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Abstract

We show fast deterministic algorithms for fundamental problems on forests in
the challenging low-space regime of the well-known Massive Parallel Computa-
tion (MPC) model. A recent breakthrough result by Coy and Czumaj [STOC’22]
shows that, in this setting, it is possible to deterministically identify connected
components on graphs in O(logD+log log n) rounds, where D is the diameter of
the graph and n the number of nodes. The authors left open a major question:
is it possible to get rid of the additive log logn factor and deterministically
identify connected components in a runtime that is completely independent of n?

We answer the above question in the affirmative in the case of forests. We give
an algorithm that identifies connected components in O(logD) deterministic
rounds. The total memory required is O(n+m) words, where m is the number
of edges in the input graph, which is optimal as it is only enough to store
the input graph. We complement our upper bound results by showing that
Ω(logD) time is necessary even for component-unstable algorithms, conditioned
on the widely believed 1 vs. 2 cycles conjecture. Our techniques also yield a de-
terministic forest-rooting algorithm with the same runtime and memory bounds.

Furthermore, we consider Locally Checkable Labeling problems (LCLs), whose
solution can be verified by checking the O(1)-radius neighborhood of each node.
We show that any LCL problem on forests can be solved in O(logD) rounds
with a canonical deterministic algorithm, improving over the O(log n) runtime
of Brandt, Latypov and Uitto [DISC’21]. We also show that there is no algorithm
that solves all LCL problems on trees asymptotically faster.
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1 Introduction

Graphs offer a versatile abstraction to relational data and there is a growing demand for pro-
cessing graphs at scale. One of the most central graph problems in massive graph processing
is the detection of connected components of the input graph. This problem both captures
challenges in the study of the fundamentals of parallel computing and has a variety of practical
applications. In this work, we introduce new parallel techniques for finding connected compo-
nents of a graph. Furthermore, we show that our techniques can be applied to solve a broad
family of other central graph problems.

The Massively Parallel Computation (MPC) model [KSV10] is a mathematical abstraction
of modern frameworks of parallel computing such as Hadoop [Whi09], Spark [ZCF+10], MapRe-
duce [DG08], and Dryad [IBY+07]. In the MPC model, we haveM machines that communicate
in synchronous rounds. In each round, every machine receives the messages sent in the previous
round, performs (arbitrary) local computations, and is allowed to send messages to any other
machine. Initially, an input graph of n nodes and m edges is distributed among the machines.
At the end of the computation, each machine needs to know the output of each node it holds,
e.g., the identifier of its connected component. We work in the low-space regime, where the
local memory S of each machines is limited to nδ words of O(log n) bits, where 0 < δ < 1. A
word is enough to store a node or a machine identifier from a polynomial (in n) domain. The
local memory restricts the amount of data a machine initially holds and is allowed to send and
receive per round. Furthermore, we focus on the most restricted case of linear total memory,
i.e., S ·M = Θ(n+m). Notice that Ω(n+m) words are required to store the input graph.

In recent years, identifying connected components of a graph has gained a lot of attention.
As a baseline, the widely believed 1 vs. 2 cycles conjecture states that it takes Ω(log n) rounds
to tell whether the input graph is a cycle of n nodes or two cycles with n/2 nodes [RVW18,
GKU19, BDE+19]. We note that proving any unconditional lower bounds seems out of reach as
any non-constant lower bound in the low-space MPC model for any problem in P would imply
a separation between NC1 and P [RVW18]. It has been shown that this conjecture also implies
conditional hardness of detecting connected components in time o(logD) on the family graphs
with diameter at most D [BDE+19, CC22].

This bound has been almost matched in a sequence of works. First, a randomized O(logD ·
log logm/n n) time algorithm was designed in [ASS+18]. This was further improved to O(logD+
log logm/n n) in [BDE+19] and derandomized with the same asymptotic runtime in [CC22]. All
of the aforementioned algorithms require only O(n+m) words of global memory. A fundamental
question is whether the runtime necessarily depends on n for some range of m; we give evidence
towards a negative answer. We show that in the case of forests, we can identify the connected
components of a graph in O(logD) time, which we show to be optimal under the 1 vs. 2 cycles
conjecture.

Connected Components on Forests. Consider the family of forests with component-
wise maximum diameter D. There is a deterministic low-space MPC algorithm to find the
connected components in time O(logD). The algorithm uses O(n + m) global memory.
Under the 1 vs. 2 cycles conjecture, this is optimal.
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Sparsification and Dependence on n. In previous works on connected components, the
algorithms have an inherent dependency on the total number of nodes n in the input graph.
There is a technical reason for this dependency, also in the context of problems beyond
connected components. A common algorithm design pattern is to first sparsify the input
graph, i.e., the graph is made much smaller and the problem is solved in the sparser in-
stance [ASS+18, GU19, CDP21, CDP20]. Then, it is shown that a solution to the original
input can be recovered from a solution on the sparsified graph. As an example, a method to
sparsify graphs for connectivity is to perform node/edge contractions, that make the graph
smaller and preserve connectivity.

In this pattern, the denser the input graph is, the more global memory the algorithm has on
the sparsified graph, relatively speaking. In the aforementioned previous works, the base m/n
of the logarithm can be replaced by F/n, where F is the global memory. Hence, if F = n1+Ω(1),
the dependency on n disappears. This suggests that the hardest instances are sparse graphs, as
the n dependency in the runtime of O(logD+log logF/n n) becomes better the larger the global
memory F is. A limitation to solving connected components through independent node/edge
contractions comes from the global memory bound. If the graph is already sparse, then the
sparsification cannot make the graph any sparser, and hence we do not have an advantage in
terms of global memory on the sparsified graph. In the case that m = O(n) and the global
memory is linear in n, the best we could hope for in the first round of contractions is to drop a
constant fraction of the nodes. The low-level details for the reasons behind this can be extracted
from the analysis of [ASS+18, GU19, CDP21, CDP20]. Through the relative increase in global
memory, the (remainder) graph size can be bounded by n ·2−2i in the ith round of contractions,
which leads to an Ω(log logn) runtime.

In previous works, there is even more evidence towards sparse graphs being the hardest
instances. Recently, it was shown that lower bound results from the LOCAL model of distributed
message passing can be lifted to MPC under certain conditions [GKU19, CDP21]. In the LOCAL
model, almost all hardness results are obtained on trees or in high-girth graphs, implying lower
bounds on forests with potentially many connected components [KMW16, BBH+21, BBKO21,
BBO22, BBKO22, BGKO22]. It was shown that a component-stable algorithm cannot solve a
problem π faster than in O(log T (n,∆)), where T (n,∆) is the complexity of π in the LOCAL
model2 on a graph with n nodes and maximum degree ∆. Roughly speaking, an MPC algorithm
is component-stable if the output on each node u only depends on the size of the graph and the
connected component of u (see Definition 5.8 for more details [CDP21]). While these methods
do not yield unconditional hardness in the MPC model, we face similar difficulties in sparse
graphs in the MPC model as in the message passing models.

Rooted Forests and Applications to Locally Checkable Problems. We believe that
our technique to obtain connected components is of interest beyond solving the connectivity
problem. For example, through minor adjustments to our technique, we obtain an algorithm
that roots an (unrooted) input forest. Furthermore, we show that in a rooted tree, all Locally
Checkable Labeling (LCL) problems can be solved very efficiently through a canonical algorithm.
This generalizes to forests and gives an algorithm that can be executed on each connected
component independently of the other components.

2The LOCAL algorithm is allowed to access shared randomness.
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Locally Checkable Labelings on Forests. On the family of forests with component-
wise maximum diameter D, all LCL problems can be solved deterministically in O(logD)
time in the low-space MPC model with O(n+m) global memory. Under the 1 vs. 2 cycles
conjecture, this is optimal.

A range of central graph problems, in particular in the area of parallel and distributed
computing, are locally checkable, where the correctness of the whole solution can be verified
by checking the partial solution around the local neighborhood of each node. In particular, the
class of LCL problems consists of problems with a finite set of outputs per node/edge and a
finite set of locally feasible solutions (see Definition 6.2), and includes fundamental problems
such as MIS, node/edge-coloring and the algorithmic Lovász Local Lemma (LLL). Our work
shows that any LCL problem can be solved in O(logD) time and that the same runtime can
be obtained for many problems that are not restricted to finite descriptions. We complement
our results by showing that for LCL problems, this bound is tight under the 1 vs. 2 cycles
conjecture.

In recent works, the complexity of LCLs in MPC was compared against locality [BLU21,
BBF+22], where locality refers to the round complexity of solving an LCL in the LOCAL model,
as a function of n. It was shown that all LCLs on trees can be solved exponentially faster in
MPC as compared to LOCAL. As a consequence, all LCLs on trees can be solved in O(log n)
rounds in the low-regime MPC model. We note that it is often the case that the diameter
of a graph is small, potentially much smaller than the locality of a certain graph problem
(which is independent of the diameter). Hence, our novel technique significantly improves on
the state-of-the-art runtimes for various graph problems in a broad family of graphs.

1.1 Our Contributions

Our main contribution is an algorithm that deterministically detects the connected components
of a forest in time logarithmic on the maximum component-wise diameter; crucially, indepen-
dent of the size n of the input graph, whose dependence is inherently present in the techniques
used in previous works. We also show that our approach is asymptotically optimal under the
1 vs. 2 cycles conjecture. Next, we present our results more formally.

Theorem 1.1 (Connected Components). Consider the family of forests. There is a deter-
ministic low-space MPC algorithm to detect the connected components on this family of graphs.
In particular, each node learns the maximum ID of its component. The algorithms runs in
O(logD) rounds, where D is the maximum diameter of any component. The algorithm requires
O(n + m) words of global memory, it is component-stable, and it does not need to know D.
Under the 1 vs. 2 cycles conjecture, the runtime is asymptotically optimal.

The techniques for Theorem 1.1 can be extended to also obtain a rooted forest, where each
node also knows the ID of the corresponding root.

Theorem 1.2 (Rooting). Consider the family of forests with component-wise maximum diam-
eter D. There is a deterministic low-space MPC algorithm that roots the forest in O(logD)
rounds using O(n+m) words of global memory, and it is component-stable.
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The rooting of the input forest gives us a handle for easier algorithm design and memory
allocation in low-space MPC. As a concrete example, our results yield an O(logD) algorithm for
deterministically 2-coloring forests. Without going into technical details, this can be achieved
through a rather simple algorithm, where each node decides its color based on the parity of its
distance to the root, and only needs to keep one pointer in memory for the parity counting. In a
sense, we outsource the tedious implementation details to the rooting algorithm in Theorem 1.2
and obtain a convenient tool for algorithm design.

More broadly, we show how to solve any LCL problem in rooted forests in O(logD) determin-
istic rounds. LCLs have gotten ample attention in various distributed models of computation,
e.g., [BLU21, BCM+21, BHK+18, CKP19, CP19]. Roughly speaking, the family of LCLs is a
subset of the problems for which we can check if a given solution is correct by inspecting the
constant radius neighborhood of each node. (see Definition 6.2 for a formal definition of LCLs).
Furthermore, we show that for any fixed D ∈ Ω(log n) and D ∈ no(1), there cannot exist an
algorithm that solves all LCL problems in time o(logD) in the family of unrooted forests of
diameter at most D. This holds even if poly(n) global memory is allowed.

Theorem 1.3 (LCLs on trees, simplified). Consider an LCL problem Π on forests and let D
be the component-wise maximum diameter. There is a deterministic low-space MPC algorithm
that solves Π in O(logD) rounds using O(n + m) words of global memory. Under the 1 vs. 2
cycles conjecture, the runtime is asymptotically optimal.

1.2 Challenges and Techniques

A canonical approach to solve connected components on forests is to root each tree and identify
each tree with the ID of the root. Also, examining the challenges in rooting demonstrates the
challenges we face when identifying connected components. A natural approach to root a tree
is to iteratively perform rake operations, i.e., pick all the leaves of the tree and each leaf picks
the unique neighbor as its parent. This approach clearly roots a tree in O(D) parallel rounds
and furthermore, in the case of a forest, each tree performs its rooting process independently.
If we ignore the memory considerations in the low-space MPC model, this process could be
implemented in O(logD) rounds using the graph exponentiation technique, where, in O(logD)
rounds, every node gathers their D-hop neighborhoods, i.e., the whole graph, to simulate the
process fast. However, when we limit the global memory to O(n+m), we get into trouble. A
simulation through graph exponentiation requires that all nodes iteratively gather larger and
larger neighborhoods simultaneously. With the strict memory bound, this implies that a node
can only gather a constant radius neighborhood (and in non-constant degree graphs that we
deal with even that is not possible!), which allows only for simulating a constant number of
rake-iterations in one MPC round.

A hope towards a more efficient approach is to show that the amount of total memory
relative to the nodes remaining in the graph increases as we rake the graph (similarly to
previous work [ASS+18, BDE+19, CDP21]). If one can reduce the size of the graph by a
constant factor in each MPC round, then the available total memory increases by a constant
factor per remaining node. Then, we can gather a slightly larger neighborhood per node in
the next step of the simulation. However, even if we had this guarantee, the best we could
hope for is a runtime that depends on n, since this approach relies on a progress measure that
depends on shrinking the graph. Informally speaking, this observation says that we need to
have a fundamentally different approach than gradually sparsifying the graph.
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Balanced Exponentiation. One of our main technical contributions is to introduce a new
method to gather a part of the neighborhood of each node that is balanced in the following
sense. Suppose, for the sake of argument, that we have a rooted tree. Then, if a node u has, say,
γ descendants, we ensure that u will only gather O(γ) nodes in the direction of the root, i.e., the
direction opposing its descendants. Furthermore, it will also gather its γ descendants, resulting
in a memory demand of O(γ) (for u). A crucial step in our analysis is to show that even if
each node gathered their γ descendants and O(γ) nodes in the direction of the root, we do not
create too much redundancy and we respect the linear total memory bound. A key technical
challenge here is that there is no way for a node to know who are its descendants (because the
input graph is unrooted). We show that, without an asymptotic loss in the runtime, we can
deterministically determine which neighbor of u is the worst case for a choice of a parent and
gather the respective nodes slower.

Progress Measure. As mentioned above, to obtain a runtime independent of n, we need to
avoid arguments that are based on the size of the graph getting smaller during the execution of
our algorithm. The topology gathering through exponentiation can be seen as creating a virtual
graph, where a virtual edge {u, v} corresponds to the fact that u knows how to reach v and
vise versa. The base of our progress measure is to aim to show that in this virtual graph, the
diameter is reduced by a constant factor in each iteration. Unfortunately, having this type of
guarantee seems too good to be true. Already on a path, it requires too much memory to create
a virtual graph where the distances between all pairs of nodes are reduced. Our contribution
is to show that this example is degenerate in the sense that either we can guarantee that the
balanced exponentiation reduces the diameter or we can reduce it through a node-contraction
type of operation.

1.3 Further Related Work

In relation to our work, previous works have studied finding rooted spanning forests. In [BFU19,
ASS+18], O(logD · log log n) algorithms for rooting were given and the runtime was improved
to O(logD + log log n) by [CC22].

Locally checkable problems have been intensively studied in the MPC model. Many classic
algorithms from PRAM imply MPC algorithms with the same runtime, e.g., the MIS, maximal
matching and coloring [Lub86, ABI86]. The runtime of such simulations are typically polyloga-
rithmic and, in MPC, the aim is to obtain something significantly faster. For MIS and maximal
matching, there are Õ(

√
log ∆+log log log n) time algorithms [GU19] and (∆+1)-node-coloring

can be solved in O(log log log n) rounds, even deterministically [CFG+19, CDP21].
Many of the current state-of-the-art algorithms for locally checkable problems are (at least

to some degree) based on distributed message-passing algorithms. The common design pattern
is to design a message-passing algorithm, for example in the LOCAL model of distributed com-
puting [Lin92] where the output of each node is decided according to their t-hop neighborhood
in t-rounds. These algorithms are then implemented faster in the MPC model through the
graph exponentiation technique [LW10] that, in the ideal case, collects the t-hop ball around
each node in O(log t)-rounds. This framework was used to obtain an exponential speedup for
many locally checkable problems in general, and in particular, it was used recently to show that
all LCL problems on trees with t-round complexity in LOCAL can be solved in O(log t) MPC
rounds [BLU21, BBF+22]. Our work broadens our understanding on the complexities of LCLs
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as a function of the diameter, which is somewhat orthogonal to previous works.
On a technical level, a related work gave a clever approach to encode the feasible outputs

around each node into a constant sized type of the node [CP19]. Given a rooted tree, the type
of a node u (or its subtree) is determined through the set of possible outputs of its descendants.
This encoding gives rise to an efficient convergecast protocol, where the root learns its type
and effectively broadcasts a valid global solution to the rest of the tree. In a recent work,
related techniques were used to implement a message passing algorithm for LCLs on trees using
small messages [BCM+21]. In our work, we employ similar ideas to aggregate and broadcast
information efficiently through the input tree.

Lower Bounds. While simulating LOCAL message passing algorithms in MPC has been fruit-
ful in algorithm design, there is an inherent limitation to this approach. A naïve implementation
results in a component-stable algorithm, where we can show that the simulation cannot be more
than exponentially faster than the message passing algorithm [GKU19, CDP21]. An algorithm
is said to be component-stable if the output on node v depends (deterministically) only on the
topology, the input of the nodes, and the IDs of the nodes in the connected component of
v. Furthermore, the output is allowed to depend on the number of nodes n, the maximum
degree ∆ of the input graph, and in case of randomized algorithms, the output can depend on
shared randomness. It was shown that for component-stable algorithms and under the 1 vs. 2
cycles conjecture, Ω(log t) rounds cannot be beaten if t is a lower bound on the complexity of
the given problem in the LOCAL model. We emphasize that our lower bounds also work for
component-unstable algorithms (still relying on the 1 vs. 2 cycles conjecture).

2 Overview, Roadmap and Notation

Our formal results are presented in Sections 4 to 7. In Section 3, we present the core techniques
of our algorithm. The formal version of this algorithm appears in Section 4.

Section 4: This section contains the most involved part of our work, i.e., an algorithm that
lets every node of an input tree output the maximum identifier of the tree. On a tree G, our
algorithm runs in O(log D̂) rounds and uses global memory O((n+m)·D̂3) where the parameter
D̂ ∈ [diam(G), nδ/8] needs to be known to the algorithm. This sounds like a foolish approach,
as this problem can be trivially solved in O(1) rounds if we were really given a single tree as
input. We still chose to present our result in this way, as our seemingly naïve algorithm is the
core of our connected components algorithm that we present in Section 5.

Section 5: In fact, we show that our algorithm can be correctly extended to forests. Note that
if every node knows the maximum identifier of its tree, we automatically solve the connected
components problem. In this section, we also show how to remove the requirement of knowing D̂
via doubly exponentially increasing guesses for D̂. We also show that we can reduce the overall
memory requirement to O(n + m) by preprocessing the graph, that is, we spend additional
O(log D̂) rounds to reduce the size of the graph by a factor D̂3. Lastly, we show that the
runtime reduces to O(log maxi{Di}) where Di is the diameter of the i-th component of the
input graph. In this section, we also present the full proof of our connected components
algorithm (Theorem 1.1) and our rooting algorithm (Theorem 1.2).
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Section 6: In this section, we show a nice application of our rooting algorithm from Theo-
rem 1.2. In particular, we show that any LCL problem can be solved in just O(logD) rounds,
once each tree of the forest is rooted (Theorem 1.3).

Our approach has a dynamic programming flavor and we explain it for a single tree of the
forest. We iteratively reduce the size of the tree, by compressing small subtrees into single
nodes, and paths into single edges. While performing these compressions, we set additional
constraints on the solution allowed on the nodes into which we compress subtrees, and on the
edges that represent compressed paths. We maintain the invariant that, if we obtain a solution
in the smaller tree, then it can be extended to the original one. We show that, by performing
a constant number of compression steps, we obtain a tree that is comprised of a single node,
where it is straightforward to compute a solution. We then perform the same operations in
the reverse order, in order to extend the solution to the whole tree. All of this is preceded by
using Theorem 1.2 to compute a rooting of the tree/forest. The rooting helps, as with a given
rooting it is significantly easier to identify the suitable subtrees to compress without breaking
memory bounds.

Section 7: In this section, we show that the runtimes of our algorithms are tight, conditioned
on the widely believed 1 vs. 2 cycles conjecture. Our aim is to use a reduction from the 1 vs.
2 cycles problem to solving connectivity on paths. In previous work [GKU19], a reduction
to connectivity on paths was introduced, but for technical reasons, it is not sufficient for our
purposes. We require a guarantee that each path is of bounded diameter, which is not directly
guaranteed by the previous work. Hence, we start by defining a problem on forests, called D-
diameter s-t path-connectivity, for which we can prove conditional hardness. By a reduction,
we obtain a conditional lower bound of Ω(logD) for the connected components problem.

We then define an LCL problem such that, given an algorithm for it, we can use it to solve
the D-diameter s-t path-connectivity problem. Hence, we obtain a lower bound of Ω(logD) for
the problem, implying that our generic LCL solver is also conditionally tight.

2.1 Definitions and Notation

Given a graph G = (V,E), we denote with ∆ the maximum degree of G, with n = |V | the
number of nodes in G, and with m = |E| the number of edges in G. We denote with NG(v)
the neighbors of v, that is, the set {u | {u, v} ∈ E}. We denote with degG(v) the degree of
a node v, that is, the number of neighbors of v in G. If G is clear from the context, we may
omit G and simply write N(v) and deg(v). If G is a directed graph, we denote with deg(v)
the degree of v in the undirected version of G, and with degin(v) and degout(v) its indegree
and its outdegree, respectively. We define distG(u, v) as the hop-distance between u and v
in G. Again, we may omit G if it is clear from the context. The radius-r neighborhood of a
node v is the subgraph Gr(v) = (Vr(v), Er(v)), where Vr(v) = {u ∈ V : dist(u, v) ≤ r}, and
Er(v) = {(u,w) ∈ E : dist(v, u) ≤ r and dist(v, w) ≤ r}. Also, we denote with Gk the k-th
power of G, that is, a graph containing the same nodes of G, where we connect two nodes u
and v (u 6= v) if and only if they satisfy distG(u, v) ≤ k. The eccentricity of a node v in a graph
G is the maximum of {dist(u, v) | u ∈ V }.
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Figure 1: Light nodes are green and heavy nodes are gray.

3 The MAX-ID Problem: Overview and Techniques

In this section, we present the core techniques of our specialized algorithm for solving the MAX-
ID problem, that is the core ingredient for solving connected components on forests (upper
bound of Theorem 1.1). In the MAX-ID problem, one is given a connected tree with a unique
identifier for each node, and all nodes must output the maximum identifier in the tree. We note
that it is trivial to solve the problem in O(1) MPC rounds using a broadcast tree; however, this
approach does not extend to forests, and hence a more sophisticated solution is required. The
purpose of this section is to present the high level ideas of an algorithm that solves MAX-ID
and can also be extended to forests. Some lemma statements have been adapted to fit this
(informal) version.

Lemma 4.2 (Solving MAX-ID on trees). Consider the family of trees. There is a determin-
istic low-space MPC algorithm that solves MAX-ID on any graph G of that graph family when
given D̂ ∈ [diam(G), nδ/8]. The algorithms runs in O(log D̂) rounds, is component-stable3, and
requires O(m · D̂3) words of global memory.

We begin with definitions that are essential not only to define our algorithm but also for
proving its memory bounds. Let v be a vertex of a tree G. For all nodes u ∈ N(v), define

Gv−→u = {w ∈ V (G) | u is contained in the shortest path from v to w}

to be all nodes in the tree that are reachable from v via u, including u. Also, let Gv 6−→u :=
V (G) \ Gv−→u. For every w ∈ G, let rv(w) be the node u ∈ N(v) satisfying that w ∈ Gv−→u,
i.e., rv(w) is the neighbor of v which is on the unique path from v to w.

Definition (Light and heavy nodes). Let 0 < δ < 1 be a constant. A node v is light against
a neighbor u ∈ N(v) if |Gv 6−→u| ≤ nδ/8. A node is light if it is light against at least one of its
neighbors. Nodes that are not light are heavy.

If there are no heavy nodes, the graph is small and fits into the local memory of one machine.

Lemma (see Lemma 4.7). Any tree with no heavy nodes contains at most 2nδ/2 vertices.

We prove that as soon as there is at least one heavy node, the graph has to look like the
one depicted on the left hand side of Figure 1, that is, light subtrees that are attached to a
connected component of heavy nodes. We exploit this structure in our algorithm.

3By the formulation of Definition 4.1, any algorithm solving MAX-ID is component-stable by definition. This
is discussed in detail in Section 5.4
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3.1 MAX-ID: The Algorithm

The high-level idea is to iteratively compress parts of the graph (without disconnecting it) such
that the knowledge of the maximum identifier of the compressed parts is always kept within the
resulting graph. We repeat this process until there remains only one node, that knows ID, the
maximum identifier in the graph. Then, we backtrack the process by iteratively decompressing
and broadcasting the knowledge about ID. Eventually, we are left with the original graph where
all nodes know ID.

More in detail, our algorithm consists of ` = O(1) phases and the same number of reversal
phases. During the phases, we first compress all light subtrees into single nodes (a proce-
dure that we refer to as CompressLightSubTrees) and then replace all paths by a single edge
(CompressPaths). We denote the resulting graphs by G0, G1,. . . ,G`. The phases are followed by
reversal phases, in which we undo all compression steps of the regular phases in reverse order
to spread ID to the whole graph.

Bounding the number of Phases. Consider some phase i and graph Gi with heavy nodes
that looks as illustrated in Figure 1 (left). If we remove all light subtrees from graph Gi, for
the resulting graph Gi+1, it holds that every leaf (aka a formerly heavy node) corresponds to
a distinct removed subtree of size at least nδ/8 (if the subtree was smaller the leaf would not
be heavy). If we then contract all paths in Gi+1 into single edges, leaving no degree-2 nodes
in Gi+1, it holds that at least half of the nodes in Gi+1 corresponds to a removed subtree. As
each of these subtrees has ≥ nδ/8 distinct nodes, we have removed a polynomial-in-n fraction
of nodes from Gi to obtain Gi+1. Hence, we can only repeat the process a constant time until
the graph becomes small.

3.2 MAX-ID: Compressing Light Subtrees

For the sake of this high level overview, we focus on our most involved part, the procedure that
compresses (maximal) light subtrees into the adjacent heavy node (CompressLightSubTrees).
The difficulty is that nodes do not know whether they are light or heavy, and already one
single exponentiation step in the “wrong” direction of the graph can ruin local and global
memory bounds. However, there seems to be no way to obtain a runtime that is logarithmic
in the diameter without exponentiation. Thus, we perform careful exponentiations that always
ensure the memory bounds but at the same time make enough progress.

Consider a graph G with n nodes—starting from the second phase we will actually use this
algorithm on graphs with fewer than n nodes. At all times, every node v has some set of nodes
Sv in its memory, which we initialize to N(v). Set Sv can be thought of as the node’s view or
knowledge. During the execution, Sv grows, and if |Sv| ≥ 2nδ/4, v becomes full. Similarly to
definitions Gv−→u and Gv 6−→u, let us define the following. For a node v and a node u ∈ N(v),
let Sv−→u = Sv ∩Gv−→u. Also, let Sv 6−→u := Sv \ Sv−→u.

All nodes in the graph have the property that they are either light or heavy. Initially, nodes
themselves do not know whether they are light or heavy, since these properties depend on the
topology of the graph. During the algorithm each node is in one of the four states: active, happy,
full, or sad. Initially, all nodes are active. A node v becomes happy, if at some point during the
execution, there exists u ∈ N(v) such that Gv 6−→u ⊆ Sv and |Gv 6−→u| ≤ nδ/8. If a node, that is
not full, realizes that it can never become happy (for example by having |Sv−→u| > nδ/8 for two
different neighbors u), it becomes sad. Upon becoming happy, sad or full, nodes do not partake
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in the algorithm except for answering queries from active nodes. We call nodes unhappy if they
are in some other state than happy (including state active). The goal is that all light nodes
become happy. We will prove that the algorithm that we will provide satisfies the following
lemma.

Lemma 4.20. After O(log D̂) iterations, all light nodes become happy, while heavy nodes always
remain unhappy.

Intuition for its correctness requires further details and is defered to the end of this section.
When comparing the definitions of happy and light, it is evident that when a node becomes

happy, it knows that it is light. Similarly, a node becoming full or sad knows that it is heavy.
At the end of the algorithm, happy nodes with a full or sad neighbor compress their whole
subtree in that neighbor. A crucial challenge here is to ensure that these compressions are not
conflicting as all such nodes execute these in parallel and without a global view.

Exponentiation. Recall the definition of rv(w) at the beginning of the section. For a node
v and any X ⊆ N(v), define an exponentiation operation as

Exp(X) : Sv ←−
⋃
u∈X

⋃
w∈Sv−→u

Sw 6−→rw(v).

We say that node v exponentiates in the direction of u ∈ N(v) if v performs Exp(X) with
u ∈ X.

The algorithm consists of O(log D̂) iterations, in each of which nodes perform a carefully
designed graph exponentiation procedure. The aim is for light nodes v to become happy by
learning their subtrees, after which, (certain) light nodes compress into their unhappy neighbor.

Failed Exponentiation Approaches. If there were no memory constraints and every node
could do a proper (uniform) exponentiation step in every iteration of the algorithm, i.e., ex-
ecute Exp(N(v)), after O(log D̂) iterations all nodes would learn the whole graph—a proper
exponentiation step executed on all nodes halves the diameter—and the highest ID node could
compress the whole graph into itself. However, uniform exponentiation would result in all
nodes exceeding their local memory O(nδ), and also significantly breaking the global memory
requirement. Even if we were to steer the exponentiation procedure such that light nodes would
learn a Dv radius ball around them, where Dv is the diameter of their light subtree, this would
still break global memory. In fact, we cannot even do a single exponentiation step for all nodes
in the graph without breaking memory bounds!

Our Solution (Careful Exponentiation & Probing). Hence, we let every node expo-
nentiate in all but one direction, sparing the direction which currently looks most likely to
be towards the heavy parts of the graph. Note that the knowledge of a node about the tree
changes over time and in different iterations it may spare different directions. This step is
further complicated as nodes neither know whether they are heavy or light nor do they know
the size of their subtree, nor in which direction the heavy parts of the graph lie. Thus, in
our algorithm, nodes perform a careful probing for the number of nodes into all directions to
determine in which directions they can safely exponentiate without using too much memory.
More formally, a node v computes Bv−→u =

∑
w∈Sv−→u

|Sw 6−→rw(v)| for every neighbor u ∈ N(v)
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as an estimate for the number of nodes it may learn when exponentiating towards u. This
estimate may be inaccurate and may contain a lot of doublecounting. The precise guarantees
that this probing provides are technical and presented in Section 5.

We now reason (in a nutshell) why this algorithm meets the memory requirements and why
we still make enough progress in order to make all light nodes happy in O(log D̂) iterations.

Local and Global Memory Bounds. If there were no memory limitation, we would already
know that after ` = O(1) phases G` would consist of a single node r. For the sake of analysis,
we assume a rooting of G at r. We emphasize that fixing a rooting is only for analysis sake,
and we do not assume that the tree is actually rooted beforehand.

Given the rooting at r, we define T (v, r) as the subtree rooted at v (including v itself).
Then, the following lemma is crucial to bound the memory. The lemma is standalone as it does
not use any properties of r.

Lemma 4.8. Consider an n-node tree T with diameter D that is rooted at node r. Let T (v, r)
denote the subtree rooted at v (including v) when T is rooted at r. It holds that

∑
v∈V |T (v, r)| ≤

(D + 1) · n.

Proof. Consider the unique path Prv from the root r to a node v. Observe that node v is only
in the subtrees of the nodes in Prv. Since |Prv| ≤ D + 1, node v is overcounted at most D
times, and

∑
v∈V |T (v, r)| ≤ (D + 1) · n.

The probing ensures that a node, if it exponentiates into a direction, essentially never learns
more nodes than there are contained in its “rooted subtree” T (v, r).

Lemma (see Lemma 4.22). Let v be any node with a parent u (according to the hypothetical
rooting at r). If in some iteration, node v exponentiates in the direction of u, i.e., it performs
Exp(X) with u ∈ X, the size of the resulting set Sv−→u is bounded by |T (v, r)| · D̂.

This is sufficient to sketch the global memory bound.

Lemma (see Lemma 4.24). In CompressLightSubTrees, the global memory never exceeds O(n ·
D̂3).

Proof sketch. Assume that there is at least one heavy node and consider an arbitrary iteration
j of the algorithm. For node v define the set Cv ⊆ Sv as the set of nodes that v has added to
Sv as a result of performing Exp in all iterations up to iteration j. Let u be the parent of v
(according to the hypothetical rooting at r). For that u, let Cv−→u := Cv ∩Gv−→u. We obtain

|Cv| ≤ |Cv−→u|+
∑

w∈N(v)\u

|Sv−→w| ≤ |T (v, r)| · D̂ + |T (v, r)| = (1 + D̂)|T (v, r)| .

The bound on |Cv−→u| is obtained by applying the previous lemma for the last iteration
where v has exponentiated in the direction of u, and the bound on the sum is by the definition
of T (v, r).

We need to introduce the notation Cv, as in our actual algorithm, exponentiations are not
symmetric. In order to ensure a symmetric enough view, nodes v that add some vertex u to
their set Sv also add themselves to the set Su. Thus Cv 6= Sv. However, this results in at most
a factor 2 increase in global memory. The total memory is then bounded by
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∑
v∈V
|Sv| =

∑
v∈V

2|Cv| ≤
∑
v∈V

2(1 + D̂)|T (v, r)| = O(n · D̂2).

Here, the bound on
∑

v∈V |T (v, r)| is due to Lemma 4.8. The additional D̂ factor in the lemma
statement is due to the fact that a node may learn about the same node D̂ times in a single
exponentiation step resulting in a local peak in global memory; details are given in the full
proof.

The bounds on local memory use that the probing ensures that we do not exponentiate into
a direction if it would provide us with too many new nodes.

Measure of Progress. In order to show that all light nodes become happy, we prove that
the distance between a light node and a leaf in its subtree decreases by a constant fraction
in a constant number of rounds. Distance, in this case, can be measured via a virtual graph
where there is an edge between two nodes u and v if v ∈ Su or u ∈ Sv. Our algorithm design
ensures that light nodes always exponentiate in all but one direction. This is sufficient to show
that each segment x1, . . . x5 of length 5 of a shortest path in the virtual graph H, shortens by
at least one edge in each iteration. Intuitively, one can simply use that x3 in such a segment
either exponentiates in the direction of x1 or x5 and will hence add the respective node to its
memory. The actual proof needs a more careful reasoning, e.g., as we cannot rely on x1 being
part of the memory of x2, due to non homogeneous exponentiations in previous iterations.

4 The MAX-ID Problem

In this section, we give a specialized algorithm for the MAX-ID problem on trees, which will be
the core ingredient for solving connected components on forests (upper bound of Theorem 1.1).
Once having the algorithm for solving MAX-ID, one can extend it to work as a connected
components algorithm. We defer this extension and its proofs to Section 5. We define the
problem as follows.

Definition 4.1 (The MAX-ID problem). Given a connected graph with a unique identifier for
each node, all nodes output its maximum identifier.

Lemma 4.2 (Solving MAX-ID on trees). Consider the family of trees. There is a determin-
istic low-space MPC algorithm that solves MAX-ID on any graph G of that graph family when
given D̂ ∈ [diam(G), nδ/8]. The algorithms runs in O(log D̂) rounds, is component-stable4, and
requires O(m · D̂3) words of global memory.

4.1 Definition and Structural Results

We begin with structural properties of trees that are essential for proving our memory bounds.
Also, the introduced notation plays a central role in each step of our algorithms. Let v be a
vertex of a tree G. For all nodes u ∈ N(v), define

Gv−→u = {w ∈ V (G) | u is contained in the shortest path from v to w}
4By the formulation of Definition 4.1, any algorithm solving MAX-ID is component-stable by definition. This

is discussed in detail in Section 5.4
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to be all nodes in the tree that are reachable from v via u, including u. Also, let Gv 6−→u :=
V (G) \Gv−→u. For every w ∈ G let rv(w) be u ∈ N(v) such that w ∈ Gv−→u, i.e., rv(w) is the
neighbor of v which is on the unique path from v to w.

Definition 4.3 (Light and heavy nodes). Let 0 < δ < 1 be a constant. A node v is light
against a neighbor u ∈ N(v) if |Gv 6−→u| ≤ nδ/8. A node is light if it is light against at least one
of its neighbors. When v is light against u, let Tv,u denote Gv 6−→u. Nodes that are not light are
heavy.

Observe that a light node v can be light against multiple neighbors u and hence, we need
to use a subscript in the notation Tv,u. We emphasize that v ∈ Tv,u. Throughout most of
our proofs we need to consider the cases that a (virtual) tree contains heavy nodes and the
case that it only consists of light nodes separately. Both situations are depicted in Figure 1.
We continue with proving structural properties for both cases. Any tree has light nodes as its
leaves are light.

Lemma 4.4. Consider a tree G that contains a heavy node and let v ∈ G be a light node against
neighbor u. Then all nodes x ∈ Tv,u are light. Moreover, any x ∈ Tv,y, x 6= v is light against
rx(v).

Proof. The first part of the claim must holds since Gx 6−→rx(v) < Gv 6−→u ≤ nδ/8. The second part
must hold, since otherwise, all nodes are light, contradicting the assumption that there exists
a heavy node.

Lemma 4.5. For every tree G with at least one heavy node, it holds that (i) heavy nodes induce
a connected component, and that (ii) every light node is light against exactly one neighbor.

Proof. For both parts, assume the opposite. Then there is a heavy node in Tv,u for some light
node v, which contradicts Lemma 4.4.

Due to Lemma 4.5, we write Tv instead of Tv,u for a light node in a tree with (a) heavy
node(s) and call Tv the node’s subtree.

Observation 4.6. For any tree G and any two adjacent nodes u, v ∈ G, we have G = Gv 6−→u∪
Gu6−→v.

Proof. Since Gv−→u = Gu6−→v, we obtain Gu6−→v ∪Gv 6−→u = Gv−→u ∪Gv 6−→u = G.

Lemma 4.7. Any tree with no heavy nodes contains at most 2nδ/2 vertices.

Proof. For the sake of analysis, let each node v put one token on each incident edge {v, u}
where v is light against u, i.e., |Gv 6−→u| ≤ nδ/8. As all nodes are light the total number of tokens
is at least as large as the number of nodes. Since the graph is a tree, at least one edge receives
two tokens. Let {u, v} be such an edge and observe that G = Gv 6−→u ∪ Gu6−→v holds due to
Observation 4.6. It holds that |G| = |Gv 6−→u ∪Gu6−→v| ≤ 2nδ/8, because v is light against u and
u is light against v.

The following lemma will be central to bounding the global memory of our algorithm. It
considers a rooted tree, which we will only use for analysis; we do not assume a rooting is given
as input.

13



Lemma 4.8. Consider an n-node tree T with diameter D that is rooted at node r. Let T (v, r)
denote the subtree rooted at v (including v) when T is rooted at r. It holds that

∑
v∈V |T (v, r)| ≤

(D + 1) · n.

Proof. Consider the unique path Prv from the root r to a node v. Observe that node v is only
in the subtrees of the nodes in Prv. Since |Prv| ≤ D + 1, node v is overcounted at most D
times, and

∑
v∈V |T (v, r)| ≤ (D + 1) · n.

4.2 MAX-ID: The Algorithm

In this section, we present a MAX-ID algorithm for trees, which we refer to as MAX-ID-Solver.
In our algorithm, every node of an input tree G outputs the maximum identifier of the tree,
which we denote by ID. We assume we are given D̂ ∈ [diam(G), nδ/8]. The runtime of our
algorithm is O(log D̂) and it requires O(n · D̂3) words of global memory.

The high-level idea is to iteratively compress parts of the graph (without disconnecting
it) such that the knowledge of the maximum identifier of the compressed parts is always kept
within the resulting graph. We repeat this process until there remains only one node, that
knows ID. Then, we backtrack the process by iteratively decompressing and broadcasting the
knowledge about ID. Eventually, we are left with the original graph where all nodes know ID.

As reasoned in Section 1 it is far from clear how to implement this simple outline with nei-
ther breaking the runtime nor the global memory bounds. From a high level point of view our
algorithm consists of O(1) phases and O(1) reversal phases. During the phases, we first com-
press all light subtrees into single nodes (a procedure that we refer to as CompressLightSubTrees)
and then replace all paths by a single edge (CompressPaths). In this section, we blackbox the
properties of both procedures and prove that O(1) phases are sufficient to reduce the graph to
a single node (Lemma 4.14). By far the most technically involved part of our algorithm is the
procedure CompressLightSubTrees, which we explain in detail in Section 4.3. The phases are
followed by reversal phases, in which we undo all compression steps of the regular phases in
reverse order to spread ID to the whole graph.

Let us be more formal and define the compression/decompression steps. Throughout the
algorithm, every node v keeps track of a variable idv, which is initially set to be the identifier
of v. The intuition behind variable idv is that it represents the largest identified v has “seen”
so far. Let us define compressing and decompressing operations for node v and any node set
X. Note that decompressing X from v is only defined for X, v such that X was at some point
compressed into v.

• Compress X into v: set idv ←− maxu{idu | u ∈ X} remove X (and its incident edges)
from the graph. For any edge {x, y} with x ∈ X and v 6= y /∈ X we introduce a new edge
{v, y}.

• Decompress X from v: set idu ←− idv, ∀u ∈ X and add X (and its incident edges) back
to the graph. Remove any edge {v, y} that was added during the compression step of X
into v.

Phases. We initialize G0 as the input graph. From G0, we derive a sequence G1, G2, . . . , G`
of smaller trees until eventually, for some ` = O(1), it holds that G` = {v} for which idv = ID.
The tree Gi+1 (0 < i ≤ `) is obtained from Gi as follows: first compressing all light subtrees
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via CompressLightSubTrees(Gi, D̂) and call the resulting tree G′i, then Gi+1 is the result of
compressing all paths of G′i into single edges via CompressPaths(G′i, D̂).

Throughout the sequence, we maintain the properties that compressions do not overlap,
every Gi is connected and non-empty, and that idw = ID for some node w ∈ Gi.

Reversal Phases. From G` = {v}, we derive a reversal sequence G`−1, G`−2, . . . , G0 such
that any Gi (` > i ≥ 0) has the same node and edge sets as Gi during the regular phases,
and idw = ID for every node w ∈ Gi. The tree Gi−1 is obtained from Gi as follows: first
decompressing all paths via DecompressPaths(Gi) and call the resulting tree G′i−1, then Gi−1

is the result of decompressing all light subtrees via DecompressLightSubTrees(G′i−1). Note that
in reversal phase i we only decompress paths and subtrees that were compressed during the
regular phase i.

MAX-ID-Solver(G, D̂)

Initialize G0 ←− G

1. For i = 0, . . . , `− 1 phases:

(a) G′i = CompressLightSubTrees(Gi, D̂)

// If there are heavy nodes, all light nodes are compressed into the closest heavy
node. Otherwise, all nodes are light and are compressed into a single node.

(b) Gi+1 = CompressPaths(G′i, D̂)

// All paths are compressed into single edges.

2. For i = `− 1, . . . , 0 reversal phases:

(a) G′i = DecompressPaths(Gi+1)

// All paths that were compressed during Step 1(b) are decompressed.

(b) Gi = DecompressLightSubTrees(G′i)

// All light nodes that were compressed during Step 1(a) are decompressed from v.

The correctness of MAX-ID-Solver is contained in the following lemma.

Lemma 4.9. There exists some ` such that

1. after ` phases, graph G` consists of exactly one node v for which idv = ID.

2. after ` reversal phases, graph G0 is the input graph and all nodes know ID.

Proof. The proof is straightforward, given the thee essential lemmas (Lemmas 4.10 to 4.12) on
the subroutines that we prove in the sections hereafter. Let us prove the two claims separately.

1. Consider graph Gi at the start of any phase i. We first claim that Gi never becomes
empty during phase i, for which there are two cases: either Gi contains heavy nodes, or
all nodes in Gi are light. In the case of the former: in Step 1(a), by Lemma 4.10, if there
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are heavy nodes in the graph, they are never compressed. In Step 1(b), by Lemma 4.11,
all degree-2 nodes are compressed into single edges, leaving the graph non-empty. In the
case of the latter, by Lemma 4.10, we are left with a single node. Observe that since any
tree always contains light nodes (leaves are always light), the number of nodes decreases
in every phase, and the first part of the claim 1 holds for some `. Since G` = {v} is a result
of consecutive compression steps applied to the input graph G0 without disconnecting it,
by the definition of compression, it holds that idv = ID.

2. Observation. Graph Gi during reversal phases i has the same node and edge sets as
graph Gi during phase i.

Proof. We prove the claim by induction. The base case holds since G` from Step 1 is
given directly to Step 2 as input. Assume that the claim holds for reversal phase i + 1.
By Lemma 4.12, all nodes that were compressed in phase i during Step 1(a) (resp. (b))
can decompress themselves in reversal phase i during Step 2(b) (resp. (a)), proving the
claim.

Consider graph G` that consists of a single node v for which idv = ID by Lemma 4.9.
Since graph G0 after ` reversal phases (which is the input graph by the observation
above) is a result of consecutive decompression steps applied to G`, by the definition of
decompression, it holds that idu = ID for all u ∈ G0.

Lemma 4.10 (CompressLightSubTrees). Let G be a tree and D̂ ∈ [diam(G), nδ/8]. If G contains
a heavy node, then CompressLightSubTrees(G, D̂) returns a tree in which all light nodes of G are
compressed into the closest heavy node. If G does not contain any heavy nodes, all nodes are
compressed into a single node. The algorithm runs in O(log D̂) low-space MPC rounds using
O(n · D̂3) words of global memory.

Lemma 4.11 (CompressPaths). For any tree G and D̂ ∈ [diam(G), nδ/8], CompressPaths(G, D̂)
returns the graph that is obtained from G by replacing all paths of G with a single edge. The
algorithm runs in O(log D̂) low-space MPC rounds using O(n · D̂2) words of global memory.

Lemma 4.12 (DecompressPaths,DecompressLightSubTrees). All nodes that were compressed by
CompressLightSubTrees and CompressPaths can be decompressed by DecompressLightSubTrees
and DecompressPaths, respectfully. The algorithms run in O(1) low-space MPC rounds using
O(n) words of global memory.

We will now show that the number of phases of (and therefore reversal phases) is bounded by
O(1). In particular, we want to prove that after ` = O(1) phases, graph G` consists of exactly
one node. After a clever observation in Lemma 4.13, we will prove the claim in Lemma 4.14.

Lemma 4.13. If |Gi+1| ≥ 2, all nodes in Gi+1 were heavy in Gi. Moreover, for every leaf node
w ∈ Gi+1 it holds that ≥ nδ/8 light nodes were compressed into w during phase i.

Proof. Since |Gi+1| ≥ 2 (and not |Gi+1| = 1), by Lemma 4.10, there must have been heavy
nodes in Gi. Since all light nodes were compressed in phase i, all nodes in Gi+1 were heavy
in Gi. Observe that even though w is a leaf in phase i + 1, it was not a leaf node in phase i,
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since leaf nodes are light by definition. Let u be the unique neighbor of w in Gi+1. We must
show that |Gw 6−→u| > nδ/8 and that Gw 6−→u \ w was compressed into w during phase i. It must
be that |Gw 6−→u| > nδ/8, since otherwise, w would have been light against u in phase i. Nodes
Gw 6−→u \ w were compressed into w during phase i by Lemma 4.10, since w was their closest
heavy node (due to the graph being a tree).

Lemma 4.14. After ` = O(1) phases, graph G` consists of exactly one node.

Proof. Consider graph Gi at the beginning of some phase i. If there are no heavy nodes in Gi,
this is the last phase of the algorithm by Lemma 4.10. If there is exactly one heavy node in
Gi, we are also done by Lemma 4.10. What remains to be proven is that if there are at least
two heavy nodes in the graph, we reduce the size of the graph by a polynomial factor in n.

Assume that there are at least 2 heavy nodes in graph Gi, and let us analyze what happens.
In Step 1(a), all light nodes are compressed into the closest heavy node by Lemma 4.10. In Step
1(b), all paths are compressed into single edges by Lemma 4.11, leaving no degree-2 nodes in
the graph (compressing paths never creates new degree-2 nodes). Consider graph Gi+1, which
by Lemma 4.10 consists of the nodes that were heavy in Gi. By Lemma 4.13 it also holds that
during phase i, at least nδ/8 light nodes were compressed into every leaf node w of graph Gi+1.
It holds that

ni ≥ ni+1 + |{w ∈ Gi+1 | degGi+1
(w) = 1}| · nδ/8 > ni+1 + nδ/8 · ni+1/2 = ni+1(1 + nδ/8/2)

and ni+1 < ni/(1 + nδ/8/2) < 2ni/n
δ/8 .

The first strict inequality stems from the fact that there are no degree-2 nodes left after
phase i, and hence the number of leaf nodes in Gi+1 is strictly larger that ni+1/2. The proof is
complete, as we have shown that if graph Gi contains at least 2 heavy nodes, Gi+1 is smaller
than Gi by a factor of Θ(nδ/8).

The outline for the rest of this section is as follows. The procedure CompressLightSubTrees
and the proof of Lemma 4.10 are presented in Section 4.3. This is the most technically involved
part of our algorithm. The procedure CompressPaths and the proof of Lemma 4.11 are presented
in Section 4.4. The procedures DecompressPaths and DecompressLightSubTrees and the proof
of Lemma 4.12 are presented in Section 4.5. In Appendix A, we show technical details how
MAX-ID-Solver can be implemented in the low-space MPC model.

4.3 MAX-ID: Single Phase (CompressLightSubTrees)

In this section, we focus on a single execution of CompressLightSubTrees(G, D̂) on a graph G
and prove Lemma 4.10. With out loss of generality, we assume there are n nodes in the graph—
starting from the second phase of MAX-ID-Solver we will actually use this algorithm on graphs
with fewer than n nodes.

At all times, every nodes v has some set of nodes Sv in its memory, which we initialize to
N(v). Set Sv can be thought of as the node’s view or knowledge. During the execution, Sv
grows, and if |Sv| ≥ 2nδ/4, v becomes full. Similarly to definitions Gv−→u and Gv 6−→u, let us
define the following. For a node v and a node u ∈ N(v), let Sv−→u = Sv ∩ Gv−→u. Also, let
Sv 6−→u := Sv \ Sv−→u. Recall the definition of rv(w): for every w ∈ G let rv(w) be u ∈ N(v)
such that w ∈ Gv−→u.
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All nodes in the graph have the property that they are either light or heavy (see Defini-
tion 4.3). Initially, nodes themselves do not know whether they are light or heavy, since these
properties depend on the topology of the graph. During the algorithm each node is in one of the
four states: active, happy, full, or sad. Initially, all nodes are active. A node v becomes happy,
if at some point during the execution, there exists u ∈ N(v) such that such that Gv 6−→u ⊆ Sv
and |Gv 6−→u| ≤ nδ/8. In that case, we say that node v is happy against u. If a node, that is
not full, realizes that it can never become happy (for example by having |Sv−→u| > nδ/8 for
two different neighbors u), it becomes sad. Upon becoming happy, sad or full, nodes do not
partake in the algorithm except for answering queries from active nodes. We call nodes unhappy
if they are in some other state than happy (including state active). The goal is that all light
nodes eventually become happy, and heavy nodes always remain unhappy. When comparing
the definitions of happy and light, it is evident that when a node becomes happy, it knows that
it is light. Similarly, a node becoming full or sad knows that it is heavy.

For a node v and any X ⊆ N(v), define an exponentiation operation as

Exp(X) : Sv ←−
⋃
u∈X

⋃
w∈Sv−→u

Sw 6−→rw(v).

We say that a node v exponentiates towards (or in the direction of) u if u ∈ N(v) and v
performs Exp(X) with u ∈ X.

High level overview of CompressLightSubTrees. The algorithm consists of O(log D̂) itera-
tions, in each of which nodes perform a carefully designed graph exponentiation procedure. The
aim is for light nodes v to become happy by learning their subtrees Tv, after which, (certain)
light nodes compress Tv into their unhappy neighbor. If there were no memory constraints and
every node could do a proper (uniform) exponentiation step in every iteration of the algorithm,
i.e., execute Exp(N(v)), after O(log D̂) iterations all nodes would learn the whole graph—a
proper exponentiation step executed on all nodes halves the diameter—and the highest ID
node could compress the whole graph into itself. However, uniform exponentiation would re-
sult in all nodes exceeding their local memory O(nδ), and also significantly breaking the global
memory requirement. Even if we were to steer the exponentiation procedure such that light
nodes would learn a DTv radius ball around them, where DTv is the diameter of their light sub-
tree, this would still break global memory. In fact, we cannot even do a single exponentiation
step for all nodes in the graph without breaking memory bounds! Hence, we need to steer the
exponentiation with some even more stronger invariant in order to abide by the global memory
constraint.

Observation 4.15. If every light node v keeps O(|Tv,u|) nodes in its local memory for some
(possibly unique) neighbor u it is light against, this does not violate local memory O(nδ) nor
global memory O(n · D̂).

Proof. If there is a heavy node in the graph, |Tv,u| is unique by Lemma 4.5. The claim follows
by considering a hypothetical rooting of the tree at some heavy node and applying Lemma 4.8.
Otherwise, the claim holds trivially because the graph is of size ≤ 2nδ/8 by Lemma 4.7.

Inspired by the observation above, we aim to steer the exponentiation such that it is per-
formed in a balanced way, where a node learns roughly the same number of nodes in each
direction (or sees only leaves in one direction). In fact, we do not want to exponentiate in a
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direction if that exponentiation step would provide us with � |Tv| nodes. This step is further
complicated as nodes neither know whether they are heavy or light nor do they know the size
of their subtree. In our algorithm that is presented below we perform a careful probing for the
number of nodes into all directions to determine in which directions we can safely exponentiate
without using too much memory. In the probing procedure ProbeDirections, a node v computes
Bv−→u =

∑
w∈Sv−→u

|Sw 6−→rw(v)| for every neighbor u ∈ N(v) as an estimate for the number of
nodes it may learn when exponentiating towards u. This estimate may be very inaccurate and
may contain a lot of doublecounting. In Section 4.3.3, we present the full procedure and prove
the following lemma.

Lemma 4.16 (ProbeDirections). Consider an arbitrary iteration of algorithm CompressLightSubTrees.
Then algorithm ProbeDirections(D̂) returns:

(i) fullDirs ⊆ N(v) such that if we were to exponentiate in all directions, we would obtain
|Sv→u′ | > nδ/8 for all u′ ∈ fullDirs and |Sv−→u′ | ≤ nδ/8 · D̂ for all u′ ∈ N(v) \ fullDirs.

(ii) largestDir ∈ N(v) (returned if fullDirs = ∅) such that if we were to exponentiate in all
directions, we would obtain |Sv→largestDir| ≥ |Sv→u′ | for all u′ ∈ N(v) and |Sv−→largestDir| ≤
nδ/8 · D̂.

ProbeDirections can be implemented in O(1) low-space MPC rounds, using O(n·D̂3) global mem-
ory. It does not alter the state of Sv for any node v in the execution of CompressLightSubTrees.

The main difficulty of CompressLightSubTrees lies in ensuring the global and local memory
constraints (Lemmas 4.24 and 4.25) that prevent us from blindly exponentiating in all direc-
tions, while at the same time ensuring enough progress for light nodes such that every light
node becomes happy by the end of the algorithm (Lemma 4.20).

CompressLightSubTrees(Gi, D̂)

All nodes are active. Initialize Sv ←− N(v). If |Sv| > nδ/8 + 1, v becomes sad.

1. For O(log D̂) iterations:

(a) fullDirs, largestDir←− ProbeDirections(D̂)

// The properties of ProbeDirections(D̂) are formally stated in Lemma 4.16. In-
formally, fullDirs ⊆ N(v) contains directions with > nδ/8 nodes, and largestDir
contains the direction with the largest number of nodes if fullDirs = ∅.

(b) If |fullDirs| ≥ 2, v becomes sad.

(c) If |fullDirs| = 1:

i. Perform Exp(N(v) \ fullDirs)
(d) If |fullDirs| = 0:

i. Perform Exp(N(v) \ largestDir)
ii. If v is in Sw for some w, add w to Sv // ensure symmetric view
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(e) Node v asks nodes w ∈ Sv whether or not they are happy against rw(v), and if so,
what is the size of subtree Tw,rw(v). Node v can locally compute if it can become
happy by learning subtrees Tw,rw(v). If v can, it asks for them and becomes happy.

// After Step 1, all light nodes are happy, and all heavy nodes are unhappy (Lemma 4.20)

2. Happy nodes v with an unhappy neighbor u compress Sv 6−→u = Gv 6−→u into u.

3. Nodes v that are happy against u such that u is happy against v update Sv ←− Sv ∪ Su
and compress Sv into the highest ID node in Sv.

In Section 4.3.1, we discuss the measure of progress and correctness, with the final correct-
ness proof of Lemma 4.10. In Section 4.3.2, we discuss local and global memory bounds, with
the final memory proofs of Lemma 4.10. The MPC implementation is deferred to Appendix A.

4.3.1 Measure of Progress and Correctness

We begin by proving the measure of progress and correctness, which will give us the means to
analyze the memory requirements as if the tree was rooted.

Lemma 4.17. Let v be a node that is light against neighbor u. If in some iteration of
CompressLightSubTrees, v exponentiates in the direction of u, i.e., it performs Exp(X) with
u ∈ X, the size of the resulting set Sv−→u is bounded by |Tv|.

Proof. Consider an arbitrary iteration of the algorithm. If u ∈ fullDirs, we do not exponentiate
towards u, so there is nothing to prove. If u /∈ fullDirs, but fullDirs 6= ∅, there is some w 6= u
such that, by the Probing Lemma 4.16, |Gv−→w| > nδ/8, which is a contradiction to v being
light against u.

Hence, consider the case that fullDirs = ∅. If largestDir = u, we do not exponentiate
towards u and there is nothing to prove. If largestDir 6= u, then we exponentiate towards u and
by Lemma 4.16 (ii), we have |Sv−→u| ≤ |Gv−→largestDir| ≤ |Tv|.

Lemma 4.18. In any iteration of CompressLightSubTrees, a light node neither becomes full nor
sad.

Proof. Node v never becomes full due to initialization Sv ←− N(v), since for a light node it
must hold that |N(v)| ≤ |Tv| + 1 ≤ nδ/8 + 1 < 2nδ/4. During execution, Sv grows only in
Steps 1(c)–(e). During (c), it must be that fullDirs = u, since otherwise it would imply that
|Tv| > nδ/8. Hence, as a result of (c), v cannot become full. During (d)i, if Exp(X) with u 6∈ X,
it holds that X ⊂ Tv and v cannot become full. Otherwise if u ∈ X, by Lemma 4.17, v cannot
become full. Node v cannot become full even when performing Step 1(d)ii, since a hypothetical
exponentiation step in the direction of u would yield a set that is bounded by nδ/8 · D̂ < 2nδ/4

(fullDirs is empty and u is largestDir). During (e), node v becomes happy against u and hence
|Sv 6−→u| ≤ nδ/8. In the worst case, |Sv−→u| < nδ/8 · D̂ ≤ nδ/4. Hence, as a result of (e), v cannot
become full.

A node can become sad only if its degree is too large, or in Step 1(b). A light node v never
becomes sad since it must hold that |N(v)| ≤ |Tv| + 1 ≤ nδ/8 + 1, and v cannot have two
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or more neighbors u with Gv−→u > nδ/8 (one neighbor would have to be in Tv, implying that
|Tv| > nδ/8).

For the proofs of the next two lemmas, let G = (V,E) be the input graph, and consider
graph G′ = (V ′, E′) such that V ′ = V and E′ = E∪{ {v, w} | v, w ∈ V and w ∈ Sv or v ∈ Sw}.

Lemma 4.19 (Measure of progress). At the start of any iteration j, consider a light (but still
active) node v, and the longest shortest path P jvw in G′ between v and an a leaf node w ∈ Tv.
If |P jvw| ≥ 4 holds, then holds that |P j+1

vw | ≤ d3/4 · |P jvw|e holds.

Proof. Consider any subpath Px1x5 = {x1, x2, x3, x4, x5} ⊆ P jvw of length 4. For 1 ≤ i ≤ 5, let
Sxi (S′xi) be the memory of node i at the start (end) of iteration j. Note that all nodes on
the path are light. By Lemma 4.18, nodes in Px1x5 never get full nor sad, and hence always
exponentiate in all but one direction (either fullDirs or largestDir).
Claim. For 1 ≤ i < 5 it holds that xi+1 ∈ Sxi .

Proof. Since edge {xi, xi+1} exists in G′, it must be either that either xi+1 ∈ Sxi or xi ∈ Sxi+1 .
In the first case the claim holds, so consider the latter. Since xi is light, rxi(xi+1) has never
been in fullDirs for xi. Hence, whenever xi+1 had added xi to Sxi+1 , either xi added xi+1 to
Sxi via exponentiation, or via Step 1(d)ii.

We continue with proving that the path shortens. It is sufficient to prove that for some
i, j ∈ [1, 5], i 6= j, it holds that xi ∈ S′j \ Sj , as this shortens the path between x1 and x5 by
one edge.

1. If x2 6∈ Sx3 : Since there is an edge in G′ such that x2 6∈ Sx3 , it means that x2 added x3

to Sx2 during some iteration j, and since x3 did not add x2 in Step 1(d)ii of iteration
j, direction rx3(x2) must have been in fullDirs for x3. Hence, x3 will exponentiate in
all directions besides rx3(x2). In particular, as rx3(x4) 6= rx3(x2), x3 will exponentiate
towards x4. As x5 ∈ Sx4 , we obtain x5 ∈ S′x3 \ Sx3 . This creates an edge between x3 and
x5 in G′ and shortens the path from 4 to 3, i.e., by a factor 3/4.

2. If x2 ∈ Sx3 : Assume that x1 ∈ Sx2 . Since nodes in Px1x5 exponentiate in all but one
direction, node x3 will exponentiate either towards x2 or x4 (it must be that x4 ∈ Sx3 by
the claim above). If x3 exponentiates towards x4, we obtain x5 ∈ S′x3 \ Sx3 as x5 ∈ Sx4 .
If x3 exponentiates towards x4, we obtain x1 ∈ S′x3 \Sx3 as x1 ∈ Sx2 . If x1 6∈ Sx2 , we can
apply the analysis of 1. for node x2.

Lemma 4.20. After O(log D̂) iterations, all light nodes become happy, while heavy nodes always
remain unhappy.

Proof. Let us adopt the notation of the proof of Lemma 4.19. Since Lemma 4.19 holds for
any light node v, after j = O(log D̂) iterations it must holds that |P jvw| ≤ 3 because D̂ ∈
[diam(G), nδ/8]. Let the resulting path be P = {x1, x2, x3, x4}, where x4 is a leaf node. It must
be the case that if x2 learns Sx3 6−→x2 for all possible nodes x3, node x2 becomes happy. Hence,
in Step 1(e), P shortens by one. Eventually, after two iterations, P is of length one, and x1

becomes happy.
For the second part of the claim it is sufficient to show that heavy nodes never become

happy. Recall that heavy nodes are defined as nodes that are not light. Hence, for a heavy
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node v, there does not exist a neighbor u ∈ N(v) such that |Gv 6−→u| ≤ nδ/8. This implies that
during the algorithm, it is not possible for |Sv 6−→u| = |Gv 6−→u| ≤ nδ/8 for any u ∈ N(v). Hence,
heavy nodes never become happy.

Proof of Lemma 4.10 (Correctness). By Lemma 4.20, we know that after O(log D̂) iterations
all light nodes of G become happy, while all heavy nodes always remain unhappy. In order
to prove the correctness of Lemma 4.10, we need to show that all light trees are compressed
into the closest heavy node, if a heavy node exists, and that the whole tree is compressed into
a single node if there are no heavy nodes. We consider both cases separately. Also consult
Figure 1 for an illustration of both cases.

Case 1 (there are heavy nodes). Consider a light node v. As there are heavy nodes,
Lemma 4.5 implies that there is a unique neighbor u ∈ N(u) against which v is light. Let
Tv = Gv 6−→u. Now, by Lemma 4.20, v is happy at the end of the algorithm, i.e., there is a
neighbor u′ ∈ N(v) for which Sv 6−→u′ = Gv 6−→u′ and |Gv 6−→u′ | ≤ nδ/8. The latter condition
says that v is light against u′ and due to the earlier discussion we deduce that u = u′ and
Tv = Gv 6−→u = Sv 6−→u ⊆ Sv holds. In summary, for every light node v, the tree Tv (that does
not depend on the algorithm) is contained in Sv. By Lemma 4.5, heavy nodes induce a single
connected component, and hence every light node v is contained in the subtree of some light
node v′ that has a heavy neighbor u′. Since we are in a tree, u′ is the closest heavy node for
v′, and in particular, for all light nodes v ∈ T ′v. By Lemma 4.20, v′ is happy at the end of the
algorithm, and u′ remains unhappy. Performing Step 2 fulfills the first claim of Lemma 4.10.
Step 3 is never performed, since there are no happy nodes left in the graph.

Case 2 (all nodes of G are light). Step 2 of CompressLightSubTrees is never performed,
since all (light) nodes are happy due to Lemma 4.20. For the sake of analysis, let each node v
put one token on each incident edge {v, u} for which Gv 6−→u ⊆ Sv holds. As all (light) nodes
are happy, i.e., there is a neighbor u such that Gv 6−→u ⊆ Sv holds, the total number of tokens
is at least as large as the number of nodes. Since the graph is a tree, at least one edge receives
two tokens. Let {u, v} be such an edge and observe that Gv 6−→u ⊆ Sv and Gu6−→v ⊆ Su. Due
to Observation 4.6, Gv 6−→u ∪Gu6−→v = G and after Step 3 of CompressLightSubTrees both nodes
have the complete tree in their memory and both nodes trigger a compression of the whole tree
into the largest ID node.

The edge {u, v} with the above properties is not unique, but after Step 3, the endpoints of
any edge having these properties yield the exact same compression.

4.3.2 Local and Global Memory Bounds

The most difficult part is proving the memory bounds when there are heavy nodes. If there were
no memory limitation, Lemmas 4.9 and 4.14 (building up on versions of Lemmas 4.10 to 4.12
without memory limitations) already imply that after O(1) phases of MAX-ID-Solver, there is
exactly one node left in the graph. Denote this node by r. Node r has never been compressed
by definition. For the sake of analysis, we assume a rooting of G at r. We emphasize that
fixing a rooting is only for analysis sake, and we do not assume that the tree is actually rooted
beforehand. We define T (v, r) as the subtree rooted at v (including v itself), as if tree G was
rooted at r.

Observation 4.21. Consider tree G with at least one heavy node during an arbitrary iteration
of CompressLightSubTrees. For every light node v, it holds that T (v, r) = Tv, and every heavy
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node u has a unique subtree T (u, r).

Recall that the definition of Tv for a light node v was independent from any algorithmic
treatment. Still, it holds that Tv equals T (v, r) (that depends on our algorithm as the node
r depends on it). The next lemma states that a node only exponentiates into the direction
of root r if it is safe to do so in terms of memory constraints. In spirit, it is very similar to
Lemma 4.17, with the slight difference that it applies to all nodes, and we prove the claim using
a hypothetical rooting of the tree.

Lemma 4.22. Let v be any node with a parent u (according to the hypothetical rooting at r). If
in some iteration of CompressLightSubTrees when there are heavy nodes, node v exponentiates
in the direction of u, i.e., it performs Exp(X) with u ∈ X, the size of the resulting set Sv−→u is
bounded by |T (v, r)| · D̂.

Proof. If v performs Exp(X) such that u ∈ X, there must exists either w = fullDirs or w =
largestDir such that w ∈ T (v, r). If w = fullDirs, it implies that v is heavy, and by Lemma 4.16
(i), we have that |Sv−→u| ≤ nδ/8 · D̂ < |T (v, r)| · D̂. If w = largestDir, by Lemma 4.16 (ii), we
have that |Sv−→u| ≤ |Gv−→w| ≤ |T (v, r)|.

Observation 4.23. When node v performs an exponentiation step, multiple nodes w can send
the same node to v, resulting in duplicates in set Sv. After every exponentiation step, node
v has to locally remove these duplicates. As a result, when bounding the memory of a node,
we have to take into account the momentary spike in global memory due to duplicates. This
momentary spike can at most result in an D̂ factor increase in the memory bounds.

Proof. When node v exponentiates, nodes w send Sw 6−→rw(v) and not Sw. Consider node x that
v has received via exponentiation, and consider the unique path Pvx between v and x. Since
only nodes w ∈ Pvx could have sent x to v, and |Pvx| ≤ D ≤ D̂, x has at most D̂ duplicates in
Sv.

Lemma 4.24. In CompressLightSubTrees, the global memory never exceeds O(n · D̂3).

Proof. The global memory O(n · D̂3) of ProbeDirections (Step 1(a)) follows from Lemma 4.16.
Hence, we analyze the global memory excluding Step 1(a).

When all nodes are light, by Lemma 4.7, the size of the graph is ≤ 2nδ/8. When taking
duplicates into account (Observation 4.23), since D̂ ≤ nδ/8, even if the whole graph is in the
local memory of every node, this does not violate global memory constraints. For the rest of
the proof assume that there is at least one heavy.

Consider an arbitrary iteration j of the algorithm when there are heavy nodes. Define set
Cv ⊆ Sv as the set of nodes that v has added to Sv as a result of performing Exp in all iterations
up to iteration j. Let u be the parent of v (according to the hypothetical rooting at r). For
that u, define Cv−→u := Cv ∩Gv−→u. For a node v, we have

|Cv| ≤ |Cv−→u|+
∑

w∈N(v)\u

|Sv−→w| ≤ |T (v, r)| · D̂ + |T (v, r)| = (1 + D̂)|T (v, r)|

The bound on |Cv−→u| is obtained by applying Lemma 4.22 for the last iteration where v has
exponentiated in the direction of u, and the bound on the sum is by the definition of T (v, r).
Observe the crucial difference between Sv and Cv. Set Sv may contain nodes that are not a
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result of v performing Exp, but rather the result of Step 1(d)ii of the algorithm, where some
other node w has added v to Sw. However, this can result in at most a factor-2 overcounting for
every node. Combining this with the duplicates of Observation 4.23 results in global memory

D̂ ·
∑
v∈V
|Sv| = D̂ ·

∑
v∈V

2|Cv| ≤ D̂ ·
∑
v∈V

2(1 + D̂)|T (v, r)| = O(n · D̂3),

where the bound on
∑

v∈V |T (v, r)| is due to Lemma 4.8.

Lemma 4.25. In CompressLightSubTrees, the local memory of a node v never exceeds O(nδ).

Proof. The local memory of ProbeDirections (Step 1(a)) follows from Lemma 4.16. Hence, we
analyze the local memory excluding Step 1(a).

When all nodes are light, by Lemma 4.7, the size of the graph is ≤ 2nδ/8. When taking
duplicates into account (Observation 4.23), since D̂ ≤ nδ/8, even if the whole graph is in the
local memory of every node, this does not violate global memory constraints. For the rest of
the proof assume that there is at least one heavy.

Consider the start of an arbitrary phase i. If deg(v) > nδ, we defer the discussion to
Lemma A.2 on the MPC implementation details. Assuming deg(v) ≤ nδ, we prove the claim
by induction. During the algorithm, the size of the local memory is at most of order |Sv| · D̂
(the extra D̂ factor is due to Observation 4.23). The claim clearly holds in the first iteration
when Sv is initialized as N(v). Observe that if deg(v) > nδ/8 + 1, node v becomes sad. Hence,
we can further assume that deg(v) ≤ nδ/8 + 1. Assume the claim holds in iteration j. We
perform a case distinction on the different changes of Sv, and show that for a node v, it holds
that |Sv| = O(n7δ/8), implying that |Sv| · D̂ = O(nδ) since D̂ ≤ nδ/8.

• Step 1(c) and |fullDirs| = 1,
|Sv| becomes at most |Sv−→fullDirs|+ (deg(v)− 1) · nδ/8 · D̂ ≤ 2nδ/4 + (nδ/8)3 < n7δ/8. The
term |Sv−→fullDirs| has a (loose) upper bound of 2nδ/2, since v is not full. Observe that
exponentiating in all directions except fullDirs yields ≤ nδ/8 · D̂ nodes per direction by
Lemma 4.16 (i), and that D̂ ≤ nδ/8 by assumption.

• Step 1(d) and |fullDirs| = 0,
|Sv| becomes at most deg(v) · nδ/8 · D̂ ≤ (nδ/8 + 1) · (nδ/8)2 < n7δ/8. Observe that
exponentiating in any direction yields ≤ nδ/8 · D̂ nodes per direction by Lemma 4.16 (ii)
(fullDirs is empty), and that D̂ ≤ nδ/8 by assumption.

• Step 1(e),
If a node v becomes happy against u, |Sv| becomes |T (v, r)| + |Sv−→u| ≤ nδ/8 + 2nδ/4 <
n7δ/8, where nδ/8 is an upper bound for |T (v, r)| since it is light, and 2nδ/4 is (loose)
upper bound on |Sv−→u| since v is not full.

Hence, the claim holds in iteration j + 1.

Proof of Lemma 4.10 (Memory bounds). The local memory bounds follow from Lemma 4.25,
and the global memory bounds follow from Lemma 4.24.
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4.3.3 Probing

Our probing procedure is an integral part of CompressLightSubTrees, as it steers the expo-
nentiation of every node such that, informally, a node never learns a (significantly) larger
neighborhood in the direction of the root (which is imagined only for the analysis), than in the
direction of its subtree.

Lemma 4.16 (ProbeDirections). Consider an arbitrary iteration of algorithm CompressLightSubTrees.
Then algorithm ProbeDirections(D̂) returns:

(i) fullDirs ⊆ N(v) such that if we were to exponentiate in all directions, we would obtain
|Sv→u′ | > nδ/8 for all u′ ∈ fullDirs and |Sv−→u′ | ≤ nδ/8 · D̂ for all u′ ∈ N(v) \ fullDirs.

(ii) largestDir ∈ N(v) (returned if fullDirs = ∅) such that if we were to exponentiate in all
directions, we would obtain |Sv→largestDir| ≥ |Sv→u′ | for all u′ ∈ N(v) and |Sv−→largestDir| ≤
nδ/8 · D̂.

ProbeDirections can be implemented in O(1) low-space MPC rounds, using O(n·D̂3) global mem-
ory. It does not alter the state of Sv for any node v in the execution of CompressLightSubTrees.

ProbeDirections(D̂)

1. For every neighbor u ∈ N(v), compute Bv−→u =
∑

w∈Sv−→u
|Sw 6−→rw(v)|.

2. Define fullDirs := {u ∈ N(v) | Bv−→u ≥ nδ/8 · D̂}.

3. If |fullDirs| > 0, define largestDir := ∅. Otherwise, let umax = arg maxu∈N(v){Bv−→u} and
if Bv−→umax ≥ D̂ ·Bv−→u′ for all u′ ∈ N(v) \ umax

(a) define largestDir := umax,

(b) otherwise, perform Exp(N(v)) and define largestDir := arg maxu∈N(v){|Sv−→u|}.

4. Return fullDirs, largestDir.

Lemma 4.26. If a node v were to perform Exp(u) for a neighbor u ∈ N(v), it would hold that
Bv−→u/D̂ ≤ |Sv−→u| ≤ Bv−→u.

Proof. Recall the definition of Bv−→u. Let us compute how many times a node w in Bv−→u can
be overcounted. Consider the unique path Pvw from v to a node w. Observe that out of the
nodes in Sv−→u, node w is in Sx6−→v only for nodes x ∈ Pvw. Since |Pvw| ≤ D + 1 ≤ D̂ + 1, any
node w is overcounted at most D̂ times, completing the proof.

Proof of Lemma 4.16. Combining the condition |Bv−→u| ≥ nδ/8 · D̂ of Step 2 and the D̂-factor
overcounting of Lemma 4.26 proves the properties of fullDirs. The properties of largestDir hold
by definition: in the case of Step 3(a), umax is the largest direction by Lemma 4.26, and in the
case of Step 3(b), we exponentiate and find the absolute values. Local memory is respected in
Step 1, since node v only aggregates an integer from every other node in Sv. More importantly,
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it is respected in Step 3: a node performing ProbeDirections has deg(v) < nδ/8 + 1 (otherwise it
is sad), Exp(N(v)) is only performed if all directions yield ≤ nδ/8 · D̂ nodes (fullDirs is empty),
and we are promised that D̂ ≤ nδ/8.

Global memory is respected by a clever observation similar to Lemma 4.24. Similarly to
Section 4.3.2, assume we have a rooting at some node r, and that node u is the parent of v. We
want to bound the size of the resulting set Sv−→u if node v performs Exp(N(v)). In particular,
we want to show that |Sv−→u| ≤ |Sv−→w| · D̂2 ≤ |T (v, r)| · D̂2 for some node w ∈ N(v) \ u.
Towards contradiction, assume that |Sv−→u| > |Sv−→w| · D̂2 for all w ∈ N(v) \ u. It must then
hold that

Bv−→u ≥ |Sv−→u| > |Sv−→w| · D̂2 ≥ Bv−→w/D̂ · D̂2 = Bv−→w · D̂

for all w ∈ N(v) \ u by Lemma 4.26. However, this implies that u would have been chosen
as umax, largestDir would have been defined as umax, and Exp(N(v)) would have never been
performed; we have arrived at a contradiction. It holds that |Sv−→u| ≤ |T (v, r)| · D̂2, which
bounds set Sv of every node by (D̂2 + 1) · |T (v, r)|, and by Lemma 4.8, the global memory is
bounded by ∑

v∈V
|Sv| ≤ (D̂2 + 1)

∑
v∈V
|T (v, r)| ≤ (D̂2 + 1)(D + 1) · n = O(n · D̂3).

Regarding MPC implementation, ProbeDirections only performs Exp(N(v)) (implementabil-
ity proven in Lemma A.2) and computes Bv−→u, which is only a modified version of Exp(N(v)):
instead of nodes w sending Sw 6−→rw(v) to node v, they only send |Sw 6−→rw(v)|.

4.4 MAX-ID: Single Phase (CompressPaths)

Let us prove the following lemma, which allows us to compress all paths in the tree into single
edges. This operation does not create new paths or disconnect the graph.

Lemma 4.11 (CompressPaths). For any tree G and D̂ ∈ [diam(G), nδ/8], CompressPaths(G, D̂)
returns the graph that is obtained from G by replacing all paths of G with a single edge. The
algorithm runs in O(log D̂) low-space MPC rounds using O(n · D̂2) words of global memory.

We describe a algorithm, which we denote as CompressPaths, and which we run on every path
P ⊆ G. A path only includes consecutive degree-2 nodes. Similarly to CompressLightSubTrees,
every node v ∈ P has some set Sv in its memory, which we initialize to NP (v). Every node
performs Exp(N(v)) until Sv no longer grows, whereupon, for every node v, it holds that Sv = P .
The highest ID node w ∈ P figures out the endpoints x, y of path P in G (which either have
degree 1 or ≥ 3). Then, w.l.o.g., assume that ID(x) > ID(y), whereupon w compresses P into
x. By the definition of compression, node w also creates edge {x, y}.

Proof of Lemma 4.11. After performing CompressPaths, every node v ∈ P learns path P , i.e.,
it holds that Sv = P , after O(log D̂) rounds, since the path is of length at most diam(G) and
D̂ ∈ [diam(G), nδ/8]. Node w can learn x, y by asking for the neighbors (that are in G \ P ) of
the leaf.

Because |P | ≤ D ≤ D̂ ≤ nδ/8, the local memory of a node is bounded by nδ/4 (when
taking Observation 4.23 into account). The global memory is respected since in the worst case,
all nodes have at most D̂2 nodes in memory (when taking Observation 4.23 into account).
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Compressing and creating a new edge {x, y} comprises of sending a constant sized message to
both x and y. Even in the case when x or y are endpoints to multiple paths, their total incoming
message sizes are O(deg(x)) and O(deg(y)). The small caveat to this scheme is that if deg(x) or
deg(y) are > nδ/8, we have to employ the aggregation tree structure as discussed in Lemma A.2.
The implementation details of performing Exp can also be found in Lemma A.2.

4.5 MAX-ID: Single Reversal Phase

A single reversal phase consist of steps DecompressPaths and DecompressLightSubTrees. In the
former, we essentially reverse CompressPaths, and in the latter, we reverse CompressLightSub-
Trees. We prove the following.

Lemma 4.12 (DecompressPaths,DecompressLightSubTrees). All nodes that were compressed by
CompressLightSubTrees and CompressPaths can be decompressed by DecompressLightSubTrees
and DecompressPaths, respectfully. The algorithms run in O(1) low-space MPC rounds using
O(n) words of global memory.

Let us introduce both steps formally.

• DecompressPaths. For every path P that was compressed in phase i into node x, node x
decompresses P from itself.

• DecompressLightSubTrees. Every node v that had compressed Tv into a neighbor u (or
itself), decompresses Tv from u (or itself).

Proof of Lemma 4.12. As long as the nodes X that a node v wants to decompress are in its
local memory, both steps are clearly correct and implementable in O(1) low-space MPC steps.
Observe that all nodes v that decompress a node set X, have at some point compressed set
X and hence, have had X in local memory (in the form of Sv). By simply retaining set X in
memory until it is time to decompress, we fulfill the requirement.

5 Connected Components (CC)

By Lemma 4.2, we can solve MAX-ID on any tree in O(log D̂) time using MAX-ID-Solver. The
algorithm requires O(m · D̂3) words of global memory and value D̂ ∈ [diam(G), nδ/8] as input.
This section is mostly devoted to showing how to use MAX-ID-Solver to solve the connected
components (CC) problem.

Definition 5.1 (The CC Problem). Given a graph with unique identifiers for each node, and
disconnected components C1, . . . , Ck, every node v ∈ Ci outputs the maximum identifier of Ci.

Observe that MAX-ID-Solver actually solves CC for the case when the input graph is a
single tree. We show how to extend MAX-ID-Solver to solve CC for forests, effectively proving
the upper bounds of the following theorem.

Theorem 1.1 (Connected Components). Consider the family of forests. There is a deter-
ministic low-space MPC algorithm to detect the connected components on this family of graphs.
In particular, each node learns the maximum ID of its component. The algorithms runs in
O(logD) rounds, where D is the maximum diameter of any component. The algorithm requires
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O(n + m) words of global memory, it is component-stable, and it does not need to know D.
Under the 1 vs. 2 cycles conjecture, the runtime is asymptotically optimal.

The proof is contained in Section 5.1 with references to subroutines from Sections 5.2 to 5.4.
In Section 5.5, we show how to modify the algorithm of Section 5.1 to obtain a rooting.

5.1 Proof of Theorem 1.1

There are three steps to extending MAX-ID-Solver and proving Theorem 1.1: (1) reducing the
global memory to O(n+m); (2) removing the need to know diam(G) in order to give D̂ as input;
(3) generalizing it from trees to forests while maintaining component-stability. We address all
steps separately.

1. By applying Lemma 5.2 before executing MAX-ID-Solver, we reduce the number of nodes
in G by a polynomial factor in D̂. This reduces the global memory to a strict O(n+m).

2. By employing the guessing scheme of Section 5.3, we perform multiple (sequential) exe-
cutions of MAX-ID-Solver. Every execution is given a doubly exponentially growing guess
for D̂. The guessing scheme does not violate global memory O(n + m) and results in a
total runtime of O(log diam(G)).

3. By the discussion in Section 5.4, we can execute MAX-ID-Solver on forests such that the
runtime becomes O(logD), where D is the largest diameter of any component. Moreover,
when executing MAX-ID-Solver on forests, it is component-stable.

5.2 CC: Pre- and Postprocessing

The aim of our preprocessing is to reduce the number of nodes in the input graph G by a factor
of poly(D̂) (in fact D̂3 would suffice), resulting in graph G′. By executing MAX-ID-Solver on
G′, we achieve a strict O(n+m) global memory for one execution. When reducing the number
of nodes, we must not disconnect the graph, and also keep the knowledge of the maximum ID
inside the remaining graph.

After the connected components problem is solved on G′, we must extend the solution to
the nodes in G \G′ such that the solution is consistent. Extending the solution simply means
informing every node in G \ G′ of ID, which is the maximum identifier of the graph. We call
this stage postprocessing. This section is devoted to proving the following lemma.

Lemma 5.2. Consider a tree G with n nodes. The number of nodes can be reduced by a factor
of poly(D̂) such that the resulting graph G′ remains connected, and one of the remaining nodes
knows the maximum ID set VG \ VG′ . If connected components is solved in G′, the solution can
be extended to G. Both obtaining graph G′ from G and extending the solution from G′ to G
takes O(log D̂) low-space MPC rounds using O(n+m) words of global memory.

Let us restate a known result that is going to be an essential tool in our preprocessing. We
present a proof sketch to explicitly reason the memory bound.

Lemma 5.3 ([CDP20]). There is an O(1)-round sublinear local memory (component unstable)
MPC algorithm that, given a subset U ⊆ V of nodes of a graph G = (V,E) with dG(u) = 2 for
all u ∈ U , computes a subset S ⊆ U that is an independent set in G and satisfies |S| ≥ |U |/8.
The global memory used by the algorithm is O(|U |) +O(|M | · log n) = O(n).
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Proof Sketch. Consider the following random process: Each node marks itself with probability
1/2. If a node is marked and no neighbor is marked, it joins the set S, otherwise it does
not. The probability of a node to be marked and not having any of its neighbors marked is
1/8. Thus, the expected size of S is |U |/8. Further, note that this analysis still holds if the
randomness for the nodes is 3-independent. |U | coins that are 3-independent can be created
from a bitstring of length O(3 · log |U |) = O(log n) (see Definition 5.4 and Theorem 5.5).

In order to deterministically compute the set S we use the method of conditional expectation
to compute a good bit string. For that purpose break the bitstring into O(1) chunks of length
at most δ/100 log n. Then we deterministically choose the bits on these segments such that
the expected size of S is remains |U |/8 conditioned on all already determined segments of
random bits. To fix one segment introduce the indicator random variable Sv that equals 1 if
and only if v ∈ S. Let φ be the event that fixes to bitstring to what is already there and for
α ∈ [nδ/100] let φα be the event that the to be fixed segment equals α. Knowing the Ids of its
neighbors and the already fixed part of the bitstring, each machine can for each v ∈ U that
it holds compute the values Sv,α = E[Sv | ψ = α ∧ φ]. Then, nodes fix the current segment
to the α0 such that minimizes

∑
v∈U Sv,α. By the method of conditional expectation we have

E[|S| | ψα0 ∧ φ] ≤ |U |/8. At the end the whole bitstring is fixed and we have deterministically
selected an independent set S satisfying |S| ≤ |U |/8.

For an MPC implementation, we need to be able to globally, i.e., among all machines,
to agree on the good bit string obtained from the method of conditional expectations. For
this purpose, consider an aggregation tree structure, where the machines are arranged into
a (roughly) nδ/2-ary tree Definition A.1 with depth O(1/δ). In this tree, each machine can
choose the (locally) good bit segments (conditioned on the previous segments) of δ/100 log n
bits. Notice that there are at most nδ/100 such bit segments. Now, we can convergecast the
expected size of S, given a segment, to the root. Then, the root can decide on the good (prefix
of a) bit string. In each round, each machine receives a nδ/2 · nδ/100 � nδ bits, which fits the
local memory. Since we have O(n1−δ) machines, the total memory requirement to store the
bits is O(nδ/2+δ/100+(1−δ)) = O(n).

Definition 5.4 ([Vad12]). For N,M, k ∈ N such that k ≤ N , a family of functions H = {h :
[N ] → [M ]} is k-wise independent if for all distinct x1, . . . , xk ∈ [N ], the random variables
h(x1), . . . , h(xk) are independent and uniformly distributed in [M ] when h is chosen uniformly
at random from H.

Theorem 5.5 ([Vad12]). For every a, b, k, there is a family of k-wise independent hash func-
tions H = {h : {0, 1}a → {0, 1}b} such that choosing a random function from H takes
k ·max{a, b} random bits.

Next, we introduce elementary operations Rake, Contract, which we use during preprocess-
ing, and Insert, Expand, which we use during postprocessing. Operation Insert can be thought of
as the reversal of Rake, and operation Expand as the reversal of Contract. Recall the definition
of compression and decompression from the beginning of the section.

Definition 5.6. For a degree-1 node v define the following two operations.

− Rake(v): Node v compresses into its unique neighbor u

+ Insert(v): Node v that underwent Rake decompresses from u.
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For a degree-2 node v define the following two operations.

− Contract(v): Node v with neighbors u and w compresses into its highest ID neighbor.

+ Expand(v): Node v that underwent Contract decompresses from u (w.l.o.g. ID(u) >
ID(w)).

As long as we ensure that Insert(v) and Expand(v) are executed on nodes which have un-
dergone Rake(v) and Contract(v) operations, respectively, we obtain the following observation.

Observation 5.7. The operations Rake(v), Insert(v), Contract(v) and Expand(v) can be imple-
mented in O(1) low-space MPC rounds using O(n+m) global memory on all nodes v ∈ Z ⊆ V
in parallel, if Z is an independent set containing only degree-1 and degree-2 nodes.

Let us introduce preprocessing and postprocessing formally. Note that preprocessing is
performed directly on the input graph G, resulting in smaller graph G′. Whereas postprocessing
is performed on a solved version of G′, i.e., with all nodes v having idv = ID, resulting in a
solved version of the input graph G. Both of the following routines use some constant c in their
runtime in order to reduce the number of nodes by a factor of D̂c. Initialize G0 as the input
graph G.

• Preprocessing. For j = 0, . . . , c log D̂ iterations:

1. LetH be the subgraph induced by all degree-2 nodes inGj . Compute an independent
set Z ∈ H of size at least |H|/8 using Lemma 5.3.

2. Contract(v) for every v ∈ Z.
3. Rake(v) for every degree-1 node v. If two leaves are neighbors, perform Rake only

on the higher ID one.

• Postprocessing. For j = c log D̂, . . . , 0 iterations:

1. Insert(v) for every node v that performed Rake(v) in iteration j of Preprocessing.

2. Expand(v) for every node v ∈ Z in iteration j of Preprocessing.

Proof of Lemma 5.2. Performing Preprocessing takes O(log D̂) time since Steps 1–3 can be per-
formed in constant time. Let G (G′) be the graph before (after) performing Preprocessing.
Graph G′ has a poly(D̂) fraction less nodes that graph G because a constant fraction of nodes
in a tree have degree ≤ 2, and we compress all degree ≤ 2 nodes in the graph in each iteration.

Performing Postprocessing simply reverses Preprocessing while extending the current solu-
tion, so it has the same runtime as Preprocessing. Both Preprocessing and Postprocessing can be
implemented in low-space MPC using O(n + m) global memory, since other that Lemma 5.3,
nodes only exchange constant sized messages with their neighbors, and don’t store anything
non-constant in local memory.

5.3 CC: Removing Knowledge of the Diameter

Our MAX-ID-Solver algorithm requires value D̂ ∈ [D,nδ/8] as input, where D denotes the
diameter of the input tree. We show that we don’t actually need to know D in order to give
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value D̂ as input. We achieve this by sequentially executing MAX-ID-Solver with a doubly
exponential guess for D̂ as follows.

D̂ = D̂1, D̂2, . . . , D̂log lognδ/8 = 221 , 222 , . . . , 22log lognδ/8

.

We proceed with the next guess only if the previous has failed to terminate after a runtime
of O(log D̂i). Detecting a failure within the given runtime, and making sure that a wrong
guess does not violate memory constraints is a delicate affair, and is discussed in a separate
paragraph. If all of our guesses fail, it must be that D > nδ/8. In this case, we can run the
deterministic O(log n) time connected components algorithm of Coy and Czumaj [CC22] with
the requirement that all nodes output the maximum ID of the component (their algorithm is
component-stable for the same reasons the algorithm in this paper is). Hence, we can safely
assume that D ≤ nδ/8. Assuming that failure detection can be performed within O(log D̂i)
and the given memory constraints, we show that the algorithm terminates successfully for some
guess D̂, and that the runtime resulting from our guessing scheme is acceptable. Eventually
for some guess l, it holds that D ≤ D̂l and D̂l′ < D for all l′ < l. In particular, it holds
that D ≤ D̂l ≤ D2. Since D̂l ∈ [D,min(nδ/8, D2)] ⊆ [D,nδ/8], MAX-ID-Solver will terminate
successfully for D̂l. Our guessing scheme results in a runtime of at most

l∑
i=1

O(log D̂i) ≤

( ∞∑
i=0

1

2i

)
O(logD) +O(logD2) = O(logD) .

Detecting Failure. Let us consider the case when our guess D̂ for the diameter is < D. It is
possible for the algorithm to terminate even with a wrong diameter guess. However, we want
to show that when the guess is wrong, we are able to detect it in O(log D̂) time even when the
algorithm has not terminated. We also want to show that using a wrong diameter guess does
not violate our memory constraints.

Our aim is to show that there exists a constant c such that if, after c log D̂ rounds, the
algorithm is unsuccessful (failed), we can manually terminate the execution and move on to
the next diameter guess. The algorithm can be seen as unsuccessful, if after a constant number
of phases, the graph is larger than a singleton (Lemma 4.14). Note that failure cannot be
detected during preprocessing, since there we simply free an appropriate amount of memory for
the actual algorithm. The exact number of phases can be deduced from Lemma 4.14. Phases
consist of algorithms CompressLightSubTrees and CompressPaths which both have a runtime of
O(log D̂) by Lemma 4.10 and Lemma 4.11, respectively. The exact constant in Lemma 4.10
can be computed from Lemmas 4.16, 4.19 and 4.20. If the diameter guess is wrong, it will
simply result in removing too small subtrees, and possibly a graph larger than a singleton
being left after the phases. The exact constant in Lemma 4.11 can be computed from its proof
in Section 4.4. If the diameter guess is wrong, it may still result in CompressPaths terminating
successfully. However, it may also result in nodes not learning the whole path they are in,
which we can detect and manually terminate the execution.

It is left to show that for a wrong diameter guess, the local memory O(nδ) and global
memory O(n + m) are not violated. Both cases are surprisingly straightforward. The former
holds since all of the local memory arguments of the section are independent of D̂ (they only
use its upper bound nδ/8). The latter holds by performing Preprocessing for 3 log D̂ iterations
before every execution, since all of our lemmas use at most O((n+m) · D̂3) global memory.
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5.4 CC: Forests and Stability

When executing algorithm MAX-ID-Solver and the scheme developed in Section 5.1 on forests
instead of trees, we have to consider how the disjoint components can affect each other with
regards to runtime, memory, and component-stability (Definition 5.8).

Definition 5.8 (Component-stability, [CDP21]). A randomized MPC algorithm AMPC is component-
stable if its output at any node v is entirely, deterministically, dependent on the topology and
IDs (but independent of names) of v’s connected component (which we will denote CC(v)), v
itself, the exact number of nodes n and maximum degree ∆ in the entire input graph, and the
input random seed S. That is, the output of AMPC at v can be expressed as a deterministic
function AMPC(CC(v), v, n,∆,S). A deterministic MPC algorithm AMPC is component-stable
under the same definition, but omitting dependency on the random seed S.

If we were to execute MAX-ID-Solver on a forest, nodes from disjoint components would never
communicate with each other, rendering the runtime and memory arguments local. Hence, the
algorithm is compatible with forests. In the scheme developed in Section 5.1 nodes from disjoint
components communicate with each other only during preprocessing, when we employ the O(1)
time independent set algorithm of Lemma 5.3. Since the independent set is used to reduce the
number of nodes globally, all of the runtime and memory arguments are still compatible with
forests, as long as the given value D̂ is in [D,nδ/8], where D is the largest diameter of any
component.

What is left to argue is that if the input graph is a forest, MAX-ID-Solver and the scheme
developed in Section 5.1 are component-stable. This however follows directly from the stability
definition (Definition 5.8) and our problem definition (Definition 5.1), because we require nodes
to output the maximum identifier of their component, which is fully independent of other
components.

5.5 Computing a Rooted Forest

In this section, we show how to use the connected components algorithm of Theorem 1.1, with
minor adjustments, to root a forest. We prove the following.

Theorem 1.2 (Rooting). Consider the family of forests with component-wise maximum diam-
eter D. There is a deterministic low-space MPC algorithm that roots the forest in O(logD)
rounds using O(n+m) words of global memory, and it is component-stable.

First, we execute the algorithm of Theorem 1.1 in order for every node to learn the max-
imum ID of its component. Using this knowledge, we execute a modified version of the same
algorithm that roots (in a component-stable way) every component towards the single node
(per component) that is left after ` phases. The modifications are the following.

1. Redefine compression and decompression as follows

• Compress X into v: remove X (and its incident edges) from the graph. For any
edge {x, y} with x ∈ X and v 6= y /∈ X we introduce a new edge {v, y}.

• Decompress X from v: Decompress X from v: add X (and its incident edges) back
to the graph. If set X is a subtree, orient the revived edges towards the single node
to which the subtree is attached to. If set X is a path, orient the revived edges in
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the same direction as edge {v, y} that was added during the compression step of X
into v.

2. In the derandomization of Lemma 5.3, the process is run independently on each connected
component. For each component, we use an aggregation tree (recall Definition A.1) that
consist of nodes only in the corresponding component with the maximum ID node as a
root. Then, the good bitstrings can be determined through the independent aggregation
trees.

Proof of Theorem 1.2. The first modification to the algorithm ensures a rooted forest. We
prove it by induction, with the base case being a rooted graph G` = {v}. If graph Gi is rooted
in the beginning of a reversal phase i, DecompressPaths extends the rooting of (some) single
edges to paths, and DecompressLightSubTrees extends the rooting of (all) leaf nodes to subtrees,
resulting in a rooted graph Gi−1 (recall that the reversal phase indices are in decreasing order).
The same exact logic also holds for Postprocessing, where we extend the rooting to the nodes
that were removed during Preprocessing.

The second modification ensures component-stability. Since the maximum ID node of each
component is responsible only for its own component, we can choose the bitstring independently
of the other components and create the broadcast tree (like in Lemma 5.3) for each component
separately and independently. Then, the orientation of the rooting (i.e., which node will become
the root) only depends on the topology and the maximum ID of the component, making it
independent of the other components.

6 Solving LCL Problems

In this section, we show a useful application of our forest rooting algorithm. In particular, we
show that all problems contained in a wide class of problems that has been heavily studied in
the distributed setting, called Locally Checkable Labelings (LCLs), can be solved in O(logD)
deterministic rounds.

Informally, LCLs are a restriction of a class of problems called locally checkable problems.
These problems satisfy that, given a solution, it is possible to check whether the solution is
correct by checking the constant radius neighborhood around each node separately. Examples
of these problems are classical problems such as maximal independent set, maximal matching,
and (∆+1)-vertex coloring, but also more artificial problems, such that the problem of orienting
the edges of a graph such that every node must have an odd number of outgoing edges.

The restriction that is imposed on locally checkable problems to obtain the class of LCLs
is to require that the number of possible input and output labels that are required to define
the problem must be constant, and moreover only graphs of bounded degree are considered.
In the distributed setting, and in particular in the LOCAL model of distributed computing,
LCLs have been extensively studied, see, e.g., [BBE+20, BBOS18, CP19, BHK+18, CKP19,
BCM+21, Cha20, BGR22]. In particular, the imposed restriction makes it possible to prove
very interesting properties on them, and to develop generic techniques to solve them. For
example, we know that, if we restrict to forests, there are LCLs that can be solved in O(1)
rounds, there are LCLs that require Ω(log∗ n) rounds, but we also know that there is nothing in
between, even if randomness is allowed (e.g., there are no LCLs with complexity Θ(

√
log∗ n)).

Interestingly, techniques that have been developed to study LCLs have then often been extended
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and used to understand locally checkable problems in general (that is, problems that are not
necessarily LCLs).

Since the LOCAL model is very powerful, and allows to send arbitrarily large messages,
any solvable problem can be solved in O(D) rounds. In this section, we provide an MPC
algorithm for solving any solvable LCL problem on forests. The algorithm is deterministic,
component-stable, and runs in O(logD) time in the low-space MPC model using O(n + m)
words of global memory (formal statement in Theorem 1.3). Moreover, our algorithm can be
used even for unsolvable LCLs, that is, problems for which there exists some instance in which
they are unsolvable. Hence, given any LCL, our algorithm produces a correct output on any
instance that admits a solution, and it outputs "not solvable" on those instances where the
LCL is not solvable.

Theorem 1.3. All LCL problems on forests with maximum component diameter D can be
solved in O(logD) time in the low-space MPC model using O(n+m) words of global memory.
The algorithm is deterministic and does not require prior knowledge of D.

Notice that it is enough to prove Theorem 1.3 for rooted forests, since we can first root the
forest by spending the same runtime and memory (Theorem 1.1), and then solve the LCL.

The remaining of the section is structured as follows: we start by giving a formal definition of
LCLs (Section 6.1); we proceed by providing a high-level overview of our algorithm (Section 6.2);
then, we provide the definition of the concept of “compatibility tree”, that will be useful later
(Section 6.3); in Section 6.4 we give the explicit algorithm, called LCLSolver; in Sections 6.6
to 6.10 we show some properties of the subroutines used in LCLSolver, and we bound the time
complexity of each of them; finally, we put things together and prove the main theorem of this
section in Section 6.11.

We note that, for the sake of simplicity, algorithm LCLSolver is described for trees, but we
will show in Section 6.11 that it can also be executed on forests.

6.1 Locally Checkable Labelings

Locally Checkable Labeling (LCL) problems have been introduced in a seminal work of Naor
and Stockmeyer [NS95]. The definition they provide restricts attention to problems where
the goal is to label nodes (such as vertex coloring problems), but they remark that a similar
definition can be given for problems where the goal is to label edges (such as edge coloring
problems). A modern way to define LCL problems that captures both of the above types of
problems (and combinations thereof) consists of labeling of half-edges, i.e., pairs (v, e) where e
is an edge incident to vertex v. Let us first formally define half-edge labelings, and then provide
this modern LCL problem definition.

Definition 6.1 (Half-edge labeling). A half-edge in a graph G = (V,E) is a pair (v, e), where
v ∈ V , and e = {u, v} ∈ E. We say that a half-edge (v, e) is incident to some vertex w if v = w.
We denote the set of half-edges of G by H = H(G). A half-edge labeling of G with labels from
a set Σ is a function g : H(G)→ Σ.

We distinguish between two kinds of half-edge labelings: input labelings, that are labels
that are part of the input, and output labelings, that are provided by an algorithm executed
on input-labeled instances. Throughout the paper, we will assume that any considered input
graph G comes with an input labeling gin : H(G)→ Σin and will refer to Σin as the set of input
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labels; if the considered LCL problem does not have input labels, we can simply assume that
Σin = {⊥} and that each half-edge is labeled with ⊥.

Informally, LCLs are defined on bounded-degree graphs, where each node may have in input
a label from a constant-size set Σin of labels, and must produce in output a label from a
constant-size set Σout of labels. Then, an LCL is defined through a set of locally checkable
constraints that must be satisfied by all nodes.

Definition 6.2 (LCL). An LCL problem Π = (Σin,Σout, C, r) is defined as follows:

• Σin and Σout are sets of constant size that represent, respectively, the possible input and
output labels.

• The parameter r is a constant called checkability radius of Π.

• C is a set of constant size, containing allowed neighborhoods. Each element ci = (Gi, vi)
of C, where Gi = (Vi, Ei), is such that:

– Gi is a graph satisfying that vi ∈ Vi and that the eccentricity of vi in Gi is at most
r;

– Every half-edge of Gi is labeled with a label in Σin and a label in Σout.

Definition 6.3 (Solving an LCL). In order to solve an LCL on a given graph G = (V,E) where
to each element (v, e) ∈ V × E is assigned an input label from Σin, we must assign to each
element (v, e) ∈ V × E an output label from Σout such that, for every v ∈ V , it holds that
(Gr(v), v) ∈ C, where Gr(v) is the subgraph of G induced by nodes at distance at most r from
v and edges incident to at least one node at distance at most r − 1 from v.

Example 6.4 (Maximal Independent Set). In the maximal independent set problem, the goal
is to select an independent set of nodes that cannot be extended. That is, selected nodes must
not be neighbors, and non-selected nodes must have at least one neighbor in the set.

For this problem, Σin = {⊥}. Then, we can use two possible output labels, 1 to indicate
nodes that are in the set, and 0 to indicate nodes that are not in the set. Hence, Σout = {0, 1}.
Finally, we need to define r and C. For this problem, it is sufficient to pick r = 1. In C, we
put all possible pairs (G, v) satisfying the following:

• G is a star centered at v;

• G has at most ∆ leaves (and there can be 0 leaves);

• For each node in G, either all incident half-edges are output labeled 0, or all incident
half-edges are output labeled 1;

• If v is labeled 1, then all leaves are labeled 0;

• If v is labeled 0, then at least one leaf is labeled 1.

Hence, the idea is that MIS can be checked by just inspecting the radius-1 neighborhood of
each node, which is a star, and we just list all stars that are valid.
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While Definition 6.2 gives an easy way to define problems, such a definition is not the most
convenient for proving statements about LCLs. In order to make our proofs more accessible,
we consider an alternative definition of LCLs, called node-edge formalism. It is known that,
on trees and forests, any LCL defined as in Definition 6.2 can be converted, in a mechanical
way, into an LCL described by using this formalism, such that the obtained LCL has the same
asymptotic complexity of the original one [BCM+21].

Definition 6.5 (Node-edge-checkable LCL). In this formalism, a problem Π is a tuple (Σin,Σout, CV , CE)
satisfying the following:

• As before, Σin and Σout are sets of constant size that represent, respectively, the possible
input and output labels;

• CV and CE are both sets of multisets of pairs of labels, where each pair is in Σin × Σout,
and multisets in CE have size 2.

Definition 6.6 (Solving a node-edge checkable LCL). Solving an LCL given in this formalism
means that we are given a graph G = (V,E) where to each element (v, e) ∈ V × E is assigned
a label iv,e from Σin, and to each element (v, e) ∈ V ×E we must assign a label ov,e from Σout

such that:

• For every node v ∈ V it holds that the multiset Mv = {(iv,e, ov,e) | e is incident to v}
satisfies Mv ∈ CV ;

• For every edge e ∈ E it holds that the multiset Me = {(iv,e, ov,e) | e is incident to v}
satisfies Me ∈ CE.

Hence, in the node-edge checkable formalism, we are given a graph where each half-edge
(that is, an element from V × E) is labeled with a label from Σin, the task is to label each
half-edge from a label from Σout, and the LCL constraints are expressed by listing tuples of size
at most ∆ representing allowed configurations for the nodes, and tuples of size 2 representing
allowed configurations for the edges. In [BCM+21] it has been shown that any LCL Π defined
on trees or forests can be converted into a node-edge checkable LCL Π′ satisfying that the
complexity of Π and Π′ differ only by an additive constant. Hence, for the purposes of this
work, we can safely restrict our attention to node-edge-checkable LCLs.

Example 6.7 (Maximal Independent Set). Sometimes, defining an LCL in the node-edge check-
able formalism is non-trivial. MIS is an example of problems in which the conversion requires
a bit of work (it can be done mechanically, though, as shown in [BCM+21]). We hence use MIS
as an example for this formalism.

As before, Σin = {⊥}, and hence when listing the elements in CV and CE we will not specify
the input labels. This time, it is not actually possible to use just 2 labels as output. In fact, we
define Σout = {0, 1,P}. Then, CV contains all multisets of size at most ∆ satisfying that:

• All elements are 1, or

• one element is P and all the others are 0.

Then, CE = {{1, 0}, {1,P}, {0, 0}}. In other words, nodes in the MIS output 1 on all their
incident half-edges, nodes not in the MIS output P on one incident half-edge and 0 on all the
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others. The label P is used to prove maximality. That is, nodes not in the set must point to one
neighbor in the set by using the label P. In fact, on the edge constraint, P is only compatible
with 1. Observe that, given a solution for the standard MIS problem, a solution for this variant
can be produced with just one round of communication.

6.2 Overview

On a high level, our algorithm works as follows. We describe it from the point of view of a
single node, and for a single tree of the forest. Firstly, we root the tree, obtaining that each
node knows the edge connecting it to its parent. Then, the algorithm proceeds in phases, and
in total the number of phases is going to be a constant that depends on the amount of memory
available to the machines. In each phase, we compress the tree into a smaller tree, as follows:

• all subtrees containing less than a fixed amount of nodes are compressed to their root;

• all paths are compressed into a single edge.

Each phase is going to require O(logD) time. In other words, this part of our algorithm works
similar to the standard rake-and-compress algorithm. Moreover, while compressing the tree,
we maintain some information about the LCL that we are trying to solve. This information is
called compatibility tree.

The compatibility tree, for each node and for each edge, keeps track of the possible config-
urations that they can use. At the beginning, for each node, these configurations correspond
to the configurations in CV that are compatible with the given input, and for each edge, these
configurations correspond to the configurations in CE that are compatible with the given input.

When compressing a subtree into a single node, we update the list of the configurations
usable on that node, in such a way that each configuration satisfies the following: if the node
uses it, then it is possible to assign a labeling on the subtree compressed into that node, in
such a way that, for each node and edge in the compressed subtree we use only configurations
allowed by the compatibility tree before the compression.

Similarly, when compressing a path, for the new edge that we add, we store a list of
configurations satisfying that, if we label the first and last half-edge of the removed path
with the labels of the configuration, then we can complete the compressed path by only using
configurations allowed by the compatibility tree before the compression.

At the end, we obtain that the whole tree is recursively compressed on a single node v.
If the compatibility tree does not allow any configuration for v, then we know that the LCL
is unsolvable. Otherwise, we can pick an arbitrary configuration allowed by the compatibility
tree and assign it to v. By performing this operation, we know that we can safely put back
the paths and subtrees that were compressed on v and have the guarantee that we can label
them using only allowed configurations. Hence, we again proceed in phases, where we put back
compressed paths and subtrees in the opposite order in which they have been compressed, and
each time we assign labels allowed by the compatibility tree. At the end, we obtain that the
whole tree is labeled correctly, and hence the LCL is solved.

6.3 Compatibility Tree

A compatibility tree is an assignment of sets of allowed configurations to nodes and edges,
where this time configurations are not just multisets, but they are tuples. In other words, we
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may allow a node to use a configuration, but only if the labels of that configuration are used
in a very specific order.

Definition 6.8 (Compatibility Tree). A compatibility tree of a tree G = (V,E) is a pair of
functions φ and ψ, where φ maps each node v ∈ V into a set of tuples of size at most ∆, and
ψ maps each edge e ∈ E into a set of tuples of size 2.

In order to specify how the compatibility tree is initialized, it is useful to first assign an
order to the edges incident to each node, and to the nodes incident to each edge. This ordering
is called port numbering assignment. Observe that an arbitrary port numbering assignment
can be trivially computed in 1 round of communication.

Definition 6.9 (Port Numbering). A node port numbering is a labeling of every half-edge satis-
fying that, for each node v, half-edges incident to v have pairwise distinct values in {1, . . . ,deg(v)}.
An edge port numbering is a labeling of every half-edge satisfying that, for each edge e, half-
edges incident to e have pairwise distinct values in {1, 2}. A port numbering is the union of a
node port numbering and an edge port numbering.

Assume that the treeG is already provided with a port numbering. The compatibility tree of
G is initialized as follows. For each node v, φ(v) = {(`1, . . . , `deg(v)) | {(i1, `1), . . . , (ideg(v), `deg(v))} ∈
CV }, where ij is the input assigned to the half-edge incident to v with node port number j.
For each edge e, ψ(e) = {(`1, `2) | {(i1, `1), (i2, `2)} ∈ CE}, where ij is the input assigned to
the half-edge incident to e with edge port number j. In other words, we initialize φ and ψ
with everything that is allowed by the constraints of the problem, in all possible orders that
are compatible with the given input.

We can observe that, by construction, φ and ψ still encode the original problem. In other
words, we can now forget about CV and CE , and try to find a labeling assignment that is valid
according to φ and ψ. We make this observation more formal in the following statement.

Observation 6.10. The LCL problem Π is solvable if and only if there is a labeling gout : H →
Σout that solves Π that satisfies that:

• For each node v, let `j be the label assigned by gout to the half-edge incident to v with port
number j. It must hold that (`1, . . . , `deg(v)) ∈ φ(v).

• For each edge e, let `j be the label assigned by gout to the half-edge incident to e with port
number j. It must hold that (`1, `2) ∈ ψ(e).

On a high level, when compressing a subtree into a node v, we will redefine φ(v) and
discard some tuples. The discarded tuples are the ones satisfying that, if node v uses such a
configuration, there is no way to complete the labeling of the subtree in a valid way. Similarly,
when compressing a path, we will define ψ(e), where e is the new (virtual) edge that we use to
replace the path, in such a way that, if ψ(e) contains the tuple (`1, `2) and we label the first
half-edge of the compressed path with `1 and the last half-edge with `2, then we can correctly
complete the labeling inside the path. Here it should become clear why we use tuples and not
just multisets: it may be that v can use a label on the half-edge connecting it to one child
(because that subtree can be competed by starting with that label), but the same label cannot
be used on the half-edge connecting v to a different child. A similar situation could happen
on a compressed path: it could be that it is possible to label `1 the half-edge connecting the
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first endpoint to the path and `2 the half-edge of the second endpoint to the path, but not vice
versa.

In the algorithm, we will solve the problem Π in the tree obtained by compressing some
subtrees into single nodes, and some paths into single edges. We now formally define what
it means to partially solve an LCL Π w.r.t. a compatibility tree (φ, ψ). Observe that, in a
tree G obtained after performing some compression steps, a node v may have a degree that is
smaller than the size of the tuples given by φ(v), that always have size equal to the original
degree of v, denoted by origdeg(v), and hence the ports incident to v may be just a subset of
{1, . . . , origdeg(v)}.

Definition 6.11 (Partially solving an LCL w.r.t. the compatibility tree). Let G be a tree, and
let (φ, ψ) be a compatibility tree for G. A solution for Π that is correct according to φ and ψ is
a labeling gout satisfying that:

• For each node v, let origdeg(v) be the size of the tuples given by φ(v), and let P (v) ⊆
{1, . . . , origdeg(v)} be the subset of ports of v that are present in G. For each j ∈ P (v),
let `j be the label assigned by gout to the half-edge incident to v with port number j.
There must exist labels `k, for all k ∈ {1, . . . , origdeg(v)} \ P (v), such that it holds that
(`1, . . . , `origdeg(v)) ∈ φ(v).

• For each edge e, let `j be the label assigned by gout to the half-edge incident to e with port
number j. It must hold that (`1, `2) ∈ ψ(e).

In other words, solving the LCL in the tree obtained by performing some compression steps,
means to pick, for each node, a configuration allowed by φ, in such a way that all edges that
are still present have a configuration allowed by ψ.

6.4 The Algorithm

Let Π = (Σin,Σout, CV , CE) be the considered LCL problem, and let G0 = G denote a rooted
input tree with root r. The high-level idea of our approach is to first initialize φ0 and ψ0 as
the functions φ and ψ shown in Section 6.3. Then, we perform the following distinct parts.

Steps 1–2 of LCLSolver. From G0, we iteratively derive a sequence G1, G2, . . . , Gt of smaller
trees until eventually, for some t = O(1), it holds that Gt consists of a single node (the root
r). In the meanwhile, we also update the compatibility tree, and compute φj and ψj for all
0 < j ≤ t. The sequence is derived such that Gj (0 < j ≤ t) is obtained from Gj−1 by
first compressing all subtrees of size ≤ nδ/2 into their respective roots (we refer to the roots
of the subtrees and not (necessarily) the actual root node r), and then compressing all paths
into single edges. Throughout the sequence of compatibility trees, we maintain the following
property, which we prove in Lemmas 6.15 and 6.18.

Claim 6.12. Let 1 ≤ j ≤ t. If there exists a correct solution for Gj−1 according to φj−1 and
ψj−1 (w.r.t. Definition 6.11), then there exists also a correct solution for Gj according to φj
and ψj (w.r.t. Definition 6.11). Moreover, given any correct solution for Gj, we can transform
it into a correct solution for Gj−1.
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Steps 3–4 of LCLSolver. For all 0 ≤ i ≤ t, we define Ġi to be Gi where to each node v is
assigned a configuration c(v) ∈ φi(v) in such a way that the assignment c induces a labeling
gout that is correct according to φi and ψi (w.r.t. Definition 6.11). The sequence is derived such
that Ġi is obtained from Ġi+1 by decompressing the subtrees and paths that were compressed
when Gi+1 was obtained from Gi, and simultaneously solving the problem, which is possible
by Claim 6.12. Finally, the solution on Ġ0 is a solution for Π on G by Observation 6.10.

The Algorithm. Let us now formally present the algorithm LCLSolver (along with its sub-
routines) that solves any LCL on rooted trees in O(logD) time. Note that the subroutines are
state-changing functions, i.e., they modify their input graphs.

LCLSolver(Π, G(V,E))

1. Initialize φ0 and ψ0 according to Section 6.3.

2. Initialize phase counter j ←− 0. Repeat the following until the graph is a singleton.

(a) CountSubtreeSizes(G)

(b) GatherSubtrees(G)

(c) CompressSubtrees(G)
// compress all subtrees of size ≤ nδ/2 into single nodes, also compute φj+1

(d) AdvancedCompressPaths(G)
// compress all paths into single edges, also compute ψj+1

(e) Update j ←− j + 1

3. Set c(v) to be an arbitrary element of φj(v), where v is the obtained singleton.
// the graph Ġj = Ġ is obtained

4. Initialize repetition counter k ←− j. Repeat the following while k ≥ 0.

(a) DecompressPaths(Ġ)
// decompress the paths from phase k

(b) DecompressSubtrees(Ġ)
// decompress the subtrees from phase k, the graph Ġk−1 is obtained

(c) Update k ←− k − 1

Observe that the phase counter is incremented, while the repetition counter is decremented,
which is inline with the indexing used in the previous high-level overview. Next, we give a brief
introduction to the subroutines, before defining them formally in the following subsections.
Recall that T (v) denotes the subtree that is rooted at a node v such that v belongs to T (v)
and G \ T (v) is connected.

• CountSubtreeSizes: Every node v learns either the exact size of T (v) or that |T (v)| > nδ/2.
In the former case, v marks itself as light, and in the latter case, as heavy. If a heavy
node has a light child, it remarks itself as a local root.
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• GatherSubtrees: Every local root v learns T (u) for every light child u.

• CompressSubtrees: Every local root v checks, for each half-edge h connecting it to a light
child u, what are the possible labelings of h that allow to complete the labeling of T (u)
in such a way that it is valid according to φ and ψ. Then, v compresses all of these trees
into itself, and updates φ in such a way that any LCL solution on the remaining graph
can be extended to a solution on T (u) for every light child u. This is done according to
the computed possible labelings of the half-edges.

• AdvancedCompressPaths: For every path P with some endpoints u and w (both have
either degree 1 or ≥ 3), compress P into a new edge {u,w}, and assign an arbitrary edge
port numbering to this edge. The value of ψ({u,w}) is then defined in a way that any
LCL solution on the edge {u,w} can be extended to a solution on P . After performing
CompressPaths, there are no degree-2 nodes left, which will be crucial for the analysis.

• DecompressPaths: The LCL problem on the input graph is solved. In repetition k, we
decompress all paths that were compressed during phase k. While decompressing, we
extend the solution to the paths.

• DecompressSubtrees: The LCL problem on the input graph is solved. In repetition k,
every local root of phase k decompresses all subtrees that it compressed during phase k.
While decompressing, we extend the solution to the subtrees.

The following sections are rather self-contained and correspond to a specific subroutine that
is called by LCLSolver (in the order they are called). They are written from a node’s point of
view, with the proofs intertwining correctness, runtime, and MPC details.

6.5 Solving LCLs: CountSubtreeSizes

During the execution of the subroutine, every node v maintains the following variables:

• i: iteration counter

• s(v): size of T (v) until depth 2i (v is at depth 0)

• C(v): set of all descendant nodes (if any) of v at depth 2i (v is at depth 0).

The aim of the subroutine is to detect all heavy nodes, i.e., nodes which have a subtree of
size > nδ/2 rooted at them. This can be thought of as a preprocessing step for GatherSubtrees.
All nodes are initially marked as active.

CountSubtreeSizes(G)

Each node v initializes: C(v)←− set of children of v in G, s(v)←− |C(v)|, and i←− 0.

1. Repeat the following steps until C(v) = ∅ for every node v.

(a) If v is active and all u ∈ C(v) are also active, v updates
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Figure 2: An illustration of an update in Step 1(a) of CountSubtreeSizes. The intuition is that
node v learns the size of the partial subtrees hanging from every child in C(v). The values d
and d+ 2i on the left refer to the depth of nodes v and u,w, respectively, with regards to the
whole tree. The oriented edges are not the actual edges of G, but rather a representation of
sets C(·). The incoming edges of node v are incident to the nodes in set C(v) in both iterations
i and i + 1. The value s(v) in iteration i + 1 is simply the sum of s(v), s(u) and s(w) from
iteration i.

– C(v)←−
⋃
u∈C(v)C(u)

– s(v)←− s(v) +
∑

u∈C(v) s(u).

Otherwise, v marks itself as heavy, and it becomes inactive.

(b) If s(v) > nδ/2, v marks itself as heavy, and it becomes inactive. Heavy nodes update
C(v)←− ∅.

(c) All active nodes update i←− i+ 1.

Non-heavy nodes marks themselves as light.

Upon termination, for every heavy node v it holds that |T (v)| > nδ/2. Note that the
ancestors of heavy nodes are also heavy; heavy nodes induce a single connected component in
G.

Lemma 6.13 (CountSubtreeSizes). Every node v learns either the exact size of T (v) or that
|T (v)| > nδ/2. The algorithm terminates in O(logD) low-space MPC deterministic rounds using
O(n+m) words of global memory.

Proof. We first show that every active node v maintains the correct values for s(v) and C(v)
throughout the algorithm. In iteration i = 0, values s(v) and C(v) are correct by initialization.
During iteration i in Step 1(a), v updates its values only if v together with all of its descendants
in C(v) are active, resulting in the correct values for iteration i+1 by construction (see Figure 2).
A node v marks itself as heavy only when s(v) > nδ/2 or when one of its descendants is heavy.
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Both conditions imply that |T (v)| > nδ/2. If neither conditions are met and C(v) = ∅ at some
point, then the value s(v) for node v is the exact size of T (v) and v marks itself light.

The algorithm terminates in O(logD) iterations (with each iteration taking O(1) MPC
rounds), since an active node knows T (v) until depth 2i in iteration i, and the depth of a tree
is D. Observe that for every light node v, it holds that |C(v)| ≤ s(v) ≤ nδ/2. Hence, local
memory is never violated, because when a node updates C(v) in Step 1(a), the resulting set
is of size at most nδ/2 · nδ/2 nodes. Also, storing value s(v) takes only O(log n) bits. Global
memory is never violated, since, by design, a node u is only kept in the set C(·) of exactly one
node.

Algorithm CountSubtreeSizes can be thought of as a modified version of graph exponenti-
ation where nodes only keep track of the furthest away descendants. For the communication
in Step 1(a) to be feasible, the set C(v) is simply a set of IDs corresponding to the desired
nodes. Observe that the communication in Step 1(a) is always initialized by v, and not by the
descendants in C(v) (nodes in C(v) don’t even know the ID of v). This is feasible, because, by
design, every node has at most one ancestor that initializes communication.

6.6 Solving LCLs: GatherSubtrees

After executing CountSubtreeSizes, by Lemma 6.13, every node knows if it is heavy or light.
Moreover, every heavy node v knows if it has a light child or not. If so, node v remarks itself
from heavy to local root. If there are no local roots in G, mark the actual root of the tree as
a local root. During algorithm GatherSubtrees, heavy nodes do nothing, and all other nodes
(including local roots) maintain the following variables:

• i: iteration counter

• C(v): a subset of descendant nodes.

The procedure is as follows (see Figure 3 for an example).

GatherSubtrees(G)

Each node v initializes: C(v)←− set of light children of v in G, and i←− 0.

1. Repeat the following steps until C(v) for every local root v consist of the union of
subtrees T (u) for every light child u.

(a) Every local root v updates C(v)←− C(v) ∪
⋃
u∈C(v)C(u).

(b) Every light node w updates C(w)←−
⋃
u∈C(w)C(u).

(c) Update i←− i+ 1.

We phrase the algorithm in terms of the subtrees of the light children of a local root v,
instead of the subtree of v directly, and we do this for a simple reason: a local root v may have
children that are also local roots, in which case, v does not want to learn anything in their
direction.
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i = 2

Figure 3: Three iterations of GatherSubtrees, with a local root marked black. The directed
edges are not necessarily the actual edges of G, but rather a representation of sets C(·). The
incoming edges of a node v are incident to the nodes in set C(v). The figure illustrates how
local roots behave differently than other nodes: local roots aggregate all descendants, while
other nodes replace current ones with new ones.

Lemma 6.14 (GatherSubtrees). Every local root has gathered the subtree T (u) for every light
child u. The algorithm terminates in O(logD) low-space MPC deterministic rounds using O(n+
m) words of global memory.

Proof. By design, the set C(v) of a local root v contains T (u) until depth 2i− 1 for every light
child u in iteration i. Since the depth of a tree is D, after at most O(logD) iterations, for every
local root v, C(v) contains T (u) for every light child u.

Observe that |T (u)| ≤ nδ/2 for every light node u. This implies that |C(v)| ≤ nδ for every
local root v, since it has a constant number of children (the maximum degree of the graph is
constant). Hence, local memory is respected. Global memory is never violated, since by design,
a node u is only kept in set C(·) of exactly one node.

Similarly to CountSubtreeSizes, algorithm GatherSubtrees can be thought of as a modified
version of graph exponentiation. However, as opposed to CountSubtreeSizes, algorithm Gather-
Subtrees actually gathers the whole subtrees into the memory of preselected nodes (local roots).
Similarly to CountSubtreeSizes, we store IDs in the sets C(·) in order for the communication in
Step 1 to be feasible. Also, the communication is made possible due to every node having at
most one ancestor that initializes the communication.

6.7 Solving LCLs: CompressSubtrees

After executing GatherSubtrees, by Lemma 6.14, every local root has gathered the IDs of the
nodes in the subtree T (u) for every light child u.

CompressSubtrees(G)
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1. Perform the following step for every light child u of every local root v. Denote e∗ = (u, v).
Every local root v gathers the topology of T (u), along with φ(w) for every node w in
T (u) and ψ(e) for every edge e in T (u). Every local root v computes the set of labels
L(e∗) satisfying that, by labeling the half-edge (v, e∗) with a label in L(e∗), it is possible
to complete the labeling in T (u) by only using configurations allowed by φ and ψ.

2. Every local root v updates φ(v) by possibly discarding some tuples. Let P (v) be the
set of ports of v connecting it to light nodes, and let ei be the edge reached from v
by following port i. A tuple (`1, . . . , `d) is kept in φ(v) if and only if `i ∈ L(ei) for all
i ∈ P (v).

Lemma 6.15. Let φ and ψ be the compatibility tree before performing CompressSubtrees, and let
φ′ be the updated compatibility tree after performing CompressSubtrees. Let G′ be the resulting
graph after performing CompressSubtrees. The following holds.

• If there exists a correct solution for the input graph G according to φ and ψ, then there
exists also a correct solution for G′ according to φ′ and ψ.

• Given any correct solution for G′ according to φ′ and ψ, it can be transformed into a
correct solution for G according to φ and ψ.

Proof. In order to show the first statement, suppose that there is a correct solution for G.
Notice that, since G′ is a subgraph of G, if, for every v ∈ G′, we use the tuple in φ(v) of the
correct solution in G, then we get a correct solution for G′. Hence, we need to ensure that
the tuple used by v is in φ′(v). But this is exactly what we do: every tuple excluded from
φ(v) in Step 2 is not part of any correct solution for G, and hence the first statement holds.
For the second statement, observe that from the definition of G′, it follows that any correct
solution for G′ provides a partial solution for G (all labels are fixed except the ones in the
compressed subtrees), and this partial solution is part of a correct solution for G. Hence, a
correct solution for G can be obtained by extending the provided solution to the compressed
subtrees. An extension is guaranteed to exist, since all non-extendable tuples of φ(v) were
removed previously in Step 2. Note that this extension can be performed by all local roots
simultaneously, since there are no dependencies between subtrees.

Lemma 6.16 (CompressSubtrees). The algorithm terminates in O(1) time in the low-space
MPC model and uses O(n+m) words of global memory.

Proof. Gathering the topology of T (u), along with φ(w) for every node w in T (u) and ψ(e)
for every edge e in T (u) is possible: by Lemma 6.14, the local root v knows the IDs of all
nodes in T (u), and hence node v can simply gather all incident edges from all nodes in T (u) in
constant time, and reconstruct T (u) locally. This does not break any memory constraints, since
v receives every edge from at most two nodes, the number of edges is bounded by the number of
nodes, and the sets φ(w) and ψ(e) are of constant size. Computing the sets L(·) does not require
communication, and can be done locally in constant time. Finally, the removal (contraction)
of nodes and updating the set φ(v) also takes constant time, concluding the runtime proof.
Moreover, the global memory is not violated, since similarly to GatherSubtrees, a node u is
gathered by only one local root v.
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6.8 Solving LCLs: AdvancedCompressPaths

The aim of this algorithm is to compress all paths into single edges while retaining the compati-
bility information of the paths, i.e., if the problem is solved, the solution can be extended to the
paths that were compressed. As opposed to the previous subroutines, AdvancedCompressPaths
does not capitalize on anything that is done by the previous routines.

We begin with a slight detour and first show how all degree-2 nodes can compute their
distance to the highest ID endpoint with the following algorithm. To keep things simple, we
present an algorithm for a single path H with two endpoints of degree 1.

CountDistances(G)

1. Define degree-2 nodes as internal nodes, degree-1 nodes as endpoints, and the higher ID
endpoint as the head. The head is denoted by h. Assign weight w(e)←− 1 for every edge
e. Repeat the following steps until all internal nodes share a weighted edge with both
endpoints; the weight of the edge equals the distance.

(a) Every internal node with incident edges e = {u, v} and e′ = {v, w}, removes∗ e
and e′ from H and replaces them with a new edge e′′ = {u,w} and sets w(e′′) ←−
w(e) + w(e′).
∗If u (or w) is an endpoint, node v does not remove e (or e′).

Lemma 6.17 (CountDistances). Every degree-2 node knows its distance to both endpoints. The
algorithm does not require prior knowledge of D, terminates in O(logD) low-space MPC rounds
using O(n+m) words of global memory.

Proof. The weight of each edge {v, u} in the graph equals the number of edges between v and u
in the original graph. The base case being evident from the initialization of the weight of each
edge, and the induction step from the update step w(e′′) ←− w(e) + w(e′). Since the shortest
path from either endpoint to any other node in the path decreases by a factor of at least 3/2,
CountDistances terminates in O(logD) time.

Creating edges and communicating through them can be done in constant time in MPC,
since storing an edge equals storing the ID of the neighbor. Observe that every internal node
keeps exactly two edges in memory. In order to not break their local memory, endpoints do not
keep track of any edges. Since all nodes keep at most two edges in memory, global memory is
respected.

Next, we show that, by using the distances computed with CountDistances, we can compress
paths of all lengths in O(logD) time, while respecting both local and global memory. Recall
that for a path, h denotes its highest ID endpoint.

AdvancedCompressPaths(G)

1. Set i←− 0 and execute the following steps for every path H until it consists of one edge.
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(a) Define an MIS set Zi := {v ∈ H | deg(v) = 2 and dG(v, h) is not divisible by 2i+1}.
(b) Every node v ∈ Zi with incident edges e = {u, v} and e′ = {v, w} removes e and

e′ from G′ and replaces them with a new edge e′′ = {u,w} (with port 1 connected
to u and port 2 connected to w). Furthermore, for the new edge, v sets ψ(e′′) to
the set of all tuples (`1, `2) satisfying that there exist two labels x, y satisfying the
following. Let p1 be the port connecting e to node u, let p2 be the port connecting
e to v, let p3 be the port connecting v to e, let p4 be the port connecting v to e′,
let p5 be the port connecting e′ to v, and let p6 be the port connecting e′ to w:

• There is a tuple in ψ(e) with label `1 in position p1 and label x in position p2;
• There is a tuple in φ(v) with label x in position p3 and label y in position p4;
• There is a tuple in ψ(e′) with label y in position p5 and label `2 in position p6.

(c) Update i←− i+ 1.

From the perspective of the nodes u and w, the new edge e′′ replaces the old edges e and e′,
respectively. In other words, if u was connected through port j to edge e, now it is connected
through port j to edge e′′. Notice that, the reason for which, at each step, we compute an MIS,
is that, if MIS nodes replace their two incident edges of the path with a single edge, we still
obtain a (shorter) path as a result.

Consecutive MIS. Executing CountDistances gives us the means to compute consecutive
maximal independent sets in AdvancedCompressPaths, which is not exactly obvious nor easily
attainable using other means. If we were to compute an MIS directly with, e.g., Linial’s [Lin87]
algorithm in every iteration of Step 2, we would end up with a total runtime of O(logD · log∗ n).
An alternative approach would be to employ the component-unstable O(1)-time algorithm that
computes an independent set of size Ω(n/∆) by [CDP21]. This approach also fails for multiple
paths, since the algorithm in [CDP21] does not give the guarantee that a constant fraction of
nodes in all paths join the independent set, leading to a total runtime of O(log n). To sum-
marize, CountDistances is a novel approach to a very non-trivial problem, yielding component
stability and a sharp O(logD) runtime.

Lemma 6.18. Let φ and ψ be the compatibility tree before performing AdvancedCompressPaths,
and let ψ′ be the updated compatibility tree after performing AdvancedCompressPaths. Let G′ be
the resulting graph after performing AdvancedCompressPaths. The following holds.

• If there exists a correct solution for the input graph G according to φ and ψ, then there
also exists a correct solution for G′ according to φ and ψ′.

• Given any correct solution for G′ according to φ and ψ′, it can be transformed into a
correct solution for G according to φ and ψ.

Proof. Assuming that Zi is indeed an MIS, the first statement follows from the fact that acting
nodes (i.e., MIS nodes) are never neighbors and every set ψ({u,w}) that an acting node v
creates only discards configurations that do not correspond to valid solutions for the subpath
(u, v, w). The second statement holds by the definition of labels `1, `2, x, y, since we can perform
the process in reverse.
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Let us show that Zi constitutes an MIS. For any i, observe that the distances of the remain-
ing nodes constitute all multiples of 2i up until some number (the length of the path). Hence,
every second node is not divisible by 2i+1 and joins Zi, proving the statement.

Lemma 6.19 (AdvancedCompressPaths). There are no degree-2 nodes left in the graph. The
algorithm terminates in O(logD) low-space MPC rounds using O(n+m) words of global mem-
ory.

Proof. Since Zi constitutes an MIS, every path shortens by a constant factor. After O(logD)
iterations, every path is compressed into a single edge. Every iteration consists of a constant
number of communication rounds, every node uses a constant amount of memory, and com-
pressing paths into edges never creates new degree-2 nodes.

6.9 Solving LCLs: DecompressPaths

Assuming that the problem of interest is solved in the current graph, we essentially reverse
AdvancedCompressPaths and iteratively extend the solution from certain edges to the paths
that were previously compressed into those edges. By “the problem is solved in the current
graph” we simply mean that the output labels of the half-edges in the current graph satisfies
Definition 6.11.

DecompressPaths(Ġ)

1. All nodes that performed AdvancedCompressPaths in phase k, know the last iteration i
and can perform the following until i = 0.

(a) Every node v ∈ Zi learns the fixed half-edge labels (`1, `2) assigned to e′′ = (u,w)
(e′′ is the edge v had created). Node v removes e′′ from the graph and replaces
it with e = (u, v) and e′ = (v, w) (edges e and e′ are the edges v had removed).
Furthermore, v assigns half-edge labels `1, x to edge e and labels y, `2 to edge e′

such that the labeling satisfies ψ(e), φ(v), and ψ(e′).

(b) Update i←− i− 1

Lemma 6.20 (DecompressPaths). The LCL problem on the graph is solved according to Defi-
nition 6.11, and the graph has the same node and edge sets as G in phase k before executing
AdvancedCompressPaths. The algorithm terminates in O(logD) low-space MPC rounds using
O(n+m) words of global memory.

Proof. All we do is reversing the steps of AdvancedCompressPaths and extending the solution
for Ġ to the decompressed paths, resulting in a correct solution on the graph that has the
same node and edge sets that we had before the compression. Since the computation of the
solution is done locally, and extending the solution requires a constant amount of memory and
communication, the lemma follows from Lemmas 6.18 and 6.19.
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6.10 Solving LCLs: DecompressSubtrees

The assumption for this algorithm, similarly to DecompressPaths, is that the LCL problem on the
graph is solved correctly according to Definition 6.11. We also assume, and keep the invariant,
that we do not only know the partial output assignment given to Ġ, but we also know, for each
node v of G, the tuple c(v) ∈ φ(v) assigned to it. This is especially useful at the beginning,
when we have the root that is a singleton, and hence has no incident edges in the current graph,
but we still want to know how to label its incident half-edges after decompressing the subtrees
rooted at its children.

DecompressSubtrees(Ġ)

1. Every local root v of phase k decompresses every subtree T (u) compressed into it during
phase k, while simultaneously solving the LCL problem on T (u).

Lemma 6.21 (DecompressSubtrees). The LCL problem on the graph is solved according to
Definition 6.11, and it has the same node and edge sets as G in phase k before executing
CompressSubtrees. The algorithm terminates in O(1) low-space MPC rounds using O(n + m)
words of global memory.

Proof. The first statement follows from Lemma 6.15, since the solution for Ġ can be extended
to the decompressed trees, resulting in a correct solution on the graph that has the same node
and edge sets that we had before the compression. For each node u in the decompressed trees,
we store in c(u) the tuple used to label its incident half-edges. The runtime follows from Lemma
6.16, and the memory is respected trivially.

6.11 Proof of Theorem 1.3

By the lemmas in Sections 6.6 to 6.10, the problem is solved in the original forest, and all
subroutines of LCLSolver have time complexity O(logD) in the low-space MPC model and use
O(n + m) words of global memory. All of the subroutines are clearly deterministic. What is
left to prove is that

(i) after a constant number of phases in Step 2, the graph is reduced to a single node;

(ii) after a constant number of repetitions in Step 4, the graph is expanded to its original
form;

(iii) if the input graph is a forest, the algorithm is component-stable, and the runtime becomes
O(logDmax), where Dmax denotes the maximum diameter of any component.

Proof of (i). The proof is very similar to the proof of Lemma 4.14, but we restate the claims
for completeness. Let us recall what effectively happens during a phase. There are only two
subroutines that alter the graph: in CompressSubtrees, all subtrees of size ≤ nδ/2 are compressed
into the first ancestor v with a subtree of size > nδ/2; then, in AdvancedCompressPaths, all paths
are compressed into single edges, leaving no degree-2 nodes in the graph. Let Gj and nj = |Gj |
denote the graph and the size of the graph at the beginning of phase j, respectively. We claim
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that after one phase, the number of nodes in the graph drops by a factor of Θ(nδ/2). Observe,
that after CompressSubtrees every leaf w in the graph corresponds to a subtree of size ≥ nδ/2

that was removed. Moreover, the same holds also after AdvancedCompressPaths. Hence,

nj ≥ nj+1 + |{w ∈ Gj+1 | degGj+1
(w) = 1}| · nδ/2

> nj+1 + nδ/2 · nj+1/2·
= nj+1(1 + nδ/2/2),

implying that

nj+1 ≤
nj

1 + nδ/2/2
.

The first strict inequality stems from the fact that there are no degree-2 nodes left after
phase j, and hence the number of leaf nodes in Gj+1 is strictly larger that ni+1/2. It is clear
that after O(1/δ) phases, the graph is reduced to one node.

Proof of (ii). Let us recall what effectively happens during a repetition. Both subroutines De-
compressPaths and DecompressSubtrees alter the graph by decompressing the paths and subtrees
that were compressed previously in some phase. Hence, the number of repetitions is equal to
number of phases, which is constant.

Proof of (iii). During the algorithm, the only communication between the components happens
in order to start the subroutines in synchrony, which does not affect the LCL solution. It does
however affect the runtime, since smaller components may be stalled behind larger components.
Hence, in all runtime arguments, D can be substituted with Dmax.

Extension to unsolvable LCL problems. If the LCL problem is unsolvable, we can detect
it in the following way. If, during any phase of Step 2, a local root v ends up with an empty
set of tuples in φ(v), the original LCL problem must be unsolvable. Node v can then broadcast
to all nodes in the graph to output label ⊥ on their incident half-edges, indicating that there
is no solution to the LCL problem.

7 Conditional Hardness Results

In this section, we show that our algorithm for solving all LCLs is optimal, assuming a widely
believed conjecture about MPC. By earlier work, we consider the following more convenient
problem that is also hard under the conjecture. We note that, due to technical reasons, our
problem definition is slightly different to the one in [GKU19]. Following in the footsteps of
previous work, we will show that our version of the problem is also hard under the 1 vs. 2
cycles conjecture.

Definition 7.1 (The D-diameter s-t path-connectivity problem). Consider a graph that con-
sists of a collection of paths of diameter O(D), for some parameter D satisfying D ∈ Ω(log n)
and D = no(1). Given two special nodes s and t of degree 1 in the graph, the algorithm should
provide the following guarantee: If s and t are in the same connected component, then the
algorithm should output YES. If s and t are in different connected components, the algorithm
should output NO.
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Lemma 7.2. Assuming that the 1 vs. 2 cycles conjecture holds, there is no deterministic low-
space MPC algorithm with poly(n) global memory to solve the D-diameter s-t path-connectivity
problem in o(logD) rounds.

Proof. On a high level, we show that we can use an algorithm for the D-diameter s-t path-
connectivity problem to reduce the size of the given cycles by a multiplicative factor D, unless
the given cycles are already too small. We then show that, by recursively applying this algo-
rithm, we obtain a solution for the 1 vs. 2 cycles cycles problem.

In more detail, we are given a graph G that is either one or two cycles, where each cycle is of
length at least n/2. Let D be in Ω(log n) and in no(1). We proceed in phases, starting in phase
i = 0. We assume that at the beginning of phase i the graph G contains at least (n/Di)/2i

nodes and at most (n/Di) · 2i nodes, and we guarantee that at the end of phase i the graph
contains at least (n/Di+1)/2i+1 nodes and at most (n/Di+1) ·2i+1 nodes. If the graph contains
two cycles, this factor-D reduction will actually independently hold for the size of each cycle.
This is performed by running the algorithm A that solves the D-diameter s-t path-connectivity
problem. We stop when the number of nodes is no(1), which requires O(logD n) phases. Then,
we can spend o(log n) rounds to solve the problem with known techniques (e.g., [BDE+19]).
If the D-diameter s-t path-connectivity problem could be solved in o(logD) rounds, we would
obtain a total running time of O(logD n) · o(logD) + o(log n) = o(log n), which violates the 1
vs. 2 cycles conjecture. We now explain a single phase of the algorithm.

In each phase i, we maintain the invariant that, if there are two cycles, the larger one
contains at most 4i times the nodes of the smaller one. Assume that at the beginning of phase
i there are at least (4i + 1)cD log n nodes, for a sufficiently large constant c. If it is not the
case, then we are done, because the number of nodes is in no(1).

Sample the nodes in G with probability 1/D and turn each sampled node inactive. At the
end of the phase, only inactive nodes will remain, and by a standard Chernoff bound, with
high probability, the number of inactive nodes is at least a factor D/2 and at most a factor 2D
smaller than the original amount of nodes. Moreover, this holds independently on each cycle,
and hence the ratio of the sizes of the obtained cycles can increase by at most a factor 4, hence
maintaining the invariant.

We now show an upper bound on the length of the obtained paths, induced by active nodes.
Consider a sequence of c′D log n nodes, for some sufficiently large constant c′. The probability
that none of them is sampled is (1− 1/D)c

′D logn, and hence, with high probability, each path
has length O(D log n). Moreover, since the shortest cycle has at least cD log n nodes, then, by
fixing c sufficiently larger than c′, we obtain that each cycle contains at least one sampled node
with high probability, and hence G′ is a collection of paths, as required.

We create many instances of the D-diameter s-t path-connectivity problem from these paths
as follows. Fix a node u with degree 1 in G′. We set u := s and create an instance of D-diameter
s-t path-connectivity for each possible choice of t 6= s, where t is also a degree 1 node. Notice
that there can be at most n of such choices. Furthermore, we do the same construction for all
possible choices of s, which results in O(n2) instances of the D-diameter s-t path-connectivity
problem.

Suppose now that we have a deterministic o(logD) time algorithm A to solve theD-diameter
s-t path-connectivity problem. The paths have length O(D log n), and hence running this
algorithm requires o(log(D log n)) rounds, which, by the assumption on D, is still in o(logD).
Run A independently on each of the O(n2) instances of the D-diameter s-t path-connectivity
problem. On an instance where s and t are on the same path, the algorithm returns YES and
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otherwise NO. Hence, we can derive which endpoints in G′ are on the same path in o(logD)
time.

Then, we create a new instance of the 1 vs. 2 cycles cycle problem as follows. For each pair
s and t on the same path, we create a virtual edge between the inactive neighbors of s and t
and remove the active nodes. The number of nodes decreases at least by a factor D/2 and at
most by a factor 2D, as required.

Since a connected component algorithm clearly solves the D-diameter s-t path-connectivity
problem, we obtain the following corollary.

Corollary 7.3. Assuming the 1 vs. 2 cycles conjecture, there is no low-space memory MPC
algorithm to solve connected components in o(logD) rounds on forests.

We now show that we can define an LCL problem Π for which we can convert any solution
into a solution for the problem of Definition 7.1 in constant time. This implies a conditional
lower bound of Ω(logD) for Π, implying also that our generic solver, that runs in O(logD)
rounds, is optimal. Instead of defining Π by defining CV and CE formally, which makes it diffi-
cult to parse the definition, we provide a human understandable description of the constraints.

• The possible inputs of the nodes are 0 or 1. In the instances that we create, all nodes
will be labeled 0, except for s, which will be labeled 1.

• The possible outputs are on edges, and every edge needs to be either oriented or unori-
ented.

• All nodes of degree 2 must have either both incident edges unoriented, or both incident
edges oriented. If they are oriented, one must be incoming and the other outgoing.

• Any node of degree 1 with input 1 must have its incident edge oriented.

• Any node of degree 1 with input 0 must have its incident edge either unoriented, or
oriented incoming.

We can observe some properties on the possible solutions for this problem:

• The edges of a path are either all oriented or all unoriented.

• The edges of a path containing only nodes with input 0 must all be unoriented, because a
path needs to be oriented consistently, and endpoints with input 0 must have their edge
oriented incoming.

• All the edges of a path containing an endpoint with input 1 must be oriented.

We can use an algorithm for Π to solve the problem of Definition 7.1 as follows. By giving 0 as
input to all nodes except s, and 1 to s, and solving Π, we obtain a solution in which only the
other endpoint of the path containing s has an oriented incident edge, and we can hence check
if this node is t. Since Π is an LCL, we obtain the following.

Theorem 7.4. Assuming the 1 vs. 2 cycles conjecture, there is no low-space memory MPC
algorithm to solve any solvable LCL in o(logD) rounds on forests.
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A MPC Implementation Details

Initially, before executing any algorithm, the input graph of n nodes and m edges is distributed
among the machines arbitrarily. By applying Definition A.1, we can organize the input such
that every node and it’s edges are hosted on a single machine, or, in the case of high degree,
on multiple consecutive machines.

Definition A.1 (Aggregation Tree Structure, [BKM19]). Assume that an MPC algorithm re-
ceives a collection of sets A1, . . . , Ak with elements from a totally ordered domain as input.
In an aggregation tree structure for A1, . . . , Ak, the elements of A1, . . . , Ak are stored in lexi-
cographically sorted order (they are primarily sorted by the number i ∈ {1, . . . , k} and within
each set Ai they are sorted increasingly). For each i ∈ {1, . . . , k} such that the elements of
Ai appear on at least 2 different machines, there is a tree of constant depth containing the
machines that store elements of Ai as leafs and where each inner node of the tree has at most
nδ/2 children. The tree is structured such that it can be used as a search tree for the elements
in Ai (i.e., such that an in-order traversal of the tree visits the leaves in sorted order). Each
inner node of these trees is handled by a separate additional machine. In addition, there is a
constant-depth aggregation tree of degree at most nδ/2 connecting all the machines that store
elements of A1, . . . , Ak.

This section is dedicated to showing how MAX-ID-Solver can be implemented in the low-
space MPC model. We only cover routine CompressLightSubTrees, since the implementation
details for CompressPaths, DecompressLightSubTrees, and DecompressPaths are simple, and in-
cluded in the corresponding proofs.

In the proof of CompressLightSubTrees, we have reasoned that the local memory of a node
never exceeds O(nδ), and that the total memory never exceeds O(n · D̂3). However, we have to
also ensure that the low-space MPC’s communication bandwidth of O(nδ) is respected through-
out the routines (Lemma A.2). Also, we have to address the possibility of a node having degree
> nδ, since we work with arbitrary degree trees.

If, during some iteration of CompressLightSubTrees, the degree of a node is > nδ, it is clearly
heavy, and does not partake in the ongoing iteration. In fact, if the degree is > nδ/8 + 1, it
is also heavy and does not partake. Hence, in the following lemma, we can assume that every
node v and its edges are hosted on a single machine, and that deg(v) ≤ nδ/8 + 1.

Lemma A.2. The following routines can be performed in O(1) low-space MPC rounds:

1. A node can detect whether it is happy or full,

2. Exp(X), X ⊆ N(v),

3. If node v is added in Sw for some w, v is able to add w to Sv.

Proof. We prove the three statements separately. All three statements have the a common
technical difficulty: it is possible for node v to be included in Sw for some w, such that w 6∈ Sv,
which causes communication bandwidth congestion. We address this common issue shortly,
after reasoning about the separate challenges of each routine.

1. Since the property of being full depends solely on the size of Sv, it can be computed
locally. In order for a node v to detect if it is happy, v only has to ask all nodes w ∈ Sv
for their degrees.
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2. In order for a node v to perform Exp(X), X ⊆ N(v), v must ask a subset of nodes w ∈ Sv
for their Sw 6−→rw(v), which is straightforward to implement.

3. When needed, a node w can inform nodes v ∈ Sv that they have been added to Sw. After
which it is straightforward for v to add w to Sv.

In all of the routines above, it is possible for v ∈ Sw for some w, such that w 6∈ Sv. This
can happen when v does not maintain a symmetric view towards a direction in fullDirs in Step
1(c). This can cause > nδ nodes querying node v, breaking the communication constraint of
the low-space MPC model. The following scheme resolves the issue. Let us first restate a tree
structure that is useful to carry out computations on a set or on a collection of sets, in O(1)
low-space MPC rounds and with O(n+m) global memory.

Denote the collection of machines we are using for the algorithm asM = {M1,M2, . . . ,Ml}.
Let us allocate a new collection of empty machines M ′ = {M ′1,M ′2, . . . ,M ′l}. For every node
w ∈ Sv of a node v hosted by Mj , send a directed edge (v, w) to M ′j . Let us call all edges of
form (x, y) as the outgoing edges of x and incoming edges of y. Along with the edge, send the
address of machine Mj .

Define sets A1, . . . , Ak such that set Ai contains all incoming edges of node i. Apply
Definition A.1 such that sets A1, . . . , Ak are stored in M ′ in lexicographically sorted order
(by the ID of i ∈ {1, . . . , k} and within each set Ai, the elements are sorted increasingly). By
Definition A.1, for each i ∈ {1, . . . , k} such that the elements of Ai appear on at least 2 different
machines, there is a tree of constant depth containing the machines that store elements of Ai
as leafs and where each inner node of the tree has at most nδ/2 children. Let us denote this
kind of tree as Ai.

Observe that every Ai corresponds to a node i that has > nδ incoming edges, which is
exactly the problematic case we have set out to deal with. The root of Ai can ask for Si from
the machine in M hosting node i, and distributes Si to all leaf nodes hosting the incoming
edges (this requires a communication bandwidth of O(n3δ/2)). We also establish a mapping
from the machines in M to machines in M ′ such that the machine in M hosting u and Su
knows the machines in M ′ hosting edges (u, v) for every v ∈ Su. This is straightforward to
implement, since when we distributed the edges to M ′, we also distributed the corresponding
addresses of machines in M .

Let us describe what effectively happens when a node u asks for Sv 6−→rv(u) of node v ∈ Su
if v has > nδ incoming edges. The machine Mu ∈ M hosting node u queries the machine
M ′(u,v) ∈ M

′ for Sv 6−→rv(u), where M ′(u,v) is the machine hosting edge (u, v). Due to the design
of the aggregation tree, machine M ′(u,v) is a leaf of tree Av and has at most nδ elements (edges)
stored on it. The queries to machine M ′(u,v) comprise an incoming message size of O(nδ).
Answering the queries would require a communication bandwidth of O(n2δ).

We can reduce the communication bandwidth of O(n3δ/2) (the distribution of Si) and
O(n2δ) (the leaves of Av answering queries) to O(nδ) by using δ/2 instead of δ for the whole
algorithm.
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