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Abstract

We study a generalization of the classic Global Min-Cut problem, called Global Label Min-

Cut (or sometimes Global Hedge Min-Cut): the edges of the input (multi)graph are labeled (or

partitioned into color classes or hedges), and removing all edges of the same label (color or from

the same hedge) costs one. The problem asks to disconnect the graph at minimum cost.

While the st-cut version of the problem is known to be NP-hard, the above global cut version is

known to admit a quasi-polynomial randomized nO(logOPT)
-time algorithm due to Gha�ari, Karger,

and Panigrahi [SODA 2017]. They consider this as “strong evidence that this problem is in P”. We

show that this is actually not the case. We complete the study of the complexity of the Global Label

Min-Cut problem by showing that the quasi-polynomial running time is probably optimal: We

show that the existence of an algorithm with running time (np)o(logn/(log logn)2)
would contradict

the Exponential Time Hypothesis, where n is the number of vertices, and p is the number of labels

in the input. The key step for the lower bound is a proof that Global Label Min-Cut is W[1]-hard

when parameterized by the number of uncut labels. In other words, the problem is di�cult in the

regime where almost all labels need to be cut to disconnect the graph. To turn this lower bound

into a quasi-polynomial-time lower bound, we also needed to revisit the framework due to Marx

[Theory Comput. 2010] of proving lower bounds assuming Exponential Time Hypothesis through

the Subgraph Isomorphism problem parameterized by the number of edges of the pattern. Here,

we provide an alternative simpli�ed proof of the hardness of this problem that is more versatile

with respect to the choice of the regimes of the parameters.
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1 Introduction

Given a weighted graph G = (V,E) with n vertices and m edges, in the (Global) Min-Cut problem we

are asked to �nd a cut [S, T ] of G minimizing the total weight of edges crossing from S to T , where a

cut of G is a partition of V into two non-empty subsets S and T = V \ S. This problem is one of the

most fundamental problems in computer science, and dates back to the earliest days of the �eld [88].

An st-cut of a graph G is a cut [S, T ] having s ∈ S and t ∈ T , and a minimum cut of G is a cut

having an edge-cut set of minimum total weight. We denote by Min-st-Cut the problem of computing

the minimum st-cut of a given graph. A minimum st-cut of a graph G can be found by using any

algorithm for computing a maximum st-�ow. While the history of minimum st-cut and maximum �ow

algorithms dates back to the 1950s [88, 99], revolutionary results are obtained regularly up to today: we

mention [1010, 1818, 2020], and, most notably, the recent breakthrough near-linear algorithm for polynomially

bounded capacities [33].

Due the duality of maximum st-�ows and minimum st-cuts, a typical strategy to solve the Min-Cut

problem consists of �nding minimum st-cuts for a �xed vertex s and all n − 1 possible choices of t
and then selecting the smallest one. However, a few number of non-�ow-based methods for solving

Min-Cut have been developed [1111, 1616, 1717, 2222, 2323, 2727]. In particular, in 1993, Karger [1616] developed a

simple randomized algorithm to compute a minimum cut of a connected graph, which later inspired

many subsequent works.

A natural generalization of Min-Cut on graphs is the Min-Cut problem on hypergraphs, which

aims to determine the smallest number of hyperedges to be removed to disconnect a given hypergraph.

In 1997, Stoer and Wagner [2727] presented a non-�ow-based algorithm for Min-Cut on hypergraphs

with O(n · m + n2 log n) running time. This approach was generalized by Queyranne [2424, 2525] for

minimizing symmetric submodular functions. In [2424, 2525], it was shown that if V is a �nite set and

f : 2V → R is a polynomial-time computable function that is symmetric and submodular then there is

a polynomial-time algorithm that minimizes f over all proper subsets of V . Rizzi [2626] observed that the

hypergraph cut function is symmetric and submodular, which implies that Min-Cut on hypergraphs

can be solved by using polynomial-time algorithms for submodular function minimization [2424, 2525].

Note that Min-Cut on hypergraphs is a particular case of a more general cut problem on edge-colored

multigraphs: if the vertex set of each hyperedge i is viewed as a connected subgraph whose edges are

colored with color ci then the goal is to �nd a cut [S, T ] minimizing the number of colors in ∂(S), the

set of edges with exactly one endpoint in S.

In this paper, we consider the more general problem where each color class is allowed to induce

more than one connected component. Let G = (V,E) be an edge-colored multigraph with n vertices,

m edges, and an edge coloring c : E → {1, 2, . . . , p}, not necessarily proper. We let c(∂(S)) be the

set of colors that appear in ∂(S). Global Label Min-Cut is the problem of �nding a subset S ⊆ V ,

S 6= ∅, V that minimizes the size of c(∂(S)).

Global Label Min-Cut

Input: A multigraph G = (V,E) with an edge coloring c : E → {1, 2, . . . , p} and an integer k > 0.

Output: Yes if G has a proper subset ∅ 6= S ( V such that |c(∂(S))| 6 k, No otherwise.

Global Label Min-Cut naturally captures a problem in network survivability in which the failure

of a single connection implies failure of a whole set of connections, see for instance [55, 44, 1212]. In the

literature, the colors are sometimes called labels or hedges; in this work, we stick to colors.

Similarly, in Label Min-st-Cut, we are asked to �nd an edge-cut set that separates a given pair

s, t of vertices using at most k colors (or, as few colors as possible). Note that the analogously de�ned

Min-Cut on “hyperedge-colored” hypergraphs is in fact the same problem as Global Label Min-Cut.

The computational complexity of Label Min-st-Cut and Global Label Min-Cut has been widely

investigated in recent years [11, 22, 44, 55, 77, 1212, 2828, 2929, 3030, 3131, 3232, 3333]. As �rst observed in [2929], if we de�ne

a function f on 2V that counts the number of colors in an edge-cut set resulting from a vertex subset S,

that is, f(S) = c(∂(S)), then we can easily verify that f is not submodular. Therefore we cannot use
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the same approach as for Min-Cut on hypergraphs via submodular function minimization to solve

Global Label Min-Cut.

In the special case when every color contains at most r edges, Coudert et al. [44] showed that Global

Label Min-Cut can be solved in polynomial time, but Label Min-st-Cut is NP-hard even when each

color contains at most two edges. Furthermore, Blin et al. [11] presented a randomized polynomial-time

algorithm for Global Label Min-Cut that returns an optimal colored cut of G with probability at

least |V |−2r .
Several approximation and hardness results for Label Min-st-Cut are presented in [2828, 2929, 3030, 3232, 3333].

Zhang and Fu [3131] showed that Label Min-st-Cut is NP-hard even if the maximum length of any

path is equal to two. Regarding the parameterized complexity of Label Min-st-Cut, Fellows et al. [77]

showed that the problem is W[2]-hard when parameterized by the number of colors of the solution,

and W[1]-hard when parameterized by the number of edges of the solution. Coudert et al. [55] showed

that Global Label Min-Cut can be solved in time 2s · nO(1)
, where s is the number of colors that

induce more than one nontrivial connected component.

Most importantly, Gha�ari, Karger, and Panigrahi [1212] showed that Global Label Min-Cut can be

solved exactly in time nO(logOPT)
, where n is the number of vertices of the graph and OPT denotes

the cost of the optimum solution, and a (1 + ε)-approximate solution can be found in time nO(log(1/ε)).
This results shows that Global Label Min-Cut is probably not NP-hard, contrary to its st-cut variant,

Label Min-st-Cut.

Despite the above progress, the exact computational complexity of Global Label Min-Cut was left

open by all these works. To the best of our knowledge, the �rst time that the computational complexity

of Global Label Min-Cut was mentioned as an open question it was in [44]. Note that the result of [1212]

places Global Label Min-Cut between the classes of problems solvable in polynomial and quasi-

polynomial time. After 15 years of research, the community is still asking for an answer to this question.

More recently, in [3333], Zhang and Tangi explicitly stated that “a challenging problem is to determine

the exact complexity of Global Label Cut.” In addition, prior to [1212] it was pointed out [44, 2929] that

unlike the situation of Min-Cut and Min st-Cut where both are polynomial-time solvable, Global

Label Min-Cut seems to behave di�erently than its local counterpart (Label Min-st-Cut) and should

be easier than it; the result of [1212] con�rms this suspicion.

Our results. Gha�ari, Karger, and Panigrahi write that their randomized nO(logOPT)
-time algorithm

provides “strong evidence that this problem is in P” [1212, abstract]. We show that this is probably not

the case, and settle the question of the complexity of Global Label Min-Cut: one of our main results

states that the quasi-polynomial complexity is tight under the Exponential Time Hypothesis [1515].
11

Theorem 1. Unless the Exponential Time Hypothesis fails, there is no algorithm solving Global Label

Min-Cut in time (np)o(logn/(log logn)
2)
.

Observe that the lower bound of Theorem 11 is tight up to a O((log log n)2) factor in the exponent

with the algorithm of [1212], as OPT 6 p and nO(logOPT) = OPTO(logn) 6 pO(logn). The key ingredient

in the proof of Theorem 11 is the proof that Global Label Min-Cut is W[1]-hard when parameterized

by the number of uncut colors, that is, the value p− k.

Theorem 2. The Global Label Min-Cut problem, parameterized by a := p− k, the number of uncut

colors, isW[1]-hard. Furthermore, unless the Exponential Time Hypothesis fails, there is no computable

function f and an algorithm for the problem with running time bound f(a) · (np)o(a/ log a).

Theorem 22 is proven in Section 22. A natural step to obtain Theorem 11 from Theorem 22 is to pipeline

the reduction of Theorem 22 (if it started in the classic Multicolored Cliqe problem) with a standard

reduction from 3-CNF SAT to Multicolored Cliqe that makes a correct choice of the parameters

(here, from an input n-variablem-clause formula we would want a Multicolored Cliqe instance with

1

The Exponential Time Hypothesis, a now-standard assumption in �ne-grained complexity, together with the Sparsi�cation

Lemma asserts that one cannot resolve satis�ability of an n-variable m-clause 3-CNF formula in time 2o(n+m)
[1515].
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roughly 2O(
√
n+m)

vertices and looking for a clique of size O(
√
n+m)). Unfortunately, the reduction

of Theorem 22 makes heavy use of the so-called edge-choice gadgets and therefore starts instead in the

Subgraph Isomorphism problem, parameterized by the number of edges of the pattern. Hardness of

this source problem is provided by Marx [2121]; his reduction is involved and not directly amenable to

such choose-convenient-range-of-parameters tricks.

To cope with this issue, we revisit the framework of Marx [2121] and provide a simpli�ed and

streamlined proof of the hardness of Subgraph Isomorphism that is now versatile to a choice of

parameter range. The exact statement (and necessary de�nitions) can be found in Section 33. (We

remark that the main goal of the framework of Marx [2121] was to provide hardness for the treewidth

parameterization and the “number of edges” parameter was only a side corollary there; our simpli�ed

proof is tailored for the latter parameter and has no implications for the treewidth parameterization.)

2 Hardness of Dual Global Label Min-Cut

In this section we give the main reduction that leads to the quasi-polynomial time lower bound under

the ETH for Global Label Min-Cut, and a proof of Theorem 2Theorem 2. To give the reduction, we slightly

change the perspective on the problem. A computationally expensive case in the algorithm of [1212] is

when a large number of colors is incident with a large number of vertices. In particular, this forces

a high depth of recursion in the execution of the algorithm. In this situation, each color is incident

with many vertices, so only very few (say at most a) colors do not appear in an optimum solution. The

algorithm of [1212] in fact in this case reverts to brute-forcing all

(
p
a

)
sets of colors that are not in the

solution (recall that p is the total number of colors).

This scenario reveals that the number of colors not present in a minimum colored cut is a relevant

parameter for understanding the computational complexity of Global Label Min-Cut. We therefore

consider its dual problem, parameterized by solution size. (Note that �nding the maximum-size set of

colors that do not belong to some cut of a graph G is equivalent to �nding the maximum number of

colors such that the union of their edges forms a disconnected subgraph of G.)

Dual Global Label Min-Cut

Input: Vertex set W , graphs G1, . . . , Gp on vertex set W , integer a.

Output: Yes if there exists a set I ⊆ [p] with |I| = a such that (W,∪i∈IE(Gi)) is disconnected, No

otherwise.

We will con�rm our intuition that indeed, the case described above makes the problem compu-

tationally hard, by giving a reduction that proves W[1]-hardness of Dual Global Label Min-Cut

parameterized by a, and, together with a reduction given in Section 4Section 4, an (np)o(logn/(log logn)
2)

time

lower bound for Global Label Min-Cut under the ETH. The reduction is from the Partitioned

Subgraph Isomorphism problem.

Partitioned Subgraph Isomorphism (PSI)

Input: Graph H , called pattern, graph K , called host, with vertex partition ]{Vx | x ∈ V (H)} such

that |Vx| = n for all x ∈ V (H).
Output: Yes if there is a set {vx ∈ Vx | x ∈ V (H)} ⊆ V (K) such that for all x, y ∈ V (H),
xy ∈ E(H) implies vxvy ∈ E(K), No otherwise.

To give an overview of the main idea behind the reduction of the following theorem, we consider

for one moment a partitioned version of Dual Global Label Min-Cut, where in addition we are given

a partition (G1, . . . ,Ga) of {G1, . . . , Gp} and we require a solution to select one graph from each Gi.
The following simple reduction from PSI to Partitioned Dual Colored Min-Cut (PDCMC) would

su�ce if we could restrict our attention to this problem instead of the non-partitioned version. Let (H,K)
be an instance of PSI where H is the pattern graph and K the host graph, and let E(H) = {e1, . . . , ea}.
We may assume that H is connected. We construct an instance (W,G1, . . . ,Ga) of PDCMC as follows.
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We let W = {t} ∪ V (K). For all i ∈ [a], let ei = xy, and consider the set of edges E(Vx, Vy) ⊆ E(K)
with one endpoint in Vx and the other in Vy . For all vxvy ∈ E(Vx, Vy), we add a graph G(i, vx, vy) to

Gi that consists of the edge vxvy , and all edges tz, where z ∈ Vx ∪ Vy \ {vx, vy} (cf. Figure 1Figure 1).

For one direction, suppose that X = {vx ∈ Vx | x ∈ V (H)} is a solution to (H,K). Then,

taking the union over all ei = xy of the graphs G(i, vx, vy) (where vx, vy ∈ X) is a solution to

(W,G1, . . . ,Ga), since no vertex in X is adjacent to t in the resulting graph. For the other direction,

let (G1 ∈ G1, . . . , Ga ∈ Ga) be a solution to the PDCMC instance. Consider some x ∈ V (H) that is

incident with two edges eiy = xy and eiz = xz inH . LetGiy = G(iy, vx, vy) andGiz = G(iz, wx, wz).
In Giy ∪ Giz , if (i) vx = wx, then there is a component C not containing t, but containing vx = wx,

vy , and wz , while if (ii) vx 6= wx, then t is connected to all vertices of Vx, and hence also all vertices of

Vy and Vz . Now suppose for a contradiction that the edges in K corresponding to the graphs Gi do

not give a solution to (H,K). Then, for at least one vertex x ∈ V (H), case (ii) has to apply, which

allows us to conclude that

⋃
i∈[a]Gi was in fact connected as long as K is connected (which can be

easily ensured), a contradiction.

The main technical contribution of the following theorem is a fairly non-trivial construction that

emulates the requirement that we have to choose one graph from each part of the partition (G1, . . . ,Ga).
To do so, we equip each graph Gi ∈ Gi with a set of padding edges with the following properties.

1. For each i ∈ [a] and distinct Gi1 , Gi2 ∈ Gi, the padding edges in Gi1 ∪Gi2 connect the entire

vertex set W .

2. For all G1 ∈ G1, . . . , Ga ∈ Ga, the padding edges in

⋃
i∈[a]Gi leave W (highly) disconnected.

To make this construction work, we have to add many more vertices toW , and an additional challenge is

to keep the size ofW su�ciently small to obtain the desired lower bound. In particular, to obtain a lower

bound of the form (np)o(logn/polyloglog(n)) for Global Label Min-Cut, we require the dependence of

the size of W on a, the number of edges in the pattern graph, to be no more than 2O(apolylog(a)).

Theorem 3. There is a reduction that given a Partitioned Subgraph Isomorphism instance (H,K),
where H is connected, and with |V (H)| = h, |E(H)| = a, and n being the number of vertices in

each part of the partition of V (K), constructs an equivalent Dual Global Label Min-Cut instance

(W,G1, . . . , Gp, a) with |W | = O(h(4a)an), and p = |E(K)| in time |W |O(1).

Proof. Let (H,K), n, h, and a be as in the statement of the theorem. We show how to construct an

instance (W,G1, . . . , Gp, a) of Dual Global Label Min-Cut with the claimed properties. Throughout

the proof, for xy ∈ E(H), we let E(Vx, Vy) = {vxvy ∈ E(K) | vx ∈ Vx, vy ∈ Vy}.
We choose a prime ρ with

⌈
n1/a

⌉
< ρ ≤ 2

⌈
n1/a

⌉
(whose existence can be shown by elementary

number theory) and let b = 2a. Then we have that

(ρ− 1)a ≥ n and ρb ≥ n2. (1)

We let Fρ be the �eld of integers modulo ρ and let F?ρ be its multiplicative subgroup, i.e., F?ρ =
{1, . . . , ρ− 1}. For each x ∈ V (H), we �x an arbitrary injective map fx : Vx → (F?ρ)a. Note that the

existence of such maps is guaranteed by (11). For each xy ∈ E(H), let gxy : Vx × Vy → (F?ρ)b be the

map de�ned as gxy(vxvy) = fx(vx) ◦ fy(vy).
For each x ∈ V (H), we let Wx = (Fρ×{0, . . . , b})a and Ŵx = (Fρ×{0})a ⊆Wx, and we embed

fx into Ŵx with the following map f̂x : Vx → Ŵx. For each vx ∈ Vx, we let

f̂x(vx) = ((fx(vx)[1], 0), . . . , (fx(vx)[a], 0)).

The vertex set of the Dual Global Label Min-Cut instance is W = {t} ∪
⋃
x∈V (H)Wx, where t is a

new vertex.
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Wx Wy
Ŵx Ŵy

f̂x(vx) f̂y(vy)

t

...

...

...

...

Wz

t

0 1 2 3 b
0
1
2
3

p

· · ·

...

...

...

...

...

Figure 1: On the left an illustration of a set A(α, vx, vy) and on the right an illustration of a padding set

pad(α, vx, vy, z). Note that the vector gxy(vx, vy) determines the shape of the stars in pad(α, vx, vy, z).
We would like to remark though that the picture presented here is drastically simpli�ed and should not

be interpreted “literally”, as most dimensions of the elements of the sets considered here do not show.

The graphs of the Dual Global Label Min-Cut instance are constructed as follows, see Figure 1Figure 1

for an illustration. Throughout the following, let E(H) = {e1, . . . , ea}. Let α ∈ [a] and eα = xy; for

each vxvy ∈ E(Vx, Vy), we let

A(α, vx, vy) = {f̂x(vx), f̂y(vy)} ∪
{
tz | z ∈ (Ŵx ∪ Ŵy) \ {f̂x(vx), f̂y(vy)}.

}
(2)

We obtain the graphG(α, vx, vy) by takingA(α, vx, vy) and adding the following set of “padding” edges

pad(α, vx, vy, z) for each z ∈ V (H), containing the following edges between vertices of Wz ∪ {t}:

∀q1, . . . , qα−1, qα+1, . . . , qa ∈ Fρ × {0, . . . , b} : {t, (q1, . . . , qα−1, (0, 0), qα+1, . . . , qa)}, and

∀q1, . . . , qα−1, qα+1, . . . , qa ∈ Fρ × {0, . . . , b} ∀r ∈ Fρ ∀i ∈ [b] :

{(q1, . . . , qα−1, (r, 0), qα+1, . . . , qa), (q1, . . . , qα−1, (r + gxy(vx, vy)[i], i), qα+1, . . . , qa)} (3)

Note that the edges described in (33) form a star whose center is in Ŵz . In particular, for each r ∈ Fρ,
we construct one star whose center is (r, 0); the shape of each such star is determined by the vector

gxy(vx, vy). The (edge set of the) graph G(α, vx, vy) is then obtained as:

G(α, vx, vy) = A(α, vx, vy) ∪
⋃

z∈V (H)
pad(α, vx, vy, z)

We make an easy but crucial observation.

Observation 4. Let α ∈ [a], eα = xy, and vxvy ∈ E(Vx, Vy). Then, G(α, vx, vy) spansW .

The graphs G(α, vx, vy) make up the graphs of the Dual Global Label Min-Cut instance; note

we have |E(K)| of them and therefore m = |E(K)| as required by the statement of the theorem.

Moreover, since b = 2a and ρ ≤ 2
⌈
n1/a

⌉
, we have that

|W | = 1 + h(ρ(b+ 1))a = 1 + hρa(2a+ 1)a = O(h(2n1/a)a(2a)a) = O(h2a(2a)an) = O(h(4a)an),

as claimed. It remains to prove the correctness of the reduction.

Claim 1. Let α ∈ [a], eα = xy, and vxvy, v
′
xv
′
y ∈ E(Vx, Vy) be distinct. Then, G(α, vx, vy) ∪

G(α, v′x, v
′
y) is connected.
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Proof of Claim. We show that for each vertex w ∈ W \ {t}, there is a path from w to t using only

the edges from G(α, vx, vy) ∪ G(α, v′x, v′y). To do that, let z ∈ V (H) be such that w ∈ Wz , and let

q1, . . . , qa ∈ Fρ × {0, . . . , b} be such that w = (q1, . . . , qa). We will be able to “move within” the

α-th coordinate of (q1, . . . , qa), and for better readability we introduce the following shorthand: for

(r, β) ∈ Fρ × {0, . . . , b}, we let (r, β)α stand for (q1, . . . , qα−1, (r, β), qα+1, . . . , qa). Let qα = (r, β).
We will show that we can reach (0, 0)α, which is adjacent to t, from w = (r, β)α.

Let gxy(vxvy) = (r1, . . . , rb), r0 = 0, gxy(v
′
xv
′
y) = (r′1, . . . , r

′
b), and r′0 = 0. Since vxvy and v′xv

′
y

are distinct, there is some γ ∈ [b] such that rγ 6= r′γ . Let r∗ = r − rβ and note that in the case β 6= 0,

there is an edge between (r, β)α and (r∗, 0)α in G(a, vx, vy). Moreover, the following is a path in

G(α, vx, vy) ∪G(α, v′x, v′y):

(r∗, 0)α, (r
∗ + rγ , γ)α, (r

∗ + rγ − r′γ , 0)α, (r∗ + 2rγ − r′γ , γ)α, (r∗ + 2(rγ − r′γ), 0)α, . . . (4)

Since ρ is prime and rγ 6= r′γ , the path shown in (44) eventually leads to (0, 0)α, and therefore to t. y

Claim 2. For each α ∈ [a] with eα = xαyα, let vxαvyα ∈ E(Vxα , Vyα). If G =
⋃
α∈[a]G(α, vxα , vyα) is

disconnected, then (H,K) is a Yes-instance.

Proof of Claim. To prove the claim, we need to show that U = {vxα | α ∈ [a]} contains exactly one

vertex from each Vx where x ∈ V (H). The existence of the necessary edges to show the H-subgraph

in K is then guaranteed by the choice made in the statement of the claim. To do so, we show that all

vertices in Û = {f̂xα(vxα) | α ∈ [a]} are in the same connected component of G, and in particular that

this component does not contain t. This yields the desired property, for if there was some x ∈ V (H)

such that |U ∩ Vx| ≥ 2, then for Ŵx,

∣∣∣Û ∩ Ŵx

∣∣∣ ≥ 2, which implies that for some distinct α, α′ ∈ [a],

and distinct vx, v
′
x ∈ Vx, G contains both G(α, vx, vy) and G(α′, v′x, vy′) for some y 6= y′ and vy ∈ Vy

and vy′ ∈ Vy′ . As f̂x(vx) is adjacent to t in G(α′, v′x, vy′) since vx 6= v′x, we obtain a contradiction.

Since G is disconnected, there is some z ∈ V (H) such thatWz contains a vertex that is in a di�erent

connected component than t; call this vertex w0. We show that w0 has a path to a vertex in Ŵz in G.

For all α ∈ [a], we let gxαyα(vxα , vyα) = (rα1 , . . . , r
α
b ) and rα0 = 0. Let w0 = ((s1, γ1), . . . , (sa, γa)) ∈

Fρ × {0, . . . , b}. For all α ∈ [a], let

wα = ((s1 − r1γ1 , 0), . . . , (sα − r
α
γα , 0), (sα+1, γα+1), . . . , (sa, γa)).

Then, w0,w1, . . . ,wa is a path in G, since for all α ∈ [a], the edge wα−1wα is in G(α, vxα , vyα).

Moreover, wa ∈ Ŵz . For each α such that z is an endpoint of eα = xαyα, assume z = xα, only one

vertex in Ŵz is not adjacent to t inG(α, xα, yα); namely f̂xα(vxα), see (22). Therefore, wa = f̂xα(vxα) for

every such α. This allows us to furthermore conclude that f̂yα(vyα), which is connected to f̂xα(vxα) by

an edge inG(α, vxα , vyα), see (22), is in the same connected component asw0, and therefore disconnected

from t. Since H is connected, we can iteratively apply this argument to conclude that all vertices in

Û = {f̂xα(vxα) | α ∈ [a]} are in the same connected component of G that does not contain t, which

concludes the proof by the above discussion. y

Claim 3. If {vx | x ∈ V (H)} is anH-subgraph inK , then Û = {f̂x(vx) | x ∈ V (H)} are disconnected
from t in G =

⋃
α∈[a],eα=xαyα G(α, vxα , vyα).

Proof of Claim. Suppose for a contradiction that there is some vertex in Û that is connected by a path

to t. In particular, let x ∈ V (H) be such that there is such a vertex f̂x(vx) = û that has a path P to t in

G that is fully contained in Wx ∪ {t}. Let w be the other endpoint of the edge in P that is incident with

t. By construction we have that w 6= û. Let w = ((r1, 0), . . . , (ra, 0)) and û = ((r∗1, 0), . . . , (r
∗
a, 0)).

Since w 6= û, there is some α ∈ [a] such that rα 6= r∗α. Since there is no edge v′xαv
′
yα ∈ E(Vx, Vy)

with vxαvyα 6= v′xαv
′
yα such that G(α, v′xα , v

′
yα) ⊆ G, we conclude that all vertices reachable from w in

G have the value (rα + gxαyα(vxαvyα)[β], β) for some β ∈ {0, . . . , b} in the α-th coordinate, which

means in particular for β = 0 that their α-th coordinate is (rα, 0) 6= (r∗α, 0), and therefore such a path

P cannot exist, a contradiction. y
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To conclude the correctness proof, suppose that (H,K) is a Yes-instance. Then Claim 3Claim 3 implies

that (W,G1, . . . , Gp, a) is a Yes-instance as well. Conversely, suppose that (W,G1, . . . , Gp, a) is a

Yes-instance. By Claim 1Claim 1, we know that a solution to the instance must be of the form as required by

Claim 2Claim 2 which yields that (H,K) is a Yes-instance. �

The following theorem due to Marx [2121] has an immediate consequence for the parameterized

complexity of Dual Global Label Min-Cut.

Theorem 5 (Marx [2121]). Partitioned Subgraph Isomorphism where the host graph has n vertices and

the pattern graph h edges parameterized by h is W[1]-hard, and cannot be solved in time f(h)no(h/ log h),
for any computable function f , unless the ETH fails.

Note that we can always assume that H is connected in the previous theorem. If not, then we add a

new color class to H containing a single universal vertex xH , as well as a universal vertex xK to K
with VxH = {xK}. Therefore, Theorems 33 and 55 imply:

Theorem 2. The Global Label Min-Cut problem, parameterized by a := p− k, the number of uncut

colors, isW[1]-hard. Furthermore, unless the Exponential Time Hypothesis fails, there is no computable

function f and an algorithm for the problem with running time bound f(a) · (np)o(a/ log a).

To obtain the quasi-polynomial time lower bound for Global Label Min-Cut under the ETH, we

need some more ingredients proved in Section 3Section 3; and we wrap it up in Section 4Section 4.

3 Fine-tuned reduction of Marx

Two connected subgraphs H1 and H2 of a graph H touch if they share a vertex or if there is an edge

of H with one endpoint in V (H1) and another endpoint in V (H2). An embedding of a graph G in a

graph H is an assignment φ that assigns to every v ∈ V (G) a nonempty connected subgraph φ(v) in

H (called the branch set of v) such that for every edge uv ∈ E(G), the subgraphs φ(u) and φ(v) touch.

The depth of an embedding φ is maxx∈V (H) |{v ∈ V (G) | x ∈ φ(v)}|, that is, the maximum number of

subgraphs φ(v) that meet in a single vertex of H . In literature, such embeddings are sometimes also

called congested minor models and depth is called congestion or ply.

In this section, we prove the following version of Theorem 3.1 of [2121]. This version is more �ne-tuned

for our application: a lower bound for binary CSPs parameterized by the number of constraints.

Theorem 6. There exists a constant C and a polynomial-time algorithm that, given an integer k > 2 and
a graphG with n vertices andm edges, outputs a graphH with |V (H)|+ |E(H)| 6 k and an embedding

of G into H . Furthermore, with probability at least 0.5, the depth of the output embedding is at most

C
(
1 + k−1(n+m)

)
· log k.

We start with a few simpli�cation steps in the proof of Theorem 66.

1. For k = O(1), the algorithm of Theorem 66 can output just a single-vertex graphH and embed the

whole G into that vertex. Thus, we can assume k is larger than any �xed constant, in particular,

k > 8.

2. Our constructed graphH will have maximum degree at most 3 and will satisfy |V (H)| > bk/4c >
k/8, so any isolated vertices of G can be equidistributed across the vertices of H adding at most

1 + k−1n to the congestion. Thus, we can assume G has no isolated vertices.

3. We can assume G has maximum degree at most 3: for every vertex v of degree degG(v) > 3, we

replace v with a cycle on degG(v) vertices and equidistribute the edges incident to v among the

vertices of the cycle. This increases n+m by at most a factor of 3. Since the original graph G is

a minor of the modi�ed one, it su�ces to �nd an embedding of the modi�ed graph.
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4. Finally, if at this point n+m 6 k, then we can outputH = G (and, if |V (G)| < bk/4c, a number

of isolated vertices to have bk/4c vertices in G as it is required in Point 22 above) and a trivial

embedding, so assume n+m > k.

In what follows we will need the following variant of Cherno� bound (this is the same as used

in [2121]).

Theorem 7 (Cherno� bound). LetX1, . . . , Xn be independent random variables with values in {0, 1}.
Let X =

∑n
i=1Xi, let µ = EX , and let r > µ be a real. Then,

Pr(X > µ+ r) 6
(eµ
r

)r
.

Proof. The case µ = 0 is trivial, so assume µ > 0. Let δ = r/µ > 1. We use the standard Cherno�

bound as in Wikipedia:

Pr(X > (1 + δ)µ) 6

(
eδ

(1 + δ)1+δ

)µ
.

Hence

Pr(X > µ+ r) = Pr(X > (1 + δ)µ) 6

(
eδ

(1 + δ)1+δ

)µ
6

(
e

1 + δ

)µ(1+δ)
=

(
eµ

µ+ r

)µ+r
6
(eµ
r

)r
. �

3.1 Concurrent �ows and expanders

For a constant α > 0, we say that a (multi)graph H is an α-expander if for every nonempty set

S ⊆ V (G) of size at most |V (G)|/2, the number of edges with exactly one endpoint in S is at least

α|S|. For the choice of the graph H in Theorem 66, we can rely on any polynomial-time construction of

a constant-degree expander. We encapsulate it in the following standard claim.

Theorem 8. There exists a constant δ > 0 and polynomial-time algorithm that, given an integer ` > 1,
outputs a (simple) graph H` on ` vertices that is a δ-expander and has maximum degree at most 3.

Obtaining a multicommodity �ow. We now recall some tools from [1313, 2121]. Fix a graph G and

a set W ⊆ V (G). A pair (A,B) is a separation in G if A ∪ B = V (G) and there is no edge between

A \B and B \A. The sparsity of (A,B) (w.r.t. W ) is de�ned as

αW (A,B) =
|A ∩B|

|A ∩W | · |B ∩W |
.

Let αW (G) be the minimum sparsity of a separation of G. We have the following observation.

Lemma 9. If G is a δ-expander of maximum degree 3, then

αV (G)(G) >
δ

3 + δ
|V (G)|−1.

Proof. Let (A,B) be a separation ofG. Without loss of generality assume that |A| 6 |B|, so |A\B| 6
|V (G)|/2 Then, by the expander property for the set A \B we have

δ|A \B| 6 3|A ∩B|.

Hence

|A| 6 3 + δ

δ
|A ∩B|.

Therefore

αV (G)(A,B) =
|A ∩B|
|A| · |B|

>
δ

3 + δ
· |V (G)|−1.

�
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For the de�nition of a concurrent �ow and sampling from it, we follow the notation of [1414].

A �ow fu,v between two vertices u and v is a weighted collection of pairwise distinct paths between

u and v (if u = v then the only possible path in fu,v has length 0). The units of �ow sent through a vertex

w by fu,v is the sum of the weights of the paths in fu,v that contain w. The value of fu,v is de�ned as

the units of �ow sent through u (or equivalently through v). A concurrent �ow of value ν and congestion

γ is a collection of |V (G)|2 �ows (fu,v)(u,v)∈V (G)×V (G) such that

• fu,v sends exactly ν units of �ow from u to v; and

• for each vertex w the total �ow over all �ows fu,v sent through w is at most γ.

We need the following relation between the minimum possible congestion and sparsity of separa-

tions.

Theorem 10 ([66, 1919]). Let γ be the minimum possible congestion of concurrent �ow of value 1 in a graph
G. Then there exists a separation with sparsity (w.r.t. |V (G)|) O(log |V (G)|/γ).

From the above toolbox we obtain the following corollary.

Lemma 11. There exists a constaint c and an algorithm that, given an integer ` > 2, in time polynomial in

` computes a graphH with ` vertices and maximum degree at most 3 and a concurrent �ow (fu,v)u,v∈V (H)

of congestion at most c` log `.

Proof. Apply Theorem 88 to `, obtaining a δ-expander H := H`. As αV (H)(H) > δ
3+δ `

−1
by Lemma 99,

there exists inH a concurrent �ow of value 1 and congestion at most c ˙̀ log ` for some universal constant

c (that depends on δ and the constants hidden in Theorem 1010). Finally, we observe that the problem of

�nding a concurrent �ow of value 1 and minimum possible congestion can be formulated as a linear

program, and therefore solved in polynomial time. �

3.2 Constructing the embedding

We set ` := bk/4c; note that ` > 2 due to the assumption k > 8. We apply Lemma 1111 to ` obtaining a

graph H on ` vertices and maximum degree at most 3, and a concurrent �ow (fu,v)u,v∈V (H) of value

1 and congestion at most c` log ` 6 ck log k. Without loss of generality, we assume c > 1. Note that

|V (H)|+ |E(H)| 6 `+ 3` 6 k as desired. We assume V (H) = [`] for ease of the notation.

Similarly as in [1313, 1414, 2121], we treat fu,v as a probability distribution over paths from u to v: the

probability of choosing a path equals the amount of �ow passed along this path (its weight in fu,v).

The crucial tool for the construction is the following analysis.

Claim 4. Fix integer p > 1 and consider the following random process. For every x ∈ V (H) and every
i ∈ [p], randomly pick (with uniform distribution) a vertex Y (x, i) ∈ V (H) and then a path P (x, i) from
x to Y (x, i) according to the distribution fx,Y (x,i). Then, with probability more than 0.9, the family of

paths P = {P (x, i) | x ∈ V (H), i ∈ [p]} has congestion at most 10cp log ` (where c is the constant from
Lemma 1111).

Proof. Fix a vertex w ∈ V (H). For x, y ∈ V (H), let fx,y(w) be the amount of �ow fx,y that passes

through w. For x ∈ V (H) and i ∈ [p], let X(x, i) be a {0, 1}-valued random variable indicating if w
lies on the path P (x, i). Then,

EX(x, i) = Pr(X(x, i) = 1) = `−1
∑

y∈V (H)

Pr(w ∈ P (x, i) | Y (x, i) = y) = `−1
∑

y∈V (H)

fx,y(w).

Hence, if we de�ne X =
∑

x∈V (H)

∑p
i=1X(x, i), we have

EX =
∑

x∈V (H)

p∑
i=1

`−1
∑

y∈V (H)

fx,y(w) = p`−1
∑

x,y∈V (H)

fx,y(w) 6 p`
−1c` log ` = cp log `.
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By the aforementioned version of the Cherno� bound (Theorem 77), we obtain:

Pr(X > 10cp log `) 6

(
eEX

9cp log `

)9cp log `

6 e−9cp log ` 6 `−9 < `−1/10.

In the last two inequalities we used c > 1 and ` > 2. Thus, by the union bound, the probability that for

every w ∈ V (H) at most 10cp log ` of P pass through w is at least 0.9. �

We are now ready to construct the �nal embedding φ of G into H . We start with spliting V (G) into

` buckets of as equal as possible sizes: that is, we take arbitrary ζ : V (H) → [`] such that for every

a ∈ [`], we have |ζ−1(i)| ∈ {b|V (G)|/`c, d|V (G)|/`e}. We start by setting φ(v) = {ζ(v)} for every

v ∈ V (G). Then, for every xy ∈ E(G) with ζ(x) 6= ζ(y) we proceed as follows:

1. Uniformly at random pick Z(xy) ∈ V (H).

2. Sample a path P (xy, x) from x to Z(xy) according to the distribution fx,Z(xy) and add P (xy, x)
to φ(x).

3. Sample a path P (xy, y) from y to Z(xy) according to the distribution fy,Z(xy) and add P (xy, y)
to φ(y).

Clearly, the constructed φ is indeed an embedding of G to H . It remains to bound its congestion.

To this end, consider a vertex w ∈ V (H) and a vertex v ∈ V (G) such that w ∈ φ(v). We say

that w is a type-0 member of φ(v) if ζ(v) = w. We say that w is a type-1 member of φ(v) if for some

xy ∈ E(G), with ζ(x) < ζ(y), w lies on the sampled path P (xy, x). We say that w is a type-2 member

of φ(v) if for some xy ∈ E(G), with ζ(x) < ζ(y), w lies on the sampled path P (xy, y). Note that w is

a member of at least one type (but possibly of multiple types).

A �xed vertex w is a type-0 member of exactly |ζ−1(w)| 6 1 + `−1n sets φ(v). The crucial

observation is that the number sets φ(v) which w is a type-1 member can be bounded using Claim 44

with p := 3(1 + `−1n). Indeed, for a �xed vertex a ∈ V (H), let Ea,1 be the set of edges xy ∈ E(G)
with a = ζ(x) < ζ(y). Since G is of maximum degree at most 3, we have |Ea,1| 6 3|ζ−1(a)| 6
3(1 + `−1n) = p. Crucially, the sets (Ea,1)a∈V (H) are pairwise disjoint. Thus, the choices of Z(xy) for

all a ∈ V (H) and xy ∈ Ea,1 are independent. Hence, by Claim 44, with probability at least 0.9 every

w ∈ V (H) is a type-1 member of at most 10cp log ` sets φ(v).
A symmetrical argument shows that with probability at least 0.9 every w ∈ V (H) is a type-2

member of at most 10cp log ` sets φ(v). Consequently, by the union bound, with probability at least 0.8

the congestion of the constructed embedding is at most

(1 + `−1n) + 2 · 10c(1 + `−1n) log ` 6 (20c+ 1)(1 + `−1n) log ` 6 (120c+ 6)(1 + k−1n) log k.

In the last inequality we used ` = bk/4c and k > 8. This �nishes the proof of Theorem 66.

4 Wrapping up the proof of quasi-polynomial time lower bound

In this section we �nish the proof of the quasi-polynomial time lower bound for Global Label Min-

Cut under the ETH. The lower bound follows from an application of Theorem 3Theorem 3 to an instance of

Partitioned Subgraph Isomorphism constructed from a 3-Cnf-Sat instance with the use of Theorem 6Theorem 6

with appropriate choices of parameters along the way.

Theorem 1. Unless the Exponential Time Hypothesis fails, there is no algorithm solving Global Label

Min-Cut in time (np)o(logn/(log logn)
2)
.

Proof. We give a randomized reduction from 3-Cnf-Sat to Dual Global Label Min-Cut that succeeds

with probability at least 0.5.
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Let ψ be the 3-Cnf-Sat instance on N variables and M clauses, and let G be the incidence graph

of ψ. We call the vertices in G corresponding to variables in ψ the variable vertices, and the vertices

corresponding to clauses clause vertices. Let G be the incidence graph of ψ and let k =
√
N +M . We

apply Theorem 6Theorem 6 on (G, k). Let C be its constant, let H be the graph, and φ the embedding of G in H
returned by its algorithm. If the congestion of this embedding is more than C(1+ k−1(N +M)) · log k,

then we report fail. Note that this happens with probability less than 0.5. We may therefore assume

that the congestion con(φ) of the embedding φ is at most

con(φ) ≤ C(1 + k−1(N +M)) · log k = O(
√
N +M log

√
N +M), (5)

and that

|V (H)|+ |E(H)| ≤ k =
√
N +M. (6)

We now give a CSP instance ψH that will be transformed to a Partitioned Subgraph Isomorphism

instance to which we can apply Theorem 3Theorem 3. To obtain ψH , �rst think of ψ as a CSP instance ψG on the

graph G, in the following way: The variables of ψG are the vertices of G. The domain of each variable

corresponding to a variable vertex is {true, false}, and the domain of each variable corresponding to

a clause vertex it is [`], where ` ≤ 3 is the number of literals in that clause. Each truth assignment

to the variables of ψ naturally corresponds to a valuation of the variable vertex variables in ψG. If

such an assingment is a satifying assignment, then each clause vertex variable can receive a value that

indicates which literal satis�es it. To ensure that this only works when a truth assignment is indeed

satisfying, we add the following constraints to ψG: Let vz be an edge in G, where v is a variable vertex

and z is a clause vertex, corresponding to a clause of size `. Suppose v is the i-th literal in z. Let

R = {true, false}× [`]\{i}. If v occurs positively in z, then we add a constraint ((v, z), R∪{(true, i)})
to ψG, and if v occurs negated, we add ((v, z), R ∪ {(false, i)}) to ψG. In either case, we denote the

corresponding constraint by ((v, z), Rvz). Such constraints ensure that if z receives value i, then in

any satisfying valuation, the truth assignment of v satis�es z.

We now obtain ψH , a CSP instance on H , from ψG by “routing φ through ψG”. Concretely, this

means the following. For each v ∈ V (G), let Dv denote the domain of v in ψG. The domain of each

w ∈ V (H) in ψH is Dw =×v∈V (G),w∈V (φ(v))Dv . This way, assigning a value to w in ψH corresponds

to assigning values to all v ∈ V (G) that are mapped to w via φ. We add two types of constraints. The

�rst one simply checks that if a vertex v ∈ V (G) is mapped to several vertices in H , then the valuation

stays consistent. The second one checks the edge constraints from ψG at a point where the subgraphs of

their endpoints in H touch. We use the following notation. For w ∈ V (H), (v1, . . . , vr) ∈ V (G)r with

w ∈
⋂
j∈[r] V (φ(vj)), and (i1, . . . , ir) ∈ Dv1 × . . .×Dvr , we let Dw[v1 ← i1, . . . , vr ← ir] denote the

subset of Dw, where for all j ∈ [r], value of vj is �xed to ij . In the following, domains of variables in

ψH may get shrunk. For ease of notation, however, we always denote the current domain of w ∈ V (H)
by Dw. We do the following:

1. (Consistency.) For each v ∈ V (G) and each edge w1w2 ∈ E(H) such that {w1, w2} ⊆ V (φ(v)),
we add a constraint ((w1, w2),

⋃
i∈Dv Dw1 [v ← i] × Dw2 [v ← i]). (Note that since φ(v) is

connected, this indeed ensures consistency.)

2. (Touching.) For each uv ∈ E(G), by de�nition, φ(u) and φ(v) touch. In this part, we ensure that

ψH respects the constraints in ψG imposed by the edges in G. For each uv ∈ E(G), we do the

following.

(a) (Vertex Touching.) Let w ∈ V (φ(u)) ∩ V (φ(v)); we restrict Dw to⋃
(i,j)∈Ruv

Dw[u← i, v ← j].

(b) (Edge Touching.) Let wz ∈ E(H) such that w ∈ V (φ(u)) and z ∈ V (φ(v)); we add a

constraint ((w, z),Ruvwz) to ψH , where

Ruvwz =
⋃

(i,j)∈Ruv
Dw[u← i]×Dz[v ← j].
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It follows directly from this description that ψ is satis�able if and only if ψH is. Moreover, the

domain of each variable in ψH (vertex in H) is at most 3con(φ).
We now transform ψH into a Partitioned Subgraph Isomorphism instance (H,K); H serves as

the pattern graph and K is obtained as follows. For all x ∈ V (H), we add a set of vertices Vx = Dx
to K , i.e., Vx is the domain of the variable x in ψH . This way, a choice of one vertex per Vx naturally

corresponds to a valuation of the variables in ψH . To ensure that such a choice gives an H-subgraph in

K precisely when the corresponding valuation satis�es ψH , we add the following edges to H : For each

wz ∈ E(H), and each pair u ∈ Vw, v ∈ Vz , we add the edge uv to K if and only if for each constraint

of the form ((w, z),R) in ψH , (u, v) ∈ R, in other words, it is satis�ed by assigning u to w and v to z.

Again it is clear from the description that the instance (H,K) is equivalent to ψH , and therefore to ψ.

If H is not connected, then we add a new color class to H containing a single universal vertex xH , as

well as a universal vertex xK to K with VxH = {xK}.
We now apply the reduction of Theorem 3Theorem 3 to (H,K) and obtain an instance I of Dual Global Label

Min-Cut. LetL = N+M . To analyze the size of I , recall that by (66), |V (H)|+|E(H)| ≤
√
L, and since

each color class ofK has at most 3con(φ) = 2O(
√
L log

√
L)

vertices, we have that |V (K)| = 2O(
√
L log

√
L)

and |E(K)| = 2O(
√
L log

√
L)

, by (55). Let n be the number of vertices in I and let p be the number of

labels. By Theorem 3Theorem 3,

n = O
(
|V (H)|(4|E(H)|)|E(H)||V (K)|

)
= 2O(

√
L log

√
L), and p = |E(K)| = 2O(

√
L log

√
L),

and I can be constructed in 2O(
√
L log

√
L)

time. To conclude, an algorithm for Dual Global Label

Min-Cut running in (np)o(logn/(log logn)
2)

would yield a 3-Cnf-Sat algorithm running in

(np)o(logn/(log logn)
2) =

(
2
√
L log

√
L
)o( √

L log
√
L

(log
√
L+log log

√
L)2

)
= 2

o

(
L

(log
√
L)2

(log
√
L+log log

√
L)2

)
= 2o(N+M)

time, contradicting the ETH. �
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