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Abstract

We study the generalized load-balancing (GLB) problem, where we are given n jobs, each of which
needs to be assigned to one of m unrelated machines with processing times {pij}. Under a job assignment
σ, the load of each machine i is ψi(pi[σ]) where ψi : Rn → R≥0 is a symmetric monotone norm and pi[σ]
is the n-dimensional vector {pij · 1[σ(j) = i]}j∈[n]. Our goal is to minimize the generalized makespan
φ(load(σ)), where φ : Rm → R≥0 is another symmetric monotone norm and load(σ) is the m-dimensional
machine load vector. This problem significantly generalizes many classic optimization problems, e.g.,
makespan minimization, set cover, minimum-norm load-balancing, etc.

We obtain a polynomial time randomized algorithm that achieves an approximation factor of O(logn),
matching the lower bound of set cover up to constant factor. We achieve this by rounding a novel con-
figuration LP relaxation with exponential number of variables. To approximately solve the configuration
LP, we design an approximate separation oracle for its dual program. In particular, the separation oracle
can be reduced to the norm minimization with a linear constraint (NormLin) problem and we devise a
polynomial time approximation scheme (PTAS) for it, which may be of independent interest.

1 Introduction

In the generalized load-balancing (GLB) problem, we are given a set M of m unrelated machines, a set J of
n jobs. Let pij > 0 be the processing time of job j ∈ J on machine i ∈ M, and we denote pi = {pij}j∈J .
Suppose σ : J →M is an assignment of all jobs to machines. Under assignment σ, we use pi[σ] to denote
the n-dimensional vector {pij · 1[σ(j) = i]}j∈J (i.e., we zero out all entries of pi that are not assigned to i).
The load of machine i is define to be loadi(σ) = ψi(pi[σ]), where ψi : Rn → R≥0 is a symmetric monotone
norm1 for each i ∈ M, called the inner norms. We define the generalized makespan of assignment σ as
Φ(σ) = φ(load(σ)) where load(σ) = {loadi(σ)}i∈M ∈ Rm≥0 (called the load vector) and φ : Rm → R≥0 is
another symmetric monotone norm, called the outer norm. Our goal is to find an assignment σ such that
the generalized makespan Φ(σ) is minimized.

Many special cases of GLB have been studied in the setting of unrelated machine scheduling. The classic
makespan minimization problem is one such example, where φ = L∞ and ψi = L1 for each i ∈ M. For
any α < 3/2, there is no α-approximation algorithm for makespan minimization unless P = NP [21], while
improving the current best approximation ratio of 2 [21, 26] remains a longstanding open problem. Several
variants of makespan minimization with the objective being the general Lp norm of the load vector (i.e.,
φ = Lp and ψi = L1) have also been studied extensively. Constant approximations are known [1, 5, 19, 24],
with better-than-two factors depending on p. Recently, Chakrabarty and Swamy [10] proposed the minimum-
norm load-balancing (MinNormLB) problem, which significantly generalizes makespan minimization and its
Lp norm variants. In MinNormLB the outer norm can be a general symmetric monotone norm, but each
inner norm is still ψi = L1. They provided an LP-based constant factor approximation algorithm. The
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1Recall ψ : RX → R≥0 is a norm if: (i) ψ(u) = 0 if and only if u = 0, (ii) ψ(u + v) ≤ ψ(u) + ψ(v) for all u,v ∈ RX , (iii)

ψ(θu) = |θ|ψ(u) for all u ∈ RX , θ ∈ R. A norm ψ is monotone if ψ(u) ≤ ψ(v) for all 0 ≤ u ≤ v, and symmetric if ψ(u) = ψ(u′)
for any permutation u′ of u.
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approximation factor was subsequently improved to (4 + ε) in [11], and the current best result is a (2 + ε)-
approximation [17], almost matching the best-known guarantee for makespan minimization.

Although the outer norm has been studied extensively, the inner norm has received relatively less attention
except the L1 case. However, other inner norms can be naturally motivated. One example is the L∞ norm,
which can model the RAM size lower bound for each machine, if we view the job sizes {pij} as RAM size
requirements and process the assigned jobs sequentially. Other Lp norms may be used for minimizing average
latency [5], energy efficient scheduling [24], etc.

Before stating our results for GLB, we discuss a line of closely related problems. Here the load of machine
i is defined by a submodular set function mapping the assigned jobs σ−1(i) to a scalar. Svitkina and
Fleischer [28] study this problem where the outer norm is φ = L∞ and show that there is no polynomial time
algorithm that can achieve an approximation ratio of o(

√
n/ log n). They also provide a factor O(

√
n log n)

approximation algorithm. When φ = L1, the problem is known as the minimum submodular-cost allocation
problem [12], and admits a tight O(log n)-approximation, with set cover being its special case [29]. This
result implies a nontrivial approximation for the following setting of GLB. Let Topk be the top-k norm
defined as follows: for any vector u ≥ 0, Topk (u) outputs the sum of the k largest entries in u. For each
J ⊆ J , define pi[J ] = {pij · 1[j ∈ J ]}j∈J . It is easy to verify that f(J) = Topki (pi[J ]) is a submodular
set function for each ki ∈ [n] and pi ≥ 0. Thus, GLB with φ = L1 and ψi = Topki can be reduced to the
minimum submodular-cost allocation problem and we readily obtain an O(log n)-approximation using the
result in [29].

However, the reduction above does not work for general symmetric monotone inner norm ψi, since a
general symmetric monotone norm does not necessarily induce a submodular set function. For example, let
ψi(u) = max{2 Top1 (u) ,Top3 (u)}, and pi = 1n (all processing time pij = 1). It is easy to see that ψi
is indeed a symmetric monotone norm. However, assigning job-sets {j1}, {j1, j}, {j1, j2}, {j1, j2, j} incurs
loads 2, 2, 2, 3, respectively. The property of diminishing marginal returns (see, e.g., [14]) is violated and the
function f(J) = ψi(pi[J ]) is not submodular.

1.1 Our Contributions

Motivated by the recent progress on unrelated machine scheduling problems with more general objectives,
we study GLB systematically with different combinations of inner norms and outer norms. A summary of
known and new results can be found in Figure 1.

The first natural question is whether it is possible to obtain constant factor approximation algorithms for
GLB with general outer and inner norms. However, it is not difficult to see an Ω(log n) lower bound for GLB,
even when ψi = L∞ and φ is simply the L1 norm, via reduction from the unweighted set cover problem.
Formally, in an unweighted set cover instance, we are given a family of m subsets S = {S1, S2, . . . , Sm} of
[n], and the goal to find I ⊆ [m] with minimum cardinality such that

⋃
i∈I Si = [n]. We identify m machines

with [m] and n jobs with [n]. For each machine i ∈ [m] and job j ∈ [n], define the job size pij = 1 if j ∈ Si,
and ∞ if j /∈ Si. The inner norms are ψi = L∞ for each i ∈ M, and the outer norm φ is simply the L1

norm. It is easy to verify that, any assignment σ with a finite generalized makespan Φ(σ) corresponds to a
solution Iσ = {i ∈ [m] : σ−1(i) 6= ∅} to the set cover instance with the same objective, and vice versa. Using
the NP-hardness of approximating set cover [13], we obtain the following theorem.

Theorem 1. For every fixed constant ε > 0, it is NP-hard to approximate GLB within a factor of (1−ε) lnn,
even when φ = L1 and ψi = L∞ for each i ∈M.

On the positive side, we show, somewhat surprisingly, that GLB with general inner and outer norms,
admits an O(log n) factor approximation algorithm, almost matching the approximability of set cover, a
very special case of GLB. This is the main technical result of this paper.

Theorem 2. There exists a polynomial time randomized algorithm for GLB that, with high probability,
outputs an O(log n)-approximate solution.

We also study another special case. In particular, we obtain an LP-based (3 + ε)-approximation for the
special case where the outer norm φ is L∞, and the inner norm is ψi = Topki , ki ∈ [n] for each machine
i ∈M. We provide details of this algorithm (Theorem 13) in the appendix.
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Machine load
(inner norm ψi)

Generalized makespan (outer norm φ)

L1 (SUM) L∞ (MAX) SymMonNorm

L1 (SUM) trivial
LB: 3/2 [21];
UB: 2 [21, 26]

LB: 3/2 [21];
UB: 2 + ε [17]

L∞ (MAX) LB: (1− ε) lnn
(Theorem 1);

UB: O(log n) [29]

trivial
LB: (1− ε) lnn

(Theorem 1);

UB: O(log n)
(Theorem 2)

Topki norm
LB: 3/2 [21]; UB: 3 + ε

(Theorem 13)

SymMonNorm

LB: (1− ε) lnn
(Theorem 1);

LB: 3/2 [21];

UB: O(log n) (Theorem 2)

Figure 1: A summary of GLB cases with different objectives, where n is the number of given jobs. LB (lower
bound) represents known inapproximability results, and UB (upper bound) represents current approximation
guarantees. SymMonNorm refers to symmetric monotone norms.

Overview of our algorithm for Theorem 2. We devise a randomized rounding algorithm based on
a novel configuration LP. A configuration is an arbitrary set of jobs. We create variables xi,J ∈ [0, 1] for
each i ∈ M and J ⊆ J , indicating whether J is the configuration of i. Our goal is to obtain a fractional

solution x ∈ [0, 1]M×2
J

, such that its generalized makespan is bounded by some unknown optimal solution.
To this end, using a standard technique (see, e.g., [10, 17]), we guess a logarithmic number of constraints,
also referred to as “budget constraints”, and guarantee that at least one such guess produces a feasible LP
that leads to a good approximate solution. We also add various ingredients to facilitate the later rounding
procedure, by restricting the support size of vertex solutions, and including parameters to tighten and relax
the constraints.

Though the number of variables is exponential, there are only a polynomial number of constraints, thus we
consider solving its dual. Unfortunately, the dual constraints are difficult to separate exactly, so we consider
approximate separation on another parameterized linear program Q, and employ the following round-or-cut
framework, which has recently been a powerful tool in the design of approximation algorithms (see, e.g.,
[2, 8, 9]): Suppose given any candidate dual solution y, we either find a violated constraint of Q, or certify
that another differently parameterized program Q′ is feasible, then the ellipsoid algorithm, in polynomial
time, either concludes that Q is infeasible, or that Q′ is feasible. By establishing an equivalence between
the feasibility of Q (also Q′) and the original relaxation, and enumerating all possible Q, we can solve the
primal relaxation up to a constant accuracy.

We use randomized rounding on the primal solution similar to weighted set cover (see, e.g., [30]), and as-
sign all jobs with high probability. At this junction, we isolate two factors that affect the final approximation
guarantee. The first arises from assigning multiple distinct configurations to the same machine, incurring a
proportional approximation factor. The second comes from the violation of budget constraints in the primal
relaxation by the integral solution, and the approximation ratio is proportional to the maximum factor of
violation. These two factors add up to O(log n) in the rounding analysis, yielding our main result.

Finally, we highlight a useful subroutine for the so-called norm minimization with a linear constraint
(NormLin) problem, which we employ in the approximate separation oracle. Roughly speaking, NormLin gen-
eralizes the min-cost version of the knapsack problem with a value lower bound, using a symmetric monotone
norm objective (see Section 4 for the precise definition). We devise a polynomial time approximation scheme
(PTAS) for NormLin. To the best of our knowledge, this is the first known approximation algorithm for this
problem, which may be useful in other context. Svitkina and Fleischer [28] consider a similar problem, where
the objective is a submodular set function. They show a lower bound of Ω(

√
n/ log n) (for any bi-criteria

approximation), even for monotone submodular functions and 0-1 values.
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1.2 Related Work

In a closely related simultaneous optimization problem, one seeks a job assignment incurring a load vector
that simultaneously approximates all optimums under different outer norms. Though no simultaneous α-
approximate solutions exist for unrelated machines for any constant α, even for simple ψi = L1 inner norms
[6], Alon et al. [1] give an algorithm in the case of restricted assignment (i.e., each job has a fixed size but
can only be assigned to a subset of machines) and unit-size jobs, which is simultaneously optimal for all Lp
norms. Azar et al. [6] extend this result to a simultaneous 2-approximation for all Lp norms under restricted
assignment. This is generalized to a simultaneous 2-approximation (again in the restricted assignment
setting) for all symmetric monotone norms by Goel and Meyerson [16].

Another relevant result is the generalized machine activation problem introduced by Li and Khuller [22],
where a machine activation cost is incurred for each machine i, by applying a non-decreasing, piece-wise linear
function ωi : R≥0 → R≥0 on the sum of job sizes assigned to i. They achieve a bi-criteria approximation
guarantee on fractional solutions, and obtain various almost-tight application results.

The configuration LP is used in many allocation/assignment optimization problems, for example, the
Santa Claus problem and fair allocation of indivisible goods [3, 4, 7, 15], and restricted scheduling on
unrelated machines [18, 27].

1.3 Organization

We start by stating some notations and preliminaries in Section 2. In Section 3, we present our main LP-
rounding algorithm, and the proof of Theorem 2. We provide the details of the approximate separation
oracle in Section 4. Finally, we provide a constant factor approximation algorithm for a special case of GLB
in the appendix.

2 Preliminaries

Throughout this paper, for vector u ∈ RX≥0, define u↓ as the non-increasingly sorted version of u, and

u[S] = {uj · 1[j ∈ S]}j∈X for each S ⊆ X . Let Topk : RX → R≥0 be the top-k norm that returns the sum
of the k largest absolute values of entries in any vector, k ≤ |X |. Denote [n] as the set of positive integers
no larger than n ∈ Z, and a+ = max{a, 0}, a ∈ R.

Claim 3. ([17]). For each n-dimensional vector u ≥ 0 and k ∈ [n], one has

Topk (u) = min
t≥0

{
kt+

∑
j∈[n]

(uj − t)+
}

= ku↓k +
∑
j∈[n]

(uj − u↓k)+,

i.e., the minimum is attained at the k-th largest entry of u.

The following lemma is due to Goel and Meyerson [16].

Lemma 4. ([16]). If u,v ∈ RX≥0 and α ≥ 0 satisfy Topk (u) ≤ α · Topk (v) for each k ≤ |X |, one has

ψ(u) ≤ α · ψ(v) for any symmetric monotone norm ψ : RX → R≥0.

We need the following Chernoff bounds.

Lemma 5. (Chernoff bounds (see, e.g., [25])). Let X1, . . . , Xn be independent Bernoulli variables with
E[Xi] = pi. Let X =

∑n
i=1Xi and µ = E[X] =

∑n
i=1 pi. For ν ≥ 6µ, one has Pr[X ≥ ν] ≤ 2−ν .

3 The Generalized Load Balancing Problem

In this section, we study GLB and prove Theorem 2. For clarity of presentation, we have not optimized the
constant factors.
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3.1 The Configuration LP

Our algorithm is based on rounding polynomial many configuration LPs. In each configuration LP, instead of
using the natural xij variables to indicate the job assignment, e.g., [21, 26], we create variables xi,J ∈ [0, 1]
for each i ∈ M and J ⊆ J , indicating whether J is the set of jobs assigned to i. Similar configuration
variables have been used in other allocation/assignment optimization problems [3, 4, 7, 15, 18, 27].

Fix an unknown optimal assignment σ? : J → M. Let o = load(σ?) ∈ Rm≥0 be the optimal load
vector and opt = φ(o) be the optimal objective thereof. We need to guess certain characteristics of the
optimal solution (we will show there are polynomial many possible guesses), and for each guess we write a
configuration LP P-LB(R, λ, τ). Here R, λ, τ are the parameters we need to adjust, and we explain them
later.

We first explain constraints (P-LB .1), which can be used to bound the φ-norm. Using Lemma 4, to obtain
an O(log n)-approximate solution, it suffices to obtain a load vector load(σ) ∈ Rm≥0 such that Topk (load(σ))
is bounded by O(log n) ·Topk (o) for each k ∈ [m]. Rather than bounding the top-k norms for each k, we use
the trick developed in [10, 17], focusing on a subset of geometrically-placed indexes of [m], e.g., all integer
powers of 2 smaller than m. Let POS ⊆ [m] be this index subset (which we define formally later). Our LP
seeks a fractional solution that (roughly) has Topk norm at most Topk (o) for each k ∈ POS.

min 0 (P-LB(R, λ, τ))

s.t. kρk +
∑

i∈M,J⊆J
(h(ψi(J)/τ)− ρk)

+
xi,J ≤ Topk (~%) ∀k ∈ POS (P-LB .1)

∑
J⊆J

xi,J ≤ 1 ∀i ∈M (P-LB .2)

∑
i∈M,J3j

xi,J ≥ λ ∀j ∈ J (P-LB .3)

∑
(i,J):ψi(J)>τ

xi,J ≤ 0 (P-LB .4)

∑
i∈M,J⊆J

xi,J ≤ n (P-LB .5)

x ≥ 0.

To write linear constraints on such Topk norms, we utilize Claim 3 and work with close estimates of

o↓k, k ∈ POS, denoted by vector R = {ρk}k∈POS ∈ RPOS
≥0 (formally defined later). With a slight abuse

of notation, denote ψi(J) = ψi(pi[J ]) as the ψi-norm of assigning job-set J to machine i. We use kρk +∑
i∈M,J⊆J (ψi(J)−ρk)+xi,J to represent the Topk norm of LP solution x. We also use a certain “expansion”

~% ∈ Rm≥0 of {ρk}k∈POS (proposed in [17]) as an upper bound vector, as shown in constraint (P-LB .1).
We need another important ingredient, that is to tighten the above-mentioned Topk norm constraints by

rounding up each ψi(J) to the nearest value in R. Let h : R≥0 → R≥0 be this round-up function determined
by R (See Fig. 2). Though this may create an unbounded gap between h(ψi(J)) and ψi(J), the new LP is
still feasible under suitable parameters. This rounding-up process is technically useful in our final analysis
of randomized rounding.

The configuration LP is parameterized by R (therefore ~% and h are also determined), a constant 0 ≤ λ ≤ 1
and a parameter τ ≥ 1. As explained above, the constraints (P-LB .1) are for bounding Topk norms. Note
that each ψi(J) is scaled by τ−1 ≤ 1, due to our approximate procedure of solving the LP (see Section 3.2).
(P-LB .2) says each machine can be selected to an extent of at most 1. (P-LB .3) says each job needs to be
assigned to an extent of at least λ ≤ 1, relaxed again because of our approximate procedure. In (P-LB .4),
each assignment (i, J) that incurs a cost larger than τ is set to 0 (similar to the parametric pruning trick
used in classic unrelated machine scheduling problems [21, 26]). In (P-LB .5), the total extent of assignment
over all possible (i, J) is at most n, because there are only n jobs. This constraint, together with (P-LB .2),
further limits the support size of vertex solutions, which will be crucial for optimizing our approximation
ratio. We also have the obvious constraints x ≥ 0.
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ϱ⃗

ρ1 ρ2 ρ4 ρ8 ρ16

2−1

2−2

2−4

2−10

(a) ~% ∈ R16
≥0, where the entries are non-increasing and rep-

resented using rectangles with unit width.

y

x

2−10

2−4

2−2

2−1

20

2−10 2−4 2−2 2−1 20

h(x)

y = x

(b) The round-up function h. The axes are both
in logarithmic scale.

Figure 2: An example when m = 16 and POS = {1, 2, 4, 8, 16}. Here our guess is R =
(2−1, 2−2, 2−4, 2−4, 2−10), which induces its expansion ~% and the corresponding round-up function h.

The guessing step. We need some additional notations. Let POS = {min{2s,m} : s ∈ Z≥0}. We have
1,m ∈ POS, POS ⊆ [m] and |POS| ≤ log2m+ 2. For each k ∈ [m], define next(k) as the smallest number in
POS that is larger than k, and next(m) = m+ 1; prev(k) as the largest number in POS that is smaller than
k, and prev(1) = 0.

Recall σ? is an optimal assignment. We guess the machine i? with the largest loadi?(σ?), and the job
j? = arg maxσ?(j)=i? pi?j (i.e., j? is the job assigned to machine i? with largest processing time). Assume
w.l.o.g. that ψi?({j?}) = 1/n. Since the norms are monotone, one has loadi(σ

?) ≤ ψi?(pi?j? · 1n) ≤
n · ψi?(pi?j? · ej?) = n · ψi?({j?}) = 1 for each i ∈ M, where ej? is the zero vector except that the j?-th
coordinate is 1. Thus, we can assume o ∈ [0, 1]m in the following discussion. In the remainder of this section,
we assume i? and j? are correctly guessed (it is easy to see there are only polynomial number of possible
guesses).

We now guess a non-increasing vector R = {ρk}k∈POS ∈ RPOS
≥0 , where

(i) each ρk is an integer power of 2 in [1/(2mn), 1],

(ii) there are at most log2 n+ 4 distinct entries in R.

The length is |POS| = O(logm) and the number of possible values is the number of integer powers of 2
in [1/(2mn), 1], which is O(log(mn)). The number of such possible non-increasing vectors is at most the
number of natural number (i.e., Z≥0) solutions to the simple equation n1 +n2 + · · ·+nO(log(mn)) = O(logm),

thus
(
O(log(mn))
O(logm)

)
≤ 2O(log(mn)) = (mn)O(1).

We do not make any additional assumptions on R for now. For each R, we define a non-increasing vector
~% ∈ Rm≥0 as its expansion (similar to [17]), and a non-decreasing function h : R≥0 → R≥0 satisfying h(x) ≥ x
for x ≥ 0 (see Fig. 2 for an example), where

~%k =

{
ρk k ∈ POS
ρprev(k) k /∈ POS,

h(x) =

 min{t ∈ R : t ≥ x} x ≤ max{t ∈ R}
1 x ∈ (max{t ∈ R}, 1]
x x > 1.

The dual program. The number of variables in P-LB(R, λ, τ) is exponential but the number of
constraints is polynomial, thus we consider its dual as follows, and try to solve it using the ellipsoid method.
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The dual variables are {rk}k∈POS, {yi}i∈M, {zj}j∈J , s, t.

max −
∑
k∈POS

(Topk (~%)− kρk) rk −
∑
i∈M

yi + λ
∑
j∈J

zj − nt (D-LB(R, λ, τ))

s.t.
∑
j∈J

zj − yi −
∑
k∈POS

(h(ψi(J)/τ)− ρk)
+
rk ≤ s · 1[ψi(J) > τ ] + t ∀i ∈M, J ⊆ J

r, s, t, y, z ≥ 0.

It is unclear how to separate the dual constraints exactly. We transform D-LB(R, λ, τ) into another
feasibility problem that is easier to deal with. We observe the following: if P-LB(R, λ, τ) is feasible, the
optimum of D-LB(R, λ, τ) is also zero. Because the dual program has a trivial zero solution and the con-
straints are scale-invariant (i.e., if (r, s, t, y, z) is feasible, (cr, cs, ct, cy, cz) is feasible for any c ≥ 0), it either
has optimum zero or is unbounded. Thus P-LB(R, λ, τ) is feasible if and only if D-LB(R, λ, τ) is bounded,
which is equivalent to the following polytope being empty.{

(r, s, t, y, z) ≥ 0
∣∣ (Q(R, λ, τ))

−
∑
k∈POS

(Topk (~%)− kρk) rk −
∑
i∈M

yi + λ
∑
j∈J

zj − nt ≥ 1;

− yi ≤ s · 1[ψi(J) > τ ] + t+
∑
k∈POS

(h(ψi(J)/τ)− ρk)
+
rk −

∑
j∈J

zj , ∀i ∈M, J ⊆ J
}
.

Observation 6. P-LB(R, λ, τ) is feasible if and only if Q(R, λ, τ) is empty.

3.2 Rounding and Analysis

Next, we employ a round-or-cut argument, similar to [2]. Intuitively speaking, we run the ellipsoid algorithm
on a particular Q(R, λ, τ). In each iteration, we either find a separating hyperplane, or directly certify that
another Q(R, λ′, τ ′) is non-empty, which implies that P-LB(R, λ′, τ ′) is infeasible by Observation 6. We
then pick R properly so that the latter cannot happen, therefore certify in polynomial time that Q(R, λ, τ)
is indeed empty. This in turn helps us to efficiently compute a feasible solution to P-LB(R, λ, τ).

For clarity of presentation, we focus on two sets of parameters in the remainder of this section, (λ, τ) ∈
{(1/2, 3/2), (1, 1)}. We emphasize that this only affects the constant factors in the final analysis. We need
the following core lemma on an approximate separation oracle for Q(R, 1/2, 3/2), and defer its proof to
Section 4. The rest of this section is dedicated to the proof of our main theorem.

Lemma 7. Fix R. There exists a polynomial time algorithm that, given (r, s, t, y, z) ≥ 0, either outputs a
violated constraint in Q(R, 1/2, 3/2), or certifies that Q(R, 1, 1) is non-empty.

Proof of Theorem 2. We enumerate all possible estimates R. Consider the choice of R = {ρk}k∈POS such
that the following holds,

(i) ρk ∈ [o↓k, 2o
↓
k) for k ∈ POS s.t. o↓k ≥ o↓1/(2m),

(ii) ρk = 2dlog2(o
↓
1/(2m))e ∈ [o↓1/(2m),o↓1/m] for k ∈ POS s.t. o↓k < o↓1/(2m).

Notice that such a vector is uniquely determined by o. We denote it by R? = {ρ?k}k∈POS. We show that
our exhaustive search is guaranteed to run procedures on R?. First, according to our initial guesses, one has
o↓1 ≥ ψi?({j?}) = 1/n, o↓1 ≤ 1, therefore (recall that each number in R? is an integer power of 2) ρ?1 ≤ 1,

ρ?k ≥ o↓1/(2m) ≥ 1/(2mn) for each k ∈ POS, all falling into our guessing range [1/(2mn), 1]. Then, there
are at most n non-zero entries in o, since the number of jobs is n. Hence, for k ∈ POS and k > n, one has
o↓k = 0, and the number of distinct entries indexed by POS∩ [n] is at most log2 n+ 3. This implies that the
number of distinct entries in R? is at most log2 n+ 4. Suppose R = R? in what follows.

For a starting point (r, s, t, y, z), we repeatedly call the separation oracle in Lemma 7 and use the ellipsoid
algorithm to modify the solution. If the oracle always returns a violated constraint as a separating hyperplane,
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we eventually obtain that, for a polynomial-sized subset H ⊆M× 2J , the following polytope is empty,{
(r, s, t, y, z) ≥ 0

∣∣ (QH(R, 1/2, 3/2))

−
∑
k∈POS

(Topk (~%)− kρk) rk −
∑
i∈M

yi +
1

2

∑
j∈J

zj − nt ≥ 1;

− yi ≤ s · 1[ψi(J) > 3/2] + t+
∑
k∈POS

(h(2ψi(J)/3)− ρk)
+
rk −

∑
j∈J

zj , ∀(i, J) ∈ H
}
.

Following a similar argument as Observation 6, by removing constraints in D-LB(R, 1/2, 3/2) that are indexed
by M× 2J \ H and obtaining a polynomial-sized LP D-LBH(R, 1/2, 3/2), the latter is bounded. Thus, its
dual P-LBH(R, 1/2, 3/2) is feasible with a polynomial number of variables indexed by H. We directly solve
P-LBH(R, 1/2, 3/2) and obtain a vertex solution x̂. It is easy to see that x̂ is feasible to P-LB(R, 1/2, 3/2),
because P-LBH(R, 1/2, 3/2) can be obtained from P-LB(R, 1/2, 3/2) by eliminating all variables that are
NOT indexed by H.

We look at the tight constraints at x̂ among (P-LB .2) and (P-LB .5). If m ≤ n, the number is at most
m+ 1; if m > n, the number of tight ones in (P-LB .2) is at most n, otherwise (P-LB .5) is violated. Hence
there are at most min{m,n} + 1 tight constraints among them at x̂. Since there are at most log2 n + 4
distinct entries in R hence (P-LB .1), the total number of non-trivial tight constraints at x̂ is at most 3n+ 5,
and the support size of x̂ is at most 3n+ 5 (see, e.g., [20]). Denote the support of x̂ by Ĥ ⊆ H.

Another possibility is that, in some iteration of the ellipsoid algorithm, the oracle certifies that Q(R, 1, 1)
is non-empty, and P-LB(R, 1, 1) is infeasible due to Observation 6. We show that this is impossible given
the choice of R = R?. Indeed, we first notice the following.

(i) for k ∈ POS, since ρk ∈ R and ρk ≥ o↓k, we have ~%k = ρk ≥ h(o↓k),

(ii) ~%k = ρprev(k) ≥ h(o↓prev(k)) ≥ h(o↓k) when k /∈ POS,

thus ~% and h(o↓) (apply h element-wise) are both non-increasing and ~% ≥ h(o↓). From the optimal assignment
σ? : J → M, we let x?i,J = 1 if J = {j : σ?(j) = i} and 0 otherwise. Fix k ∈ POS in (P-LB .1) of

P-LB(R, 1, 1). The LHS at x? is kρk +
∑
s∈[m](h(o↓s) − ρk)+ ≤ kρk +

∑
s∈[m] (~%s − ρk)

+
= Topk (~%) , via

Claim 3, the definition of ~%, and that ~% ≥ h(o↓) is non-increasing. Other constraints in P-LB(R, 1, 1) are
easily satisfied by x?. Therefore P-LB(R, 1, 1) must be feasible, a contradiction.

In conclusion, when R = R?, we obtain a feasible solution x̂ to P-LB(R, 1/2, 3/2) with support size
|Ĥ| ≤ 3n + 5. We proceed to use randomized rounding to obtain a feasible assignment of jobs. Let I ← ∅
and T = d6 lnne. For each t = 1, . . . , T and each (i, J) ∈ Ĥ, set I ← I ∪ {(i, J)} independently with
probability x̂i,J .

The Machine Duplicates. For each i ∈ M, we have
∑
J:(i,J)∈Ĥ x̂i,J ≤ 1 using the constraint

(P-LB .2). Therefore for the number of appearances of i in I, one has

E[|{J : (i, J) ∈ I}|] =
∑

J:(i,J)∈Ĥ

1− (1− x̂i,J)T ≤ T
∑

J:(i,J)∈Ĥ

x̂i,J ≤ T,

using Bernoulli’s inequality. Hence, using Chernoff bound in Lemma 5, on random variables 1[(i, J) ∈
I], (i, J) ∈ Ĥ, one has

Pr[|{J : (i, J) ∈ I}| > 6T ] = Pr

 ∑
J:(i,J)∈Ĥ

1[(i, J) ∈ I] > 6T

 ≤ 2−6T ≤ 1/(n24). (1)

Note that since |Ĥ| ≤ 3n+ 5, at most 3n+ 5 machines can possibly have a non-zero number of appearances
in I. For any other machine i, we always have |{J : (i, J) ∈ I}| = 0.
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The Coverage of Jobs. For each j ∈ J , the probability of it not being contained in any selected J
in I is ∏

(i,J)∈Ĥ:J3j

(1− x̂i,J)T ≤
∏

(i,J)∈Ĥ:J3j

exp(−T x̂i,J)

= exp
(
− T

∑
(i,J)∈Ĥ:J3j

x̂i,J

)
≤ exp(−T/2) ≤ 1/n3, (2)

where we use (P-LB .3) and obtain
∑

(i,J)∈Ĥ:J3j x̂i,J ≥ 1/2 in the penultimate inequality.

The Norm Constraints. According to (P-LB .4), x̂i,J > 0 implies ψi(J) ≤ 3/2 thus h(2ψi(J)/3) ≤
h(1) = 1. Define subsets Ĥt = {(i, J) ∈ Ĥ : h(2ψi(J)/3) = 2t} where t = 0 or 2t is an entry in R. Let the
subsets be indexed by t ∈ PWR ⊆ Z≤0, then |PWR| ≤ log2 n + 5 since there are at most log2 n + 4 distinct

entries in R, and
⋃
t∈PWR Ĥt = Ĥ because h(2ψi(J)/3) ≤ 1 for each (i, J) ∈ Ĥ. For each t ∈ PWR, we define

a random variable Yt = |Ĥt ∩ I| and obtain

E[Yt] =
∑

(i,J)∈Ĥt

1− (1− x̂i,J)T ≤ T
∑

(i,J)∈Ĥt

x̂i,J ,

via Bernoulli’s inequality. Using Markov’s inequality, with probability at least 1/2, one has Yt ≤ 2E[Yt].
Since these (at most) log2 n+ 5 random variables {Yt : t ∈ PWR} are independent, there is a probability at
least 1/(32n) that Yt ≤ 2E[Yt] for all t ∈ PWR. Suppose this happens. Then for each k ∈ POS, because x̂
satisfies (P-LB .1), we have∑

(i,J)∈I
(h(2ψi(J)/3)− ρk)+ =

∑
t∈PWR

∑
(i,J)∈I∩Ĥt

(2t − ρk)+ =
∑
t∈PWR

Yt · (2t − ρk)+

≤
∑
t∈PWR

2E[Yt](2
t − ρk)+ ≤ 2T

∑
t∈PWR

∑
(i,J)∈Ĥt

x̂i,J(2t − ρk)+ ≤ 2T (Topk (~%)− kρk) . (3)

Putting it all together. Using (1)(2)(3) and the union bound, for large enough n, with probability
at least 1/(32n)− (3n+ 5)/(n24)− 1/n2 ≥ 1/(64n), the following facts hold:

(a) for each i ∈M, |{J : (i, J) ∈ I}| ≤ 6T ≤ 38 lnn,

(b) for each j ∈ J , ∃(i, J) ∈ I s.t. j ∈ J ,

(c) for each k ∈ POS,
∑

(i,J)∈I (h(2ψi(J)/3)− ρk)
+ ≤ 14 lnn (Topk (~%)− kρk).

We repeat the randomized rounding 64n times, and boost the success probability to at least 1 − (1 −
1/(64n))64n ≥ 1 − e−1 ≥ 0.6. Suppose (a)(b)(c) hold in the rest of this section. Next, we merge all
configurations that are identified with the same machine in I, that is, Ji ←

⋃
J:(i,J)∈I J and

⋃
i∈M Ji = J

according to (b). We only merge O(log n) configurations for each machine using (a). We also have the
following subadditivity

ψi(J1) + ψi(J2) ≥ ψi(pi[J1] + pi[J2]) ≥ ψi(pi[J1 ∪ J2]) = ψi(J1 ∪ J2),

from the triangle inequality on the norm ψi, and s+ + t+ ≥ (s+ t)+ for any s, t ∈ R. Since h(x) ≥ x for all
x ≥ 0, one has for each k ∈ POS,

∑
i∈M

(2ψi(Ji)/3− 38 lnn · ρk)
+ ≤(a)

∑
i∈M

 ∑
J:(i,J)∈I

2ψi(J)/3− |{J : (i, J) ∈ I}| · ρk

+

≤
∑
i∈M

∑
J:(i,J)∈I

(h(2ψi(J)/3)− ρk)
+ ≤(c) 14 lnn (Topk (~%)− kρk) .
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Define a vector v ∈ Rm≥0 where vi = ψi(Ji) for each i ∈M. For each k ∈ POS, via Claim 3, we have

Topk (v) ≤ k · (57 lnn · ρk) +
∑
i∈M

(ψi(Ji)− 57 lnn · ρk)+

≤ 57 lnn · kρk + 21 lnn (Topk (~%)− kρk) ≤ 57 lnn · Topk (~%) .

Then for k /∈ POS, one has k < next(k) < 2k and thus

Topk (v) ≤ Topnext(k) (v) ≤ 57 lnn · Topnext(k) (~%) ≤ 114 lnn · Topk (~%) ,

and the two inequalities above show that φ(v) ≤ O(log n) · φ(~%) using Lemma 4. By our initial assumption

that R = R?, we have ~%k ≤ 2o↓k + o↓1/m for each k ∈ POS, and we now compare φ(~%) and opt = φ(o). First
for k ∈ POS, because ~% is non-increasing, we have

Topk (~%) =
∑

s<k,s∈POS

~%s +
∑

s<k,s/∈POS

~%s + ~%k

≤ 2
∑

s<k,s∈POS

o↓s + 2
∑

s<k,s/∈POS

o↓prev(s) + 2o↓k + k · o
↓
1

m

≤ o↓1 + 2o↓k + 2
∑

s<k,s∈POS

(next(s)− s)o↓s

≤ o↓1 + 2o↓k + 2o↓1 + 2
∑

1<s<k,s∈POS

2(s− prev(s))o↓s

≤ 4
∑

s≤k,s∈POS

(s− prev(s))o↓s ≤ 4
∑
s′≤k

o↓s′ = 4 Topk (o) ,

where we use that o↓ is non-increasing, and next(k)− k ≤ 2(k − prev(k)) for each k ∈ POS, by definition of
POS. Then for k /∈ POS, likewise we obtain

Topk (~%) ≤ Topnext(k) (~%) ≤ 4 Topnext(k) (o) ≤ 8 Topk (o) ,

whence it follows that φ(~%) ≤ 8φ(o) by Lemma 4 again, and φ(v) ≤ O(log n) · φ(o). Since the norms are
monotone and

⋃
i∈M Ji = J , any assignment induced by these subsets reveals the same approximation ratio.

That is, one can easily obtain a job assignment σ : J → M such that σ−1(i) ⊆ Ji for each i ∈ M, thus
pi[σ] ≤ pi[Ji] and

Φ(σ) = φ({ψi(pi[σ])}i∈M) ≤ φ({ψi(pi[Ji])}i∈M) = φ(v) ≤ O(log n) · opt.

4 The Approximate Separation Oracle

In this section, we provide details of the claimed separation oracle in Lemma 7. As a useful subroutine, we
consider the following norm minimization with a linear constraint problem and obtain a PTAS, which may
be of independent interest.

Definition 8. (NormLin). Given a symmetric monotone norm ψ : Rn → R≥0, two non-negative n-
dimensional vectors p = {pj}j∈[n], z = {zj}j∈[n], and a non-negative real number Z, the goal is to find
J ⊆ [n] such that

∑
j∈J zj ≥ Z, so as to minimize ψ(p[J ]).

Theorem 9. There exists a polynomial time approximation scheme for NormLin.

We first show the separation oracle in Section 4.1, then prove Theorem 9 in Section 4.2.
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4.1 Proof of Lemma 7

Fix the solution (r, s, t, y, z). If it violates the first constraint in Q(R, 1/2, 3/2), we directly choose it as a
separating hyperplane. If not, we try to approximately verify the second set of constraints, which is the crux
of this lemma.

We notice that, for each such constraint, the LHS is determined by i, and the RHS is determined by
ψi(J) and

∑
j∈J zj . Therefore, we consider a surrogate optimization problem as follows: for each Z ≥ 0,

we want to check whether there exist i ∈ M, J ⊆ J such that
∑
j∈J zj ≥ Z, ψi(J) is minimized, and the

corresponding constraint in Q(R, 1/2, 3/2) is violated. Unfortunately, there are an exponential number of
possible values for Z, so we can only consider a small subset of approximate values.

Fix i ∈M. We enumerate the largest variable zj in the chosen set j ∈ J , and consider minimizing ψi(J)
restricted to jobs J≤j := {j′ ∈ J : zj′ ≤ zj}. After we fix zj , the possible values of

∑
j∈J zj fall in the

interval [zj , nzj ], so we enumerate Z ∈ {zj , 2zj , 4zj , . . . , 2szj}, where s ∈ Z is the smallest integer such that
2s ≥ n. The problem now becomes to minimize ψi(J) subject to

∑
j∈J zj ≥ Z and J ⊆ J≤j .

This is an instance of NormLin. By Theorem 9, for each sub-problem above, if it is feasible w.r.t. Z,
in polynomial time we obtain J such that

∑
j∈J zj ≥ Z and ψi(J) is at most 3/2 times the optimum. If,

among the output solutions, there exist i, J that violate the said constraint in Q(R, 1/2, 3/2), we output
the corresponding separating hyperplane; otherwise, though the optimization above is approximate, we still
certify the following,

−yi ≤ s · 1[ψi(J) > 1] + t+
∑
k∈POS

(h(ψi(J))− ρk)
+
rk −

1

2

∑
j∈J

zj , ∀i ∈M, J ⊆ J . (*)

To see this, for the sake of contradiction, suppose there exist i, J that violate (*). When we enumerate
the correct j = arg maxj′∈J{zj′} and Z such that

∑
j∈J zj ∈ [Z, 2Z), since J is a feasible solution in this

case, according to our supposition, we obtain J ′ such that
∑
j∈J′ zj ≥ Z and ψi(J

′) ≤ 3ψi(J)/2. But using
the assumption of violating (*), one has

s · 1[ψi(J
′) > 3/2] + t+

∑
k∈POS

(
h

(
ψi(J

′)
3/2

)
− ρk

)+

rk −
∑
j∈J′

zj

≤ s · 1[ψi(J) > 1] + t+
∑
k∈POS

(h(ψi(J))− ρk)
+
rk − Z

≤ s · 1[ψi(J) > 1] + t+
∑
k∈POS

(h(ψi(J))− ρk)
+
rk −

1

2

∑
j∈J

zj < −yi,

violating this constraint in Q(R, 1/2, 3/2), and we should output this hyperplane defined by (i, J ′) in the
first place, which is a contradiction.

Let (r′, s′, t′, y′, z′) = (r, s, t, y, z/2). Since by now the first constraint in Q(R, 1/2, 3/2) must be satisfied
by (r, s, t, y, z), using (*), it is easy to verify that (r′, s′, t′, y′, z′) satisfies all the constraints in Q(R, 1, 1),
hence it is non-empty.

4.2 Norm Minimization with a Linear Constraint

W.l.o.g., assume p > 0, otherwise the problem can be easily reduced to such an instance. We fix a small
constant ε ∈ (0, 1/2] and round each pj up to its nearest integer power of 1 + ε and solve the new instance.
This causes us to lose a factor of at most 1 + ε in the objective since ψ is a monotone norm. Fix an unknown
optimal solution J? to the modified instance with o = p[J?] and ψ(o) ≤ (1 + ε)opt, where opt ≥ 0 is the
optimum in the original instance.

To obtain a solution J with objective ψ(p[J ]) bounded by (1 +O(ε))ψ(o), we use the same technique as
in Section 3 and consider the Topk norms of p[J ]. As before, we start with some guessing procedures similar
to Section 3.1, but with several subtle differences for obtaining a PTAS. Note that we abuse some of the
notations in Section 3.1 for convenience. They play very similar roles, but may be defined slightly differently
from those in Section 3.
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Guessing the optimum. We guess the largest pj1 , j1 ∈ J?, the largest zj2 , j2 ∈ J?, and suppose

w.l.o.g. that o↓1 = pj1 = 1, zj2 = 1. We assume j1, j2 are correctly guessed in the sequel (it is easy to see
there are only polynomial number of possible choices).

Define indexes POS ⊆ [n] iteratively as follows [17]: Set POS ← {1}. Whenever n /∈ POS, choose the
current largest t ∈ POS and add d(1 + ε)te to POS but no larger than n, i.e.,

POS← POS ∪ {min{n, d(1 + ε) max{t ∈ POS}e}},

and it is easy to verify |POS| = O(log1+ε n). For each k ∈ [n], define next(k) as the smallest number in POS
that is larger than k, and next(n) = n+ 1; prev(k) as the largest number in POS that is smaller than k, and
prev(1) = 0. Using POS, we guess the following.

(1) A non-increasing vector R = {ρk}k∈POS ∈ RPOS
≥0 such that each entry is a non-positive integer power

of (1 + ε), and

(i) ρk = o↓k for k ∈ POS s.t. o↓k ≥ ε/n,

(ii) ρk = (1 + ε)dlog1+ε(ε/n)e for k ∈ POS s.t. o↓k < ε/n.

Since |POS| = O(log1+ε n) and the number of possible values is O(log1+ε(n/ε)), the number of such

non-increasing vectors is
(O(log1+ε(n/ε))

O(log1+ε n)

)
≤ 2O(log1+ε(n/ε)) = (n/ε)O(1/ε), using a basic counting method

as before. We use exhaustive search and assume R is correct w.r.t. o↓ in what follows. Define a
non-decreasing function h : R≥0 → R≥0 where

h(x) =

{
min{t ∈ R : t ≥ x} x ≤ max{t ∈ R}

x x > max{t ∈ R}.

We notice that h(x) ≥ x holds for any x ≥ 0, and h(x) ≤ 1 for each x ≤ 1 since ρ1 = o↓1 = 1 is the
largest entry in R according to our guesses.

(2) We start with PWR← ∅. Given R and h, for each s ∈ Z such that (1 + ε)s ∈ R, PWR← PWR ∪ {s}.
We have PWR ⊆ Z≤0 since o↓1 = 1 and thus R ⊆ [0, 1]POS.

Define a partition C = {Ct : t = −1, 0, . . . , d1/εe} of PWR as follows: For each s ∈ PWR, guess
whether the number of indexes in J? (i.e., the optimum) such that h(pj) = (1 + ε)s is > d1/εe. If
so, C−1 ← C−1 ∪ {s}; otherwise, guess 0 ≤ t ≤ d1/εe as this number and Ct ← Ct ∪ {s}. Since
|PWR| ≤ |POS| = O(log1+ε n) and there are d1/εe + 2 classes, the number of possible partitions is at

most (1/ε)O(log1+ε n) = nO(ε−1 log(1/ε)). We use exhaustive search and assume C is correct w.r.t. J? in
what follows.

We use R to construct an entry-wise upper bound for o, using which we write linear constraints and
bound the Topk norms of an LP solution, k ∈ POS; h is a round-up function that naturally classifies [n]
into O(log1+ε n) classes according to h(pj), j ∈ [n]. Crucially, we use C to guess the number of selected
indexes of each class in the optimum J?, and only attempt to exactly match the numbers for those classes
with a selected cardinality ≤ d1/εe. That is, if a class contains > d1/εe indexes in J?, it is added to C−1.
This “meta-classification” of classes is useful in our analysis of the approximation factor for deterministic
rounding.

Similar as before, we define a non-increasing expansion vector ~% ∈ Rn≥0, where ~%k = ρk if k ∈ POS, and

~%k = ρprev(k) if k /∈ POS. Since ρk ≥ o↓k for each k ∈ POS and ρk ∈ R, it follows that ~%k = ρk ≥ h(o↓k)

when k ∈ POS, ~%k = ρprev(k) ≥ h(o↓prev(k)) ≥ h(o↓k) for each k /∈ POS and thus ~% ≥ h(o↓). We need the

following result. The lemma is implied by Lemma 2.7 in [17], and we provide the proof in Appendix A for
completeness.

Lemma 10. (Lemma 2.7, [17]). ψ(~%) ≤ (1 + 11ε)ψ(o).
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LP relaxation. The following relaxation uses the variable xj ≥ 0 to represent the extent we include
j ∈ [n] in the solution. Similar to our main relaxation P-LB(R, λ, τ), it attempts to bound the norm objective
via (NLin. 1), using Topk norms and Lemma 4. We also have constraints (NLin. 3), (NLin. 4) that restrict
the number of indexes selected in the classes {j ∈ [n] : h(pj) = (1 + ε)s}, s ∈ PWR, as mentioned above.

min 0 (NLin)

s.t.
∑
j∈[n]

(h(pj)− ρk)+xj ≤ Topk (~%)− kρk ∀k ∈ POS (NLin. 1)

∑
j∈[n]

zjxj ≥ Z (NLin. 2)

∑
j:h(pj)=(1+ε)s

xj = t ∀s ∈ Ct, 0 ≤ t ≤ d1/εe (NLin. 3)

∑
j:h(pj)=(1+ε)s

xj ≥ 1 + d1/εe ∀s ∈ C−1 (NLin. 4)

xj = 0 ∀j s.t. pj > 1 or zj > 1 (NLin. 5)

x ∈ [0, 1][n].

Claim 11. NLin is feasible.

Proof. Set x?j = 1 if j ∈ J? and zero otherwise. It is easy to see that all but the first set of constraints are
satisfied by x?. For (NLin. 1), we fix k ∈ POS. The LHS is∑

s∈[n]
(h(o↓s)− ρk)+ ≤

∑
s∈[n]

(~%s − ρk)+ =
∑
s≤k

(~%s − ρk)
+

= Topk (~%)− kρk,

where we use h(o↓) ≤ ~%, ~%k = ρk and the fact that ~% is non-increasing.

Proof of Theorem 9. Using Claim 11, we obtain a feasible solution x̄. Our rounding method is very simple.
Let J ← ∅. For each s ∈ PWR, define the partial support Js = {j ∈ [n] : h(pj) = (1+ε)s, x̄j > 0}.

⋃
s∈PWR Js

is the entire support of x̄ by (NLin. 5), ρ1 = o↓1 = 1 and definition of h. We have the following cases.

(i) If s ∈ Ct for some 0 ≤ t ≤ d1/εe, using (NLin. 3) one has
∑
j∈Js x̄j = t and thus |Js| ≥ t. We

choose t indexes J ′s ⊆ Js that have the largest zj values and set J ← J ∪ J ′s. It is easy to verify that∑
j∈J′s zj ≥

∑
j∈Js zj x̄j .

(ii) If s ∈ C−1, using (NLin. 4) one has
∑
j∈Js x̄j ≥ 1 + d1/εe and |Js| ≥

⌈∑
j∈Js x̄j

⌉
. We choose⌈∑

j∈Js x̄j
⌉

indexes J ′s ⊆ Js that have the largest zj values and set J ← J ∪J ′s. It is easy to verify that

|J ′s|/
∑
j∈Js x̄j =

⌈∑
j∈Js x̄j

⌉
/
∑
j∈Js x̄j ≤ (2+d1/εe)/(1+d1/εe) ≤ 1+ε, and

∑
j∈J′s zj ≥

∑
j∈Js zj x̄j .

Using (NLin. 2), it immediately follows that∑
j∈J

zj =
∑

s∈PWR

∑
j∈J′s

zj ≥
∑

s∈PWR

∑
j∈Js

zj x̄j =
∑
j∈[n]

zj x̄j ≥ Z,

showing that J is a feasible solution. For the objective, we fix k ∈ POS. One has∑
j∈J

(h(pj)− ρk)+ =
∑

s∈PWR

∑
j∈J′s

(h(pj)− ρk)+ =
∑

s∈PWR

|J ′s|((1 + ε)s − ρk)+

≤
∑

s∈PWR

(1 + ε)
∑
j∈Js

((1 + ε)s − ρk)+x̄j

= (1 + ε)
∑
j∈[n]

(h(pj)− ρk)+x̄j ≤ (1 + ε) (Topk (~%)− kρk) ,
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where we use (NLin. 1) in the last inequality. Using h(x) ≥ x and Claim 3, for each k ∈ POS,

Topk (p[J ]) ≤ kρk +
∑
s∈[n]

(p[J ]s − ρk)+ ≤ kρk +
∑
j∈J

(h(pj)− ρk)+

≤ kρk + (1 + ε) (Topk (~%)− kρk) ≤ (1 + ε) Topk (~%) . (4)

Then for k /∈ POS, by considering prev(k) and the iterative definition of POS, we have (k− 1)(1 + ε) > k,
thus k > 1 + 1/ε, and next(k) < 1 + (1 + ε)k ≤ (1 + 2ε)k. Since p[J ]↓ and ~% are non-increasing, and
k < next(k) < (1 + 2ε)k, using (4) we have

Topk (p[J ]) ≤ Topnext(k) (p[J ]) ≤ (1 + ε) Topnext(k) (~%) ≤ (1 + 5ε) Topk (~%) , (5)

thus from (4)(5) and Lemma 4, Lemma 10, it follows that

ψ(p[J ]) ≤ (1 + 5ε)ψ(~%) ≤ (1 + 71ε)ψ(o) ≤ (1 + 143ε)opt.

Finally, it is easy to see that the running time of the algorithm is (n/ε)O(ε−1 log(1/ε)), which is determined by
our guessing procedure.

5 Conclusion and Future Directions

In this work, we systematically study the approximation algorithms for GLB with general inner and outer
norms. We propose a randomized polynomial time algorithm with logarithmic approximation factor, match-
ing the lower bound up to constant. For certain special case that generalizes classic makespan minimization,
we develop a constant factor approximation algorithm.

We propose some interesting future directions. Note the Ω(log n) lower bound in Theorem 1 does not
necessarily hold for special cases with outer norm φ = L∞ and arbitrary symmetric monotone inner norms.
Hence, there is a gap of log n between the known lower bound and our result (see Fig. 1), which is an
interesting open question. Other natural inner and outer objectives are also worth studying, e.g., submodular
set functions [28, 29], piece-wise linear functions [22], etc.
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A Proof of Lemma 10

By our guesses, we have ρk = o↓k if o↓k ≥ ε/n and ρk = (1 + ε)dlog1+ε(ε/n)e otherwise. For each k ∈ POS, one

then has ρk ≤ o↓k + 2ε/n and

Topk (~%) ≤
∑

s≤k,s∈POS

o↓s +
∑

s<k,s/∈POS

o↓prev(s) + k · 2ε

n

≤ 2ε+ o↓k +
∑

s<k,s∈POS

(next(s)− s)o↓s

= 2ε+ ko↓k +
∑

s<k,s∈POS

(next(s)− 1)(o↓s − o↓next(s))

≤ 2ε+ (1 + ε)ko↓k +
∑

s<k,s∈POS

(1 + ε)s · (o↓s − o↓next(s))

= 2ε+ (1 + ε)
∑

s≤k,s∈POS

(s− prev(s))o↓s

≤ 2ε+ (1 + ε)
∑
s′≤k

o↓s′ ≤ (1 + 3ε) Topk (o) , (6)

where we use next(s) − 1 ≤ (1 + ε)s for each s ∈ POS, and the fact that o↓ is non-increasing. The last

inequality is due to Topk (o) ≥ o↓1 = 1.
For each k /∈ POS, by the iterative definition of POS, it follows that (1 + ε)(k − 1) ≥ (1 + ε)prev(k) > k,

thus k > 1 + 1/ε and next(k) < (1 + ε)k + 1 ≤ (1 + 2ε)k. Using (6) we have just proved and the fact that
~%, o↓ are both non-increasing, we have

Topk (~%) ≤ Topnext(k) (~%) ≤ (1 + 3ε) Topnext(k) (o) ≤ (1 + 11ε) Topk (o) ,

where we use next(k) ≤ (1 + 2ε)k in the last inequality. Lemma 4 gives the desired result.
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B A Simpler Special Case

In this section, we consider a special case of GLB, where each inner norm ψi = Topki , ki ∈ [n] (recall for
u ≥ 0, Topki(u) returns the sum of largest ki entries in u), and the outer norm φ = L∞. We call it the
GLB-MaxTopK problem.

For any fixed ε > 0, we devise a deterministic (3 + ε)-approximation for GLB-MaxTopK. Analogous to
previous algorithms, we set out to guessing the values at different indexes of the optimal assignment, but
with slight modifications.

Fix a small ε > 0. Define POS ⊆ [n] iteratively as in the PTAS in Theorem 9 for NormLin, as well
as next, prev. Instead of optimizing Topki norm for machine i, we consider Topk′i norm, where k′i = ki if

ki ∈ POS and k′i = prev(ki) otherwise. Notice by the iterative definition of POS, if ki /∈ POS, one has
k′i < ki < (1 + ε)prev(ki) = (1 + ε)k′i.

Likewise, let σ? : J → M be an unknown optimal assignment with optimum opt ≥ 0, and o ∈ Rn≥0
be defined in a subtly different way: for each k ∈ [n], let ok be the maximum k-th largest job size among

machines that has k′i ≥ k, that is, ok = maxi∈M:k′i≥k pi[σ
?]↓k (if there are no such machines or jobs, it

is 0). It is easy to see that, since the assigned job-size vectors are non-increasingly sorted and the sets
{i : k′i ≥ k} are (inclusion-wise) non-increasing in k, o is a non-increasing vector. We guess P = {ρk}k∈POS

as a non-increasing vector of integer powers of 1 + ε such that

(i) ρk ∈ [ok, (1 + ε)ok) if ok ≥ εo1/n,

(ii) ρk = (1 + ε)dlog1+ε(εo1/n)e otherwise.

As before, after we guess the exact value of o1 and fix it, there are at most (n/ε)O(1/ε) such vectors.
Suppose o1 > 0 and all other guesses are correct in the sequel. It follows that ρ1 ≤ (1 + ε)o1 ≤ (1 + ε)opt
and for each i ∈M,

(i) if ok′i ≥ εo1/n, we have k′iρk′i ≤ (1 + ε)k′iok′i . Because in the optimal solution, there exists a machine
i′ ∈ M such that k′i′ ≥ k′i and its k′i-th largest assigned job size is ok′i , i

′ has a Topk′i norm at least

k′iok′i . Combined with ki′ ≥ k′i′ ≥ k′i, one has k′iρk′i ≤ (1 + ε) Topk′i (pi′ [σ
?]) ≤ (1 + ε) Topki′ (pi′ [σ

?]) ≤
(1 + ε)opt;

(ii) otherwise, we have ρk′i = (1 + ε)dlog1+ε(εo1/n)e ≤ 2εo1/n, thus k′iρk′i ≤ 2εo1 ≤ 2ε · opt.

Consider the following relaxation where xij ≥ 0 represents the extent we assign job j to machine i.

min r (M-Top)

s.t.
∑
j∈J

(pij − ρk′i)
+xij ≤ r ∀i ∈M (M-Top .1)

∑
i∈M

xij = 1 ∀j ∈ J (M-Top .2)

xij = 0 pij > ρ1 (M-Top .3)

x ≥ 0.

Lemma 12. M-Top has optimum at most opt.

Proof. Define an integral solution x? ∈ {0, 1}M×J according to the optimal assignment σ? and let r? = opt.
It suffices to show that (x?, r?) satisfies (M-Top .1). For each i ∈M, because ρk′i ≥ ok′i , we have∑

j∈J
(pij − ρk′i)

+x?ij =
∑

j∈σ?−1(i)

(pij − ρk′i)
+ ≤

∑
j∈σ?−1(i)

(pij − ok′i)
+.

Since the k′i-th largest job assigned to i has size at most ok′i by definition, the above sum has at most
k′i non-zero entries, thus at most Topk′i (pi[σ

?]). The lemma now follows since k′i ≤ ki and Topk′i (pi[σ
?]) ≤

Topki (pi[σ
?]) ≤ opt.
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We solve M-Top and obtain a solution (x̄, r̄), and r̄ ≤ opt by Lemma 12. Using the classic rounding
algorithm by Shmoys and Tardos [26] (based on the original job sizes pij), we obtain an integral assignment

x̂ ∈ {0, 1}M×J such that
∑
i x̂ij = 1 for each job j. More precisely, make ni :=

⌈∑
j x̄ij

⌉
copies of each

machine i; in non-increasing order of pij , fractionally assign the jobs {j : x̄ij > 0} to the same extent, and
sequentially on the copies of i, such that the first ni − 1 copies are all assigned exactly unit mass of jobs.
We then use standard methods [23] and round the resulting fractional matching to an arbitrary integral
matching x̂, and each job is matched due to (M-Top .2).

Since we assign the jobs in non-increasing order of pij to the copies, it follows that for the t-th copy it
of machine i, t ≥ 2, the assigned job size under x̂ is at most the average job size on it−1 under x̄. Each
assigned job size is at most ρ1 due to (M-Top .3). Hence for each machine i, the Topk′i norm must be attained

over its k′i foremost copies {i1, . . . , ik′i}, which is at most ρ1 +
∑
t≤k′i

∑
j pitj x̄itj . Using simple subadditivity

(s+ t)+ ≤ s+ + t+ and that each machine copy is assigned to an extent of at most 1, this is in turn bounded
by

ρ1 + k′iρk′i +
∑
t≤k′i

∑
j

(pitj − ρk′i)
+x̄itj ≤ ρ1 + k′iρk′i +

∑
j∈J

(pij − ρk′i)
+x̄ij

≤ (2 + 2ε)opt + r̄ ≤ (3 + 2ε)opt.

Finally using ki ≤ (1 + ε)k′i, the Topki norm is bounded by (1 + ε)(3 + 2ε)opt ≤ (3 + 7ε)opt, whence we
obtain the following theorem.

Theorem 13. For each ε > 0, there exists a deterministic (3+ε)-approximation algorithm for GLB-MaxTopK
with running time (n/ε)O(1/ε) · poly(m,n).
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