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Abstract

In contention resolution, multiple processors are trying to coordinate to send discrete messages

through a shared channel with sharply limited communication. If two processors inadvertently send

at the same time, the messages collide and are not transmitted successfully. An important case is

acknowledgement-based contention resolution, in which processors cannot listen to the channel at all;

all they know is whether or not their own messages have got through. This situation arises frequently in

both networking and cloud computing. The most common acknowledgement-based protocols in practice

are backoff protocols — variants of binary exponential backoff are used in both Ethernet and TCP/IP,

and both Google Drive and AWS instruct their users to implement it to handle busy periods.

In queueing models, where each processor has a queue of messages, stable backoff protocols are

already known (Håstad et al., SICOMP 1996). In queue-free models, where each processor has a single

message but processors arrive randomly, it is a long-standing conjecture of Aldous (IEEE Trans. Inf.

Theory 1987) that no stable backoff protocols exist for any positive arrival rate of processors. Despite

exciting recent results for full-sensing protocols which assume far greater listening capabilities of the

processors (see e.g. Bender et al. STOC 2020 or Chen et al. PODC 2021), this foundational question

remains open; here instability is only known in general when the arrival rate of processors is at least

0.42 (Goldberg et al. SICOMP 2004). We prove Aldous’s conjecture for all backoff protocols outside

of a tightly-constrained special case using a new domination technique to get around the main difficulty,

which is the strong dependencies between messages.

1 Introduction

In the field of contention resolution, multiple processors (sometimes called “stations”) are trying to coordin-

ate to send discrete messages (sometimes called “packets”) through a shared channel called a multiple access

channel. The multiple access channel is not centrally controlled and the processors cannot communicate,

except by listening to the channel. The operation of the channel is straightforward. In each (discrete) time

step one or more processors might send messages to the channel. If exactly one message is sent then it

is delivered successfully and the sender is notified of the success. If multiple messages are sent then they

collide and are not transmitted successfully (so they will have to be re-sent later).

We typically view the entire process as a discrete-time Markov chain. At each time step, new messages

arrive at processors with rates governed by probability distributions with total rate λ > 0. After the ar-

rivals, each processor independently chooses whether to send a message through the channel. A contention-

resolution protocol is a randomised algorithm that the processors use to decide when to send messages to the

channel (and when to wait because the channel is too busy!). Our objective is to find a stable protocol [14],

which is a protocol with the property that the corresponding Markov chain is positive recurrent, implying

*A short version, without the proofs, will appear in the Proceedings of SODA 2023. For the purpose of Open Access, the authors

have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. All data

is provided in full in the results section of this paper.
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that there is a stationary distribution bounding the likely extent to which messages build up over time. Other

objectives include bounding the expected waiting time of messages and maximising the throughput, which

is the rate at which messages succeed.

Issues of contention resolution naturally arise when designing networking protocols [1, 2], but it is

also relevant to hardware design that enables concurrency [17, 23] and to interaction with cloud computing

services [9, 10]. The example of cloud computing will be an instructive one, so we expand on it. Suppose

that an unknown number of users is submitting requests to a server which is struggling under the load, with

more users arriving over time. The users do not have access to load information from the server and they

do not have knowledge of each other — all they know is whether or not their own requests to the server are

getting through. The central question of contention resolution is then: how often should users re-send their

requests in order to get everyone’s requests through as quickly as possible?

There are two main categories of contention resolution protocol — these differ according to the extent

to which processors listen to the channel. In full-sensing protocols, processors constantly listen to the

shared channel obtaining partial information. For example, in addition to learning whether its own sends are

successful, a processor may learn on which steps the channel is quiet (with no sends) [26] or it may learn

on which steps there are successful sends [6] or it may learn both [21]. While full-sensing protocols are

suitable in many settings, there are important settings where they cannot reasonably be implemented (such

as the cloud computing example above). In acknowledgement-based protocols, the only information that

processors receive about the shared channel is whether their own messages get through.

We distinguish between two ways of modelling message arrival. The earliest work in the field focused

on queueing models, in which the number N of processors is fixed and each processor maintains a queue

of messages to be sent. These models are appropriate for a static network. A particularly simple example

is the slotted ALOHA protocol [24], one of the first networking protocols. In this protocol, if there are N
processors with non-empty queues, then these processors send independently with probability 1/N . For

large N , this is stable if λ < 1/e. However, it requires the processors to know the value of N . In order

to get around this difficulty, Metcalfe and Boggs proposed binary exponential backoff, in which a processor

which has already had i unsuccessful attempts to send a given message waits a random amount of time

(a geometric random variable with mean 2i) before again attempting to send. Binary exponential backoff

(with some modifications) forms the basis for Ethernet [19] and TCP/IP [5]. For any N , binary exponential

backoff is known to be stable for sufficiently small λ [14, 3]. Unfortunately, this value of λ depends on N
and binary exponential backoff is unstable if λ is sufficiently large [16]. Remarkably, Håstad, Leighton and

Rogoff [16] showed that polynomial backoff (where the waiting time after the i’th collision is a geometric

random variable with expectation iα for some α > 1) is stable for all λ ∈ (0, 1). For contention resolution

with queues even more powerful full-sensing protocols are known — in particular, there is a stable full-

sensing protocol even for the more general model in which some specified pairs of processors are allowed

to use the channel simultaneously [25, 26].

In this paper, we focus on queue-free models, which allow for dynamic networks and are more appropri-

ate for public wi-fi hotspots [1] or cloud computing [9, 10]. We again consider these models in discrete time.

In these models, processors arrive in the system according to a Poisson distribution with rate λ, and each

processor only wants to send a single message rather than maintaining a queue; in fact, we typically identify

the processors with the messages that they are trying to send. As usual, only one message can pass through

the channel at any given time step. In this setting, an acknowledgement-based protocol can be viewed as

a joint distribution (T1, T2, . . . ) of times. For each message, the corresponding processor independently

samples (τ1, τ2, . . . ) from (T1, T2, . . . ). If the message does not get through during the first j − 1 times

that it is sent then the processor waits for τj time steps before sending it for the j’th time. An important

special case is that of backoff protocols, in which (T1, T2, . . . ) is a tuple of independent geometric variables.

Equivalently, a backoff protocol is associated with a send sequence of probabilities p = p0, p1, . . . such

that, if a processor has already had j unsuccessful sends, then it will send its message on the following time
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step with probability pj ; thus 1/pj is the expected waiting time E(Tj). For example, the case pj = 2−j

gives rise to the binary exponential backoff protocol that we have already described. This protocol is widely

used in the queue-free model: both AWS and Google Drive advise users to implement binary exponential

backoff when using their services [9, 10].

In the queue-free setting, there has been a great deal of interesting work developing full-sensing proto-

cols and proving that these perform well. Some of this is described in the survey of Chlebus [8]. See also

[21, 11, 15]. More recently, Bender et al. [6] have shown that in the full-sensing model without collision

detection (where processors listen to the channel to learn on which steps there are successful sends but are

unable to distinguish between silence and collisions) there is a full-sensing protocol which achieves constant

throughput even when the message arrival is adversarial rather than random. Chen et al. [7] demonstrate a

full-sensing protocol that can achieve a decent throughput, even in the presence of jamming. Despite these

advances regarding full-sensing protocols, and other protocols assuming more capabilities from processors

than acknowledgement-based protocols [22, 13], for acknowledgement-based protocols the most funda-

mental possible question remains open: do stable protocols exist at all? Indeed, this problem remains

open even for backoff protocols, and most work on the question has focused on this case.

The following foundational conjecture was made by Aldous [4] in 1987, and is widely believed. It is the

focus of this work.

Conjecture 1 (Aldous’s Conjecture). In the queue-free setting, no backoff protocol is stable for any positive

value of λ.

Aldous’s conjecture remains open to this day. It has been proved for arrival rates λ ≥ 0.42 [12], but for

arbitrary arrival rates the only known results concern special cases which avoid a central difficulty inherent

to the problem. Consider a backoff protocol with send sequence p0, p1, . . . and arrival rate λ > 0. For all

integers j, t ≥ 1, write bj(t) for the set of messages in the system at time t which have already sent j times

(all unsuccessfully). Write Sj(t) for the number of messages in bj(t) which send at time t, S0(t) for the

number of “newborn” messages which send for the first time at time t, and S(t) = S0(t) + S1(t) + . . .
for the total number of sends from all messages in the system. Thus a message escapes the system at

time t if and only if S(t) = 1, Aldous’s conjecture implies that S(t) = 1 for less than a λ proportion

of times, i.e. that messages arrive faster than they escape. Very often, the reason that this occurs is that

S(t) ≥ 2 for most values of t. However, it is not hard to show that for all j ≥ 1 and most times t we have

E(Sj(t)) = pjE(|bj(t)|) / λ, and so on most time steps Sj(t) = 0; thus to show S(t) ≥ 2 on most time

steps, we must engage with the complicated joint distribution (|b1(t)|, |b2(t)|, . . . ). This is the key difficulty

that all current arguments have avoided, which restricts the classes of send sequences to which they apply.

The tool that enabled us to prove Aldous’s conjecture for most protocols is a new domination technique

for bounding this joint distribution. Before stating our result and the new technique we first summarise

progress that can be made without engaging with the joint distribution. In the following summary, we

classify protocols in terms of the key quantity 1/pj , which is the expected waiting time before a message

sends after having its j’th collision.

• Kelly and MacPhee [18] categorised the class of backoff protocols for which S(t) ≥ 2 for all suffi-

ciently large t. This result covers all protocols with subexponential expected waiting times, i.e. whose

send sequences satisfy 1/pj = o(cj) as j → ∞ for all c > 1 (see Corollary 9). Since these protocols

are unstable in such a very strong way, Kelly and MacPhee are able to avoid working with the joint

distribution in favour of applying the Borel-Cantelli lemmas.

• Aldous [4] proved that binary exponential backoff is unstable for all λ > 0, and his argument easily

extends to all backoff protocols with exponential expected waiting times, i.e. whose send sequences

satisfy 1/pj = Θ(cj) as j → ∞ for some c > 1 (see Section 1.2). This proof relies on proving
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concentration for specific variables |bj(t)| as t → ∞, and then applying union bounds over suitable

ranges of j and t, again avoiding the joint distribution. This concentration fails in general; for example,

if pj ≥ 3λ, then bj(t) = ∅ for most values of t. (See Definition 10 for a more detailed discussion.)

• A simple argument known to the authors of [12] (but not previously published) shows that there is no

stable backoff protocol which has infinitely many super-exponential expected waiting times, i.e. with

an infinite subsequence pj1 , pj2 , . . . satisfying 1/pjk = ω(cjk) as k → ∞ for all c > 1. We state and

prove this as Lemma 7. In this case there is no need to engage with the joint distribution of the Sj(t)
variables because the proof relies on bounding S(t) ≥ S0(t), i.e. only considering newborn messages.

Unfortunately, the above results cannot be combined in any simple way to prove Aldous’s conjecture.

For example, by including some pj values such that the expected waiting time 1/pj is less than exponential,

it is easy to construct protocols which neither exhibit concentration for specific variables |bj(t)| nor satisfy

S(t) ≥ 2 for all sufficiently large t (see Section 1.2), so to show that these protocols are unstable we must

engage with the joint distribution.

Our main technical contribution is a proof (see Lemma 16) that, roughly speaking, we can dominate

the joint distribution of (|b1(t)|, |b2(t)|, . . . ) below by a much simpler collection of independent Poisson

variables whenever E(S(t)) → ∞ as t → ∞. Using this, we are able to almost entirely solve the problem

of inconsistent decay rates and prove Aldous’s conjecture except in some extreme cases characterised in

Definition 4. Before describing these extreme cases, we give some easier-to-state consequences of our

main result (Theorem 5). In the following theorems (and throughout the paper) a backoff process is a

backoff protocol in the queue-free model. The first consequence is that all protocols with monotonically

non-increasing send sequences are unstable.

Theorem 2. For every λ ∈ (0, 1) and every monotonically non-increasing send sequence p = p0, p1, . . .,
the backoff process with arrival rate λ and send sequence p is unstable.

We have included Theorem 2 because it has a clean statement, but our proof technique doesn’t rely on

any kind of monotonicity. For example, our main Theorem, Theorem 5 also has the following corollary.

Theorem 3. Let p be a send sequence. Let mp(n) be the median of p0, . . . , pn. Suppose that mp(n) = o(1).
Then for every λ ∈ (0, 1) the backoff process with arrival rate λ and send sequence p is unstable.

Of course, there is nothing very special about the median. The same would be true of sequences for

which any centile is o(1). At this point, we are ready to describe the extreme cases that elude our new proof

technique, and to state our main result, which shows instability except in these extreme cases. The extreme

cases have the property that the send sequence is almost entirely constant, with occasional exponential (but

not super-exponential) waiting times thrown in.

Definition 4. A send sequence p is LCED (“largely constant with exponential decay”) if it satisfies the

following properties:

(i) “Largely constant”: For all η > 0, there exists c > 0 such that for infinitely many n, |{j ≤ n : pj >
c}| ≥ (1− η)n.

(ii) “with exponential decay”: p has an infinite subsequence (pℓ1 , pℓ2 , . . . ) which satisfies log(1/pℓx) =
Θ(ℓx) as x → ∞.

(iii) “(but without super-exponential decay)”: log(1/pj) = O(j) as j → ∞.

As an illustrative example of item (i) taking η = 999/1000, it implies that as you progress along the

send sequence p1, p2, . . . , infinitely often, you will notice that all but 1 − η = 0.1% of the pj’s you have

seen so far are bounded below by some constant c. The same holds for values of η that are closer to 1,
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but c will be correspondingly smaller. Obviously, this is also true for values of η that are closer to 1 but

the corresponding constant c would be smaller. Item (ii) means that there is an infinite subsequence of j’s

where the expected waiting times (after j failures) is exponentially long. Item (iii) just means that expected

waiting times are not more than exponentially long.

With this definition, we can state our main theorem, which proves Aldous’s conjecture for all sequences

except LCED sequences and extends all previously-known results.

Theorem 5. Let p be a send sequence which is not LCED. Then for every λ ∈ (0, 1) the backoff process

with arrival rate λ and send sequence p is unstable.

As we discuss in Section 1.4, LCED sequences can exhibit qualitatively different behaviour from non-

LCED sequences, with arbitrarily long “quiet patches” during which almost every message that sends is

successful. Lemma 16, our domination of the joint distribution (|b1(t)|, |b2(t)|, . . . ) by independent Poisson

variables, is actually false during these “quiet patches”, and so proving Aldous’s conjecture for LCED

sequences will require new ideas. On a conceptual level, the “quiet patches” exhibited by some LCED

sequences are essentially the only remaining obstacle to a full proof of Aldous’s conjecture.

Nevertheless, as we show in this paper, our new domination is sufficient to cover all send sequences

except the LCED sequences. Thus Lemma 16 makes substantial progress on the long-standing conjecture,

the first progress in many years, resulting in strong new instability results such as Theorems 2 and 3.

The remainder of the introduction is structured as follows. Section 1.1 gives the formal definition of a

backoff process. Sections 1.2 and 1.3 sketch the proof of Theorem 5, with Section 1.2 giving an overview

of the relevant existing proof techniques and Section 1.3 explaining our novel ideas. Section 1.4 discusses

the remaining obstacles to proving Conjecture 1.

1.1 Formal definitions

We say that a stochastic process is stable if it is positive recurrent, and unstable otherwise (i.e. if it is null

recurrent or transient). A backoff process is a backoff protocol in the queue-free model.

Informally, a backoff process is a discrete-time Markov chain associated with an arrival rate λ ∈ (0, 1)
and a send sequence p = p0, p1, p2, . . . of real numbers in the range (0, 1]. Following Aldous [4], we

identify processors and messages, and we think of these as balls moving through a sequence of bins. Each

time a message sends, if no other message sends at the same time step, it leaves the system; otherwise, it

moves to the next bin. Thus at time t, the j’th bin contains all messages which have sent j times without

getting through (these sends occurred at time steps up to and including time t). The system then evolves as

follows at a time step t. First, new messages are added to bin 0 according to a Poisson distribution with rate

λ. Second, for all j ≥ 0, each message in bin j sends independently with probability pj . Third, if exactly

one message sends then it leaves the system, and otherwise all messages that sent from any bin j move to

the next bin, bin j + 1.

Remark 6. There is no need to consider arrival rates λ ≥ 1 because it is already known that backoff

processes with arrival rate λ ≥ 1 are unstable [12]. We also don’t allow pj = 0 since that would trivially

cause transience (hence, instability).

Formal definition of backoff processes. A backoff process with arrival rate λ ∈ (0, 1) and send se-

quence p = p0, p1, p2, · · · ∈ (0, 1] is a stochastic process X defined as follows. Time steps t are positive

integers. Bins j are non-negative integers. There is an infinite set of balls. We now define the set bXj (t),
which will be the set of balls in bin j just after (all parts of) the t’th step. Initially, all bins are empty, so

for all non-negative integers j, bXj (0) = ∅. For any positive integer t, the t’th step of X involves (i) step

initialisation (including birth), (ii) sending, and (iii) adjusting the bins. Step t proceeds as follows.
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• Part (i) of step t (step initialisation, including birth): An integer nt is chosen independently from a

Poisson distribution with mean λ. This is the number of newborns at time t. The set b′X0 (t) contains

the balls in bX0 (t − 1) together with nt new balls which are born at time t. For each j ≥ 1 we define

b′Xj (t) = bXj (t− 1).

• Part (ii) of step t (sending): For all j ≥ 0, all balls in b′Xj (t) send independently with probability pj .

We use sendX(t) for the set of balls that send at time t.

• Part (iii) of step t (adjusting the bins):

– If |sendX(t)| ≤ 1 then any ball in sendX(t) escapes so for all j ≥ 0 we define bXj (t) =

b′Xj (t) \ sendX(t).

– Otherwise, no balls escape but balls that send move to the next bin, so we define bX0 (t) =
b′X0 (t) \ sendX(t) and, for all j ≥ 1, bXj (t) = (b′Xj−1(t) ∩ sendX(t)) ∪ (b′Xj (t) \ sendX(t)).

Finally, we define ballsX(t) = ∪jb
X
j (t).

1.2 Technical context

We first formally state the result alluded to in Section 1 which proves instability for backoff protocols whose

send sequences decay super-exponentially.

Lemma 7. Let X be a backoff process with arrival rate λ ∈ (0, 1) and send sequence p = p0, p1, . . .. If,

for infinitely many j, pj ≤ (λp0/2)
j , then X is unstable.

We defer the proof to Section 2, but it is simple. Essentially, we dominate the expected time for a

newborn ball to leave the process below under the assumption that a sending ball always leaves the process

unless another ball is born at the same time. Under the assumptions of Lemma 7, this is infinite.

We next describe the results of Kelly and MacPhee [18] and Aldous [4] in more detail than the previous

section. This will allow us in Section 1.3 to clearly identify the regimes in which instability is not known,

and to clearly highlight the novel parts of our arguments.

We first introduce a key notion from Aldous [4]. Informally, an externally-jammed process is a backoff

process in which balls never leave; thus if a single ball sends at a given time step, it moves to the next bin as

normal. (See Section 3.1 for a formal definition.) Unlike backoff processes, an externally-jammed process

starts in its stationary distribution; thus for all j ≥ 0, the size of bj(0) is drawn from a Poisson distribution

with mean λ/pj . There is a natural coupling between a backoff process X and an externally-jammed process

Y such that |bXj (t)| ≤ |bYj (t)| for all j and t (see Observation 22); thus an externally-jammed process can

be used to dominate (from above) the number of balls in a backoff process.

As discussed earlier, Kelly and MacPhee [18] gives a necessary and sufficient condition for infinitely

many messages to get through. In our context, the relevant case of their result can be stated as follows.

Given a send sequence p, let W0,W1, . . . be independent geometric variables such that Wj has parameter

pj for all j. Then for all τ ≥ 0, we define

µτ (p) =
∞∑

j=0

P

( j∑

k=0

Wk ≤ τ
)
.

Thus if a ball is born at time t in an externally-jammed process, µτ (p) is the expected number of times that

ball sends up to time t+ τ .
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Theorem 8 ([18, Theorem 3.10]). Let p be a send sequence, and suppose that for all λ ∈ (0, 1),

∞∑

τ=0

µτ (p)e
−λµτ (p) < ∞.

Then for all λ ∈ (0, 1), the backoff process X with arrival rate λ and send sequence p is unstable. Moreover,

with probability 1, only finitely many balls leave X.

The following corollary is proved in Section 2.

Corollary 9. Let p be a send sequence such that log(1/pj) = o(j) as j → ∞. Then for all λ ∈ (0, 1), the

backoff process X with arrival rate λ and send sequence p is unstable.

The result that is proved in Aldous [4] is the instability of binary exponential backoff, in which pj = 2−j

for all j, for all arrival rates λ > 0. Aldous’s paper says “without checking the details, [he] believe[s] the

argument could be modified to show instability for [all backoff protocols]”. Unfortunately, this turns out

not to be accurate. However, the proof does generalise in a natural way to cover a broader class of backoff

protocols. Our own result extends this much further building on new ideas, but it is nevertheless based on a

similar underlying framework, so we now discuss Aldous’s proof in more detail.

A key notion is that of noise. Informally, given a state x(t) of a backoff process at time t, the noise

(Definition 24) of x(t) is given by

f(x(t)) = λp0 +

∞∑

j=0

pj |bXj (t)|.

Thus, the noise of a backoff process at time t is the expected number of sends at time t+ 1 conditioned

on the state at time t. Unsurprisingly, while the noise is large, multiple balls are very likely to send at each

time step so balls leave the process very slowly (see Lemma 44).

A slightly generalised version of Aldous’s proof works as follows. The first step is to choose j0 to be a

suitably large integer, and wait until a time t0 at which bins 1, . . . , j0 are all “full” in the sense that |bj(t0)| ≥
cλ/pj for some constant c and all j ≤ j0. (Such a time t0 exists with probability 1. Observe that in the

stationary distribution of an externally-jammed process, bin j contains λ/pj balls in expectation.) We then

define τ1, τ2, . . . with τℓ = C
∑j0+ℓ

j=0 (1/pj) for some constant C; thus τℓ is C times the expected number of

time steps required for a newborn ball to reach bin bj0+ℓ in a jammed channel. The key step of the proof is

then to argue that with suitably low failure probability, for all ℓ and all t satisfying t0 + τℓ ≤ t ≤ t0 + τℓ+1,

all bins j with (j0 + ℓ)/10 ≤ j ≤ j0 + ℓ satisfy |bj(t)| ≥ ζλ/pj for some constant ζ . In other words, we

prove that with suitably low failure probability, there is a slowly-advancing frontier of bins which are always

full; in particular the noise increases to infinity, and the process is transient and hence unstable.

In order to accomplish this key step of the proof, the argument is split into two cases. If t is close to t0,

there is a simple argument based on the idea that bins 1 through j0 were full at time t0 and, since j0 is large,

they have not yet had time to fully empty. For the second case, suppose that t is significantly larger than t0,

and the goal is (for example) to show that bin j is very likely to be full at time t = t0 + τℓ. By structuring

the events carefully, one may assume that the process still has large noise up to time t − 1, so with high

probability not many balls leave the process in time steps {t0 +1, . . . , t}. At this point, Aldous uses a time-

reversal argument to show that, in the externally-jammed process, bin j fills with balls that are born after

time t0 during an interval of τℓ time steps. Under a natural coupling, these balls follow the same trajectory

in both the backoff process and the externally-jammed process unless they leave the backoff process; thus,

by a union bound, with high probability most of these balls are present in bin j at time t as required. Aldous

then applies a union bound over all bins j with (j0 + ℓ)/10 ≤ j ≤ j0 + ℓ; crucially, the probability bounds
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for each individual bin j are strong enough that he does not need to engage with the more complicated joint

distribution of the contents of the bins.

Since Aldous works only with binary exponential backoff in [4], he takes τℓ ∼ 2j0+ℓ; his conjecture

that his proof can be generalised to all backoff protocols is based on the idea that the definition of τℓ could

be modified, which gives rise to the more general argument above. Unfortunately, there are very broad

classes of backoff protocols to which this generalisation cannot apply. We now define the collection of send

sequences which this modified version of Aldous’s proof could plausibly handle.

Definition 10. A send sequence p is reliable if it has the following property. Let λ > 0, and let X be a

backoff process with arrival rate λ and send sequence p. Then with positive probability, there exists ζ > 0,

and times t0, t1, t2, . . . and collections B0,B1,B2, . . . of bins such that:

• for all i, for all t satisfying ti ≤ t ≤ ti+1, for all j ∈ Bi, we have |bj(t)| ≥ ζλ/pi.

• |Bi| is an increasing sequence with |Bi| → ∞ as i → ∞.

Indeed, if Aldous’s proof works for a send sequence p, then it demonstrates that p is reliable: Aldous

takes ζ = 1/2, ti = τi for all i, and Bi = {(j0 + i)/10, . . . , j0 + i} for all i. In short, a reliable protocol is

one in which, after some “startup time” t0, at all times one can point to a large collection of bins which will

reliably all be full enough to provide significant noise. As discussed above, it is important that they are all

full — otherwise it is necessary to delve into the complicated inter-dependencies of the bins.

1.3 Proof sketch

In order to describe the proof of Theorem 5 and explain how it works on unreliable send sequences that

are not covered by Aldous’s proof techniques, we first set out a guiding example by defining the following

family of send sequences.

Example 11. Given ρ ∈ (0, 1), an increasing sequence a of non-negative integers with a0 = 0, and a

function g : N → N, the (ρ,a, g)-interleaved send sequence p = p0, p1, . . . is given by

pj =

{
ρj if a2k ≤ j ≤ a2k+1 − 1 for some k ≥ 0,

g(j) if a2k+1 ≤ j ≤ a2k+2 − 1 for some k ≥ 0.

Thus the (ρ,a, g)-interleaved send sequence is an exponentially-decaying send sequence with base ρ spliced

together with a second send sequence specified by g, with the splices occurring at points given by a.

In this section, we will take g(j) = 1/ log log j and ak = 22
k
. We will refer to the (ρ,a, g)-interleaved

send sequence with this choice of g and a as a ρ-interleaved send sequence.

Observe that a (ρ,a, g)-interleaved send sequence fails to be LCED whenever g(j) = o(1). Thus, a

ρ-interleaved send sequence is not LCED.

We claim that as long as ρ is sufficiently small, a ρ-interleaved send sequence is not reliable and neither

Theorem 8 nor Lemma 7 prove instability; we expand on this claim in Section 1.4. Our main technical result,

which we introduce next, will be strong enough to show that backoff protocols with these send sequences

are unstable. In order to introduce the technical result we first give some definitions.

Definition 12. Given an η ∈ (0, 1), let κ(η) = ⌈3/η⌉.

Definition 13. Let

p∗(λ, η, ν) = min

{
λ

200
,

λη

1800κ(η)2 log(1/ν)

}
.
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Definition 14. Fix λ, η and ν in (0, 1). A send sequence p = p0, p1, . . . is (λ, η, ν)-suitable if p0 = 1 and

there is a positive integer n0 such that for all n ≥ n0,

• |{j ∈ [n] | pj ≤ p∗(λ, η, ν)}| > ηn, and

• νn < pn.

Theorem 15. Fix λ, η and ν in (0, 1). Let p be a (λ, η, ν)-suitable send sequence. Let X be a backoff

process with arrival rate λ and send sequence p. Then X is transient, and hence unstable.

Theorem 5 will follow from Theorem 15 (actually, from a slightly more technical version of it, stated

as Corollary 26), from Corollary 9, and from Lemma 7. We give the proof of Theorem 5, along with the

proofs of Theorems 2 and 3, in Section 6. Observe that for all λ, η > 0, every ρ-interleaved send sequence

is a (λ, η, 2ρ)-suitable send sequence, so Theorem 15 does indeed apply.

Fix λ > 0. Before sketching the proof of Theorem 15, we set out one more piece of terminology. Recall

that there is a natural coupling between a backoff process X and an externally-jammed process Y with

arrival rate λ and send sequence p. Under this coupling, the evolution of X is a deterministic function of

the evolution of Y — balls follow the same trajectories in each process, except that they leave X if they

send at a time step in which no other ball sends. As such, we work exclusively with Y , calling a ball stuck

if it is present in X and unstuck if it is not. We write stuckY
j (t) for the set of stuck balls in bin j at time t,

and likewise unstuckY
j (t) for the set of unstuck balls. (See the formal definition of an externally-jammed

process in Section 3.1.)

Intuitively, the main obstacle in applying Aldous’s proof sketch to a ρ-interleaved send sequence p is the

long sequences of bins with pj = 1/(log log j). In the externally-jammed process Y , each individual bin j
is likely to empty of balls — and hence also of stuck balls — roughly once every (log j)λ steps. (Indeed,

in the stationary distribution, bin j is empty with probability e−λ/g(j) = (log j)−λ.) As such, the individual

bins do not provide a consistent source of noise as reliability would require. We must instead engage with

the joint distribution of bins and argue that a long sequence of bins with large pj , taken together, is likely

to continue providing noise for a very long time even if individual bins empty. Unfortunately, these bins

are far from independent: for example, if |stuckY
j (t)| = |stuckY

j+1(t)| = 0, then we should also expect

|stuckY
j+2(t)| = 0. By working only with individual reliably-full bins, Aldous was able to sidestep this

issue with a simple union bound, but this is not an option for a ρ-interleaved send sequence p.

Observe that since Y starts in its stationary distribution, for all t ≥ 0 the variables {|bYj (t)| : j ≥ 0} are

mutually independent Poisson variables with E(|bYj (t)|) = λ/pj . Intuitively, we might hope that while the

noise of Y is high and very few balls are becoming unstuck, most balls in Y will remain stuck from birth

and we will have |stuckY
j (t)| ≈ |bYj (t)|. If this is true, we can hope to dominate the variables |stuckY

j (t)|
below by mutually independent Poisson variables as long as the noise remains large. Our largest technical

contribution — and the hardest part of the proof — is making this idea rigorous, which we do in Lemma 16.

(Strictly speaking, we use a slightly more technical version stated as Lemma 45.) This lemma is the heart

of our proof; we spend Section 3 setting out the definitions needed to state it formally, then give the actual

proof in Section 4. With Lemma 45 in hand, we then prove Theorem 25 in Section 5, using a version of

Aldous’s framework in which a union bound over large bins is replaced by Chernoff bounds over a collection

of independent Poisson variables which dominate a non-independent collection of smaller bins from below.

For the rest of this section, we will focus on the statement and proof of Lemma 45. A fundamental

difficulty is that we can only hope for such a domination to work while the noise of Y is large, but the noise

is just a weighted sum of terms |stuckY
j (t)|, which are precisely the variables we are concerned with —

we therefore expect a huge amount of dependency. To resolve this, we define the two-stream process in

Section 3.2. Essentially, we split Y into a pair T = (Y A, Y B) of two externally-jammed processes Y A

and Y B, each with arrival rate λ/2, in the natural way. We then say that a ball becomes unstuck in Y A

9



if it sends on a time step at which no other ball in Y B sends, and likewise for Y B . Thus only balls from

Y B can prevent balls in Y A from becoming unstuck, and only balls from Y A can prevent balls in Y B

from becoming unstuck. Each stream of the process acts as a relatively independent source of collisions

for the other stream while its noise is high. Naturally, there is a simple coupling back to the originally

externally-jammed process under which stuck balls in Y are dominated below by stuck balls in T .

We must also explain what we mean by T having “large noise”. We give an informal overview here, and

the formal definitions in Section 3.5. We define a “startup event” Einit(t0) which occurs for some t0 with

probability 1, and which guarantees very large noise at time t0 (governed by a constant Cinit). We divide

the set of bins into blocks B1, B2, . . . of exponentially-growing length, and define a map τ 7→ bins(τ) from

times t0 + τ to blocks Bi. We define a constant ζ > 0, and say that T is t0-jammed for τ if both Y A and

Y B have at least ζ|bins(τ − 1)| noise at time t0 + τ − 1. (Observe that if every ball were stuck, then in

expectation the balls in bins(τ − 1) would contribute λ|bins(τ − 1)| total noise, so jammedness says that

on average the bins in bins(τ − 1) are “almost full”.) We can now state a somewhat simplified version of

Lemma 45.

Lemma 16. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and Y B

be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider the

two-stream externally-jammed process T = T (Y A, Y B). Let t0 and τ be sufficiently large integers. Then

there is a coupling of

• T conditioned on Einit(t0),

• a sample {ZA
j | j ∈ bins(τ)} where each ZA

j is chosen independently from a Poisson distribution

with mean λ/(4pj), and

• a sample {ZB
j | j ∈ bins(τ)} where each ZB

j is chosen from a Poisson distribution with mean

λ/(4pj) and these are independent of each other but not of the {ZA
j } values

in such a way that at least one of the following happens:

• T is not t0-jammed for τ , or

• for all j ∈ bins(τ), |stuckT
j (A, t0 + τ)| ≥ ZA

j and |stuckT
j (B, t0 + τ)| ≥ ZB

j .

To prove Lemma 16 (or its full version Lemma 45), we first formalise the idea that Y A can act as a

“relatively independent” source of noise to prevent balls in Y B becoming unstuck (and vice versa). In

Section 4.1, we define a random unsticking process; this is an externally-jammed process in which balls

become unstuck on sending based on independent Bernoulli variables, rather than the behaviour of other

balls. In Lemma 51, we dominate the stuck balls of Y A below by a random unsticking process R for as long

as Y B is “locally jammed”, and likewise for the stuck balls of Y B .

In order to analyse the random unsticking process, we then make use of a time reversal, defining a reverse

random unsticking process R̃ in Section 4.2 which we couple to R using a probability-preserving bijection

between ball trajectories set out in Lemma 47. We then exploit the fact that balls move independently and the

fact that the number of balls following any given trajectory is a Poisson random variable to prove Lemma 16,

expressing the set of balls in stuckR̃
j as a sum of independent Poisson variables (one per possible trajectory)

with total mean at least λ/(4pj). Unfortunately, the coupling between R and R̃ does not run over all time

steps — for example, since we need to condition on Einit(t0), it certainly cannot cover times before t0 in R.

As a result, we cannot analyse all trajectories this way; instead, we define a subset FillRj (t) of balls in bin j

of R at time t which are born suitably late in R, and analyse the corresponding set FillR̃j (t) of balls in R̃ (see
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Section 4.6). We then prove in Lemma 48 that the variables |FillR̃j (t)| for j ∈ bins(τ − 1) are dominated

below by a tuple of independent Poisson variables; this bound then propagates back through the couplings

to a lower bound on |FillRj (t)| in R and finally to the required bounds on |stuckY A

(t)| and |stuckY B

(t)|
in T given by Lemma 16.

1.4 Future work

It is natural to wonder where the remaining difficulties are in a proof of Aldous’s conjecture. LCED se-

quences are quite a restricted case, and at first glance one might suspect they could be proved unstable by

incremental improvements to Theorem 15, Corollary 9, and Lemma 7. Unfortunately, this is not the case

— LCED send sequences can exhibit qualitatively different behaviour than the send sequences covered by

these results.

Recall the definition of a (ρ,a, g)-interleaved send sequence from Example 11. Let p be such a send

sequence, and let X be a backoff process with send sequence p and arrival rate λ ∈ (0, 1). Unless g is

exponentially small, Lemma 7 does not apply to p for any λ < 2ρ. Also, Theorem 8 (and hence Corollary 9)

does not apply to p for any λ ∈ (0, 1) whenever ρ is sufficiently small and a grows suitably quickly. To

see this, suppose that ρ is small and that a grows quickly. Recall the definition of µτ (p) from Theorem 8.

It is not hard to show (e.g. via union bounds) that µτ (p) ≤ log1/ρ(τ) + O(1) for all τ satisfying a2k ≤
log1/ρ(τ) ≤ a2k+1/3 for any k; from this, it follows that

∞∑

τ=0

µτ (p)e
−λµτ (p) ≥

∞∑

τ=0

µτ (p)e
−µτ (p) = ∞ for all λ ∈ (0, 1).

Since Theorem 8 is both a necessary and a sufficient condition for a backoff process to send only finitely

many times (see [18]), we can conclude that the methods of Kelly and MacPhee do not apply here.

As discussed in Section 1.3, p is not LCED whenever g(j) = o(1) as j → ∞. It is also easy to see

that p is LCED whenever g(j) = Θ(1) and a2k+1 − a2k = o(a2k+2 − a2k+1) as k → ∞, so in this case

our own Theorem 5 does not apply. To show that a simple generalisation of Theorem 15 will not suffice, we

introduce the following definition.

Definition 17. A send sequence p has quiet periods if it has the following property for some λ ∈ (0, 1).
Let X be a backoff process with arrival rate λ and send sequence p. Then with probability 1, there exist

infinitely many time steps on which X has noise less than 1.

Recall that the proof of Theorem 15 (as with Aldous’s result [4]) relies on proving that the noise of a

backoff process increases to infinity over time, so it is unsuitable for send sequences with quiet periods.

Moreover, Corollary 9 is based on Kelly and MacPhee’s necessary and sufficient condition for a backoff

protocol to have only finitely many successful sends (with probability 1). Backoff protocols with quiet

periods have infinitely many successful sends, so cannot be proved unstable by the methods of Corollary 9.

Finally, Lemma 7 handles many protocols with quiet periods (e.g. pj = 2−2j ), but these protocols are always

quiet, and have the property that they can be proved unstable by simple domination arguments (assuming

that a ball always succeeds when it sends unless another ball is born at the same time). For many send

sequences with quiet periods, these assumptions are not true.

The key problem is that if g(j) = 1/2 (say), ρ is sufficiently small, and a grows sufficiently quickly, then

p is very likely to have quiet periods. Indeed, in the externally-jammed process, for large values of k all bins

1, . . . , a2k − 1 are likely to simultaneously empty (which happens with probability at least roughly 2−a2k

in the stationary distribution) long before bin a2k fills with stuck balls and begins contributing significant

noise (which will take time at least (1/ρ)a2k ). Heuristically, we would expect p to alternate between “quiet

periods” with very low noise and “noisy periods” in which noise first grows rapidly, then stays high for
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a very long time. Our current methods are incapable of handling this juxtaposition — in particular, since

messages can easily escape from the system in quiet periods, any argument based around our ideas would

need to bound the frequency and duration of quiet periods.

However, despite this, we believe we have made significant progress towards a proof of Aldous’s con-

jecture even for LCED sequences. Recall from Section 1.3 that the key part of our proof of Theorem 15

is Lemma 45, which gives a way of dominating the number of stuck balls in different bins below by an

independent tuple of Poisson variables as long as overall noise is large. Importantly, the proof of Lemma 45

doesn’t actually rely on the fact that p is suitable. Suitability is important to determining the parameters of

the block construction, which is vital in applying Lemma 45 to prove Theorem 15, but the Lemma 45 proof

goes through regardless of what these parameters are. As such, we believe a slightly more general version

of Lemma 45 will be important even for LCED sequences as a tool for analysing “noisy periods”. The main

remaining challenge is in showing that such “noisy periods” are common enough to outweigh the effect of

“quiet periods” of very low noise.

The remainder of the paper is structured as follows. In Section 2, we set out some standard preliminaries

and prove Lemma 7 and Corollary 9. In Section 3 we introduce the main random processes and block

construction we will need in order to state Lemma 45, the key lemma for our proof of Theorem 15 (see

Section 1.3). In Section 4, we state and prove Lemma 45. In Section 5, we use Lemma 45 to prove

Theorem 25. Finally, in Section 6, we use Theorem 25 (together with Lemma 7 and Corollary 9) to prove

Theorem 5, and derive Theorems 2 and 3 as corollaries.

2 Preliminaries

For all positive integers n, we define [n] to be the set {1, 2, . . . , n}. All logarithms are to the base e unless

specified otherwise.

A stochastic process is “stable” if it is positive recurrent. It is “unstable” otherwise. An unstable process

can be either null recurrent or transient, We now define the filtration FX
0 ,FX

1 , . . . of a backoff process X.

Definition 18. Let X be a backoff process. Since all bins are initially empty, FX
0 contains no information.

For each positive integer t, FX
t contains FX

t−1 together with b′X0 (t) and, for each j ≥ 0, bXj (t). It is clear

that sendX(t) and ballsX(t) can be deduced from FX
t .

We now state some common Chernoff bounds.

Lemma 19. (E.g. [20, Theorems 4.5 and 5.4]) Let Ψ be a real random variable with mean µ which is either

Poisson or a sum of independent Bernoulli variables. Then for all 0 < δ < 1, we have P(Ψ ≤ (1− δ)µ) ≤
e−δ2µ/2.

Lemma 20. Let Ψ be a binomial random variable with mean µ. Then for all x > 1, we have

P(Ψ ≥ xµ) < e−µx(log x−1)

Proof. By the Chernoff bound of [20, Theorem 4.4(1)], for all δ > 0, we have

P
(
Ψ ≥ (1 + δ)µ

)
<

( eδ

(1 + δ)1+δ

)µ
.

Taking x = 1 + δ and putting everything under the exponent implies that for all x > 1,

P(Ψ ≥ xµ) < eµ(x−1)−µx log x < e−µx(log x−1),

as required.
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We will also use some preliminary lemmas. We first prove the following lemma known to to the authors

of [12] and stated in Section 1.2.

Lemma 7. Let X be a backoff process with arrival rate λ ∈ (0, 1) and send sequence p = p0, p1, . . .. If,

for infinitely many j, pj ≤ (λp0/2)
j , then X is unstable.

Proof. Suppose that for infinitely many j we have pj ≤ (λp0/2)
j . We will show that X is not positive

recurrent by showing that the expected time for X to return to its initial state (the state containing no balls)

is infinite.

Let T0 be the first time such that bX1 (T0) 6= ∅, and note that T0 < ∞ with probability 1. Consider

any positive integer t0 and any value FX
t0 of FX

t0 such that T0 = t0. We will now consider the process X
conditioned on FX

t0 = FX
t0 . Let

T = min({∞} ∪ {t > t0 | ballsX(t) = ∅}).

Then by the definition of positive recurrence, it suffices to show that E[T | FX
t0 = FX

t0 ] = ∞.

Let β be an arbitrary ball in bX1 (t0), and let

T ′ = min({∞} ∪ {t > t0 | β ∈ sendX(t) and no newborns send at t}).

Observe that β must escape in order for X to return to its initial state, and β cannot escape before time T ′,

so T ′ ≤ T ; it therefore suffices to show that E[T ′ | FX
t0 = FX

t0 ] = ∞.

At any given step t > t0, the number of newborns that send is a Poisson random variable with para-

meter λp0, so the probability of at least one newborn sending on any given step is r = 1 − e−λp0 . We

therefore have

E[T ′ | FX
t0 = FX

t0 ] =
∑

j≥1

rj−1( 1
p1

+ · · ·+ 1
pj
)(1− r) =

1− r

r

∑

j≥1

rj

pj
.

By the assumption in the lemma statement, infinitely many values of j contribute a summand which is at

least (2r/(λp0))
j which is at least 1 since r = 1− e−λp0 ≥ λp0/2, thus the sum diverges as required.

Before setting up the structure for our own proof, we also prove Corollary 9, a Corollary of Kelly and

MacPhee’s Theorem 8.

Corollary 9. Let p be a send sequence such that log(1/pj) = o(j) as j → ∞. Then for all λ ∈ (0, 1), the

backoff process X with arrival rate λ and send sequence p is unstable.

Proof. Let p be a send sequence as in the corollary statement. As in Theorem 8, let W0,W1, . . . be inde-

pendent geometric variables such that Wj has parameter pj for all j. For all τ ≥ 2/p0, let

µτ (p) =

∞∑

j=0

P

( j∑

k=0

Wk ≤ τ
)
, (1)

and let

M(τ) = max
{
j ≥ 0:

j∑

k=0

(1/pk) ≤ τ/2
}
.

In order to apply Theorem 8, we first prove that for all τ ≥ 2/p0, µτ (p) ≥ M(τ)/2. By the definition

of M(τ), for all j ≤ M(τ) we have E(
∑j

k=0Wk) ≤ τ/2. It follows by Markov’s inequality that for all

j ≤ M(τ),

P

( j∑

k=0

Wk ≤ τ
)
= 1− P

( j∑

k=0

Wk > τ
)
≥ 1/2.
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It now follows from (1) that

µτ (p) ≥
M(τ)∑

j=0

P

( j∑

k=0

Wk ≤ τ
)
≥ M(τ)/2. (2)

We now prove that M(τ) = ω(log τ) as τ → ∞. Let C > 1 be arbitrary; we will show that when τ is

sufficiently large, we have
⌈C log τ⌉∑

k=0

(1/pk) ≤ τ/2,

and hence that M(τ) ≥ C log τ as required. Recall that log(1/pj) = o(j) as j → ∞, and let jC be such

that 1/pj ≤ ej/C/(Ce4) for all j ≥ jC . Suppose τ ≥ 2/p0 is large enough that

jC−1∑

k=0

(1/pk) ≤ τ/4.

We then have

⌈C log τ⌉∑

k=0

(1/pk) ≤
τ

4
+

⌈C log τ⌉∑

k=jC

(1/pk) ≤
τ

4
+

1

Ce4

⌈C log τ⌉∑

k=0

ek/C <
τ

4
+

1

Ce4
· e

(1+⌈C log τ⌉)/C

e1/C − 1
.

Since ex ≥ 1 + x for all x ≥ 0, C(e1/C − 1) ≥ 1 and since C > 1 it follows that

⌈C log τ⌉∑

k=0

(1/pk) ≤
τ

4
+

1

e4
· e2+log τ <

τ

2
.

Hence M(τ) ≥ C log τ , so M(τ) = ω(log τ) as τ → ∞, as claimed; by (2), it follows that µτ (p) =
ω(log τ) as τ → ∞.

Finally, we observe that, since µτ (p) = ω(log τ), for all λ ∈ (0, 1) there is a τλ such that, for τ ≥ τλ,

µτ (p) ≥ (2/λ) log τ . Thus

∞∑

τ=0

µτ (p)e
−λµτ (p) ≤ Θ(1) +

∞∑

τ=τλ

(2/λ) log τ

τ2
< ∞.

The result therefore follows immediately from Theorem 8.

3 Preparation for our Technical Result

We will prove Theorem 15 by studying stochastic processes that are related to, but not exactly the same as,

backoff processes. To do this, it will be useful to assume that the send sequence p has p0 = 1. The next

observation sets up the machinery that enables this.

Observation 21. Fix λ ∈ (0, 1) Let p be a send sequence. Let p′ be the send sequence that is identical to

p except that p′
0 = 1. Let X be a backoff process with arrival rate λ and send sequence p. Let X ′ be a

backoff process with arrival rate λp0 and send sequence p′. Then there is a coupling of X and X ′ such that,

for every positive integer t and every positive integer j, bXj (t) ⊇ bX
′

j (t).

Indeed, in defining the coupling, we can identify the newborns of X ′ with the newborns of X which

immediately send.
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3.1 Definition of externally-jammed process

In order to study backoff processes it will be helpful to define another process that is associated with an

arrival rate λ ∈ (0, 1) and a send sequence p = p0, p1, p2, . . . of real numbers in the range (0, 1] with

p0 = 1.

Note that in a backoff process X with p0 = 1 every bin bX0 (t) is empty, and this is why bins are positive

integers j in the following definition.

Y is an externally-jammed process with arrival rate λ ∈ (0, 1) and send sequence p if it behaves as

follows. Time steps t are positive integers. Bins j are positive integers. We reserve j as an index for bins,

and use ℓ when we need a second index. Initialisation: For every positive integer j, an integer xj is chosen

independently from a Poisson distribution with mean λ/pj . The set bYj (0) is the set containing xj balls which

are “born in process Y at time 0 in bin j”. Formally, the names of these balls are (Y, 0, j, 1), . . . , (Y, 0, j, xj).
For any positive integer t, the t’th step of Y involves (i) step initialisation (including birth), (ii) sending, and

(iii) adjusting the bins. The set bYj (t) is the set of balls in bin j just after (all parts of) the t’th step. Step t
proceeds as follows.

• Part (i) of step t (step initialisation, including birth): An integer nt is chosen independently from a

Poisson distribution with mean λ. The set b′Y0 (t) of newborns at time t is the set containing nt balls

which are “born in Y at time t”. Formally, the names of these balls are (Y, t, 1), . . . , (Y, t, nt). Then

for all j ≥ 1, b′Yj (t) = bYj (t− 1) .

• Part (ii) of step t (sending): For all j ≥ 0, all balls in b′Yj (t) send independently with probability pj .

We use sendY (t) for the set of balls that send at time t.

• Part (iii) of step t (adjusting the bins): For all j ≥ 1,

bYj (t) = (b′Yj−1(t) ∩ sendY (t)) ∪ (b′Yj (t) \ sendY (t)).

Note that for any distinct j and j′, bYj (t) is disjoint from bYj′(t). Also, since p0 = 1, ∪j≥1b
Y
j (t) =

∪j≥1b
′Y
j (t). We now define the filtration FY

0 ,FY
1 , . . . for the externally-jammed process Y . FY

0 contains,

for each j ≥ 1, bYj (0). Then for each positive integer t, FY
t contains FY

t−1 together with b′Y0 (t) and, for

each j ≥ 1, bYj (t). It is clear that sendY (t) can be deduced from FY
t . We define ballsY (t) = ∪jb

Y
j (t).

This can also be deduced from FY
t . We will use the following notation: Each ball β = (Y, 0, j, x) has

birthY (β) = 0. Each ball β = (Y, t, x) has birthY (β) = t.
It is going to be convenient in our analysis to think about the balls of an externally-jammed process Y as

having two states, “stuck” and “unstuck”. The set stuckY (t) will be the set of all balls in ballsY (t) that are

stuck in the process Y at time t and unstuckY (t) = ballsY (t) \ stuckY (t). (Given this identity, we will

define either unstuckY (t) or stuckY (t) for each t, the other can be deduced.) We will assign the states

“stuck” and “unstuck” in such a way that stuckY (t) and unstuckY (t) can be deduced from FY
t , so the

assignment of states to balls is just a convenience.

First, stuckY (0) = ∅. Then for any t ≥ 1 we have the following definition.

• newstuckY (t) = stuckY (t− 1) ∪ b′Y0 (t).

• stucksendY (t) = newstuckY (t) ∩ sendY (t).

• If |stucksendY (t)| = 1 then unstuckY (t) = unstuckY (t − 1) ∪ stucksendY (t). Otherwise,

unstuckY (t) = unstuckY (t− 1).

For t ≥ 1 we define stuckY
j (t) = stuckY (t)∩bYj (t). Note that the stuck balls in an externally-jammed

process correspond to a backoff process. This is captured in the following observation.
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Observation 22. For any backoff process X with arrival rate λ ∈ (0, 1) and send sequence p = p0, p1, . . .
with p0 = 1, there is a coupling of X with an externally-jammed process Y with arrival rate λ and send

sequence p such that for all j ≥ 1 and t ≥ 0, |bXj (t)| = |stuckY
j (t)|.

3.2 A two-stream externally-jammed process

Observation 22 shows that in order to study backoff processes we can instead study externally-jammed

processes and focus on the stuck balls.

Typically, it is difficult to study externally-jammed processes due to correlation between balls. To allevi-

ate this, we define another related process, called a two-stream externally-jammed process. The idea is that

the balls are (arbitrarily) divided into two streams. Keeping track of separate streams enables domination by

processes with more independence.

Here is the definition. We build a two-stream externally-jammed process T = T (Y A, Y B) with arrival

rate λ and send sequence p by combining two independent externally-jammed processes Y A and Y B, each

with arrival rate λ/2 and send sequence p. The balls of T are the balls of Y A together with the balls

of Y B . We refer to the former as A-balls of T and to the latter as B-balls of T . For all t ≥ 0 and

j ≥ 1, bTj (t) = bY
A

j (t) ∪ bY
B

j (t). For all t ≥ 1 and j ≥ 0, b′Tj (t) = b′Y
A

j (t) ∪ b′Y
B

j (t). For all t ≥ 1,

sendT (t) = sendY A

(t) ∪ sendY B

(t).
We define ballsT (t) = ∪jb

T
j (t). For C ∈ {A,B}, ballsT (C, t) is the set of all C-balls in ballsT (t).

Also, each C-ball β of T has birthT (β) = birthY
C

(β).
Lemma 23 below contains the following easy observation: Let Y A and Y B be independent externally-

jammed processes with arrival rate λ/2 and consider the two-stream externally-jammed process T =
T (Y A, Y B). Let Y be an externally-jammed process with arrival rate λ. There is a coupling of Y with

T which provides, for every non-negative integer t, a bijection πt from ballsY (t) to ballsT (t) such that

β ∈ bYj (t) iff πt(β) ∈ bTj (t). Given this, it may seem unclear what the point is of defining the two-stream

externally jammed process, since this is essentially “the same” as an externally jammed process. The only

difference is the names of the balls! The point of it is that we will assign the states stuck and unstuck to balls

of T in a different, and more useful, way.

For C ∈ {A,B}, we will now define the set stuckT (C, t), which will be the set of all balls in

ballsT (C, t) that are stuck in the process T at time t. We also define stuckT (t) = stuckT (A, t) ∪
stuckT (B, t). Similarly to externally jammed processes, it will always be the case that unstuckT (C, t) =
ballsT (C, t) \ stuckT (C, t), so it is only necessary to define stuckT (C, t) or unstuckT (C, t) and the

other is defined implicitly.

For any C ∈ {A,B} we will define stuckT (C, 0) = ∅. Then for any t ≥ 1 we have the following

definitions:

• For C ∈ {A,B}, newstuckT (C, t) = stuckT (C, t− 1) ∪ b′Y
C

0 (t).

• For C ∈ {A,B}, stucksendT (C, t) = newstuckT (C, t) ∩ sendT (t).

• Case 1: If, for distinct C and C ′ in {A,B}, stucksendT (C, t) = ∅ and stucksendT (C ′, t) 6= ∅,

then

– β is chosen uniformly at random from stucksendT (C ′, t) and

– unstuckT (C ′, t) = unstuckT (C ′, t− 1) ∪ {β} and

– unstuckT (C, t) = unstuckT (C, t− 1).

• Case 2: Otherwise, for each C ∈ {A,B} unstuckT (C, t) = unstuckT (C, t − 1).
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Although the sets bTj (t), b
′T
j (t), sendT (t), and ballsT (C, t) can be deduced from FY A

t and FY B

t , the

sets stuckT (C, t) cannot. This is because FY A

t and FY B

t do not capture any information about the choice

of the random ball β (from stucksendT (A, t) or stucksendT (B, t)) that may become unstuck at time t.

Thus, we take FT
t to be FY A

t , FY B

t and the sets stuckT (A, t′) and stuckT (B, t′) for t′ ≤ t so that all

information about the evolution of the process T , including the assignment of states to the balls, is captured.

For C ∈ {A,B}, t ≥ 1 and j ≥ 1, define stuckT
j (C, t) = stuckT (C, t) ∩ bTj (t).

We can now couple an externally-jammed process Y to a two-stream externally-jammed process T in

the following lemma.

Lemma 23. Let Y A and Y B be independent externally-jammed processes with arrival rate λ/2 and con-

sider the two-stream externally-jammed process T = T (Y A, Y B). Let Y be an externally-jammed process

with arrival rate λ. There is a coupling of Y with T which provides, for every non-negative integer t, a

bijection πt from ballsY (t) to ballsT (t) such that the following two properties hold.

• β ∈ bYj (t) iff πt(β) ∈ bTj (t), and

• β ∈ unstuckY (t) implies πt(β) ∈ unstuckT (t).

Proof. We first define the bijections πt. In fact, it is easier to define the inverses π−1
t .

In the initialisation of T , for each C ∈ {A,B}, let xCj denote the number of C-balls born in T at time 0

in bin j. Then xj , the number of balls born in Y at time 0 in bin j, is given by xj = xAj + xBj . The bijection

π−1
0 from ballsT (0) to ballsY (0) then maps the ball (Y A, 0, j, x) to (Y, 0, j, x) and the ball (Y B, 0, j, x)

to (Y, 0, j, xAj + x) (for each x).

For any t ≥ 1, the bijection π−1
t from ballsT (t) to ballsY (t) is the same as πt−1 except that it maps

the balls in b′0
Y A

(t) ∪ b′0
Y B

(t) to b′0
Y (t) using a similar re-naming of balls.

Note that both properties hold at time t = 0 since all balls are unstuck at time 0.

Suppose, for a positive integer t, that the first t− 1 steps of Y and T have been coupled so that the two

properties hold. We will show how to couple the t’th step of the process so that the two properties again

hold.

The first property allows us to couple the send decisions so that β ∈ sendY (t) iff πt(β) ∈ sendT (t).
This allows us to conclude that the first property holds at time t.

To finish, we wish to show that any ball β ∈ unstuckY (t) has πt(β) ∈ unstuckT (t). If β ∈
unstuckY (t − 1) then this is immediate by the second property at time t − 1; we may therefore focus on

the case where β only becomes unstuck at time t, i.e., where β ∈ stucksendY (t) ∩ unstuckY (t). By the

definition of the Y process, β ∈ stucksendY (t) ∩ unstuckY (t) implies that stucksendY (t) = {β}.

By the first property at time t and the second property at time t − 1, if any ball β∗ satisfies β∗ ∈
stucksendT (t) then π−1

t (β∗) ∈ stucksendY (t) so π−1
t (stucksendT (t)) ⊆ stucksendY (t). Hence

|stucksendT (t)| ≤ 1. Now we are finished because πt(β) is either in unstuckT (t− 1) (in which case it

is also in unstuckT (t)) or it is in stucksendT (t) (in which case stucksendT (t) = {πt(β)} so πt(β) ∈
unstuckT (t)).

3.3 Ball vectors and noise

So far, we have defined backoff processes, externally-jammed processes, and two-stream externally-jammed

processes.

Here we collect some notation about these processes that we haven’t needed so far, but which will be

useful later.
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For an externally-jammed process Y we define

ballvectY (t) = (bY1 (t), b
Y
2 (t), . . . ),

stuckvectY (t) = (stuckY
1 (t), stuck

Y
2 (t), . . . ).

Similarly, for a two-stream externally-jammed process T = T (Y A, Y B) we define

ballvectT (t) = (bT1 (t), b
T
2 (t), . . . ),

stuckvectT (C, t) = (stuckT
1 (C, t), stuck

T
2 (C, t), . . . ) for each C ∈ {A,B}.

We define stuckvectT (t) as the position-wise sum of stuckvectT (A, t) and stuckvectT (B, t).

Definition 24. Suppose that x = (x1, x2, . . .) is a sequence of non-negative integers. The noise of x is

defined by f(x) = λ+
∑

i≥1 xipi.

Note that for an externally-jammed process Y with arrival rate λ, f(stuckvectY (t − 1)) is the ex-

pected size of stucksendY (t) conditioned on the filtration FY
t−1. Similarly, for a two-stream externally-

jammed process T with arrival rate λ, f(stuckvectT (t− 1)) is the expected size of stucksendT (A, t) ∪
stucksendT (B, t) conditioned on the filtration FT

t−1.

3.4 Statement of our technical result

Recall the definition of (λ, η, ν)-suitable (Definition 14). The following Theorem and Corollary form the

centre of our argument. Corollary 26 immediately implies Theorem 15, the main technical theorem from

the introduction. Theorem 25 and Corollary 26 are proved in Section 6.

Theorem 25. Fix λ, η and ν in (0, 1). Let p be a (λ, η, ν)-suitable send sequence. Let T be a two-stream

externally-jammed process with arrival rate λ and send sequence p. Let RT = {t | stuckT (t) = ∅}. With

probability 1, RT is finite.

Corollary 26. Fix λ, η and ν in (0, 1). Let p be a (λ, η, ν)-suitable send sequence. Let X be a backoff

process with arrival rate λ and send sequence p. Let RX = {t | ballsX(t) = ∅}. Then, with probability 1,

RX is finite. Hence, X is transient so it is unstable.

3.5 Definitions depending on a (λ, η, ν)-suitable send sequence p

We will need lots of definitions to prove Theorem 25. For everything leading up to and including the proof

of Theorem 25, fix an arrival rate λ ∈ (0, 1) a real number η ∈ (0, 1), a real number ν ∈ (0, 1), and a

(λ, η, ν)-suitable send sequence p. Since λ, η and ν are fixed, we will use κ as shorthand for κ(η) and we

will use p∗ as a shorthand for p∗(λ, η, ν). All of the following notation will depend on p, λ, η, and ν.

Definition 27. j0 is a constant such that for every j ≥ j0 we have pj > νj .

Definition 28. jmin = min{j | pj < 1}.

We know that j0 and jmin exist since p is (λ, η, ν)-suitable.

Before proceeding with the rest of our formal definitions, we give a brief sense of what their purpose

will be. Our proof will proceed by partitioning the bins of T into contiguous “blocks” B1, B2, . . . of

exponentially growing length, with block Bi containing roughly κi bins. We will wait until, by chance, at

some time t0, some large initial segment B1, . . . , BI0 of bins contains many stuck A-balls and B-balls; we
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will denote the number of balls required by Cinit. Since we will choose Cinit to be large, these stuck balls

are likely to take a long time to move out of B1, . . . , BI0 , say until time t0 + τinit. Until they do so, the

A-balls will interfere with any balls escaping from Y B , and crucially they will do so independently from

the evolution of Y B ; likewise, the B-balls will interfere with any balls escaping from Y A.

We will use this interference to argue that BI0+1 is likely to fill with newborn stuck A-balls and B-balls

by some time t0 + τ1 < τ + τinit, that BI0+2 is likely to fill with stuck A-balls and B-balls by some time

t0 + τ2 < τ + τinit, and so on. After time t+ τinit, we will show that the process becomes self-sustaining,

and that Bi being full of stuck A-balls and B-balls is enough to fill Bi+1 by itself. We will formalise this

idea at the end of the section with the definition of “jammedness”.

We now formalise this block construction and define our constants.

Definition 29. For each positive integer i, the block Bi is a contiguous interval of positive integers (called

bins). This block has bins ℓ(i), . . . , u(i) which are defined as follows. First, u(0) = 0 and ℓ(1) = u(1) = 1.

Then for i > 1, ℓ(i) = u(i− 1) + 1 and u(i) = κu(i − 1).

Definition 30. The weight of a bin j is wj = 1/pj . The weight of a block Bi is Wi =
∑

j∈Bi
1/pj .

Observe that the weight of a block Bi is the expected number of time steps required for a ball to pass

through it, from bℓ(i) to bu(i)+1.

Definition 31. ζ = ηλ/24.

The constant ζ will control how full we require the bins of a given block to be in order to consider T
“jammed”.

Definition 32. Let I0 be the smallest integer such that

• I0 ≥ jmin.

• For all n ≥ ℓ(I0):

– |{j ∈ [n] | pj ≤ p∗(λ, η, ν)}| > ηn, and

– νn < pn.

• ζ|BI0 | ≥ 4.

• For c = ζ κ−1
16κ2 , we have I0 ≥ log(4/c)/c and exp(I0c) ≥ 4I0.

Definition 14 ensures that the second condition can be satisfied. The final condition is satisfied if I0 is

sufficiently large. It ensures that, for all i ≥ I0, 4i ≤ exp(ζi κ−1
16κ2 ). It is not actually important that I0 is the

smallest integer satisfying the properties in Definition 32, it is merely important that all of these properties

(which are monotonically increasing in I0) are satisfied.

Definition 33. Define τ0 = 0. For every positive integer i, define τi = κ
∑I0+i

k=1 (I0 + i− k + 1)⌈Wk⌉.

Definition 34. Define I(0) = I0 + 1. For every positive integer τ , I(τ) ≥ I0 + 1 is the integer such that

τI(τ)−I0−1 ≤ τ < τI(τ)−I0 .

Definition 35. For every non-negative integer τ , bins(τ) = BI(τ)−1.

Intuitively, referring back to the above sketch, I(τ) is chosen so that at time t0+τ , we expect BI(τ)−1 =
bins(τ) to be full of stuck balls and BI(τ) to be in the process of filling. (Recall that Wi is the expected time

required for a ball to travel through block Bi, and observe that τi − τi−1 = κ
∑I0+i

k=1 ⌈Wk⌉.)
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Definition 36. Let τinit be the smallest integer such that

• τinit ≥ max{107/λ2, 20, (2κ/(1 − ν))4}.

• I(τinit) ≥ max{I0 + 3, 2I0(2Q+ 1)} where Q = maxI0k=1⌈Wk⌉.

Once again, it is not important that τinit is the smallest integer satisfying the properties in Definition 36,

it is just important that these properties are satisfied, and they can all be satisfied by making τinit sufficiently

large, since I(τ) is ω(1) as a function of τ .

Definition 37. Let

Cinit =

⌈
max

(
ζ|BI0 |
pjmin

,
12 log(100τinit)

(1− pjmin
)τinit

,
2ζ|bins(τinit)|

pjmin
(1− pjmin

)τinit

)⌉
.

Recall that pjmin
< 1 by the definition of jmin, so the definition of Cinit in Definition 37 is well-defined.

The following definitions refer to a two-stream externally-jammed process T = T (Y A, Y B) with arrival

rate λ and send sequence p.

Definition 38. For all integers t ≥ 1, ET
init(t) is the event that for all C ∈ {A,B}, |stuckT

jmin
(C, t)| ≥ Cinit.

Definition 39. For C ∈ {A,B} and positive integers t and τ , the two-stream externally-jammed process

T is (C, t)-jammed for τ if f(stuckvectT (C, t + τ − 1)) ≥ ζ|bins(τ − 1)|. It is t-jammed for τ if it is

(A, t)-jammed and (B, t)-jammed at τ .

Definition 40. For C ∈ {A,B} and positive integers t and τ , ET
jam(C, t, τ) is the event that, for all τ ′ ∈

{1, . . . , τ}, T is (C, t)-jammed for τ ′. ET
jam(t, τ) is ET

jam(A, t, τ) ∩ ET
jam(B, t, τ).

The heart of our proof will be Lemmas 56, which says that if ET
init(t0) occurs, then T is likely to be

t0-jammed for all τ ≥ 1 (and hence never return to a state with no stuck balls). We will split this proof

into two regimes. The first regime, τ ≤ τinit, will be relatively simple and is covered by Lemma 41; we are

essentially just arguing that some of the stuck balls guaranteed by ET
init(t0) are likely not to have sent yet.

The second regime, τ ≥ τinit, will be the heart of the proof and is covered by Lemma 55.

3.6 The τ ≤ τinit regime: Proving Lemma 41

Lemma 41. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p. Let T be a two-stream

externally-jammed process with arrival rate λ and send sequence p. Consider any C ∈ {A,B}. Let t0
be any positive integer and let F T

t0 be a value of FT
t0 such that ET

init(t0) occurs. Then the following two

statements hold.

If FT
t0 = F T

t0 occurs then ET
jam(C, t0, 1) occurs, and (3)

and

P
(
ET
jam(t0, τinit) | FT

t0 = F T
t0

)
≥ 49/50. (4)

Proof. We first establish Equation (3). We wish to show that ET
jam(C, t0, 1) occurs which is the event that

T is (C, t0)-jammed for time 1, i.e. that f(stuckvectT (C, t0)) ≥ ζ|bins(0)| = ζ|BI(0)−1| = ζ|BI0 |. To

establish this, first note by the definition of f (Definition 24) that

f(stuckvectT (C, t0)) ≥ |stuckT
jmin

(C, t0)|pjmin
.
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This quantity can be deduced from F T
t0 and, since F T

t0 guarantees that ET
init(t0) happens, is at least Cinitpjmin

.

To finish, we just need to show that Cinitpjmin
≥ ζ|BI0 |, which follows from the choice of Cinit in Defini-

tion 37.

We next establish Equation (4). Consider any integer τ in the range 1 ≤ τ ≤ τinit and condition on FT
t0 =

F T
t0 . Since ET

init(t0) occurs under this conditioning, for each C ∈ {A,B}, we have |stuckT
jmin

(C, t0)| ≥
Cinit; we will argue that stuckT

jmin
(C, t0) does not have time to empty before time t0 + τ , so T is likely to

be (C, t0)-jammed for τ . As before, observe that

f(stuckvectT (C, t0 + τ − 1)) ≥ pjmin
|stuckT

jmin
(C, t0 + τ − 1)|

≥ pjmin
|stuckT

jmin
(C, t0) ∩ stuckT

jmin
(C, t0 + τ − 1)|. (5)

For convenience, write Nτ = |stuckT
jmin

(C, t0) ∩ stuckT
jmin

(C, t0 + τ − 1)| for the size of the set in the

right-hand side of (5).

A ball is in Nτ if it is in stuckT
jmin

(C, t0) and it does not send until time t0 + τ or later. Since messages

send independently, conditioned on FT
t0 = F T

t0 , Nτ is binomially distributed. Let µ = E(|Nτ | | FT
t0 = F T

t0 ),

and observe that µ = (1 − pjmin
)τ−1|stuckT

jmin
(C, t0)| ≥ (1 − pjmin

)τinitCinit. By the definition of Cinit

(definition 37), we have µ ≥ 12 log(100τinit) and µ ≥ 2ζ|bins(τ − 1)|/pjmin
. Using this fact, we apply the

Chernoff bound of Lemma 19 to |Nτ | with δ = 1/2 to obtain

P
(
|Nτ | ≥ ζ|bins(τ − 1)|/pjmin

| FT
t0 = F T

t0

)
≥ P

(
|Nτ | ≥ µ/2 | FT

t0 = F T
t0

)

≥ 1− e−µ/8 ≥ 1− 1/(100τinit).

Hence by (5) and the definition of (C, t0)-jammedness, we have that for all 1 ≤ τ ≤ τinit,

P
(
T is (C, t0)-jammed for time τ | FT

t0 = F T
t0

)
≥ 1− 1/(100τinit).

Thus (4), and therefore also the result, follows by a union bound over all C ∈ {A,B} and τ ∈ {1, . . . , τinit}.

3.7 Properties of the block construction

Observation 42. For i ≥ 1 we have u(i) = κi−1. Also |B1| = 1. For i ≥ 2 we have |Bi| = κi−2(κ− 1) =
u(i)(κ − 1)/κ .

Proof. For i ≥ 2, we have |Bi| = u(i)− u(i− 1) = κi−1 − κi−2.

Lemma 43. For all τ ≥ τinit, |bins(τ)| > log(τ)/(2κ2 log(1/ν)).

Proof. By definition, we have |bins(τ)| = |BI(τ)−1|. By Observation 42 and since κ ≥ 2, it follows that

|bins(τ)| ≥ κI(τ)−3. Again by Observation 42, we have u(I(τ)) = κI(τ)−1, and so

|bins(τ)| ≥ u(I(τ))/κ2. (6)

Our proof strategy will be to bound I(τ) below in order to apply (6). To do this, we will first bound τ above

in terms of u(I(τ)), and then convert this into a lower bound on u(I(τ)) in terms of τ . By the definitions

of I(τ) and τi, we have

τ < τI(τ)−I0 = κ

I0∑

k=1

(I(τ) − k + 1)⌈Wk⌉+ κ

I(τ)∑

k=I0+1

(I(τ)− k + 1)⌈Wk⌉.
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We will argue that the second sum is larger than the first. To see this, let Q = maxI0k=1⌈Wk⌉. Then

the first sum is at most κI0I(τ)Q. To lower-bound the second sum, just consider k up as high as k =
(I(τ)/2) + 1 then each term (for each value of k) is at least κI(τ)/2 and the number of terms is at least

(I(τ)/2) − I0. The definition of τinit insures that I(τinit) ≥ 2I0(2Q + 1). Thus, for every τ ≥ τinit, the

second term is at least as large as the first.

It follows that

τ < 2κ

I(τ)∑

k=I0+1

(I(τ) − k + 1)⌈Wk⌉ = 2κ

I(τ)∑

k=I0+1

k∑

m=I0+1

⌈Wm⌉ = 2κ

I(τ)∑

k=I0+1

⌈ u(k)∑

j=ℓ(I0+1)

(1/pj)

⌉
.

We bound the right-hand side above by observing that

{
u(k) : I0 + 1 ≤ k ≤ I(τ)

}
⊆

{
ℓ(I0 + 1), ℓ(I0 + 1) + 1, . . . , u(I(τ))

}
,

and so

τ < 2κ

u(I(τ))∑

a=ℓ(I0+1)

⌈ a∑

j=ℓ(I0+1)

(1/pj)

⌉
≤ 4κ

u(I(τ))∑

a=ℓ(I0+1)

a∑

j=ℓ(I0+1)

(1/pj). (7)

By the definition of I0, for all i ≥ I0+1 and all j ∈ Bi we have pj > νj . It follows that for all a ≥ ℓ(I0+1),

a∑

j=ℓ(I0+1)

1

pj
<

a∑

j=ℓ(I0+1)

(
1

ν

)j

<

(
1

ν

)a ∞∑

j=0

νj =
1

1− ν

(
1

ν

)a

.

Hence by (7),

τ <
4κ

1− ν

u(I(τ))∑

a=ℓ(I0+1)

(
1

ν

)a

< 4κ

(
1
ν

)u(I(τ))

1− ν

∞∑

a=0

νa =
4κ

(1− ν)2

(
1

ν

)u(I(τ))

. (8)

Solving for u(I(τ)) now yields

u(I(τ)) > log1/ν(τ) + 2 log1/ν

(1− ν

2
√
κ

)
.

Since τ ≥ τinit and τinit ≥ (2κ/(1 − ν))4, it follows that u(I(τ)) > 1
2 log1/ν τ . By (6), it follows that

|bins(τ)| ≥ 1

κ2
u(I(τ)) >

1

2κ2 log(1/ν)
log τ,

as required.

3.8 Noise

Lemma 44. Let T (Y A, Y B) be a two-stream externally-jammed process with arrival rate λ and send se-

quence p with p0 = 1. Let t ≥ 0 and let C ∈ {A,B}. Let x be any possible value of stuckvectT (C, t).
Then

P(stucksendT (C, t+ 1) = ∅ | stuckvectT (C, t) = x) ≤ exp(−f(x)/3).
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Proof. For brevity, write q for the probability in the statement of the lemma, and let Ψ be the number of

balls in stuckT (C, t)∩ sendT (t+1). Then since any ball in stucksendT (C, t+1) is either born at time

t+ 1 or in Ψ, we have

q = e−λ/2
P(Ψ = 0 | stuckvectT (C, t) = x). (9)

Conditioned on stuckvectT (C, t) = x, Ψ is a sum of independent Bernoulli variables with mean

µ = f(x) − λ. If one of these Bernoulli variables has parameter p then the probability that it is 0 is

1− p ≤ exp(−p). Thus the probability that they are all 0 is at most exp(−µ). We therefore have

P(Ψ = 0 | stuckvectT (C, t) = x) ≤ e−µ.

It follows by (9) that q ≤ e−f(x)+λ/2 < e−f(x)/3 as required (since f(x) ≥ λ by definition).

4 Towards a proof of Theorem 25: Jamming causes a product distribution

of stuck balls in a two-stream externally-jammed process

The purpose of this section is to prove the following lemma, which will be our main tool to analyse the

two-stream process in the proof of Lemma 55 (and thereby Theorem 25).

Lemma 45. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and

Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider

the two-stream externally-jammed process T = T (Y A, Y B). Consider any integer t0 ≥ jmin. Let F T
t0 be a

value of FT
t0 such that ET

init(t0) happens. Consider any integer τ ≥ τinit. Then there is a coupling of

• T conditioned on FT
t0 = F T

t0 ,

• a sample {ZA
j | j ∈ bins(τ)} where each ZA

j is chosen independently from a Poisson distribution

with mean λ/(4pj), and

• a sample {ZB
j | j ∈ bins(τ)} where each ZB

j is chosen from a Poisson distribution with mean

λ/(4pj) and these are independent of each other but not of the {ZA
j } values

in such a way that at least one of the following happens:

• ET
jam(t0, τ) does not occur, or

• for all j ∈ bins(τ), |stuckT
j (A, t0 + τ)| ≥ ZA

j and |stuckT
j (B, t0 + τ)| ≥ ZB

j .

In order to prove Lemma 45 we need to study several stochastic processes, starting with a random-

unsticking process in the next section.

4.1 The definition of a random-unsticking process

Let Y be an externally-jammed process with arrival rate λ and send sequence p. Let t0 be a fixed positive

integer. We will define a random-unsticking process R = R(Y, t0) by redefining the “stuck” and “unstuck”

states of Y , so that balls in R become unstuck independently at random with probability depending on t0.

Later, in Lemma 51, we will show that R and T can be coupled in such a way that as long as T stays

jammed, if a ball is stuck in R then it is also stuck in T ; this will allow us to analyse R rather than T in

proving Lemma 45.
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Apart from this redefinition, which explained below, everything about R is the same as Y : for all t ≥ 0,

ballsR(t) = ballsT (t); for all t ≥ 0 and j ≥ 1, bRj (t) = bYj (t); for all t ≥ 1 and j ≥ 0, b′Rj (t) = b′Yj (t);

for all t ≥ 1 sendR(t) = sendY (t); and for t ≥ 0 and all β ∈ ballsT (t), birthR(β) = birthY (β).
We now formalise the new “stuck” and “unstuck” states in R. The set stuckR(t) will be the set of all

balls in ballsR(t) that are stuck in the process R at time t and stuckR
j (t) = stuckR(t) ∩ bTj (t). As the

reader will expect, unstuckR(t) = ballsR(t) \ stuckR(t) so for each t we only need to define stuckR(t)
or unstuckR(t) and the other is defined implicitly. These variables are defined as follows. First, let

stuckR(0) = ∅ and

punstick(t) =

{
1, if t ≤ t0

e−ζ|bins(t−t0)|/16, otherwise.

Then for any t ≥ 1 we have the following definitions:

• newstuckR(t) = stuckR(t− 1) ∪ b′R0 (t).

• stucksendR(t) = newstuckR(t) ∩ sendR(t).

• For each β ∈ ballsR(t), unstick(β, t) is an independent Bernoulli random variable which is 1 with

probability punstick(t) and 0 otherwise.

• Then unstuckR(t) = unstuckR(t− 1) ∪ {β ∈ stucksendR(t) | unstick(β, t) = 1}.

We take FR
t to be FY

t along with the values of the random variables unstick(β, t′) for t′ ≤ t and β ∈
ballsR(t′) so that all information about the evolution of the process R, including the value of stuckR(t),
is captured.

4.2 Defining a reverse random-unsticking process

Given an externally-jammed process Y with arrival rate λ, a positive integer t0, a random-unsticking process

R = R(Y, t0), and positive integers j and τend, we wish to find a lower bound on |stuckR
j (t0 + τend)| in

order to prove Lemma 45. To do this, we’ll define the notion of a reverse random-unsticking process, which

is essentially a time-reversal of a random-unsticking process; we will make this relation formal later, in

Lemma 47. The reverse random-unsticking process R̃ = R̃(Y, t0, τend) will be easier to study than R itself,

allowing us to deduce the lower bounds on |stuckR
j (t0 + τend)| that we need. Note that the basic idea of

using a time-reversal in the context of backoff processes is due to Aldous [4]. Here we require independent

lower bounds for different j, so it is a lot more complicated.

The process R̃ will run for steps 1, . . . , τend. Each step consists of (II) sending, (III) adjusting the bins,

and (IV) random unsticking. (We start counting from (II) so that the indices line up with the parts of the

steps of an externally-jammed process. Here there is no step initialisation, since there are no births. On the

other hand, there is random unsticking.) Let Jmax = u(I(τend)− 1) + τend. The bins in the process R̃ will

be the integers j ∈ [Jmax]. For j ∈ [Jmax], the set bR̃j (τ) is the population of bin j just after (all parts of)

the τ ’th step. For convenience, we define bR̃Jmax+1(τ) = ∅. Also, ballsR̃(τ) = ∪Jmax
j=1 bR̃j (τ).

The process R̃ is initialised as follows. For each j ∈ [Jmax], the number x̃j of balls that start in bR̃j (0)
is chosen independently from a Poisson distribution with mean λ/pj . These balls are given unique names

(R̃, j, 1), . . . , (R̃, j, x̃j). Step τ is defined as follows.

• Part (II) of step τ : For j ∈ [Jmax], all balls in bR̃j (τ − 1) send independently with probability pj . We

use sendR̃(τ) for the set of balls that send at time τ .
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• Part (III) of step τ : For all j ∈ [Jmax],

bR̃j (τ) = (bR̃j+1(τ − 1) ∩ sendR̃(τ)) ∪ (bR̃j (τ − 1) \ sendR̃(τ)).

• Part (IV) of step τ : For each β ∈ ballsR̃(τ − 1), unstick(β, τ) is an independent Bernoulli random

variable, which is 1 with probability punstick(t0 + τend − τ + 1) and 0 otherwise.

Note that balls in bR̃1 (τ − 1) that send at step τ are not part of ballsR̃(τ) — instead, they leave the

system at step τ . Note also that we do not define “stuck” and “unstuck” states for R̃ — it will actually be

more convenient to work with the unstick variables directly. (These will later be coupled to the corres-

ponding variables in a random-unsticking process R̃; as the definition suggests, unsticking events at times

1, 2, . . . , τend in R̃ will correspond to unsticking events at times t0 + τend, t0 + τend − 1, . . . , t0 + 1 in R.)

4.3 Defining trajectories in a random-unsticking process

Let Y be an externally-jammed process with arrival rate λ and let t0 be a positive integer. Consider a

random-unsticking process R = R(Y, t0).
We will only be concerned with balls β with birthR(β) ≥ t0 + 1. For t ≥ t0 + 1 consider a ball with

name β = (Y, t, x) for some x. The ball trajectory B of the ball β (up to time step t0 + τend for a positive

integer τend) contains the following information:

• tbirth(B) = birthR(β).

• The bin J(B) such that β ∈ bRJ(B)(t0 + τend).

• Positive integers N1(B), . . . , NJ(B)(B) adding up to t0+ τend − tbirth(B)+ 1. For each j ∈ [J(B)],

Nj(B) = |{t′ | tbirth(B) ≤ t′ ≤ t0 + τend, β ∈ bRj (t
′)}|.

• For each integer t′ in the range tbirth(B) ≤ t′ ≤ t0 + τend, the indicator variable unstick(B, t′) =
unstick(β, t′).

Note that any choice of positive integers N1(B), . . . , NJ(B)(B) with the right sum leads to a valid (ball)

trajectory, and so does any sequence of indicator random variables unstick(B, t′). Thus, for all fixed λ, t0
and τend, all of the information in trajectory B is captured by J(B), tbirth(B), {Nj(B) | 1 ≤ j ≤ J(B)}
and {unstick(B, t′) | tbirth(B) ≤ τ ≤ t0 + τend}. Let BR(t0, τend, t, J) be the set of trajectories up to

t0 + τend with tbirth(B) = t and J(B) = j.

Given a trajectory B, let S(B) = {tbirth(B) +
∑c

k=1Nk(B) | c ∈ {0, . . . , J(B) − 1}}. We will use

the fact that S(B) is the set of time steps up to time t0 + τend at which balls following trajectory B send.

We can calculate the distribution of the number of balls following a given trajectory B. This is a Poisson

random variable whose mean, µR(B), is given by µR(B) = F1F2F3 where F1, F2 and F3 are defined as

follows:

F1 = λ(1− pJ(B))
NJ(B)(B)−1; F2 =

J(B)−1∏

j=1

pj(1− pj)
Nj(B)−1;

F3 =

t0+τend∏

t′=tbirth(B)

punstick(t
′)unstick(B,t′)(1− punstick(t

′))1−unstick(B,t′).
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4.4 Defining trajectories in a reverse random-unsticking process R̃

Let Y be an externally-jammed process with arrival rate λ, let t0 be a positive integer and let τend be a

positive integer. Consider a reverse random-unsticking process R̃ = R̃(Y, t0, τend)
We will only be concerned with balls in R̃ that leave the process by sending from bin 1 at some step

τ ∈ {1, . . . , τend}. We next define the trajectory B̃ of such a ball with name β = (R̃, j′, x) in R̃. The

trajectory B̃ contains the following information:

• The bin J(B̃) = j′, the bin into which β is placed in the initialisation, so β ∈ bR̃
J(B̃)

(0).

• The time τleave(B̃) at which β leaves the process by sending from bin 1, so β ∈ bR̃1 (τleave(B̃)−1) but

β /∈ bR̃1 (τleave(B̃)).

• Positive integers N1(B̃), . . . , NJ(B̃)(B̃), adding up to τleave(B̃). For each j ∈ [J(B̃)], Nj(B̃) =

|{τ ′ | 0 ≤ τ ′ ≤ τleave(B̃)− 1, β ∈ bR̃j (τ
′)}|.

• For each time step τ ′ in the range 1 ≤ τ ′ ≤ τleave(B̃), the indicator variable unstick(B̃, τ ′) =
unstick(β, τ ′).

Note that any choice of positive integers N1(B̃), . . . , NJ(B̃)(B̃) with the right sum leads to a valid

trajectory, and so does any sequence of indicator random variables unstick(B̃, τ). Thus for all fixed λ, t0
and τend, all of the information in trajectory B is captured by J(B̃), τleave(B̃), {Nj(B̃) | 1 ≤ j ≤ J(B̃)}
and {unstick(B̃, τ) | 1 ≤ τ ≤ τleave(B̃)}. Let BR̃(t0, τend, τ, J) be the set of trajectories with τleave(B̃) =
τ and J(B̃) = J .

Given a trajectory B̃, let S̃(B̃) = {∑J(B̃)
k=c̃ Nk(B̃) | c̃ ∈ {1, . . . , J(B̃)}}. We will use the fact that S̃(B̃)

is the set of time steps at which balls following trajectory B̃ send.

In the process R̃, the distribution for the number of balls following trajectory B̃ is a Poisson random

variable whose mean, µR̃(B̃), is given by µR̃(B̃) = F̃1F̃2F̃3 where F̃1, F̃2 and F̃3 are defined as follows.

F̃1 =
λ

pJ(B̃)

; F̃2 =

J(B̃)∏

j=1

pj(1− pj)
Nj(B̃)−1;

F̃3 =

τleave(B̃)∏

τ=1

punstick(τend − τ + t0 + 1)unstick(B̃,τ)
(
1− punstick(τend − τ + t0 + 1)

)1−unstick(B̃,τ)
.

4.5 A probability-preserving bijection from trajectories of a random-unsticking process R

to those of the corresponding reverse random-unsticking process R̃

Let Y and Y ′ be externally-jammed processes with arrival rate λ and send sequence p, and let t0 and τend
be positive integers. Consider a random-unsticking process R = R(Y, t0) and a reverse random-unsticking

process R̃ = R̃(Y ′, t0, τend) We now set out the natural bijection from trajectories of R to trajectories of R̃
that will later form the basis of our coupling.

Definition 46. The time-reversal bijection π from BR(t0, τend, t, J) to BR̃(t0, τend, τend − t+ t0 + 1, J) is

defined as follows for all B ∈ BR(t0, τend, t, J):

• τleave(π(B)) = τend − tbirth(B) + t0 + 1;
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• J(π(B)) = J;

• for all k ∈ [J ], Nk(π(B)) = Nk(B);

• for all t′ in the range tbirth(B) ≤ t′ ≤ t0+τend, unstick(π(B), τend−t′+t0+1) = unstick(B, t′).

We now pause for a moment to observe that π is a valid map into BR̃(t0, τend, τend − t + t0 + 1, J).
Indeed, we have tbirth(B) ≥ t0 + 1, so τleave(π(B)) ≤ τend as required. In order for J(π(B)) = J to be

a bin of the process R̃ we need J to be in [Jmax]; this is fine since the definition of J(B) = J ensures that

J(B) ≤ τend and the definition of Jmax ensures that 1 ≤ τend ≤ Jmax so J(B) ≤ Jmax. We also have from

the definitions that

J∑

j=1

Nj(B) = τend − tbirth(B) + t0 + 1 = τleave(B) =

J∑

j=1

Nj(π(B)),

as required. Finally, the values of τ for which we define unstick(π(B), τ) range from τend − tbirth(B) +

t0+1 = τleave(π(B)) down to 1, as required. Thus the image of π is indeed contained in BR̃(t0, τend, τend−
t+ t0 + 1, J), and it is clear that π is a bijection as claimed.

The following lemma formalises our intuition that R̃ is a time reversal of R, and will later form the basis

for our coupling between them.

Lemma 47. Let Y and Y ′ be externally-jammed processes with arrival rate λ and send sequence p and let

t0 and τend be positive integers. Consider a random-unsticking process R = R(Y, t0) and a reverse random-

unsticking process R̃ = R̃(Y ′, t0, τend). Let t be an integer satisfying t ≥ t0+1. Let J be a positive integer.

Let π be the time-reversal bijection from BR(t0, τend, t, J) to BR̃(t0, τend, τend − t + t0 + 1, J). Then for

any B ∈ BR(t0, τend, t, J), we have µR(B) = µR̃(π(B)) and S̃(π(B)) = {τend − t+ t0 + 1 | t ∈ S(B)}.

Proof. It is straightforward to use the definitions of π, µR and µR̃ to see that µR(B) = µR̃(π(B)). The

only subtlety is checking that the probabilities of the unsticking indicator variables correspond. For this,

note from the definition of π that for τ ∈ {1, . . . , τleave(π(B))}, the probability that unstick(π(B), τ) = 1
is punstick(t

′) where τ = τend − t′ + t0 + 1. So this probability is punstick(τend − τ + t0 + 1), as required.

To see that S̃(π(B)) = {τend−t+t0+1 | t ∈ S(B)}, note that if we take t = tbirth(B)+
∑c

k=1Nk(B)
in S(B) (for some c ∈ {0, . . . , J(B)− 1}) then the quantity τend − t+ t0+1 is equal to τend − tbirth(B)−∑c

k=1Nk(B) + t0 +1 which, using the fact that the sum of all of the Nk(B)’s is τend − tbirth(B) + t0 +1,

is

τend − tbirth(B)− (τend − tbirth(B) + t0 + 1) +

J(B)∑

k=c+1

Nk(t) + t0 + 1.

Clearly, this is
∑J(B̃)

k=c̃ Nk(B̃) for c̃ = c+ 1, which is in S̃(π(B)).

4.6 The set of balls that “fill” bin j

Let Y be an externally-jammed process with arrival rate λ and let t0 be a positive integer. Consider a

random-unsticking process R = R(Y, t0). The following definitions will be convenient.

For any positive integer j in block Bi and any positive integer τ , we define FillRj (τ) to be the subset of

balls β ∈ stuckR
j (t0 + τ) such that

birthR(β) ≥ max
{
t0 + 1, t0 + τ − κ

i∑

k=1

⌈Wk⌉
}
.
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We make a similar definition for the process T = T (Y A, Y B). For any C ∈ {A,B}, any positive

integer j in Bi, and any positive integer τ , FillTj (C, τ) is the subset of balls β ∈ stuckT
j (C, t0 + τ) such

that

birthT (β) ≥ max
{
t0 + 1, t0 + τ − κ

i∑

k=1

⌈Wk⌉
}
.

It will be convenient to think about FillRj (τ) in terms of trajectories, so we make the following equivalent

definition for FillRj (τ): For any positive integer j in block Bi and any positive integer τend, we define

FillRj (τend) to be the set of balls that take trajectories B satisfying the following:

(i) J(B) = j.

(ii) tbirth(B) ≥ t0 + τend − κ
∑i

k=1⌈Wk⌉.

(iii) tbirth(B) ≥ t0 + 1.

(iv) for all t′ ∈ S(B), unstick(B, t′) = 0.

Finally, we define a corresponding notion FillR̃j (τend) for a reverse random-unsticking process. We first

define FillR̃j (τend) in terms of trajectories. Let Y be an externally-jammed process with arrival rate λ and

let t0 and τend be positive integers. Consider a reverse random-unsticking process R̃ = R̃(Y, t0, τend). Let

j be a positive integer in block Bi. Then FillR̃j (τend) is defined to be the set of balls that take trajectories B̃
satisfying the following.

(i) J(B̃) = j.

(ii) τleave(B̃) ≤ 1 + κ
∑i

k=1⌈Wk⌉.

(iii) τleave(B̃) ≤ τend.

(iv) for all τ ′ ∈ S̃(B̃), unstick(B̃, τ ′) = 0.

Equivalently, FillR̃j (τend) is the set of balls β = (R̃, j, x′) satisfying the following.

(I) β ∈ bR̃j (0).

(II) For some τ ′ ≤ 1 + κ
∑i

k=1⌈Wk⌉, β ∈ bR̃1 (τ
′ − 1) and β sends at time τ ′.

(III) This τ ′ also satisfies τ ′ ≤ τend.

(IV) β does not send on any step τ ∈ {1, 2, . . . , 1 + κ
∑i

k=1⌈Wk⌉} with unstick(β, τ) = 1.

4.7 Bounding FillR̃j (τend)

Lemma 48. Let Y be an externally-jammed process with arrival rate λ and send sequence p. Consider any

integer t0 ≥ jmin. Let τend ≥ τinit be an integer. Then there is a coupling of

(i) a reverse random-unsticking process R̃(Y, t0, τend) with

(ii) a sample {Z−
j | j ∈ bins(τend)} where each Z−

j is chosen independently from a Poisson distribution

with mean λ/(4pj)
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in such a way that, for every integer j ∈ BI(τend)−1, |FillR̃j (τend)| ≥ Z−
j .

Proof. Let R̃ = R̃(Y, t0, τend). We will use the definition of FillR̃j (τend) without trajectories. To simplify

the notation, let i = I(τend) − 1, so that bins(τend) = Bi. Since τend ≥ τinit, and since the definition of

τinit (Definition 36) ensures that I(τinit) ≥ I0 + 3, we have i ≥ I0 + 2.

We will be considering j ∈ Bi. Note that this ensures that j ≤ u(i) and this is at most Jmax, by

the definition of Jmax in Section 4.2. Thus, by the initialisation of the process R̃, the number of balls in

bR̃j (0) is Poisson with mean λ/pj (independently of any other j). Since each FillR̃j (τend) is determined by

the trajectories of balls in bR̃j (0), and since all balls behave independently in the process R̃, the random

variables FillR̃j (0) are already distributed as independent Poisson random variables as in (ii). So to finish,

we just need to show that, for all j ∈ Bi and all balls β ∈ bR̃j (0), the probability that (II), (III) and (IV)

happens is at least 1/4. To do this, we’ll show that the probability that (II) or (III) fails is at most 1/2 and

that the probability that (IV) fails is at most 1/4 (then we are finished by a union bound adding the failure

probabilities 1/2 and 1/4).

For (IV), it suffices to show that for any τ ∈ {1, . . . , 1 + κ
∑i

k=1⌈Wk⌉}, punstick(t0 + τend − τ + 1) ≤
1/(4j). Using a union bound over the (at most j) steps when β sends, this implies that the probability that

β ever has unstick(β, τ) = 1 on one of these steps τ is at most 1/4. Towards this end, first note from the

definitions of I(·) and τi′ that

τend ≥ τI(τend)−I0−1 = τi−I0= τi−I0−1 + κ

i∑

k=1

⌈Wk⌉. (10)

In particular, (10) implies that t0 + τend − τ +1 ≥ t0 +1 for all τ ≤ 1+ κ
∑i

k=1⌈Wk⌉. It follows from the

definitions of punstick(·) and bins(·) that

punstick(t0 + τend − τ + 1) = exp(−ζ|bins(τend − τ + 1)|/16) = exp(−ζ|BI(τend−τ+1)−1|/16).

Since |Bi′ | is monotonically increasing in i′ (which follows from κ > 2) and I(·) is monotonically increasing

in its argument, the right hand side is maximised when τ is as large as possible, so

punstick(t0 + τend − τ + 1) ≤ exp(−ζ|BI(τend−κ
∑i

k=1⌈Wk⌉)−1|/16). (11)

To simplify the notation, let x = τend−κ
∑i

k=1⌈Wk⌉. From the definition of I(·) we have x < τI(x)−I0 ,

so since x ≥ τ(i−1)−I0 by (10) we have i − 1 < I(x) and hence i ≤ I(x). Plugging in the value of x, we

conclude that I(τend − κ
∑i

k=1⌈Wk⌉) ≥ i. Plugging this into (11), we get

punstick(t0 + τend − τ + 1) ≤ exp(−ζ|Bi−1|/16).

Since i ≥ I0 ≥ 4, Observation 42 gives |Bi−1| ≥ u(i− 1)(κ − 1)/κ, and we can simplify this as follows:

punstick(t0 + τend − τ + 1) ≤ 1

eζu(i−1)κ−1
16κ

=
1

eζu(i)
κ−1

16κ2

. (12)

Since u(i) ≥ i ≥ I0, the definition of I0 ensures that exp(ζu(i) κ−1
16κ2 ) ≥ 4u(i); we therefore have

punstick(t0 + τend − τ + 1) ≤ 1/(4u(i)) ≤ 1/(4j), as required for the union bound.

For (II) and (III) we first note that (II) implies (III) by (10). So to finish the proof, we will prove the

probability that (II) fails for a given ball β ∈ bR̃j (0) is at most 1/2. The number of time steps that it takes for

β to send from bin 1 is a random variable Ψ which is the sum of independent geometric random variables
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with parameters pj, . . . , p1. The expectation of Ψ is µ :=
∑j

k=1(1/pk), and we just need to show that

P(Ψ > 1 + κ
∑i

k=1⌈Wk⌉) ≤ 1/2.

Observe that since j ∈ Bi, we have µ ≤ ∑i
k=1Wk ≤ ∑i

k=1⌈Wk⌉. Hence we have

P

(
Ψ > 1 + κ

i∑

k=1

⌈Wk⌉
)
≤ P(Ψ > κµ).

By Markov’s inequality, this is at most 1/κ ≤ 1/2.

4.8 Bounding FillRj (τend)

We next use the time-reversal bijection from Section 4.5 to translate Lemma 48 from a reverse random-

unsticking process R̃ to a random-unsticking process R by coupling the two processes.

Lemma 49. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p. Let Y be an externally-

jammed process with arrival rate λ and send sequence p. Consider any integer t0 ≥ jmin. Let τend ≥ τinit
be an integer. Then there is a coupling of

(i) a random-unsticking process R = R(Y, t0) with

(ii) a sample {Z−
j | j ∈ bins(τend)} where each Z−

j is chosen independently from a Poisson distribution

with mean λ/(4pj)

in such a way that, for every integer j ∈ BI(τend)−1, |FillRj (τend)| ≥ Z−
j .

Proof. Fix t0 and τend. Let Y ′ be an externally-jammed process with arrival rate λ and send sequence p,

and let R̃ = R̃(Y ′, t0, τend) be a reverse random-unsticking process. Consider any t ≥ t0 + 1 and positive

integer J . Let π be the time-reversal bijection from BR(t0, τend, t, J) to BR̃(t0, τend, τend − t+ t0 + 1, J),

and recall from Lemma 47 that for all trajectories B ∈ BR(t0, τend, t, J), we have µR(B) = µR̃(π(B))
and S̃(π(B)) = {τend − t + t0 + 1 | t ∈ S(B)}. From the first of these statements, the number of balls

following a trajectory B ∈ BR(t0, τend, t, J) in the process R has the same distribution as the number of

balls following the trajectory π(B) in the process R̃. We may therefore couple R with R̃ by identifying

these trajectories, so that for every ball following trajectory B in R there is a corresponding ball following

trajectory π(B) in R̃ and vice versa.

We next show that a ball following a trajectory B ∈ BR(t0, τend, t, J) contributes to FillRj (τend) if and

only if a ball following the trajectory π(B) contributes to FillR̃j (τend), so that |FillRj (τend)| = |FillR̃j (τend)|;
given this, the lemma will follow immediately from Lemma 48. By the definition of π (Definition 46),

J(π(B)) = J(B), so (i) is the same in the definitions of FillRj (τend) and FillR̃j (τend). Similarly, (ii) and

(iii) are the same in both definitions. To see that (iv) is the same in both directions, consider t′ ∈ S(B)
with unstick(B, t′) = 0. Then τend − t′ + t0 + 1 ∈ S̃(B̃) by Lemma 47 and, by the definition of π,

unstick(π(B), τend− t′+ t0+1) = unstick(B, t′). Clearly, the same works in the other direction, so (iv)

is the same in both definitions. Hence we do indeed have |FillRj (τend)| = |FillR̃j (τend)|, and we are done by

Lemma 48.

Finally, we show that Lemma 49 remains true when the value of FR
t0 is exposed. (Since bins(τend) =

BI(τend)−1 by definition, this is the only difference between the statement of Lemma 49 and that of the

following lemma.)
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Lemma 50. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p. Let Y be an externally-

jammed process with arrival rate λ and send sequence p. Consider any integer t0 ≥ jmin. Consider a

random-unsticking process R = R(Y, t0). Let FR
t0 be any value of the filtration FR

t0 covering the first t0
steps of R. Let τend ≥ τinit be an integer. Then there is a coupling of

(i) The process R, conditioned on FR
t0 = FR

t0 , with

(ii) A sample {Z−
j | j ∈ bins(τend)} where each Z−

j is chosen independently from a Poisson distribution

with mean λ/(4pj)

in such a way that, for every integer j ∈ bins(τend), |FillRj (τend)| ≥ Z−
j .

Proof. Let i = I(τend)− 1. For j ∈ Bi, from its definition in Section 4.6, FillRj (τend) is the subset of balls

β ∈ stuckR
j (t0 + τend) such that birthR(β) ≥ max{t0 + 1, t0 + τend − κ

∑i
k=1⌈Wk⌉}. The important

thing here is that birthR(β) ≥ t0 + 1.

The definition of the process R ensures that balls behave independently. Thus whether or not a ball β
contributes to FillRj (τend) is independent of FR

t0 . Thus, writing R′ for a copy of R conditioned on FR
t0 = FR

t0 ,

we can couple R and R′ in such a way that FillRj (τend) = FillR
′

j (τend). We conclude that Lemma 50 follows

from Lemma 49.

4.9 Proving Lemma 45

Lemma 51. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and

Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider

the two-stream externally-jammed process T = T (Y A, Y B). Consider any integer t0 ≥ jmin. Let F T
t0 be a

value of FT
t0 such that ET

init(t0) occurs. Let C and C ′ be distinct elements of {A,B}. Let R = R(Y C , t0)
be a random-unsticking process. Let FR

t0 be a value of FR
t0 that is consistent with F T

t0 . Consider any integer

τ ≥ 1. Then there is a coupling of

• T conditioned on FT
t0 = F T

t0 and

• R conditioned on FR
t0 = FR

t0

such that at least one of the following occurs:

• ET
jam(C

′, t0, τ) does not occur, or

• unstuckT (C, t0 + τ) ⊆ unstuckR(t0 + τ).

Proof. Note (from the definition of FR
t0 and FT

t0) since FR
t0 is consistent with F T

t0 , unstuckR(t0) =

unstuckT (C, t0) and, for all j, bRj (t0) = bY
C

j (t0).
We will construct the coupling step-by-step. For every positive integer τ ′, we use the following notation.

• Invariant 1 for τ ′: ET
jam(C

′, t0, τ
′) occurs, and

• Invariant 2 for τ ′: unstuckT (C, t0 + τ ′ − 1) ⊆ unstuckR(t0 + τ ′ − 1).

Note that the invariants for τ ′ only depend on steps 1, . . . , t0 + τ ′ − 1 of the coupled process. Our

high-level strategy is as follows: Given that the coupling on these steps satisfies both invariants for τ ′ we

will show how to extend the coupling to step t0+ τ ′ to satisfy Invariant 2 for τ ′+1. After that there are two

possibilities.
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• If τ ′ = τ then we have finished, by establishing unstuckT (C, t0 + τ) ⊆ unstuckR(t0 + τ).

• Otherwise, τ ′ ≤ τ − 1 and there are again two possibilities.

– Either Invariant 1 is violated for τ ′ + 1 in which case ET
jam(C

′, t0, τ
′ + 1) does not occur so

ET
jam(C

′, t0, τ) does not occur (and we have finished),

– or Invariant 1 is satisfied for τ ′ + 1 and the construction of the coupling continues to the next

step.

That completes the description of the high-level strategy. To finish the proof we must show that both invari-

ants hold for τ ′ = 1 and then we must show how to extend the coupling as promised.

We first establish the invariants for τ ′ = 1.

• Invariant 1 follows from Equation (3) in Lemma 41.

• For Invariant 2 we wish to show unstuckT (C, t0) ⊆ unstuckR(t0). This follows from the consist-

ency of F T
t0 and FR

t0 , as already mentioned.

To finish the proof we consider τ ′ ≥ 1 such that both invariants hold for τ ′, which implies (using the

definition of ET
jam(C

′, t0, τ
′) in Definition 40) that

f(stuckvectT (C ′, t0 + τ ′ − 1) ≥ ζ|bins(τ ′ − 1)|
and

unstuckT (C, t0 + τ ′ − 1) ⊆ unstuckR(t0 + τ ′ − 1).

Using FT
t0+τ ′−1 and FR

t0+τ ′−1 we now wish to consider step t0 + τ ′, and to extend the coupling to this step

in such a way that unstuckT (C, t0 + τ ′) ⊆ unstuckR(t0+ τ ′). Once we do this, we’ll have completd the

high-level strategy, hence we’ll have completed the proof.

It is helpful to note by the definition of the processes that for all t and j we have

ballsT (C, t) ∩ bTj (t) = bY
C

j (t) = bRj (t).

We will use this observation for t = t0 + τ ′ − 1. From this we deduce that

stucksendT (C, t) ⊆ stucksendR(t) ∪ unstuckR(t).

We are finally ready to do the coupling. We first determine b′0
Y C

(t+ 1) = b′0
R(t+1) and sendY C

(t+
1) = sendR(t+ 1). This allows us to deduce stucksendT (C, t + 1) and stucksendR(t+ 1).

We will use this to finish the coupling of step t+ 1 in such a way that any ball

β ∈ stucksendT (C, t+ 1) ∩ unstuckT (C, t+ 1)

is also in unstuckR(t + 1). Here is how we do it: If stucksendT (C, t + 1) is empty, there is nothing

to prove. Otherwise, choose β u.a.r. from stucksendT (C, t + 1) (this is the random ball that may be-

come unstuck at time t + 1 in T ). The probability that β is in unstuckT (C, t + 1) is the probability that

stucksendT (C ′, t + 1) = ∅. We will use Lemma 44 to bound this probability. First note that the lemma

applies since the definition of I0 ensures that ζ|BI0 | ≥ 4 so ζ|bins(τ ′)| ≥ 4. By Lemma 44, the probability

that stucksendT (C ′, t+ 1) = ∅ is at most

exp(−ζ|bins(τ ′ − 1)|/16).
If β is in unstuckR(t) then there is nothing to prove. Alternatively, if it is in stucksendR(t), then the

probability that it is in unstuckR(t + 1) is punstick(t) = exp(−ζ|bins(τ ′ − 1)|/16). Thus we can extend

the coupling as required, completing the proof.
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It is not hard to see that the final bullet point of Lemma 51 implies FillRj (τ) ⊆ FillTj (C, τ); this is the

only difference between the statements of Lemma 51 and Corollary 52.

Corollary 52. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and

Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider

the two-stream externally-jammed process T = T (Y A, Y B). Consider any integer t0 ≥ jmin. Let F T
t0 be a

value of FT
t0 such that ET

init(t0) occurs. Let C and C ′ be distinct elements of {A,B}. Let R = R(Y C , t0) be

a random-unsticking process. Let FR
t0 be a value of FR

t0 that is consistent with F T (t0). Consider any integer

τ ≥ 1. There is a coupling of

• T conditioned on FT
t0 = F T

t0 and

• R conditioned on FR
t0 = FR

t0

such that at least one of the following occurs:

• ET
jam(C

′, t0, τ) does not occur, or

• For all positive integers j, FillRj (τ) ⊆ FillTj (C, τ).

Proof. We use the coupling of Lemma 51. If Ejam(C ′, t0, τ) does not occur, then the result is immediate.

Otherwise, we have unstuckT (C, t0+τ) ⊆ unstuckR(t0+τ). Since every ball is either stuck or unstuck,

it follows that stuckR(t0 + τ) ⊆ stuckT (C, t0 + τ). By the definitions of FillRj (τ) and FillTj (C, τ), it

follows that FillRj (τ) ⊆ FillTj (C, τ) as required.

Then combining the couplings of Corollary 52 (from one stream of T to R) and Lemma 50 (from R to

i.i.d. Poisson variables), we get the following lemma.

Lemma 53. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and

Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider

the two-stream externally-jammed process T = T (Y A, Y B). Consider any integer t0 ≥ jmin. Let F T
t0 be a

value of FT
t0 such that ET

init(t0) happens. Let C and C ′ be distinct elements of {A,B}. Consider any integer

τ ≥ τinit. There is a coupling of

• T conditioned on FT
t0 = F T

t0 and

• A sample {Z−
j | j ∈ bins(τ)} where each Z−

j is chosen independently from a Poisson distribution

with mean λ/(4pj)

such that at least one of the following occurs:

• ET
jam(C

′, t0, τ) does not occur, or

• For all integers j ∈ bins(τ), |FillTj (C, τ)| ≥ Z−
j .

Finally, applying Lemma 53 twice, once with C = A and once with C = B and using the definitions of

FillTj (C, τ) and ET
jam(t0, τ), we get Lemma 45 as desired.

Lemma 45. Fix λ, η and ν in (0, 1) and a (λ, η, ν)-suitable send sequence p with p0 = 1. Let Y A and

Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence p and consider

the two-stream externally-jammed process T = T (Y A, Y B). Consider any integer t0 ≥ jmin. Let F T
t0 be a

value of FT
t0 such that ET

init(t0) happens. Consider any integer τ ≥ τinit. Then there is a coupling of

• T conditioned on FT
t0 = F T

t0 ,
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• a sample {ZA
j | j ∈ bins(τ)} where each ZA

j is chosen independently from a Poisson distribution

with mean λ/(4pj), and

• a sample {ZB
j | j ∈ bins(τ)} where each ZB

j is chosen from a Poisson distribution with mean

λ/(4pj) and these are independent of each other but not of the {ZA
j } values

in such a way that at least one of the following happens:

• ET
jam(t0, τ) does not occur, or

• for all j ∈ bins(τ), |stuckT
j (A, t0 + τ)| ≥ ZA

j and |stuckT
j (B, t0 + τ)| ≥ ZB

j .

5 The main lemma for proving Theorem 25

Our goal in this section is to prove Lemma 56, which says that if T is a two-stream externally-jammed

process with suitable send sequence, and if ET
init(t0) occurs, then T is likely to stay t0-jammed forever. We

start with a simple observation.

Observation 54. Suppose that p is (λ, η, ν)-suitable. If i ≥ I0 then |{j ∈ Bi | pj ≤ p∗}| > 2η|Bi|/3.

Proof. Since p is (λ, η, ν)-suitable, |{j ∈ [u(i)] | pj ≤ p∗}| > ηu(i). At most u(i − 1) of these bins are

in blocks B1, . . . , Bi−1, and by definition we have u(i − 1) = u(i)/κ ≤ ηu(i)/3, so at least 2ηu(i)/3 of

these bins are in block Bi.

We will prove Lemma 56 using a union bound over all time steps. For readability, we extract the most

difficult case of this bound as Lemma 55.

Lemma 55. Let p be (λ, η, ν)-suitable. Let T be a two-stream externally-jammed process with arrival rate

λ ∈ (0, 1) and send sequence p. Consider any integer t0 ≥ jmin. Let F T
t0 be a value of FT

t0 such that

ET
init(t0) happens. Let τ ≥ τinit. Conditioned on FT

t0 = F T
t0 , with probability at least 1− 1/(10τ2), at least

one of the following happens:

• The event ET
jam(t0, τ) doesn’t occur.

• The process T is t0-jammed for time τ + 1.

Proof. Let Y A and Y B be independent externally-jammed processes with arrival rate λ/2 and send sequence

p such that T = T (Y A, Y B). Consider C ∈ {A,B}. Let {Zj | j ∈ bins(τ)} be independent Poisson

variables with E(Zj) = λ/(4pj). Since ζ = ηλ/24, by Lemma 45 and the definition of f (Definition 24),

P

(
ET
jam(t0, τ) or f(stuckvectT (C, t0 + τ)) ≥ ζ|bins(τ)|

∣∣∣FT
t0 = F T

t0

)

≥ P

( ∑

j∈bins(τ)

pjZj ≥
ηλ|bins(τ)|

24

)
. (13)

Since τ ≥ τinit ≥ 0, we have bins(τ) = BI(τ)−1 where I(τ) ≥ I0 + 1. Observation 54 ensures that there

is a set bins′(τ) ⊆ bins(τ) such that |bins′(τ)| ≥ 2η|bins(τ)|/3 and for all j ∈ bins′(τ), we have pj ≤ p∗.

From Equation (13) and the lower bound on |bins′(τ)| we get

P

(
ET
jam(t0, τ) or f(stuckvectT (C, t0 + τ)) ≥ ζ|bins(τ)|

∣∣∣FT
t0 = F T

t0

)

≥ P

( ∑

j∈bins′(τ)

pjZj ≥
λ|bins′(τ)|

16

)
. (14)
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For each j ∈ bins′(τ), let 1Zj
be the indicator variable of the event Zj ≤ λ/(8pj), so that

∑

j∈bins′(τ)

pjZj ≥
λ

8

(
|bins′(τ)| −

∑

j∈bins′(τ)

1Zj

)
. (15)

We dominate the sum in the right-hand side of (15) above by a binomial random variable, which we will

bound above using the Chernoff bound of Lemma 20. We first bound the mean µ of this variable; by the

Chernoff bound of Lemma 19 applied with δ = 1/2, for all j ∈ bins′(τ) we have

P(1Zj
= 1) = P

(
Zj ≤ E(Zj)/2

)
≤ e−E(Zj)/8 ≤ e−E(Zj )/12 = e−λ/(48pj ) ≤ e−λ/(48p∗).

Let x = eλ/(48p∗)/2 and µ = e−λ/(48p∗)|bins′(τ)|. Since p∗ ≤ λ/48, we have x > 1, which ensures the

applicability of Lemma 20. From this lemma, we obtain

P

( ∑

j∈bins′(τ)

1Zj
≥ |bins′(τ)|

2

)
≤ e−µx(log x−1) ≤ exp

(
−|bins′(τ)|

2

( λ

48p∗
− 2

))
.

Recall that |bins′(τ)| ≥ 2η|bins(τ)|/3; hence by Lemma 43, it follows that

P

( ∑

j∈bins′(τ)

1Zj
≥ |bins′(τ)|

2

)
≤ exp

(
− 2η log(τ)

3 · 4κ2 log(1/ν)
( λ

48p∗
− 2

))
.

The rest of the proof is simple manipulation. Since p∗ ≤ λ/200 we have λ/(48p∗) − 2 ≥ λ/(100p∗).
Since p∗ ≤ (λη)/(1800κ2 log(1/ν)) we have λ/(100p∗) ≥ (18/η)κ2 log(1/ν) so we get

P

( ∑

j∈bins′(τ)

1Zj
≥ |bins′(τ)|

2

)
≤ exp(−3 log(τ)) =

1

τ3
.

Finally, since τ ≥ τinit ≥ 20, this probability is at most 1/(20τ2). It follows from (15) that

P

( ∑

j∈bins′(τ)

pjZj ≥
λ|bins′(τ)|

16

)
≥ 1− 1

20τ2
.

It follows from (14) that

P

(
ET
jam(t0, τ) or f(stuckvectT (C, t0 + τ)) ≥ ζ|bins(τ)|

∣∣∣FT
t0 = F T

t0

)
≥ 1− 1

20τ2
.

The result therefore follows by a union bound over C ∈ {A,B}.

Lemma 56. Let p be (λ, η, ν)-suitable. Let T be a two-stream externally-jammed process with arrival

rate λ ∈ (0, 1) and send sequence p. Consider any integer t0 ≥ jmin. Let F T
t0 be a value of FT

t0 such that

ET
init(t0) happens. Then

P

(
T is t0-jammed for all τ ≥ 1 | FT

t0 = F T
t0

)
≥ 4/5.

Proof. For all τ ≥ τinit, let Eτ be the event that either ET
jam(t0, τ) doesn’t occur or that T is t0-jammed for

τ + 1. We then have

P

( ∧

τ≥1

ET
jam(t0, τ) | FT

t0 = F T
t0

)
= P

(
ET
jam(t0, τinit) ∧

∧

τ≥τinit

Eτ | FT
t0 = F T

t0

)
.

By Lemmas 41 and 55 and a union bound, we therefore have

P

( ∧

τ≥1

ET
jam(t0, τ) | FT

t0 = F T
t0

)
≥ 49

50
−

∑

τ≥τinit

1

10τ2
≥ 49

50
− π2

60
≥ 4

5
,

as required.
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6 Proof of Main Theorems

Theorem 25. Fix λ, η and ν in (0, 1). Let p be a (λ, η, ν)-suitable send sequence. Let T be a two-stream

externally-jammed process with arrival rate λ and send sequence p. Let RT = {t | stuckT (t) = ∅}. With

probability 1, RT is finite.

Proof. For every positive integer i, let Ri be the i’th smallest time step in RT . If |RT | < i, then we define

Ri = ∞. Since R1 = 0, for all i ≥ 2 we have

P(Ri < ∞) =

i∏

k=2

P(Ri < ∞ | Ri−1 < ∞). (16)

Let Ei be the event that Ri−1 < ∞ and that ET
init(Ri−1 + t) occurs for some positive integer t such that

Ri−1 + t < Ri. Observe that conditioned on Ri−1 < ∞, the probability of Ei occurring does not depend

on i since stuckT evolves independently of unstuck balls; let pinit = P(Ei | Ri−1 < ∞). Then by (16), we

have

P(Ri < ∞) ≤
i∏

k=2

(
1− pinit + pinitP(Ri < ∞ | Ei, Ri−1 < ∞)

)
. (17)

Observe that if Einit(Ri−1 + t) occurs for some t < Ri − Ri−1, and T is (Ri−1 + t)-jammed for all

τ ≥ 1, then we have we must have stuckT (Ri−1 + u) 6= ∅ for all u ≥ 1; hence Ri = ∞.

It follows by applying Lemma 56 to (17) that

P(Ri < ∞) ≤
i∏

k=2

(
1− pinit + pinit/5

)
≤ e−4(i−1)pinit/5. (18)

By (18), we have
∑

i P(Ri < ∞) < ∞. It follows by the Borel-Cantelli lemma that with probability 1

we have Ri = ∞ for all but finitely many values of i, which proves the theorem.

Corollary 26. Fix λ, η and ν in (0, 1). Let p be a (λ, η, ν)-suitable send sequence. Let X be a backoff

process with arrival rate λ and send sequence p. Let RX = {t | ballsX(t) = ∅}. Then, with probability 1,

RX is finite. Hence, X is transient so it is unstable.

Proof. Let T be a two-stream externally-jammed process with arrival rate λ and send sequence p. Let

RT = {t | stuckT (t) = ∅}. Theorem 25 shows that, with probability 1, RT is finite. Let Y be an

externally-jammed process with arrival rate λ and send sequence p, and let RY = {t | stuckY (t) = ∅}.

By the coupling of Y and T from Lemma 23, with probability 1, RY is finite. Finally, by the coupling of X
and Y from Observation 22, it follows that with probability 1, RX is finite.

In order to make the proof of Theorem 5 more convenient, we first re-state the definition of LCED.

Definition 4. A send sequence p is LCED (“largely constant with exponential decay”) if it satisfies the

following properties:

(i) “Largely constant”: For all η > 0, there exists c > 0 such that for infinitely many n, |{j ≤ n : pj >
c}| ≥ (1− η)n.

(ii) “with exponential decay”: p has an infinite subsequence (pℓ1 , pℓ2 , . . . ) which satisfies log(1/pℓx) =
Θ(ℓx) as x → ∞.

(iii) “(but without super-exponential decay)”: log(1/pj) = O(j) as j → ∞.
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Theorem 5. Let p be a send sequence which is not LCED. Then for every λ ∈ (0, 1) the backoff process

with arrival rate λ and send sequence p is unstable.

Proof. Suppose that p is not LCED. Fix λ ∈ (0, 1). Let X be a backoff process with arrival rate λ and send

sequence p. We split the analysis into cases depending on which case of Definition 4 fails.

Case 1 (iii) fails: By definition, since (iii) fails, there is no real number C > 0 such that, for all but finitely

many j, log(1/pj) ≤ Cj. So for all C > 0, there are infinitely many j such that log(1/pj) > Cj, which

implies pj < exp(−Cj). Taking C = log(2/(λp0)), we conclude that there are infinitely many j such that

pj < (λp0/2)
j . Lemma 7 implies that X is unstable.

Case 2 (iii) holds but (i) fails: By definition, since (i) fails, there is an η > 0 such that for all c > 0, for

all but finitely many n, |{j ≤ n : pj ≤ c}| > ηn. Taking c = p∗(λp0, η, ν) for positive ν, we conclude that

there is an η > 0 such that for all ν > 0 and for all but finitely many n, |{j ≤ n : pj ≤ p∗(λp0, η, ν)}| > ηn.

Let p′ be the send sequence derived from p by setting p′0 = 1 and, for every positive integer j, p′j = pj .
Given the η > 0 that we have just identified, our goal will be find ν > 0 such that p′ is (λp0, η, ν)-

suitable (Definition 14). To achieve this, we need to show that we can choose ν > 0 such that, for all but

finitely many n, νn < pn = p′n.

Here we will use the fact that (iii) holds. Since log(1/pj) = O(j), there exists C > 0 such that for all

but finitely many j, 1/pj < eCj . So taking ν = e−C < 1 we have that for all but finitely many j, pj > νj .
So we have now shown that p′ is (λp0, η, ν)-suitable.

Let X ′ be a backoff process with arrival rate λp0 and send sequence p′. Let RX′

= {t | ballsX′

(t) =
∅}. By Corollary 26, with probability 1, RX′

is finite.

Finally, let X be a backoff process with arrival rate λ and send sequence p. Let RX = {t | ballsX(t) =
∅}. By the coupling of X and X ′ from Observation 21, with probability 1, RX is finite. Hence, the

process X is transient, so it is unstable.

Case 3 (iii) holds but (ii) fails: In this case log(1/pj) = o(j) so the result follows from Corollary 9.

Here is an argument that log(1/pj) = o(j). Since (iii) holds but (ii) fails, there is no infinite subsequence

(pℓ1 , pℓ2 , . . . ) that satisfies log(1/pℓx) = Ω(ℓx). Thus for every infinite subsequence (pℓ1 , pℓ2 , . . . ) and for

every C > 0, infinitely many n satisfy log(1/pℓn) < Cℓn. This implies that for all C > 0 and all infinite

subsequences (pℓ1 , pℓ2 , . . . ), some n has log(1/pℓn) < Cℓn. Hence, for all C > 0 there is no infinite

subsequence (pℓ1 , pℓ2 , . . . ) that satisfies log(1/pℓx) ≥ Cℓx. Finally, for all C > 0, there is a jC such that

for all j ≥ jC , log(1/pj) < Cj so log(1/pj) = o(j), as required.

We can now use Theorem 5 to derive the other theorems stated in the introduction.

Theorem 2. For every λ ∈ (0, 1) and every monotonically non-increasing send sequence p = p0, p1, . . .,
the backoff process with arrival rate λ and send sequence p is unstable.

Proof. We prove that p is not LCED and use Theorem 5. Suppose for contradiction that p is LCED. Let

c > 0 be such that pj ≥ c for infinitely many values of j; by (i) of Definition 4 applied with any η > 0, such

a c must exist. Let (pℓ1 , pℓ2 , . . . ) be the infinite exponentially-decaying subsequence of p guaranteed by (ii),

and observe that there exists ic such that pℓi < c for all i ≥ ic. Since p is monotonically non-increasing, it

follows that for all j ≥ ic we have pj ≤ pic ≤ c, giving a contradiction.

Theorem 3. Let p be a send sequence. Let mp(n) be the median of p0, . . . , pn. Suppose that mp(n) = o(1).
Then for every λ ∈ (0, 1) the backoff process with arrival rate λ and send sequence p is unstable.

Proof. We observe that p is not LCED and use Theorem 5. In particular, we will observe that item (i) in

the definition of LCED cannot be satisfied for η = 1/2. Item (i) implies that there is a c > 0 such that for

infinitely many n, mp(n) > c. But this is inconsistent with mp(n) = o(1).
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[16] Johan Håstad, Frank T. Leighton, and Brian Rogoff. Analysis of backoff protocols for multiple access

channels. SIAM Journal on Computing, 25(4):740–774, 1996.

38

http://arxiv.org/abs/1801.00074
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://developers.google.com/drive/api/guides/handle-errors?hl=en#exponential-backoff


[17] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free data

structures. In Proceedings of the 20th Annual International Symposium on Computer Architecture, San

Diego, CA, USA, May 1993, pages 289–300. ACM, 1993.

[18] Frank P. Kelly and Iain M. MacPhee. The number of packets transmitted by collision detect random

access schemes. Annals of Probability, 15:1557–1568, 1987.

[19] Robert Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local computer

networks. Communications of the ACM, 19(7):395–404, 1976.

[20] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Prob-

abilistic Analysis. Cambridge University Press, 2005.

[21] Jeannine Mosely and Pierre Humblet. A class of efficient contention resolution algorithms for multiple

access channels. IEEE Transactions on Communications, 33(2):145–151, 1985.

[22] Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays. SIAM Journal

on Computing, 28(2):709–719, 1998.

[23] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent multith-

readed execution. In Yale N. Patt, Josh Fisher, Paolo Faraboschi, and Kevin Skadron, editors, Proceed-

ings of the 34th Annual International Symposium on Microarchitecture, Austin, Texas, USA, December

1-5, 2001, pages 294–305. ACM, 2001.

[24] Lawrence G. Roberts. ALOHA packet system with and without slots and capture. ACM SIGCOMM

Computer Communication Review, 5(2):28–42, 1975.

[25] Devavrat Shah and Jinwoo Shin. Randomized scheduling algorithm for queueing networks. Annals of

Applied Probability, 22:128–171, 2012.

[26] Devavrat Shah, Jinwoo Shin, and Prasad Tetali. Medium access using queues. In IEEE 52nd An-

nual Symposium on Foundations of Computer Science, FOCS 2011, pages 698–707. IEEE Computer

Society, 2011.

39


	1 Introduction
	1.1 Formal definitions
	1.2 Technical context
	1.3 Proof sketch
	1.4 Future work

	2 Preliminaries
	3 Preparation for our Technical Result
	3.1 Definition of externally-jammed process
	3.2 A two-stream externally-jammed process
	3.3 Ball vectors and noise
	3.4 Statement of our technical result
	3.5 Definitions depending on a suitable send sequence p
	3.6 The tau <= tau_init regime: Proving Lemma 41
	3.7 Properties of the block construction 
	3.8 Noise

	4 Towards a proof of Theorem 25: Jamming causes a product distribution of stuck balls in a two-stream externally-jammed process
	4.1 The definition of a random-unsticking process
	4.2 Defining a reverse random-unsticking process
	4.3  Defining trajectories in a random-unsticking process
	4.4 Defining trajectories in a reverse random-unsticking process R
	4.5 A probability-preserving bijection from trajectories of a random-unsticking process to those of the corresponding reverse random-unsticking process
	4.6 The set of balls that ``fill'' bin j
	4.7 Bounding Fill in a reverse random-unsticking process
	4.8 Bounding Fill in a random-unsticking process 
	4.9 Proving Lemma 45

	5 The main lemma for proving Theorem 25
	6 Proof of Main Theorems

