
ar
X

iv
:2

21
1.

09
96

4v
2

 [
cs

.D
S]

 1
9

Ja
n

20
23

Optimal Algorithms for Linear Algebra in the Current Matrix

Multiplication Time

Yeshwanth Cherapanamjeri∗ Sandeep Silwal† David P. Woodruff‡ Samson Zhou§

Abstract

We study fundamental problems in linear algebra, such as finding a maximal linearly inde-
pendent subset of rows or columns (a basis), solving linear regression, or computing a subspace
embedding. For these problems, we consider input matrices A ∈ R

n×d with n > d. The input
can be read in nnz(A) time, which denotes the number of nonzero entries ofA. In this paper, we
show that beyond the time required to read the input matrix, these fundamental linear algebra
problems can be solved in dω time, i.e., where ω ≈ 2.37 is the current matrix-multiplication
exponent.

To do so, we introduce a constant-factor subspace embedding with the optimal m = O(d)
number of rows, and which can be applied in time O

(
nnz(A)

α

)

+d2+αpoly(log d) for any trade-off

parameter α > 0, tightening a recent result by Chepurko et. al. [SODA 2022] that achieves an

exp(poly(log logn)) distortion with m = d ·poly(log log d) rows in O
(

nnz(A)
α

+ d2+α+o(1)
)

time.

Our subspace embedding uses a recently shown property of stacked Subsampled Randomized
Hadamard Transforms (SRHT), which actually increase the input dimension, to “spread” the
mass of an input vector among a large number of coordinates, followed by random sampling. To
control the effects of random sampling, we use fast semidefinite programming to reweight the
rows. We then use our constant-factor subspace embedding to give the first optimal runtime
algorithms for finding a maximal linearly independent subset of columns, regression, and leverage
score sampling. To do so, we also introduce a novel subroutine that iteratively grows a set of
independent rows, which may be of independent interest.

1 Introduction

In this paper, we consider fundamental problems in linear algebra, such as finding a maximal linearly
independent subset of rows or columns, i.e., a basis, or solving linear regression, or computing a
subspace embedding. Surprisingly, we still do not have optimal algorithms for these tasks. The
input to these problems is generally a matrix A ∈ R

n×d with n > d that requires nnz(A) time
to read, where nnz(A) is the number of non-zero entries of A. Algorithms for these problems
frequently use subroutines such as matrix multiplication, inverse computation, or decomposition
(singular value, QR, LU, etc.), that use at least ndω−1 time, where ω ≈ 2.37 is the exponent for
matrix multiplication [AW21].

∗UC Berkeley. E-mail: yeshwanth@berkeley.edu
†MIT. E-mail: silwal@mit.edu
‡Carnegie Mellon University. E-mail: dwoodruf@cs.cmu.edu
§UC Berkeley and Rice University. Work done in part while at Carnegie Mellon University. E-mail:

samsonzhou@gmail.com

1

http://arxiv.org/abs/2211.09964v2
mailto:yeshwanth@berkeley.edu
mailto:silwal@mit.edu
mailto:dwoodruf@cs.cmu.edu
samsonzhou@gmail.com

Dimensionality reduction techniques are often utilized to decrease the effective input size, so that
a solution to the smaller input is often a good approximation to the optimal solution of the original
problem. These approaches transformA into a matrixM ∈ R

m×d withm≪ n and (approximately)
solve the problem on the instance M with a significantly smaller number of rows. However, existing
results could only achieve m = dpolylog(d) for dimensionality reduction techniques with input-
sparsity runtime, which prevented true matrix-multiplication runtime algorithms, i.e., running times
of the form O (dω).

Here we emphasize that ω is the parameter between 2 and 3 for the matrix multiplication
exponent, possibly depending on the input parameters for matrix multiplication, e.g., matrix mul-
tiplication between two n×n matrices uses O (nω) time, for some fixed matrix multiplication oracle
that we are given. By contrast, many previous works define ω to be the smallest constant such that
matrix multiplication between two n×n matrices runs in time O (nω+ε) for any constant ε > 0. In
particular, [CW82] showed that given a matrix multiplication algorithm with runtime O (nω+ε1),
there exists a matrix multiplication algorithm with runtime O (nω+ε2) with ε2 ∈ (0, ε1) and this
process can continue ad infinitum. However, at some point we require an explicit fixed matrix
multiplication algorithm for downstream applications. Thus, we consider access to a fixed matrix
multiplication algorithm with runtime O (nω), so that it is important to track and eliminate addi-
tional polylog overheads on top of the matrix multiplication runtime of the fixed algorithm. Indeed,
the removal of the last logarithmic factors is related to well-known conjectures on the construc-
tion of sparse Johnson-Lindenstrauss transforms [NN13, CCKW22]. In a recent work, [CCKW22]
showed that these logarithmic factors were not necessary, achieving algorithms for linear algebra
in near matrix-multiplication runtime, up to poly(log log d) factors.

1.1 Our Contribution

In this work, we give the first algorithms for linear algebra in true matrix-multiplication runtime,
removing the last poly(log log d) factors in the algorithms of [CCKW22] and thus closing a long line
of work. Our results show that beyond the time required to read the input matrix, fundamental
linear algebra problems such as finding a maximal linearly independent subset of rows or columns (a
basis), linear regression, or computing a subspace embedding can be solved in the current matrix-
multiplication runtime.

We first introduce a constant-factor subspace embedding that uses input-sparsity runtime:

Theorem 1.1. For any A ∈ R
n×d and any tradeoff parameter α > 0, we can compute matrix

G ∈ R
p×n such that:

∀x ∈ R
d : ‖Ax‖2 ≤ ‖GAx‖2 ≤ ξ ‖Ax‖2 ,

with probability at least 0.9 for a fixed constant ξ > 1. Furthermore, we have p = O (d) and GA

may be computed in time O
(
nnz(A)

α

)

+ d2+α polylog(d).

By comparison, [CCKW22] recently gave a subspace embedding with distortion exp(poly(log log n))

using runtime O
(
nnz(A)

α + d2+α+o(1)
)

, for any tradeoff parameter α > 0. Theorem 1.1 also extends

naturally to the case when A has rank k, in which case it suffices for G ∈ R
p×n to have p = O (k)

rows and the resulting time to compute GA is O
(
nnz(A)

α

)

+ k2+α polylog(k).

Our constant-factor subspace embedding in Theorem 1.1 uses a sampling procedure that lever-
ages a recently observed property of stacked Subsampled Randomized Hadamard Transforms (SRHTs)

2

to “spread” the mass of an input vector among a large number of coordinates [CN22]. Our constant-
factor subspace embedding can be used to improve the efficiency of leverage score sampling, which
has applications in a number of important linear algebra problems [Woo14].

In particular, we can further boost our constant-factor subspace embedding to a (1 + ε)-
approximate subspace embedding through leverage score sampling:

Theorem 1.2. Given A ∈ R
n×d, an accuracy parameter ε > 0, and any tradeoff parameter

α > 0, there exists an algorithm that computes a matrix SA with O
(

1
ε2

d log d
)
rows such that with

probability at least 9
10 , for all vectors x ∈ R

d,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Moreover, SA can be computed in time

O
(
nnz(A)

α
+ dω

)

+
1

ε2
d2+α polylog(d).

By comparison, recent work by [CCKW22] achieved a (1 + ε)-subspace embedding with either
1
ε2

(d log d) exp(poly(log log d)) rows or with runtime O
(
nnz(A)

α

)

+ dω poly(log log d) + 1
ε3

d2+o(1) +

1
ε2

nα+o(1)d2+o(1). Our result avoids such tradeoffs, which is especially useful in downstream ap-
plications, as we soon discuss. Moreover, Theorem 1.2 extends naturally to the case where A has
rank k, similarly as Theorem 1.1. On the other hand, we remark that unlike our constant-factor
subspace embedding, our (1 + ε)-subspace embedding does not have the optimal number of rows
to perform further tasks downstream. We believe the existence/construction of such a subspace
embedding would be an interesting future question. Questions in a similar spirit have also been
previously asked for graph theoretic problems, e.g., [LS17, LS18].

We then use our constant-factor subspace embedding and our leverage score sampling framework
to find a maximal set of linearly independent rows of an input matrix A ∈ R

n×d:

Theorem 1.3. Given a matrix A ∈ R
n×d with rank k and any tradeoff parameter α > 0, there exists

an algorithm that outputs a set of k linearly independent rows of A, using time O
(
nnz(A)

α + kω
)

+

k2+α polylog(k)

By comparison, recent work of [CCKW22] gave an algorithm that finds a set of k linearly
independent rows of A using time O

(
nnz(A) + k2+o(1)

)
+ kω poly(log log k). Like the algorithm of

[CCKW22], we first reduce the problem to computing a set of k linearly dependent rows of a matrix
B ∈ R

O(k log k)×O(k), though due to our more efficient subspace embedding algorithm, we can do
this in matrix-multiplication runtime while [CCKW22] cannot. Now to achieve Theorem 1.3, we
develop a novel subroutine in Section 4.1, which iteratively grows a set of independent rows of B
that may be of independent interest. Crucially, the algorithm avoids additional kω poly(log log k)
dependencies that are incurred by the subroutine of [CCKW22]. We provide a summary of previous
work on finding a set of independent rows in Figure 1.

Finally, we use our (1 + ε)-approximate subspace embedding to achieve (1 + ε)-approximate
linear regression:

Theorem 1.4. Given A ∈ R
n×d, b ∈ R

n, and any tradeoff parameter α > 0, there exists an
algorithm that with probability at least 0.9, outputs a vector y such that

‖Ay − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− b‖2,

3

Reference Runtime

Gaussian elimination O
(
ndω−1

)

[CKL13] O (nnz(A) log n+ kω log n)

[CCKW22] O
(
nnz(A) + k2+o(1)

)
+ kω poly(log log k)

Theorem 1.3, for any α > 0 O
(
nnz(A)

α + kω
)

+ k2+α polylog(k)

Fig. 1: Summary of previous results for identifying a set of k independent rows from a matrix
A ∈ R

n×d with rank k

using time O
(
nnz(A)

α + dω
)

+ 1
ε d

2+α polylog(d) + 1
ε d

2 polylog(d) log 1
ε .

By comparison, [CCKW22] output a (1+ε)-approximation to linear regression in timeO
(
nnz(A)

α

)

+

1
ε3

nα+o(1)d2+o(1) + dω poly(log log d) for any tradeoff parameter α > 0. We remark that our result
achieves both the optimal (current) matrix-multiplication runtime and also a better dependence
on 1

ε , which is a byproduct of our (1 + ε)-subspace embedding avoiding the tradeoffs incurred by
[CCKW22].

1.2 Technical Overview

In this section, we give a brief overview of our technical contributions. A summary of the interplay
between our algorithmic contributions can be seen in Figure 3.

To avoid polylogarithmic overhead over matrix-multiplication runtime, we require a dimension-
ality reduction technique that uses o(d log d) rows. A folklore result states that a dense matrix G

of O (d) rows with entries that are independent Sub-Gaussian random variables suffices to achieve
a constant-factor subspace embedding [Woo14]. However, computing GA for an input matrix
A ∈ R

n×d requires time O (d nnz(A)) due to the multiplication with the dense matrix G. Although
the runtime is unsatisfactory, a subspace embedding with a small number of rows corresponds to
an improvement in runtime for downstream tasks. Unfortunately, faster dimensionality reduction
techniques such as the sparse Johnson-Lindenstrauss transform use Ω(d log d) rows and it is an
open question whether these constructions can be improved to only using O (d) rows [NN13].

Intuition from previous work. [CCKW22] recently sidestepped these issues by first showing
that a rescaling of an embedding of [Ind07] roughly maintains the ℓ2 norm of a d-dimensional unit
ℓ2 vector while the ℓ1 norm becomes Ω̃(

√
d). In particular, a constant fraction of the resulting

o(d log d) coordinates have magnitude Ω̃
(

1√
d

)

. [CCKW22] then used the intuition that under such

a “flattening” y of a unit ℓ2 vector, a sparse matrix S of random signs will sample some of the
coordinates with “large” magnitude, so that the dot product 〈Si,y〉 of each row of S with the

flattened vector y will be at least Ω̃
(

1√
d

)

, which implies a lower bound on ‖Sy‖22. An upper bound

on the operator norm ‖S‖2 can also be shown, ultimately giving a distortion of exp(poly(log log d)).
Unfortunately, Indyk’s embedding [Ind07] only governs the sum of the ℓ2 norms of blocks of coor-
dinates of the resulting embedding and thus must be applied recursively across O (log log d) levels,
resulting in a sketching matrix with d exp(log log(d)) rows. Therefore, the resulting matrix does
not lose polylogarithmic factors over matrix-multiplication runtime, but still cannot quite achieve
true matrix-multiplication runtime. Hence, using Indyk’s embedding [Ind07] seems to be a major

4

bottleneck to achieving matrix multiplication runtime in the previous works and thus it seems we
need to use significantly new techniques altogether.

Crude subspace embeddings through SRHT. To avoid the extraneous factors over matrix-
multiplication runtime, we require a sketching matrix with a smaller number of rows which can
also be applied quickly. To that end, we recall that the flattening property of the Subsampled
Randomized Hadamard Transform (SRHT) is frequently used to show that it forms a subspace
embedding, in the sense that the largest coordinate of the image of a fixed vector is upper bounded

by Õ
(

1√
d

)

. More recently, [CN22] showed that by stacking some number of SRHTs on top of each

other to increase dimension, not only is the ℓ2-norm of any fixed vector preserved exactly, but also
for any vector, a constant fraction of the coordinates of the image of the SRHT is lower bounded

by Ω̃
(

1√
d

)

in absolute value. This property can be seen as a fast embedding of ℓ2 into ℓ1 with a

small target dimension.
We first left-multiply our input matrix A ∈ R

n×d with OSNAP matrices [NN13] S1 and S2

to obtain a constant-factor subspace embedding. The application of the composition of OSNAP
matrices is a standard technique that allows us to first decrease the number of rows to ℓ :=
O (d log d) at the cost of a constant-factor distortion, in O

(
nnz(A) + dC

)
time, where C can be

made an arbitrarily small constant larger than 2.
If M ∈ R

mℓ×ℓ is the matrix consisting of stacked randomized Hadamard matrices, we define
S ∈ R

O(d)×mℓ to be a matrix that independently and uniformly samples each row of MS1S2A.
It then suffices to bound both the contraction and the dilation of SMB := SMS1S2A. That is,
if we could show ‖SM‖2 ≤ O (1) and ‖SMBx‖2 ≥ O (1) for all unit vectors Bx ∈ R

ℓ, then it
follows that SM is a constant factor subspace embedding. To handle contraction, we show that
‖SMBx‖22 ≥ O (1) by first showing concentration for a single vector x ∈ R

ℓ due to the abundance
of “large” coordinates in MBx, followed by taking a union bound over a sufficiently fine net.
Unfortunately, it does not seem evident how to bound the dilation by a constant (or whether it is
even true). For instance, using either a crude concentration inequality or more sophisticated results
bounding the norms of random submatrices, e.g., [Tro08], seems to give an extra logarithmic factor.
Thus this approach yields a subspace embedding with a logarithmic distortion, which is not enough
for our optimal algorithms for downstream tasks.

Constant-factor subspace embedding. To achieve a constant-factor subspace embedding, we
note that the slack in the above analysis is that there are large entries in M that can be sampled
by S, which prevents constant upper bounds on ‖SM‖2. On the other hand, due to the abundance
of large coordinates in MBx, an accurate estimation can still be acquired without these large
entries in M. Indeed, we show that with high probability, there exists a slight reweighting W

of the sampled rows (possibly with weight 0 to remove the large entries) such that the resulting
reweighted subsampled matrix has operator bounded by a constant, i.e., ‖WSM‖2 ≤ O (1).

Moreover, we show that the reweighting can be efficiently computed by solving a standard
packing semidefinite program (SDP). Crucially, the SDP requires a fast projection oracle, which
we can implement due to our subspace embedding with a logarithmic distortion discussed above.
Finally, we show that under this reweighting, the contraction does not drastically change, so that
‖WSMBx‖2 ≥ O (1) for all unit vectors Bx ∈ R

n. Hence, it follows that WSMB is a constant-
factor subspace embedding.

5

Given input matrix A ∈ R
n×d:

(1) Apply OSNAP matrix S2 ∈ R
n′×n with constant factor distortion and tradeoff-parameter

α to acquire S2A ∈ R
n′×d, where n′ = O

(
d1+α log d

)

(2) Apply OSNAP matrix S1 ∈ R
ℓ×n′

with constant factor distortion and tradeoff-parameter
α′ = 1

log d to acquire S1S2A ∈ R
ℓ×d, where ℓ = O (d log d)

(3) Apply SRHT matrix M ∈ R
mℓ×ℓ for m = polylog(d) to acquire MS1S2A ∈ R

mℓ×d

(4) Apply a sampling matrix S ∈ R
p×mℓ that uniformly samples rows with p = O (d), to

acquire SMS1S2A ∈ R
d′×d, where d′ = O (d) with high probability

(5) Solve an SDP to find a set of weights W ∈ R
d′×d′ so that the operator norm of SM is

appropriately bounded and output WSMS1S2A ∈ R
d′×d

Fig. 2: High-level summary of our constant-factor subspace embedding

We remark that we require sharper bounds in downstream applications, e.g., basis selection,
when A ∈ R

n×d is not full rank. In this case, our algorithms naturally generalize to dimension
and runtime dependent on the rank of A rather than the dimension d of A. We summarize our
constant-factor subspace embedding at a high level in Figure 2.

Leverage score sampling. To achieve a (1 + ε)-subspace embedding for a matrix A, a stan-
dard approach is to perform leverage score sampling, i.e., to sample O

(
1
ε2

d log d
)
rows of A with

probabilities proportional to their leverage score. However existing techniques could not be run in
matrix-multiplication runtime, and instead ran in at least O (dω log d) time.

We instead use our fast constant-factor subspace embedding SA into an optimal target dimen-
sion. We can also efficiently compute its QR decomposition so that SA = QR−1 for a matrix
Q with orthonormal columns. In particular, since Q has orthonormal columns, then the leverage
scores of SA are precisely the squared row norms of Q. It follows that the squared row norm of
aiR is a constant-factor approximation to the leverage score of row ai for each i ∈ [n]. We can
then apply the standard leverage score sampling approach by sampling O

(
1
ε2 d log d

)
rows of A

with probabilities proportional to their leverage score to achieve a (1 + ε)-subspace embedding in
matrix-multiplication runtime. In particular, we first compute ARG for a Johnson-Lindenstrauss
matrix G and then perform rejection sampling to achieve leverage score sampling (see Theorem 3.2
and surrounding discussion for more details). We also remark that we only require the orthogonal-
ity of Q in the QR decomposition, so other methods such as the SVD decomposition that yield a
matrix with orthonormal columns would also suffice.

We again emphasize that unlike our constant-factor subspace embedding, our (1 + ε)-subspace
embedding does not have the optimal number of rows to perform further tasks downstream. That
is, our (1 + ε)-subspace embedding uses O

(
1
ε2

d log d
)
rows. By comparison, our constant-factor

subspace embedding uses O (d) rows, which is better for ε = O (1). Thus our result should be
interpreted as the ability to perform leverage score sampling in matrix-multiplication runtime,
with one such application being a (1 + ε)-subspace embedding and another such application being

6

the selection of an independent basis (see below). An interesting open question is whether our
techniques can be further refined to achieve a (1 + ε)-subspace embedding with O

(
d
ε2

)
rows in

matrix-multiplication runtime.

Basis selection. To find a set of k independent rows for an input matrix A ∈ R
n×d with rank k,

we first use our efficient leverage score sampling framework in conjunction with existing techniques
to reduce the effective input to size R

O(k log(k))×O(k). Namely, we first note that there exists a
distribution of matrices that form a rank-preserving sketch, so that rank(A) = rank(AS), where
S ∈ R

d×ck for some constant c > 0. Moreover the rank-preserving sketch has the property that any
set of independent rows of A is also a set of independent rows of AS and vice versa. Thus it would
suffice to select a basis of rows from AS and take the corresponding rows in A.

However, we cannot explicitly compute AS. We also cannot use our constant-factor subspace
embedding, because multiplication by a Hadamard matrix distorts the mapping of the indices of
independent rows in the original matrix and the indices of independent rows in the smaller matrix.
Instead, we use our constant-factor subspace embedding, which selects O (k log k) reweighted rows
from AS. Hence, it remains to select a basis of rows from a matrix B ∈ R

O(k log(k))×O(k) with rank
k.

For this sub-problem, there exist a number of previous techniques, such as an approach by
[CCKW22] that iteratively removes redundant rows from B. We remark that these techniques
are generally not optimized to run in time O (kω) since other components are usually a larger
bottleneck, and thus it seems we require a new set of techniques.

Iteratively growing a basis. To select a basis of rows from a matrix B ∈ R
O(k log(k))×O(k)

with rank k, we develop a new algorithm that iteratively grows a set S of independent rows of B.
Namely, we use leverage score sampling to sample O (k) rows of B. Observe that this is not enough
to cover the entire row span of B, but for c = 1

10 , we show using approximate matrix product on a
well-conditioned verion of our input, that we can get rank (1− c)k = 9

10k with probability at least
2
3 . We can add an independent subset of these rows to our growing set S and then compute a basis
Z1 for the orthogonal complement of S. So far, these procedures, i.e., leverage score sampling,
independent subset selection, and orthogonal complement basis computation, all use at most γkω

runtime for an absolute constant γ > 0.
We now repeat these procedures on BZ⊤

1 , first using leverage score sampling to sample O (k)
rows of BZ⊤

1 . An observation is that the rows of B that are spanned by S will all be zero in BZ⊤
1 ,

since Z1 is the orthogonal complement of S. Thus again with probability 2
3 , we can sample a set of

rows with rank at least a 9
10 fraction of the rank of BZ⊤

1 . We can again add an independent subset
of these rows to our growing set S and then compute a basis Z2 for the orthogonal complement of
S. However since conditioned on the success of the previous iteration, the rank of BZ⊤

1 is at most
a c = 1

10 -fraction of the rank of B, these procedures will now take at most γ(ck)ω runtime, which
is a constant fraction smaller.

We can thus proceed by iteratively adding rows of B to S until S has rank k. We can then
output the corresponding rows of A. The runtime in each iteration, conditioned on successful
samplings in each previous iteration, follows a geometric series and thus the overall runtime is
O (kω). The runtime analysis is also robust to failures in each iteration because a failure in an
iteration means that at worst, no additional rows are added to S. Therefore, the algorithm will
always terminate with a set of independent rows and we can simply compute the expected runtime

7

of this procedure, which still follows a geometric series.

polylog(d)-Subspace

Embedding

Leverage Score

Sampling

O (1)-Subspace

Embedding

(1 + ε)-Subspace

Embedding

Basis

Selection

Linear
Regression

Fig. 3: Flowchart of dependencies for our algorithmic contributions.

Linear regression. For linear regression, we would like to find a vector y such that

‖Ay − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− b‖2.

We can first compute a (1 + ε)-approximate subspace embedding1 [SA;Sb] of the matrix [A;b].
However, the subspace embedding [SA;Sb] has 1

ε2
dpolylog(d) rows and so we cannot directly solve

for the optimal solution on the smaller space, since computing the closed-form solution would not be
true matrix-multiplication runtime. On the other hand, we only require finding an approximately
optimal solution on the smaller space, i.e., we only want a vector w ∈ R

d such that ‖SAw−Sb‖2 ≤
(1 +O (ε))minx∈Rd ‖SAx− Sb‖2. Thus we instead use gradient descent to find such a vector w.

For efficient runtime, gradient descent requires a small condition number and a “good” ini-
tial solution. While SA is a (1 + ε)-approximate subspace embedding, it may not necessarily
have small condition number. To decrease the condition number to O (1), we instead consider
minx∈Rd ‖SARx − Sb‖2, where GA = QR−1 is a QR decomposition for a constant-factor sub-
space embedding GA. Thus in this setting, R can be considered as a preconditioner. To find a
good initial solution, we first find the closed-form solution to w(0) = argminx∈Rd ‖GAx −Gb‖2,
since GA is a constant-factor subspace embedding. It then remains to account for the precondi-
tioning by computing w(1) = R−1w(0), which is a good initial solution for gradient descent, since
it provides a constant-factor approximation to the optimal solution due to the properties of GA.

Instead, we use the SRHT to compute a matrix G that is a constant-factor subspace embedding,
with O (d) rows. By computing GA = QR−1, we can compute a matrix R such that κ(AR) =
O (1), since G is a constant-factor subspace embedding and κ(GAR) = 1 due to the orthogonality
of Q. This implies that an approximate minimizer to ‖GAx − Gb‖2 is also a constant-factor
approximation to the minimizer of ‖SARy − Sb‖2 and due to the preconditioner R, κ(SAR) =
O (1) since S is also a (1 + ε)-approximate subspace embedding of A. Thus, due to the bounded

1It is known that even a (1+O (
√
ε))-approximate subspace embedding suffices, see Lemma 5.1. To facilitate the

intuition for our algorithm, we defer this discussion to Section 5.

8

condition number of SAR, it suffices to run a small number of steps of gradient descent (GD) to
obtain a (1+O (ε))-approximation to the minimizer of ‖SAy−Sb‖2 and thus a (1+ε)-approximation
to the regression problem minx∈Rd ‖Ax− b‖2.

1.3 Preliminaries

In this paper, we use [n] to denote the set {1, . . . , n} for a positive integer n. We use poly(n)
to denote a fixed degree polynomial in n that can depend on fixed constants in instantiations
of variables throughout the algorithm. When a random event occurs with probability at least
1 − 1

poly(n) , we say the event occurs with high probability. Similarly, we use polylog(n) to denote

poly(log n). We use Ω̃(f) to denote Ω(f polylog(f)) or Ω
(

f
polylog(f)

)

. We use N (µ, σ2) to denote

the normal distribution with mean µ and variance σ2 and N (µ,Σ) to denote the multivariate
normal distribution with mean µ and variance Σ.

We use the following formulation of the bounded differences inequality:

Definition 1.5 (Bounded differences). For a domain X, let f : Xn → R. Then f satisfies the
bounded difference assumption if there exist c1, . . . , cn ≥ 0 such that for all i ∈ [n],

sup
x1,...,xn,x′

i
∈X
|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci.

Theorem 1.6 (Bounded differences inequality, McDiarmid’s inequality). [M+89] Let X1, . . . ,Xn ∈
X be independent random variables and suppose f : xn → R satisfies the bounded difference as-
sumption with respect to constants c1, . . . , cn. Then for all t > 0,

Pr [f(X1, . . . , xn)− E [f(X1, . . . ,Xn)]] ≤ 2 exp

(

− 2t2
∑n

i=1 c
2
i

)

.

Given a function φ : R → R, we say the function is L-Lipschitz for a parameter L > 0 if
|f(x) − f(y)| ≤ L · |x − y| for all x, y ∈ R. We use the following formulation of Talagrand’s
contraction principle:

Theorem 1.7 (Ledoux-Talagrand contraction). [LT91] Let X1, . . . ,Xn ∈ R
d be i.i.d. random

vectors, F be a class of real valued functions on R
d and σ1, . . . , σn be independent Rademacher

random variables. If φ : R→ R is an L-Lipschitz function with φ(0) = 0, then:

E [sup]
f∈F

n∑

i=1

σiφ(f(Xi)) ≤ L · E [sup]
f∈F

n∑

i=1

σif(Xi).

We also use the following bound on the sum of independent mean-zero random variables:

Theorem 1.8 (Symmetrization, e.g., Lemma 6.4.2 in [Ver18]). Let x1, . . . , xn ∈ R be independent
mean-zero random variables. Then

E

[∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥
2

]

≤ 2E

[∥
∥
∥
∥
∥

n∑

i=1

σixi

∥
∥
∥
∥
∥
2

]

,

where the second expectation is taken over realizations of the random variables xi and independent
Rademacher variables σi ∈ {−1,+1} for all i ∈ [n].

9

We use bold font variables to represent vectors and matrices. For a vector v ∈ R
n, we use ‖v‖2

to denote its Euclidean norm, so that ‖v‖22 =
∑n

i=0 v
2
i . We use nnz(A) to denote the number of

nonzero entries in a matrix A ∈ R
n×d and we use A−1 to denote the pseudo-inverse of A. For a

matrix A ∈ R
n×d, we use

‖A‖2 = max
x∈Rd,‖x‖2=1

‖Ax‖2

to denote its operator norm and we use κ(A) to denote its condition number, so that

κ(A) = ‖A‖2‖A−1‖2.

We use ‖A‖F to denote the Frobenius norm of a matrix A ∈ R
n×d, so that

‖A‖2F :=

n∑

i=1

d∑

j=1

A2
i,j .

For a square matrix M ∈ R
n×n, we use Tr(M) to denote its trace, so that Tr(M) =

∑n
i=1 Mi,i. For

a matrix A ∈ R
n×d and a matrix B ∈ R

n×p, we use [A;B] to denote the n × (d + p) dimensional
matrix

[
A B

]
. We use A � 0 to denote that a matrix A is positive semidefinite (PSD).

We use the following formulation of the Matrix Bernstein inequality:

Theorem 1.9 (Matrix Bernstein inequality, e.g., Theorem 1.6 in [Tro12]). Let Z1, . . . ,Zn be a
sequence of matrices with dimension n × d such that E [Zi] = 0n×d and ‖Zi‖ ≤ R with high

probability, for each i ∈ [n]. Let σ2 = max
(∥
∥
∥
∑

i∈[n] E
[
ZiZ

⊤
i

]
∥
∥
∥
2
,
∥
∥
∥
∑

i∈[n] E
[
Z⊤
i Zi

]
∥
∥
∥
2

)

. Then for

all t ≥ 0,

Pr

∥
∥
∥
∥
∥
∥

∑

i∈[n]
Zi

∥
∥
∥
∥
∥
∥
2

≥ t

 ≤ (n+ d) exp

(

− t2/2

σ2 +Rt/3

)

.

Subspace embeddings. For an input matrix A ∈ R
n×d, a (1 + ε)-subspace embedding for A is

a matrix M ∈ R
m×n such that for all x ∈ R

d,

(1− ε)‖MAx‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖MAx‖2,

for some accuracy parameter ε ∈ (0, 1). The subspace embedding is oblivious if the matrix M is
generated from a random distribution that is independent of A; otherwise, the subspace embedding
is non-oblivious.

A construction of an oblivious subspace embedding that can be computed in input-sparsity time
has the following guarantees:

Theorem 1.10 (OSNAP Matrix). [NN13, CW13, Coh16] Given an accuracy parameter ε > 0, for
any matrix A ∈ R

n×d with rank k, there exists a matrix S ∈ R
m×n with m = O

(
1
ε2
k1+α log k

)
such

that for all x ∈ R
d,

‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2
with probability at least 0.99. Moreover, SA can be computed in time O

(
nnz(A)

αε

)

.

Another construction of oblivious subspace embeddings uses Randomized Hadamard Trans-
forms, which are a family of structured randomized transformations defined as follows:

10

Definition 1.11 (Randomized Hadamard Transform).

H1 = [1] Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]

∀i ∈ [m] : D(i) ∈ R
d×d and D

(i)
j,k ∼

{

N (0, 1) if j = k

0 otherwise
, h(z) =

HD(1)

HD(2)

...

HD(m)

· z

We require the following properties of Randomized Hadamard Transforms:

Theorem 1.12. [CN22, Theorem 1.1] Let d ∈ N, δ, ε ∈ (0, 1/2) and f : R → R be a 1-Lipschitz
function. Then for the function h defined in Definition 1.11, we have with probability at least 1− δ:

∀z ∈ R
d s.t ‖z‖ ≤ 1 :

∣
∣
∣
∣
∣

1

md
·
md∑

i=1

f(h(z)i)− EZ∼N (0,‖z‖2)[f(z)]

∣
∣
∣
∣
∣
≤ ε

as long as m ≥ Cε−2 log5(d/ε) log(1/δ) for some absolute constant C > 0.

Lemma 1.13. [CN22, Lemma B.6] For any d ∈ N, ε, δ ∈ (0, 1/2), we have that for m ≥ 4 ·
log d+log(2/δ)

ε2
and the function h defined in Definition 1.11

∀x ∈ R
d : (1− ε) · ‖x‖2 ≤

1√
md
· ‖h(x)‖2 ≤ (1 + ε) · ‖x‖2

with probability at least 1− δ.

Corollary 1.14 (Subspace embedding via Randomized Hadamard Transform). Given a matrix
A ∈ R

n×d with rank k, there exist absolute constants c, C > 0 and an explicit matrix M ∈ R
m×n

with m = k polylog(n) rows, such that with probability at least 0.99, for any vector x ∈ R
d,

1

2
‖Ax‖2 ≤ ‖MAx‖2 ≤

3

2
‖Ax‖2

and at least Cm of the coordinates of the vector MAx have magnitude at least c√
m
. Moreover,

MA can be computed in time ndpolylog(n).

Leverage scores. A non-oblivious construction of a subspace embedding uses the notion of
leverage score sampling. For a matrix A ∈ R

n×d, the leverage score of row ai with i ∈ [n] is defined
as ai(A

⊤A)−1a⊤i . Equivalently, for the singular value decomposition A = UΣV, the leverage score
of row ai is also the squared row norm of ui. Thus, it is apparent that the sum of the leverage
scores of A is at most the rank of A, since the columns of U are orthogonal.

Theorem 1.15 (Generalization of Foster’s Theorem, [Fos53]). For a matrix A ∈ R
n×d, the sum

of its leverage scores is rank(A).

It is well-known that leverage score sampling can generate a non-oblivious subspace embedding:

11

Theorem 1.16 (Leverage score sampling). [DMM06a, DMM06b, Mag10, Woo14] Given a matrix
A ∈ R

n×d, let τi be the leverage score of the i-th row of A. Let C > 1 be a universal constant and

α > 1 be a parameter and suppose that pi ∈
[

min
(

1, Cτi log k
ε2

)

,min
(

1, Cατi log k
ε2

)]

for each i ∈ [n].

Let S be a random diagonal matrix so that the i-th diagonal entry of S is 1√
pi

with probability pi

and 0 with probability 1− pi. Then with probability at least 0.99, for all vectors x ∈ R
d,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Moreover, S has at most O
(
α
ε2

d log d
)
nonzero entries with probability at least 1− e−Θ(d).

Leverage scores are particularly useful because Theorem 1.15 upper bounds the sum of the
leverage scores by the rank of the matrix, which is at most d for an input matrix A ∈ R

n×d with
n ≥ d. Thus Theorem 1.16 implies that only O (d log d) rows of A need to be sampled for a constant
factor subspace embedding of A, given constant-factor approximations to the leverage scores of A.

Gradient descent for linear regression. Gradient descent is a well-known iterative method
for finding a local minimum of a differentiable function f . Given a learning rate η > 0 and a point
xn ∈ R

n for iteration n, the point xn+1 for iteration n+ 1 is defined by

xn+1 = xn + η∇f(xn),

where ∇f(xn) is the gradient of f at xn. It is known that the learning rate η can be explicitly
chosen so that gradient descent achieves the following convergence rate guarantees:

Theorem 1.17 (Convergence of gradient descent, e.g., Theorem 3 in [Sin16]). For a convex set
S ⊆ R

d, let f : S → R be strongly convex on S, so that there exist M > m > 0 such that
mId � ∇2f � MId. Then for any ζ > 0, we have f(x(k)) −minx∈S f(x) ≤ ε, i.e., k iterations of
gradient descent suffice to obtain an additive ζ-approximation, for

k ≥
log f(x(0))−y∗

ζ

log M
M−m

,

where y∗ = minx∈S f(x).

In our context, we use gradient descent to approximately solve linear regression, i.e., minx∈Rd f(x) :=
minx∈Rd ‖Ax − b‖2 for an input matrix A ∈ R

n×d and a vector b ∈ R
n. This is equivalent

to minimizing the squared objective value minx∈Rd f(x) := minx∈Rd ‖Ax − b‖22. In this case,
∇f(x) = 2A⊤Ax − 2A⊤b, which can be explicitly computed from A and b. However, if the
dimensions of A are prohibitively large, it is often desirable to first apply dimensionality reduction
techniques to decrease the input size.

2 Constant-Factor Subspace Embedding

In this section, we describe our constant-factor subspace embedding. We first require a crude
polylogarithmic approximate subspace embedding, which we describe in Section 2.1. Our polylog-
arithmic subspace embedding employs a recently observed property of the SRHT to “spread” the

12

mass of an input vector among a large number of coordinates. Since a large number of coordi-
nates have a “large” amount of mass, it suffices by standard concentration inequalities to uniformly
sample rows after the SRHT is applied.

We then show how to utilize the polylogarithmic subspace embedding to boost the approxima-
tion guarantees into a constant-factor subspace embedding in Section 2.2. Namely, some of the
sampled rows in the SRHT could be too large. Thus we use fast semidefinite programming to
reweight sampled rows of the SRHT to achieve a constant factor approximation. We provide more
details of this high-level approach in the individual sections.

2.1 Polylogarithmic Subspace Embedding

In this section, we describe our polylogarithmic distortion subspace embedding. We first show that
after applying the Hadamard Transform, a constant fraction of the resulting vector has “large”
coordinates.

Lemma 2.1. There exist constants c, C > 0 such that for the function h defined in Definition 1.11:

∀x ∈ R
d s.t ‖x‖2 = 1 :

1

md
·
md∑

i=1

1 {|h(x)i| ≥ c} ≥ 0.999 ·md

with probability at least 1− 1
d10

as long as m ≥ C log6(d).

Proof. Consider the following approximation to an indicator function:

fc(x) =

0 if |x| ≤ c
|x|−c

c if c ≤ |x| ≤ 2c

1 when |x| ≥ 2c

and let c be small enough such that Φ(2c) − Φ(−2c) ≤ 10−5, where Φ is the CDF of a standard
normal distribution. Note that such a c exists as the pdf of a standard normal random variable is
upper bounded by 1. Now, for large enough C and noting that fc is a (1/c)-Lipschitz function that
∀x ∈ R

d s.t ‖x‖2 = 1, we have by Theorem 1.12:

1

md
·
md∑

i=1

f(h(x)i) ≥ EZ∼N (0,1)[f(Z)]− 10−5 ≥ (1− (Φ(c)− Φ(−c)))− 10−5 ≥ 1− 2 · 10−5

with probability at least 1−d−10. The lemma now follows from the fact that f(x) ≤ 1 {|x| ≥ c}.

We now describe our polylogarithmic distortion subspace embedding. Given an input matrix
A ∈ R

n×d, we first apply OSNAP matrices S1 and S2 to obtain a constant-factor subspace embed-
ding. The OSNAP matrix S2 will have sparsity α = O (1) and thus dimension O

(
d1.1 log d

)
× n

for α = 0.1, for example. This OSNAP matrix will allow us to achieve polylog(d) dependencies
rather than polylog(n) dependencies. Here sparsity α ∈ (0, 1) means that a column of the OSNAP
matrix will have 1

αε nonzero entries, so that an application of the OSNAP matrix incurs runtime
proportional to 1

αε . Next, the OSNAP matrix S1 will have sparsity α′ = 1
log d and thus dimension

O (d log d) × O
(
d1.1 log d

)
. The purpose of this OSNAP matrix is to slightly decrease the matrix

13

multiplication time in our analysis, though we remark that without S1, our analysis can still be
performed but simply requiring a smaller value of α for S2.

Our polylogarithmic subspace embedding is simple. We apply an SRHT matrix M with
d polylog(d) rows to S1S2A. From standard results on Hadamard Transforms, MS1S2A is actu-
ally a constant-factor subspace embedding for A. In light of Lemma 2.1, MS1S2Ax has a “large”
number of coordinates that are “large”, for any unit vector Ax ∈ R

d. Thus we can uniformly sam-
ple rows of MS1S2A and achieve a “good” approximation to ‖Ax‖2. Hence, our polylogarithmic
subspace embedding is simply the matrix SMS1S2A, where S is a matrix that uniformly samples
O (d) rows independently.

Theorem 2.2. For any A ∈ R
n×d and a tradeoff parameter α > 0, we may compute matrix

G ∈ R
p×n such that:

∀x ∈ R
d : ‖Ax‖2 ≤ ‖GAx‖2 ≤ polylog(d) ‖Ax‖2 ,

with probability at least 0.9 for some constant ξ > 0. Furthermore, we have p = O (d) and GA

may be computed in time O
(
nnz(A)

α

)

+ d2+α polylog(d).

Proof. Let S1 and S2 be OSNAP matrices (Theorem 1.10) that induce a 2-approximate subspace
embedding, such that α = 0.1 for S2 and α = 1

log d for S1. Consider two successive applications of

OSNAP matrices S1 and S2 to A to obtain B = S1S2A ∈ R
ℓ×d, where ℓ = O (d log d) by Theorem

1.10. Note that by Theorem 1.10, S2A can be computed in time O (nnz(A)) and thus subsequently,
S1S2A can be computed in time O

(
d2.1 log d

)
. Moreover, the exponent 2.1 is due to the choice

α = 0.1 for S2 and can be made any arbitrary constant greater than 2.
Next, consider an SRHT, characterized by matrix M with m = polylog(ℓ) = polylog(d) rows.

For the corresponding linear mapping h, we have:

∀x ∈ R
ℓ : (1− ε) ‖x‖2 ≤

1√
mℓ
· ‖h(x)‖2 ≤ (1 + ε) · ‖x‖2

∀x ∈ R
ℓ s.t ‖x‖2 = 1 :

1

mℓ
·
∑

i∈[mℓ]

1 {|h(x)i| ≥ c} ≥ 0.999

∀i ∈ [mℓ] : ‖mi‖2 ≤ 2
√
ℓ (SRHT-COND)

with probability at least 1 − 1/ℓ10 by Lemma 1.13, Lemma 2.1, and the fact that the lengths of
the rows of M correspond to the length of one of m independently distributed standard normal
random vectors. Here, we use 1 to denote an indicator variable and mi to denote the i-th row of
M.

Next, consider a subsampling matrix, S ∈ R
p×mℓ where each row of S is uniformly sampled

from the set of elementary vectors {ei}i∈[mℓ] for p = Cd for some suitably large constant C. We
now have by an application of the matrix Bernstein inequality, i.e., Theorem 1.9:

1√
Cd
· ‖SM‖2 ≤ polylog(d)

with probability at least 1 − 1/ℓ10. Now letting T be the multiset of indices selected in the con-
struction of S, consider the random variable:

Z = sup
u∈Span(B) s.t ‖u‖2=1

∣
∣
∣
∣
∣

1

p
·
∑

i∈T
1 {〈mi,u〉 ≥ c} − Ei∈[mℓ][1 {〈mi,u〉 ≥ c}]

∣
∣
∣
∣
∣
.

14

Since Z satisfies the bounded differences assumption with respect to the elements of T and the fact
that Z corresponds to the empirical concentration of indicator functions of halfspaces of dimension
d, we have by standard VC Theory and McDiarmid’s inequality, i.e., Theorem 1.6, that Z ≤ 0.001
with probability at least 1− 1/ℓ10. From this, we get that for a suitably large C > 0:

∀u ∈ Span(B) :
1√
p
· ‖SMu‖2 ≥ c · ‖u‖2 =⇒ ‖u‖2 ≤

C√
p
‖SMu‖2 ≤ polylog(d) · ‖u‖2 .

Hence, for the matrixGA = SMS1S2A, we have thatGA is a subspace embedding with polylog(d)-
distortion that can be computed in time O

(
nnz(A) + d2.1 log d

)
. However, as we previously re-

marked, the exponent 2.1 is due to the choice α = 0.1 for S2 and can be made any arbitrary constant
greater than 2 with the tradeoff that the nnz(A) term becomes nnz(A)

α in the application of the OS-

NAP matrix S2 in Theorem 1.10. Therefore, the overall runtime isO
(
nnz(A)

α

)

+d2+α polylog(d).

2.2 Constant-Factor Subspace Embedding

In this section, we describe how to improve our polylogarithmic factor subspace embedding into a
constant-factor subspace embedding. We first require the following guarantees for (approximately)
solving semidefinite programs (SDPs).

Theorem 2.3 (Theorem 1.1 in [PTZ12]). For a primal positive SDP with m × m matrices and
n constraints and an accuracy parameter ε > 0, there exists an algorithm that produces a (1 + ε)-
approximation in O

(
1
ε3 log

3 n
)
iterations, where each iteration consists of computing matrix sums

and a special primitive that computes exp(Φ) •A for positive semidefinite matrices (PSD) Φ and
A.

Here, exp(Φ) •A denotes the pointwise dot product between matrices exp(Φ) and A, i.e., the
Hadamard product.

Theorem 2.4 (Theorem 4.1 in [PTZ12]). There exists an algorithm that takes input an m × m
matrix Φ with p nonzero entries, κ ≥ max(1, ‖Φ‖2), and PSD m×m matrices Ai in factorized form
Ai = QiQ

⊤
i , where the total number of nonzero entries across all matrices Qi is q, and outputs a

(1+ε)-approximation to all exp(Φ)•Ai. The algorithm uses O
(

1
ε2

(
pκ log 1

ε + q
)
logm

)
total work.

We now describe our constant-factor subspace embedding. Recall that our polylogarithmic
distortion subspace embedding for an input matrix A ∈ R

n×d is a matrix SMS1S2A, where S

is a matrix that randomly and independently samples O (d) rows, M is an SRHT matrix with
d polylog(d) rows and S1 and S2 are OSNAP matrices. Recall furthermore that from standard
results for randomized Hadamard Transforms, MS1S2A is already a constant-factor subspace em-
bedding. The reason SMS1S2A is not a constant-factor subspace embedding is because there are
certain rows of MS1S2A that are too large.

We first show that with high probability, there exists a reweighting W of the sampled rows so
that WSMS1S2A is a constant-factor subspace embedding of A. We can thus use semidefinite
programming to efficiently compute such a set of weights and quickly output WSMS1S2A. A
high-level description of our constant-factor subspace embedding is summarized in Figure 2.

Theorem 1.1. For any A ∈ R
n×d and any tradeoff parameter α > 0, we can compute matrix

G ∈ R
p×n such that:

∀x ∈ R
d : ‖Ax‖2 ≤ ‖GAx‖2 ≤ ξ ‖Ax‖2 ,

15

with probability at least 0.9 for a fixed constant ξ > 1. Furthermore, we have p = O (d) and GA

may be computed in time O
(
nnz(A)

α

)

+ d2+α polylog(d).

Proof. Let S1 ∈ R
O(ℓ)×Õ(d1+α) and S2 ∈ R

Õ(d1+α)×n be the OSNAP matrices defined in Theorem
2.2, so that each matrix is a constant-factor subspace embedding and α = 0.1 for S2 and α = 1

log d
for S1. In particular, we have ℓ = O (d log d). Let M be an SRHT withm = polylog(ℓ) = polylog(d)
rows, as in Theorem 2.2. Finally, we let S ∈ R

p×mℓ be a subsampling matrix, where each row of
S is uniformly sampled from the set of elementary vectors {ei}i∈[mℓ] for p = Cd for some suitably
large constant C, as in Theorem 2.2. Note that as in the proof of Theorem 2.2, we may set α for
S2 to any constant α > 0 to obtain the final result.

Let x1, . . . ,xp denote the rows of SM, B = S1S2A and U be an orthonormal basis for Span(B).

We will now find a set of weights w ∈ W :=
{

w :
∑

i∈[p]wi = 1 and ∀i ∈ [p], 0 ≤ wi ≤ 2
p

}

⊂ R
p such

that
∥
∥UU⊤ ·Σw ·UU⊤∥∥

2
is minimized where Σw =

∑

i∈[p]wixix
⊤
i . We start by showing that this

quantity is small with high probability.

Lemma 2.5. We have for some suitably large constant C > 0:

min
w∈W

∥
∥
∥UU⊤ ·Σw ·UU⊤

∥
∥
∥
2
≤ C

With probability at least 1− 1/p10.

Proof. We start by analyzing the quantity via the approach from [LM19]:

Zr = sup
u∈U s.t ‖u‖2=1

1

p
·

p
∑

i=1

1 {|〈u,xi〉| ≥ r} .

Note that Zr satisfies the bounded differences inequality with respect to the rows xi drawn i.i.d.
from the rows of M. Furthermore, we have:

E[Zr] ≤
1

r
· E

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
|〈u,xi〉|

≤ 1

r

E

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
(|〈u,xi〉| − Ex∈M|〈u,x〉|)

+ sup
u∈U s.t ‖u‖2=1

Ex∈U[|〈u,x〉|]

Since u and x are both unit vectors, then Ex∈U[|〈u,x〉|] ≤ 1. Thus we have

E[Zr] ≤
1

r

Exi,x′
i

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]

(
|〈u,xi〉| −

∣
∣〈u,x′

i〉
∣
∣
)

+ 1

 ,

Note that |〈u,xi〉| − |〈u,x′
i〉| is a zero-mean random variable. Thus by using standard symmetriza-

tion arguments, i.e., Theorem 1.8, we can insert Radamacher variables σi as follows where x′i
represent independent copies of xi. Therefore,

E[Zr] ≤
2

r

Exi,x′
i
,σi

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
σi
(
|〈u,xi〉| −

∣
∣〈u,x′

i〉
∣
∣
)

+ 1

16

≤ 2

r

Exi,x′
i
,σi

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
σi|〈u,xi〉|+ sup

u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
−σi

∣
∣〈u,x′

i〉
∣
∣

+ 1

=
4

r

Exi,σi

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
σi|〈u,xi〉|

+ 1

 .

Since the Rademacher random variables σi ∈ {±1} are chosen uniformly at random and independent
of the xi, we can remove the absolute values around 〈u, xi〉 using Talagrand’s contraction principle,
i.e., Theorem 1.7. Hence, by the definition of the operator norm,

E[Zr] ≤
4

r

Exi,σi

 sup
u∈U s.t ‖u‖2=1

1

p
·
∑

i∈[p]
σi〈u,xi〉

+ 1

=
4

r

Exi,σi

∥
∥
∥
∥
∥
∥

U⊤

1

p
·
∑

i∈[p]
σixi

∥
∥
∥
∥
∥
∥
2

+ 1

 .

By convexity and Jensen’s inequality, we have

E[Zr] ≤
4

r

Exi,σi

∥
∥
∥
∥
∥
∥

U⊤

1

p
·
∑

i∈[p]
σixi

∥
∥
∥
∥
∥
∥

2

2

1/2

+ 1

≤ 4

r

Exi,σi

Tr

U⊤

1

p
·
∑

i∈[p]
σixi

1

p
·
∑

i∈[p]
σixi

⊤

U

1/2

+ 1

≤ 4

r
·
((

Tr

(

U⊤
(
1

p
· Ex∈M[xx⊤]

)

U

))1/2

+ 1

)

,

where the last inequality follows from the linearity of the trace operator. Since U is an orthonormal
basis for Span(B), a subspace of dimension d and M satisfies Ex∈M[xx⊤] 4 2 · I (SRHT-COND):

E[Zr] ≤
4

r
·
((

2d

p

)1/2

+ 1

)

.

Hence, we get for large enough r that E[Zr] ≤ 0.0001. The bounded differences inequality, i.e.,
Theorem 1.6, now yields that Zr ≤ 0.0002 with probability at least 1− 1/ℓ10. Now, we analyze the
random variable:

min
w∈W

∥
∥
∥UU⊤ΣwUU⊤

∥
∥
∥
2
= min

w∈W
max

Y<0,Tr(Y)=1
〈UU⊤ΣwUU⊤,Y〉 = max

Y<0,Tr(Y)=1
min
w∈W

〈UU⊤ΣwUU⊤,Y〉

where the exchange of the min and max follows from von Neumann’s equality. We will now
show that for all Y < 0,Tr(Y) = 1, we have TY :=

∣
∣
{
i : x⊤

i UU⊤YUU⊤xi ≥ 32768r2
}∣
∣ < 0.5p

using an analysis similar to [DL22]. Suppose for the sake of contradiction, there exists such an
Y satisfying this. Then, consider a Gaussian random variable g ∼ N (0,Y). We now have for

17

all i ∈ TY by noting that g⊤UU⊤xi is a zero mean gaussian random variable with variance
E[(g⊤UU⊤xi)

2] = E[x⊤
i UU⊤gg⊤UU⊤xi] = 〈Y,UU⊤xix

⊤
i UU⊤〉 ≥ 32768r2 and standard upper

bounds on the pdf of a gaussian random variable:

P

{∣
∣
∣g

⊤UU⊤xi

∣
∣
∣ ≥ 8r

}

≥ 9

10

P {‖g‖2 ≤ 4} ≥ 9

10
.

Hence, we get by a union bound on the above two events:

P

{
1

‖g‖2
·
∣
∣
∣g

⊤UU⊤xi

∣
∣
∣ ≥ 2r

}

≥ 8

10
.

And we get:

p · Zr ≥ Eg

∑

i∈TY

1

{
1

‖g‖2
·
∣
∣
∣g

⊤UU⊤xi

∣
∣
∣ ≥ 2r

}

 ≥ 8

10
· |TY| ≥ 0.4p,

which yields a contradiction and establishes the lemma.

The task of finding a suitable set of weights can be formulated as the following packing semi-
definite program:

max 1⊤w

s.t
∑

i∈[p]
wiAi 4 C · I

wi ≥ 0

where Ai = CiC
⊤
i with Ci =

[
UU⊤ · xi 0

0
√

2
p · ei

]

.

These families of SDPs may be solved to constant accuracy in time d2 polylog(d) from Theorem 2.3
by noting that the matrix exponentials computed in Theorem 2.4 may be implemented with the
fast projection oracle onto the span of U via gradient descent to inverse polynomial accuracy.

Towards concluding the proof, let W denote the diagonal matrix with Wi,i =
√
wi. We now

have
∥
∥WSUU⊤∥∥

2
≤ C for some C > 0 from the constraints of the program.

Lemma 2.6. We have for some absolute c > 0:

∀w ∈ W,u ∈ U s.t ‖u‖2 = 1 : u⊤

∑

i∈[p]
wi · xix

⊤
i

u ≥ c

with probability at least 1− 1/p10.

Proof. We have from SRHT-COND, that for any u ∈ U with ‖u‖2 = 1 for some c > 0:

Q(u) :=
1

ml

∑

i∈[ml]

1 {|h(u)i| ≥ c} ≥ 0.999

18

Noting that the VC-dimension of halfspaces of dimension d is d+ 1, we have by [Ver18, Theorem
8.3.23]:

E

sup
u∈U,‖u‖2=1

∣
∣
∣
∣
∣
∣

1

p
·
∑

i∈[p]
1 {|〈xi,u〉| ≥ c} −Q(u)

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Q

≤ C ·
√

d

p

for some absolute constant C > 0. Furthermore, noting that the random variable Q satisfies the
bounded differences inequality as the rows xi are drawn i.i.d. from the rows of M. Hence, we
have by an application of the bounded differences inequality and the previous display that with
probability at least 1− 1/p10:

∀u ∈ U s.t ‖u‖2 = 1 :
1

p
·
∑

i∈[p]
1 {|〈xi,u〉| ≥ c} ≥ 0.99.

The lemma now follows from the fact that for any w ∈ W, from the fact that wi ≤ 2/p:

‖WSMu‖2 =
√
∑

i∈[p]
wi〈xi,u〉2 ≥ c ·

√
∑

i∈[p]
wi1 {|〈xi,u〉| ≥ c} ≥ c

2
.

To conclude the proof, note that S1S2 is a valid constant-factor subspace embedding for A;
that is, there exist constants C ′, ξ′ > 0 such that:

∀x ∈ R
d : ‖Ax‖2 ≤ C ′ ‖S1S2Ax‖2 ≤ ξ′ ‖Ax‖2 .

Furthermore, we have as a consequence of Lemmas 2.5 and 2.6 that there exist constants C ′′, ξ′′:

∀u ∈ U : ‖u‖2 ≤ C ′′ ‖WSMu‖2 =

√
√
√
√
√u⊤ ·

∑

i∈[p]
wixix

⊤
i

 · u

=
√

u⊤UU⊤ΣwUU⊤u ≤
√

‖UU⊤ΣwUU⊤‖2 · ‖u‖2 ≤ ξ′′ ‖u‖2

Recalling that U is the span of S1S2A, the previous two displays yield:

∀ ‖x‖2 = 1 : ‖Ax‖2 ≤ C ‖WSMS1S2Ax‖2 ≤ ξ ‖Ax‖2

for some constants C, ξ > 0 with probability at least 1− 1/d10.

Runtime analysis. We start by showing that we may approximately project onto U by com-
puting a pre-conditioner, R, of B such that BR has condition number polylog(d):

Lemma 2.7. We may compute in time O (dω) a matrix R such that BR has condition number
polylog(d).

19

Proof. We start by computing a pre-conditioner of SMS1S2A, R, in time O (dω) as SMS1S2A

is of dimension O (d) × d. Consequently, SMS1S2AR has condition number polylog(d). The
lemma will now follow by showing that SM is a polylog(d)-subspace embedding for U. The lower
bound follows from Lemma 2.6. The upper bound now follows from applying matrix Bernstein
(i.e., Theorem 1.9) to the random matrix

∑

i∈[p] xix
⊤
i by noting that ‖xi‖2 ≤

√
dpolylog(d) and

E[(xix
⊤
i)

2] 4 4ℓ · I 4 4dpolylog(d) · I by SRHT-COND.

As a consequence of the above lemma, we may compute an approximate projection onto U in
time d2 polylog(d) log(1/γ) with accuracy γ; i.e., for any ‖u‖2 = 1, we can compute a vector û ∈ U

such that ‖û− u∗‖ ≤ γ where u∗ = argminz∈U ‖u− z‖ via gradient descent. Now, to determine
the runtime, we first note that by Theorem 1.10, S1A can be computed in time O (nnz(A)) and has
dimension d1.1 log d× d. Similarly by Theorem 1.10, S2S1A can be subsequently computed in time
O
(
d2.1 log2(d)

)
and has dimension d log d× d. By Corollary 1.14, MS2S1A can then subsequently

be computed in time d2 polylog(d) and has dimensions dpolylog(d)×d. Since S is a sampling matrix
that samples O (d) rows, then SMS2S1A can be subsequently computed in time O

(
d2
)
and has

dimensions O (d) × d. Since the SDP can be solved to constant accuracy in time d2 polylog(d),
then W can be computed in time d2 polylog(d). Since W is simply a reweighting matrix, then
WSMS2S1A can subsequently be computed in time O

(
d2
)
. Therefore, the total time to compute

the subspace embedding WSMS2S1A is

O
(
nnz(A) + d2.1 log2(d)

)
+ d2 polylog(d).

More generally, we can use an arbitrary α instead of setting α = 0.1 to achieve the total runtime

O
(
nnz(A)

α
+ d2+α log2(d)

)

+ d2 polylog(d) = O
(
nnz(A)

α

)

+ d2+α polylog(d).

3 Subspace Embedding through Leverage Score Sampling

In this section, we show that our constant factor approximation can be used to achieve leverage score
sampling in the current matrix-multiplication runtime. Leverage score sampling is an important
tool that will allow us to achieve a (1 + ε)-subspace embedding in this section, approximate linear
regression in Section 5, and independent row selection in Section 4.

We first recall the following standard result, which states that a constant-factor subspace em-
bedding can be used to achieve constant-factor approximations to the leverage scores.

Lemma 3.1. Suppose S is a subspace embedding for A ∈ R
n×d so that for any x ∈ R

d,

‖Ax‖2 ≤ ‖SAx‖2 ≤ α‖Ax‖2.

Then for all i ∈ [n],
τ

α2
≤ ‖aiR‖22 ≤ τ,

where SA = QR−1 for an orthonormal matrix Q, i.e., QR−1 is the QR decomposition of SA, and
τi is the leverage score of the i-th row of A.

20

Lemma 3.1 follows from the fact that Q has orthonormal columns and that the leverage score
of each row of A is just the squared row norm of U in the singular value decomposition A = UΣV,
see, e.g., Section 1.3, while S is an α-distortion subspace embedding. More detailed proofs of
Lemma 3.1 appear in [DMMW12, Woo14, CCKW22].

To quickly obtain a constant factor approximation to ‖aiR‖22 for all i ∈ [n], a standard approach
is to use a Gaussian matrix G with O (log n) columns and then compute ‖aiRG‖22 [DMMW12,
Woo14]. However, this multiplication by a dense matrix incurs a high runtime. Instead, [CCKW22]
showed that a two-stage sampling process can be performed by first using a Gaussian matrix G′

with only O (1/γ) columns, so that ‖aiRG′‖22 is an O (nγ log n)-approximation to ‖aiR‖22 for each
i ∈ [n]. Then after sampling a large number of rows, i.e., oversampling by an O (nγ log n) factor,
we can compute constant-factor approximations to the sampled rows and then perform rejection
sampling to reduce the overall number of rows. Formally, the guarantees are as follows:

Theorem 3.2 (Lemma 7.3 in [CCKW22]). Given A ∈ R
n×d, suppose R ∈ R

d×d is a matrix such
that for any vector x ∈ R

d, ARx can be computed in time T1 and Rx can be computed in time T2.
Given parameters α, s > 0, there exists an algorithm that with probability at least 0.95, samples a
random subset S ⊆ [n] such that each i ∈ S with probability fi, where

min

(

1,
s

16

‖aiR‖22
‖AR‖2F

)

≤ fi ≤ min

(

1, s
‖aiR‖22
‖AR‖2F

)

.

The algorithm outputs S along with fi for each i ∈ S in time O
(
T1
α + T2 log n+ sdnα log2(n)

)
.

Given these previous results, our algorithm is simple. To perform leverage score sampling on an
input matrix A to obtain a (1+ ε)-subspace embedding, we first obtain a constant-factor subspace
embedding S1A through Theorem 1.1. We then compute a QR decomposition of S1A so that
QR−1 = S1A and apply Theorem 3.2 to A and R. The algorithm in full appears in Algorithm 1.

Algorithm 1 Subspace embedding through leverage score sampling

Input: A ∈ R
n×d, ε, α > 0

Output: Subspace embedding SA

1: Let S1A be a fast embedding of A ⊲Theorem 1.1
2: Let QR−1 be a QR decomposition of S1A

3: s← 1
ε2 dpolylog(d)

4: Let S and {fi} be the output of Theorem 3.2 with inputs A,R, s, α
5: Set the i-th diagonal entry of S = 1√

fi
for each i ∈ S

6: return SA

We now show that Algorithm 1 can be used to obtain a (1 + ε)-subspace embedding in the
current matrix-multiplication runtime.

Theorem 1.2. Given A ∈ R
n×d, an accuracy parameter ε > 0, and any tradeoff parameter

α > 0, there exists an algorithm that computes a matrix SA with O
(

1
ε2 d log d

)
rows such that with

probability at least 9
10 , for all vectors x ∈ R

d,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

21

Moreover, SA can be computed in time

O
(
nnz(A)

α
+ dω

)

+
1

ε2
d2+α polylog(d).

Proof. By Theorem 1.1, there exists a matrix S1 such that with probability at least 0.99, S1 has
O (d) rows and

‖Ax‖2 ≤ ‖S1Ax‖2 ≤ ξ‖Ax‖2,

for ξ = O (1) and for all x ∈ R
d. Moreover, S1A can be computed in O

(
nnz(A)

α

)

+ d2+α polylog(d)

time for any α > 0. Thus the QR decomposition of S1A can be computed in time O (dω) to output
matrices Q and R−1 such that Q has orthonormal columns and QR−1 = S1A. By Lemma 3.1,

τi
ξ2
≤ ‖aiR‖22 ≤ τi,

for all i ∈ [n], so that
τi
dξ2
≤ ‖aiR‖

2
2

‖AR‖2F
,

since ‖AR‖2F =
∑

i∈[n] ‖aiR‖22 ≤
∑

i∈[n] τi ≤ d by Theorem 1.15. By Theorem 3.2, there exists an
algorithm that with probability at least 0.95, will output a set S along with corresponding sampling
probabilities fi, for each i ∈ S, such that

fi ≥ min

(

1,
s

16

‖aiR‖22
‖AR‖2F

)

≥ min

(

1,
s

16

τi
dξ2

)

.

Setting s = 1
ε2 dξ

2, it follows that fi ≥ min
(

1, Cτi log d
ε2

)

for some constant C > 0. Thus, by

Theorem 1.16, with probability at least 0.9 for the matrix S of Algorithm 1,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

By setting T1 = nnz(A) + d2 and T2 = d2 in Theorem 3.2, it follows that the total runtime is

O
(
nnz(A)

α
+ dω

)

+
1

ε2
nαd2 polylog(d).

Now we note that either d > n0.1, in which case nα can be replaced with dα after a reparametrization
of α or d < n0.1, in which case the nαd2 polylog(k) term is lower-order since nnz(A) can be assumed
to be at least n by throwing out zero rows. Therefore, the final runtime is

O
(
nnz(A)

α
+ dω

)

+
1

ε2
d2+α polylog(d).

22

4 Independent Row Selection

In this section, we show how our leverage score sampling framework and our constant-factor sub-
space embedding can be used to select a maximal set of independent rows of an input matrix A

in the current matrix-multiplication runtime. We first require the following definition of rank-
preserving sketches:

Definition 4.1 (Rank-preserving sketch). A distribution S on matrices S ∈ R
m×n is a rank

preserving sketch if there exists a constant c > 0 such that for S ∼ S, with high probability, for an
input matrix A ∈ R

n×d, we have min
(
rank(SA), mc

)
= min

(
rank(A), mc

)
.

[CKL13] gave a sparse construction of a rank-preserving sketch with the following properties:

Theorem 4.2. [CKL13] There exists a rank-preserving sketch distribution with c = 11 such that
(1) SA can be computed in O (nnz(A)) time, (2) S has at most two nonzero entries in a column,
and (3) S has at most 2n

m nonzeros in a row.

We also require the following guarantees from the approximate matrix multiplication algorithm.
More precisely, the approximate matrix multiplication algorithm samples a fixed number of rows
with replacement from an input matrix M, where each row mi is sampled with probability pro-
portional to ‖mi‖22. The result is a matrix SM such that M⊤S⊤SM is a “good” approximation to
M⊤M.

Theorem 4.3. [DKM06] Suppose S is a sampling matrix with r rows randomly generated from the
approximate matrix multiplication algorithm on input M ∈ R

n×d. Then with probability at least 2
3 ,

‖M⊤S⊤SM−M⊤M‖2F ≤
10√
r
‖M‖4F .

The approximate matrix multiplication algorithm is simply squared row norm sampling, which
is equivalent to leverage score sampling after preconditioning, since the leverage scores of each row
of A are just the squared row norms of U in the singular value decomposition A = UΣV, e.g., see
Section 1.3.

4.1 Independent Row Selection for a Reduced Matrix

We now describe Algorithm 2, our algorithm for independent row selection from a matrix B ∈
R
O(k log(k))×O(k) with rank k – we shall ultimately reduce the input matrix A ∈ R

n×d with rank k
down to this case. Our algorithm will iteratively grow a set S of independent rows of B.

We first use leverage score sampling to sample O (k) rows of B. Although we require O (k log k)
samples to cover the entire row span of B, we can show using the guarantees of approximate matrix
multiplication by Theorem 4.3 that O (k) samples suffice to cover a span with rank (1− c)k = 9

10k
with probability 2

3 , for c = 1
10 . We can efficiently compute both an independent subset of these

rows and a basis Z1 for their orthogonal complement. We can then add the independent subset to
S. These procedures in total use at most γkω runtime for some fixed constant γ > 0.

For the next iteration, we repeat these procedures on BZ⊤
1 . Namely, we use leverage score

sampling to sample O (k) rows of BZ⊤
1 . We can again efficiently compute both an independent

subset of these rows and a basis Z2 for their orthogonal complement. We can again add an inde-
pendent subset of these rows to our growing set S and then compute a basis Z2 for the orthogonal

23

complement of S. The main idea is that the rows of B that are spanned by S will have leverage
score zero in BZ⊤

1 because they must be orthogonal to Z1, the orthogonal complement of S. Hence,
the sampled rows will cover a constant fraction of the remaining subspace orthogonal to S and in
particular with probability 2

3 , we can sample a set of rows with rank at least a 9
10 fraction of the

rank of BZ⊤
1 .

Moreover, since the rank of BZ⊤
1 is at most a c = 1

10 -fraction of the rank of B conditioned
on the success of the first iteration, then the runtime of the second iteration is at most γ(ck)ω ,
which is a constant fraction smaller than the runtime of the first iteration. We can now repeatedly
apply this approach by iteratively adding a set of rows to S that cover a constant fraction of
the remaining subspace orthogonal to S, while using runtime a constant fraction of that in the
previous iterations. Since the runtime follows a geometric series in expectation, the overall runtime
is O (kω) in expectation, and so by Markov’s inequality, the overall runtime is O (kω) with constant
probability. We remark that the correctness and runtime analysis is robust to failures in each
iteration because a failure in an iteration means that at worst, no additional rows are added to
S, which does not affect the correctness of the algorithm and only slightly increases the runtime,
which is absorbed into the computation of the expected runtime.

Algorithm 2 Independent Row Selection

Input: A ∈ R
m×d for m = d polylog(d)

Output: A set of rank(A) independent rows of A
1: Use Theorem 1.16 so that S is a set of O (rank(A)) rows of A
2: Let SA be the submatrix of O (rank(A)) rows of A in S
3: Let Z(1) be a basis for the orthogonal complement of SA
4: Reduce S to a set of independent rows
5: t← 1
6: while Z(t) is non-empty do

7: Use Theorem 1.16 so that S′ is a set of O (r) rows of AZ(1) . . .Z(t), where r =
rank(AZ(1) . . .Z(t))

8: S ← S ∪ S′

9: Reduce S to a set of independent rows
10: Let SA be the submatrix of O (r) rows of A in S
11: Let Z(t+1) be a basis for the orthogonal complement of SA

12: return S

We show that the subroutine Algorithm 2 can be used to find a set of rank(A) independent
rows of A in matrix-multiplication runtime. We shall ultimately apply Algorithm 2 to a matrix
A ∈ R

O(k log k)×O(k).

Lemma 4.4. Given a matrix A ∈ R
n×d of rank k, there exists an algorithm that with probability

at least 2
3 , outputs a set S of k independent rows of A in time

O (nnz(A) log d+ kω) .

Proof. Suppose A has rank k and let S be a set of n1 ≥ 9
10k rows of A, with rank r1. Let S be the

corresponding sampling matrix so that S consists of the rows of SA ∈ R
n1×d. Let Z(1) be a basis

for the orthogonal complement of SA, so that Z(1) ∈ R
(k−n1)×d.

24

Observe that for any row ai in the span of S, we have ai(Z
(1))⊤ = 0(k−n1), where the right-hand

side denotes the all zeros vector of length k − n1. Thus the only nonzero rows of A(Z(1))⊤ are
the rows that are independent of S and so we would like to sample rows of A proportional to
their leverage score sample in A(Z(1))⊤. However, due to our desired runtime, we cannot afford to
explicitly compute A(Z(1))⊤. Instead we apply the techniques of Theorem 1.2 to perform leverage
score sampling on A(Z(1))⊤. Namely, we first generate a matrix G(1) ∈ R

m1×n1 via Theorem 1.1
and suppose that

‖G(1)A(Z(1))⊤x‖2 ≤ ‖G(1)SA(Z(1))⊤x‖2 ≤ γ‖G(1)A(Z(1))⊤x‖2,

for an absolute constant γ > 1 and for all x ∈ R
d. Crucially, G(1)A(Z(1))⊤ ∈ R

m1×d, where
m1 ≤ C(k − n1) and can be computed in time C(nnz(A) + m1k

ω−1) for an absolute constant
C > 0. As in Theorem 1.2, we then use C(nnz(A)+m1k

ω−1) time to compute a QR decomposition
of G(1)A(Z(1))⊤ to output matrices Q and R such that Q has orthonormal columns and QR =
G(1)A(Z(1))⊤.

By Lemma 3.1, we have that ‖ai(Z(1))⊤R−1‖22 is a ξ2-approximation to the leverage score of the
i-th row of ai(Z

(1))⊤. Thus by Theorem 3.2, we can sample O (d− n1) rows of A with probabilities
proportional to the leverage scores of A(Z(1))⊤.

By setting M in the context of Theorem 4.3 to M = G(1)A(Z(1))⊤R−1, we have that M⊤M is
the diagonal matrix consisting of r1 := d − n1 ones and zeros elsewhere, since Q has orthonormal
columns. Thus, ‖M‖2F = r1 and so by Theorem 4.3, we have that for r = O (r1) with probability
at least 2

3 ,

‖M⊤S⊤SM−M⊤M‖2F ≤
r1
100

,

where S is the sampling matrix induced by approximate matrix multiplication, which is equivalent
to leverage score sampling in this case. On the other hand, we have ‖M⊤S⊤SM −M⊤M‖2F ≥
rank(SM), since M⊤M is a diagonal matrix consisting of only ones and zeros. Therefore, it follows
that SM, i.e., the set of rows from leverage score sampling, has found at least a 9

10 fraction of the
remaining independent rows.

By arguing inductively, the algorithm outputs a set of d independent rows. Namely, we use S to
compute the matrix Z(2) for the orthogonal complement of the sampled rows. Then given a sequence
of matrices Z(1), . . . ,Z(i), we generate a matrix G(i) via Theorem 1.1 and its QR decomposition to
iteratively perform leverage score sampling.

Call an iteration successful if the number of remaining independent rows of A has decreased
by at least a 9

10 fraction. We define a round to be a number of iterations such that the number of
remaining independent rows of A has decreased by at least a 9

10 fraction. Since each iteration in
round t runs in time

C

(

nnz(A) +

(
1

10

)i−1

k · kω−1

)

and succeeds with probability at least 2
3 , then the expected runtime Rt of round t is at most

E [Rt] ≤ C

(

nnz(A) +

(
1

10

)i−1

k · kω−1

)

+
1

3
E [Rt] ≤ 2C

(

nnz(A) +

(
1

10

)i−1

k · kω−1

)

.

25

Thus the total expected runtime is at most

log d
∑

i=1

= 2C

(

nnz(A) +

(
1

10

)i−1

k · kω−1

)

= O (nnz(A) log d+ kω) .

Hence we have by Markov’s inequality that with probability at least 2
3 , the algorithm uses total

time
O (nnz(A) log d+ kω) .

4.2 Input Matrix Reduction

We now show there exists an algorithm for independent row selection that uses the current matrix-
multiplication runtime. We would like to reduce from an input matrix A ∈ R

n×d with rank k to a
matrix B ∈ R

O(k log k)×k, which would allow us to apply Algorithm 2 and therefore, Lemma 4.4. To
that end, we apply a rank-preserving sketch S to A, so that rank(A) = rank(AS), where S ∈ R

d×ck

for some constant c > 0 and any set of independent rows of A is also a set of independent rows
of AS. We then use our constant-factor subspace embedding to select O (k log k) reweighted rows
from AS. These reweighted rows form the input matrix B to Algorithm 2.

Theorem 1.3. Given a matrix A ∈ R
n×d with rank k and any tradeoff parameter α > 0, there exists

an algorithm that outputs a set of k linearly independent rows of A, using time O
(
nnz(A)

α + kω
)

+

k2+α polylog(k)

Proof. Let S1 ∈ R
ck×d be a rank-preserving sketch and let E be the event that rank(AS⊤

1) =
rank(A) = k. Then by Theorem 4.2, we have Pr [E] ≥ 1− 1

poly(n) .

Conditioned on E , let I ⊆ [n] be a subset of independent rows of AS⊤
1 , so that rank(AI) = k.

Thus to find k linearly independent rows of A, it suffices to find k linearly independent rows of
AS⊤

1 . Let B = AS⊤
1 , so that nnz(B) = O (nnz(A)) by Theorem 4.2.

By Theorem 1.2, there exists an algorithm that samples O (k log k) rows of B to form a matrix
B′ such that rank(B) = rank(B′) = k, using time

O
(
nnz(A)

α
+ kω

)

+ k2+α polylog(k),

for any trade-off parameter α > 0. Thus, we can then apply Lemma 4.4 to B′ to compute k linearly
independent rows in time k2 polylog(k) +O (kω). Thus, the overall runtime is

O
(
nnz(A)

α
+ kω

)

+ k2+α polylog(k).

5 Linear Regression

In this section, we show how our (1 + ε)-subspace embedding can be used to solve approximate
linear regression in the current matrix-multiplication runtime.

We first recall the following statement that shows how a (1 +
√
ε)-subspace embedding suffices

to achieve a (1 +O (ε))-approximate solution to linear regression.

26

Lemma 5.1 (Theorem 14 in [BDN15]). Let SA be a (1 +
√
ε)-subspace embedding of an input

matrix A ∈ R
n×d. Then

min
x∈Rd

‖SA− Sb‖2 ≤ (1 +O (ε)) · min
x∈Rd

‖A− b‖2.

Thus Lemma 5.1 implies that we should simply find an approximate solution to linear regression
after applying a (1 +

√
ε)-subspace embedding, e.g., Theorem 1.2. However, this is not straightfor-

ward because the resulting dimension after applying Theorem 1.2 would be O
(
1
ε d log d

)
, which is

not small enough to compute the closed-form solution for linear regression in the current matrix-
multiplication runtime, due to the extra logarithmic factor. Instead, we consider gradient descent
to find an approximately optimal solution for linear regression, recalling the guarantees on the
convergence rate of gradient descent in Theorem 1.17.

We now show that there exists an algorithm for approximate linear regression in the current
matrix-multiplication runtime. The main approach is similar to that of [CCKW22], but we have a
better runtime due to our constant-factor subspace embedding, and also we have a better depen-
dence on ε due to invoking Lemma 5.1.

The main idea is that Lemma 5.1 states that it suffices to solve approximate linear regression
after applying a (1+O (

√
ε))-subspace embedding S, which by Theorem 1.2 results in O

(
1
ε d log d

)

rows. Unfortunately, the dimension of S is too high to find a closed form solution to minx∈Rd ‖SAx−
Sb‖2. On the other hand, since we only require finding a vector w ∈ R

d such that ‖SAw−Sb‖2 ≤
(1+O (ε))minx∈Rd ‖SAx−Sb‖2, we instead use gradient descent to find such a vector w. However,
gradient descent requires a small condition number and a “good” initial solution. To decrease the
condition number to O (1), we instead consider minx∈Rd ‖SARx − Sb‖2, where GA = QR−1

is a QR decomposition for a constant-factor subspace embedding GA. To find a good initial
solution, we first find the closed-form solution to w(0) = argminx∈Rd ‖GAx − Gb‖2, since GA

is a constant-factor subspace embedding. We then account for the preconditioning by computing
w(1) = R−1w(0), which is a good starting point for our gradient descent because it provides a
constant-factor approximation to the optimal solution due to the properties of GA.

Theorem 1.4. Given A ∈ R
n×d, b ∈ R

n, and any tradeoff parameter α > 0, there exists an
algorithm that with probability at least 0.9, outputs a vector y such that

‖Ay − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− b‖2,

using time O
(
nnz(A)

α + dω
)

+ 1
ε d

2+α polylog(d) + 1
ε d

2 polylog(d) log 1
ε .

Proof. Let α > 0 be a fixed constant. By Theorem 1.2, we can in time O
(
nnz(A)

α + dω
)

+
1
ε d

2+α polylog(d), compute a (1 +O (
√
ε)) subspace embedding [SA;Sb] of the matrix [A;b] with

probability at least 0.9. By Theorem 1.1, we can compute a matrix G such that with probability at
least 0.9, G has O (d) rows andGA is a ξ-distortion subspace embedding with ξ = O (1). Moreover,
since GA ∈ R

O(d)×d, then we can compute its QR decomposition GA = QR−1 in O (dω) time.
Because Q has orthonormal columns, then the condition number of GAR is κ(GAR) = 1. Since
GA is a ξ-distortion subspace embedding with ξ = O (1), it follows that κ(AR) = 1. Similarly,
we have κ(SAR) = O (1) since S is also a (1 +O (

√
ε)) subspace embedding of A. Intuitively, R

serves as a good preconditioner to the matrix A.

27

More precisely, let w be an approximate minimizer of the resulting matrix, so that

‖SARw − Sb‖2 ≤ (1 + ε) min
x∈Rd

‖SARx− Sb‖2.

Then by Lemma 5.1, Rw is a (1+O (ε))-approximate solution to the linear regression problem, so
it remains to compute Rw.

Unfortunately, since SAR has O
(
1
ε d log d

)
rows, we cannot afford to immediately use the

closed-form solution to compute minx∈Rd ‖SARx − Sb‖2. On the other hand, since Rw is a
(1 +O (ε))-approximate solution to the linear regression problem, we can use gradient descent to
compute Rw after finding a “good” initial point.

To that end, we first find the closed-form solution to w(0) = argminx∈Rd ‖GAx −Gb‖2, since
GA is a constant-factor subspace embedding. We then account for the preconditioning by com-
puting w(1) = R−1w(0), which will serve as a starting point for our gradient descent.

More specifically, let w(0) = (GA)+(Gb), where (GA)+ is the pseudo-inverse of GA. Since
GA ∈ R

O(d)×d, then we can compute its pseudo-inverse in O (dω) time. Moreover, since the
construction of G in Theorem 1.1 consists of a reweighted subsampled Hadamard transform, then
we can compute Gb in O (n log n) = O (nnz(A)) time. Thus we can compute w(0) in total time
O (nnz(A) + dω) after computing G.

We can now compute w(1) = R−1w(0) in O
(
d2
)
time and furthermore,

‖SARw(1) − Sb‖2 ≤ (1 + ε)‖ARw(1) − b‖2 = (1 + ε)‖Aw(0) − b‖2 ≤ (1 + ε)‖GAw(0) −Gb‖2.

Let z = argminx∈Rd ‖SAx − Sb‖2. Since w(0) = (GA)+(Gb), then w(0) = argminx∈Rd ‖GAx −
Gb‖2. Therefore,

‖SARw(1) − Sb‖2 ≤ (1 + ε)‖GAw(0) −Gb‖2
≤ (1 + ε)‖GAz −Gb‖2
≤ (1 + ε)γ‖Az − b‖2
≤ (1 + ε)γ min

x∈Rd

‖SAx− Sb‖2.

In other words, w(1) is an O (1)-approximation to the optimizer of the linear regression problem
for the input matrix SAR and the measurement vector Sb, since γ = O (1). SinceQ is orthonormal,
then (squared) linear regression for [SAR;Sb] is 1-strongly convex. Moreover, since κ(SAR) =
O (1), then we can set m = 1 and M = O (1) in Theorem 1.17. Further, setting the parameters
f(x(0)) ≤ γminx∈Rd ‖SAx−Sb‖2 and the gradient descent accuracy ζ = εminx∈Rd ‖SAx−Sb‖2 in
Theorem 1.17, we obtain a (1 + ε)-approximation by using O

(
log 1

ε

)
iterations of gradient descent

with the initial solution as w(1). Since S has O
(
1
ε d log(d)

)
rows from Theorem 1.2, each iteration

of gradient descent can be performed in time 1
ε d

2 polylog d. Hence, the overall runtime to compute
a (1+ε)-approximate solution to the linear regression problem on input matrix A and measurement
vector b is

O
(
nnz(A)

α
+ dω

)

+
1

ε
d2+α polylog(d) +

1

ε
d2 polylog(d) log

1

ε
.

28

Acknowledgments. We thank Jelani Nelson for helpful discussions over the course of the project.
David P. Woodruff and Samson Zhou were supported by a Simons Investigator Award and by the
National Science Foundation under Grant No. CCF-1815840. Sandeep Silwal is supported by an
NSF Graduate Research Fellowship under Grant No. 1745302, and NSF TRIPODS program (award
DMS-2022448), NSF award CCF-2006798, and Simons Investigator Award (via Piotr Indyk).

References

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Proceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms, SODA, pages 522–539, 2021. 1

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In Proceedings of the Forty-Seventh An-
nual ACM on Symposium on Theory of Computing, STOC, pages 499–508. ACM,
2015. 27

[CCKW22] Nadiia Chepurko, Kenneth L. Clarkson, Praneeth Kacham, and David P. Woodruff.
Near-optimal algorithms for linear algebra in the current matrix multiplication time.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
3043–3068, 2022. 2, 3, 4, 7, 21, 27

[CKL13] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. J. ACM, 60(5):31:1–31:25, 2013. 4, 23

[CN22] Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for random-
ized hadamard transforms with applications. In STOC: 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 659–671, 2022. 3, 5, 11

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 278–287, 2016. 10

[CW82] Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix
multiplication. SIAM J. Comput., 11(3):472–492, 1982. 2

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC,
pages 81–90, 2013. 10

[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms
for matrices I: approximating matrix multiplication. SIAM J. Comput., 36(1):132–157,
2006. 23

[DL22] Jules Depersin and Guillaume Lecué. Robust sub-Gaussian estimation of a mean
vector in nearly linear time. Ann. Statist., 50(1):511–536, 2022. 17

29

[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling
and relative-error matrix approximation: Column-based methods. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 9th In-
ternational Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX and 10th International Workshop on Randomization and Com-
putation, RANDOM, Proceedings, pages 316–326, 2006. 12

[DMM06b] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Subspace sampling and
relative-error matrix approximation: Column-row-based methods. In Algorithms -
ESA 2006, 14th Annual European Symposium, Proceedings, pages 304–314, 2006. 12

[DMMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res.,
13:3475–3506, 2012. 21

[Fos53] Frederic G Foster. On the stochastic matrices associated with certain queuing pro-
cesses. The Annals of Mathematical Statistics, 24(3):355–360, 1953. 11

[Ind07] Piotr Indyk. Uncertainty principles, extractors, and explicit embeddings of l2 into l1.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages
615–620, 2007. 4

[LM19] Gábor Lugosi and Shahar Mendelson. Sub-Gaussian estimators of the mean of a
random vector. Ann. Statist., 47(2):783–794, 2019. 16

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsifi-
cation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 678–687, 2017. 3

[LS18] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. SIAM J. Comput., 47(6):2315–2336, 2018. 3

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes. 9

[M+89] Colin McDiarmid et al. On the method of bounded differences. Surveys in combina-
torics, 141(1):148–188, 1989. 9

[Mag10] Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative
bernstein bound. CoRR, abs/1008.0587, 2010. 12

[NN13] Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pages 117–126, 2013. 2, 4, 5, 10

[PTZ12] Richard Peng, Kanat Tangwongsan, and Peng Zhang. Faster and simpl semidefinite
programming. In 24th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA, pages 101–108, 2012. 15

30

[Sin16] Yaron Singer. Lecture notes. http://people.seas.harvard.edu/~yaron/AM221-

S16/lecture_notes/AM221_lecture9.pdf, 2016. 12

[Tro08] Joel A Tropp. Norms of random submatrices and sparse approximation. Comptes
Rendus Mathematique, 346(23-24):1271–1274, 2008. 5

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput.
Math., 12(4):389–434, 2012. 10

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge university press, 2018. 9, 19

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends
Theor. Comput. Sci., 10(1-2):1–157, 2014. 3, 4, 12, 21

31

http://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture9.pdf
http://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture9.pdf

	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Preliminaries

	2 Constant-Factor Subspace Embedding
	2.1 Polylogarithmic Subspace Embedding
	2.2 Constant-Factor Subspace Embedding

	3 Subspace Embedding through Leverage Score Sampling
	4 Independent Row Selection
	4.1 Independent Row Selection for a Reduced Matrix
	4.2 Input Matrix Reduction

	5 Linear Regression

