
Distributed Maximal Matching and
Maximal Independent Set on
Hypergraphs

Alkida Balliu · alkida.balliu@gssi.it · Gran Sasso Science Institute

Sebastian Brandt · brandt@cispa.de · CISPA Helmholtz Center for Information Security

Fabian Kuhn · kuhn@cs.uni-freiburg.de · University of Freiburg

Dennis Olivetti · dennis.olivetti@gssi.it · Gran Sasso Science Institute

We investigate the distributed complexity of maximal matching and maximal in-
dependent set (MIS) in hypergraphs in the LOCAL model. A maximal matching of a
hypergraph H = (VH , EH) is a maximal disjoint set M ⊆ EH of hyperedges and an
MIS S ⊆ VH is a maximal set of nodes such that no hyperedge is fully contained in S.
Both problems can be solved by a simple sequential greedy algorithm, which can be
implemented näıvely in O(∆r + log∗ n) rounds, where ∆ is the maximum degree, r is
the rank, and n is the number of nodes of the hypergraph.

We show that for maximal matching, this näıve algorithm is optimal in the following
sense. Any deterministic algorithm for solving the problem requires Ω(min {∆r, log∆r n})
rounds, and any randomized one requires Ω(min {∆r, log∆r log n}) rounds. Hence, for
any algorithm with a complexity of the form O(f(∆, r)+g(n)), we have f(∆, r) ∈ Ω(∆r)
if g(n) is not too large, and in particular if g(n) = log∗ n (which is the optimal asymptotic
dependency on n due to Linial’s lower bound [FOCS’87]). Our lower bound proof is
based on the round elimination framework, and its structure is inspired by a new round
elimination fixed point that we give for the ∆-vertex coloring problem in hypergraphs,
where nodes need to be colored such that there are no monochromatic hyperedges.

For the MIS problem on hypergraphs, we show that for ∆� r, there are significant
improvements over the näıve O(∆r+log∗ n)-round algorithm. We give two deterministic
algorithms for the problem. We show that a hypergraph MIS can be computed in
O(∆2 · log r + ∆ · log r · log∗ r + log∗ n) rounds. We further show that at the cost of a
much worse dependency on ∆, the dependency on r can be removed almost entirely, by
giving an algorithm with round complexity ∆O(∆) · log∗ r +O(log∗ n).

1 Introduction and Related Work

In the area of distributed graph algorithms, we have a network that is represented by a graph
G = (V,E), where nodes represent machines and edges represent communication links, and the
goal is to solve some graph problem on the graph representing the network. The nodes of G
can communicate if they are neighbors, and in the LOCAL model of distributed computing the
computation proceeds in synchronous rounds and messages are allowed to be arbitrarily large. The
complexity of a problem is the minimum number of rounds required, in the worst case, to solve it.

Given a graph G = (V,E), a maximal independent set (MIS) of G is an inclusion-wise maximal
set S ⊆ V of nodes such that no two neighbors are in S and a maximal matching of G is an

ar
X

iv
:2

21
1.

01
94

5v
1

 [
cs

.D
S]

 3
 N

ov
 2

02
2

inclusion-wise maximal set M ⊆ E of edges such that no two adjacent edges are in M . Maximal
matching and MIS are two of the classic local symmetry breaking problems considered in the area
of distributed graph algorithms.

The distributed complexity of the two problems has been studied in a long line of research, see,
e.g., [ABI86, Lub86, II86, Lin87, AGLP89, PS96, HKP98, HKP01, PR01, KMW04, Kuh09, LW11,
BEPS12, BEK14, Gha16, KMW16, Fis17, BBH+19, RG20, BO20, BBO20, GGR21, BBKO21,
BBKO22]. Researchers have investigated the computational time complexity of these two problems
in two different ways: (i) as a function of the maximum degree ∆ of the graph, studying complexities
of the form f(∆) +g(n), where g is a much more slowly growing function than f ; (ii) as a function of
the total number of nodes n in the graph, studying complexities of the form f(n). The best known
randomized distributed algorithms for MIS and maximal matching run in O(log ∆ + log5 log n)
rounds [Gha16, GGR21] and O(log ∆ + log3 log n) rounds [BEPS12, Fis17], respectively. As a
function of n, the fastest known deterministic algorithms for MIS and maximal matching have time
complexities O(log5 n) [GGR21] and O(log2 ∆ · log n) = O(log3 n) [Fis17], respectively. For both
problems, there is a deterministic algorithm with a time complexity of O(∆+log∗ n) [PR01, BEK14].
This algorithm is optimal as a function of n, as we know that it is not possible to solve any of these
problems in f(∆) + o(log∗ n) rounds for any function f [Lin92, Nao91]. Further, for both problems,

there are randomized time lower bounds of Ω
(

min
{

log ∆
log log ∆ ,

√
logn

log logn

})
[KMW04, BGKO22] and

Ω
(

min
{

∆, log logn
log log logn

})
[BBH+19, BBKO22], which hold even on tree topologies. Hence, although

there are certainly some interesting remaining questions, the distributed complexity of MIS and
maximal matching in graphs is relatively well understood.

Generalization to Hypergraphs. In this paper, we consider the distributed complexity of the
natural generalization of MIS and maximal matchings to hypergraphs. A hypergraph H = (VH , EH)
consists of a set of nodes VH and a set of hyperedges EH ⊆ 2VH . We say that a hyperedge e ∈ EH is
incident to a node v ∈ VH if v ∈ e. Similarly, a node v is incident to a hyperedge e if v ∈ e. We will
omit the subscript “H” from the notation if H is clear from the context. The degree degH(v) of a
node v in H is its number of incident hyperedges, while the rank rankH(e) of an edge e ∈ EH is the
number of its incident nodes (i.e., rankH(e) = |e|). The rank rH of H is the maximum hyperedge
cardinality, i.e., rH = maxe∈EH

|e|. We denote with ∆H the maximum degree in H. An independent
set S ⊆ VH of a hypergraph is a set of nodes such that no hyperedge is fully contained in S, i.e.,
∀e ∈ EH : e ∩ S 6= e. A matching M ⊆ EH is a set of edges such that every node v ∈ VH is
contained in at most one of the sets in M . Maximal independent sets and maximal matchings are
then again inclusion-wise maximal sets with the respective property.

Generally, while graphs model pairwise dependencies or interactions, hypergraphs model de-
pendencies or interactions between more than 2 nodes or entities. Graphs are therefore natural
to model the pairwise communication in traditional wired networks. However, in general, inter-
actions between the participants of a distributed system can certainly be more complex. Hyper-
graphs have a richer structure and are generally less understood than graphs (not only in the
distributed context). Various problems that can naturally be formulated as problems on hyper-
graphs have been studied and found applications in the context of distributed graph algorithms (e.g.,
[CHSW12, KNPR14, LPP15, GKM17, FGK17, BKR+21]). In this context, one can also mention the
beautiful line of work that uses methods from algebraic topology to prove distributed impossibility
results and also develop distributed algorithms, e.g., [HS99, SZ00, CR12, HKR13, CFP+21]. There,
simplicial complexes (which from a combinatorial point of view are hypergraphs with the property
that the set of hyperedges forms a downward-closed family of subsets of nodes) are used to express
the development of the state of a distributed system throughout the execution of a distributed

1

algorithm. We hope that a better understanding of the fundamental limitations and possibilities
of distributed algorithms in hypergraphs will lead to insights that prove useful in the design of
future distributed systems. In the following, we discuss some concrete reasons why hypergraph MIS
and maximal matching specifically are interesting and worthwhile objects to being studied from a
distributed algorithms point of view.

Distributed MIS in Hypergraphs. Assume that we have a shared resource so that in each local
neighborhood in the network, only a limited number of nodes can concurrently access the resource.
The shared resource could for example be the common communication channel in a wireless setting
that allows some network-level coding. Maybe a node can still decode a received linear combination
of messages, as long as the signal consists at most κ messages for some κ > 1. The possible sets of
nodes that can access the channel concurrently can then be expressed by the set of independent
sets of some hypergraph. A further direct application of the MIS problem in hypergraphs is the
problem of computing a minimal set cover and the problems of computing minimal dominating
sets with certain properties [HMP+16]. Given a set cover instance, we can define a hypergraph H
in the natural way by creating a node for each set and hyperedge for each element consisting of
the sets that contain this element. The vertex covers of H correspond to the set covers of our set
cover instance and the set of minimal vertex covers (and thus the set of minimal set covers) are
exactly the complements of the set of maximal independent sets of H. To see this, note that clearly
the component of a vertex cover (at least one node per hyperedge) is an independent set (not all
nodes per hyperedge) and vice versa. Clearly minimality of a vertex cover implies maximality of
the independent set and vice versa. In [HMP+16, KNPR14], it is further shown that the minimal
set cover problem can be used as a subroutine to compute sparse minimal dominating sets1 and
minimal connected dominating sets.

From a theoretical point of view, the distributed MIS problem in hypergraphs is also interesting
because many of the techniques that work efficiently in the graph setting seem to fail or become
much less efficient. It is for example not even clear how to obtain a randomized hypergraph MIS
algorithm that is similarly efficient and simple as Luby’s algorithm [ABI86, Lub86] for graphs. To
the best of our knowledge, the first paper to explicitly study the problem of computing an MIS in a
hypergraph is by Kutten, Nanongkai, Pandurangan, and Robinson [KNPR14]. In the LOCAL model
(i.e., with arbitrarily large messages), it is relatively straightforward to compute an MIS by using
a network decomposition. By using the network decomposition algorithm of [LS93], one in this
way obtains a randomized O(log2 n)-round algorithm and by using the recent deterministic network
decomposition of [RG20, GGR21], one obtains a deterministic O(log5 n)-round algorithm. The focus
of [KNPR14] was therefore to obtain efficient algorithms in the CONGEST model, i.e., algorithms
that only use small messages.2 In [KNPR14], it is shown that an MIS in a hypergraph of maximum
degree ∆ and rank r can be computed in the CONGEST model in time O(log(r+4)!+4 n) if r is small
and in time ∆ε · poly log n for any constant ε > 0. This upper bound has been later improved
to (log n)2r+3+O(1) in [Har19]. Distributed CONGEST algorithm for a closely related problem have
also been studied in [KZ18]. All the mentioned bounds are obtained by randomized algorithms.
In the present paper, we focus on deterministic algorithms and we focus on the dependency on
∆ and r, while keeping the dependency on n to O(log∗ n) and thus as small as possible (due to
Linial’s Ω(log∗ n) lower bound [Lin92]). While there is not much work on distributed algorithms for
computing an MIS in a hypergraph, the problem has been studied from a parallel algorithms point

1A minimal dominating set is called sparse if the average degree of the nodes in the dominating set is close to the
average degree of the graph.

2Note that there is more than one way in which one can define the CONGEST model for hypergraphs. As we do
not focus on CONGEST algorithms in this paper, we refer to [KNPR14] for a discussion of this issue.

2

of view, see, e.g. [KUW88, BL90, Kel92, LS97, BGHS17, Har19].

Distributed Maximal Matching in Hypergraphs. First note that the set of matchings on
a hypergraph H = (VH , EH) is equal to the set of independent sets on the line graph of H, that
is, on the graph containing a node for every hyperedge in EH and an edge for every intersecting
pair of hyperedges in EH . The maximal matching problem on hypergraphs of maximum degree ∆
and rank r is therefore a special case of the MIS problem on graphs of maximum degree at most
r(∆− 1). Maximal matchings in hypergraphs have several applications as subroutines for solving
standard problems in graphs, as we discuss next.

The maximum matching problem in graphs can be approximated arbitrarily well by using a
classic approach of Hopcroft and Karp [HK73]. When starting with some matching and augmenting
along a maximal set of disjoint shortest augmenting paths, one obtains a matching for which the
shortest augmenting path length is strictly larger. As soon as the shortest augmenting path length
is at least 2/ε, the matching is guaranteed to be within a factor (1 − ε) of an optimal matching.
The step of finding a maximal set of disjoint shortest augmenting paths can be directly interpreted
as a maximal matching problem in the hypergraph defined by the set of shortest augmenting paths.
In the distributed context, this idea has been used, e.g., in [CH03, LPP15, FGK17, GHK18, Har20].
In [HV06, GKMU18], it is further shown how maximal hypergraph matching can also be used in a
similar way to obtain fast distributed approximations for the weighted maximum matching problem.
In [GKMU18], this was then used to deterministically compute an edge coloring with only (1 + ε)∆
colors. In [FGK17], it was further shown that the problem of computing a (2∆− 1)-edge coloring in
graphs can be directly reduced to the problem of computing a maximal matching in a hypergraph of
rank 3. Additionally, [FGK17] also shows how to compute an edge orientation of out-degree (1 + ε)
times the arboricity of a given graph by reducing to maximal matching in low-rank hypergraphs.
Finally, when viewing a hypergaph as a bipartite graph between nodes and hyperedges, the maximal
hypergraph matching problem is related to the MIS problem on the square of this bipartite graph
and understanding the complexity of maximal matching in hypergraphs can be a step towards
understanding the complexity of MIS in G2.

Since the maximal hypergraph matching problem is a special case of the MIS problem in
graphs, there are quite efficient randomized algorithms for the problem and the focus in the
literature therefore so far has been on developing deterministic distributed algorithms for maximal
matchings in hypergraphs [FGK17, GHK18, Har20]. Prior to the new efficient deterministic network
decomposition algorithm of Rozhoň and Ghaffari [RG20], those papers lead to the first deterministic
distributed polylogarithmic-time (2∆− 1)-edge coloring algorithms. The best known deterministic
distributed algorithm for computing a maximal matching in a hypergraph of maximum degree ∆
and rank r is due to Harris [Har20] and it has a time complexity of Õ

(
(r2 log ∆ + r log2 ∆) · log n

)
,

where Õ(x) hides polylogarithmic factors in x.

The Trivial Algorithm. Both an MIS and a maximal matching of an n-node hypergraph
H = (VH , EH) with maximum degree ∆ and rank r can be computed in time O(∆r + log∗ n) in a
straightforward way. The trivial algorithm for hypergraph MIS proceeds as follows. We first color
the nodes in VH with ∆(r− 1) + 1 colors such that no two nodes that share a hyperedge are colored
with the same color. Such a coloring can be computed in O(∆r + log∗ n) rounds, e.g., by using the
algorithm3 of [BEK14]. Then, we iterate through the O(∆r) color classes and greedily add nodes to

3We could achieve a smaller runtime of O(
√

∆r log(∆r) + log∗ n) rounds for computing the coloring by using a
state-of-the-art distributed (degree + 1)-coloring algorithm [FHK16, BEG18, MT20]; however, as, subsequently, we
iterate through the obtained color classes, this would not change the overall asymptotic runtime.

3

the solution if the addition does not violate the maximality condition. The trivial algorithm for
hypergraph maximal matching proceeds analogously, where we color hyperedges instead of nodes,
and there is a different maximality condition.

Some Notation. Before stating our contributions, we briefly discuss some terminology regarding
hypergraphs. A hypergraph is called r-uniform if all its hyperedges are of cardinality exactly r and
it is called ∆-regular if all nodes have degree ∆. A hypergraph is called linear if any two hyperedges
intersect in at most one node. Further, a hypertree is a connected hypergraph H = (VH , EH)
such that there exists an underlying tree T on the nodes VH for which every hyperedge consists of
the nodes of a connected subtree of T . Finally, there is a natural representation of a hypergraph
H = (VH , EH) as a bipartite graph consisting of the nodes VH ∪EH and an edge between v ∈ VH
and e ∈ EH if and only if v ∈ e. We refer to this bipartite graph as the bipartite representation of
H. Note that H is a linear hypertree if and only if its bipartite representation is a tree. We say
that a linear hypertree is ∆-regular if every node is either of degree ∆ or of degree 1.

1.1 Our Contributions

While there is a clear relation between graph MIS and hypergraph maximal matching, or between
graph MIS and graph maximal matching (it is possible to use an algorithm for the first problem
to solve the second ones, as discussed earlier), observe that hypergraph maximal matching and
hypergraph MIS cannot be easily compared: in contrast to the situation that we have in graphs,
where it is possible to use an algorithm for MIS to solve maximal matching in the same asymptotic
runtime, on hypergraphs no reduction of this kind is known. In fact, a priori it is not clear at all
which problem is the easier of the two.

In order to better understand our results, it is useful to compare the complexities of hypergraph
MIS and hypergraph maximal matching with the complexity of the trivial algorithm that solves
these two problems. As discussed above, the trivial algorithm has a runtime of O(∆r + log∗ n)
rounds, i.e., it has a very low dependency on n, but is quite slow in terms of ∆ and r. The question
that we study in our work is whether the trivial algorithm is optimal or whether it is possible to
improve on it.

Question 1. Is it possible to solve hypergraph maximal matching and/or hypergraph MIS in
O(log∗ n) + o(∆r) rounds?

Informally, we show the following.

• For hypergraph maximal matching, the trivial algorithm is best possible, unless we spend a
much higher dependency on n.

• For hypergraph MIS, it is possible to improve on the trivial algorithm when r � ∆.

In the following, we will discuss our results and their relation to the trivial algorithm more formally.

Maximal Matching Lower Bound. As our main result, we show that for the hypergraph
maximal matching problem, the trivial algorithm—which is simply a näıve implementation of the
sequential greedy algorithm—is best possible.

Theorem 1.1. Assume that ∆ ≥ 2 and r ≥ 2. Then any deterministic distributed algorithm in the
LOCAL model for computing a maximal matching in hypergraphs with maximum degree ∆, rank

4

r, and n nodes requires Ω
(

min
{

∆r, log∆r n
})

rounds.4 Any randomized such algorithm requires
at least Ω

(
min

{
∆r, log∆r log n

})
rounds. Moreover, our lower bounds hold already on ∆-regular

r-uniform linear hypertrees.

We remark that, while in general hypergraphs the number of hyperedges can be much larger
than the number of nodes, in linear hypertrees (which is the case where our lower bound applies)
the sum of the nodes and the hyperedges is linear in n.

Theorem 1.1 shows that, for hypergraph maximal matching, we answer Question 1 negatively:
the theorem essentially states that we need to spend Ω(∆r) rounds, unless we spend a much higher
dependency on n than the one of the trivial algorithm, i.e., Ω(log∆r n) for deterministic algorithms
and Ω(log∆r log n) for randomized ones. In other words, the trivial greedy algorithm is optimal if
we insist on having a small dependency on n. Observe that there exist algorithms for hypergraph
maximal matching that can beat the Ω(∆r) lower bound that we provide, but they all spend
substantially more than log∗ as a function of n, and our results show that this is indeed necessary.
For example, the algorithm by Harris [Har20] has a dependency on ∆ that is only polylogarithmic,
but it also has a multiplicative log n dependency.

In fact, as a corollary, we obtain that the complexity of any algorithm for hypergraph maximal
matching, when expressed solely as a function of n, must be large. This is known by prior work
for r = 2, and we get that the same holds even when r = ∆. This can be observed by setting
r = ∆ =

√
log n/ log logn in the deterministic lower bound and r = ∆ =

√
log log n/ log log log n in

the randomized one.

Corollary 1.2. Any deterministic distributed algorithm in the LOCAL model for computing a
maximal matching in n-node hypergraphs requires at least Ω

(logn
log logn

)
rounds. Any randomized such

algorithm requires at least Ω
(log logn

log log logn

)
rounds. Moreover, our lower bounds hold already on regular

uniform linear n-node hypertrees that satisfy r = ∆.

Hypergraph Coloring. On a high level, the proof of Theorem 1.1 is based on a lower bound
proof that we provide for a seemingly unrelated problem, namely, hypergraph coloring. In fact, as a
byproduct, we also obtain lower bounds for variants of this problem. There are two natural ways to
generalize the standard coloring problem to hypergraphs:

• Color the nodes of the hypergraph with c colors such that, for every hyperedge of rank at least
2, it holds that at least 2 incident nodes have different colors. This is the standard definition
of hypergraph coloring.

• Color the nodes of the hypergraph with c colors such that, for every hyperedge, all incident
nodes have different colors. This variant is sometimes called strong coloring [AH05], colorful
coloring, or rainbow coloring5 [CKP12]. We will refer to this variant as colorful.

For the first problem, we show that it cannot be solved fast when c ≤ ∆, and for the second one, we
show that it cannot be solved fast when c ≤ ∆(r − 1). While these results can also be shown with
non-trivial reductions from the known hardness of a different problem called sinkless orientation,
the proof that we present for these lower bounds is essential as a building block for the proof of our
hypergraph maximal matching lower bound (and, in fact, can be seen as a simplified version of that
proof).

4As lower bounds in several parameters are sometimes difficult to understand, we would also like to provide, as an
example, the exact quantification of this statement, which is as follows: There is a constant c such that, for any ∆ ≥ 2
and r ≥ 2, and any deterministic algorithm A, there are infinitely many hypergraphs with maximum degree ∆, rank r,
and n nodes on which A has a runtime of at least c

(
min

{
∆r, log∆r n

})
rounds.

5In the literature, the term rainbow coloring is also used to refer to a different, harder variant of coloring.

5

Theorem 1.3. In the LOCAL model, the ∆-hypergraph coloring and the (r − 1)∆-hypergraph
colorful coloring require Ω(log∆r n) rounds for deterministic algorithms and Ω(log∆r log n) rounds
for randomized ones.

MIS Upper Bounds. In graphs, it is known that both maximal matching and MIS require a
number of rounds that is linear in ∆ [BBH+19, BBKO22], unless we spend a high dependency on n.
Hence, a natural question to ask is whether, like in the case of hypergraph maximal matching, also
hypergraph MIS requires Ω(∆r) rounds if we keep the dependency on n as small as possible.

We show that hypergraph MIS behaves differently than hypergraph maximal matching: in fact,
Question 1 can be answered affirmatively for a certain parameter range. In particular, we consider
the case where r � ∆ and design algorithms with a round complexity of the form O(log∗ n)+f(∆, r)
where f(∆, r) = o(∆r) if ∆ is sufficiently small compared to r. More concretely, we prove the
following two results.

Theorem 1.4. In the LOCAL model, the MIS problem on n-node hypergraphs of maximum degree
∆ and rank r can be solved in O(∆2 log r + ∆ log r log∗ r + log∗ n) deterministic rounds.

Theorem 1.5. In the LOCAL model, the MIS problem on n-node hypergraphs of maximum degree
∆ and rank r can be solved in 2O(∆ log ∆) log∗ r +O(log∗ n) deterministic rounds.

Note that the bound in the second theorem is almost independent of the rank r. In particular,
Theorem 1.5 implies that for bounded-degree hypergraphs, an MIS can be computed in time
O(log∗ n), even if the rank r is not bounded. Observe that, while the dependency on ∆ is high, by
prior work we know that it has to be at least linear [BBH+19, BBKO22].

We further note that the bounds that we provide are incomparable to the upper bounds that
were obtained in [KNPR14], where the authors tried to optimize the round complexity as a function
of n alone. The runtimes of the algorithms in [KNPR14] are all at least polylogarithmic in n. In
our algorithms, we keep the dependency on n to O(log∗ n) and thus as small as it can be. Our
algorithms are faster than the poly log n-time algorithms based on network decomposition in the
realistic scenario where ∆ and r are much smaller than n.

Open Questions. Our work raises the following natural open question. Is it possible to solve
hypergraph MIS in just O(∆ + log∗ n) rounds, independently of r? Given the mentioned lower
bounds on graphs, such a complexity would be optimal. In this regard, we show that there is a
variant of hypergraph coloring that, if solved fast, would provide such an algorithm. This variant is
typically called c-unique-maximum coloring [CKP12], and requires to color the nodes of a hypergraph
with c colors such that, for each hyperedge e, the maximum color appearing at the nodes incident to
e occurs exactly once among the incident nodes. We show that finding an O(∆)-unique-maximum
coloring in O(∆ + log∗ n) rounds would allow us to solve hypergraph MIS optimally. While our
lower bounds hold for different variants of hypergraph coloring, they do not hold for this variant.

Technical Remarks. In order to prove our lower bounds, we make use of the round elimination
framework, which provides a general outline for proving lower bounds in the distributed setting.
Round elimination has first been applied in [BFH+16] to obtain lower bounds on computing a
sinkless orientation and a ∆-coloring of a graph. In 2019, [Bra19] showed that the round elimination
framework can be applied to almost any locally checkable problem6, at least in principle; however to

6Roughly speaking, a locally checkable problem is a problem that can be defined via local constraints. A standard
example of locally checkable problems are proper coloring problems, which can be described by the local constraint
that the two endpoints of any edge must receive different colors.

6

obtain a good lower bound for some concrete locally checkable problem, it is necessary to overcome
a certain set of challenges that is individual for each problem or problem family. While for some
problems—such as (∆ + 1)-vertex coloring or (2∆ − 1)-edge coloring—these challenges seem far
beyond the reach of current techniques, they have been overcome for a number of other important
problems [BBH+19, BO20, BBO20, BBKO21, BBKO22, BBE+20]. Each of these results has been
accompanied by a new key idea that succeeded in making the round elimination technique applicable
also in practice for the considered problem(s); often the key idea unlocked the applicability of
round elimination not only for a single problem, but for several problems at once, a whole problem
family, or a new setting. In a similar vein, we prove the first substantial lower bounds for important
hypergraph problems (that do not simply follow from lower bounds on graphs) by showing how
to make these problems susceptible to a round elimination type of approach. We hope that our
techniques can serve as a starting point for unlocking the round elimination technique more generally
for hypergraph problems.

1.2 Road Map

We start, in Section 2, by providing a high-level overview of our lower bound proof, highlighting the
challenges and the new ingredients that we bring to the table.

We then proceed, in Section 3, by first defining the model of computing, and then by formally
describing the round elimination technique. In this section, we also provide an example of the
application of this technique.

In Section 4, we prove lower bounds for hypergraph coloring and some of its variants. Hypergraph
coloring seems to be, at first sight, unrelated to hypergraph maximal matching. We show the
connections between these two problems in Section 2, where we also explain why the proof that we
present for the hardness of hypergraph coloring can be seen as a simplified version of the proof for
hypergraph maximal matching.

The hypergraph maximal matching lower bound is presented in Section 5. The complexity of
this proof is higher than the one for coloring, and requires some heavy notation. We will start by
describing how it is connected to the proof for hypergraph coloring, by informally describing how it
can be seen as an extension of the one for hypergraph coloring.

In Section 6, we present upper bounds for the hypergraph MIS problem. We show that, while
the trivial algorithm is able to solve the problem in O(∆r + log∗ n) rounds, if we allow a larger
dependency on ∆ we can almost entirely remove the dependency on r. In fact, in hypergraphs of
maximum degree ∆ = O(1) and very large rank r, we show that it is possible to solve the hypergraph
MIS problem in just O(log∗ n) rounds.

We conclude, in Section 7, by stating some open questions. We show that hypergraph MIS could
be solved optimally if we are provided with an O(∆)-unique-maximum coloring, and we leave as an
open question determining the complexity of this variant of coloring.

2 High-Level Overview of the Lower Bound

Due to the fact that round elimination lower bound proofs are typically technically complex and
notation-heavy, which hides the underlying conceptual ideas, we will give a detailed explanation of
the round elimination framework, its fundamental issue, approaches of previous work to take care of
this issue and our conceptual contributions in the following. While we have to resort to painting a
very rough picture in places (as giving all details of the previous approaches would be far beyond
the scope of this work), we hope that our high-level overview will make the recent developments

7

regarding distributed lower bounds accessible to a broader audience while highlighting how our
approach extends the lower bound tool box.

The Round Elimination Technique. On a high level, round elimination is a technique that
can be used to prove lower bounds on the time required to solve (on trees or hypertrees) locally
checkable problems, i.e., problems that can be defined by specifying some constraints that each
node and hyperedge must satisfy. In the round elimination framework, a problem Π is defined
by listing what labelings, or configurations, are allowed around the nodes and on the hyperedges.
More precisely, each node v has to output some output label for each pair (v, e) such that e is a
hyperedge containing v; the output is considered to be correct if for each node, the configuration
of output labels on the pairs with first entry v is contained in an explicitly given list of allowed
“node configurations”, and for each hyperedge e, the configuration of output labels on the pairs with
second entry e is contained in an explicitly given list of allowed “hyperedge configurations”.

The round elimination technique is a mechanical procedure R that can be applied to Π to obtain
a new problem Π′ = R(Π) that, under mild assumptions regarding the considered graph class, is
exactly one round easier than Π. Suppose we prove that Π′ = R(Π) cannot be solved in 0 rounds
of communication: we obtain that solving Π′ requires at least 1 round, and hence that solving Π
requires at least 2 rounds. The obtained problem Π′ is also always locally checkable, and hence
we can apply this technique again to obtain some problem Π′′ guaranteed to be exactly one round
easier than Π′. If we prove that also this problem cannot be solved in 0 rounds, we obtain a lower
bound of 3 rounds for Π.

The Issue with Round Elimination. While the high-level outline given above suggests that
obtaining lower bounds via round elimination is an entirely mechanical task, this is unfortunately
not the case due to a fundamental issue in the framework. A simple example to explain this issue is
the following. Let Π be the problem of 3-coloring a cycle, which is clearly locally checkable. The
constraints of this problem can be specified by a list of allowed configurations using 3 output labels
(the colors). If we apply round elimination to this problem, we automatically obtain a new problem
Π′ = R(Π) that can be described by using 16 labels. If we apply round elimination again, we get a
problem with thousands of labels. While in theory we could continue forever, in practice we cannot,
because it is not feasible to compute the next problem (and even less to determine whether it can
be solved in 0 rounds or not). In general, the downside of this techique is that the description of Π′

can be doubly exponentially larger than the one of Π.

Decomposing a Problem. In [BBKO22], a technique has been presented that sometimes allows
us to take care of this issue. In the following, we describe this technique for the case of the MIS
problem (on graphs). Let R0(Π) = Π and Ri+1(Π) = R(Ri(Π)).

It has been observed already in [BBO20] that if we start from Π equal to the MIS problem
and apply the round elimination technique iteratively k times, the result Rk(Π) can be essentially
decomposed into three parts:

1. the original problem, i.e., MIS,

2. a natural part of small size, corresponding to the k-coloring problem, and

3. an unnatural part whose description is of size roughly equal to a power tower of height k and
that cannot be easily understood.

8

MIS is not the only problem that behaves in this way under round elimination; in fact, many
problems admit, after applying round elimination for k steps, a decomposition into the original
problem, some natural part that is easy to understand (and often unrelated to the original problem),
and some unnatural part of much larger size (where the latter two depend on k).

The main idea of the previous works that use the round elimination technique is to relax the
problems obtained at each step with the goal of replacing the unnatural part with something
much smaller. In this context, relaxing a problem means adding further configurations to the lists
collecting the allowed configurations for the nodes or the hyperedges, at the cost of making the
problem potentially easier to solve. Observe that, if a problem is relaxed too much, then it is not
possible to obtain strong lower bounds, because we would soon reach a problem that is 0-round
solvable. Hence, the typical goal is to find relaxations that make the description of the problem
much smaller while still not making the problem much easier. Note that, effectively, the description
of a problem can indeed become smaller by adding allowed configurations: by allowing more (in a
suitable way), a substantial number of allowed configurations can be shown to become useless and
hence can be ignored.

Previous Approaches. In order to prove tight lower bounds for ruling sets (and other interesting
problems), in [BBKO22], the third part in the decomposition of the problems has been handled as
follows.

Consider the k-coloring problem, for k ≤ ∆. In some sense, this problem is known to be much
harder than MIS, since, unlike MIS, it cannot be solved in O(f(∆) + log∗ n) rounds for any function
f . We call problems that cannot be solved in O(f(∆) + log∗ n) rounds for any function f hard. If
we apply round elimination to the k-coloring problem, we essentially get something very similar
to the third part presented above. But for some of the hard problems, we have techniques that
allow us to deal with them, that is, finding relaxations of the problem that result in a so-called fixed
point. Fixed point problems are special: by applying the round elimination technique to a fixed
point problem Π we obtain the problem itself, i.e., R(Π) = Π. This may look like a contradictory
statement: it is not possible for a problem to be exactly one round easier than itself. The reason
why this is not an actual contradiction is that the condition that makes the round elimination
statement hold stops working when the complexity is Ω(log∆ n). In fact, it is possible to prove that
a fixed point directly implies a lower bound of Ω(log∆ n) for the problem.

The point of relaxing the k-coloring problem to a fixed point before applying the round elimination
technique is the following: if we apply round elimination to the k-coloring problem itself, we obtain
a lot of configurations that make the obtained problem hard to understand, while if we apply round
elimination to a fixed point relaxation of the k-coloring problem, we obtain the problem itself,
and no additional allowed configurations. Observe that, for problems solvable in O(f(∆) + log∗ n)
rounds, like MIS, fixed point relaxations cannot exist, since they would give a lower bound higher
than the upper bound for small values of ∆.

The idea of [BBKO22] is to embed the fixed point of the k-coloring problem into the sequence
obtained from MIS, in the following sense. We start from MIS, and we apply round elimination
iteratively. At each step k, we relax the obtained problem by adding all the configurations allowed
by the fixed point relaxation of the k-coloring problem. It has been shown in [BBKO22] that thereby
we obtain a problem sequence in which the number of allowed configurations is always bounded
by O(2k), and hence much better than a power tower of height k. In other words, the third part
of the problem (the unnatural part) is replaced by the configurations that we need to add to the
k-coloring problem to make it a fixed point, of which there are just O(2k). The reason why this
approach works for MIS seems to be related to the fact that all the unnatural configurations present

9

at step k + 1 are generated (by R) by starting from the k-coloring configurations present at step k.
The take-home message of the approach of [BBKO22] is the following: try to decompose the

problem into the three parts explained above, and try to find a fixed point relaxation for the natural
part; it may then happen that the unnatural part just disappears.

By following this approach, the authors of [BBKO22] managed to prove tight lower bounds for
MIS, ruling sets, and many other interesting natural problems. Also, they asked if there are other
interesting problems for which this technique is applicable (see Open Problem 2 in [BBKO22]), and
we answer this question affirmatively.

A Colorful Matching. We extend the applicability of the technique to hypergraphs by solving
a number of intricate challenges introduced by the more complex setting. In particular, we show
that while the explained technique cannot be applied directly, by combining it with a set of new
ingredients we obtain substantial lower bounds for the hypergraph maximal matching problem. The
good news from the perspective of the general outline is that we can still decompose Rk(Π), where
Π is the hypergraph maximal matching problem, into three parts, by making use of k-hypergraph
colorful coloring:

1. The original problem,

2. a natural part: the k-hypergraph colorful coloring problem, and

3. an unnatural part, of size roughly equal to a power tower of height k, without any easily
discernible useful structure.

By following the approach of [BBKO22], in order to prove a lower bound of Ω(∆r), it is necessary
to first find a fixed point relaxation for the k-hypergraph colorful coloring problem, for k that can
be as large as Ω(∆r).

Challenges and New Ingredients. Two labels `1 and `2 are called equivalent when, for any
allowed configuration containing `1, if we replace `1 with `2, we obtain a configuration that is allowed,
and for any configuration containing `2, if we replace `2 with `1, we also obtain a configuration that
is allowed. If two labels are equivalent, we can actually discard all configurations containing one
of the two labels, still obtaining a problem that is not harder than the original one. Relaxing a
problem in order to make `1 equivalent to `2 is called label merging, and it is a powerful technique
that can be used to reduce the number of labels. In previous works, relaxations are typically done
in two ways:

• When proving lower bounds for problems solvable in O(f(∆) + log∗ n) rounds, it is typically
the case that, by applying round elimination, many new labels are obtained, and to keep the
problem small, a lot of label merging is performed.

• When proving lower bounds for hard problems, configurations (possibly containing new labels)
are added in order to transform the problem into a fixed point. Label mergings are not
performed.

Unfortunately, the latter outline for finding a fixed point relaxation does not seem to work for
∆(r − 1)-hypergraph colorful coloring. Via a new approach, we nevertheless show how to find a
relaxation of the ∆(r − 1)-hypergraph colorful coloring problem that is a fixed point, but it comes
with two issues: the fixed point does not resemble the ∆(r−1)-hypergraph colorful coloring problem
at all, and the approach of [BBKO22], applied to it, does not work.

10

We obtain the fixed point as follows. We first find a fixed point relaxation for the ∆-hypergraph
(non-colorful) coloring problem, and then show that there exists a 0-round algorithm that converts
a ∆(r − 1)-hypergraph colorful coloring into a proper ∆-hypergraph coloring. This algorithm
can be interpreted in an interesting way: what it does is mapping different colors into a single
one, essentially showing that the ∆-hypergraph (non-colorful) coloring problem can be obtained
from ∆(r − 1)-hypergraph colorful coloring by performing label merging. This observation allows
us to obtain a fixed point for the ∆(r − 1)-hypergraph colorful coloring problem: start from
∆(r− 1)-hypergraph colorful coloring, merge some labels to obtain ∆-hypergraph coloring, then add
configurations to this new problem in order to make it a fixed point. We provide a more detailed
overview of our approach for obtaining the fixed point in Section 4.

We now turn to explaining the challenges and our solutions for obtaining the hypergraph maximal
matching lower bound with the help of the aforementioned fixed point.

Recall the aforementioned decomposition of problems into the original problem, a natural colorful
coloring part, and an unnatural part of large description size. In the hypergraph maximal matching
problem, by applying round elimination, we essentially get an additional new color in the coloring
part per step while the size of the unnatural part grows like a power tower. We want to be able
to perform Ω(∆r) steps of round elimination before reaching a 0-round solvable problem, but we
cannot let the number of labels grow like a power tower because it would then be infeasible to
actually understand the problem sequence. In order to keep the number of labels reasonably small
throughout the problem sequence without compromising the lower bound quality, we have to perform
relaxations that do not make the problems too easy, as otherwise we would obtain a 0-round solvable
problem after o(∆r) steps, which would give a worse lower bound.

We would like to use the same approach as [BBKO22], i.e., after round elimination step k, we
want to add the allowed configurations of the fixed point of the k-hypergraph colorful coloring
problem to the obtained problem. It is actually possible to extend the approach of Section 4 to
show a fixed point relaxation for the k-hypergraph colorful coloring problem. This fixed point is
also a relaxation of the dk/(r − 1)e-hypergraph coloring problem. The problem is that this fixed
point is not exactly designed with colorful coloring in mind, and this makes it hard to adapt it to
the case where colors increase by one at each step. In particular, consider the case where we try
to use, as the k-th problem in our relaxed sequence, the problem Π(k) containing two parts: the
original problem, and the fixed point relaxation of the k-hypergraph colorful coloring problem (as
would be the case with the approach from [BBKO22]). Note that the second part would contain
dk/(r − 1)e colors, and these colors would satisfy the constraints of the hypergraph non-colorful
coloring problem. By performing round elimination, we obtain a new color, and it does not seem
possible to relax the obtained problem to Π(k+ 1). In particular, we would like to relax the coloring
part of the obtained problem to the fixed point for d(k + 1)/(r − 1)e-hypergraph coloring, but it
seems that the coloring part of the obtained problem is already easier than that, and that it can only
be relaxed to the fixed point for (dk/(r − 1)e+ 1)-hypergraph coloring. If instead we use the latter
approach (i.e., the approach of relaxing the coloring part of the obtained problem to the fixed point
with the smallest number of colors that the coloring part can be relaxed to), the number of colors in
the coloring part grows by 1 at each step, meaning that after only ∆ + 1 steps of round elimination,
we would have ∆ + 1 colors. However, the construction of the fixed point is only possible up to ∆
colors, which renders also the modified approach infeasible (as already after ∆ + 1 steps we would
obtain a problem that is 0-round solvable).

In order to make things work, our idea is to not use directly a fixed point for hypergraph coloring,
but to build a problem sequence in which, if we take the coloring part of each problem, we obtain
a problem sequence that (except for the few first steps) has always ∆ colors, and in which the
hyperedge constraint gets more relaxed at each step. This coloring part at some point will become

11

actually equal to the ∆-coloring fixed point, but only after Ω(∆r) steps. All this is achieved by
merging, at each step, the new color with an existing one, in such a way that we relax the hyperedge
constraint as little as possible.

Unfortunately, the challenges mentioned above are just the conceptual issues that we have to
take care of—there are a number of technical issues on top of the conceptual ones that make our
lower bound proof fairly complicated. One of these technical issues is that even when following our
new approach, we obtain a problem sequence that is too relaxed, and hence we cannot obtain a
good lower bound in this way. However, if during the relaxation procedure we select one color and
treat it slightly different than all the other colors (i.e., amongst all the configurations that we add
during the relaxation procedure the ones that contain the selected color have a slightly different
structure than those containing other colors), then the relaxations turn out to be sufficiently tight.
The choice of the selected color is irrelevant, as long as we do not select the same color in two
subsequent relaxation procedures. In general, the hypergraph setting increases the complexity of
various crucial ingredients in our proof (such as constructing a suitable problem family, proving
that our relaxations indeed lead to the stated problem family by setting up a suitable instance on
which we can apply Hall’s marriage theorem, etc.) and therefore of the proof itself—we hope that
our contributions (both the conceptual and the technical ones) will help navigating the difficulties
of proving further lower bounds for important hypergraph problems. We provide a more detailed
overview of our lower bound approach for hypergraph maximal matching in Section 5.

An Easier Proof. We would like to point out that in order to prove a lower bound for hypergraph
maximal matching, we could have entirely skipped Section 4, i.e., the proof of the hypergraph
coloring lower bound: it is not necessary to prove that the relaxation of the ∆-hypergraph coloring
that we provide is indeed a fixed point, because it does not seem possible to make the approach of
[BBKO22] modular. In other words, we cannot use the lower bound for ∆-hypergraph coloring as a
building block for the lower bound proof for hypergraph maximal matching, but we have to prove
the latter lower bound from scratch; however, we can make use of some of the structures used in
the proof for ∆-hypergraph coloring. In fact, essentially, the lower bound proof for coloring is a
much simplified version of the one for hypergraph maximal matching, which has to handle many
additional challenges. For example, the number of colors in the aforementioned “natural part” of
the problems in the sequence obtained by starting from hypergraph maximal matching grows by 1
at each step, while in the case of ∆-hypergraph coloring it never changes.

3 Definitions and Notation

The upper and lower bounds presented in this work hold on hypergraphs, which have been defined
in Section 1. We now provide some additional notation.

We denote with NH(v) the neighbors of a node v, that is, all those nodes in H, different from v,
contained in the hyperedges incident to v.

Each node of a hypergraph is at distance 0 from itself. Let w0, · · · , wd be the smallest sequence
of nodes of H such that: w0 = u, wd = v, and wi+1 ∈ NH(wi) for all 0 ≤ i < d. Then we say that
nodes u and v are at distance d in H. We call the r-hop neighborhood of a node u the subhypergraph
induced by nodes in H that are at distance at most r from u, where we remove the hyperedges that
contain only nodes at distance exactly r from u.

We will omit the subscript “H” from the notation if H is clear from the context.

12

3.1 The LOCAL Model

Our lower and upper bounds hold in the classic LOCAL model of distributed computing, introduced
by Linial [Lin92]. Given an n-node hypergraph H, each node is equipped with a unique identifier
from {1, . . . , nc}, for some constant c ≥ 1. This is a message passing model, where the computation
proceeds in synchronous rounds: at each round, nodes of a hypergraph exchange messages with the
neighbors and perform some local computation. In this model, both the local computational power
of each node, and the size of the messages, are not bounded. A distributed algorithm that solves
a graph problem in the LOCAL model runs at each node in parallel, and the goal is for nodes to
produce their local outputs that together form a valid global solution of the desired problem. We
say that an algorithm has round complexity T if each node decides its local output and terminates
within T communication rounds.

In the randomized version of the LOCAL model, each node is equipped with a private random
bit string, and in this context we consider Monte Carlo algorithms, that is, we require to produce
a correct solution to the desired problem with high probability, that is, with probability at least
1− 1/n.

As typically done in this context, throughout this paper, we assume that each node v of a
hypergraph H knows initially its own degree deg(v), the maximum degree ∆, the maximum rank r,
and the total number n of nodes.

Notice that, since in the LOCAL model we do not restrict the bandwidth, a T -round LOCAL
algorithm is equivalent to the following: first each node spends T rounds to collect its T -hop
neighborhood in H, and then maps each T -hop neighborhood into an output. Sometimes, it is
convenient to work on the incidence graph (or bipartite representation) of a hypergraph H =
(VH , EH), which is a bipartite graph B = (UB ∪WB, EB) where UB = VH , WB = EH , and there is
an edge between u ∈ UB and v ∈WB if and only if the hyperedge of H corresponding to v contains
the node of H corresponding to u. Notice that, in the LOCAL model, any T -rounds algorithm that
solves a problem in H can clearly be simulated in B in at most 2T communication rounds.

The PN Model. While both our upper bound and lower bound results hold in the LOCAL model,
for technical reasons, the lower bounds are first shown on the port numbering (PN) model, which is
weaker than the LOCAL one, and then we lift them for the randomized and deterministic LOCAL
model.

The PN model is the same as the LOCAL one (synchronous message passing model, unbounded
computational power, unbounded size of messages), with the difference that nodes do not have
unique identifiers, and instead each node has an internal ordering of its incident hyperedges. More
precisely, incident hyperedges of a node v have a pairwise distinct (port) number in {1, . . . ,deg(v)}
(assigned arbitrarily). For technical reasons, we use a slightly modified version of the PN model,
where in addition we require that incident nodes of a hyperedge have a pairwise distinct number in
{1, . . . , rank(e)} (assigned arbitrarily).

3.2 The Automatic Round Elimination Framework

Round elimination is a technique that can be used to prove lower bounds in the distributed setting.
It has been first used to prove lower bounds for sinkless orientation and ∆-coloring [BFH+16]. In
its current form, called automatic round elimination, it has been introduced by Brandt [Bra19], and
since then it has been proved to be extremely useful for proving lower bounds in the LOCAL model.

In this section, we describe the automatic round elimination framework. We start by describing
how to encode a problem in this framework (introducing some notation as well), and what should

13

satisfy an output in order to be correct—we illustrate these concepts by showing the concrete
example of the encoding of the MIS problem on hypergraphs with maximum rank 2 (that is, on
standard graphs).

Encoding of a Problem. For the purpose of showing our lower bounds, it is enough to consider
only regular linear hypertrees, that is, hypergraphs such that their incidence graph is a bipartite
2-colored tree, where each white non-leaf node has degree ∆ and each black node has degree r.
Hence, we show how to encode problems in such case. In this formalism, a problem Π∆,r is described
by a triple (ΣΠ,NΠ, EΠ), where:

• the alphabet set ΣΠ is a set of allowed labels,

• the node constraint NΠ is a set of multisets of size ∆ over the alphabet ΣΠ,

• the hyperedge constraint EΠ is a set of multisets of size r over the alphabet ΣΠ.

Sometimes, instead of multisets, we will use words. It is just a matter of convenience: writing a word
is shorter than writing a multiset. But, the word will still represent a multiset, in the sense that a
label can appear many times in a word and the order of appearance of the labels does not matter.

A word of length ∆ (resp. r) over the alphabet ΣΠ is called node configuration (resp. hyperedge
configuration), and it is valid or allowed or it satisfies the constraint if it is contained in NΠ (resp.
EΠ).

The Output. Informally, in this formalism, in order to solve a problem Π on a regular linear
hypertree H = (V,E), each node must output a label from ΣΠ on each incident hyperedge. More
precisely, each (node, incident hyperedge) pair of the set {(v, e) | v ∈ V, e ∈ E, v ∈ e} must be
labeled with an element from the alphabet ΣΠ. We then say that an output is correct if it satisfies
NΠ and EΠ. More precisely, let v ∈ V be a node and let Iv be the set of all hyperedges e ∈ E
such that v ∈ e. Then the word of size ∆ described by all the labels given to (v, e) must be in NΠ.
Similarly, let e ∈ E be a hyperedge and let Ie be the set of all nodes v such that v ∈ e. Then the
word of size r described by all the labels given to (v, e) must be in EΠ.

Example: Encoding of MIS. As an example, let us see how to encode the MIS problem on
a ∆-regular graph G = (V,E) in the round elimination framework. We show an example with
MIS because, in the round elimination framework, MIS behaves similarly as hypergraph maximal
matching. In other words, we want to define Σ, N , and E , such that any labeling that satisfies
the node and edge constraint results in a maximal independent set, and any maximal independent
set can be used to produce such a labeling. The alphabet set is Σ = {M,P,O}, where intuitively
M is used to say that a node is in the MIS, P is used to point to a neighbor that is in the MIS,
while O stands for “other” and is used to express that somehow it does not matter what happens in
that part of the graph (for example, from the perspective of a node v, the label O on an incident
half-edge (v, e) indicates that it does not matter whether the neighbor reached through e is in the
MIS or not). The node and edge constraints are defined as follows.

N :

M∆

PO∆−1

E :

PM

OM

OO

14

Nodes in the MIS output the configuration M∆. Nodes not in the MIS output the configuration
PO∆−1, where P is used to guarantee the maximality of the solution by pointing to one neighbor
that is in the MIS, while O is given on the other incident half-edges that are connect to nodes that
may or may not be in the MIS. Since we do not allow two neighboring nodes to be in the MIS,
then MM /∈ E . Since P must only point to a neighbor in the MIS then we have PM ∈ E , while
PP,PO /∈ E . Also, since a node not in the MIS may have more than one neighbor in the MIS, or
other neighbors not in the MIS, then we get OO ∈ E and OM ∈ E .

Please observe that the node constraint only specifies what needs to be satisfied by nodes of
degree exectly ∆, and this means that leaves are unconstrained. Hence, these constraint do not
describe the exact MIS problem, but a similar problem, where only non-leaf nodes need to actually
solve MIS. Since we prove lower bounds, this is not an issue: a lower bound for this simplified
variant of MIS would imply a lower bound for the standard MIS problem.

3.3 Automatic Round Elimination Technique

We now present the automatic round elimination technique, and we dive into some details that
are necessary and sufficient for understanding the technical parts of our lower bound proofs. The
automatic version of the round elimination technique was introduced by Brandt [Bra19], and later
actually implemented by Olivetti [Oli19]. On a high level, if we apply the round elimination
technique on a problem Π with complexity T we obtain a (possibly) new problem Π′ having
complexity max{0, T − 1}. Let Π1 be our problem of interest for which we want to show a lower
bound. By applying automatic round elimination iteratively we get a sequence of problems Π2,Π3, . . .
such that each problem Πi is at least one round easier than Πi−1, assuming that Πi−1 is not already
0-rounds solvable. Hence, if we can apply round elimination for T times before reaching a 0-rounds
solvable problem, we get a lower bound of T rounds for our problem of interest Π1.

If we take a more fine-grained look at this technique, what actually happens is that, when we
apply round elimination on a problem Π, this procedure first gives an intermediate problem Π′, and
only after applying round elimination on Π′ we then get the problem Π′′ that is at least one round
easier than Π. Hence, let R(·) be the function that takes in input a problem Π and outputs the
intermediate problem Π′, and let R(·) be the function that takes in input an intermediate problem
Π′ and outputs the problem Π′′. We get that Π′ = R(Π) and Π′′ = R(Π′) = R(R(Π)).

Applying round elimination means to first compute Π′ = R(Π) and then compute Π′′ = R(Π′),
and Π′′ is the problem that is guaranteed to have complexity max{0, T − 1} if Π has complexity T .
On a high level, the labels that are used to define Π′ are sets of labels of Π, and the labels used to
define Π′′ are sets of labels of Π′. Observe that the configurations allowed by the constraints of Π′

are still just multisets of labels, but the elements of these multisets are hence now sets of labels of Π.
We now present the definition of the function R. Starting from a problem Π = (ΣΠ,NΠ, EΠ),

the problem R(Π = (ΣΠ,NΠ, EΠ)) = Π′ = (ΣΠ′ ,NΠ′ , EΠ′) is defined as follows.

• The edge constraint EΠ′ is defined as follows. Consider a configuration L1 . . . Lr where for all
1 ≤ i ≤ r it holds that Li ∈ 2ΣΠ \{∅}, such that for any (`1, . . . , `r) ∈ L1× . . .×Lr it holds that
a permutation of `1 . . . `r is in EΠ (note that, by definition of the above configuration, `i ∈ ΣΠ,
for all 1 ≤ i ≤ r). Let S be the set that contains all and only such configurations. We say that
any configuration in S satisfies the universal quantifier. We call a configuration L1 . . . Lr ∈ S
non-maximal if there exists a permutation L′1 . . . L

′
r of another configuration in S such that,

Li ⊆ L′i for all i, and there exists at least an index i such that L′i (Li. The hyperedge
constraint EΠ′ is defined as the set S where we remove all non-maximal configurations (in
other words, only maximal configurations are kept). We refer to computing S as applying the

15

universal quantifier.

• ΣΠ′ is defined as all subsets of ΣΠ that appear at least once in EΠ′ .

• Consider a configuration L1 . . . L∆ of labels in ΣΠ′ , such that there exists (`1, . . . , `∆) ∈
L1 × . . .× L∆ for which it holds that a permutation of `1 . . . `∆ is in NΠ. Let S be the set of
all and only such configurations. We say that any configuration in S satisfies the existential
quantifier. The node constraint NΠ′ is defined as the set S. We refer to computing S as
applying the existential quantifier.

The problem R(R(Π(ΣΠ,NΠ, EΠ))) = R(Π′(ΣΠ′ ,NΠ′ , EΠ′)) = Π′′(ΣΠ′′ ,NΠ′′ , EΠ′′) is defined
similarly. The constraint NΠ′′ is obtained by applying the universal quantifier on NΠ′ , the set of
labels ΣΠ′′ is defined as all subsets of ΣΠ′ that appear at least once in NΠ′′ , and EΠ′′ is obtained by
applying the existential quantifier on EΠ′ .

Example: MIS. Let us see now a concrete example that illustrates the rules described above.
Our starting problem is Π = MIS on ∆-regular trees, which we already showed how to encode in
this formalism, and we now show how Π′ = R(Π) looks like.

• We start by computing the edge constraint EΠ′ . In order to do so, it is useful to first compute
the set 2ΣΠ \{∅} = {{M}, {P}, {O}, {M,P}, {M,O}, {P,O}, {M,P,O}}. All configurations with
labels in the above-defined set that satisfy the universal quantifier are the following: {P}{M},
{O}{M}, {O}{O}, {O}{M,O}, {M}{P,O}. Let S be the set that contains all the above
configurations. The set EΠ′ is then defined as the set S where we remove all non-maximal
configurations. The configuration {P}{M} is non-maximal because there exists {M}{P,O};
the configurations {O}{M} and {O}{O} are non-maximal because there exists {O}{M,O}.
Hence, EΠ′ = {{M}{P,O}, {O}{M,O}}.

– For the sake of readability we rename the sets of labels as follows: {M} 7→ M , {O} 7→ O ,
{P,O} 7→ P , {M,O} 7→ X . Hence EΠ′ = { P M , O X }.

• ΣΠ′ = { M , O , P , X }.

• It is possible to check that NΠ′ is given by all the words generated by the following regular
expression: [M X]∆ | P [O P X]∆−1.

In order to fully apply round elimination, we would then apply R on Π′, and hence perform the
following operations:

• Compute the node constraint NΠ′′ by applying the universal quantifier on NΠ′ .

• Define ΣΠ′′ as the set of labels appearing in NΠ′′ .

• Compute the edge constraint EΠ′′ by applying the existential quantifier on EΠ′ .

• As before, we would then perform a renaming to replace sets with plain labels. This is not
necessary, but it improves the readability of the result.

By a suitable renaming of the obtained sets of labels, we would obtain the following problem, which,
by round elimination, is exactly one round easier than MIS. The node constraint is given by all the
words generated by the regular expression M∆ | PO∆−1 | XA∆−1 | C∆, and the edge constraint is
given by all the words generated by the regular expression [MA][PCAU] | [XMCAU]U.

16

The Automatic Round Elimination Theorem. In order to prove our lower bounds we will
use the following theorem proved in [Bra19].

Theorem 3.1 ([Bra19], Theorem 4.3 (rephrased)). Let T > 0. Consider a class G of hypergraphs
with girth at least 2T + 2, and some locally checkable problem Π. Then, there exists an algorithm
that solves problem Π in G in T rounds if and only if there exists an algorithm that solves R(R(Π))
in T − 1 rounds.

We notice that the more challenging part of applying the round elimination technique is computing
the set of configurations that must satisfy the for all quantifier. For example, in computing the
intermediate problem Π′, the challenging part is computing EΠ′ . In fact, an alternative and easy
way to compute NΠ′ is to simply define it as the set that contains all configurations given by regular
expressions obtained by taking a configuration in NΠ and replacing each label ` with the disjunction
of all label sets in ΣΠ′ that contain `. One thing that may help in proving lower bounds is that,
it is not necessary to show that EΠ′ contains all and only those configurations that satisfy the
universal quantifier, but it is enough to show that there are no maximal configurations that satisfy
the universal quantifier that are not in EΠ′ . In other words, we can add more allowed node and/or
edge configurations to our lower bound sequence of problems and make these problems potentially
easier, and if we are able to show a lower bound on these problems, then this lower bound applies
to harder problems as well. Hence, we now define the notion of relaxation of a configuration, which
was already introduced in [BBO20].

Definition 3.2 (Relaxation). Let B = B1 . . . Bj and B′ = B′1 . . . B
′
k be configurations consisting

of subsets of some label space Σ. We say that B can be relaxed to B′ if j = k and there exists a
permutation ρ : {1, . . . , j} → {1, . . . , k} such that for any 1 ≤ i ≤ j we have Bi ⊆ B′ρ(i).

Let C and C ′ be two constraints, i.e., two collections of configurations. Then we call C ′ a
relaxation of C if every configuration in C can be relaxed to some configuration in C ′. Moreover,
for two problems Π1 = (Σ1,N1, E1) and Π2 = (Σ2,N2, E2), we call Π2 a relaxation of Π1 if N2 is a
relaxation of N1 and E2 is a relaxation of E1.

Relation Between Labels. In order to argue about desired properties of our lower bound family
of problems, it will be useful to determine a relation between labels. Given a problem Π, let C be
either the node or the hyperedge constraint, and let A and B be two labels of Π. We say that A
is at least as strong as B according to C if, for any configuration `1 . . . `δ ∈ C (δ = ∆ or δ = r)
that contains B, there is also a configuration in C that is a permutation of `1 . . . `δ where B is
replaced with A. In other words, consider any configuration C ∈ C that contains B; Let C′ be the
configuration obtained by C where B is replaced with A; a permutation of C′ must be in C. If a
label A is at least as strong as another label B, then we say that B is at least as weak as A, denoted
with B ≤ A. If A is at least as strong as B and B is not at least as strong as A, then we say that A
is stronger than B and B is weaker than A, denoted with B < A. If A ≤ B and B ≤ A, then A and B
are equally strong.

In our lower bound proof we make use of a diagram in order to show the relation between labels
according to some constraint C: we call it node diagram if it shows the relation between labels
according to the node constraint N , and hyperedge diagram (or edge diagram, if we are on graphs) if
instead the relations are according to E . In this diagram, there is a directed edge from a label B to
a label A if A is at least as strong as B and there is no label D 6∈ {A,B} such that D is stronger than
B and weaker than A. See Figure 1 for an example of the diagram of the MIS problem according
to its edge constraint. All labels in the diagram that are reachable from a label ` are called the

17

successors of `. In other words, the successors of `, according to some constraint C, are all those
labels that are at least as strong as ` according to C.

M

P O

Figure 1: The edge diagram of the MIS problem. There is an edge from P to O because, in all edge
configurations where P appears, that is PM, by replacing P with O we get the constraint OM which
is also in E . There is no strength relation between M and labels P or O.

Additional Notation. Lastly, we introduce some additional notation that is essential and heavily
used for describing in a concise way the problem family of our lower bounds. Consider a problem
Π = (ΣΠ,NΠ, EΠ), where ΣΠ = {`1, . . . , `δ}. We denote by 〈`1, . . . , `δ〉 the set of all labels that
are at least as strong as at least one label in {`1, . . . , `δ}, according to either NΠ or EΠ. In other
words, 〈`1, . . . , `δ〉 is the set containing the labels `1, . . . , `δ along with all the successors of the
labels `i, 1 ≤ i ≤ δ, according to either NΠ or EΠ. Let us be a bit more precise regarding when it
is that, by using 〈〉, we refer to successors of labels according to NΠ and when instead according
to EΠ. Consider a problem Π = (ΣΠ,NΠ, EΠ) and let the argument of 〈〉 contains labels from ΣΠ.
Then, when we compute R(Π) = Π′ = (ΣΠ′ ,NΠ′ , E ′Π), the set 〈〉 contains successors according
to EΠ. Suppose now that the argument of 〈〉 contains labels from ΣΠ′ . Then, when we compute
Π′′ = R(Π′) = R(R(Π)), the set 〈〉 contains successors according to N ′Π. Hence, the relation between
labels is always considered according to the constraint on which we apply the universal quantifier.
Actually, when we compute R(Π) in our lower bound proofs, we will often use the expression of
the form 〈〈`〉〉, where ` ∈ ΣΠ, that represents a set of sets of labels in ΣΠ, where 〈`〉 is generated
according to EΠ and 〈〈`〉〉 according to NΠ′ .

We say that a set S = {`1, . . . , `δ} ⊆ ΣΠ is right-closed if it contains also all successors of the
labels `1, . . . , `δ according to EΠ, that is, if S = 〈`1, . . . , `δ〉. For a label `, we denote with right-closed
subset generated by ` the set 〈`〉. Similarly, for a set of labels {`1, . . . , `δ}, the right-closed subset
generated by that set is 〈`1, . . . , `δ〉. Observe that it is equal to

⋃
i〈`i〉. In our proofs, we will make

use of the following simple observation from [BBO20].

Observation 3.3 ([BBO20]). Consider an arbitrary collection of labels A1, . . . ,Ap ∈ ΣΠ. If
{A1, . . . ,Ap} ∈ ΣR(Π), then the set {A1, . . . ,Ap} is right-closed (according to EΠ). If {A1, . . . ,Ap} ∈
ΣR(Π), then the set {A1, . . . ,Ap} is right-closed (according to NΠ).

In order to get our lower bound, we will make use of the following theorem, which has been
already proved in [BBKO22], and allows us to transform a lower bound obtained through round
elimination into a lower bound for the LOCAL model.

Theorem 3.4 (Theorem 7.1 of [BBKO22], rephrased). Let Π0 → Π1 → . . .→ Πt be a sequence of
problems. Assume that, for all 0 ≤ i < t, and for some function f , the following holds:

• There exists a problem Π′i that is a relaxation of R(Πi);

• Πi+1 is a relaxation of R(Π′i);

• The number of labels of Πi, and the ones of Π′i, are upper bounded by f(∆ · r).

18

Also, assume that Πt has at most f(∆ · r) labels and is not 0-round solvable in the deterministic port
numbering model. Then, Π0 requires Ω(min{t, log∆r n−log∆r log f(∆r)}) rounds in the deterministic
LOCAL model and Ω(min{t, log∆r log n− log∆r log f(∆r)}) rounds in the randomized LOCAL model.

For any subset W of nodes in some graph, let N(W) denote the set of nodes that are adjacent to
at least one member of W . In our lower bound proofs, we will make use of Hall’s marriage theorem,
which can be phrased as follows.

Theorem 3.5 (Hall). Let G = (V ∪W,E) be a bipartite graph. If |N(W ′)| ≥ |W ′| for any W ′ ⊆W ,
then there exists a matching saturating W , i.e., a function f : W → V such that f(w) 6= f(w′) for
any w 6= w′, and {w, f(w)} ∈ E for any w ∈W .

4 Lower Bounds for Hypergraph Colorings

In this section, we prove lower bounds for different variants of hypergraph coloring. We first consider
the standard definition of coloring, where on each hyperedge it must hold that at least two incident
nodes have different colors. We show how to encode the ∆-hypergraph coloring problem in the round
elimination framework, and then we show which additional allowed configurations we have to allow
in order to transform it into a fixed point. A problem is a fixed point if, modulo some renaming,
R(R(Π)) = Π, and by prior work we know that if a fixed point problem cannot be solved in 0 rounds
in the PN model, then it means that it requires Ω(log∆r n) rounds for deterministic algorithms in
the LOCAL model, and of Ω(log∆r log n) rounds for randomized ones. We then show that there is a
0 round algorithm that is able to convert a ∆(r − 1)-colorful coloring into a ∆-coloring, implying
that the lower bound that we show for ∆-hypergraph coloring holds for the colorful variant as well.

4.1 The ∆-Hypergraph Coloring Problem.

We now show how to define the hypergraph coloring problem in the round elimination framework.
The label set ΣΠ contains one label for each color, that is, ΣΠ = {1, . . . ,∆}. The node constraint
NΠ contains one configuration for each possible color, that is, NΠ = {c∆ | 1 ≤ c ≤ ∆}. The
hyperedge constraint EΠ contains all words of size r where at least two different colors appear, that
is, EΠ = {c1 . . . cr | ci ∈ {1, . . . ,∆} ∧ c1 6= c2}.

We now provide the high level idea on how this problem can be relaxed in order to make it a
fixed point. The idea is to allow nodes to output not just colors, but sets of colors. For example, a
node could use color 1 and 2 at the same time, but then, on each hyperedge incident to this node,
there should be another incident node that is neither of color 1 nor of color 2. Additionally, nodes
are rewarded for using more than one color: if a node uses x colors, then it is allowed to mark up to
x− 1 incident hyperedges, and on those marked hyperedges the node counts as being uncolored.
Observe that if a hyperedge e is marked by at least one node, then the hyperedge constraint is
always satisfied on e, because for each color it holds that there is at least one incident node that is
not colored with that color.

There is no clear intuition why this problem relaxation would be a fixed point, and in fact our
proof is essentially a tedious case analysis. But, on a very high level, when applying the universal
quantifier, the functions R and R essentially try to combine the existing configurations in all possible
ways that make the forall quantifier satisfied. If we look at Π′ = R(R(Π)), where Π is the original
∆-hypergraph coloring problem, we actually see something very similar to the problem that we just
described. The main difference is that the allowed configurations of Π′ are a bit more restrictive: in
the fixed point relaxations, if a hyperedge is marked by some incident node, then it is always happy,

19

while in Π′ this is not always the case. Relaxing Π′ to make hyperedges always happy when marked
is essentially what gives our fixed point relaxation.

4.2 The ∆-Hypergraph Coloring Fixed Point.

We now define a problem Π that is a relaxation of the ∆-hypergraph coloring problem and that we
will later show to be a fixed point problem that cannot be solved in 0 rounds.

Let C := {1, . . . ,∆}. We call the elements of C colors from the color space C. In the following,
we define Π = (ΣΠ,NΠ, EΠ) by specifying ΣΠ, NΠ, and EΠ.

The label set ΣΠ. The label set ΣΠ of Π contains one label `(C) for each (possibly empty) color
set C ⊆ C, i.e., ΣΠ := {`(C) | C ⊆ C}. In other words, the labels are now sets of colors.

The node constraint NΠ. The node constraint NΠ of Π consists of all configurations of the form
`(C)∆−|C|+1`(∅)|C|−1 for some ∅ 6= C ⊆ C, i.e., NΠ := {`(C)∆−|C|+1`(∅)|C|−1 | ∅ 6= C ⊆ C}. In other
words, each node outputs a set of colors, and on some of the incident hyperedges the empty set can
be used. The intuition is that the empty set corresponds to the marking previously described.

The hyperedge constraint EΠ. The hyperedge constraint EΠ of Π consists of all configurations
`(C1) . . . `(Cr) of labels from ΣΠ such that for each color i ∈ C, there is at least one index 1 ≤ j ≤ r
satisfying i /∈ Cj .

A Fixed Point. We will prove that Π is a fixed point, that is, under some renaming, R(R(Π)) = Π.

Lemma 4.1. The problem R(R(Π)) is equivalent to Π.

Since the proof of this statement is a tedious case analysis, we defer its proof to the end of the
section. We now use this statement to derive our lower bounds.

4.3 Proving the Lower Bounds

We now prove that Π cannot be solved in 0 rounds. We will then show that this fact, combined
with Lemma 4.1, implies strong lower bounds for different hypergraph coloring variants.

Lemma 4.2. The problem Π cannot be solved in 0 rounds in the deterministic port numbering
model.

Proof. All nodes of degree ∆ that run a 0-round algorithm have the same view (they just know
their degree, the size of the graph, and the parameters ∆ and r). Hence, any deterministic 0-round
algorithm uses the same configuration in NΠ on all nodes. Thus, in order to prove the statement,
we consider all possible configurations and we show that they cannot be properly used in a 0-round
algorithm. The configurations allowed on the nodes are all those that satisfy `(C)∆−|C|+1`(∅)|C|−1

for each ∅ 6= C ⊆ C. Hence, all nodes must output one of those configuration for the same set C
satisfying ∅ 6= C ⊆ C. Since |C| ≤ ∆, then this configuration contains `(C) at least once. Since the
algorithm is deterministic, then all nodes must output `(C) on the same port. W.l.o.g., let this
port be the port number 1. If we connect the port 1 of r nodes to the same hyperedge, then the
hyperedge would have the configuration `(C)r, which is not in EΠ.

20

Theorem 4.3. The hypergraph ∆-coloring problem requires Ω(log∆r n) in the LOCAL model for
deterministic algorithms, and Ω(log∆r log n) for randomized ones.

Proof. By Lemma 4.1, R(R(Π)) = Π, and by Lemma 4.2 Π is not 0-round solvable. Hence, we can
build an arbitrarily long sequence of problems satisfying Theorem 3.4 (or, in other words, we can
take t = ∞). Also, note that the number of labels of each problem is bounded by 2O(∆). Thus,
since log∆r log f(∆) = O(1), we obtain a lower bound for Π of Ω(log∆r n) rounds in the LOCAL
model for deterministic algorithms, and Ω(log∆r log n) rounds for randomized ones.

Theorem 4.4. The hypergraph ∆(r−1)-colorful coloring problem requires Ω(log∆r n) in the LOCAL
model for deterministic algorithms, and Ω(log∆r log n) for randomized ones.

Proof. We prove that, given a solution for the ∆(r − 1)-hypergraph coloring problem, we can solve
hypergraph ∆-coloring in 0 rounds, implying the claim. We group the ∆(r − 1) colors of the
hypergraph colorful coloring problem into ∆ groups G1, . . . , G∆ of r− 1 colors each, in an arbitrary
way. Then, each node of color c outputs `({i})∆, for i satisfying c ∈ Gi. Observe that the solution
clearly satisfies NΠ. Also, since in any solution for the ∆(r − 1)-hypergraph coloring problem on
each hyperedge there can be at most 1 incident node for each color, then we obtain that each
hypergraph has at most r− 1 incident nodes with colors from the same group. Hence, the constraint
EΠ is satisfied.

4.4 Relations Between Labels

In the rest of the section we prove Lemma 4.1. We start by proving a relation between the labels.
From the definition of EΠ, we can infer the following lemma characterizing the strength relations
according to EΠ.

Lemma 4.5. Consider any two subsets C, C′ of C. Then `(C) ≤ `(C′) if and only if C′ ⊆ C.

Proof. Consider first the case that C′ ⊆ C, and let `(C)`(C2) . . . `(Cr) be an arbitrary configuration
from EΠ. Then it follows directly from the definition of EΠ that also `(C′)`(C2) . . . `(Cr) is contained
in EΠ. Hence, `(C) ≤ `(C′), by the definition of strength.

Now consider the other case, namely that C′ * C, and let i ∈ C′ be a color that is not contained
in C. Consider the configuration `(C)`(C \ C)`(C)r−2. Since, for any i′ ∈ C, we have i′ /∈ C or
i /∈ C \ C, we have `(C)`(C \ C)`(C)r−2 ∈ EΠ. Now consider the configuration `(C′)`(C \ C)`(C)r−2

obtained from the above configuration by replacing `(C) by `(C′). Since i ∈ C′, i ∈ C \ C, and i ∈ C,
we have `(C′)`(C \ C)`(C)r−2 /∈ EΠ. Hence, `(C) � `(C′), by the definition of strength.

From Lemma 4.5, we immediately obtain the following corollary, by collecting, for each label
`(C) ∈ ΣΠ, all labels `(C) ∈ ΣΠ satisfying `(C) ≤ `(C).

Corollary 4.6. For each C ⊆ C, we have 〈`(C)〉 = {`(C′) | C′ ⊆ C}.

4.5 Computing R(Π)

We now prove that problem R(Π) is defined as in the following lemma.

Lemma 4.7. The set ΣR of output labels of R(Π) is given by {〈`(C)〉 | C ⊆ C}.
The hyperedge constraint ER of R(Π) consists of all configurations 〈`(C1)〉 . . . 〈`(Cr)〉 of labels

from {〈`(C)〉 | C ⊆ C} such that for each color i ∈ C, there is exactly one index 1 ≤ j ≤ r satisfying
i /∈ Cj.

The node constraint NR of R(Π) consists of all configurations B1 . . . B∆ of labels from {〈`(C)〉 |
C ⊆ C} such that there exists a choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆ satisfying A1 . . . A∆ ∈ NΠ.

21

Proof. We start by showing that the hyperedge constraint ER is as given in the lemma. Let E
denote the set of all configurations 〈`(C1)〉 . . . 〈`(Cr)〉 of labels from ΣR such that for each color
i ∈ C, there is exactly one index 1 ≤ j ≤ r satisfying i /∈ Cj . We need to show that ER = E .

We first show that ER ⊆ E . Let B1 . . . Br be an arbitrary configuration from ER. Our first step
is to show that each Bj is of the form 〈`(C)〉 for some C ⊆ C. Assume for a contradiction that there
exists some index 1 ≤ j ≤ r such that Bj 6= 〈`(C)〉 for each C ∈ C. Let C be the union of all color
sets C′ such that `(C′) ∈ Bj . By Corollary 4.6, it follows that Bj ⊆ 〈`(C)〉, and since Bj 6= 〈`(C)〉, we
know that 〈`(C)〉 \ Bj is nonempty. Observe that, by Observation 3.3, Bj is right-closed (according
to EΠ) as Bj ∈ ΣR (by the definition of Bj). Hence, if `(C) ∈ Bj , then 〈`(C)〉 ⊆ Bj , yielding a
contradiction to the nonemptiness of 〈`(C)〉 \ Bj . Thus, `(C) /∈ Bj .

Now consider the configuration B1 . . . Bj−1〈`(C)〉Bj+1 . . . Br. Since Bj (〈`(C)〉, we know that
B1 . . . Bj−1〈`(C)〉Bj+1 . . . Br and all configurations that B1 . . . Bj−1〈`(C)〉Bj+1 . . . Br can be relaxed
to are not contained in ER, by (the maximality condition in) the definition of ER (and the fact
that B1 . . . Br ∈ ER). It follows, by the definitions of ER and EΠ, that there exist some choice
(`(C′1), . . . , `(C′r)) ∈ B1× · · · ×Bj−1× 〈`(C)〉 ×Bj+1× · · · ×Br and some color i ∈ C such that i ∈ C′j′
for each 1 ≤ j′ ≤ r. By Corollary 4.6, the fact that `(C′j) ∈ 〈`(C)〉 implies that C′j ⊆ C, which,
combined with i ∈ C′j , yields i ∈ C. Let C∗ ⊆ C be a color set such that i ∈ C∗ and `(C∗) ∈ Bj . Such
a color set C∗ exists due to the definition of C and the fact that i ∈ C. Since i ∈ C∗ and i ∈ C′j′
for each 1 ≤ j′ ≤ r satisfying j′ 6= j, we obtain `(C′1) . . . `(C′j−1)`(C∗)`(C′j+1) . . . `(C′r) /∈ EΠ, by the
definition of EΠ. But, since (`(C′1), . . . , `(C′j−1), `(C∗), `(C′j+1), . . . , `(C′r)) ∈ B1× · · · ×Br, this implies
that B1 . . . Br /∈ ER, by the definition of ER, yielding a contradiction. Hence, each Bj is of the form
〈`(C)〉 for some C ⊆ C.

Now, let 〈`(C1)〉 . . . 〈`(Cr)〉 be an arbitrary configuration from ER (justified by the above discus-
sion), and consider an arbitrary color i ∈ C. If for each index 1 ≤ j ≤ r we have i ∈ Cj , then we
know that `(C1) . . . `(Cr) /∈ EΠ, by the definition of EΠ; however, since, by Corollary 4.6, we have
`(Cj) ∈ 〈`(Cj)〉 for each 1 ≤ j ≤ r, it follows that 〈`(C1)〉 . . . 〈`(Cr)〉 /∈ ER (by the definition of ER),
yielding a contradiction. Hence, we can conclude that there exists at least one index 1 ≤ j ≤ r such
that i /∈ Cj .

It remains to show that there do not exist two distinct indices j, j′ ∈ {1, . . . , r} such that i /∈ Cj
and i /∈ Cj′ . For a contradiction, assume that such two indices j, j′ exist. Consider the configuration
Y = 〈`(C1)〉 . . . 〈`(Cj−1)〉〈`(Cj∪{i})〉〈`(Cj+1)〉 . . . 〈`(Cr)〉. Since i /∈ Cj , we have 〈`(Cj∪{i})〉) 〈`(Cj)〉,
by Corollary 4.6, and it follows by (the maximality condition in) the definition of ER (and the fact
that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ ER) that Y /∈ ER.

Now consider an arbitrary choice (`(C′1), . . . , `(C′r)) ∈ 〈`(C1)〉 × . . . 〈`(Cj−1)〉 × 〈`(Cj ∪ {i})〉 ×
〈`(Cj+1)〉 × · · · × 〈`(Cr)〉. Observe that `(C′j) ∈ 〈`(Cj ∪ {i})〉 implies that `(C′j \ {i}) ∈ 〈`(Cj)〉, by
Corollary 4.6. Thus, `(C′1) . . . `(C′j−1)`(C′j\{i})`(C′j+1) . . . `(C′r) ∈ EΠ, by the definition of ER (and the
fact that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ ER). It follows, by the definition of EΠ, that for each i′ ∈ C satisfying
i′ 6= i, there is at least one index 1 ≤ j′′ ≤ r satisfying i′ /∈ C′j′′ . Observe that there also is at least
one index 1 ≤ j′′ ≤ r satisfying j′′ 6= j and i /∈ C′j′′ , due to the assumptions that j′ 6= j and i /∈ Cj′ .
Hence, we can conclude that also `(C′1) . . . `(C′r) ∈ EΠ, by the definition of EΠ. Since (`(C′1), . . . , `(C′r))
was chosen arbitrarily from 〈`(C1)〉× . . . 〈`(Cj−1)〉×〈`(Cj ∪{i})〉×〈`(Cj+1)〉× · · ·× 〈`(Cr)〉, it follows
that Y ∈ ER, by the definition of ER. This yields a contradiction to the already established fact that
Y /∈ ER. Thus, there is exactly one index 1 ≤ j ≤ r such that i /∈ Cj . Since i was chosen arbitrarily
from C, it follows that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ E , by the definition of E . Since 〈`(C1)〉 . . . 〈`(Cr)〉 was
chosen arbitrarily from ER, this implies in turn that ER ⊆ E , as desired.

Now, we show that E ⊆ ER. Let 〈`(C1)〉 . . . 〈`(Cr)〉 be an arbitrary configuration from E , and
consider some arbitrary choice (`(C′1), . . . , `(C′r)) ∈ 〈`(C1)〉 × · · · × 〈`(Cr)〉. From the definition of E
and Corollary 4.6, it follows that for each color i ∈ C, there is at least one index 1 ≤ j ≤ r satisfying

22

i /∈ C′j . Hence `(C′1) . . . `(C′r) ∈ EΠ, by the definition of EΠ. Since (`(C′1), . . . , `(C′r)) was arbitrarily
chosen from 〈`(C1)〉× · · · × 〈`(Cr)〉, this implies, by the definition of ER, that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ ER
or there is some configuration B1 . . . Br ∈ ER such that 〈`(Cj)〉 ⊆ Bj for all j ∈ {1, . . . , r} and
〈`(Cj)〉 (Bj for at least one j ∈ {1, . . . , r}. Assume that such a configuration B1 . . . Br ∈ ER
exists. By the definition of B1 . . . Br, the definition of E , and the fact that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ E ,
there must be some color i ∈ C such that i ∈ Bj for each 1 ≤ j ≤ r. Hence, B1 . . . Br /∈ E (by
the definition of E), which contradicts B1 . . . Br ∈ ER since ER ⊆ E (as established above). Thus,
no such configuration B1 . . . Br ∈ ER exists, which implies that 〈`(C1)〉 . . . 〈`(Cr)〉 ∈ ER. It follows
that E ⊆ ER, as desired. Hence, we can conclude that ER = E , and it follows that the hyperedge
constraint ER is as given in the lemma.

Next, we show that ΣR is as given in the lemma. By definition, ΣR consists of those labels
that appear in some configuration from ER. Observe that, for any C ⊆ C, the configuration
〈`(C)〉〈`(C \ C)〉〈`(C)〉r−2 is contained in E , by the definition of E . Since ER = E (and all labels
appearing in some configuration from ER are contained in {〈`(C)〉 | C ⊆ C}), it follows that ΣR is as
given in the lemma.

From the definition of R(·), it immediately follows that NR is as given in the lemma.

Similar to before, it will be useful to collect information about the strength of the labels in
ΣR (according to NR) and compute the right-closed subsets generated by each label. We will do
so in the following with Lemma 4.8 and Corollary 4.9, which are analogues of Lemma 4.5 and
Corollary 4.6 for R(Π) instead of Π.

Lemma 4.8. Consider any two subsets C, C′ of C. Then 〈`(C)〉 ≤ 〈`(C′)〉 if and only if C ⊆ C′.

Proof. Consider first the case that C ⊆ C′. From the definition of NR, it directly follows that
replacing some set in a configuration from NR by a superset will result in a configuration that is
contained in NR as well. Since, by Corollary 4.6, C ⊆ C′ implies 〈`(C)〉 ⊆ 〈`(C′)〉, it follows that
〈`(C)〉 ≤ 〈`(C′)〉 (by the definition of strength), as desired.

Now consider the other case, namely that C * C′, and let i ∈ C be a color that is not contained
in C′. In particular, we have C 6= ∅. Consider the configuration 〈`(C)〉∆−|C|+1〈`(∅)〉|C|−1. Since
`(C)∆−|C|+1`(∅)|C|−1 ∈ NΠ, we have 〈`(C)〉∆−|C|+1〈`(∅)〉|C|−1 ∈ NR, by the definition of NR. Now
consider the configuration 〈`(C′)〉〈`(C)〉∆−|C|〈`(∅)〉|C|−1 obtained from the above configuration by
replacing (one) 〈`(C)〉 by 〈`(C′)〉. Consider an arbitrary choice (`(C1), . . . , `(C∆)) ∈ 〈`(C′)〉 ×
〈`(C)〉∆−|C| × 〈`(∅)〉|C|−1. Set Y := `(C1) . . . `(C∆). We want to show that Y /∈ NΠ.

For a contradiction, assume that Y ∈ NΠ, which implies that there is some color set ∅ 6= C∗ ⊆ C
such that Y = `(C∗)∆−|C∗|+1`(∅)|C∗|−1. If |C∗| < |C|, then Y contains strictly more than ∆− |C|+ 1
labels that are not contained in 〈`(∅)〉 (by Corollary 4.6), which yields a contradiction to the
definition of Y . Hence, |C∗| ≥ |C|. Consider the case that C∗ 6= C. Then it follows that C∗ * C,
which implies `(C∗) /∈ 〈`(C)〉, by Corollary 4.6; it follows that `(C∗) is contained in at most one set
from 〈`(C′)〉〈`(C)〉∆−|C|〈`(∅)〉|C|−1, which in turn implies ∆ − |C∗|+ 1 ≤ 1, by the definition of Y ,
and therefore |C∗| = ∆. As |C∗| = ∆ implies C∗ = C, but `(C) /∈ 〈`(C′)〉 ∪ 〈`(C)〉 ∪ 〈`(∅)〉 (due to
the fact that i /∈ C′, the fact that C = C∗ * C, and Corollary 4.6), we obtain a contradiction to
the definition of Y (given the fact that Y = `(C∗)∆−|C∗|+1`(∅)|C∗|−1). Hence, we know that C∗ = C.
Since C * C′, it follows, by Corollary 4.6, that `(C∗) /∈ 〈`(C′)〉. Thus, `(C∗) is contained in at
most ∆− |C| = ∆− |C∗| sets from 〈`(C′)〉〈`(C)〉∆−|C|〈`(∅)〉|C|−1, which yields a contradiction to the
definition of Y (given the fact that Y = `(C∗)∆−|C∗|+1`(∅)|C∗|−1). Hence, our assumption was false,
and we have Y /∈ NΠ. It follows that 〈`(C′)〉〈`(C)〉∆−|C|〈`(∅)〉|C|−1 /∈ NR, which, by the definition of
strength, implies that 〈`(C)〉 � 〈`(C′)〉, as desired.

23

From Lemma 4.8 we obtain Corollary 4.9 by simply collecting for any label L ∈ ΣR the set of all
labels L′ satisfying L ≤ L′.

Corollary 4.9. For each C ⊆ C, we have 〈〈`(C)〉〉 = {〈`(C′)〉 | C ⊆ C′}.

4.6 Computing R(R(Π))

We now proceed by computing R(R(Π)). We start with its node constraint.

Lemma 4.10. The node constraint NR of R(R(Π)) consists of all configurations of the form
〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 for some ∅ 6= C ⊆ C.

Proof. Let N denote the set of all configurations of the form 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 for some
∅ 6= C ⊆ C. We need to show that NR = N .

We start by showing that each configuration from N can be relaxed to some configuration
from NR. Let 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 be an arbitrary configuration from N , and consider
some arbitrary choice (〈`(C′1)〉, . . . , 〈`(C′∆)〉) ∈ 〈〈`(C)〉〉∆−|C|+1 × 〈〈`(∅)〉〉|C|−1. By Corollary 4.9, we
know that, for each 1 ≤ k ≤ ∆ − |C| + 1, we have C ⊆ C′k. Hence, by Corollary 4.6, we can pick
one label from each of the sets in (〈`(C′1)〉, . . . , 〈`(C′∆)〉) such that the resulting configuration is
`(C)∆−|C|+1`(∅)|C|−1. Since `(C)∆−|C|+1`(∅)|C|−1 ∈ NΠ, it follows, by the definition of NR (and NR),
that 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 can be relaxed to some configuration from NR. We conclude that
each configuration from N can be relaxed to some configuration from NR. Note that this does not
show yet that N ⊆ NR; we will come back to this goal later.

First, we show that NR ⊆ N . Let B = B1 . . . B∆ be an arbitrary configuration from NR. We
claim that B can be relaxed to some configuration from N . For a contradiction, assume that the
claim is false, i.e., B cannot be relaxed to any configuration from N . Observe that Bk is right-closed
for each 1 ≤ k ≤ ∆, by Observation 3.3.

For each i ∈ C, define Ri := C \ {i}. Moreover, we will make use of the bipartite graph
G = (V ∪W,E) obtained by defining V := {B1, . . . ,B∆} and W := {Ri | i ∈ C}, and setting E to
be the set of all edges {Bk, Ri} satisfying 〈`(Ri)〉 ∈ Bk. Note that, for any distinct k, k′, we consider
Bk and Bk′ to be different vertices in V even if Bk = Bk′ .

Consider any arbitrary subset ∅ 6= C ⊆ C. By our assumption, configuration B cannot be relaxed
to the configuration 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1, which implies that there are at least |C| indices
k ∈ {1, . . . ,∆} satisfying Bk * 〈〈`(C)〉〉, since 〈〈`(∅)〉〉 = ΣR (by Corollary 4.9). By Corollary 4.9, it
follows that there are at least |C| indices k ∈ {1, . . . ,∆} such that there exists some C′ + C satisfying
〈`(C′)〉 ∈ Bk. Since, for each C′ + C, there exists some i ∈ C satisfying i /∈ C′, it follows, by the
right-closedness of the Bk (and Lemma 4.8), that there are at least |C| indices k ∈ {1, . . . ,∆} such
that there exists some i ∈ C satisfying 〈`(Ri)〉 ∈ Bk.

Recall the definition of G. By the above discussion, we conclude that for any arbitrary subset
∅ 6= C ⊆ C, the vertex set {Ri | i ∈ C} ⊆ W has at least |C| neighbors in V . Hence, we can
apply Theorem 3.5 (i.e., Hall’s marriage theorem) to G and obtain a function f : W → V such
that f(Ri) 6= f(Ri′) for any i 6= i′ and 〈`(Ri)〉 ∈ f(Ri) for any i ∈ C. This implies that there is
some choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆ such that the configuration A1 . . . A∆ is a permutation of
the configuration 〈`(R1)〉 . . . 〈`(R∆)〉. Therefore, by the definition of NR, there exists some choice
(L1, . . . , L∆) ∈ 〈`(R1)〉 × · · · × 〈`(R∆)〉 such that L1 . . . L∆ ∈ NΠ. Observe that, for each ∅ 6= C ⊆ C,
there are at least |C| indices i ∈ C (namely all colors i contained in C) such that `(C) /∈ 〈`(Ri)〉,
by Corollary 4.6. It follows that, for each ∅ 6= C ⊆ C, the configuration `(C)∆−|C|+1`(∅)|C|−1 is not
a permutation of L1 . . . L∆. By the definition of NΠ, this yields a contradiction to the fact that
L1 . . . L∆ ∈ NΠ, and proves the claim.

24

Hence, each configuration from NR can be relaxed to some configuration from N . Recall that, as
shown before, each configuration from N can be relaxed to some configuration from NR. Combining
these two insights, we obtain that any arbitrary configuration B1 ∈ NR can be relaxed to some
configuration B2 ∈ N , which in turn can be relaxed to some configuration B3 ∈ NR. From (the
maximality condition in) the definition of NR it follows that B1 = B3, which implies that also
B1 = B2. Hence, B1 ∈ N , which implies that NR ⊆ N , as desired.

We conclude the proof by showing that also N ⊆ NR. We start by observing that for any two
nonempty subsets C, C′ ⊆ C satisfying C 6= C′, the configuration 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 cannot
be relaxed to 〈〈`(C′)〉〉∆−|C′|+1〈〈`(∅)〉〉|C′|−1: If C′ ⊆ C, then |C′| < |C|, which implies that there are
strictly fewer than |C| − 1 sets in 〈〈`(C′)〉〉∆−|C′|+1〈〈`(∅)〉〉|C′|−1 that are a superset of 〈〈`(∅)〉〉, since
〈〈`(C′)〉〉 + 〈〈`(∅)〉〉, by Corollary 4.9. If C′ * C, then 〈〈`(C)〉〉 * 〈〈`(C′)〉〉 (by Corollary 4.9), which
implies that no set in 〈〈`(C)〉〉∆−|C|+1〈〈`(∅)〉〉|C|−1 is a subset of 〈〈`(C′)〉〉, as also 〈〈`(∅)〉〉 * 〈〈`(C′)〉〉
(as seen above).

Hence, no configuration from N can be relaxed to a different configuration from N . Recall
(again) that each configuration from N can be relaxed to some configuration from NR and each
configuration from NR can be relaxed to some configuration from N . It follows that if there is some
configuration from N that is not contained in NR, then it can be relaxed to a different configuration
from N , by first relaxing it to a (necessarily different) configuration from NR and then relaxing the
obtained configuration to some configuration from N . As no configuration from N can be relaxed
to a different configuration from N (as shown above), we conclude that each configuration from N
is also contained in NR. Thus, N ⊆ NR, as desired. It follows that NR = N .

We now describe what is the label set ΣR of the problem R(R(Π)), and we then compute ER.

Lemma 4.11. The set ΣR of output labels of R(R(Π)) is given by {〈〈`(C)〉〉 | C ∈ C}
Moreover, the hyperedge constraint ER of R(R(Π)) consists of all configurations 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉

of labels from ΣR such that for each color i ∈ C, there is at least one index 1 ≤ j ≤ r satisfying
i /∈ Cj.

Proof. From Lemma 4.10 (and the fact that |C| = ∆ ≥ 2), it follows directly that ΣR is as given in
the lemma, by the definition of ΣR. Hence, what remains is to show that the hyperedge constraint
ER is as given in the lemma. Let E denote the set of all configurations 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉 of labels
from ΣR such that for each color i ∈ C, there is at least one index 1 ≤ j ≤ r satisfying i /∈ Cj . We
need to show that ER = E .

We first show that E ⊆ ER. Let 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉 be an arbitrary configuration from E .
Since for each color i ∈ C, there is at least one index 1 ≤ j ≤ r satisfying i /∈ Cj (by the definition of
E), there also exists a collection C′1, . . . , C′r of subsets of C such that, for each 1 ≤ j ≤ r, we have
Cj ⊆ C′j and, for each i ∈ C, there is exactly one index 1 ≤ j ≤ r satisfying i /∈ C′j . By Corollary 4.9,
we know that (〈`(C′1)〉, . . . , 〈`(C′r)〉) ∈ 〈〈`(C1)〉〉 × · · · × 〈〈`(Cr)〉〉; since 〈`(C′1)〉 . . . 〈`(C′r)〉 ∈ ER (by
the definition of the C′j), it follows that 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉 ∈ ER, by the definition of ER. Hence,
E ⊆ ER, as desired.

Now, we show that ER ⊆ E . Let 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉 be an arbitrary configuration from
ER. By the definitions of ER and ER, we know that there is some choice (〈`(C′1)〉, . . . , 〈`(C′r)〉) ∈
〈〈`(C1)〉〉 × · · · × 〈〈`(Cr)〉〉 such that, for each color i ∈ C, there is exactly one index 1 ≤ j ≤ r
satisfying i /∈ C′j . Since, for each 1 ≤ j ≤ r, 〈`(C′j)〉 ∈ 〈〈`(Cj)〉〉 implies Cj ⊆ C′j (by Corollary 4.9), it
follows that, for each color i ∈ C, there is at least one index 1 ≤ j ≤ r satisfying i /∈ Cj . This implies
that 〈〈`(C1)〉〉 . . . 〈〈`(Cr)〉〉 ∈ E , by the definition of E . Hence, ER ⊆ E , and we obtain ER = E , as
desired.

25

4.7 Renaming

We now show that, if we rename the labels of R(R(Π)) correctly, we obtain that R(R(Π)) = Π.

Lemma 4.1. The problem R(R(Π)) is equivalent to Π.

Proof. Consider the following renaming:

〈〈`(C)〉〉 for each ∅ 6= C ⊆ C → `(C)

Observe that, under this renaming, NR becomes equal to NΠ, and ER becomes equal to EΠ.

5 Lower Bound for Hypergraph MM

In this section, we prove an Ω(min{∆r, log∆r n})-round deterministic and an Ω(min{∆r, log∆r log n})-
round randomized lower bound for the problem of computing a maximal matching on hypergraphs.

A Sequence of Problems. In order to prove a lower bound for hypergraph coloring, it was
enough to provide a single problem Π that is a relaxation of hypergraph coloring and prove that
R(R(Π)) = Π, that is, that Π is a fixed point. This approach can only work for “hard” problems,
that is, problems that cannot be solved in O(f(∆, r) + log∗ n) for any function f . Instead, for
problems solvable with this runtime, like hypergraph maximal matching, we have to follow a different
approach.

The idea is to design a sequence of problems Π0,Π1, . . . such that Π0 is essentially a relaxed
version of hypergraph MM, and any other problem Πi in the sequence is a relaxation of R(R(Πi−1)).
Roughly speaking, this implies that each problem in the sequence can be solved at least one round
faster than the previous problem—now, all we have to do is to prove that it takes Ω(∆r) steps in
the sequence to reach a 0-round solvable problem. While this is a simplified outline that disregards
certain technicalities (we, e.g., have to ensure that the sizes of the label sets of the problems in the
sequence do not grow too fast), there are known techniques in the round elimination framework
that take care of these technicalities, i.e., the real challenge lies in designing the aforementioned
sequence and proving that it satisfies the desired properties.

A Parametrized Family of Problems. In order to be able to prove these properties, it is useful
if the problems in the sequence come from some parameterized problem family. In Section 5.2, we
describe such a problem family that we will use to prove the lower bound for hypergraph MM—all
problems in the desired problem sequence will come from this family. For technical reasons, we
will assume throughout Section 5 that ∆ ≥ 3 and r ≥ 3. Note that for ∆ = 2, hypergraph MM is
essentially7 the same as MM (on graphs), while for r = 2, hypergraph MM is essentially the same as
MIS (on graphs). In particular, the lower bounds from [BBH+19] directly imply an Ω(min{r, logr n})-
round deterministic and an Ω(min{r, logr log n})-round randomized lower bound for hypergraph MM
with ∆ = 2, and an Ω(min{∆, log∆ n})-round deterministic and an Ω(min{∆, log∆ log n})-round
randomized lower bound for hypergraph MM with r = 2.8

7Note that ∆ = 2 allows for nodes of degree 1. Hence by interpreting each node in the hypergraph MM problem
as a (hyper)edge and each hyperedge as a node, in the case of ∆ = 2 we have a problem that is at least as hard as
MM on graphs. It is also easy to see that these additional hyperedges (= nodes in the hypergraph MM problem) of
rank 1 do not really make the MM problem harder as they can simply be taken care of in one round of computation
after executing a proper MM algorithm on all rank-2 hyperedges. Analogously, in the case of r = 2, hypergraph MM
formally allows hyperedges of rank 1, but these do not make the problem (asymptotically) harder as they can be
taken care of in one round of computation after executing an MIS algorithm.

8To obtain these lower bounds already on trees, we additionally require [BBKO22] for the case r = 2.

26

A Summary of our Goals. We proceed as follows. The proof presented for hypergraph coloring
can be seen as a simplified version of the proof presented in this section. Hence, we start in
Section 5.1 by highlighting the analogies, and the differences, between the hypergraph maximal
matching lower bound proof and the hypergraph coloring lower bound proof.

Then, in Section 5.2, we describe the problem family, characterized by two parameters. We
will prove that, for each problem Π in the family satisfying some conditions on these parameters,
a relaxation of R(R(Π)) is also in the family. The proof of this fact is going to be a tedious case
analysis, and we will defer it to the end of the section.

In Section 5.3, we will then show that, for certain values of the parameters, Π cannot be solved
in 0 rounds in the port numbering model. We will then put things together, by showing that we
can construct a sequence of problems Π0, . . . ,Πt, satisfying that:

• All problems are in the family and not 0-round solvable;

• Each problem Πi+1 is a relaxation of R(R(Πi));

• The length of the sequence t is in Ω(∆r);

• The first problem is a relaxation of the hypergraph MM problem.

We will then get our claimed lower bound by applying Theorem 3.4.

5.1 Analogies and Differences with the Hypergraph Coloring Lower Bound

Recap of the Coloring Relaxations. As already mentioned while discussing the hypergraph
coloring lower bound, there is some intuition on why the relaxations that we applied on hypergraph
coloring are able to give a fixed point. The idea, there, was that, by computing R(R(Π)), for Π
equal to the hypergraph coloring problem, we obtain a problem where nodes are allowed to use
multiple colors at once, and they are rewarded for using more colors. The reward is that they can
mark some amount of incident hyperedges, where the amount of marked hyperedges depends on the
amount of colors, and marked hyperedges need to satisfy more relaxed constraints. In R(R(Π))
(which we did not even present, as it would result in a very unnatural and hard to describe problem)
there are many different ways to mark the edges, that give different guarantees. In the relaxation
that we presented, we essentially relaxed the constraints so that there is a single possible way to
mark the hyperedges.

The Behavior of Hypergraph Maximal Matchng. Informally, by applying round elimination
on hypergraph maximal matching for k times, what we obtain is essentially a problem that can
be decomposed into three parts: the original problem, a hypergraph k-colorful coloring, and some
unnatural part of much larger size. This can be confirmed experimentally, but since the unnatural
part seems to have a size equal to a power tower of height k, it makes unfeasible to actually give an
explicit form of it.

Our Problem Sequence. What we would like to do, is to relax the coloring part of the problem,
in order to make the unnatural part disappear. This is essentially the approach used in [BBKO22].
Unfortunately, as explained in Section 2, if we try to do this, we cannot prevent the colors from
growing by 1 at each step, and hence, while we would like to obtain a sequence of problems of length
Ω(∆r), after only ∆ + 1 steps of round elimination we would have ∆ + 1 colors, but the fixed point
only tolerates up to ∆ colors, and in fact we would obtain a problem that is 0 round solvable.

27

Hence, this suggests that, in our problem sequence, we cannot let the colors just grow to Ω(∆r),
and that we have to keep them bounded to at most ∆ (for technical reasons, we will actually restrict
them to ∆− 1). How can we perform Ω(∆r) steps of round elimination and keep the colors bounded
to at most ∆, if at each step the obtained problem allows the node to use one additional color? The
idea is to perform simplifications that reduce the amount of colors: this seems contradictory, how
can we make the problem easier if nodes are allowed to use less colors? In order to achieve this, we
remove the colors at the cost of relaxing the requirements of the remaining colors from the point of
view of the hyperedge constraint. In particular, a problem in our family is described as a vector of
length at most ∆ − 1, where each position represents a color, and for each color we specify how
many nodes incident on the same hyperedge are allowed to use that color. The idea is that we can
get rid of a color at the cost of increasing some values in this vector.

Comparison with Hypergraph Coloring. Summarizing, in order to obtain a fixed point for
hypergraph coloring, we had to relax the problem to allow nodes to use sets of colors, and reward
nodes for using more colors by allowing nodes to mark hyperedges, such that marked hyperedges
are always happy.

In the case of hypergraph maximal matching, we do something very similar. A problem in
our family is essentially defined very similarly as hypergraph coloring, and the differences are the
following:

• We have at most ∆− 1 colors;

• We also allow the original configurations allowed by hypergraph maximal matching;

• There is a vector describing how hard it is to use a color on a hyperedge.

Unfortunately, since now the labels of the coloring part and the matching part can mix in the
allowed configurations in nontrivial ways, it is not possible to give proper intuition behind some
configurations allowed by the hyperedge constraint.

What we are going to prove is that if we take a problem Π in this family, we get that R(R(Π))
can be relaxed to a different problem of the family, where some values in the vector increase. For
technical reasons, this is not the full description of the problems in our family: in the problem
sequence that we define, at each step, we have to take one of the ∆− 1 colors and treat it differently
(and the unfamiliar configuration D∆−1X present in the node constraint presented later is related to
it).

5.2 The Problem Family

Each problem Π(z, s) in the family is characterized by two parameters z, s, where z = (z1, . . . , zk) is
a vector of 2 ≤ k ≤ ∆− 1 nonnegative integers zi ≤ r − 1 and s ∈ {1, . . . , k}. We call k the length
of z, denoted by len(z). Intuitively, some labels of Π(z, s) can be seen as sets of colors, and the
length of z tells us the number of colors, and for each color i, parameter zi describes how often i (or
a color set containing i) can appear in the same hyperedge configuration. Parameter s singles out
one of the len(z) colors that behaves a bit differently than the other colors. In the following, we
describe Π(z, s) formally.

The Label Set. To describe the space of colors discussed above, define C(z) := {1, . . . , len(z)}.
The set Σ(z, s) of output labels of Π(z, s) is given by Σ(z, s) = {D,M,P,U,X}∪{`(C) | ∅ 6= C ⊆ C(z)}
(where we use the expression `(C) instead of C to clearly distinguish between color sets and labels).

28

The Node Constraint. We denote the node constraint of Π(z, s) by N (z, s). It is given by the
following configurations.

• M∆

• PU∆−1

• D∆−1X

• `(C)∆−|C|+1U|C|−1 for each ∅ 6= C ⊆ C(z)

The Hyperedge Constraint. We denote the hyperedge constraint of Π(z, s) by E(z, s). It is
given by all configurations L1 . . . Lr satisfying at least one of the following three conditions.

1. There is some index 1 ≤ j ≤ r such that Lj = M and Lj′ /∈ {D,M} for each j′ 6= j.

2. There are two distinct indices j, j′ ∈ {1, . . . , r} such that Lj = X, Lj′ is arbitrary, and
Lj′′ /∈ {D,M} for each j′′ ∈ {1, . . . , r} \ {j, j′}.

3. All of the following properties hold.

(a) Lj 6= P for each 1 ≤ j ≤ r.
(b) There is at most one index j ∈ {1, . . . , r} such that Lj ∈ {D,M}.
(c) There are at most zs indices j ∈ {1, . . . , r} such that Lj = D or Lj = `(C) for some color

set C containing color s.

(d) For each i ∈ C(z) satisfying i 6= s, there are at most zi indices j ∈ {1, . . . , r} such that
Lj = `(C) for some color set C containing color i.

The Relation between the Problems. We will prove that the problems in the defined family
are related in the following way.

Lemma 5.1. Let z = (z1, . . . , zk) be a vector of 2 ≤ k ≤ ∆− 1 nonnegative integers zi ≤ r − 1 and
let s ∈ {1, . . . , k}. Let q be an integer satisfying q 6= s, q ∈ {1, . . . , k}, and zq ≤ r − 2. Then, the
problem R(R(Π(z, s))) can be relaxed to Π(z′, q), for z′ = (z′1, . . . , z

′
k), where k = len(z), z′i = zi + 1

if i = q, and z′i = zi otherwise.

Since the proof of this statement is a tedious case analysis, we defer its proof to the end of the
section. We now use this statement to derive our lower bounds.

5.3 Proving the Lower Bounds

In this section, we prove our lower bounds. We start by showing that all problems in our problem
family cannot be solved in 0 rounds in the port numbering model.

Lemma 5.2. Let z = (z1, . . . , zk) be a vector of 2 ≤ k ≤ ∆ − 1 nonnegative integers zi ≤ r − 1,
and let s ∈ {1, . . . , k}. The problem Π(z, s) cannot be solved in 0 rounds in the deterministic port
numbering model.

Proof. All nodes that run a 0-round algorithm have the same view (they just know their degree, the
size of the graph, and the parameters ∆ and r). Hence, any deterministic 0-round algorithm uses
the same configuration in N (z, s) on all nodes. Thus, in order to prove the statement, we consider
all possible configurations and we show that they cannot be properly used in a 0-round algorithm.

29

• M∆: consider r nodes connected to the same hyperedge. They would all output M on such
hyperedge, that would hence have the configuration Mr 6∈ E(z, s).

• PU∆−1: since the algorithm is deterministic, then all nodes must output P on the same port.
W.l.o.g., let this port be the port number 1. If we connect the port 1 of r nodes to the same
hyperedge, then the hyperedge would have the configuration Pr 6∈ E(z, s).

• D∆−1X: as before, we can obtain a hyperedge labeled with the configuration Dr 6∈ E(z, s).

• `(C)∆−|C|+1U|C|−1 for each ∅ 6= C ⊆ C(z): since |C| ≤ ∆− 1, then this configuration contains
`(C) at least twice. Hence, we can obtain a hyperedge labeled with the configuration `(C)r,
which is not in E(z, s) by the assumption that zi ≤ r − 1 for all i ∈ C.

We are now ready to prove our main result of this section.

Theorem 1.1. Assume that ∆ ≥ 2 and r ≥ 2. Then any deterministic distributed algorithm in the
LOCAL model for computing a maximal matching in hypergraphs with maximum degree ∆, rank
r, and n nodes requires Ω

(
min

{
∆r, log∆r n

})
rounds.9 Any randomized such algorithm requires

at least Ω
(

min
{

∆r, log∆r log n
})

rounds. Moreover, our lower bounds hold already on ∆-regular
r-uniform linear hypertrees.

Proof. We show that we can build a problem sequence satisfying Theorem 3.4, such that the
asymptotic complexity of Π0 is not higher than the one of the hypergraph maximal matching
problem.

Consider a problem sequence Π0,Π1, . . . ,Π(∆−1)(r−2) such that Π0 = Π((1, 1, . . . , 1),∆ − 1),
Π(∆−1)(r−2) = Π((r − 1, r − 1, . . . , r − 1),∆ − 1), and for any two subsequent problems Πj ,Πj+1,
there exist vectors z, z′ of length ∆− 1 and colors s, s′ ∈ {1, . . . ,∆− 1} such that

• Πj = Π(z, s) and Πj+1 = Π(z′, s′),

• s 6= s′,

• z′s′ = zs′ + 1, and

• z′i = zi for all 1 ≤ i ≤ ∆− 1 satisfying i 6= s′.

Clearly, such a problem sequence exists as we can go from the length-(∆− 1) vector (1, 1, . . . , 1)
to the length-(∆− 1) vector (r − 1, r − 1, . . . , r − 1) in (∆− 1)(r − 2) steps of increasing a single
entry (that is a different entry than in the previous step) by 1 (such that we choose to increase the
(∆− 1)th entry in the last but not the first step).

Observe that, each problem of the sequence is not 0-round solvable in the port numbering model
by Lemma 5.2. Also, the number of labels of each problem is bounded by 2O(∆r). Also, by Lemma 5.1,
each problem Πi+1 is a relaxation of R(R(Πi)), and also the intermediate problem, R(Πi), has a
number of labels bounded by 2O(∆r). Hence, Theorem 3.4 applies, and since log∆r log f(∆r) = O(1),
we obtain a lower bound for Π0 of Ω(min{∆ · r, log∆r n}) in the LOCAL model for deterministic
algorithms, and Ω(min{∆ · r, log∆r log n}) for randomized ones.

9As lower bounds in several parameters are sometimes difficult to understand, we would also like to provide, as an
example, the exact quantification of this statement, which is as follows: There is a constant c such that, for any ∆ ≥ 2
and r ≥ 2, and any deterministic algorithm A, there are infinitely many hypergraphs with maximum degree ∆, rank r,
and n nodes on which A has a runtime of at least c

(
min

{
∆r, log∆r n

})
rounds.

30

We now prove that, given an algorithm A with complexity T for solving hypergraph maximal
matching, we can turn it into an algorithm with complexity O(T) for solving Π0, implying the
claim. In order to solve Π0 on some hypergraph H, we start by simulating A in the hypergraph
H ′ obtained by reversing the role of nodes and hyperedges of H. This can be performed in O(T)
rounds. Then, given a solution for the hypergraph maximal matching problem on H ′, we solve Π0

as follows:

• Nodes of H (that is, hyperedges of H ′) that are in the matching, output M∆.

• Each node v not in the matching must have at least one neighboring hyperedge h that is
incident to some other node u in the matching. Node v outputs P on h and U on all the other
incident hyperedges.

Observe that, on the nodes, we only use configurations M∆ and PU∆−1, which are allowed by Π0.
Then, on each hyperedge, we obtain that there is at most one M, and that a P is present only if
there is also an M, while all the other labels are U. Hence, also on the hyperedges we obtain only
configurations allowed by Π0.

5.4 Relations Between Labels

In the rest of the section we prove Lemma 5.1. We start by proving a relation between the labels.
From the description of the hyperedge constraint, we can extract the strength relations w.r.t.
E(z, s) by simply checking for any two labels L, L′ ∈ Σ(z, s) whether every hyperedge configuration
containing L remains a configuration in E(z, s) if we replace L by L′. An example is shown in
Figure 2.

12

123

1

13

U

2

3

23

X

MD
P

Figure 2: The edge diagram of the problems in the family satisfying s = 2 and len(z) = 3. Numbers
correspond to color sets, and `(·) is omitted for clarity.

Lemma 5.3. The following collection lists all strength relations (according to E(z, s)) between
distinct labels in Σ(z, s).

• P < `(C) for each ∅ 6= C ⊆ C(z)

• P < U

• `(C) < `(C′) for any two C, C′ ∈ 2C(z) \ {∅} satisfying C′ (C

• `(C) < U for each ∅ 6= C ⊆ C(z)

• D < M

• D < `({s})

31

• D < U

• L < X for each L ∈ Σ(z, s) \ {X}

Proof. We start by comparing the strength of X with the strength of all other labels. The definition of
E(z, s) implies that in any configuration L1 . . . Lr ∈ E(z, s) there is at most one Lj with Lj ∈ {D,M}.
Hence, replacing an arbitrary Lj′ with X will yield a configuration from E(z, s), by Condition 2, and
we obtain L ≤ X for each L ∈ Σ(z, s) \ {X}. To show that X � L for each L ∈ Σ(z, s) \ {X}, it suffices
to observe that XMPr−2 ∈ E(z, s), which implies X � M (as replacing X with M does not yield a
configuration from E(z, s)), and XPr−1 ∈ E(z, s), which implies X � L for each L ∈ Σ(z, s) \ {M,X}.

Next, we compare the strength of P with the strength of the labels from Σ(z, s) \ {P,X}. From
the definition of E(z, s), we can see that the only configurations containing P are of the form
PML1 . . . Lr−2 or PXL1 . . . Lr−2 where, in the former case, Lj /∈ {D,M} for each 1 ≤ j ≤ r − 2, and,
in the latter case, Lj /∈ {D,M} for each 2 ≤ j ≤ r−2. In either case, replacing P with some arbitrary
label from Σ(z, s) \ {D,M} yields a configuration contained in E(z, s), by Conditions 1 and 2. It
follows that P ≤ L for each L ∈ Σ(z, s)\{D,M}. Moreover, the configuration MPr−1 ∈ E(z, s) certifies
that P � D and P � M since neither of the two configurations MDPr−2 and M2Pr−2 is contained
in E(z, s), by Conditions 1, 2 and 3b. In order to show that L � P for each L ∈ Σ(z, s) \ {P,X},
it suffices to observe that LUr−1 ∈ E(z, s) for each L ∈ Σ(z, s) \ {P,X} (by Condition 3), while
PUr−1 /∈ E(z, s) (by Conditions 1, 2 and 3a).

We continue by comparing the strength of D and the strength of M with each other and with the
strength of the labels from Σ(z, s) \ {D,M,P,X}. As already observed above, in any configuration
L1 . . . Lr ∈ E(z, s) there is at most one Lj with Lj ∈ {D,M}. Hence, we obtain DMUr−2 /∈ E(z, s)
and M2Ur−2 /∈ E(z, s). Since, by Condition 1, LMUr−2 ∈ E(z, s) for each L ∈ Σ(z, s) \ {D,M}, it
follows that L � L′ for each L ∈ Σ(z, s) \ {D,M} and L′ ∈ {D,M}. Moreover, since MPr−1 ∈ E(z, s)
by Condition 1, but LPr−1 /∈ E(z, s) for each L ∈ Σ(z, s) \ {M,P,X} by Conditions 1, 2 and 3a, we
obtain M � L for each L ∈ Σ(z, s) \ {M,P,X}.

To show that D � L for each L ∈ Σ(z, s) \ {D,M,P,U,X, `({s})}, assume that Σ(z, s) \
{D,M,P,U,X, `({s})} 6= ∅ (otherwise we are done) and consider some arbitrary L ∈ Σ(z, s) \
{D,M,P,U,X, `({s})}. By the definition of Σ(z, s), it follows that L = `(C) for some C ∈
2C(z) \ {∅, {s}}. Hence, there exists some i ∈ C(z) satisfying i 6= s such that i ∈ C; consider
such an i. Consider the configuration D`({i})ziUr−zi−1 (which is well-defined as the definition of
problem Π(z, s) specifies that zi ≤ r − 1). By Condition 3, it is contained in E(z, s) whereas the
configuration `(C)`({i})ziUr−zi−1 is not contained in E(z, s), by Conditions 1, 2 and 3d. Therefore,
D � `(C), and we obtain that D � L for each L ∈ Σ(z, s) \ {D,M,P,U,X, `({s})}.

To show that D ≤ L for each L ∈ {M,U, `({s})}, it suffices to observe that if some configuration
L1 . . . Lr that contains D satisfies one of the six conditions (1, 2, 3a, 3b, 3c, 3d), then the same
configuration where D is replaced by L satisfies the same condition, for each L ∈ {M,U, `({s})}.

It remains to compare the strength of the labels in Σ(z, s) \ {D,M,P,U,X} with each other and
with the strength of U. Similarly to before, it is straightforward to check that if some configuration
L1 . . . Lr that contains some label `(C) satisfies one of the six conditions (1, 2, 3a, 3b, 3c, 3d), then
the same configuration where C is replaced by U satisfies the same condition (irrespective of the
choice of C). Hence, L ≤ U for each L ∈ Σ(z, s) \ {D,M,P,U,X}.

In order to show that U � L for each L ∈ Σ(z, s) \ {D,M,P,U,X}, consider an arbitrary label
L ∈ Σ(z, s) \ {D,M,P,U,X}. By the definition of Σ(z, s), we have L = `(C) for some ∅ 6= C ⊆ C(z).
Let i be some arbitrary color in C, and consider the configuration `({i})ziUr−zi (which contains at
least one U since zi ≤ r − 1). By Condition 3, this configuration is contained in E(z, s) whereas the
configuration `(C)`({i})ziUr−zi−1 (obtained by replacing one U by `(C)) is not contained in E(z, s),

32

by Conditions 1, 2 and one of 3c, 3d (depending on whether i = s or i 6= s). Hence, U � L for each
L ∈ Σ(z, s) \ {D,M,P,U,X}.

Finally, consider two distinct labels L, L′ ∈ Σ(z, s) \ {D,M,P,U,X}. As above, we know that
L = `(C) and L′ = `(C′) for some C, C′ ∈ 2C(z) \ {∅} satisfying C 6= C′. Consider first the case
that C * C′, which implies that there exists some color i ∈ C \ C′. Similarly to before, we can
observe that `(C′)`({i})ziUr−zi−1 ∈ E(z, s) by Condition 3 and the fact that i /∈ C′, whereas
`(C)`({i})ziUr−zi−1 /∈ E(z, s) by Condition 3c or 3d (depending on whether i = s or i 6= s). Hence,
`(C′) � `(C).

Now, consider the other case, namely that C (C′. Again, we observe that if some configuration
L1 . . . Lr that contains C′ satisfies one of the six conditions (1, 2, 3a, 3b, 3c, 3d), then the same
configuration where the C′ is replaced by C satisfies the same condition. Thus, `(C′) ≤ `(C). By
symmetry, we obtain `(C) � `(C′) if C′ * C, and `(C) ≤ `(C′) if C′ (C.

The above discussion shows that the strength relations according to E(z, s) are exactly those
listed in the lemma.

Using Lemma 5.3 we can compute the set 〈L〉 for each label L ∈ Σ(z, s).

Corollary 5.4. We have

• 〈X〉 = {X},

• 〈M〉 = {M,X},

• 〈U〉 = {U,X},

• 〈D〉 = {D,M,U,X, `({s})},

• 〈P〉 = {P,U,X} ∪ {`(C) | ∅ 6= C ⊆ C(z)}, and

• 〈`(C)〉 = {U,X} ∪ {`(C′) | ∅ 6= C′ ⊆ C} for each ∅ 6= C ⊆ C(z).

5.5 Computing R(Π(z, s))

After defining our problem family and collecting some basic facts about it, the next step is to
examine how the problems from this family behave under applying R(·). Specifically, in Lemma 5.5,
we compute R(Π(z, s)). To this end, for any L ∈ Σ(z, s) \ {D,M}, define

〈L〉′ :=

{
〈L,D〉 if L ≤ `({s}),
〈L,M〉 if L � `({s}).

Lemma 5.5. The set ΣR of output labels of R(Π(z, s)) is given by

{〈L〉, 〈L〉′ | L ∈ Σ(z, s) \ {D,M}}.

Moreover, 〈L〉 6= 〈L′〉′ for any L, L′ ∈ Σ(z, s) \ {D,M}.
The hyperedge constraint ER of R(Π(z, s)) consists of all configurations 〈L1〉′〈L2〉〈L3〉 . . . 〈Lr〉

satisfying Lj ∈ Σ(z, s) \ {D,M} for all 1 ≤ j ≤ r and at least one of the following two conditions.

1. There exists some index 1 ≤ j ≤ r such that Lj = X and Lj′ = P for each j′ 6= j.

2. Both of the following properties hold.

(a) Lj /∈ {P,X} for each 1 ≤ j ≤ r.

33

(b) For each i ∈ C(z), there are exactly zi indices j ∈ {1, . . . , r} such that Lj = `(C) for some
color set C containing color i.

The node constraint NR of R(Π(z, s)) consists of all configurations B1 . . . B∆ of labels from {〈L〉, 〈L〉′ |
L ∈ Σ(z, s) \ {D,M}} such that there exists a choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆ satisfying
A1 . . . A∆ ∈ N (z, s).

Proof. Let E denote the set of all configurations 〈L1〉′〈L2〉〈L3〉 . . . 〈Lr〉 with labels from Σ(z, s)\{D,M}
that satisfy the two conditions given in the lemma. Recall Definition 3.2. We start by showing that
the hyperedge constraint ER of R(Π(z, s)) is equal to E . To this end, by the definition of ER, it
suffices to show that the following three conditions hold.

(Z1) For each configuration B1 . . . Br ∈ E and each choice (A1, . . . ,Ar) ∈ B1 × · · · × Br, we have
A1 . . . Ar ∈ E(z, s).

(Z2) For each configuration B1 . . . Br with labels from 2Σ(z,s) \ {∅} that cannot be relaxed to any
configuration from E , there exists a choice (A1, . . . ,Ar) ∈ B1 × · · · × Br satisfying A1 . . . Ar /∈
E(z, s).

(Z3) If some configuration B1 . . . Br ∈ E can be relaxed to some configuration B1 . . . Br ∈ E , then
B1 . . . Br and B1 . . . Br are identical (up to permutation).

We first show that (Z1) holds. Consider an arbitrary configuration Y = 〈L1〉′〈L2〉〈L3〉 . . . 〈Lr〉
from E . If Y satisfies Condition 1 in Lemma 5.5, then Y = 〈X,M〉〈P〉r−1 = 〈M〉〈P〉r−1 or Y =
〈P,D〉〈X〉〈P〉r−2 (where we use10 Corollary 5.4 and the fact that X � `({s}) and P ≤ `({s}), by
Lemma 5.3). By the definition of 〈·〉, it follows that Y can be obtained from at least one member of
{MPr−1,XPr−1,DXPr−2} by repeatedly choosing some label in the configuration and replacing it
by a stronger one. Since, by Conditions 1 and 2 in the definition of E(z, s), we know that MPr−1,
XPr−1 and DXPr−2 are all contained in E(z, s), we can conclude, by the definition of strength, that
(Z1) is satisfied for each configuration Y satisfying Condition 1 in Lemma 5.5.

If, on the other hand, Y satisfies Condition 2 in Lemma 5.5, then, in order to show that (Z1)
holds, it suffices to show that DL2 . . . Lr ∈ E(z, s) if L1 ≤ `({s}), ML2 . . . Lr ∈ E(z, s) if L1 � `({s}),
and L1 . . . Lr ∈ E(z, s), by the same argumentation as in the previous case. Each of these three
configurations (under the respective condition) satisfies Conditions 3a, 3b, and 3d in the definition
of E(z, s), by Condition 2a in Lemma 5.5, the fact that Lj ∈ Σ(z, s) \ {D,M} for all 2 ≤ j ≤ r, and
Condition 2b in Lemma 5.5, respectively. Moreover, we claim that it follows from Condition 2b
(and Condition 2a) in Lemma 5.5 that each of these three configurations (under the respective
condition) satisfies also Condition 3c in the definition of E(z, s). For ML2 . . . Lr and L1 . . . Lr this is
immediate; for DL2 . . . Lr under the condition L1 ≤ `({s}), the argumentation is a bit more involved:
Observe that L1 ≤ `({s}), together with Condition 2a and Lemma 5.3, implies that L1 = `(C) for
some C containing color s. By Condition 2b in Lemma 5.5, it follows that there are exactly zs − 1
indices j ∈ {2, . . . , r} such that Lj = `(C′) for some C′ containing color s, which in turn implies
that DL2 . . . Lr satisfies Condition 3c in the definition of E(z, s), proving the claim. Hence, all of
DL2 . . . Lr, ML2 . . . Lr, and L1 . . . Lr (under the mentioned respective conditions) satisfy Condition 3
in the definition of E(z, s), which implies that they are contained in E(z, s). As shown, (Z1) follows.

Next, we prove (Z2). Let Y = B1 . . . Br be a configuration with labels from 2Σ(z,s) \ {∅} that
cannot be relaxed to any configuration from E . For a contradiction, assume that (Z2) does not hold,
which implies that for each choice (A1, . . . ,Ar) ∈ B1 × · · · × Br we have A1 . . . Ar ∈ E(z, s). Observe

10Recall also that all permutations of a configuration are considered to be the same configuration since, formally,
they are multisets.

34

that adding to some set Bj all labels L ∈ Σ(z, s) \ Bj that satisfy L′ ≤ L for some L′ ∈ Bj does not
change whether there exists a choice (A1, . . . ,Ar) ∈ B1 × · · · × Br satisfying A1 . . . Ar /∈ E(z, s), by
the definition of strength. As adding labels to the sets Bj also cannot make Y relaxable to some
configuration it could not be relaxed to before the addition, we can (and will) therefore assume that
Bj is right-closed for each 1 ≤ j ≤ r. We will now collect some properties of Y that we derive from
the above knowledge and assumptions regarding Y .

From the definition of E(z, s) and the assumption that each choice (A1, . . . ,Ar) ∈ B1 × · · · × Br
satisfies A1 . . . Ar ∈ E(z, s), it follows directly that there is at most one index 1 ≤ j ≤ r such that
M ∈ Bj . W.l.o.g., let 1 be this index (if it exists), i.e., we have

M /∈ Bj for all 2 ≤ j ≤ r, (1)

which, by Corollary 5.4 and the right-closedness of the Bj , implies

Bj ⊆ 〈P〉 for all 2 ≤ j ≤ r. (2)

Now, consider the configuration 〈M〉〈P〉r−1 = 〈X,M〉〈P〉r−1 = 〈X〉′〈P〉r−1, which is contained in E ,
by Condition 1 in Lemma 5.5. Since Y cannot be relaxed to any configuration from E , we obtain
B1 * 〈M〉, by (2).

Moreover, if Bj = 〈X〉 for some 2 ≤ j ≤ r, then Bj ⊆ 〈X〉, which, combined with B1 ⊆ Σ(z, s) =
〈P〉′ (which follows from Lemma 5.3 and Corollary 5.4) and Bj′ ⊆ 〈P〉 for all j′ ∈ {2, . . . , r} \ {j}
(which follows from (2)), would imply that Y can be relaxed to 〈P〉′〈X〉〈P〉r−2 ∈ E , yielding a
contradiction. Hence, Bj 6= 〈X〉 for all 2 ≤ j ≤ r, which, together with (1), Corollary 5.4, and the
already established fact that B1 * 〈M〉, implies

Bj * {M,X} for all 1 ≤ j ≤ r. (3)

It follows that if P ∈ Bj for some 1 ≤ j ≤ r, then there exists a choice (A1, . . . ,Ar) ∈ B1 × · · · × Br
such that Aj = P and Aj′ /∈ {M,X} for all j′ 6= j, which would imply that A1 . . . Ar /∈ E(z, s) (by
Conditions 1, 2 and 3a in the definition of E(z, s)), yielding a contradiction. Hence,

P /∈ Bj for all 1 ≤ j ≤ r. (4)

While, so far, we only made use of Conditions 1, 2 and 3a in the definition of E(z, s) and the fact
that Y cannot be relaxed to any configuration satisfying Condition 1 in Lemma 5.5, we will now
also take advantage of the other conditions in the definition of E(z, s) and Lemma 5.5.

For each 1 ≤ j ≤ r let Sj be the set of all colors i ∈ C(z) satisfying `({i}) ∈ Bj . We claim that

for each i ∈ C(z) there are at most zi indices j ∈ {1, . . . , r} such that i ∈ Sj . (5)

If this was not true for some i ∈ C(z), then, by (3) and the definition of the Sj , it would be possible
to pick one label from each Bj such that the resulting configuration is `({i})zi+1Lzi+2 . . . Lr where
Lj′ /∈ {M,X} for each zi + 2 ≤ j′ ≤ r. By Conditions 1, 2, 3c and 3d in the definition of E(z, s),
this configuration is not contained in E(z, s), yielding a contradiction and proving the claim.

Consider Bj for some arbitrary index 2 ≤ j ≤ r. By the right-closedness of Bj , Corollary 5.4,
and the definition of Sj , we know that `(C) /∈ Bj for each C * Sj . By (2), (4) and Corollary 5.4, it
follows that

Bj ⊆ 〈`(Sj)〉 for all 2 ≤ j ≤ r, (6)

where we set `(∅) := U. Now consider B1. Using an analogous argumentation we obtain that
`(C) /∈ B1 for each C * S1 and, if s /∈ S1, additionally that D /∈ B1. By (4), Corollary 5.4, and the
observation that s /∈ S1 if and only if `(S1) � `({s}), it follows that

B1 ⊆ 〈`(S1)〉′. (7)

35

Let S′1, . . . , S
′
r be a collection of subsets of C(z) such that Sj ⊆ S′j for all 1 ≤ j ≤ r and

for each i ∈ C(z) there are exactly zi indices j ∈ {1, . . . , r} such that i ∈ S′j . Such a collection
exists by (5) and the fact that zi ≤ r − 1. By Corollary 5.4 and the fact that Sj ⊆ S′j for
each 1 ≤ j ≤ r, we know that 〈`(Sj)〉 ⊆ 〈`(S′j)〉 and 〈`(Sj)〉′ ⊆ 〈`(S′j)〉′, for each 1 ≤ j ≤ r.
By (6) and (7), it follows that B1 ⊆ 〈`(S′1)〉′ and Bj ⊆ 〈`(S′j)〉 for each 2 ≤ j ≤ r, which in
turn implies that Y can be relaxed to the configuration 〈`(S′1)〉′〈`(S′2)〉〈`(S′3)〉 . . . 〈`(S′r)〉. As
i ∈ S′j if and only if `(S′j) = `(C) for some color set C containing color i, the definition of the
S′j implies that 〈`(S′1)〉′〈`(S′2)〉〈`(S′3)〉 . . . 〈`(S′r)〉 satisfies Condition 2 in Lemma 5.5. Since also
`(S′j) ∈ Σ(z, s) \ {D,M}, we obtain 〈`(S′1)〉′〈`(S′2)〉〈`(S′3)〉 . . . 〈`(S′r)〉 ∈ ER, yielding a contradiction
to the fact that Y cannot be relaxed to any configuration from E . Hence, (Z2) follows.

Now, we prove (Z3). For a contradiction, assume that (Z3) does not hold. Then, there exist two
configurations Y = B1 . . . Br ∈ E and Y = B1 . . . Br ∈ E such that Bj ⊆ Bj for each 1 ≤ j ≤ r and
there exists some index j satisfying Bj (Bj . W.l.o.g., assume that 1 is such an index, i.e., we have
B1 (B1. Observe that B1 is right-closed, by the definition of E .

Consider first the case that Y satisfies Condition 1 in Lemma 5.5. Since 〈P〉 and 〈P〉′ both
contain P, and P /∈ 〈L〉 as well as P /∈ 〈L〉′ for each L ∈ Σ(z, s) \ {P}, it follows that also Y satisfies
Condition 1, by Condition 2a. Observe further that 〈X〉 (〈X〉′ (〈P〉′, 〈X〉 (〈P〉 (〈P〉′, 〈P〉 * 〈X〉′,
and 〈X〉′ * 〈P〉, by Corollary 5.4. Hence, it holds for all 1 ≤ j ≤ r that if Bj ∈ {〈P〉, 〈P〉′}, then
Bj ∈ {〈P〉, 〈P〉′}, and if Bj ∈ {〈X〉′, 〈P〉′}, then Bj ∈ {〈X〉′, 〈P〉′}. As, by Condition 1, both Y and Y
contain some element from {〈X〉′, 〈P〉′} in exactly one position and some element from {〈P〉, 〈P〉′}
in exactly r − 1 positions, it follows that Bj = Bj for each 1 ≤ j ≤ r, yielding a contradiction to
B1 (B1.

Consider now the other case, namely that Y satisfies Condition 2 in Lemma 5.5. We start by
observing that sets of the form 〈L〉 for some L ∈ Σ(z, s) \ {D,M} do not contain the label M whereas
sets of the form 〈L〉′ for some L ∈ Σ(z, s) \ {D,M} contain the label M. In particular, Y and Y
contain a set of the form 〈L〉′ for some L ∈ Σ(z, s) \ {D,M} in exactly one position, and the index
specifying the position is the same for Y and Y .

For each 1 ≤ j ≤ r, let Lj ∈ Σ(z, s) be the (unique) label satisfying Bj = 〈Lj〉 or Bj = 〈Lj〉′, and
Lj ∈ Σ(z, s) the (unique) label satisfying Bj = 〈Lj〉 or Bj = 〈Lj〉′. Since B1 (B1, we have L1 < L1,
by Lemma 5.3, Corollary 5.4 and the definition of 〈·〉′. Analogously, from Bj ⊆ Bj we obtain Lj ≤ Lj
for each 2 ≤ j ≤ r. Observe that Y cannot satisfy Condition 1 in Lemma 5.5 as otherwise 〈X〉 or
〈X〉′ is contained in Y whereas no subset of 〈X〉 or 〈X〉′ is contained in Y (by Condition 2a and
Corollary 5.4). Hence, also Y satisfies Condition 2. From Condition 2a it follows that both L1 and
L1 are contained in Σ(z, s) \ {D,M,P,X}, which, together with L1 < L1 and Lemma 5.3, implies
that L1 = `(C) for some ∅ 6= C ⊆ C(z) while L1 = U or L1 = `(C) for some ∅ 6= C (C. In particular,
there is some color i ∈ C such that there is no C′ ⊆ C(z) containing i and satisfying L1 = `(C′).
Moreover, for each index 2 ≤ j ≤ r such that Lj = `(Cj) for some color set Cj containing color i, we
also have that Lj = `(Cj) for some color set Cj containing color i, by Lj ≤ Lj , Lemma 5.3, and the
fact that Lj and Lj are contained in Σ(z, s) \ {D,M,P,X}. It follows that the number of indices
1 ≤ j ≤ r such that Lj = `(Cj) for some color set Cj containing color i is strictly larger than the
number of indices 1 ≤ j′ ≤ r such that Lj′ = `(Cj′) for some color set Cj′ containing color i. This
yields a contradiction to Condition 2b and proves that (Z3) holds. It follows that ER = E , i.e., ER is
indeed as specified in the lemma.

The set ΣR of output labels of R(Π(z, s)) is precisely the set of all labels appearing in at least one
configuration in ER. From Condition 1 in Lemma 5.5, it follows that {〈L〉, 〈L〉′ | L ∈ {P,X}} ⊆ ΣR.
Now, consider some (not necessarily nonempty) arbitrary color set C ⊆ C(z) and, for each color
i ∈ C(z), define z′i := zi − 1 if i ∈ C, and z′i := zi if i /∈ C. Consider the configuration Y =
〈`(C1)〉′〈`(C2)〉〈`(C3)〉 . . . 〈`(Cr−1)〉〈`(C)〉 defined by Cj := {i ∈ C(z) | j ≤ z′i} for each 1 ≤ j ≤ r − 1,

36

where we set `(∅) := U. By construction (and the fact that zi ≤ r−1 for each i ∈ C(z)), configuration
Y satisfies Condition 2, which implies that {〈L〉, 〈L〉′ | L ∈ Σ(z, s) \ {D,M,P,X}}. It follows that ΣR
is as specified in the lemma. The claimed property that 〈L〉 6= 〈L′〉′ for any L, L′ ∈ Σ(z, s) \ {D,M}
follows from the fact that 〈L′〉′ contains M for any L′ ∈ Σ(z, s) \ {D,M} while 〈L〉 does not contain
M for any L ∈ Σ(z, s) \ {D,M}, by Lemma 5.3.

The provided characterization of NR directly follows from the definition of R(·).

Set Σ0
R := {〈L〉 | L ∈ Σ(z, s) \ {D,M}} and Σ1

R := {〈L〉′ | L ∈ Σ(z, s) \ {D,M}}. By Lemma 5.5,
it follows that Σ0

R and Σ1
R are disjoint and Σ0

R ∪ Σ1
R = ΣR.

Similar to before, it will be useful to collect information about the strength of the labels in ΣR
and compute the right-closed subsets generated by each label. We will do so in the following with
Lemma 5.6 and Corollary 5.7, which are analogues of Lemma 5.3 and Corollary 5.4 for R(Π(z, s))
instead of Π(z, s).

⟨2⟩́

⟨23⟩́

⟨U⟩́

⟨3⟩́

⟨1⟩́

⟨12⟩́

⟨13⟩́

⟨123⟩́

⟨2⟩

⟨23⟩

⟨U⟩

⟨3⟩

⟨1⟩

⟨12⟩

⟨13⟩

⟨123⟩

⟨X⟩́

⟨X⟩

⟨P⟩́

⟨P⟩

Figure 3: The node diagram of R(Π(z, s)) for len(z) = 3. Numbers correspond to color sets, and
`(·) is omitted for clarity.

Lemma 5.6. For any f(·), f(·) ∈ {〈·〉, 〈·〉′} and any L, L ∈ Σ(z, s) \ {D,M}, we have f(L) ≤ f(L) if
and only if the following two conditions are satisfied.

1. f(·) = 〈·〉 or f(·) = 〈·〉′ (or both).

2. At least one of the following conditions holds.

(a) L = X

(b) L = P

(c) L = U and L 6= X

(d) L = `(C) and L = `(C) for some C, C ∈ 2C(z) \ {∅} satisfying C ⊆ C

Moreover, two labels from ΣR are equally strong if and only if they are identical.

37

Proof. Observe that, by the definition of NR, it holds for any B,B ∈ ΣR with B ⊆ B that for any
configuration BB2 . . . B∆ ∈ NR, we also have BB2 . . . B∆ ∈ NR. Hence, for any B,B ∈ ΣR with
B ⊆ B we have B ≤ B, by the definition of strength. By Corollary 5.4, it follows that 〈L〉 ≤ 〈L〉
for any L, L satisfying Condition 2 in the lemma. Moreover, since 〈L〉′ ∈ {〈L〉 ∪ {M}, 〈L〉 ∪ {D,M}}
for any L ∈ Σ(z, s) \ {D,M}, we also obtain that 〈L〉 ≤ 〈L〉′ for any L, L satisfying Condition 2.
Furthermore, note that for any L, L ∈ Σ(z, s) \ {D,M}, it holds that if 〈L〉′ = 〈L〉 ∪ {D,M} and
〈L〉′ = 〈L〉 ∪ {M}, then L ≤ `({s}) and L � `({s}) (by the definition of 〈·〉′), which implies 〈L〉 * 〈L〉
(by the definition of 〈·〉). Since, by Corollary 5.4, any L, L satisfying Condition 2 satisfy 〈L〉 ≤ 〈L〉,
we also obtain that 〈L〉′ ≤ 〈L〉′ for any L, L satisfying Condition 2, analogously to above. Hence, we
conclude that if Conditions 1 and 2 hold, then we have f(L) ≤ f(L), as desired. What remains is to
show that f(L) ≤ f(L) does not hold if at least one of the two conditions is violated.

Consider first the case that Condition 1 is violated, i.e., consider 〈L〉′, 〈L〉 for some arbitrary
L, L ∈ \{D,M}. We need to show that 〈L〉′ � 〈L〉. Consider the configuration 〈L〉′ (〈X〉′)∆−1.
Since M∆ ∈ N (z, s) and, by the definition of 〈·〉′, we have M ∈ 〈L〉′ and M ∈ 〈X〉′, it holds
that 〈L〉′ (〈X〉′)∆−1 ∈ NR, by the definition of NR. Now, consider the configuration 〈L〉 (〈X〉′)∆−1

obtained from the above configuration by replacing 〈L〉′ by 〈L〉. Observe that we have 〈X〉 = {M,X}
and the only configurations in N (z, s) containing M or X are M∆ and D∆−1X. Since, by Corollary 5.4,
neither M nor D is contained in 〈L〉, it follows that 〈L〉 (〈X〉′)∆−1 /∈ NR, by the definition of NR. By
the definition of strength, it follows that 〈L〉′ � 〈L〉, as desired.

Now, consider the other case, i.e., consider some arbitrary f(·), f(·) ∈ {〈·〉, 〈·〉′} and L, L ∈
Σ(z, s) \ {D,M} violating Condition 2. We need to show that f(L) � f(L). Note that Condition 2 is
violated if and only if all of Conditions 2a, 2b, 2c, and 2d are violated. We now go through the
different cases for L. Note that L 6= X, due to the violation of Condition 2a.

If L = U, consider the configuration f(L)〈P〉〈U〉∆−2. Observe that, by Corollary 5.4, U is
contained in 〈U〉 and f(L), and P is contained in 〈P〉. Since PU∆−1 ∈ N (z, s), it follows that
f(L)〈P〉〈U〉∆−2 ∈ NR. Further, observe that the violation of Condition 2c implies that L = X, and
consider the configuration f(X)〈P〉〈U〉∆−2 obtained from the above configuration by replacing f(L)
by f(L). We have f(X) ∈ {{X}, {M,X}}, the only configurations in N (z, s) containing M or X are
M∆ and D∆−1X, and both M and D are not contained in 〈P〉, by Corollary 5.4. It follows that
f(X)〈P〉〈U〉∆−2 /∈ NR. Hence, f(L) � f(L), as desired.

If L = `(C) for some ∅ 6= C ⊆ C(z), consider the configuration f(L)〈L〉∆−|C|〈U〉|C|−1. Observe
that, by Corollary 5.4, `(C) is contained in 〈L〉 and f(L), and U is contained in 〈U〉. Since
`(C)∆−|C|+1UC−1 ∈ N (z, s), it follows that f(L)〈L〉∆−|C|〈U〉|C|−1 ∈ NR. Further, observe that the
violation of Conditions 2b and 2d implies that L ∈ {U,X} or L = `(C) for some ∅ 6= C ⊆ C(z)
satisfying C * C. Consider the configuration Y := f(L)〈`(C)〉∆−|C|〈U〉|C|−1 obtained from the above
configuration by replacing f(L) by f(L), and assume for a contradiction that Y ∈ NR. Since
len(z) ≤ ∆ − 1, we have |C| ≤ |C(z)| ≤ ∆ − 1, which implies that ∆ − |C| ≥ 1, i.e., Y contains
〈`(C)〉. Observe also that our assumption for this section, ∆ ≥ 3, implies that there are at least
two positions in Y with a label from {〈`(C)〉, 〈U〉}. Since, by Corollary 5.4 and our insights about
L, we have M /∈ 〈`(C)〉, P /∈ f(L) ∪ 〈`(C)〉 ∪ 〈U〉, and D /∈ 〈`(C)〉 ∪ 〈U〉, it follows that there is no
choice (A1, . . . ,A∆) ∈ f(L) × 〈`(C)〉∆−|C| × 〈U〉|C|−1 such that A1 . . . A∆ ∈ {M∆,PU∆−1,D∆−1X}.
By the definition of N (z, s) and the fact that Y ∈ NR, this implies that there is some ∅ 6= C∗ ⊆ C(z)
such that `(C∗) is contained in at least ∆ − |C∗| + 1 of the ∆ sets in Y . Since `(C∗) /∈ 〈U〉 (by
Corollary 5.4), we have ∆ − |C∗| + 1 ≤ ∆ − |C| + 1, which implies |C∗| ≥ |C|. If C∗ 6= C, then it
follows that C∗ * C, which implies `(C∗) /∈ 〈`(C)〉, by Corollary 5.4; it follows that `(C∗) is contained
in at most one of the ∆ sets in Y , which implies |C∗| ≥ ∆, yielding a contradiction to the fact that
|C∗| ≤ |C(z)| ≤ ∆− 1. Hence, we know that C∗ = C. Recall that we have L ∈ {U,X} or L = `(C) for
some ∅ 6= C ⊆ C(z) satisfying C * C, and observe that in the latter case we have `(C) /∈ 〈`(C∗)〉 and

38

`(C) /∈ 〈`(C∗)〉′, by Corollary 5.4 and the definition of 〈·〉′. Since `(C) is also not contained in any of
〈U〉, 〈U〉′, 〈X〉, and 〈X〉′, it follows that `(C) /∈ f(L). Moreover, since C∗ = C, we have `(C∗) /∈ f(L).
By the definition of Y , it follows that `(C∗) is contained in at most ∆− |C| = ∆− |C∗| of the ∆ sets
in Y . This contradicts the fact established above that `(C∗) is contained in at least ∆− |C∗|+ 1 of
the ∆ sets in Y . Hence, we have Y /∈ NR, which implies that f(L) � f(L), as desired.

If L = P, consider the configuration f(L)〈U〉∆−1. Observe that, by Corollary 5.4, P is contained in
f(L) and U is contained in 〈U〉. Since PU∆−1 ∈ N (z, s), it follows that f(L)〈U〉∆−1 ∈ NR. Further,
observe that the violation of Condition 2b implies that L 6= P, and consider the configuration
f(L)〈U〉∆−1 obtained from the above configuration by replacing f(L) by f(L). We have 〈U〉 = {U,X},
the only configurations in N (z, s) containing some element from {U,X} in at least ∆− 1 positions
is PU∆−1 (due to ∆ ≥ 3 and |C(z)| = len(z) ≤ ∆− 1), and P is contained neither in f(L) nor in
〈U〉, by Corollary 5.4. It follows that f(L)〈U〉∆−1 /∈ NR. Hence, f(L) � f(L), as desired.

This covers all possible cases for L ∈ Σ(z, s) \ {D,M} and concludes the second case. Hence, the
lemma statement follows. Note that the fact that two labels from ΣR are equally strong if and only
if they are identical follows from the fact that for any two distinct labels B,B′ ∈ ΣR we have B � B′

or B′ � B.

From Lemma 5.6 we obtain Corollary 5.7 by simply collecting for any label L ∈ ΣR the set of all
labels L′ satisfying L ≤ L′.

Corollary 5.7. We have

• 〈〈P〉〉 = {〈P〉, 〈P〉′},

• 〈〈U〉〉 = {〈L〉, 〈L〉′ | L ∈ {P,U} ∪ {`(C) | ∅ 6= C ⊆ C(z)}},

• 〈〈X〉〉 = ΣR,

• 〈〈`(C)〉〉 = {〈L〉, 〈L〉′ | L ∈ {P} ∪ {`(C′) | C ⊆ C′ ⊆ C(z)}} for each ∅ 6= C ⊆ C(z), and

• 〈〈L〉′〉 = 〈〈L〉〉 ∩ Σ1
R, for each L ∈ Σ(z, s) \ {D,M}.

5.6 Computing R(R(Π(z, s)))

After computing and analyzing R(Π(z, s)), we now turn our attention to the next step, comput-
ing R(R(Π(z, s))). However, instead of computing R(R(Π(z, s))) exactly, we instead show that
R(R(Π(z, s))) can be relaxed to some problem Π∗q (without computing R(R(Π(z, s))) explicitly).
We will define Π∗q so that by just renaming the labels in the set Σ∗q := ΣΠ∗q suitably we obtain
some problem of the form Π(z′, s′) with new parameters z′, s′ (compared to Π(z, s)). As relaxing
a problem, by definition, does not increase the complexity of the problem, this approach will
yield a proof that Π(z′, s′) can be solved at least one round faster than Π(z, s); analyzing how the
parameters change from Π(z, s) to Π(z′, s′) will then enable us to prove the desired lower bound.
We start by defining Π∗q , which depends on some parameter q that can be chosen arbitrarily from
C(z) \ {s}. Note that such a parameter q exists since, by definition, len(z) ≥ 2.

Definition 5.8. Fix some parameter q ∈ C(z) \ {s} and define `(∅) := U. The label set Σ∗q of Π∗q is
defined by

Σ∗q := {〈〈P〉〉, 〈〈U〉〉, 〈〈U〉′〉, 〈〈X〉〉, 〈〈X〉′〉} ∪ F−q ∪ F+
q

39

where

F−q := {〈〈`(C)〉〉 | ∅ 6= C ⊆ C(z), q /∈ C} and

F+
q := {〈〈`(C)〉, 〈`(C \ {q})〉′〉 | ∅ 6= C ⊆ C(z), q ∈ C}.

The node constraint N ∗q of Π∗q consists of the following configurations.

• 〈〈X〉′〉∆

• 〈〈P〉〉〈〈U〉〉∆−1

• 〈〈U〉′〉∆−1〈〈X〉〉

• 〈〈`(C)〉〉∆−|C|+1〈〈U〉〉|C|−1 for each ∅ 6= C ⊆ C(z) satisfying q /∈ C

• 〈〈`(C)〉, 〈`(C \ {q})〉′〉∆−|C|+1〈〈U〉〉|C|−1 for each ∅ 6= C ⊆ C(z) satisfying q ∈ C

The hyperedge constraint E∗q of Π∗q consists of all configurations Q1 . . .Qr with Qj ∈ Σ∗q for all
1 ≤ j ≤ r such that there exists a choice (B1, . . . ,Br) ∈ Q1 × · · · × Qr satisfying B1 . . . Br ∈ ER.

Now we are ready to prove the desired relation between R(R(Π(z, s))) and Π∗q . We start by
relating the node configurations of the two problems.

Lemma 5.9. Each node configuration of R(R(Π(z, s))) can be relaxed to some configuration from
N ∗q .

Proof. For a contradiction, suppose that the lemma does not hold, i.e., there exists some configuration
Q = Q1 . . . Q∆ in the node constraint of R(R(Π(z, s))) that cannot be relaxed to any configuration
from N ∗q . By the definition of R(R(Π(z, s))), this implies that for any choice (B1, . . . ,B∆) ∈
Q1 × · · · ×Q∆ there exists some choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆ such that A1 . . . A∆ ∈ N (z, s).
Moreover, as Q is contained in the node constraint of R(R(Π(z, s))), we know that Qk is right-closed
for each 1 ≤ k ≤ ∆, by Observation 3.3.

We distinguish two cases based on whether there exists some Qk containing 〈X′〉. Consider first
the case that 〈X〉′ ∈ Qk for some 1 ≤ k ≤ ∆. W.l.o.g., assume that k = 1, i.e., we have 〈X〉′ ∈ Q1.
We claim that this implies 〈P〉 /∈ Qk for each 2 ≤ k ≤ ∆: If there exists some 2 ≤ k ≤ ∆ satisfying
〈P〉 ∈ Qk, then there exists some choice (B1, . . . ,B∆) ∈ Q1 × · · · × Q∆ with B1 = 〈X〉′ and Bk = 〈P〉.
It follows by Lemma 5.3 and Corollary 5.4 that for every choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆ we
have A1 ∈ {M,X} and Ak /∈ {D,M}; now the claim follows by observing that every configuration
in N (z, s) containing M requires all other labels in the configuration to be M as well and every
configuration in N (z, s) containing X requires all other labels in the configuration to be D.

Combining the claim with the right-closedness of the Qk, we obtain that Qk ⊆ 〈〈X〉′〉 for each
2 ≤ k ≤ ∆, by Lemma 5.6 and Corollary 5.7. As, by definition, Q cannot be relaxed to 〈〈X〉′〉∆, it
follows that Q1 * 〈〈X〉′〉. Since, by Lemma 5.6, we have L ≤ 〈P〉 for each L ∈ ΣR\〈〈X〉′〉, we conclude
that 〈P〉 ∈ Q1, by the right-closedness of Q1. This implies that 〈X〉′ /∈ Qk for each 2 ≤ k ≤ ∆, as
otherwise there would (again) exist some choice (B1, . . . ,B∆) ∈ Q1 × · · · ×Q∆ containing 〈P〉 and
〈X〉′, which leads to a contradiction as already seen above. From Qk ⊆ 〈〈X〉′〉 and 〈X〉′ /∈ Qk for each
2 ≤ k ≤ ∆, we infer that Qk ⊆ 〈〈U〉′〉 for each 2 ≤ k ≤ ∆, by Corollary 5.7. Since, by Corollary 5.7,
Q1 ⊆ ΣR = 〈〈X〉〉, it follows that Q can be relaxed to the configuration 〈〈U〉′〉∆−1〈〈X〉〉 ∈ N ∗q ,
yielding the desired contradiction.

Now consider the other case, namely that 〈X〉′ /∈ Qk for each 1 ≤ k ≤ ∆. Observe that this
implies

Qk ⊆ 〈〈U〉〉 for each 1 ≤ k ≤ ∆, (8)

40

by Corollary 5.7 and the fact that 〈〈X〉〉 < 〈〈X〉′〉 (which follows from Lemma 5.6). It follows that

〈`(C(z))〉′ ∈ Qk for each 1 ≤ k ≤ ∆, (9)

as otherwise there would be some 1 ≤ k ≤ ∆ satisfying Qk ⊆ 〈P〉 (by Lemma 5.6, Corollary 5.7 and
the right-closedness of the Qk), which in turn would imply that Q can be relaxed to 〈〈P〉〉〈〈U〉〉∆−1 ∈
N ∗q , yielding a contradiction.

While, so far, we used (only) that Q cannot be relaxed to any of the configurations 〈〈X〉′〉∆,
〈〈P〉〉〈〈U〉〉∆−1, and 〈〈U〉′〉∆−1〈〈X〉〉, we will now also take advantage of the fact that Q cannot be
relaxed to the remaining (conceptually more complex) configurations from N ∗q . For each i ∈ C(z),

define Ri := C(z) \ {i}. Moreover, we will make use of the bipartite graph G = (V ∪W,E) obtained
by defining V := {Q1, . . . ,Q∆} and W := {Ri | i ∈ C(z)}, and setting E to be the set of all edges
{Qk, Ri} satisfying

• 〈`(Ri)〉′ ∈ Qk if i 6= q, and

• 〈`(Ri)〉 ∈ Qk if i = q.

Note that, for any distinct k, k′, we consider Qk and Qk′ to be different vertices in V even if Qk = Qk′ .
Consider any arbitrary subset ∅ 6= C ⊆ C(z) and recall that `(∅) := U. We distinguish two cases,

based on whether C contains q.
If q /∈ C, then, by the definition of N ∗q , configuration Q cannot be relaxed to the configuration

〈〈`(C)〉〉∆−|C|+1〈〈U〉〉|C|−1, which, by (8), implies that there are at least |C| indices k ∈ {1, . . . ,∆}
satisfying Qk * 〈〈`(C)〉〉. Observe that for each label L ∈ 〈〈U〉〉 \ 〈〈`(C)〉〉, we have L ∈ {〈U〉, 〈U〉′} or
L ∈ {〈`(C)〉, 〈`(C)〉′} for some C + C, by Corollary 5.7. By Lemma 5.6, this implies that for each label
L ∈ 〈〈U〉〉 \ 〈〈`(C)〉〉 there exists some i ∈ C satisfying L ≤ 〈`(Ri)〉′. By (8) and the right-closedness
of the Qk, it follows that there are at least |C| indices k ∈ {1, . . . ,∆} such that there exists some
i ∈ C satisfying 〈`(Ri)〉′ ∈ Qk.

Similarly, if q ∈ C, thenQ cannot be relaxed to the configuration 〈〈`(C)〉, 〈`(C\{q})〉′〉∆−|C|+1〈〈U〉〉|C|−1,
which, by (8), implies that there are at least |C| indices k ∈ {1, . . . ,∆} satisfying Qk * 〈〈`(C)〉, 〈`(C \
{q})〉′〉. Observe that for each label L ∈ 〈〈U〉〉 \ 〈〈`(C)〉, 〈`(C \ {q})〉′〉, we have L ∈ {〈U〉, 〈U〉′},
L = 〈`(C)〉 for some C + C, or L = 〈`(C)〉′ for some C + C \ {q}, by Lemma 5.6 and Corollary 5.7. By
Lemma 5.6, this implies11 that for each label L ∈ 〈〈U〉〉 \ 〈〈`(C)〉, 〈`(C \ {q})〉′〉 we have L ≤ 〈`(Rq)〉
or there exists some i ∈ C \ {q} satisfying L ≤ 〈`(Ri)〉′. By (8) and the right-closedness of the Qk, it
follows that there are at least |C| indices k ∈ {1, . . . ,∆} such that 〈`(Rq)〉 ∈ Qk or there exists some
i ∈ C satisfying 〈`(Ri)〉′ ∈ Qk.

Recall the definition of G. By the above discussion, we conclude that for any arbitrary subset
∅ 6= C ⊆ C(z), the vertex set {Ri | i ∈ C} ⊆W has at least |C| neighbors in V . Hence, we can apply
Theorem 3.5 (i.e., Hall’s marriage theorem) to G and obtain a function f : W → V such that f(Ri) 6=
f(Ri′) for any i 6= i′, 〈`(Rq)〉 ∈ f(Rq), and 〈`(Ri)〉′ ∈ f(Ri) for any i 6= q. This implies that there is
some choice (B1, . . . ,B∆) ∈ Q1×· · ·×Q∆ that contains 〈`(Rq)〉 as well as 〈`(Ri)〉′ for all i ∈ C(z)\{q}.
By (9), it follows that there is some choice (B1, . . . ,B∆) ∈ Q1× · · · ×Q∆ such that Y = B1 . . . B∆ is
a permutation of 〈`(R1)〉′ . . . 〈`(Rq−1)〉′〈`(Rq)〉〈`(Rq+1)〉′ . . . 〈`(Rlen(z))〉′(〈`(C(z))〉′)∆−len(z).

Consider an arbitrary choice (A1, . . . ,A∆) ∈ B1 × · · · × B∆, and set A := A1 . . . A∆. Using the
aforementioned characterization of Y together with Lemma 5.3 and Corollary 5.4, we collect some
properties of A in the following. Since P /∈ Bk for each 1 ≤ k ≤ ∆, we have A 6= PU∆−1. Since
M /∈ 〈`(Rq)〉, we have A 6= M∆. Since D /∈ 〈`(Rq)〉, D /∈ 〈`(Rs)〉′, and s 6= q (by the definition of Π∗q),

11Note that the implication is also correct in the special case C = {q}.

41

we have A 6= D∆−1X. Finally, for each ∅ 6= C ⊆ C(z), we have `(C) /∈ 〈`(Ri)〉′ for each i ∈ C \ {q}
and, if q ∈ C, additionally `(C) /∈ 〈`(Rq)〉, which implies that A 6= `(C)∆−|C|+1U|C|−1.

By the definition of N (z, s), it follows that for any choice (A1, . . . ,A∆) ∈ B1× · · · ×B∆, we have
A1 . . . A∆ /∈ N (z, s), yielding a contradiction to the fact that Q is contained in the node constraint
of R(R(Π(z, s))) and concluding the proof.

Next, we provide a useful characterization of E∗q .

Lemma 5.10. The hyperedge constraint E∗q of Π∗q consists of all configurations L1 . . . Lr (with labels
from Σ∗q) satisfying at least one of the following three conditions.

1. There is some index 1 ≤ j ≤ r such that Lj = 〈〈X〉′〉 and Lj′ /∈ {〈〈U〉′〉, 〈〈X〉′〉} for each j′ 6= j.

2. There are two distinct indices j, j′ ∈ {1, . . . , r} such that Lj = 〈〈X〉〉, Lj′ is arbitrary, and
Lj′′ /∈ {〈〈U〉′〉, 〈〈X〉′〉} for each j′′ ∈ {1, . . . , r} \ {j, j′}.

3. All of the following properties hold.

(a) Lj 6= 〈〈P〉〉 for each 1 ≤ j ≤ r.
(b) There is at most one index j ∈ {1, . . . , r} such that Lj ∈ {〈〈U〉′〉, 〈〈X〉′〉}.
(c) There are at most zq+1 indices j ∈ {1, . . . , r} such that Lj = 〈〈U〉′〉 or Lj = 〈〈`(C)〉, 〈`(C\
{q})〉′〉 for some color set C containing color q.

(d) For each i ∈ C(z) satisfying i 6= q, there are at most zi indices j ∈ {1, . . . , r} such that
Lj = 〈〈`(C)〉〉 for some color set C containing color i.

Proof. We start by showing that any configuration (with labels from Σ∗q) satisfying at least one of
the three conditions stated in the lemma is contained in E∗q . Let Q = Q1 . . .Qr be an arbitrary
configuration satisfying at least one of the conditions. IfQ satisfies Condition 1, then, by Corollary 5.7,
we know that some permutation of (〈X〉′, 〈P〉, . . . , 〈P〉) is contained in Q1×· · ·×Qr. Since Condition 1
in Lemma 5.5 implies that 〈X〉′〈P〉r−1 ∈ ER, we obtain Q ∈ E∗q , by the definition of E∗q . If Q satisfies
Condition 2, then, by Corollary 5.7, we know that some permutation of (〈X〉, 〈P〉′, . . . , 〈P〉) is
contained in Q1 × · · · ×Qr. Again, Condition 1 in Lemma 5.5 implies that 〈X〉〈P〉′〈P〉r−2 ∈ ER, and
we obtain Q ∈ E∗q .

Hence, consider the case that Q satisfies Condition 3. If there is some 1 ≤ j ≤ r satisfying
Qj = 〈〈X〉′〉, then, by Condition 3b, Q satisfies also Condition 1 and we are done. Thus, assume
in the following that Qj 6= 〈〈X〉′〉 for all 1 ≤ j ≤ r. Choose some (B1, . . . ,Br) ∈ Q1 × · · · × Qr as
follows. If there is some 1 ≤ j ≤ r satisfying Qj = 〈〈U〉′〉, then, for any 1 ≤ j′ ≤ r,

• if Qj′ = 〈〈X〉〉 choose Bj′ = 〈U〉,

• if Qj′ = 〈〈L〉〉 for some L ∈ {U} ∪ {`(C) | q /∈ C ⊆ C(z)}, choose Bj′ = 〈L〉,

• if Qj′ = 〈〈U〉′〉, choose Bj′ = 〈U〉′, and

• if Qj′ = 〈〈`(C)〉, 〈`(C \ {q})〉′〉 for some C ⊆ C(z) containing q, choose Bj′ = 〈`(C)〉.

If there is no 1 ≤ j ≤ r satisfying Qj = 〈〈U〉′〉, then choose the Bj′ as above, with the only difference
that if there is at least one j′′ with Qj′′ = 〈〈`(C)〉, 〈`(C \ {q})〉′〉 for some C ⊆ C(z) containing q,
then choose one such j′′ arbitrarily, and set Bj′′ = 〈`(C \ {q})〉′ for this j′′. By Corollary 5.7 and the
definition of 〈·〉, each chosen Bj′ is indeed contained in Qj′ ; by the fact that Qj′ /∈ {〈〈P〉〉, 〈〈X〉′〉} for
all 1 ≤ j′ ≤ r (due to Condition 3a and the above discussion) and the definition of Σ∗q , it is also
guaranteed that we chose some Bj′ for each 1 ≤ j′ ≤ r.

42

The configuration B := B1 . . . Br is not necessarily contained in E∗q ; however, we will show that
with some additional changes (that preserve containment of the Bk in the respective Qk), we can
transform B into a configuration that is contained in E∗q . Before explaining this transformation, we
collect some properties of B in the following. From the definition of B, it follows that

Bj /∈ {〈P〉, 〈P〉′, 〈X〉, 〈X〉′} for each 1 ≤ j ≤ r. (10)

From Condition 3b and the definition of Σ1
R, it follows that

there is at most one index 1 ≤ j ≤ r such that Bj ∈ Σ1
R. (11)

From Condition 3c, it follows that

there are at most zq indices j ∈ {1, . . . , r} such that Bj ∈ {〈`(C)〉, 〈`(C)〉′ | q ∈ C ⊆ C(z)}. (12)

From Condition 3d, it follows that

for each 1 ≤ i ≤ z satisfying i 6= q, there are at most zi indices

j ∈ {1, . . . , r} such that Bj ∈ {〈`(C)〉, 〈`(C)〉′ | i ∈ C ⊆ C(z)}.
(13)

Now, we will perform the aforementioned transformation on B. Observe that, by interpreting U
as `(∅), we have Bj ∈ {〈`(C)〉, 〈`(C)〉′ | C ⊆ C(z)} for each 1 ≤ j ≤ r, by (10) and the definition of Σ∗q .
Now, iterate through the colors in C(z). When processing color i ∈ C(z), repeat the following until
there are exactly zi indices j ∈ {1, . . . , r} such that Bj ∈ {〈`(C)〉, 〈`(C)〉′ | i ∈ C ⊆ C(z)}: choose
some Bj satisfying Bj = f(`(C)) for some f ∈ {〈·〉, 〈·〉′} and some C that does not contain i, and
replace it with f(`(C ∪ {i})). This is possible due to (12), (13), and the fact that zi ≤ r− 1 for each
i ∈ C(z). Note that each step in the transformation preserves the correctness of (10), (11), (12),
and (13). Observe also that in each replacement performed during the transformation we replace
some label with a stronger label, by Lemma 5.6. By the right-closedness of all labels in Σ∗q (which
implies that all Qj are right-closed), it follows that the transformation preserves that Bj ∈ Qj for
each 1 ≤ j ≤ r.

From the above construction and discussion, we conclude that there is some (B1, . . . ,Br) ∈
Q1 × · · · × Qr such that B1 . . . Br is a permutation of some configuration 〈L1〉′〈L2〉〈L3〉 . . . 〈Lr〉
satisfying Lj ∈ Σ(z, s) \ {D,M} for all 1 ≤ j ≤ r and Condition 2 in Lemma 5.5, i.e., such that
B1 . . . Br ∈ E∗q . This concludes the proof that any configuration satisfying at least one of the three
conditions stated in the lemma is contained in E∗q .

Now we will show the other direction, i.e., that any configuration from E∗q satisfies at least one
of the three conditions stated in the lemma. We will do so by showing the contrapositive, i.e.,
that any configuration (with labels from Σ∗q) that violates all three conditions is not contained in
E∗q . Let Q = Q1 . . .Qr be an arbitrary configuration violating all three conditions, i.e., Q violates
Conditions 1 and 2, and at least one of Conditions 3a, 3b, 3c, and 3d.

We will first make use of the fact that Q violates Conditions 1 and 2. If there is some 1 ≤ j ≤ r
such that Qj = 〈〈X〉′〉, then the fact that Q violates Condition 1 implies that there is some j′ 6= j
satisfying Qj′ ∈ {〈〈U〉′〉, 〈〈X〉′〉}, which in turn implies that for any choice (B1, . . . ,Br) ∈ Q1×· · ·×Qr,
we have Bj ,Bj′ ∈ Σ1

R, by Corollary 5.7. Since, by definition, each configuration from ER contains at
most one label from Σ1

R, it follows, by the definition of E∗q , that Q /∈ E∗q , and we are done. Similarly,
if there is some 1 ≤ j ≤ r such that Qj = 〈〈X〉〉, then the fact that Q violates Condition 2 implies
that there are two distinct indices j′, j′′ ∈ {1, . . . , r}\{j} such that Qj′ ,Qj′′ ∈ {〈〈U〉′〉, 〈〈X〉′〉}, which
analogously to above implies that Q /∈ E∗q , and we are done. Hence, assume in the following that
Qj ∈ Σ∗q \ {〈〈X〉〉, 〈〈X〉′〉}, which by Corollary 5.7 and the definition of 〈·〉 implies that

Qj ⊆ ΣR \ {〈X〉, 〈X〉′} for each 1 ≤ j ≤ r. (14)

43

Now, we will make use of the fact that Q violates at least one of Conditions 3a, 3b, 3c, and
3d. Consider first the case that Q violates Condition 3a, i.e., there is some 1 ≤ j ≤ r satisfying
Qj = 〈〈P〉〉. It follows, by Corollary 5.7 and (14), that for any choice (B1, . . . ,Br) ∈ Q1×· · ·×Qr, we
have Bj ∈ {〈P〉, 〈P〉′} for some 1 ≤ j ≤ r and Bj′ /∈ {〈X〉, 〈X〉′} for each 1 ≤ j′ ≤ r. By Conditions 1
and 2a in Lemma 5.5, it follows that B1 . . . Br /∈ ER for all (B1, . . . ,Br) ∈ Q1 × · · · ×Qr, which in
turn implies Q /∈ E∗q , as desired.

Now, consider the case that Q violates Condition 3b, i.e., there are at least two indices
j, j′ ∈ {1, . . . , r} such that Qj ∈ {〈〈U〉′〉, 〈〈X〉′〉}. As already seen above, this implies Q /∈ E∗q , as
desired.

Next, consider the case that Q violates Condition 3c, i.e., there are at least zq + 2 indices
j ∈ {1, . . . , r} such that Qj = 〈〈U〉′〉 or Qj = 〈〈`(C)〉, 〈`(C \ {q})〉′〉 for some color set C containing
color q. Consider an arbitrary choice (B1, . . . ,Br) ∈ Q1 × · · · × Qr. If there exists some index
1 ≤ j ≤ r satisfying Bj ∈ {〈P〉, 〈P〉′}, then (14) implies that B1 . . . Br /∈ ER, by Conditions 1 and
2a in Lemma 5.5; it follows that Q /∈ E∗q , and we are done. Hence, assume in the following that
Bj /∈ {〈P〉, 〈P〉′} for each 1 ≤ j ≤ r. Since, by definition, ER contains at most one label from Σ1

R, it
follows, by Lemma 5.6 and Corollary 5.7, that there are at least (zq + 2)− 1 indices j ∈ {1, . . . , r}
such that Bj = 〈`(C)〉 for some color set C ⊆ C(z) that is a superset of a set C′ ⊆ C(z) containing
color q. In other words, there are at least zq + 1 indices j ∈ {1, . . . , r} such that Bj = 〈`(C)〉 for
some color set C ⊆ C(z) containing color q. Combining this conclusion with the fact that, by (14),
Bj′ /∈ {〈X〉, 〈X〉′} for each 1 ≤ j′ ≤ r, we obtain that B1 . . . Br /∈ ER, by Conditions 1 and 2b in
Lemma 5.5. It follows that Q /∈ E∗q , as desired.

Finally, consider the case that Q violates Condition 3d, i.e., there exists some color i ∈ C(z)
satisfying i 6= q such that there are at least zi + 1 indices j ∈ {1, . . . , r} such that Qj = 〈〈`(C)〉〉
for some color set C containing color i. Consider an arbitrary choice (B1, . . . ,Br) ∈ Q1 × · · · ×Qr.
Analogously to the previous case, we obtain that the existence of an index 1 ≤ j ≤ r satisfying
Bj ∈ {〈P〉, 〈P〉′} implies that Q /∈ E∗q . On the other hand, the nonexistence of such an index implies,
by Corollary 5.7, that there are at least zi + 1 indices j ∈ {1, . . . , r} such that Bj ∈ {〈`(C)〉, 〈`(C)〉′}
for some color set C ⊆ C(z) containing color i; by (14) and Conditions 1 and 2b in Lemma 5.5, it
follows that B1 . . . Br /∈ ER, which in turn implies that Q /∈ E∗q , as desired.

5.7 Renaming

We now show that Π∗q can be relaxed to Π(z′, s′))) for some parameters z′ and s′.

Lemma 5.1. Let z = (z1, . . . , zk) be a vector of 2 ≤ k ≤ ∆− 1 nonnegative integers zi ≤ r − 1 and
let s ∈ {1, . . . , k}. Let q be an integer satisfying q 6= s, q ∈ {1, . . . , k}, and zq ≤ r − 2. Then, the
problem R(R(Π(z, s))) can be relaxed to Π(z′, q), for z′ = (z′1, . . . , z

′
k), where k = len(z), z′i = zi + 1

if i = q, and z′i = zi otherwise.

Proof. We show that Π∗q , which we proved to be a relaxation of R(R(Π(z, s))), is equivalent to

44

Π(z′, q), if we rename the labels correctly. Consider the following renaming:

〈〈X〉′〉 → M

〈〈P〉〉 → P

〈〈U〉〉 → U

〈〈U〉′〉 → D

〈〈X〉〉 → X

〈〈`(C)〉〉 for each ∅ 6= C ⊆ C(z) satisfying q /∈ C → `(C)
〈〈`(C)〉, 〈`(C \ {q})〉′〉 for each ∅ 6= C ⊆ C(z) satisfying q ∈ C → `(C)

Observe that, under this renaming, N ∗q , as defined in Definition 5.8, becomes equal to N (z′, q), and
E∗q , as characterized in Lemma 5.10, becomes equal to E(z′, q).

6 Deterministic Upper Bounds for Hypergraph MIS

In this section, we present deterministic algorithms for solving the maximal independent set problem
on hypergraphs of maximum degree ∆ and rank r. We start with a straightforward algorithm that
solves the problem in O(∆r + log∗ n) rounds. We then describe an algorithm that has a quadratic
dependency on ∆, but only a logarithmic dependency on r, achieving a time complexity of roughly
O(∆2 log r + log∗ n) rounds. Finally, we present an algorithm that, perhaps surprisingly, almost
does not depend at all on r, and that runs in O(f(∆) · log∗(∆r) + log∗ n) deterministic rounds, for
some function f .

Straightforward Algorithm. We start by describing a simple algorithm that solves the MIS
problem on hypergraphs in O(∆r + log∗ n) deterministic rounds. The algorithm works as follows:
we first compute a coloring of the nodes using O(∆r) colors; then, we go through color classes and
add a node to the MIS if and only if it does not have any incident hyperedge e with rank(e)− 1
incident nodes already in the MIS.

It is easy to see that, for computing the coloring, we can compute a distance-2 (∆̄ + 1)-coloring
on the incidence graph G of H, where ∆̄ ≤ ∆r is the maximum degree in the power graph G2. This
can be done in Õ(

√
∆r + log∗ n) rounds [MT20, FHK16]. Now we can go through color classes

and safely add a node (of H) in the set if, by doing so, we still satisfy the desired constraints
of the problem, and this requires O(∆r) rounds. Hence, in total, we get a time complexity of
O(∆r + log∗ n) rounds. Therefore, we obtain the following theorem.

Theorem 6.1. The MIS problem on hypergraphs can be solved in O(∆r + log∗ n) deterministic
rounds on hypergraphs with maximum degree ∆ and rank r.

6.1 Slow-in-∆ Algorithm

We now introduce an algorithm that solves the MIS problem on hypergraphs in a time that has
a slow dependency on ∆, but only a logarithmic dependency on r. More precisely, we prove the
following.

Theorem 1.4. In the LOCAL model, the MIS problem on n-node hypergraphs of maximum degree
∆ and rank r can be solved in O(∆2 log r + ∆ log r log∗ r + log∗ n) deterministic rounds.

45

In this algorithm, each node is either active or inactive. The algorithm terminates when all
nodes are inactive. At the beginning, each node is in the active state. The algorithm is as follows.

1. Compute an O((∆r)2) coloring of the nodes of H.

2. Let H ′ be the hypergraph induced by active nodes. Active nodes construct a virtual graph G
by splitting each hyperedge e of H ′ into drankH′(e)/2e virtual hyperedges of rank at most 2.12

3. Color nodes of G with O(∆) colors.

4. In the hypergraph H ′, go through color classes, and while processing a node v, do the following.

(a) If v has at least one incident hyperedge e having rankH′(e)− 1 nodes already in the MIS,
v considers itself outside the MIS and becomes inactive.

(b) If, for each hyperedge e incident to v, there exists another node u incident to e such that
color(v) 6= color(u) and u is not in the MIS (either because it got processed and decided
to not enter the MIS, or because it has not been processed yet), then v enters the MIS
and becomes inactive.

(c) Otherwise, v does nothing and remains active.

5. Repeat from Item 2 until all nodes are inactive.

Correctness and Time Complexity. Nodes can spend O(log∗ n) rounds to compute the initial
coloring in Item 1 [Lin92].

Nodes can create the virtual graph G as in Item 2 in constant time. Then, the coloring described
in Item 3 can be done in Õ(

√
∆ + log∗(∆r)) rounds, by exploiting the precomputed initial coloring

[MT20, FHK16]. Notice that, while this is a proper coloring of the virtual graph, this results into a
defective coloring of the hypergraph H ′, and this defective coloring has some desired properties. In
fact, since in G we have a proper coloring, then every pair of nodes connected to the same virtual
edge must have different colors, implying that, for each hyperedge e of H ′, at most drankH′(e)/2e
incident nodes have the same color.

In Item 4 we process nodes going through color classes, and based on some conditions that can
be verified in constant time, nodes decide what to do: enter or not the MIS and become inactive,
or be still undecided and remain active. Hence, since we have O(∆) many colors, this part can be
executed in O(∆) rounds. While the coloring in the virtual graph G is a proper one, the coloring in
H ′ is not a proper coloring, and therefore neighboring nodes that have the same color get processed
at the same time, but this is not an issue. In fact, Item 4a and Item 4b guarantee that, for each
hyperedge e, at most rank(e)− 1 incident nodes enter the MIS. Also, Item 4b guarantees that, as
long as it is safe to enter the MIS, a node will do so. All nodes that remain still active in Item 4c
are basically nodes that still have to decide whether to join or not the MIS. A node v remains active
if both of the following conditions hold:

• for each incident hyperedge e it holds that at most rankH′(e)− 2 nodes incident to e are in
the MIS (otherwise Item 4a would apply);

12This is a standard procedure, where nodes can easily agree on which nodes are connected to a given virtual edge:
for example, there is a virtual edge created from the hyperedge e that connects the two nodes that, among all nodes
incident to e, are the ones with the smallest ID; then there is another virtual edge that connects the second pair of
nodes with smallest ID, and so on.

46

• there must exist a hyperedge e incident to v such that all active nodes incident to e have the
same color as v (otherwise Item 4b would apply).

Since, as discussed above, for each hyperedge at most half of its incident nodes have the same color,
this means that, in the hypergraph induced by active nodes, for each node it holds that there exists at
least one incident hyperedge that in H ′ has rank x and in the hypergraph induced by active nodes of
the next phase has rank at most dx/2e. Hence, for each node, in each phase, the rank of one incident
hyperedge at least halves. This means that, after repeating this process for O(∆ log r) many times,
we get that all nodes are inactive, achieving a total runtime of O(∆ log r(∆ + log∗(∆r)) + log∗ n) =
O(∆ log r(∆ + log∗ r) + log∗ n), and hence proving Theorem 1.4.

6.2 (Almost) Independent-of-r Algorithm

In this section, we present an algorithm for solving the MIS problem on hypergraphs, the running
time of which almost does not depend at all on the rank r. We will first start by presenting an
algorithm that, assuming we are given an O((∆r)2)-coloring of the nodes, computes an MIS in
O(log∗(∆r)) rounds, in the case where the maximum degree of the nodes is 2. Then we show how
to generalize these ideas and present an algorithm for the general case of ∆ > 2.

6.2.1 The Case ∆ = 2.

Let H be a hypergraph with maximum degree 2 and rank r, where we are given in input an
O((∆r)2)-coloring of the nodes (we will later get rid of this assumption and actually compute this
coloring, but for now, assume we have it for free). We assume that all nodes have degree exactly
2. In fact, nodes of degree 1 can be easily handled: at the beginning we remove them from the
hypergraph, then we solve the problem, and then we add all of them in the solution (except for the
case in which a hyperedge is only incident to such nodes, in which case we leave one out).

Since nodes in H have degree 2, we can see them as edges, and create a virtual graph G with
maximum degree r, where nodes are the hyperedges of H, and there is an edge between two nodes
in G if and only if the hyperedge that they correspond to share a node in H. Note that G may
have parallel edges (if H is not a linear hypergraph). Observe that any T -rounds algorithm that is
designed to run in G can be simulated by nodes in H in O(T)-rounds. In the following, we show an
algorithm that computes a subset S of the edges of G and then show that this set is an MIS for H.
On a high level, an edge e of G will result outside the set S if and only if there exists one endpoint
v of e such that it has already deg(v)− 1 incident edges in S. Initially, let S = ∅. The algorithm
works as follows.

1. Discard parallel edges. That is, for any pair of nodes {u, v} connected by at least one edge,
we keep exactly one edge.

2. Compute a (2, 2)-ruling edge set of G (i.e., a (2, 2)-ruling set of the line graph of G).

3. Each node v marks itself with its distance to the nearest edge in the ruling set, resulting with
nodes marked with a number in {0, 1, 2}. More precisely:

• if v is an endpoint of a ruling-set edge, then v is marked with 0;

• otherwise, if there is a neighbor of v that is an endpoint of a ruling-set edge, then v is
marked with 1;

47

• otherwise, v is marked with 2 (note that, since we have a (2, 2)-ruling set of the edges,
there is no node at distance larger than 2 from a ruling-set edge, and nodes marked 2
form an independent set).

4. Each node marked with 2 proposes to an arbitrary neighbor (which is marked with 1) to add
the edge between them in the ruling set.

5. Each node marked with 1 that receives at least one proposal from a 2-marked node, accepts
exactly one of them and rejects the others (choosing arbitrarily).

6. Add to the ruling set the edges over which the proposals are accepted (we still obtain a
(2, 2)-ruling set).

7. Nodes recompute the distances to the nearest ruling-set edge (note that each node now gets
marked with either 0 or 1).

8. Put back removed parallel edges. None of them is added to the ruling set. Observe that we
still have a (2, 2)-ruling set and the distances of the nodes from edges of the ruling set does
not change.

9. The set S contains the edges selected according to the following rules.

(a) Add to S all edges not in the ruling set.

(b) Each 1-marked node removes from S one incident edge towards a neighbor marked 0,
breaking ties arbitrarily (note that there must exist at least one such edge).

(c) For each edge in the ruling set, add it to S if and only if both endpoints have at least
two incident edges not in S.

Correctness and Time Complexity. We now show that the set S constructed by the above
algorithm satisfies the following claim.

Claim 6.2. Each node u has at most deg(u)− 1 incident edges in S, and for each edge not in S it
holds that at least one of its endpoints has all other incident edges in S.

Firstly, we argue that, if we prove Claim 6.2, then it directly implies that our solution computes
an MIS in H. Recall that, by construction, nodes of G correspond to the hyperedges of H, and edges
of G correspond to the nodes of H. Hence, if the above claim is true, it means that the algorithm
returns a subset of nodes of H such that, for each hyperedge e, at most rank(e)− 1 incident nodes
are selected, and for each non-selected node v, there exists a hyperedge e incident to v that has
rank(e)− 1 incident selected nodes. This, by definition, means that the set S in G corresponds to
an MIS in H. Hence, in order to show the correctness, it is enough to prove the above claim, which
we do in the following.

A (2, 2)-ruling set of the edges (Item 2) can be computed using the algorithm of [KMW18],
which runs in O(log∗(∆r)) rounds if we are given in input an O((∆r)2)-coloring. Let X be the set
of all nodes that are an endpoint of an edge in the ruling set. Nodes can spend O(1) rounds and
mark themselves with the distance from the nearest node in X (Item 3). It is easy to see that a
(2, 2)-ruling set of the edges of G implies that

• each node in G is at distance at most 2 from a node in X, and

• nodes marked with 2 form an independent set (that is, all their neighbors are marked with 1).

48

In Item 4, Item 5, and Item 6, we modify the ruling set obtained in Item 2 such that each node
is at distance at most 1 from a node in X. For this, nodes marked with 2 propose to a 1-marked
neighbor to put the edge between them into the ruling set, and 1-marked nodes accept only one
proposal (if they receive any). Note that, since edges between 1-marked and 2-marked nodes are
not incident to the edges of the ruling set, and since 1-marked nodes accept only one proposal, then
we still obtain a (2, 2)-ruling set. Let u be the node marked 2 that performed a proposal to its
neighbor v marked with 1. If the proposal of u gets accepted, then the edge (u, v) enters the ruling
set and nodes u and v will be marked with 0 in Item 7. Otherwise, if the proposal gets rejected, it
means that v accepted another proposal from another 2-marked neighbor, meaning that, in Item 7,
node v will be marked with 0 and hence node u will be marked with 1. All these operations can be
done in O(1) rounds. Therefore, we remain with a (2, 2)-ruling set of the edges where each node is
either marked with 0 or with 1.

Now, in Item 8, we put back the parallel edges removed in Item 1, and we put none of them in
the ruling set. Observe that we still have a (2, 2)-ruling set, and the distances of the nodes from the
nearest ruling set edge does not change.

Then, we start constructing our set S according to the rules in Item 9, which can all be
accomplished in constant time. Since each 0-marked node u has exactly one incident edge in the
ruling set, Item 9a guarantees that at most deg(u) − 1 incident edges are in S. On the other
hand, since each 1-marked node v has at least one incident edge towards a 0-marked neighbor,
Item 9b guarantees that exactly deg(v)− 1 incident edges are in S. Hence, nodes satisfy Claim 6.2.
Also, edges incident to 1-marked nodes satisfy Claim 6.2, since each marked 1 node has exactly
deg(v)− 1 incident edges in S. The only remaining edges to be analyzed are the ones in the ruling
set, and according to Item 9c, they enter the set S if they can. Hence, the set S satisfies Claim 6.2.
Regarding the running time, except for the first item, all other items can be performed in O(1)
rounds, achieving a total runtime of O(log∗(∆r)) rounds. This implies the following lemma.

Lemma 6.3. The MIS problem can be solved in O(log∗(∆r)) deterministic rounds on hypergraphs
with maximum degree 2 and rank r, assuming that an O((∆r)2)-coloring is given in input.

6.2.2 Generalization for ∆ > 2

On a high level, we show that, if we have an algorithm that solves MIS on O((∆r)2)-colored
hypergraphs of maximum degree ∆−1 and rank r, then we can use it as a black box for constructing
another algorithm that solves MIS on O((∆r)2)-colored hypergraphs of maximum degree ∆ and rank
r. Hence, by starting from our base-case algorithm for hypergraphs of degree at most 2, and applying
this reasoning in an iterative way, we obtain an algorithm for solving MIS on O((∆r)2)-colored
hypergraphs of any maximum degree ∆ and any rank r.

Therefore, letA∆−1 be an algorithm that is able to solve MIS on anyO((∆r)2)-colored hypergraph
H∆−1 = (V∆−1, E∆−1) of maximum degree ∆ − 1 and rank r. In the following, we present an
algorithm that solves MIS on O((∆r)2)-colored hypergraphs H∆ = (V∆, E∆) with maximum degree
∆ and rank r. At the beginning, all nodes are active.

1. Compute a (2,∆ + 4)-ruling set of H∆.

2. Mark hyperedges with their distance from the nearest node in the ruling set, that is, hyperedges
get marked with a number in {0, 1, . . . ,∆ + 4}. Let Ei be the set of hyperedges marked i.

3. Initialize MIS := ∅.

4. For i = ∆ + 4 to 0 do:

49

(a) Let Si be the set of active nodes of V∆ incident to at least one i-marked hyperedge, and
let X ⊆ Si be the set of active nodes that have all incident hyperedges marked with i.

(b) Consider the hypergraph H i = (Si \X, Êi), where Êi = {e ∩ (Si \X) | e ∈ Ei}, that is,
the hypergraph induced by nodes in Si \X and hyperedges in Ei. This hypergraph has
maximum degree ∆− 1. On H i, simulate A∆−1.

(c) Nodes that are part of the MIS of H i join the MIS.

(d) All nodes of X join the MIS.

(e) All nodes of Si become passive.

(f) All active nodes that are incident to at least one hyperedge e having rankH∆
(e) − 1

incident nodes in the MIS become passive.

Correctness. In the algorithm, after performing the ruling set on the hypergraph (Item 1), and
after marking the hyperedges with their distance to the nearest ruling-set node (Item 2), we start
to construct our solution. We go through the marked hyperedges in order, from the largest to the
smallest, and Items 4a and 4f guarantee that all nodes incident to at least one hyperedge marked at
least i+ 1 are now passive.

Let Hmi be the hypergraph induced by Ei, that is, the hypergraph containing all hyperedges
marked i and active nodes incident to at least one of them. This hypergraph has maximum degree
∆, but then, we construct H i by removing from it all nodes of degree exactly ∆ (these nodes are
then part of X). Hence, H i has maximum degree ∆− 1. Therefore we can compute an MIS of H i

using algorithm A∆−1 (Item 4b), and obtain that, in H i, each hyperedge e has at most rankHi(e)−1
incident nodes in the MIS.

We claim that the operations performed in Items 4c and 4d produce an MIS in Hmi . By
construction, the set is an MIS in H i, and hence an independent set in Hmi . Since we add all the
nodes of X, we only need to show that we do not ruin the independence property. Observe that,
for each i-marked hyperedge, it holds that there exists at least one incident node connected to an
(i− 1)-marked hyperedge. Hence, each hyperedge e is connected to at most rankHmi (e)− 1 nodes in
X, or in other words, it is never the case that a hyperedge e, in Hmi , has only neighbors that are
part of X. Also, for each i-marked hyperedge incident to x > 0 nodes in X, it holds that at most
rankHmi (e)− x− 1 incident nodes are selected. Hence, by adding the nodes in X, we still obtain
that at most rankHmi (e)− 1 incident nodes are selected.

Now we need to argue that the solution that we get is indeed an MIS of H∆, and we show this
by induction. As a base case of our inductive argument, as just showed, our algorithm computes
an MIS of the hypergraph induced by hyperedges marked with ∆ + 4. Hence, suppose that we
have an MIS M>i on the hypergraph induced by hyperedges marked at least i+ 1. We show that,
after computing an MIS M i of the hypergraph induced by i-marked hyperedges, we get an MIS
on the hypergraph induced by hyperedges marked at least i. In order to see that this holds it is
enough to notice that, at each phase of the for-loop, we consider all nodes that could potentially be
part of the MIS, taking into consideration the already computed partial solution. More precisely,
when we execute Item 4f in phase i+ 1, we ensure that, in phase i, we construct the MIS set M i by
considering all nodes that are incident to at least one i-marked hyperedge, and that can potentially
be part of the MIS. Therefore, the set M>i∪M i is an MIS of the hypergraph induced by hyperedges
marked at least i. Hence, after the ∆ + 5 steps performed in the for-loop, we get an MIS of our
hypergraph H∆.

Time Complexity. We now provide a recursive formula for the above algorithm and prove the
following lemma.

50

Lemma 6.4. Let A∆−1 be a T -rounds algorithm that solves MIS on O((∆r)2)-colored hypergraphs
of maximum degree ∆ − 1 and maximum rank r. Then, the algorithm described in Section 6.2.2
solves MIS on O((∆r)2)-colored hypergraphs of maximum degree ∆ and maximum rank r in time
O(∆(1 + T) + log∗(∆r)).

Proof. Item 1 of the algorithm in Section 6.2.2 can be done in O(∆ + log∗(∆r)) rounds by using
the algorithm of [KMW18, Corollary 1.6]13. Then, nodes spend O(∆) rounds to perform Item 2. In
the for-loop, we then execute O(∆) times A∆−1, while the other items of the for-loop can be done
in constant time. Hence, we get a total runtime of O(∆(1 + T) + log∗(∆r)) rounds.

Putting Things Together. Finally, we show that the recursive formula that expresses the
runtime of our algorithm obtained in Lemma 6.4 can be upper bounded by 2O(∆ log ∆) log∗ r. We
prove the following lemma.

Lemma 6.5. The MIS problem can be solved in 2O(∆ log ∆) log∗(∆r) = 2O(∆ log ∆) log∗ r deterministic
rounds on O((∆r)2)-colored hypergraphs of maximum degree ∆ and maximum rank r.

Proof. Let Td be the runtime of an algorithm that solves MIS on hypergraphs of maximum degree
d and maximum rank r, given an O((∆r)2)-coloring in input. By Lemma 6.3, we know that
T2 ≤ c1 log∗(∆r), and by Lemma 6.4, Td+1 ≤ c1∆(1 + Td) + c1 log∗(∆r), for some constant c1. We
show, by induction, that this results in the runtime stated in this lemma.

As a base case we consider hypergraphs with maximum degree 2, that clearly holds by Lemma 6.3.
Hence, assuming that T∆ ≤ 2c∆ log ∆ log∗(∆r), we show that T∆+1 ≤ 2c(∆+1) log(∆+1) log∗(∆r).

T∆+1 ≤ c1∆(1 + T∆) + c1 log∗(∆r) (by Lemma 6.4)

≤ c1∆(1 + 2c∆ log ∆ log∗(∆r)) + c1 log∗(∆r) (by inductive hypothesis)

≤ c1(∆2c∆ log ∆+1 + 1) log∗(∆r)

≤ 2c∆ log ∆+log c1+log ∆+2 log∗(∆r)

≤ 2c∆ log ∆+c1 log ∆ log∗(∆r)

≤ 2c(∆+1) log(∆+1) log∗(∆r), for a large enough c.

Up until now we have assumed an O((∆r)2)-coloring of the nodes in input. We can compute
this coloring in O(log∗ n) rounds using the algorithm of [Lin92], and together with Lemma 6.5, we
obtain Theorem 1.5, which is restated here for completeness.

Theorem 1.5. In the LOCAL model, the MIS problem on n-node hypergraphs of maximum degree
∆ and rank r can be solved in 2O(∆ log ∆) log∗ r +O(log∗ n) deterministic rounds.

7 Open Questions

In this work, we showed that, for hypergraph maximal matching, the O(∆r + log∗ n) algorithm is
optimal, in the sense that in order to improve the ∆r dependency it is required to spend much
more as a function of n. Also, we showed that the same does not hold for hypergraph MIS, by

13Their algorithm is phrased as a (2, ` + 4)-ruling hyperedge set on hypergraphs of rank at most `. This algorithm
can be trivially converted, in the LOCAL model, into an algorithm that finds a (2, ` + 4)-ruling set on hypergraphs of
degree at most `, by reversing the roles of nodes and hyperedges.

51

providing two algorithms, one with complexity O(∆2 log r + ∆ log r log∗ r + log∗ n), and the other
with complexity 2O(∆ log ∆) log∗ r +O(log∗ n). Hence, if ∆ is constant but r very large, we can still
solve hypergraph MIS in just O(log∗ n) rounds. Unfortunately, these algorithms do not match
the lower bound, since the only known lower bound comes from standard MIS, and says that this
problem requires Ω(min{∆, log∆ n}) rounds [BBH+19, BBKO22]. Observe that this lower bound
is tight for MIS on graphs, that can in fact be solved in O(∆ + log∗ n) rounds, and there is the
possibility that also hypergraph MIS could be solved in this time (i.e., there is no lower bound that
prevents this).

We now show a possible direction that could lead to solving hypergraph MIS in just O(∆+log∗ n)
rounds. Consider the following variant of hypergraph coloring, for which our lower bounds do not
apply.

Definition 7.1. A c-unique-maximum coloring is a labeling of the nodes of the hypergraph, such
that each node has a label in {1, . . . , c} and each hyperedge e satisfies that, if C is the set of colors
used by the nodes incident to e, then the maximum element of C is used by only one node incident
to e.

We informally state a curios fact about hypergraph MIS. By applying round elimination on it
for k times, it seems that we obtain a problem that can be decomposed into three parts:

• The original problem;

• A natural part, the k-unique-maximum coloring;

• An unnatural part, of size roughly equal to a power tower of height k, that cannot be easily
understood.

We do not formally prove that this is indeed the result that we get by applying round elimination
on hypergraph MIS, but we instead use this observation as a suggestion for a possible algorithm.
In fact, we now prove that we can solve hypergraph MIS fast if we are given a suitable unique
maximum coloring.

Theorem 7.2. If the O(∆)-unique-maximum coloring problem can be solved in O(∆ + log∗ n)
rounds, then also hypergraph MIS can be solved in O(∆ + log∗ n) rounds.

Proof. We show that, after spending O(∆ + log∗ n) rounds to compute an O(∆)-unique-maximum
coloring, then we can spend only O(∆) rounds to solve hypergraph MIS.

The algorithm is exactly the same as the trivial algorithm: we process nodes by color classes,
from the smallest to the largest, and we add the nodes to the MIS, if possible. This clearly requires
O(∆) rounds. The unique-maximum property of the coloring guarantees that, for each hyperedge e,
when processing the node v of the largest color incident to it, all other nodes in e \ v have been
already processed, and hence there could be two scenarios:

• either there are some nodes incident to e that did not join the MIS, and in that case v joins
the MIS if allowed by the other hyperedges incident to v, or

• all the other incident nodes to e have already been processed and joined the MIS, and hence v
decides not to join.

The independence property is guaranteed by the fact that, for each hyperedge e, among all nodes in
e, the last one to be processed is v, which does not enter the MIS if all nodes in e \ v are in the
MIS. The maximality property is obtained for the following reason. If a node does not have the

52

largest color in any of its incident hyperedges, then it always enters the MIS, since, for each incident
hyperedge e, there is at least one node that is not (potentially yet) in the MIS, and that is the node
with the largest color in e. This means that, if there is a node v that decides not to join the MIS,
then there must exist a hyperedge e such that v is the node with the unique maximum color among
all nodes in e, and all nodes in e \ v already joined the MIS, hence guaranteeing maximality.

We find very fascinating that a problem that has been studied in very different contexts (see, e.g.,
[CKP12, CFK+07, HS05]) appears as a natural subproblem when applying round elimination on
hypergraph MIS. Unfortunately, we do not know what is the complexity of O(∆)-unique-maximum
coloring, and we leave it as an open question to determine its complexity. Note that a (∆ + 1)-
unique-maximum coloring always exists and that it can be computed distributedly in O(∆ · Thmis)
rounds, where Thmis is the time required to compute a hypergraph MIS. In fact, it can be computed
by doing the following for ∆ + 1 times: at step i compute a hypergraph MIS, color the nodes in the
obtained set with color i, remove the colored nodes and the hyperedges of rank 1, and continue in
the residual graph. The reason why it takes at most ∆ + 1 iterations is that for every node v that
remains it must hold that for at least one incident hyperedge all incident nodes except v joined the
set, and hence the degree of v decreases by at least 1.

Open Problem 1. What is the distributed complexity of O(∆)-unique-maximum coloring?

It could be that our algorithms are actually optimal, and that the current lower bound is not
tight. Another possibility is that there is a fast algorithm, that is not based on first computing a
unique-maximum coloring. Hence, we leave as open question determining the exact complexity of
hypergraph MIS.

Open Problem 2. Is it possible to solve hypergraph MIS in O(∆ + log∗ n)? What are the possible
tradeoffs between r and ∆ in the complexity of hypergraph MIS, when restricting the n dependency
to be O(log∗ n)?

Finally, proofs based on round elimination are getting harder and harder. We believe that there
is still a lot to be understood about the round elimination technique. Specifically, it would be nice
to find a way to prove round elimination statements without writing a tedious case analysis. We
leave as an open question finding simpler ways to apply round elimination.

Open Problem 3. Is there a way to apply round elimination that does not require to write
complicated proofs?

References

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[AGLP89] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Net-
work decomposition and locality in distributed computation. In Proc. 30th Symp. on
Foundations of Computer Science (FOCS), pages 364–369, 1989.

[AH05] Geir Agnarsson and Magnús M. Halldórsson. Strong colorings of hypergraphs. In
Approximation and Online Algorithms, 2005.

[BBE+20] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis
Olivetti, and Jukka Suomela. Classification of distributed binary labeling problems. In
Proc. 34th Symp. on Distributed Computing (DISC), 2020.

53

[BBH+19] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and
Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets.
In Proc. 60th IEEE Symp. on Foundations of Computer Science (FOCS), pages 481–497,
2019.

[BBKO21] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Improved dis-
tributed lower bounds for MIS and bounded (out-)degree dominating sets in trees. In
Proc. 40th ACM Symposium on Principles of Distributed Computing (PODC), 2021.

[BBKO22] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed
∆-coloring plays hide-and-seek. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, (STOC 2018), 2022.

[BBO20] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for
ruling sets. In Proc. 61st IEEE Symp. on Foundations of Computer Science (FOCS),
pages 365–376, 2020.

[BEG18] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆+
1)-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization
and to restricted-bandwidth models. In Proc. 37th ACM Symp. on Principles of
Distributed Computing (PODC), pages 437–446, 2018.

[BEK14] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-Coloring in
Linear (in ∆) Time. SIAM Journal on Computing, 43(1):72–95, 2014.

[BEPS12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. In Proc. 53rd IEEE Symp. on Foundations of Computer
Science (FOCS), pages 321–330, 2012.

[BFH+16] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,
Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász
local lemma. In Proceedings of the 48th ACM Symposium on Theory of Computing
(STOC 2016), pages 479–488. ACM Press, 2016.

[BGHS17] Ioana O. Bercea, Navin Goyal, David G. Harris, and Aravind Srinivasan. On computing
maximal independent sets of hypergraphs in parallel. ACM Trans. Parallel Comput.,
3(1), 2017.

[BGKO22] Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, and Dennis Olivetti. Node and Edge
Averaged Complexities of Local Graph Problems. In Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing (PODC), 2022.

[BKR+21] Sebastian Brandt, Barbara Keller, Joel Rybicki, Jukka Suomela, and Jara Uitto. Efficient
load-balancing through distributed token dropping. In Proc. 33rd ACM Symp. on
Parallelism in Algorithms and Architectures (SPAA), pages 129–139, 2021.

[BL90] Paul Beame and Michael Luby. Parallel search for maximal independence given minimal
dependence. In Proc. 1st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
212–218, 1990.

[BO20] Sebastian Brandt and Dennis Olivetti. Truly tight-in-∆ bounds for bipartite maximal
matching and variants. In Proc. 39th ACM Symp. on Principles of Distributed Computing
(PODC), pages 69–78, 2020.

54

[Bra19] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 379–388, 2019.

[CFK+07] Ke Chen, Amos Fiat, Haim Kaplan, Meital Levy, Jǐŕı Matoušek, Elchanan Mossel,
János Pach, Micha Sharir, Shakhar Smorodinsky, Uli Wagner, and Emo Welzl. Online
conflict-free coloring for intervals. SIAM Journal on Computing, 36(5):1342–1359, 2007.

[CFP+21] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. A topological perspective on distributed network algorithms. Theor.
Comput. Sci., 849:121–137, 2021.

[CH03] A. Czygrinow and M. Hańćkowiak. Distributed algorithm for better approximation of
the maximum matching. In Proc. 9th Annual Int. Computing and Combinatorics Conf.
(COCOON), pages 242–251, 2003.

[CHSW12] Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska, and Wojciech Wawrzyniak.
Distributed 2-approximation algorithm for the semi-matching problem. In Proc. 26th
Symp. on Distributed Computing (DISC), pages 210–222, 2012.

[CKP12] Panagiotis Cheilaris, Balázs Keszegh, and Dömötör Pálvölgyi. Unique-maximum and
conflict-free coloring for hypergraphs and tree graphs. In SOFSEM 2012: Theory and
Practice of Computer Science, 2012.

[CR12] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for
renaming: The upper bound. J. ACM, 59(1):3:1–3:49, 2012.

[FGK17] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-
coloring via hypergraph maximal matching. In Proc. 58th IEEE Symp. on Foundations
of Computer Science (FOCS), pages 180–191, 2017.

[FHK16] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In
Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS), pages 625–634,
2016.

[Fis17] Manuela Fischer. Improved deterministic distributed matching via rounding. In Proc.
31st Symp. on Distributed Computing (DISC), pages 17:1–17:15, 2017.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic
network decomposition. In Proc. 32nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2904–2923, 2021.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2016), pages 270–277, 2016.

[GHK18] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. 59th Symp. on Foundations of Computer Science (FOCS), pages
662–673, 2018.

[GKM17] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proc. 49th ACM Symp. on Theory of Computing (STOC), pages
784–797, 2017.

55

[GKMU18] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic distributed
edge-coloring with fewer colors. In Proc. 50th ACM Symposium on Theory of Computing
(STOC), pages 418–430, 2018.

[Har19] David G. Harris. Derandomized concentration bounds for polynomials, and hypergraph
maximal independent set. ACM Trans. Algorithms, 15(3), 2019.

[Har20] David G. Harris. Distributed local approximation algorithms for maximum matching in
graphs and hypergraphs. SIAM J. Comput., 49(4):711–746, 2020.

[HK73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[HKP98] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed
complexity of computing maximal matchings. In Proc. 9th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 219–225, 1998.

[HKP01] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed
complexity of computing maximal matchings. SIAM Journal on Discrete Mathematics,
15(1):41–57, 2001.

[HKR13] Maurice Herlihy, Dimitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing
Through Combinatorial Topology. Morgan Kaufmann, 2013.

[HMP+16] David G. Harris, Ehab Morsy, Gopal Pandurangan, Peter Robinson, and Aravind
Srinivasan. Efficient computation of sparse structures. Random Struct. Algorithms,
49(2):322–344, 2016.

[HS99] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999.

[HS05] Sariel Har-Peled and Shakhar Smorodinsky. Conflict-free coloring of points and simple
regions in the plane. Discret. Comput. Geom., 34(1):47–70, 2005.

[HV06] S. Hougardy and D. E. Drake Vinkemeier. Approximating weighted matchings in
parallel. Inf. Process. Lett., 99(3):119–123, 2006.

[II86] Amos Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters, 22(2):77–80, 1986.

[Kel92] Pierre Kelsen. On the parallel complexity of computing a maximal independent set
in a hypergraph. In Proc. 24th ACM Symp. on Theory of Computing (STOC), pages
339–350, 1992.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed
locally! In Proc. 23rd ACM Symp. on Principles of Distributed Computing (PODC),
pages 300–309, 2004.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. Journal of ACM, 63:17:1–17:44, 2016.

56

[KMW18] Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling
sets of line graphs. In Structural Information and Communication Complexity - 25th
International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21,
2018, Revised Selected Papers, pages 193–208, 2018.

[KNPR14] Shay Kutten, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Dis-
tributed symmetry breaking in hypergraphs. In Proc. 28th Symp. on Distributed
Computing (DISC), pages 469–483, 2014.

[Kuh09] Fabian Kuhn. Local weak coloring algorithms and implications on deterministic symme-
try breaking. In Proc. 21st ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), 2009.

[KUW88] Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. J.
Comput. Syst. Sci., 36(2):225–253, 1988.

[KZ18] Fabian Kuhn and Chaodong Zheng. Efficient distributed computation of MIS and
generalized MIS in linear hypergraphs. CoRR, abs/1805.03357, 2018.

[Lin87] Nathan Linial. Distributive graph algorithms – Global solutions from local data. In
Proc. 28th Symp. on Foundations of Computer Science (FOCS 1987), pages 331–335.
IEEE, 1987.

[Lin92] Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LPP15] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching.
J. ACM, 62(5):38:1–38:17, 2015.

[LS93] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–
454, 1993.

[LS97] Tomasz Luczak and Edyta Szymanska. A parallel randomized algorithm for finding a
maximal independent set in a linear hypergraph. J. Algorithms, 25(2):311–320, 1997.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15(4):1036–1053, 1986.

[LW11] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In Proceedings of the 2011
Annual ACM Symposium on Principles of Distributed (PODC), pages 41–48, 2011.

[MT20] Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists.
In 34th International Symposium on Distributed Computing, DISC, pages 16:1–16:18,
2020.

[Nao91] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991.

[Oli19] Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation, 2019.

[PR01] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse
networks. Distributed Computing, 14(2):97–100, 2001.

57

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity of Distributed
Network Decomposition. Journal of Algorithms, 20(2):356–374, 1996.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network
decomposition and distributed derandomization. In Proc. 52nd ACM Symp. on Theory
of Computing (STOC), pages 350–363, 2020.

[SZ00] Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM J. Comput., 29(5):1449–1483, 2000.

58

	1 Introduction and Related Work
	1.1 Our Contributions
	1.2 Road Map

	2 High-Level Overview of the Lower Bound
	3 Definitions and Notation
	3.1 The LOCAL Model
	3.2 The Automatic Round Elimination Framework
	3.3 Automatic Round Elimination Technique

	4 Lower Bounds for Hypergraph Colorings
	4.1 The -Hypergraph Coloring Problem.
	4.2 The -Hypergraph Coloring Fixed Point.
	4.3 Proving the Lower Bounds
	4.4 Relations Between Labels
	4.5 Computing `39`42`"613A``45`47`"603AR()
	4.6 Computing `39`42`"613A``45`47`"603AR(`39`42`"613A``45`47`"603AR())
	4.7 Renaming

	5 Lower Bound for Hypergraph MM
	5.1 Analogies and Differences with the Hypergraph Coloring Lower Bound
	5.2 The Problem Family
	5.3 Proving the Lower Bounds
	5.4 Relations Between Labels
	5.5 Computing `39`42`"613A``45`47`"603AR((z,s))
	5.6 Computing `39`42`"613A``45`47`"603AR(`39`42`"613A``45`47`"603AR((z,s)))
	5.7 Renaming

	6 Deterministic Upper Bounds for Hypergraph MIS
	6.1 Slow-in- Algorithm
	6.2 (Almost) Independent-of-r Algorithm
	6.2.1 The Case =2.
	6.2.2 Generalization for > 2

	7 Open Questions

