministic algorithm

that solves the source-restricted distance oracle problem with Õε(ms1/k) work and Õε(poly(log n)) depth in
the PRAMmodel. The data structure has size O(nks1/k) and for each query (u, v), the oracle can return a
value q in O(k) time that satisfies

d(u, v) ≤ q ≤ (2k − 1)(1 + ε)d(u, v).

4

The proof is presented in Section 8.2. The corresponding centralized randomized construction was pre-
sented in the celebrated work of Thorup and Zwick [TZ05]. A centralized derandomization was given by
Roddity, Thorup, and Zwick [RTZ05] but that approach does not appear to be applicable in parallel/dis-
tributed settings of computation.

2 Preliminaries

We use standard graph theoretic notation throughout the paper. All graphs are undirected and unweighted.
For a graph G = (V,E), we use dG or just d to denote the distance metric induced by its edges. For sets of
nodes U,W ⊆ V (G), we generalize d by d(U,W) = minu∈U,w∈W d(u,w).

Clustering Given a graph G, its cluster C is simply a subset of nodes of V (G). The strong-diameter
diam(C) of a cluster C is defined as diam(C) = maxu,v∈C dG[C](u, v). We note that there is a related notion
of weak-diameter of a cluster C which is defined as the smallest D such that ∀u, v ∈ C : dG(u, v) ≤ D. That
is, C can even be disconnected, but there has to be a short path between any two nodes if we are allowed to
use all nodes of G, not just nodes of C.

Although a cluster is simply a subset of V (G), during the construction of a clustering, we keep its center
node v ∈ C and often we work with an arbitrary breadth first search tree of C from v.

The basic object we construct in this paper is separated clusterings, which we formally define next.

Definition 2.1 (s-separated clustering). Given an input graph G, a clustering C is a collection of disjoint
clusters C1, . . . , Ct, such that for each i we have Ci ⊆ V (G). We say that the clustering has (strong-)diameter
D whenever the diameter of each graph G[Ci], 1 ≤ i ≤ t, is at most D. We say that the clustering is s-
separated if for every 1 ≤ i < j ≤ t we have dG(Ci, Cj) ≥ s. We sometime refer to this by saying that the
clustering has separation s.

We will also need the following non-standard notion of s-hop degree of a cluster defined as follows.

Definition 2.2 (s-hop degree). Let C be some clustering and C ∈ C be a cluster with a fixed spanning tree
TC rooted at r ∈ C. The s-hop degree of C in C is the minimum number d such that for each u ∈ C and
the unique path Pu from u to r in TC the following holds: The number of different clusters C′ ∈ C such that
d(Pu, C

′) ≤ s is at most d.

The s-hop degree of a clustering C is the maximum s-hop degree over all clusters C ∈ C.

3 Improved Network Decomposition, Outline

To prove Theorem 1.1, our core result is captured by the following low-diameter clustering statement, which
clusters at least half of the vertices. Theorem 1.1 follows directly by repeating this clustering for O(log n)
iterations, each time in the graph induced by the nodes that remain unclustered in the previous iterations.

Theorem 3.1. There is a deterministic CONGEST algorithm that runs in Õ(log2 n) rounds and computes a
clustering of at least n

2 nodes, with strong diameter O(log n · log log logn), and separation 2.

There are three ingredients in proving Theorem 3.1, as we discuss next:

(A) Low-Degree Clustering. The most important ingredient, captured by Theorem 4.1 and proven in
Section 4, is a clustering that manages to cluster half of the vertices but in which we have relaxed the
separation/non-adjacency requirement of the clustering. Instead, we want each cluster to have s-hop degree
of at most ⌈100 log log(n)⌉. See Definition 2.2 for the definition. For this ingredient, we present a randomized
algorithm with pairwise analysis and then we derandomize it.

Theorem 4.1. Let s ≥ 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
Õ(s log2(n)) rounds which computes a clustering C with

1. strong diameter O(s log(n)),

5

2. s-hop degree of at most ⌈100 log log(n)⌉, and

3. the number of clustered nodes is at least n/2.

(B) From Low-Degree to Isolation. The second ingredient, captured by Theorem 5.1 and proven in
Section 5 is able to receive the clustering algorithm of (A) and turn it into a true clustering with separation
s, but at the expense of reducing the number of clustered nodes by an O(log logn) factor. For this ingredient
as well, we first present a simple randomized algorithm with pairwise analysis, and then we derandomize it.

Theorem 5.1. Assume we are given a clustering C with

1. strong diameter O(s log(n)) and

2. s-hop degree of at most ⌈100 log log(n)⌉.

There exists a deterministic CONGEST algorithm running in Õ(s log2(n)) rounds which computes a clustering
Cout with

1. strong diameter O(s log(n)),

2. separation of s and

3. the number of clustered nodes is |C|
1000 log log(n) .

(C) Improving Fraction of Clustering Nodes. The third and last ingredient, captured by Theorem 6.1
and proven in Section 6, receives the clustering algorithm of part (B) with a suitably high separation pa-
rameter (which is at least logarithmically related to the fraction of nodes clustered) and transforms it into a
clustering of at least half of the nodes, at the expense of reducing the separation to simply 2. This ingredient
is a deterministic reduction and needs no derandomization and explains the final logarithm in the guarantees
of Theorem 3.1 (the first two logarithms are coming already from Theorem 4.1).

Theorem 6.1. Let x ≥ 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(x log n),

2. separation 10 · x and

3. clustering at least n
2x nodes.

Then, there exists a deterministic CONGEST algorithm A′ running in O(2x(R + x log n)) rounds which
computes a clustering C′ with

1. strong diameter O(x log n),

2. separation 2 and

3. clustering at least n
2 nodes.

Having all three ingredients Theorems 4.1, 5.1, and 6.1, we simply put them all together to prove
Theorem 3.1.

Proof of Theorem 3.1. Let x = ⌈log(2000 log logn)⌉. First, from Theorem 4.1, we get a clustering of n/2

nodes with strong diameter O(log n · log log logn) and 10x-hop degree at most ⌈100 log log(n)⌉, in Õ(log2 n)
rounds. Feeding this clustering algorithm to Theorem 5.1 produces a clustering algorithm that clusters

n
2000 log logn nodes with strong diameter O(log n · log log logn) and separation 10x, in Õ(log2 n) rounds.
Hence, this clustering can be put as input for Theorem 6.1, which as a result gives a clustering of at least
n/2 nodes with strong diameter O(log n · log log logn), and separation 2, in Õ(log2 n) rounds.

6

4 Low-Degree Clustering

This section is devoted to proving the following theorem discussed in Section 3.

Theorem 4.1. Let s ≥ 2 be arbitrary. There exists a deterministic CONGEST algorithm running in
Õ(s log2(n)) rounds which computes a clustering C with

1. strong diameter O(s log(n)),

2. s-hop degree of at most ⌈100 log log(n)⌉, and

3. the number of clustered nodes is at least n/2.

Intuition Behind the Proof of Theorem 4.1. In this paragraph, we give a brief intuition behind
the proof of Theorem 4.1. Our clustering algorithm can be viewed as derandomization of the randomized
clustering algorithm of Miller, Peng, and Xu [MPX13] (MPX). This is an algorithm that can cluster n/2
nodes with strong diameter O(s log n) such that the s-hop degree of the constructed clustering is in fact 1,
or in other words, the clustering is s-separated.

In the MPX algorithm, we simply run a breadth first search from all nodes of V (G) at once, but every
node starts the search only after a random delay computed as follows. Every node v ∈ V (G) starts with the
delay del(v) = O(s log n). Next, each node starts flipping a coin and each time it comes up heads, it decreases
its delay by 5s. If it comes up tails, it stops the process. That is, the delays come from an exponential
distribution; even more precisely, each node gets a head start coming from an exponential distribution, we
talk about delays and add O(s log n) to make all numbers positive with high probability.

The guarantees of the MPX algorithm stem from the following observation. Let u ∈ V (G) be arbitrary
and let wait(u) be the first time u is reached by above breadth first search with delays. Let frontier2s(u)
be the number of nodes v ∈ V (G) such that del(v) + d(v, u) ≤ wait(u) + 2s. That is, frontier2s(u) contains
nodes who can reach u after at most 2s additional steps after u is reached for the first time. We claim that
with positive constant probability frontier2s(u) = 1, i.e., after the first node reaches u, it takes at least 2s
additional steps until the next node reaches u.

To see this, replace each node v ∈ V (G) by a runner on a real line who starts at position d(u, v)+O(s log n)
(and may move toward left, as we soon discuss). Then, the exponential distribution that defines the delays
corresponds to each runner flipping her coin until it comes up tails. For each heads, the runner runs distance
5s to the left. We now let the runners flip the coins one by one. When a runner rj is flipping her coin, we
consider the leftmost runner r′j out of the runners r1, . . . , rj−1 that already flipped their coins. We observe
that if rj at some point reaches a position at most 5s to the right from r′j , we also have that rj runs to the
distance 5s to the left of r′j with positive constant probability.

Derandomization: Let us now explain the intuitive reason why we lose a factor of O(log logn) in
Theorem 4.1. Our derandomized algorithm simulates the coin flipping procedure step by step, for O(log n)
steps, until every runner finally flips a tail and finishes. In contrast to the previous simple algorithm, we
now have to track our progress after every step. So, our analysis is a derandomization of the following,
different, randomized analysis of the same running process. In this new randomized analysis, in each step i
and for each node u, we consider, very informally speaking, the event that the coin of all the runners that are
currently at distance at most 2s from the leading runner comes up tail, where t is a parameter we compute
later. The probability of this event is 2−t. This means that the probability of this bad event happening in
one of the O(log n) steps is at most O(log n) ·2−t. Choosing t = O(log logn) makes this probability constant.
Going back to the analysis of MPX, we get that at least half of nodes u have |frontier2s(u)| = O(log logn).

Although this new randomized analysis loses a factor of O(log logn), we can derandomize it in this
section by setting up suitable potentials and derandomizing the coin flips of each step. To do so, we in fact
simulate one fully-independent coin flip of each node in O(log logn) steps where in each step we only use
pairwise-independent random bits.

The rest of the section is structured as follows. In Lemma 4.3, we show how computing suitable delays
gives rise to the final clustering. This step is simple and does not rely on derandomization. Theorem 4.5 then
shows how to compute the node delays that simulate the MPX analysis as discussed above. To sample even
one “coin flip” of MPX, we need to invoke O(log log n) times the local derandomization lemma of [FGG+22].
One call of this lemma corresponds to Theorem 4.16.

7

Basic Definitions To prove Theorem 4.1, we first need to define the notions of delay, waiting time, and
a frontier:

Definition 4.2 (delay del, waiting time waitdel(u), and frontier frontierDdel(u)). A delay function del is a
function assigning each node u ∈ V a delay del(u) ∈ {0, 1, . . . , O(s log(n))}. The waiting time of a node
u ∈ V , with respect to a delay function del, is defined as

waitdel(u) = min
v∈V

(del(v) + d(v, u)) .

The intuition behind waitdel(u) is as follows: Assume that each node v starts sending out a token at time
del(v). Then, wait(u) is the time it takes until u receives the first token.

Furthermore, for every parameter D ≥ 0, the frontier of width D of a node u ∈ V , with respect to a
delay function del, is defined as

frontierDdel(u) = {v ∈ V : del(v) + d(v, u) ≤ waitdel(u) +D}.

Informally, frontierD(u) contains each node v whose token arrives at u at most D time units after u receives
the first token.

Clustering from given delays. The delay of each vertex is computed by a procedure provided in
Algorithm 1. Before discussing that, we first explain how each delay function del, along with a separa-
tion parameter s, give rise to a clustering Cdel: The clustering Cdel clusters all the nodes that have a small
frontier of width 2s. In particular, each node u ∈ V (G) satisfying |frontier2s(u)| ≤ ⌈100 log log(n)⌉ is included
in some cluster of Cdel. More concretely, each clustered node u gets clustered to the cluster corresponding
to the node with the smallest identifier in the set frontier0(u). In other words, u gets clustered with the
cluster of the minimizer of wait(u), where we use the smallest identifier to break ties. In the following text,
we denote this node by cu. See Figure 1 for an illustration of this clustering.

Lemma 4.3. Let del be a delay function and Cdel the corresponding clustering, as described above. Then,
the clustering Cdel has

1. strong diameter O(s logn),

2. s-hop degree at most ⌈100 log log(n)⌉ and

3. the set of clustered nodes is equal to |{u ∈ V : frontier2s(u)| ≤ ⌈100 log log(n)⌉}|.

Moreover, the clustering Cdel can be computed in O(s logn log logn) CONGEST rounds.

To prove Lemma 4.3, we first observe that the frontiers have the following property.

Claim 4.4. Let w be any node on a shortest path from u to cu and let D ≥ 0. Then, we have (I)
frontierD(w) ⊆ frontierD(u), and (II) cw = cu.

Proof. First, we prove (I) frontierD(w) ⊆ frontierD(u). Consider any v ∈ frontierD(w). We prove that
v ∈ frontierD(u). Since v ∈ frontierD(w), we have

del(v) + d(v, w) ≤ del(cu) + d(cu, w) +D.

Since w lies on a shortest path from cu to u, we can add d(w, u) to both sides of the equation to conclude
that

del(v) + d(v, w) + d(w, u) ≤ del(cu) + d(cu, u) +D = wait(u) +D,

and thus we have
del(v) + d(v, u) ≤ wait(u) +D.

Hence, we have v ∈ frontierD(u) and (I) is proven.

8

σ

u

v

cu

del(cu)

Figure 1: The figure shows the run of the clustering algorithm constructing Cdel. The algorithm can be
seen as starting a breadth first search from a single node σ connected to every node u ∈ V (G) with an edge
of length del(u) (the CONGEST implementation of the algorithm does not need to simulate any such node
σ). The value wait(u) is the time until the search reaches the node u. The node that reaches u the first
is denote cu. Moreover, we cluster only nodes such that the size of their frontier of width 2s is at most
O(log logn). For example, the node v is not clustered because after it is reached by the first node cv, it is
reached by Ω(log logn) other nodes in the following 2s steps. It can be seen that for any w on the path from
cu to u, we have frontier2s(w) ⊆ frontier2s(u), hence the constructed clusters are connected.

Next, we prove (II) cw = cu. In view of the above proof of (I), it suffices to show that cu ∈ frontier0(w).
To prove cu ∈ frontier0(w), we use the fact that cu ∈ frontier0(u) and write

del(cu) + d(cu, u) = wait(u) ≤ wait(w) + d(w, u)

Subtracting d(w, u) from both sides of the equation and using that w lies on a shortest path from u to cu
gives

del(cu) + d(cu, w) ≤ wait(w).

Thus cu ∈ frontier0(w) and we are done.

Having Claim 4.4, we now go back to present a proof of Lemma 4.3.

Proof of Lemma 4.3. We start with the first property. Let u be an arbitrary clustered node and recall that
cu is its cluster center. As cu ∈ frontier0(u), we have d(cu, u) = wait(u). Moreover,

wait(u) = min
v∈V

del(v) + d(v, u) ≤ del(u) + d(u, u) = del(u) = O(s logn).

Hence, we have d(cu, u) = O(s logn). Moreover, Claim 4.4 gives that all nodes on a shortest path from cu
to u are also clustered to cu, implying that the diameter of the cluster is O(s log n).

Next, we prove the second property. Consider an arbitrary clustered node w. We first show that for an
arbitrary clustered node y with d(w, y) ≤ s, it holds that cy ∈ frontier2s(w). To see this, we first use the
definition of cw to write

del(cy) + d(cy, y) ≤ del(cw) + d(cw, y)

On one hand, we can use triangle inequality to lower bound the left-hand side by

del(cy) + d(cy, y) ≥ del(cy) + d(cy, w)− d(w, y)

9

On the other hand, we can use triangle inequality to upper bound the right hand side by

del(cw) + d(cw , y) ≤ del(cw) + d(cw, w) + d(w, y).

Putting the two bounds together, we conclude that

del(cy) + d(cy, w) ≤ del(cw) + d(cw, w) + 2d(w, y) ≤ wait(w) + 2s,

where we used our assumption d(w, y) ≤ 2s. Thus, cy ∈ frontier2s(w).
Now, let u be an arbitrary clustered node and Pu the unique path between u and cu in the tree associated

with the cluster. Furthermore, let C ∈ Cdel be a cluster with d(Pu, C) ≤ s. Then there exists w ∈ Pu and
y ∈ C with d(w, y) ≤ s and the discussion above implies cy ∈ frontier2s(w).

We now use Claim 4.4, which implies that frontier2s(w) ⊆ frontier2s(u). Hence, for each cluster C with
d(Pu, C) ≤ s, the corresponding cluster center is contained in frontier2s(u). As u is clustered, we know that
|frontier2s(u)| ≤ ⌈100 log logn⌉. Therefore, the s-hop degree of Cdel is at most ⌈100 log log(n)⌉.

The third property follows directly from the definition. To finish the proof, we need to show that the
algorithm can be implemented in O(s log n · log logn) rounds. To see this, note that we can compute for each
node u whether |frontier2s(u)| ≤ ⌈100 log log(n)⌉ or not, as follows: We run a variant of breadth first search
that takes into account the delays, where each node v starts sending out a BFS token at time del(v). Recall
that in classical breadth first search, after a node u is reached for the first time by a token (sent from cu),
it broadcasts this token to all its neighbors and then it does not redirect any other tokens sent to it. In our
version of the search, each node stops redirecting only after at least ⌈100 log log(n)⌉ tokens arrived (we do
not take into account tokens that have already arrived earlier) or after it counts 2s steps from the arrival
of the first token. It can be seen that this algorithm can be implemented in the desired number of rounds.
Moreover, every node u learns the value of |frontier2s(u)| whenever the value is at most ⌈100 log log(n)⌉ and
otherwise, it learns the value is larger than this threshold.

In view of Lemma 4.3, to prove the randomized variant of Theorem 4.1 with pairwise analysis, it suffices
to show that Algorithm 1 stated next computes a delay function del such that the expected number of nodes
u with |frontier2s(u)| ≤ ⌈100 log log(n)⌉ is at least n/2. We later discuss how this is derandomized.

4.1 Computing Delays

This subsection is dedicated to proving the following theorem that asserts that we can compute a suitable
delay function that can be plugged in Lemma 4.3 that constructs a clustering from it.

Theorem 4.5. Algorithm 1 runs in Õ(s log2(n)) CONGEST rounds and computes a delay function del that
satisfies

|{u ∈ V : |frontier2sdel(u)| ≤ ⌈100 log log(n)⌉}| ≥ n/2. (4.1)

Intuitive Description of Algorithm 1. The algorithm runs in R = ⌊2 log(n)⌋ phases and each phase
consists of k = ⌈100 log logn⌉ iterations. In iteration j of phase i, algorithm Ai,j is a deterministic algorithm
which computes a good set Si,j ⊆ V active

i−1 as defined later in Definition 4.13. The algorithm description of Ai,j

is deferred to Section 4.2. The high-level intuition is that Ai,j derandomizes the randomized process which
obtains Si,j from V active

i−1 by including each vertex with probability 1
4k , pairwise independently. Repeating

this pairwise independent sampling process k times then simulates including each vertex from V active
i−1 to

V active
i with positive probability. The derandomization of the pairwise independent process is done efficiently

using a novel local derandomization procedure introduced in [FGG+22] which essentially allows to efficiently
derandomize algorithms that only rely on pairwise analysis.

Throughout the algorithm, each node is assigned a delay. At the beginning, each node u is assigned a
delay of del0(u) = 5sR = O(s logn). In each subsequent phase, for each node u, we have two possibilities: if
u ∈ V active

i , the delay of node u is decreased by 5s, i.e., deli(u) = deli−1(u)− 5s if u ∈ V active
i ; if u /∈ V active

i ,
then its delay stays the same, i.e., deli(u) = deli−1(u) if u /∈ V active

i .
For every u ∈ V , we define the shorthand waiti(u) = waitdeli(u) and for every D ≥ 0, we define

frontierDi (u) = frontierDdeli(u).

10

Algorithm 1 Computing Delay Function del

Input: A parameter s, an algorithm Ai,j computing a good set from Definition 4.13 in Õ(s log n) rounds
Output: A delay function del from Definition 4.2 satisfying (4.1)

1: procedure Delays
2: V active

0 ← V
3: R← ⌊2 log(n)⌋
4: k ← ⌈100 log log(n)⌉
5: ∀u ∈ V : del0(u)← 5sR
6: for i← 1, 2, . . . , R do
7: Wi,0 ← ∅
8: for j ← 1, 2, . . . , k do
9: Si,j ← Ai,j(deli−1,Wi,j−1) ⊲ Si,j ⊆ V active

i−1

10: Wi,j ←Wi,j−1 ∪ Si,j

11: V active
i ←Wi,k

12: for ∀u ∈ V do
13: if u ∈ V active

i then
14: deli(u)← deli−1(u)− 5s
15: else
16: deli(u)← deli−1(u)

17: del← delR
18: return del

Communication Primitives. For the deterministic algorithm Ai,j which computes the set Si,j , it is
important that each node u can efficiently compute the set alivei−1(u) and deadi−1(u) that are defined next.
Let us give a brief intuition behind the definition. In the “runner intuition” from the beginning of the section,
we want to know in every step all runners that are currently at distance at most 2s after the front runner.
For these runners, we want to ensure that not all of them stop running in one step. In the reality of the
distributed CONGESTmodel, we however cannot compute even the size of frontier2s(u).

Fortunately, for our purposes if the number of “runners” that are distance at most 2s from the front
runner is larger than O(log logn), it roughly speaking suffices to work with the first O(log logn) runners in
the analysis. This is formalized by the following definition of alive and dead nodes (dead nodes are runners
that stopped flipping coins).

Definition 4.6. [alivei(u)/deadi(u)] For every vertex u ∈ V and i ∈ {0, 1, . . . , R}, let deadi(u) ⊆ frontier2si (u)\
V active
i be an arbitrary subset of size min(k, |frontier2si (u) \V active

i |) and alivei(u) ⊆ frontier2si (u)∩V active
i be

an arbitrary subset of size min(k − |deadi(u)|, |frontier
2s
i (u) ∩ V active

i |).

Note that |alivei(u)| + |deadi(u)| ≤ min(k, |frontier2si (u)|) and |deadi(u)| ≤ |alivei−1(u)| + |deadi−1(u)|.
For each node v ∈ V , let Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}. Then, we need some simultaneous and
efficient communication, that allows each v ∈ V to broadcast a message to all nodes in Mi−1(v), and for v
to receive an aggregate of messages prepared for v in nodes Mi−1(v).

Lemma 4.7. Suppose that we are at the beginning of some phase i ∈ [R]. Given delay function deli−1, and

given the set V active

i−1 , there exists a CONGEST algorithm running in Õ(s logn) rounds which computes for
each node u ∈ V the sets alivei−1(u) and deadi(u). Moreover, let Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}. Then,

there exists an Õ(s logn) round CONGEST algorithm that allows each node v to send one O(log n)-bit message

that is delivered to all nodes in Mi−1(v). Similarly, there also exists an Õ(s logn) round CONGEST algorithm
that given O(log n)-bit messages prepared at nodes in Mi−1(v) specific for node v, it allows node v to receive

an aggregation of these messages, e.g., the summation of the values, in Õ(s logn) rounds.

Proof of Lemma 4.7. We run a variant of breadth first search (BFS) that takes into account the delays, and

runs in Õ(s logn) rounds: Each node v starts sending out a BFS token at time deli−1(v), where the token
also includes the information whether v ∈ V active

i or not. During the entire process, each node u forwards

11

per time step at most k = ⌈100 log logn⌉ BFS tokens, breaking ties in favoring of tokens coming from nodes
v /∈ V active

i . That is, all tokens that arrive at the same time step are forwarded in the next time step,
except that the node forwards at most k tokens in this time step, and moreover, the node first includes all
tokens from nodes v /∈ V active

i (up to k) before including tokens from nodes v ∈ V active
i . Since per time

step each node forwards at most k tokens, each time step can be implemented in at most k rounds of the
CONGESTmodel. Furthermore, node u starts counting time from the moment that it received the very first
token (while forwarding any received tokens, up to k per time step), and after 2s time steps have passed,
node u does not forward any other tokens.

Let us think of one tree for each node v, which is rooted at v and includes all nodes u that have received
the token of node v. Every node u receives the tokens of all nodes in frontier2si−1(u), if there are at most k
of them. If there are more than k, node u learns at least k of them, with the following guarantee: The set
of learned tokens includes all tokens from v /∈ V active

i , up to k (if there were more).
Hence, given the received tokens, each node u can form deadi−1(u) ⊆ frontier2si−1(u) \ V

active
i−1 , which is

subset of size min(k, |frontier2si−1(u) \ V
active
i−1 |). Furthermore, node u can form alivei−1(u) ⊆ frontier2si−1(u) ∩

V active
i−1 , which is a subset of size min(k − |deadi−1(u)|, |frontier

2s
i−1(u) ∩ V active

i−1 |).
By repeating the same communication, each node v is able to send one message which is delivered to all

nodes Mi−1(v) = {u ∈ V : v ∈ alivei−1(u)}, all simultaneously in Õ(s logn) rounds. Moreover, by repeating
the same communication pattern but in the reverse direction of time, we can do an aggregation along each
tree, again all simultaneously in Õ(s logn) rounds, allowing each node v to receive an aggregation of the
messages prepared for v in nodes Mi−1(v).

Potential Functions In this paragraph, we define an outer potential Φi for every phase i and an inner
potential φi,j for every iteration j within phase i. The inner potential satisfies that if φi,j−1 ≤ φi,j in each
iteration j, then Φi ≤ Φi−1 + n. The outer potential satisfies that Φ0 = 2n and if ΦR ≤ 10n log(n), then
|{u ∈ V : |frontier2s(u)|}| ≥ 9n

10 .

Definition 4.8 (Outer Potential). For every i ∈ {0, 1, . . . , R}, the outer potential of a node u after phase i
is defined as

Φi(u) = e
|deadi(u)|

10 .

The outer potential after phase i is defined as

Φi =
∑

u∈V

Φi(u) + 2i|V active
i |.

Here, "after phase 0" should be read as "the beginning of phase 1". Algorithm 1 will make sure that the
outer potential is sufficiently small. A small outer potential after phase i implies on one hand that there
are not too many nodes u for which |deadi(u)| is large and on the other hand ensures that there are not too
many nodes in V active

i , i.e., |V active
i | . n

2i .
The following lemma captures the usefulness of the outer potential.

Lemma 4.9 (Outer Potential Lemma). We have Φ0 ≤ 2n. Moreover, if ΦR ≤ 10n log(n), then |{u ∈
V : |frontier2sdel(u)| ≤ 100 log log(n)}| ≥ 9n

10 .

Proof. First, note that ΦR ≥ 2R|V active
R | > 10n log(n)|V active

R |. As we assume that ΦR ≤ 10n log(n), this
directly implies V active

R = ∅. In particular, every u ∈ V with |frontier2sdel(u)| > 100 log log(n) contributes

ΦR(u) = e
|deadR(u)|

10 ≥ e
min(k,|frontier2sdel(u)|

10) ≥ 100 log(n)

to the potential. Hence, there can be at most ΦR/(100 log(n)) ≤ n/10 such nodes and therefore {u ∈
V : |frontier2sdel(u)| ≤ 100 log log(n)} ≥ 9n

10 , as desired.

Definition 4.10. [Pessimistic Estimator Probability pi,j(u)] For i ∈ [R] and j ∈ {0, 1, . . . , k}, the pessimistic
estimator probability of a node u after iteration j within phase i is defined as

pi,j(u) = I(alivei−1(u) ∩Wi,j = ∅) ·

(
1−
|alivei−1(u)|

10k

)k−j

.

12

Here, "after iteration 0", should be read as "the beginning of iteration 1". Let us briefly elaborate
on the definition of pi,j(u). Assume that we would compute Si,j by sampling each vertex in V active

i−1 with
probability 1

4k pairwise independently. By a simple pairwise analysis, one can show that this would imply

Pr[Si,j ∩ alivei−1(u) 6= ∅] ≥
|alivei−1(u)|

10k . Hence, if we are currently at the beginning of iteration j within
phase i just prior to sampling the set Si,j , then pi,j−1(u) is an upper bound on the probability that no node
in alivei−1(u) is contained in V active

i (which one should think of as a bad event).

Definition 4.11. [Inner Potential]
The inner potential of a node u after iteration j of phase i is defined as

φi,j(u) = pi,j(u)e
|deadi−1(u)|+|alivei−1(u)|

10 .

The inner potential after iteration j of phase i is defined as

φi,j =
∑

u∈V

φi,j(u) + |Wi,j |2
i +

k − j

k
2i−1|V active

i−1 |.

Again, assume for a moment that we would compute Si,j by sampling each vertex in V active
i−1 with prob-

ability 1
4k pairwise independently. Assume we are at the beginning of iteration j within phase i just prior

to sampling Si,j . Then, using the fact that E[pi,j(u)] ≤ pi,j−1(u), one directly gets that E[φi,j(u)] ≤ φi,j(u)
and it also follows that E[φi,j] ≤ φi,j−1. Moreover, one can also show that E[Φi(u)] ≤ φi,j−1(u) + 1 and
E[Φi] ≤ φi,j−1 + n. In more detail, if at least one node in alivei−1(u) is contained in V active

i , one can show
that this implies deadi(u) = ∅ and therefore Φi(u) = 1. On the other hand, in the previous discussion
we mentioned that with probability at most pi,j−1(u) no node in alivei−1(u) is included in V active

i , and as
|deadi−1(u)|+ |alivei−1(u)| ≤ |deadi(u)|, we have pi,j−1(u)Φi(u) ≤ φi,j−1.

Lemma 4.12 (Inner Potential Lemma). For i ∈ [R] and j ∈ {0, 1, . . . , k}, Assume that in every iteration j
of phase i, Si,j is computed in such a way that φi,j ≤ φi,j−1. Then, Φi ≤ Φi−1 + n and ΦR ≤ 4n log(n).

Proof. For each node u ∈ V , we have

φi,0(u) = pi,0(u)e
|deadi−1(u)|+|alivei−1(u)|

10 =

(
1−
|alivei−1(u)|

10k

)k−0

e
|deadi−1(u)|+|alivei−1(u)|

10 ≤ e
|deadi−1(u)|

10 = Φi−1(u).

Therefore,

φi,0 =
∑

u∈V

φi,0(u) + |Wi,0|2
i +

k − 0

k
2i−1|V active

i−1 | ≤
∑

u∈V

Φi−1(u) + 2i−1|V active
i−1 | = Φi−1.

Consider an arbitrary u ∈ V . Next, we show that

e
|deadi(u)|

10k =: Φi(u) ≤ φi,k(u) + 1 = I(alivei−1(u) ∩ V active
i = ∅)e

|deadi−1(u)|+|alivei−1(u)|

10k + 1.

It is easy to verify that the inequality is satisfied if alivei−1(u)∩V active
i = ∅, as |deadi(u)| ≤ |deadi−1(u)|+

|alivei−1(u)|. Therefore, it remains to consider the case that there exists at least one node v ∈ alivei−1(u) ∩
V active
i . The existence of such a node v implies

waiti(u) ≤ deli(v) + d(v, u) = deli−1(v) + d(v, u)− 5s ≤ waiti−1(u) + 2s− 5s = waiti−1(u)− 3s.

For every node w /∈ V active
i , we have deli(w) = deli−1(w) and therefore

deli(w) + d(w, u) = deli−1(w) + d(w, u) ≥ waiti−1(u) ≥ waiti(u) + 3s > waiti(u) + 2s

and thus w /∈ frontier2si (u). Hence, deadi(u) = ∅ and the inequality is satisfied. Therefore,

φi,k =
∑

u∈V

φi,k(u) + |Wi,k|2
i +

k − k

k
2i−1|V active

i−1 | ≤

(
∑

u∈V

Φi(u)− 1

)
+ |V active

i |2i = Φi − n.

13

A simple induction implies φi,k ≤ φi,0. Therefore,

Φi ≤ φi,k + n ≤ φi,0 + n = Φi−1 + n.

As Φ0 ≤ 2n according to Lemma 4.9, a simple induction implies

ΦR ≤ Φ0 +Rn ≤ (2 +R)n ≤ 4n logn.

Good Set Si,j: We are now going to define the good set of nodes Si,j . Note that this is the part of
Algorithm 1 whose definition we postponed.

Definition 4.13 (Good Set Si,j). For a set Si,j ⊆ V active
i−1 and u ∈ V , let

Yi,j(u) = 1− |alivei−1(u) ∩ Si,j |+

(
|alivei−1(u) ∩ Si,j |

2

)
.

We refer to the set Si,j as good if

∑

u∈V

Yi,j(u)
φi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i ≤
∑

u∈V

φi,j−1(u) +
2i−1

k
|V active

i−1 |.

Lemma 4.14. If Si,j is a good set, then φi,j ≤ φi,j−1.

Proof. For each u ∈ V , we have

I(alivei−1(u) ∩ Si,j = ∅)pi,j−1(u)

1− (|alivei−1(u)|/(10k))
=

I(alivei−1(u) ∩ Si,j = ∅)I(alivei−1(u) ∩Wi,j−1 = ∅) ·
(
1− |alivei−1(u)|

10k

)k−(j−1)

1− (|alivei−1(u)|/(10k))

= I(alivei−1(u) ∩Wi,j = ∅)

(
1−
|alivei−1(u)|

10k

)k−j

= pi,j(u).

It also holds that I(alivei−1(u) ∩ Si,j = ∅) ≤ Yi,j(u). Therefore,

Yi,j(u)
φi,j−1(u)

1− (|alivei−1(u)|/(10k))
≥ I(alivei−1(u) ∩ Si,j = ∅)

pi,j−1(u)e
|deadi−1(u)|+|alivei−1(u)|

10

1− (|alivei−1(u)|/10k)

= pi,j(u)e
|deadi−1(u)|+|alivei−1(u)|

10

= φi,j(u).

Thus, we get

φi,j =
∑

u∈V

φi,j(u) + |Wi,j |2
i +

k − j

k
2i−1|V active

i−1 |

≤
∑

u∈V

Yi,j(u)
φi,j−1(u)

1− (|alivei(u)|/10k)
+ (|Si,j |+ |Wi,j−1|)2

i +
k − j

k
2i|V active

i−1 |

≤
∑

u∈V

φi,j−1(u) +
2i−1

k
|V active

i−1 |+ |Wi,j−1|2
i +

k − j

k
2i−1|V active

i−1 |

= φi,j−1.

We now combine all the pieces to prove the main theorem of this subsection.

14

Proof of Theorem 4.5 We assume that in iteration j of phase i, Ai,j computes a good set Si,j . Therefore,
Lemma 4.14 implies that φi,j ≤ φi,j−1. According to Lemma 4.12, this implies that ΦR ≤ 4n log(n). There-
fore, Lemma 4.9 implies that |{u ∈ V : |frontier2sdel(u)| ≤ ⌈100 log log(n)⌉}| ≥ n/2, as desired. It remains to
discuss the CONGEST round complexity.

Algorithm 1 has R · k = Õ(logn) iterations in total. In iteration i of phase j, algorithm Ai,j runs in

Õ(s log n) CONGEST rounds. Hence, the overall CONGEST complexity of Algorithm 1 is Õ(s log2 n).

Global Derandomization Here, we informally sketch a variant of Algorithm 1 which performs a global
derandomization using the method of conditional expectation. A more formal discussion of this approach,
though in a different context, is discussed in Section 7.3 where we derandomize our algorithm for the hitting
set problem in the CONGESTmodel. See in particular Theorem 7.10.

Definition 4.15 (Good Random Set Si,j (In Expectation)). For a set Si,j ⊆ V active
i−1 and u ∈ V , let

Yi,j(u) = 1− |alivei−1(u) ∩ Si,j |+

(
|alivei−1(u) ∩ Si,j |

2

)
.

We refer to a randomly computed subset Si,j ⊆ V active
i−1 as good in expectation if

E

[
∑

u∈V

Yi,j(u)
φi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i

]
≤
∑

u∈V

φi,j−1(u) +
2i−1

k
|V active

i−1 |.

Note that we can recover Definition 4.13 if we drop the expectation. Assume we choose Si,j by including
each node in V active

i−1 with probability 1
4k , pairwise independently. One can show that the resulting set Si,j

is good in expectation. Moreover, the pairwise distribution over the random set Si,j can be realized with a

random seed length of Õ(logn) using the construction of [RTZ05, Lub93] that is described in Section 7.3.
The goal is now to fix the random seed one by one in such a way that the resulting deterministic set Si,j is
a good set.

For the following discussion, let X =
∑

u∈V Yi,j(u)
φi,j−1(u)

1−(|alivei−1(u)|/(10k)) + |Si,j | · 2i. The method of

conditional expectation works by fixing the bits of the random seed one by one, each time fixing the i-th bit
in such a way that

E[X |first i bits are fixed to b0, . . . , bi] ≤ E[X |first i− 1 bits are fixed to b0, . . . , bi−1].

In particular, this ensures that

E[X |all bits are fixed] ≤ E[X] ≤
∑

u∈V

φi,j−1(u) +
2i−1

k
|V active

i−1 |

and hence the corresponding deterministic set Si,j is indeed a good set. To find such a bit bi, it suffices to
compute two things:

• E[X |first i bits are fixed to b0, . . . , bi−1, 0], and

• E[X |first i bits are fixed to b0, . . . , bi−1].

It is possible to decompose X into X =
∑

u∈V Xu such that each node u, when given b0, b1, . . . , bi, alivei−1(u)
and φi−1,j(u), can efficiently compute E[Xu|b0, b1, . . . , bi], without any further communication. This in turn
allows us to compute E[X |b0, b1, . . . , bi] in O(D) rounds. Hence, given that every node knows alivei−1(u)

and φi−1,j(u), one can find a good set in Õ(D logn) CONGEST rounds, where D denotes the diameter of

the network. Hence, computing alivei−1(u) and φi−1,j(u) can be done in Õ(s logn) rounds at the beginning

of phase i. Moreover, alivei−1(u) and φi−1,j(u) can be computed at the beginning of phase i in Õ(s logn)
rounds according to Lemma 4.7. Hence, the overall resulting run-time of this variant of Algorithm 1 is
Õ((D+s) log2(n)) = Õ(D log2 n). This is the complexity for the setting where we have a low-diameter global
tree of depth D. One can replace this by a standard application of network decomposition to reduce the
round complexity to poly(logn). In particular, given a c-color d-diameter network decomposition of GO(s),

15

we can use independent randomness for the nodes of different colors, and for each color, we can perform
the gathering and bit fixing in (s+ d)poly(logn) rounds. Hence, we can perform the same derandomization
in (s + d)poly(log n) rounds. With the algorithm of [EHRG22] that computes a O(log n)-color poly(logn)-
strong-diameter network decomposition in spoly(logn) rounds [EHRG22], this becomes a complexity of
spoly(logn) rounds overall for the whole derandomization procedure. Please see the proof of Theorem 7.9
where we perform such a global derandomization via network decomposition for the hitting set problem and
provide more of the lower-order details. Instead of diving into those details here, in this section, we focus on
the local derandomization which leads to a faster round complexity, as discussed in the next subsection.

4.2 Algorithm Ai,j via Local Derandomization

This subsection is dedicated to providing the description of Ai,j , that is proving Theorem 4.16 stated below.
We note that this is the final missing piece in the proof of Theorem 4.1.

Theorem 4.16. For every iteration j of phase i, there exists a CONGEST algorithm Ai,j which computes a

good set Si,j ⊆ V active

i−1 in Õ(s logn) rounds.

The algorithm Ai,j makes use of the local rounding framework of Faour et al. [FGG+22] to compute a
good set Si,j . Their rounding framework works via computing a particular weighted defected coloring of the
vertices, which allows the vertices of the same color to round their values simultaneously, with a limited loss
in some objective functions that can be written as summation of functions each of which depend on only two
nearby nodes. Next, we provide a related definition and then state their black-box local rounding lemma.

Definition 4.17 (long-range d2-Multigraph). A long-range d2-multigraph is a multigraph H = (VH , EH)
that is simulated on top of an underlying communication graph G = (V,E) by a distributed message-passing
algorithm on G. The nodes of H are a subset of the nodes of G, i.e., VH ⊆ V . The edge set EH consists of
two kinds of edges, physical edges and virtual edges. Physical edges in EH are edges between direct neighbors
in G. For each physical edge in e ∈ EH with V (e) = {u, v}, both nodes u and v know about e. Virtual edges
in EH are edges between two nodes u, v ∈ VH , and for each such virtual edge, there is a manager node w
which knows about this edge.

We next describe the assumed communication primitives. Let M(v) be the set of nodes w who manage
virtual edges that include v. We assume T -round primitives that provide the following: (1) each node v
can send one O(log n)-bit message that is delivered to all nodes in M(v) in T rounds; (2) given O(log n)-bit
messages prepared at nodes M(v) specific for node v, node v can receive an aggregation of these messages,
e.g., the summation of the values, in T rounds.

Definition 4.18. (Pairwise Utility and Cost Functions) Let H = (VH , EH) be a long-range d2-multigraph
of an underlying communication graph G = (V,E). For any label assignment ~x : VH → Σ, a pairwise
utility function is defined as

∑
u inVH

u(u, ~x) +
∑

e∈EH
u(e, ~x), where for a vertex u, the function u(u, ~x)

is an arbitrary function that depends only on the label of u, and for each edge e = {u, v}, the function
u(e, ~x) is an arbitrary function that depends only on the labels of v and u. These functions can be different
for different vertices u and also for different edges e. A pairwise cost function is defined similarly. For a
probabilistic/fractional assignment of labels to vertices VH , where vertex v assumes each label in Σ with a
given probability, the utility and costs are defined as the expected values of the utility and cost functions, if
we randomly draw integral labels for the vertices from their corresponding distributions (and independently,
though of course each term in the summation depends only on the labels of two vertices and thus pairwise
independence suffices).

Lemma 4.19. [Faour et al. [FGG+22]] Let H = (VH , EH) be a long-range d2-multigraph of an underlying
communication graph G = (V,E) of maximum degree ∆, where the communication primitives have round
complexity T . Assume that H is equipped with pairwise utility and cost functions u(·) and c(·) (with label set
Σ) and with a fractional label assignment λ. Further assume that the given rounding instance is polynomially

bounded in a parameter q ≤ n. Then for every constant c > 0 and every ε, µ > max
{
1/qc, 2−c

√
logn

}
,

if u(λ) − c(λ) > µu(λ), there is a deterministic CONGEST algorithm on G to compute an integral label

16

assignment ℓ for which u(ℓ) − c(ℓ) ≥ (1 − ε) ·
(
u(λ) − c(λ)

)
and such that the round complexity of the

algorithm is

T ·O

(
log2 q

ε · µ
·

(
|Σ| log(q∆)

logn
+ log log q

)
+ log q · log∗ n

)
.

Our Local Derandomization. In the following, for each node u ∈ V , we define cu =
φi,j−1(u)

1−(|alivei−1(u)|/(10k)) .

The labeling space is whether each node in V active
i−1 is contained in Si,j or not, i.e., each node in V active

i−1 takes
simply one of two possible labels Σ = {0, 1} where 1 indicates that the node is in Si,j . For a given label

assignment ~x ∈ {0, 1}V
active

i−1 , we define the utility function

u(~x) =
∑

u∈V

cu
∑

v∈alivei−1(u)

xv +
2i−1

k
|V active

i−1 | =
∑

v∈V




∑

u∈Mi(v)

cu



xv +
2i−1

k
|V active

i−1 |,

and the cost function
c(~x) =

∑

u∈V

cu
∑

v 6=v′∈alivei−1(u)

xvxv′ +
∑

v∈V active

i−1

2ixv.

If the label assignment is relaxed to be a fractional assignment ~x ∈ [0, 1]V
active

i−1 , where intuitively now
xv is the probability of v being contained in Si,j , the same definitions apply for the utility and cost of this
fractional assignment.

Note that the utility function is simply a summation of functions, each of which depends on the label
of one vertex. Hence, it directly fits the rounding framework. To capture the cost function as a summation
of costs over edges, we next define an auxiliary multi-graph H as follows: For each node u ∈ V and every
v 6= v′ ∈ alivei(u), we add an auxiliary edge between v and v′, with a cost function which is equal to cu
when both v and v′ are marked, and zero otherwise. Note that H is a long-range d2-Multigraph where the
communication primitives have round complexity Õ(s logn) as provided by Lemma 4.7.

We next argue that the natural fractional assignment where xv = 1
4k for each v ∈ V active

i−1 satisfies the
conditions of Lemma 4.19. First, note that these fractional assignments are clearly polynomially bounded
in q for q = k = O(log logn). Next, we discuss that, for the given fractional assignment, utility minus cost
is at least a constant factor of utility.

Claim 4.20. Let ~x ∈ [0, 1]V
active

i−1 with xv = 1
4k for every v ∈ V active

i−1 . Then, u(~x)− c(~x) ≥ u(~x)/2.

Proof. We have

u(~x) =
∑

u∈V

cu
∑

v∈alivei−1(u)

xv +
2i−1

k
|V active

i−1 |

≥ 2



∑

u∈V

cu
∑

v,v′∈alivei−1(u)

xvxv′ +
∑

v∈V active

i−1

2i
1

4k




≥ 2c(~x).

and therefore indeed u(~x)− c(~x) ≥ u(~x)/2.

Hence, we can apply Lemma 4.19 on these fractional assignments with µ = 1/2 and ε = 0.1, which runs in

Õ((log log logn)2) iterations of calling the communication primitives, each taking Õ(s log2 n) rounds. Hence,

the entire procedure runs in Õ(s log2 n) rounds. As a result of applying Lemma 4.19 with these parameters,

we get an integral label assignment ~y ∈ {0, 1}V
active

i−1 which satisfies u(~y) − c(~y) ≥ 0.9(u(~x) − c(~x)). We can

17

then conclude

u(~y)− c(~y) ≥ 0.9(u(~x)− c(~x))

≥ 0.9

(
∑

u∈V

cu
|alivei−1(u)|

4k
+

2i−1

k
|V active

i−1 | −

(
∑

u∈V

cu
|alivei−1(u)|

16k
+

2i−2

k
|V active

i−1 |

))

≥
∑

u∈V

cu
|alivei−1(u)|

10k
.

This integral label assignment directly gives us Si,j . In particular, let Si,j = {v ∈ V active
i−1 : yv = 1}. Note

that

u(~y)− c(~y) =
∑

u∈V

cu

(
|alivei−1(u) ∩ Si,j | −

(
|alivei−1(u) ∩ Si,j |

2

))
+

2i−1

k
|V active

i−1 | − 2i|Si,j |,

and therefore

∑

u∈V

Yi,j(u)
φi,j−1(u)

1− (|alivei−1(u)|/(10k))
+ |Si,j | · 2

i =
∑

u∈V

cu − u(~y) + c(~y) +
2i−1

k
|V active

i−1 |

≤
∑

u∈V

cu −
∑

u∈V

cu
|alivei−1(u)|

10k
+

2i−1

k
|V active

i−1 |

≤
∑

u∈V

φi,j−1(u) +
2i−1

k
|V active

i−1 |,

which shows that Si,j is indeed a good set according to Definition 4.13. This completes the description of
our locally derandomized construction of good sets Si,j , hence completing the proof of Theorem 4.16.

5 From Low-Degree Clusters to Isolated Clusters

Theorem 5.1. Assume we are given a clustering C with

1. strong diameter O(s log(n)) and

2. s-hop degree of at most ⌈100 log log(n)⌉.

There exists a deterministic CONGEST algorithm running in Õ(s log2(n)) rounds which computes a clustering
Cout with

1. strong diameter O(s log(n)),

2. separation of s and

3. the number of clustered nodes is |C|
1000 log log(n) .

Similar as in Section 4, we could get the same guarantees with a CONGEST algorithm with round com-
plexity O(spoly(logn)) by performing a global derandomization with the help of a previously computed
network decomposition.

Proof of Theorem 5.1. The clustering Cout is computed in two steps. In the first step, we use the local
rounding procedure to compute a clustering C′ which one obtains from C by only keeping some of the
clusters in C (any such cluster is kept in its entirety). Intuitively, the local rounding procedure derandomizes
the random process which would include each cluster C from C in the clustering C′ with probability 1

2k ,
k = ⌈100 log log n⌉, pairwise independently. Given the clustering C′, we keep each node u ∈ C′ clustered in
Cout if and only if the s-hop degree of u in C′ is 1. Note that given C′, the output clustering Cout can be
computed in Õ(s logn) CONGEST rounds.

18

First, we discuss the first property, i.e., the strong diameter of the output clustering. The fact that the
clustering C has strong diameter O(s log(n)) directly implies that the clustering C′ also has strong diameter
O(s log(n)), simply because each cluster of C′ is exactly one of the clusters of C. We next argue that Cout also
has strong diameter O(s logn). Let u be a node clustered in C′ and Pu the unique path from u to its center
in the tree associated with its cluster. Then, it directly follows from the definition that for every w ∈ Pu,
the s-hop degree of w in C′ is at most the s-hop degree of u in C′. Therefore u being clustered in Cout implies
that w is also clustered in Cout. Hence, we conclude that Cout indeed has strong diameter O(s logn).

Next, we discuss the second property: The clustering Cout is s-hop separated. This directly follows from
the fact that by definition every clustered node has a s-hop degree of 1.

Finally, To prove Theorem 5.1, the only remaining thing is to prove the third property, i.e., that we

compute C′ in such a way that Cout clusters at least |C|
1000 log log(n) nodes. The rest of this proof is dedicated

to this property.
For each cluster C ∈ C, we let center(C) denote the cluster center of C and define Centers = {center(C) : C ∈

C} as the set of cluster centers of C. Moreover, for each u clustered in C, recall that cu is the cluster center
of the cluster of u and let Pu be the unique u-cu path in the tree associated with this cluster Cu. Now, let

Su = {C ∈ C : d(Pu, C) ≤ s}.

Note that the size of Su is equal to the s-hop degree of u, which by assumption is at most k.
The labeling space is for each cluster center whether its cluster is contained in C′ or not, i.e., each node

in Centers takes simply one of two possible labels {0, 1} where 1 indicates that the corresponding cluster is
in C′. For a given label assignment ~x ∈ {0, 1}Centers, we define

u(~x) =
∑

C∈C
|C|xcenter(C)

and

c(~x) =
∑

u∈V : u is clustered in C

∑

C∈Su\Cu

xcuxcenter(C).

If the label assignment is relaxed to be a fractional assignment ~x ∈ [0, 1]Centers, where intuitively now xv

is the probability of v’s cluster being contained in C′, the same definitions apply for the utility and cost of
this fractional assignment. The utility function is simply a summation of functions, each of which depends
on the label of one vertex in Centers. Hence, it directly fits the rounding framework.

To capture the cost function as a summation of costs over edges, we next define an auxiliary multi-graph
H as follows: For each node u clustered in C and every C1 6= C2 ∈ Su, we add an auxiliary edge between
center(C1) and center(C2) with a cost function which is equal to 1 when both C1 and C2 are contained
in C′, and zero otherwise. Note that H is a long-range d2-Multigraph, according to Definition 4.17. The
communication primitives can be implemented in Õ(s logn) rounds according to the lemma below.

Lemma 5.2. Let C be the input clustering of Theorem 5.1. There exists a CONGEST algorithm running in
Õ(s logn) rounds which computes for each node u ∈ V the sets {center(C) : C ∈ Su}. Moreover, for each

v ∈ Centers, let M(v) = {u ∈ V : Cv ∈ Su}. Then, there exists an Õ(s logn) round CONGEST algorithm
that allows each node v to send one O(log n)-bit message that is delivered to all nodes in M(v). Similarly,

there also exists an Õ(s logn) round CONGEST algorithm that given O(log n)-bit messages prepared at nodes
in M(v) specific for node v, it allows node v to receive an aggregation of these messages, e.g., the summation

of the values, in Õ(s logn) rounds.

Proof of Lemma 5.2. The proof follows roughly along the lines of the proof of Lemma 4.7. First, we run
the following variant of breadth first search: At the beginning, each node clustered in C has a token which
is equal to the identifier of its cluster. Now, in each of the s iterations, each node that has received at
most k = ⌈100 log logn⌉ identifiers in the previous iteration forwards all the identifiers it has received to its
neighbors. If a node has received more than k identifiers, it selects k of them to forward. The first phase
can be implemented in O(ks) CONGEST rounds. It directly follows from the fact that the s-hop degree of C
is at most k that after the first phase each node w learns the identifiers of all cluster centers such that the

19

corresponding cluster C satisfies d(w,C) ≤ s. The next phase propagates this information up in the cluster
tree, from the root toward the leaves, such that each descendant of w—i.e., any node whose cluster path
to the root passes through w—learns about all those cluster centers as well. The second phase consists of
O(s log n) iterations. In each iteration, each clustered node sends all the identifiers it learned about so far
to each of its children in the corresponding cluster tree. It again follows from the fact that the s-hop degree
of C is at most k that each of the O(s logn) iterations in the second phase can be implemented in O(k)

CONGEST rounds. Hence, the overall CONGEST runtime is Õ(s logn).
For each v ∈ Centers, let M(v) = {u ∈ V : Cv ∈ Su}. By repeating the above communication, we have a

Õ(s log n)-round procedure that delivers one message from each node v to all nodes M(v). By reversing the
same communication in time, we can also provide the opposite direction: if each node in M(v) starts with

a message for v, then in Õ(s logn) rounds, we can aggregate these messages and deliver the aggregate to v,
simultaneously for all v.

Claim 5.3. Let k = ⌈100 log log(n)⌉ and ~x ∈ [0, 1]Centers with xv = 1
2k for every v ∈ Centers. Note that

this fractional label assignment is polynomially bounded in q = k = O(log logn). Furthermore, we have
u(~x)− c(~x) ≥ u(~x)/2.

Proof. We have

u(~x) =
∑

C∈C
|C|xcenter(C) =

∑

C∈C

|C|

2k
=
|C|

2k
,

and

c(~x) =
∑

u∈V : u is clustered in C

∑

C∈Su\{Cu}
xcuxcenter(C) ≤

∑

u∈V : u is clustered in C

1

4k

|Su|

k
≤
|C|

4k
.

Therefore, indeed u(~x)− c(~x) ≥ u(~x)/2.

We now invoking the rounding of Lemma 4.19 with parameters µ = 0.5, ε = 0.5, and q = k = O(log logn)
on the fractional label assignment of ~x ∈ [0, 1]Centers where xv = 1

2k for every v ∈ Centers. The procedure

runs in Õ(s logn) rounds. As output, we get an integral label assignment ~y ∈ {0, 1}Centers which satisfies

u(~y)− c(~y) ≥ 0.5(u(~x)− c(~x)) ≥
|C|

8k
.

Let C′ = {C ∈ C : ycenter(C) = 1}. Note that for every u ∈ C,

I(u is clustered in Cout) ≥ ycu −
∑

C∈Su\{Cu}
ycuycenter(C).

Therefore,

|Cout| ≥
∑

u∈V : u is clustered in C
I(u is clustered in Cout)

≥
∑

u∈V : u is clustered in C



ycu −
∑

C∈Su\{Cu}
ycuycenter(C)





= u(~y)− c(~y)

≥
|C|

8k

and therefore Cout clusters enough vertices to prove Theorem 5.1.

20

6 Clustering More Nodes

In this section, we prove the following result, which says that once we have access to a clustering algorithm
that clusters a nontrivial proportion of nodes with sufficient separation, we can turn it into an algorithm
that clusters a constant proportion of nodes. We are paying for this with a slight decrease in the separation
guarantees.

Theorem 6.1. Let x ≥ 2 be arbitrary. Assume there exists a deterministic CONGEST algorithm A running
in R rounds which computes a clustering C with

1. strong diameter O(x log n),

2. separation 10 · x and

3. clustering at least n
2x nodes.

Then, there exists a deterministic CONGEST algorithm A′ running in O(2x(R + x log n)) rounds which
computes a clustering C′ with

1. strong diameter O(x log n),

2. separation 2 and

3. clustering at least n
2 nodes.

It follows from the analysis of Algorithm 2 and its subroutine Algorithm 3. To understand the pseudocode
of the algorithms, we note that for a set of nodes C ⊆ V (G) and D ∈ N0, we define

C≤D = {v ∈ V : d(C, v) ≤ D}.

Moreover, we say that a cluster C is good in Algorithm 3 if cut(C) < +∞. Otherwise, C is bad.

Algorithm 2 Making a clustering algorithm cluster half of the nodes

1: procedure ClusterHalfNodes(G)
2: C0 = ∅
3: N = ⌈4 · 2x⌉
4: for i = 1, 2 . . . , N do

5: Gi = G

[
V \

(⋃
C∈Ci−1

C
)≤1

]

6: C ← A(Gi)
7: Ĉi ← Expand(Gi, C)
8: Ci = Ci−1 ∪ Ĉi

return CN

Algorithm 3 Expanding an input clustering

Input: A graph G and its 10x-separated clustering C
Output: An expanded clustering Ĉ with small boundary

1: procedure Expand(G, C)
2: for C ∈ C do
3: Define cut(C) = min

{
0 ≤ i ≤ 3x : |C≤i+1| ≤ 1.5|C≤i|

}
and cut(C) = +∞ if no such i exists.

4: If cut(C) < +∞, define expand(C) = Ccut(C)

5: return Ĉ = {expand(C) : C ∈ C, cut(C) < +∞}

We start by analyzing Algorithm 3 in the following lemma. Importantly, the fourth condition for Ĉ in
the statement below states that the total number of unclustered vertices neighboring one of the clusters in
Ĉ is at most half the total number of clustered vertices. This is the reason why we can

21

Lemma 6.2. Let x ≥ 2 be arbitrary and C a clustering with

1. strong diameter O(x log n),

2. separation 10x and

3. clustering at least n
2x nodes.

Then, Ĉ constructed in Algorithm 3 is a clustering with

1. strong diameter O(x log n),

2. separation 4x,

3. clustering at least 0.5 n
2x nodes and

4.
∣∣∣
(⋃

C∈Ĉ C
)≤1
∣∣∣ ≤ 1.5

∣∣∣
(⋃

C∈Ĉ C
)≤1
∣∣∣.

Moreover, the algorithm can be implemented in O(x log n) CONGEST rounds.

Proof. The first property follows from the fact that for a set S and D ∈ N0, diam(S≤D) ≤ diam(S) + 2D.
Hence, for a good cluster C,

diam(expand(C)) ≤ diam(C) + 2cut(C) = O(x log n).

To prove the second property, let C1 6= C2 ∈ C be two arbitrary good clusters. For i ∈ {1, 2}, let
ui ∈ expand(Ci) be arbitrary. By triangle inequality, we have:

d(u1, u2) ≥ d(C1, C2)− d(C1, u1)− d(C2, u2) ≥ 10x− 2 · 3x ≥ 4x.

To prove the third property, it suffices to show that at most 0.5 n
2x of the nodes are contained in bad

clusters. For a bad cluster C, a simple induction implies |C≤3x| ≥ 1.53x|C| ≥ 2 · 2x|C|. Therefore,

∑

C∈C,C is a bad cluster

|C| ≤
1

2x+1

∑

C∈C,C is a bad cluster

|C≤3x| ≤
n

2x+1
,

where the last inequality follows from the fact that for two clusters C1 6= C2 ∈ C, C
≤3x
1 ∩ C≤3x

2 = ∅.
To prove the fourth property we write

∣∣∣∣∣∣∣




⋃

C∈Ĉ

C




≤1
∣∣∣∣∣∣∣
≤
∑

Ĉ∈Ĉ

|Ĉ≤1|

=
∑

C∈C : C is a good cluster

|(C≤cut(C))≤1|

=
∑

C∈C : C is a good cluster

|C≤cut(C)+1|

≤ 1.5
∑

C∈C : C is a good cluster

|C≤cut(C)|

= 1.5

∣∣∣∣∣∣∣



⋃

C∈Ĉ

C




≤1
∣∣∣∣∣∣∣
.

It remains to discuss the CONGEST computation. Since we have for any C1, C2 ∈ C that C≤3x
1 ∩C≤3x

2 = ∅,

each cluster C ∈ C can compute the values of C≤0
1 , C≤1

1 , . . . , C≤3x
1 by running one breadth first search from

C1 up to distance of 3x.

22

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We show that the algorithm satisfies the following invariants for i ∈ {0, 1, . . . , N}:

1. Ci is 2-separated

2. |V (Ci)| ≥ n ·min(0.5, i
8·2x)

3. |V (C≤1
i)| ≤ 1.5|V (Ci)|

The base case i = 0 trivially holds. Now, consider an arbitrary i ∈ [N] and assume that the invariant is
satisfied for i−1. To check the first invariant, let C1 6= C2 ∈ Ci be arbitrary. If C1, C2 ∈ Ci−1, then it follows
by induction that d(C1, C2) ≥ 2. If C1, C2 ∈ Ĉi, then it follows from Lemma 6.2 that dGi

(C1, C2) ≥ 2 which
also directly implies dG(C1, C2) ≥ 2. It remains to consider the case that one cluster, let’s say C1, is in Ci−1

and C2 is in Ĉi. We have

C2 ⊆ V (Gi) = V \ V (C≤1
i−1) ⊆ V \C≤1

1

and therefore d(C1, C2) ≥ 2, as desired.
Next, we show that the second invariant is preserved. If |V (Ci−1)| ≥ n/2, then there is nothing to show.

Otherwise, we have

|V (Gi)| ≥ n− |V (C≤1
i−1)| ≥ n− 1.5|V (Ci−1)| ≥ n− 1.5

n

2
=

n

4
.

Therefore, according to Lemma 6.2, Ĉi clusters at least 0.5 (n/4)
2x = n

8·2x vertices, which together with

|V (Ci−1)| ≥ n · min(0.5, i−1
8·2x) directly implies |V (Ci)| ≥ n · min(0.5, i

8·2x). It remains to verify the third
property. According to Lemma 6.2, we have

|V (Ĉ≤1
i) \ V (C≤1

i−1)| ≤ 1.5|V (Ĉi)|.

Therefore,

|V (C≤1
i)| = |V (C≤1

i−1)|+ |V (Ĉ≤1
i) \ V (C≤1

i−1)| ≤ 1.5|V (Ci−1)|+ 1.5|V (Ĉi)| = 1.5|V (Ci)|.

This finishes the proof that the invariants are satisfied throughout the algorithm. Hence, CN is a 2-
separated clustering that clusters at least half of the vertices. Moreover, it directly follows from the strong
diameter guarantee of Lemma 6.2 that CN has strong diameter O(x log n). Finally, as Â has a round com-
plexity of O(x log n), it follows that CN is computed in O(2x(R+x logn)) CONGEST rounds. This concludes
the proof of Lemma 4.3.

7 Hitting Set

In this section, first, we introduce a variant of the hitting set problem. Next, we propose a simple ran-
domized algorithm for this problem using only pairwise independence. In the end, we describe an efficient
distributed/parallel derandomization of our randomized algorithm.

7.1 Problem Definition

Consider a collection S = {S1, . . . , SN} of N subsets from the universe {1, . . . , n} and let wi ≥ 0 be the
weight that is assigned to Si. We say a subset H ⊆ [n] hits Si if H ∩ Si 6= ∅. Our goal is to find a small H
with a small cost. Cost of H is total weights of Si that are not hit by H , i.e.,

∑
i:Si∩H=∅ wi. For a random

subset H that includes each element with probability p independently, the expected size of H is E[|H |] = np
and its expected cost is

N∑

i=1

wi(1 − p)|Si| ≈
N∑

i=1

wie
−|Si|p = τpS .

23

For example, suppose the regular case where |Si| = ∆. For p = 10 logN/∆, a random subset hits all sets
with high probability 1 − 1/poly(N) and for p = 1/∆, constant fraction of sets are hit. Two important
examples for weights is when wi = 1 and wi = |Si|. In the former, we simply count the number of not
hit sets. The latter indeed appears in our applications for constructing spanners and distance oracles (see
Section 8). There, we get penalized for each not hit set by its size.

In many applications, the expected size and cost of a random subset are enough. The challenge is to find
a subset deterministically. Based on this, we formulate the following problem where we combine our two
objectives in one potential function.

Definition 7.1 (Hitting Set Problem). Given a collection S = {S1, . . . , SN} of N subsets from the universe
{1, . . . , n}, an integer weight wi ≥ 0 for each Si, and a sampling parameter p ∈ (0, 1), find a subset H that
minimizes the potential function

Φp
S(H) =

∑N
i=1 wi · 1[H ∩ Si = ∅]

τpS
+
|H |

np
. (7.1)

So if Φp
S(H) = O(1), then H has size O(np) and its cost is O(τpS). Our goal is to find such a set with

constant potential function deterministically and efficiently. In the rest, we assume that N ≥ n as we can
add dummy sets with zero costs. We also assume that p ≤ 1/2 to ensure that 1 − p = e−Θ(p). Note that
the case p ≥ 1/2 is trivial since we tolerate constant deviation from a random subset and for p ≥ 1/2, the
expected size of a random subset is at least n/2. So our hitting can include all the n elements.

Hitting in Ordered Sets. There are applications where H is partially penalized even if we hit Si. The
amount of cost depends on which element of Si is being hit. In Section 8, we encounter a particular instance
of this generalization which is described in the following.

For each Si, there is no weight but there is an order πi(·) on its elements where πi(j) denotes the j-th
element of Si for j = 1, . . . , |Si|. Then, H has to pay k − 1 for Si if πi(k) ∈ H and

H ∩ {πi(1), . . . , πi(k − 1)} = ∅.

If H does not hit Si at all, it has to pay |Si|. Cost of H is the sum of the expenses incurred by each Si. We
call this problem hitting ordered set. With this definition, the expected cost for a random H is

N∑

i=1

|Si|∑

j=1

(1− p)j

The hitting ordered set problem is related to the original setting of Definition 7.1 in the following sense.

Lemma 7.2. Given an instance I1 of the hitting ordered set problem with N sets S1, . . . , SN ⊆ [n], we
can construct an instance I2 of the original hitting set problem (see Definition 7.1) with O(N logn) sets in

O(
∑N

i=1 |Si|) time such that the following holds: For any H ⊆ [n], if c1 is the cost of H in I1 and c2 is the
cost of H in I2, then c1 ≤ c2 ≤ 3c1.

Proof. To construct I2, for each Si in I1, we add O(log n) sets to I2. Suppose 2ℓ ≤ |Si| < 2ℓ+1. For j ∈ [ℓ],
let Sj

i = {πi(1), . . . , πi(2
j)} and let Sℓ+1

i = Si. This completes the construction of sets of I2. Weight of Sj
i

in I2 is its size |Sj
i |.

Consider a subset H ⊆ [n] and let k be the minimum index that πi(k) ∈ H . Suppose k is |Si|+1 if there
is no such index. So H has to pay k − 1 in I1. In I2, it has to pay

∑
j:|Sj

i
|<k |S

j
i | which lies in the range

[(k − 1), 3(k − 1)] and concludes the proof.

7.2 Iterative Sampling

The goal of this section is to find H with Φp
S = O(1) for the hitting set problem Definition 7.1. Let

∆ = maxi∈[N] |Si|. Our algorithm has T = ⌈8p∆⌉ iterations. We start with a randomized algorithm and

24

then we derandomize it. For t = 1, . . . , T , let Pt be a pairwise-independent distribution over n binary
random variables Xt

1, . . . , X
t
n ∈ {0, 1} with bias q = 4p/T . That is:

∀i ∈ [n], ∀b ∈ {0, 1}, Pr[Xt
i = b] = qb(1− q)(1−b),

∀i, j ∈ [n], i 6= j, ∀b, b′ ∈ {0, 1}, Pr[Xt
i = b,Xt

j = b′] = qb+b′(1− q)2−(b+b′).

Let the random subset Gt be {i ∈ [n] | Xt
i = 1}. We replace Gts one by one with an explicit set Ht. The

final output of the algorithm is H = ∪Tt=1H
t. Suppose we are in iteration t. Our goal is to find Ht. Let

Y t
i =

∑

j∈Si

Xt
j −

∑

j∈Si

∑

k∈Si:j<k

Xt
jX

t
k. (7.2)

If Gt does not hit Si, then Y t
i = 0. Otherwise, Y t

i ≤ 1 (because a ≤
(
a
2

)
+ 1 for all positive integers a). So

1− Y t
i is always greater than or equal to 1[Gt ∩ Si = ∅] and is a pessimistic estimator for the event that Gt

does not hit Si. We have the following upper bound on E[1− Y t
i].

Lemma 7.3. E[1− Y t
i] ≤ 1− 3|Si|p/T ≤ e−|Si|p/T .

Proof. Note that:

E[Y t
i] = |Si|q −

(
|Si|

2

)
q2 ≥ |Si|q − |Si|

2q2/2 ≥ 3|Si|q/4 = 3|Si|p/T

where in the last inequality we use q = 4p/T ≤ 1/2∆ ≤ 1/2|Si|.

For a subset G ⊆ [n], we define the function f t(G) as

f t(G) =

∑
i:Si∩(H1∪···∪Ht−1)=∅(1− Yi) · wie

−|Si|(T−t)p/T

τpS
+

∑n
i=1 Xi +

∑t−1
j=1 |H

j |+ 4n(T − t)p/T

4np

where Xi = 1[i ∈ G] and Yi is defined from X1, . . . , Xn similar to (7.2).

Lemma 7.4. E[f1(G1)] ≤ 2.

Proof. Note that E[
∑n

i=1 X
1
i] = nq = 4np/T and from Lemma 7.3, we have E[1− Y 1

i] ≤ e−|Si|p/T . Plugging
these two bounds completes the proof.

Lemma 7.5. For t ≥ 2, we have:
E[f t(Gt)] ≤ f t−1(Ht−1).

Proof. Consider a subset Si. If one of H1, . . . , Ht−2 hits Si, then the contribution of Si to the both sides
of the inequality is zero. Otherwise, if Ht−1 hits Si, the contribution of Si to E[f t(Gt)] is zero. Note that
it may contribute a non-zero amount into the RHS since we use pessimistic estimator 1 − Yi. The only
remaining case is when Si is not hit in any of the first t − 1 iterations. Then, the contribution of Si to the
LHS is

E[1− Y t
i] · wie

−|Si|(T−t)p/T ≤ wie
−|Si|(T−t+1)p/T

where we use Lemma 7.3. On the other hand, the contribution of Si to the RHS is exactly wie
−|Si|(T−t+1)p/T .

So the contribution of each Si to the LHS is less than or equal to its contribution to the RHS. Since
E[|Gt|] = nq = 4np/T , the second term that controls the size in f t(·) and f t−1(·) are equal which completes
the proof.

Theorem 7.6. If f t(Ht) ≤ E[f t(Gt)] for all t = 1, . . . , T , then

Φp
S(H = H1 ∪ · · · ∪HT) ≤ 2.

Proof. From Lemma 7.4 and Lemma 7.5, we get that fT (HT) ≤ 2. Comparing fT (HT) and Φp
S(H) term

by term, we can easily see that fT (HT) ≥ Φp
S(H).

25

If ∆≫ 1/p, then the number of iterations can be quite large. However, we are mostly interested in the
regime where the number of iterations is logarithmic. We can achieve this as stated in the following.

Corollary 7.7. Let S+ = {the first 10 logN/p elements of Si | |Si| ≥ 10 logN/p} and S− = S \ S+. Run
the algorithm twice: once for S− with the same set of weights as before and once on S+ by setting all weights
to N2. Let the output of these two runs be H− and H+. Then:

Φp
S(H = H− ∪H+) ≤ 4.

Each run takes at most O(logN) iterations. Moreover, all sets in S with size at least 10 logN/p are hit by
H.

7.3 Implementation

The remaining piece of Theorem 7.6 is to find Ht such that f t(Ht) ≤ E[f t(Gt)]. We first start with the
construction of a suitable pairwise distribution.

Construction of Pairwise Independent Distribution. From the algorithm of the previous section, we
need a pairwise distribution P on n binary random variables X1, . . . , Xn ∈ {0, 1} with bias q. Assume that
q = 2−ℓ for some ℓ ∈ N and n is a positive integer of the form n = 2m − 1 for m ∈ N. We use the pairwise
distribution that is used in [Lub93, BRS89] which has a random seed of length ℓm = O(log 1/p · logn). Let
us quickly recall the construction. We first assign an ℓ-bit label Li to each Xi. Then, we set Xi to one if and
only if all the ℓ bits of Li is one. To construct the labels, we decompose the random seed R into ℓ groups
each containing m bits as follows:

R = r00 . . . r
0
m−1r

1
0 . . . r

1
m−1 . . . r

ℓ−1
0 rℓ−1

m−1

The j-th group rj0 . . . r
j
m−1 is for constructing the j-bit of Lis. To define Li(j) (the j-th bit of Li), we use

the bit representation of i. Suppose i =
∑m−1

k=0 bk2
k. Then:

Li(j) = b0r
j
0 ⊕ · · · ⊕ bm−1r

j
m−1

This completes the construction. In the course of derandomization, we fix the random seed bit by bit.
Suppose we fix the first B bits of R to b0, . . . , bB−1 ∈ {0, 1}. This gives us a new distributionQ. The following
result by Berger, Rompel, and Shor [BRS89] is an important tool to achieve work-efficient derandomization.

Lemma 7.8 ([BRS89], Section 3.2). For any given subset A ⊆ [n], we can compute

∑

i∈A

EQ[Xi],
∑

i∈A

∑

j∈A

EQ[XiXj]

with O(|A|) processors and in O(log n) depth in the PRAMmodel. In particular, we can compute these two
quantities in O(|A| log n) time in the standard model.

Bit Fixing. Suppose we are in iteration t and we want to find Ht such that f t(Ht) ≤ E[f t(Gt)]. Suppose
Pt is P as described above. If q is not a power of two (which is needed for the pairwise construction), replace
it with a power of two in the range [q, 2q). We can observe that for any H

Φ2p
S (H) ≥ Φp

S(H)/2 (7.3)

So with this replacement, we lose at most a two factor in the final bound for the potential function. Now,
we start to fix the bits of the random seed of Pt. Suppose we already fixed the first B bits of the random
seed R by b0, . . . , bB−1. Let ex = E[f(Gt+1) | R(0) = b0, . . . , R(B − 1) = bB−1, R(B) = x] for x ∈ {0, 1}. If
e0 ≤ e1, then we fix bB to zero. Otherwise, we fix it to one. Suppose all the ℓm bits are fixed and suppose
that the random variable Xi is vi ∈ {0, 1} when we set the random seed to b0 . . . bℓm−1. Then, we set Ht to
{i ∈ [n] | vi = 1}. We can easily observe that f t(Ht) ≤ E[f t(Gt)].

26

PRAMModel. We have all the ingredients for implementing the algorithm in the PRAMmodel. This leads
to the following theorem.

Theorem 7.9. There is a deterministic algorithm that solves the hitting set problem by finding a subset H
with Φp

S(H) ≤ 4 and with Õ(
∑N

i=1 |Si|) work and

O(⌈p∆⌉ · log 1/p · log2 n)

depth in the PRAMmodel. Moreover, there is a deterministic algorithm that finds a subset H with Φp
S(H) ≤ 8

and such that H hits all Sis with size greater than 10 logN/p. This algorithm runs with Õ(
∑N

i=1 |Si|) work
and

O(logN · log 1/p · log2 n)

depth in the PRAMmodel.

Proof. The first algorithm is based on Theorem 7.6 and the second algorithm is based on Corollary 7.7. In
those two algorithms, the potential function is upper bounded by 2 and 4. Here, we can only guarantee 4
and 8. This is because q, the sampling probability of one iteration, may not be a power of two. As discussed
before (see (7.3)), we can handle this issue by paying an extra factor two in the approximation factor. In one
iteration, we have O(log 1/p · logn) bit fixing. For each bit, we need to compute two conditional expectation

which takes O(log n) depth and O(log n ·
∑N

i=1 |Si|) work using Lemma 7.8. Multiplying the number of
iterations gives us the claimed bounds.

CONGESTModel. First, let us describe how the hitting set problem is represented in the distributed
model. Consider an (N + n)-node bipartite network G = (A ⊔ B,E) where A = [N] and B = [n]. A node
i ∈ A represents set Si and a node j ∈ B represents element j ∈ [n]. There is an edge between i ∈ A and
j ∈ B if and only of j ∈ Si. We assume that p, n, and τpS (or an upper bound of it) is known to all nodes.

To simulate global decision making, we use 3-separated network decomposition. We need to execute the
following operation fast: For an arbitrary color j, let C1, . . . , Cd be the set of clusters with color j in the
given 3-separated network decomposition. Suppose that each node v in C1 ∪ · · · ∪Cd knows a value av. For
each cluster Ci, we want to broadcast the value

∑
v∈Ci

av to all nodes in Ci. We denote the round complexity
of executing this operation for all clusters C1, . . . , Cd by T agg

ND .

Theorem 7.10. Given a Q-color 3-separated network decomposition with aggregation time T agg
ND (as described

above), there is a deterministic algorithm that solves the hitting set problem by finding a subset H with
Φp

S(H) ≤ 4 in
O(⌈p∆⌉ ·Q · log 1/p · logn · T agg

ND)

rounds of the CONGESTmodel. Moreover, there is a deterministic algorithm that finds a subset H with
Φp

S(H) ≤ 8 and such that H hits all Sis with size greater than 10 logN/p. This algorithm runs in

O(logN ·Q · log 1/p · logn · T agg
ND)

rounds of the CONGESTmodel.

Proof. We want to derandomize iteration t. In contrast to the PRAMmodel Theorem 7.9, in the CONGESTmodel,
we do not have global communication and so we cannot decide which bit should be fixed in a straightforward
way. However, we can simulate such global decision-making with network decomposition paying an extra
factor Q in the round complexity. For each cluster C, we independently draw a sample from the pairwise-
independent distribution P with bias q. Recall that the input graph is a bipartite graph G = (A ⊔ B,E).
These samples assign a binary value to each node of B. Observe that the assigned values are also pairwise
independent since the product of pairwise independent distributions is pairwise-independent. Now, to de-
randomize, we go through the colors one by one. Suppose we are working on color j ∈ [Q] with d clusters
C1, . . . , Cd. Moreover, suppose the first b bits of random seeds of C1, . . . , Cd are fixed. We fix the (b+ 1)-th
bit. Let us emphasize that each cluster has its own random seed and different clusters may fix the (b+1)-th
bit differently. Consider cluster Ci and a node v ∈ A that is either in Ci or is in the boundary of Ci (i.e.,
v is not in Ci but has a neighbor in Ci). So this node represents a set Sv in the corresponding hitting set

27

problem. We assign two values a0v and a1v to v where axv corresponds to the case when we fix the (b+ 1)-bit
of the random seed of Ci to x. Note that each neighbor of v represents an element of Sv. If v has a neighbor
in the clusters with color {1, . . . , j− 1} that is already decided to be in H (our final hitting set), then we set
axv to zero. So suppose this is not the case and let d be the number of neighbors of v that are not in Ci and
are in a cluster with color in {j + 1, . . . , Q}. Then, we set axv to

(1 +
(
d
2

)
q2 − dq) · F x

v · wve
−|Si|(T−t)p/T

τpS

where F b
v is

F x
v = E[1 +

∑

u∈Ci∩B:u∈Sv

∑

u∈Ci∩B:u∈Sv∧u<u′

XuXu′ −
∑

u∈Ci∩B:u∈Sv

Xu | first b bits and (b+ 1)-th bit is x]

where Xu represents the indicator random variable of element u. Note that the given network decomposition
is 3-separated and so all the boundaries of C1, . . . , Cd are disjoint. So v can compute F b

v in Õ(|Sv|) according
to Lemma 7.8. Also, note that that this gives us the contribution of Sv to

E[f t(·) | first b bits and (b+ 1)-th bit is x]

Next, for each element u ∈ Ai, set axu to

E[Xu | first b bits and (b+ 1)-th bit is x]

4np
.

In the end, for each cluster Ci, we compute two values exi for x ∈ {0, 1} which is

∑

v∈Ci∪(∂(Ci)∩B)

axv

where ∂(Ci) denotes the boundary of Ci. We broadcast ebi to each nodes in Ci. This can be done in O(T agg
ND)

rounds for all Cis simultaneously. Next, nodes of Ci set the (b+1)-bit of the random seed to zero if e0i ≤ e0i
and set it to one otherwise. This completes the bit fixing.

There are T sampling iterations (if we apply Theorem 7.6, T = ⌈p∆⌉, and if we apply Corollary 7.7,
T = O(logN)), Q colors, and O(log 1/p · log n) bits to fix for each color. Multiplying these numbers
gives us the number of bit fixing. Taking into account that fixing each bit takes O(T agg

ND) rounds of the
CONGESTmodel concludes the proof.

Corollary 7.11. There is a deterministic algorithm that solves the hitting set problem by finding a subset
H ⊆ [n] with Φp

S(H) = O(1) in poly(log n) rounds of the CONGESTmodel and with total computations

Õ(m).

Proof. There is a work-efficient deterministic algorithm for finding a 3-separated O(log n)-color network
decomposition in polylog(n) rounds and with T agg

ND = polylog(n)(see Theorem 2.12 of Rozhoň and Ghaf-
fari [RG20]). Plugging this bound in Theorem 7.10 concludes the proof.

8 Applications of Hitting Set

In this section, we discuss two applications of the hitting set problem. One is the distributed construction of
multiplicative spanners and the other is the parallel construction of distance oracles. Let us quickly define
these notions. A subgraph H = (V,E′) ⊆ G = (V,E) is an α-spanner of G if for all pairs of nodes u, v ∈ V ,
we have:

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v).

A distance oracle is a data structure that accepts a pair of nodes (u, v) as a query and returns their distance
in G. In Section 8.2, we discuss source-restricted approximate distance oracle in which s nodes of G are
marked as source and it is guaranteed that u is always a source. The term “approximate” allows the oracle
to return an approximation of dG(u, v) rather than its exact value.

28

8.1 Spanners

Theorem 8.1. There is deterministic algorithm in poly(logn) rounds of the CONGESTmodel and with total

computations Õ(m) that finds a (2k − 1)-spanner with O(nk + n1+1/k log k) and O(nk + n1+1/kk) edges for
unweighted and weighted graphs, respectively.

Proof. We derandomize Baswana-Sen algorithm [BS07]. Let us quickly recall this algorithm. It consists of
k steps. The input of step i is a clustering denoted by Ci. Each cluster has a center node known to all of its
members. The input of the first step is the trivial clustering: there are n clusters each containing a single
node. During one step, we sample some of the clusters, and then based on that sampling, some nodes stay in
their clusters, some get unclustered, and some join other clusters. After this, the current step i terminates,
and the new clustering Ci+1 is passed to the next step. Here is what we do in step i for i ≤ k− 1 (we discuss
the last step, i equals k, later):

1. Each cluster of Ci is sampled with probability p = n−1/k.

2. A node that is in a sampled cluster, stays put in its own cluster.

3. For a node v in an unsampled cluster, let C1, . . . , Cd be the set of clusters containing at least one
neighbor of v. Let ei = {ui ∈ Ci, v} be an edge with the minimum weight between v and one of the
nodes in Ci. If there are several edges with the minimum weight, v selects one of them arbitrarily. Let
wi be the weight of ei. Without loss of generality, suppose w1 ≤ · · · ≤ wd. If all of C1, . . . , Cd are
unsampled, v adds all edges e1, . . . , ed to the output spanner and gets unclustered. Otherwise, let j be
the minimum index for which Cj is sampled. Then, v adds e1, . . . , ej to the output spanner and joins
the sampled cluster Cj . Note that all such v runs this step simultaneously.

In the last step, we do the exact same thing except that we sample no cluster (each cluster is sampled with
probability zero rather than n−1/k).

The output of Baswana-Sen is always a (2k− 1)-spanner and only the size of the output depends on the
randomness. From the algorithm description, you can see that the only randomized part of the Baswana-
Sen algorithm is the sampling of clusters. Our goal is to find the set of sampled clusters of each step
deterministically. If we have the following properties on the set of sampled clusters, then we can guarantee
the claimed bounds on the size of the output spanner (see [BEG+22], Lemma 3.3):

(a) For each i, the number of clusters in Ci is at most n1−(i−1)/k.

(b) The number of edges added to the output spanner is bounded as follows: For the unweighted case, the
total number of edges added by nodes with at least γ1n

1/k log k neighboring clusters for a large enough
constant γ1 > 0 is at most O(n1+1/k/k). For the weighted case, all nodes add at most O(n1+1/k) edges
to the output.

(c) A node that is clustered in Ci, remains clustered if it has at least γ2n
1/k logn neighbouring clusters for

a large enough constant γ2 > 0.

We can frame these properties as a hitting set problem. To avoid cluttering the notation, we refer to the
universe size in the corresponding hitting set problem of step i by nh

i and its number of sets by Nh
i . In

step i, we have the following hitting set problem: There is an element in the universe for each cluster in
Ci. So nh

i = |Ci| ≤ n. For each clustered node v in Ci, there is a set Sv containing all of its neighboring
clusters. So Nh

i ≤ n. The parameter p for the hitting set problem is set to the sampling probability of
Baswana-Sen divided by a large enough constant γ3 > 0, i.e., p = n−1/k/γ3 (note that the last step is
already deterministic and no derandomization is needed there). For unweighted graphs, we set the weight
of Sv to its size wv = |Sv|. For weighted graphs, we consider the hitting ordered set problem as discussed
in Lemma 7.2. For each clustered node v, we assign the order πv(·) on Sv. Suppose that the neighboring
clusters of v are C1, . . . , Cd and the minimum weight of an edge between Ci and v is wi. Then Ci comes
before Cj in πv(·) if wi < wj or wi = wj and i < j.

With straightforward calculations, we can see that all the three required properties are satisfied if we
solve the presented hitting set problem with Corollary 7.11 (for the hitting ordered set problem, we first use
the reduction Lemma 7.2).

29

We have k ≤ logn steps in total. As described above, each step can be derandomized by solving a hitting
set problem. So the total round complexity is poly(log n) by applying Corollary 7.11. One issue here is
that each element in the defined hitting set problem corresponds to a cluster. This issue can be handled by
contracting each cluster to a node and using the fact that the network decomposition of [RG20] also works
on contracted graphs. This slows down the round complexity only by a factor k = O(log n) as each cluster
has diameter k.

Theorem 8.2. For any ε > 0, there is deterministic distributed algorithm in poly(logn)/ε rounds of the

CONGESTmodel and with total computations Õ(m) that finds a spanner with size n(1 + ε) and with stretch
O(log n · 2log

∗ n/ε) and O(log n · 4log
∗ n/ε) stretch for unweighted and weighted graphs, respectively.

Proof. We derandomize the algorithm of Pettie [Pet10] to get a spanner with O(n) edges and with stretch
O(log n · 2log

∗ n) and O(log n · 4log
∗

n) for unweighted and weighted graphs, respectively. Pettie’s algorithm is
combining O(log∗ n) application of Baswana-Sen back to back and the hitting set problem we encounter in
Pettie’s algorithm, is exactly the same as the Baswna-Sen. So we do not repeat this here. We refer interested
readers to Theorem 1.5 of [BEG+22] where the full algorithm and a slower derandomized version of it is
discussed. Let us note that the original algorithm of Pettie only works for unweighted graphs, but with a
simple modification which is proposed in [BEG+22], it can work on weighted graphs as well. To reduce the
number of edges from O(n) to n(1+ε), we apply the deterministic reduction of [BEG+22], Theorem 1.2.

8.2 Approximate Distance Oracles

This section is devoted to the parallel implementation of the approximate distance oracle by Roditty, Thorup,
and Zwick [RTZ05]. There, given a weighted graph G = (V,E), a stretch parameter k, and a set of s sources

S ⊆ V , they deterministically construct a data structure of size O(kns1/k) and in Õ(ms1/k) time. For a
query (u, v), the data structure can compute a value q such that

d(u, v) ≤ q ≤ (2k − 1)d(u, v)

in O(k) time. See Algorithm 4 for their algorithm for constructing the data structure and Algorithm 5 for
how they evaluate a query.

Algorithm 4 Approximate Distance Oracle [RTZ05]

1: procedure DistOracle(G, k)
2: A0 = S,Ak = ∅.
3: ℓ = 10s1/k logn.
4: for i = 1, . . . , k − 1 do
5: For each v ∈ V , find pi(v) ∈ Ai−1 such that d(pi(v), v) = d(Ai−1, v).
6: For every v ∈ V , compute Ni−1(v) which is the set of ℓ closest nodes to v in Ai−1.
7: Find a set Ai ⊆ Ai−1 such that:

(a) |Ai| ≤ s1−i/k.
(b) Ai hits Ni−1(v) for all v ∈ V.
(c)
∑

v∈V |{w ∈ Ai−1 −Ai | d(w, v) < d(Ai, v)}| = O(ns1/k).

8: For each v ∈ V , compute pk−1(v).
9: For every v ∈ V , set B(v) = Ak−1.

10: for i = 0, . . . , k − 2 do
11: For every v ∈ V , set B(v) = B(v) ∪ {w ∈ Ni(v) | d(w, v) < d(Ai+1, v)}.

12: For each v ∈ V , create a hash table H(v) with an entry (v, d(v, w)) for each w ∈ B(v).

Theorem 8.3. Given an undirected weighted graph G = (V,E), a set of s sources S ⊆ V , stretch parameter
k, and error ε > 0, there is a deterministic algorithm that solves the source-restricted distance oracle problem
with Õε(ms1/k) work and Õε(poly(logn)) depth in the PRAMmodel. The data structure has size O(nks1/k)
and for each query (u, v), the oracle can return a value q in O(k) time that satisfies

d(u, v) ≤ q ≤ (2k − 1)(1 + ε)d(u, v).

30

Algorithm 5 Evaluating a query [RTZ05]

1: procedure Query(u ∈ S,v)
2: w = u, i = 0.
3: while w 6∈ B(v) do
4: i = i+ 1.
5: (u, v)← (v, u).
6: w ← pi(u)

return d(w, u) + d(w, v)

Proof. It is enough to provide a parallel algorithm with Õε(poly(logn)) depth for computing Ai, Ni(·), and
the hash table. This gives us all the ingredients we need to run the algorithm.

Note that finding a suitable Ai in Algorithm 4 is just an instance of hitting ordered set problem and we
can apply Lemma 7.2 and Corollary 7.7. The universe is Ai−1 and for each v ∈ V , we want to hit the set
Ni−1(v). We also need to determine πi,v(·). An element w comes before w′ in this order if d(w, v) < d(w′, v).
If the distances are equal, we break the tie based on the identifier of w and w′. If we set the sampling
probability to p = s−1/k/γ for a large enough constant γ > 0 (indeed γ = 24 is enough), then we can

compute a suitable Ai satisfying all the three required properties with Õ(m) work and Oε(poly(log n)) depth
in the PRAMmodel using Theorem 7.9 and the reduction Lemma 7.2.

In [RTZ05], they compute Ni(·) by running ℓ instances of Single Source Shortest Path problem (SSSP).
There is no known parallel algorithm for SSSP with poly-logarithmic depth. However, recently, Rozhoň et
al. [RGH+22] proposed a work-efficient algorithm for computing (1 + ε)-approximation of SSSP with poly-
logarithmic depth. We can replace the exact computation with an approximation, losing (1 + ε) in the final
stretch guarantee.

For computing the hash tables, we can apply the construction of Alon and Naor [AN96]. There, they
provide a deterministic hash table of t elements into O(t) space with read access of O(1) time. While they
did not discuss the parallel implementation of their construction, their algorithm can be implemented in
poly(logn) depth in a straightforward way. Their approach is derandomizing a randomized hash function
using the method of conditional expectation on epsilon-biased spaces. They define a potential function (see
section 3.1. of [AN96]) which is a simple aggregation and can be parallelized. We do not discuss the full
details as the implementation is straightforward.

31

Acknowledgments

M.G., C.G., S.I., and V.R. were supported in part by the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation program (grant agreement No. 853109) and the Swiss
National Science Foundation (project grant 200021_184735). B.H. was supported in part by NSF grants
CCF-1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan Research Fellowship, funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and in-
novation program (grant agreement 949272), and the Swiss National Science Foundation (project grant
200021_184735).

References

[ABCP96] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast network decompositions and covers. J. of
Parallel and Distributed Computing, 39(2):105–114, 1996.

[AGLP89] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality
in distributed computation. In Proc. 30th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 364–369, 1989.

[AN96] Noga Alon and Moni Naor. Derandomization, witnesses for boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16(4):434–449, 1996.

[AP90] B. Awerbuch and D. Peleg. Sparse partitions. In Proc. 31st IEEE Symp. on Foundations of
Computer Science (FOCS), pages 503–513, 1990.

[BE13] L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent Develop-
ments. Morgan & Claypool Publishers, 2013.

[BEG+22] Marcel Bezdrighin, Michael Elkin, Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler,
Saeed Ilchi, and Václav Rozhoň. Deterministic distributed sparse and ultra-sparse spanners and
connectivity certificates. arXiv preprint arXiv:2204.14086, 2022.

[BRS89] Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms for set cover with
applications to learning and geometry. In Foundations of Computer Science, 1989., 30th Annual
Symposium on, pages 54–59. IEEE, 1989.

[BS07] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for com-
puting sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563,
2007.

[CG21] Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing, pages 273–281, 2021.

[EHRG22] Michael Elkin, Bernhard Haeupler, Václav Rozhoň, and Christoph Grunau. Deterministic low-
diameter decompositions for weighted graphs and distributed and parallel applications. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages to appear,
arXiv:2204.08254, 2022.

[EN16] M. Elkin and O. Neiman. Distributed strong diameter network decomposition. In Proc. 35th
ACM Symp. on Principles of Distributed Computing (PODC), pages 211–216, 2016.

[FGG+22] Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhoň. Local
distributed rounding: Generalized to mis, matching, set cover, and beyond. In Manuscript, page
to appear, 2022.

[GGR21] M. Ghaffari, C. Grunau, and V. Rozhon. Improved deterministic network decomposition. In
Proc. 33rd ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2904–2923, 2021.

32

[GHK18] M. Ghaffari, D. Harris, and F. Kuhn. On derandomizing local distributed algorithms. In Pro-
ceedings of the Symposium on Foundations of Computer Science (FOCS), pages 662–673, 2018.

[GK18] Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In 32nd International Symposium on Distributed Computing (DISC
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[GK21] M. Ghaffari and F. Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and without
network decomposition. In Proc. 62nd IEEE Symp. on Foundations of Computer Science (FOCS),
pages 1009–1020, 2021.

[GKM17] M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph problems. In
Proc. 49th ACM Symp. on Theory of Computing (STOC), pages 784–797, 2017.

[GY20] Parikshit Gopalan and Amir Yehudayoff. Concentration for limited independence via inequalities
for the elementary symmetric polynomials. Theory of Computing, 16(1):1–29, 2020.

[Lin92] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–201,
1992.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal
on Computing, 15:1036–1053, 1986.

[Lub93] M. Luby. Removing randomness in parallel computation without a processor penalty. J. of
Computer and System Sciences, 47(2):250–286, 1993.

[MPX13] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms
and architectures, pages 196–203, 2013.

[NS95] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

[Pel00] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[Pet10] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distributed
Computing, 22(3):147–166, 2010.

[PS92] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network decom-
position problems. In Proc. 24th ACM Symp. on Theory of Computing (STOC), pages 581–592,
1992.

[PY18] Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. In 32nd Inter-
national Symposium on Distributed Computing, page 3, 2018.

[RG20] V. Rozhoň and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and
distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC),
pages 350–363, 2020.

[RGH+22] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected
1 + ε-shortest paths via minor-aggregates: Near-optimal deterministic parallel & distributed
algorithms. arXiv preprint arXiv:2204.05874, 2022.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate dis-
tance oracles and spanners. In International Colloquium on Automata, Languages, and Program-
ming, pages 261–272. Springer, 2005.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

33

	1 Introduction
	1.1 Network Decomposition
	1.2 Hitting Set

	2 Preliminaries
	3 Improved Network Decomposition, Outline
	4 Low-Degree Clustering
	4.1 Computing Delays
	4.2 Algorithm Ai,j via Local Derandomization

	5 From Low-Degree Clusters to Isolated Clusters
	6 Clustering More Nodes
	7 Hitting Set
	7.1 Problem Definition
	7.2 Iterative Sampling
	7.3 Implementation

	8 Applications of Hitting Set
	8.1 Spanners
	8.2 Approximate Distance Oracles

