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Abstract

We develop a general deterministic distributed method for locally rounding fractional so-
lutions of graph problems for which the analysis can be broken down into analyzing pairs of
vertices. Roughly speaking, the method can transform fractional/probabilistic label assignments
of the vertices into integral/deterministic label assignments for the vertices, while approximately
preserving a potential function that is a linear combination of functions, each of which depends
on at most two vertices (subject to some conditions usually satisfied in pairwise analyses). The
method unifies and significantly generalizes prior work on deterministic local rounding tech-
niques [Ghaffari, Kuhn FOCS’21; Harris FOCS’19; Fischer, Ghaffari, Kuhn FOCS’17; Fischer
DISC’17] to obtain polylogarithmic-time deterministic distributed solutions for combinatorial
graph problems. Our general rounding result enables us to locally and efficiently derandomize
a range of distributed algorithms for local graph problems, including maximal independent set
(MIS), maximum-weight independent set approximation, and minimum-cost set cover approxi-
mation. As highlights, we in particular obtain the following results.

• We obtain a deterministic O(log2 ∆ · logn)-round algorithm for computing an MIS in the
LOCAL model and an almost as efficient O(log2 ∆·log log∆·log n)-round deterministic MIS
algorithm in the CONGEST model. As a result, the best known deterministic distributed
time complexity of the four most widely studied distributed symmetry breaking problems
(MIS, maximal matching, (∆ + 1)-vertex coloring, and (2∆ − 1)-edge coloring) is now
O(log2 ∆ · logn). Our new MIS algorithm is also the first direct polylogarithmic-time
deterministic distributed MIS algorithm, which is not based on network decomposition.

• We obtain efficient deterministic distributed algorithms for rounding fractional solutions
for maximum (weighted) independent set and minimum (weighted) set cover. We in partic-
ular give a deterministic O(log2 ∆+log∗ n)-round algorithms for computing an independent
set of size (1/2− ε) · n/ degavg and we give deterministic O(log2(∆W ) + log∗ n)-round al-
gorithms for computing a (1 − ε)/∆-approximation of maximum weight independent set,
and for computing a (1−ε)/r-approximation of maximum weight matching in hypergraphs
of rank r. For minimum set cover instances with sets of size at most s and where each
element is contained in at most t sets, we show that an O(log s)-approximation can be
computed in time O(log s · log2 t+ log∗ n).

http://arxiv.org/abs/2209.11651v1
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1 Introduction & Related Work

In this paper, we present a local rounding method that can be used to transform probabilis-
tic/fractional assignments in a certain class of randomized distributed graph algorithms into de-
terministic/integral assignments. Roughly speaking, the method applies to randomized distributed
algorithms that can be analyzed assuming pairwise independence. This allows us to transform such
randomized algorithms into deterministic distributed algorithms. This unified approach leads to
novel and/or improved algorithms for a number of the central problems of the area—e.g., maximal
independent set, (∆+1)-coloring, maximal (hypergraph) matching, and set cover. Several of these
problems had remained open for over three decades until a recent breakthrough on network de-
composition [RG20]. Our approach is completely independent and yields faster algorithms (besides
providing a new and more systematic construction for the network decomposition problem itself).

1.1 Background and State of the Art

Model. We work with the standard synchronous message-passing model of distributed comput-
ing [Pel00]. The network is abstracted as an undirected graph G = (V,E), with n := |V |. Initially,
each node knows only its own unique O(log n)-bit identifier, and nothing else about the graph G,
except for potentially some upper bounds on global parameters such as n, the number of nodes, and
∆, the maximum degree. Per round, each node can send one B-bit message to each of its neighbors.
We usually assume B = O(log n) and refer to this model variant as CONGEST. The variant that
allows unbounded message sizes is referred to as LOCAL. At the end of the computation, each node
should know its own part of the output, e.g., whether it is in the computed independent set.

Linial’s MIS question. Four of the best studied problems in distributed graph algorithms are
maximal independent set (MIS), maximal matching, (∆ + 1)-vertex coloring, and (2∆ − 1)-edge
coloring. MIS is the hardest of these four, as all others can be reduced to it [Lub86,Lin87]. Luby’s
classic algorithm from 1986 provides an O(log n)-round randomized algorithm for MIS, and thus for
all the others [Lub86] (see also [ABI86]). It however remained open for over three decades whether
there also is a deterministic poly log n-time algorithm for MIS, and this came to be known as Linial’s
open question, first raised in [Lin87,Lin92]. See also the book of Barenboim and Elkin [BE13] for
further discussions on the significance of this and other related problems.

The first solution, via network decomposition. The first solution to the MIS question
was provided recently by Rozhoň and Ghaffari [RG20]. Their algorithm actually solves the net-
work decomposition problem in poly log n time, which roughly speaking partitions the vertices into
poly log n colors, such that the components in the subgraph induced by each color have poly log n
diameter. This directly leads to a poly log n-time deterministic algorithm for MIS in the LOCAL

model. In the CONGEST model, a more complex poly log n-time MIS algorithm follows from com-
bining network decomposition with a deterministic CONGEST algorithm of [CHPS20] for low-
diameter networks. The combination works by leveraging the pairwise analysis of the randomized
MIS algorithms (Luby [Lub93] or Ghaffari [Gha16]) and using the low-diameter components of the
decomposition to fix the bits of the randomized algorithm one by one. Currently, the fastest known
deterministic MIS algorithm both in LOCAL and CONGEST runs in O(log5 n) rounds, and it is
based on an improved variant of the Rozhoň-Ghaffari decomposition presented in [GGR21].

As a side note, we remark that the decomposition result, in combination with [GKM17,GHK18],
yields a LOCAL-model derandomization with poly log n round slow down, for poly log n-time check-
able problems. However, there is no such general derandomization for the CONGEST model.

1



A different line of attack, via rounding. A more direct line of attack toward developing
poly log n-time deterministic algorithms for the four problems mentioned above is via local round-
ing. Roughly speaking, this approach starts with a suitable fractional solution to a certain problem
and gradually and deterministically rounds this fractional solution to obtain an integral solution
with similar quality. One can trace this local rounding approach back to the work of Hanckowiak,
Karonski, and Panconesi [HKP01] who gave the first poly log n-time deterministic distributed al-
gorithm for the maximal matching problem; though they never talked about rounding. The local
rounding nature of the approach was made explicit and used to improve the complexity for maximal
matching in the work of Fischer [Fis20]. Fischer observed that for the matching problem, it is easy
to obtain an O(1)-approximation of maximum fractional matching in a deterministic way, and that
the real challenge is in rounding this fractional matching into an integral one without much loss in
the size. Fischer developed a specific O(log2∆)-time rounding procedure for the matching problem
(in bipartite graphs). Repeating this O(log n) times (in a suitable bipartite version of the graph)
adds in each repetition a matching within a constant factor of the remaining maximum, hence
reducing the maximum remaining matching by a constant factor, and therefore yields a maximal
matching in O(log2 ∆ · log n) time. That remains the state of the art for the maximal matching
problem. It however should be noted that Fischer’s rounding was very specific to matching in
graphs, and it did not generalize to the other three problems. In fact, the method did not extend
even to matching in hypergraphs of rank three, i.e., where each edge has three endpoints.

A follow-up work by Fischer, Ghaffari, and Kuhn [FGK17] developed a different rounding
method for matching that extended to low-rank hypergraphs. Along with a reduction that they
gave from (2∆ − 1)-edge coloring in graphs to maximal matching in hypergraphs of rank 3, this
led to a poly log n-time deterministic algorithm for (2∆ − 1)-edge coloring. This result put the
second of the four problems in the poly log n-time deterministic regime. The exact complexity was
notably higher. Harris [Har19] improved the complexity of this hypergraph matching rounding.
Among other speed-ups, that led the complexity of deterministic (2∆ − 1)-edge coloring to reach
Õ(log2∆ · log n), which nearly matches that of maximal matching.

The above lines of work on local rounding appeared limited to rounding for matching in graphs
or hypergraphs. Then (and shortly after the network decomposition result [RG20]), Ghaffari and
Kuhn [GK21] developed an efficient rounding method for ∆ + 1 coloring. Roughly speaking, their
approach starts with a simple fractional assignment of the colors (where each node takes an equal
portion of each of the colors in its palette) and gradually rounds this assignment until reaching
(a potentially improper) integral color assignments. This is done in a manner that, the rounding
approximately maintains a certain potential function, such that in the end, once given the final
integral color assignments, we can efficiently turn it into a proper coloring of a constant fraction
of the remaining node. Interestingly enough, this rounding also led to the O(log2 ∆ · log n) time
complexity for vertex coloring. This put the third of the four problems in the poly log∆ · log n-
time, and concretely O(log2 ∆ · log n)-time, deterministic regime. We note that, at that time,
poly log n-round complexity coloring was already known from the decomposition result [RG20], but
the rounding-based method [GK21] gave a more direct and faster coloring algorithm.

Despite this exciting progress on local rounding, the known methods appeared ad hoc, specifi-
cally tailored to matching or coloring problems. For instance, they did not extend to the hardest
of the four classic problems, the maximal independent set problem.

1.2 Our Contributions

In this paper, we vastly generalize the local rounding method, in such a way that, roughly speak-
ing, we can now derandomize randomized local algorithms that can be analyzed with pairwise
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independence. This rounding works in a local and efficient manner, and without relying on net-
work decompositions. We show that this generalized local rounding method yields new and/or
improved deterministic distributed algorithms for a range of graph problems of interest. As a
notable example, we obtain an O(log2 ∆ · log n) round LOCAL model algorithm for MIS, and a
O(log2∆ · log log∆ · log n)-round CONGEST model variant.

Theorem 1.1. There is a deterministic distributed algorithm that computes an MIS in time
O(log2∆ · log n) in the LOCAL model. A variant of this algorithm computes an MIS determin-
istically in O(log2∆ · log log∆ · log n) rounds of the CONGEST model.

Hence, now all the four classic problems are in the O(log2 ∆ · log n) deterministic round com-
plexity regime, and in a unified way. This result provides a second solution to Linial’s famous open
question [Lin87], which had remained open for over three decades. The new solution is completely
independent of the first decomposition-based solution and is also more efficient. In contrast, the
fastest previously known MIS algorithm, in either LOCAL or CONGEST models, required O(log5 n)
rounds [GGR21] and was based on network decomposition.

We also note for maximal independent set and maximal matching, a celebrated recent result
of Balliu et al. [BBH+19] gives a lower bound of Ω(min{∆, log n/ log log n}) for deterministic algo-
rithms in the LOCAL model. This almost justifies the need for one log n factor in the upper bound.
In particular, in the regime where ∆ = poly(log n), the lower bound becomes Ω(log n/ log log n)
and our LOCAL-model upper bound is O(log n · log2 log n), which means that the upper and lower
bounds are matching up to exponentially lower order factors.

Other applications, set cover. As another prominent application, we obtain an improved
approximation algorithm for the minimum set cover problem, with an approximation factor roughly
matching that of the best-known centralized algorithm (below which the approximation problem
becomes NP-hard):

Theorem 1.2. There is a deterministic distributed algorithm that computes an O(log s) approxi-
mation of the minimum set cover problem in Õ(log s log2 t+log∗ n) rounds of the CONGEST model,
where s denotes the maximum set cardinality, and t denotes the maximum number of sets that
contain a given element.

Notably, the complexity of this algorithm depends logarithmically only on the local parameters
of the problem (degrees in a bipartite formulation) and has only an additive O(log∗ n) dependency
on the network size, which is known to be necessary [LW08]. In contrast, the best previously known
algorithm has a polylogarithmic dependency on the global network size n [DKM19,GGR21]. This
is an important qualitative difference and has implications for other computational settings1.

We also note that Deuer, Kuhn, and Maus [DKM19] previously used a deterministic round-
ing method to obtain an O(log∆) approximation for the minimum dominating set problem in
O(∆poly(log∆)+poly(log∆) log∗ n) rounds of the CONGEST model, in any graph with maximum

1In particular, in the local computations algorithms (LCA) model of sublinear-time centralized computa-
tion [RTVX11, ARVX12], our result provides a deterministic set cover approximation with query complexity

dÕ(log3 d) poly(log n), where d = st. This follows from a direct stimulation via gathering the relevant local neigh-
borhood [PR07] (with an appropriate prior coloring [CFG+19]). This LCA can answer whether each asked set is

in the selected cover or not, using only dÕ(log3 d) poly(log n) query accesses to the adjacency lists of the graph. In
contrast, a simulation of the decomposition-based approach would imply query complexity dpoly(log n), which is even
super-polynomial in n and thus completely useless/uninteresting. The best known LCA for set cover has query
complexity dO(logd log log d) poly(logn) [GMRV20], but that heavily relies on randomness. No deterministic LCA with
query complexity quasipoly(d) · poly(log n) was known previously.
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degree at most ∆. The minimum dominating set problem is equivalent to the set cover problem
in the setting where s = t = ∆, and one can provide a simple approximation preserving reduction
in both directions. Using the straightforward direction of this connection (reducing dominating
set to set cover by viewing each node as a set that includes all of its neighbors) and invoking
our minimum set cover approximation algorithm, we obtain an O(log∆) approximation for mini-
mum dominating set in Õ(log3∆+ log∗ n) rounds of the CONGEST model. This improves on the
O(∆poly(log∆) + poly(log∆) log∗ n) complexity of [DKM19] nearly exponentially.

Other applications, network decomposition. In fact, since the network decomposition prob-
lem has been known to be reducible to the set cover problem [GHK18], our method yields a novel
poly(log n)-round algorithm for the network decomposition problem. One may view this as a more
systematic solution for network decomposition, in contrast to the specific combinatorial approach
of [RG20]. This new construction reduces the decomposition problem to its pairwise analyzable
core (captured in set cover) and then derandomizes the corresponding natural randomized algo-
rithm via local rounding. This is more systematic in the sense that it is similar to other problems
that are derandomized by going through pairwise analysis.

Other applications, maximum independent set and hypergraph matching. As another
applications, we get efficient algorithms for computing large cardinality or weight independent sets.
In the following, the neighborhood independence β of a graph G = (V,E) is the size of the largest
independent set of any subgraph G[N(v)] induced by the set of neighbors N(v) of some node v ∈ V .
Further, for a node weight function w : V → N and a node set S ⊆ V , w(S) =

∑
v∈S w(v).

Theorem 1.3. Let G = (V,E) be a node-weighted n-graph of maximum degree ∆, neighborhood
independence β, node weights w : V → N, and maximum weight W . Further, let OPT be the weight
of a maximum weight independent set and assume that G is equipped with an proper ξ-coloring.
Then, for every ε > 0, there are deterministic CONGEST algorithms to compute independent sets

of weight
1− ε

β
·OPT in O

(
log2(∆W ) · log(1/ε) + log∗ ξ

)
rounds, (1)

of weight (1− ε) · w(V )

∆ + 1
in O

(
log2 ∆ · log(1/ε) + log∗ ξ

)
rounds, and (2)

of weight

(
1

2
− ε

)
·
∑

v∈V

(w(v))2

w(v) +w(N(v))
in O

(
log2(∆/ε)

ε
+ log∗ ξ

)
rounds. (3)

Theorem 1.3 has several implications:

• Since β ≤ ∆, result (1) implies a (1−ε)/∆-approximation in the same round complexity. For
small ∆ (and W ), this is a significant improvement over an O(TMIS/ε)-round algorithm for
this problem in [KKSS20] (TMIS denotes the time for computing an MIS).

• Line graphs of hypergraphs of rank r have neighborhood independence r. Thus, result (1)
implies the same result for computing a (1−ε)/r-approximation for maximum weight matching
in hypergraphs of rank r. For small W , this is an improvement over an algorithm in [Har19].

• Result (1) also implies an O(log2 ∆+log∗ ξ)-round algorithm for computing a constant maxi-
mum matching approximation in graphs. Repeating O(log n) times yields an O(log2 ∆·log n)-
round maximal matching algorithm and in Section 4.1 (Theorem 4.9), we show that this also
works in the CONGEST model. This gives an alternative to the deterministic O(log2 ∆·log n)-
round CONGEST algorithm of Fischer [Fis20] and it implies that our generic rounding frame-
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work implies the current best deterministic LOCAL and CONGEST algorithms for the four
classic distributed symmetry breaking problems.

• In [KKSS20], Kawarabayashi, Khoury, Schild, and Schwartzman showed that with random-
ization, an independent set of size Ω(n/∆) can be computed exponentially faster than an MIS
and they raised the question whether the same is also true for deterministic algorithms. Result
(2) answers this question in the affirmative, because for deterministically computing an MIS,

there is an Ω
(
min

{
∆, logn

log logn

} )
-round lower bound even in the LOCAL model [BBH+19].

• By a simple application of the Cauchy-Schwarz inequality, the independent set weight in (3)

can be lower bounded by
(
1
2 − ε

)
· (w(V ))2

w(V )+
∑

v∈V w(N(v)) (for details, see [KOHH05]). Without

the factor 1
2 − ε, the two bounds are natural weighted generalizations of the well-known lower

bound
∑

v∈V
1

deg(v)+1 ≥ n
degavg +1 on the size of a maximum cardinality independent set. The

bound is sometimes also known as the Caro-Wei-Turán bound [Tur41,Wei81,Gri83].

1.3 Overview of Our Method

In the following, we give an extended high-level description of our general rounding method and
we also discuss the main novel ideas that are necessary to obtain the results given in Section 1.2.

1.3.1 The Rounding of Ghaffari and Kuhn [GK21] for (∆ + 1)-Coloring

Our generic rounding algorithm is a generalization of a recent deterministic, distributed algorithm
by Ghaffari and Kuhn [GK21] for solving the (∆ + 1)-coloring problem. We therefore first review
(a slightly adapted version of) the algorithm of [GK21]. At the core of the algorithm of [GK21] is
a method to color a constant fraction of the nodes of the graph in time O(log2∆). Repeating this
O(log n) times then colors the whole graph in time O(log2∆ · log n).2 The algorithm for coloring a
constant fraction of the nodes is based on derandomizing the following trivial randomized algorithm
for the same problem: Every node v ∈ V chooses one of the ∆+ 1 colors uniformly at random and
v keeps the color if no higher-ID neighbor chooses the same color. When doing this, in expectation,
a constant fraction of the nodes can keep their color. One way to see this is by the following
analysis. For every edge {u, v} of the graph, the probability that both nodes u and v choose the
same color is 1/(∆+1). Hence, the total expected number of such monochromatic edges is at most
|E|/(∆ + 1) < n/2. For each such edge, we uncolor the lower ID node. The expected number of
nodes that do not keep their color is thus less than n/2.

Rounding a Fractional Solution. In [GK21], the above step is derandomized by considering the
assignment of a uniformly random color to each node as a fractional assignment of colors to nodes,
and picking a single color per node is then considered as rounding this fractional color assignment
to an integral color assignment. To do this, the algorithm [GK21] assigns a cost to each edge, which
is equal to the probability of both endpoints picking the same color when independently choosing
the color at random from the current fractional color assignment. We can then define the total cost
of a given fractional color assignment as the sum over the individual edge costs. Note that by the
linearity of expectation, the total cost is equal to the expected number of monochromatic edges if
each node picks its color randomly according to its current fractional distribution over colors. As
discussed above for the initial fractional assignment (i.e., if each node has a uniform distribution

2Formally, this requires the method for coloring a constant fraction of the nodes to work for the more general
(degree + 1)-list coloring problem. We however ignore this in this high-level overview.
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over all ∆+ 1 colors), the total cost is at most n/2. The goal now is to find an integral assignment
of colors for which the total cost (i.e., the total number of monochromatic edges) is not much larger
(say, at most 3n/4) such that still, a constant fraction of the nodes can keep their colors. First note
that if we sequentially iterate over the nodes, there is a simple way to achieve this. When rounding
the fractional assignment of a node v, v just picks the color that minimizes the sum of the costs
of its edges (i.e., the color that minimizes the total number of monochromatic edges of v). In this
way, we can obtain an integral color assignment for which the total cost is at most the total cost of
the initial fractional color assignment and thus at most n/2. Because nodes that are non-adjacent
do not share edges, they can do this rounding in parallel. If we are given a proper vertex coloring
with C colors, the rounding can therefore be done in O(C) rounds in the distributed setting.

Fast Rounding of a Fractional Solution. While the described rounding algorithm can per-
fectly preserve the cost of a given fractional color assignment, having to iterate through the colors
of a proper vertex coloring of the graph will be extremely slow. In this way, we can at best hope
for an algorithm with a round complexity that is linear in ∆, which is exponentially slower than
what we aim to achieve. In order to obtain a faster rounding algorithm, [GK21] applies two main
ideas. First, instead of iterating over the colors of a proper vertex coloring, the algorithm first
computes a defective C-coloring and then iterates over the C colors of this coloring. In a defec-
tive coloring, each node is allowed to have some neighbors of the same color. By extending ideas
of [Kuh09, BEG18, KS18], it is shown in [GK21] that on a graph G = (V,E) with edge weights
w(e) ≥ 0, for a given parameter δ > 0, one can compute a vertex coloring with only O(1/δ) colors
such that the total weight of the monochromatic edges is at most a δ-fraction of the total weight
of all edges. We call such a coloring a weighted δ-relative average defective coloring. If one starts
with an initial proper O(∆2)-coloring of G (which can be computed in time O(log∗ n) by using
an algorithm of [Lin92]), a weighted δ-relative average defective O(1/δ)-coloring can be computed
deterministically in time O(1/δ+log∗ ∆). The idea now is to compute a weighted δ-relative average
defective O(1/δ)-coloring where the edge weights are equal to the edge costs before rounding and
to run the above simple distributed rounding algorithm on the graph induced by the bichromatic
edges (w.r.t. the defective coloring). For this, we have to iterate over O(1/δ) colors, which even
when choosing δ = 1/poly log∆ is much faster than iterating over Ω(∆) colors. The problem with
the approach is that the cost of monochromatic edges (w.r.t. the defective coloring) can now grow
arbitrarily. Those edges are not considered during rounding and their cost can increase from ini-
tially 1/(∆+ 1) to 1 if both nodes of an edge choose the same color. In order to avoid such drastic
cost increases of the monochromatic edges, we have to do the rounding in several small steps. If in
each iteration, each node at most doubles the fractional value for each color, the probability of an
edge becoming monochromatic can increase by at most a factor 4, even if the nodes are rounded
in a worst-case way. As a consequence, in such a rounding step, the total cost over all edges can
grow by at most a factor of 1 + O(δ). In the algorithm of [GK21], the step-wise rounding is done
in such a way that with every iteration, the minimal non-zero fractional color value is at least
doubled. One can then get from fractional values 1/O(∆) to integral values in O(log∆) steps. By
choosing δ = c/ log ∆ for a sufficiently small constant c > 0, the total cost can grow by at most
a constant factor that can be made arbitrarily close to 1. Since in each rounding step, we have
to compute a weighted δ-relative average defective coloring with O(1/δ) colors and iterate over
O(1/δ) = O(log∆) colors of this defective coloring, each rounding step requires O(log∆) rounds.
We can therefore obtain a coloring with at most 3n/4 monochromatic edges in O(log2 ∆) rounds
and we can thus properly color at least n/4 nodes in O(log2∆) rounds.

6



1.3.2 Extending the Algorithm to Obtain Large Independent Sets

In the present paper, we generalize the rounding method of [GK21] in a significant way to make
it applicable to a much wider family of problems. Our simplest application of the more general
rounding algorithm is a deterministic algorithm for obtaining large (or heavy in the case of node-
weighted graphs) independent sets. As this algorithm already allows to highlight some of the key
challenges and ideas, we discuss it here first.

For this high-level discussion, assume that we want to compute an independent set of size
Ω(n/∆). There is a simple randomized algorithm to achieve this (in expectation). First, each node
marks independently itself with probability 1/∆ and afterward, for every edge {u, v}, if both u
and v are marked, then we unmark the lower-ID node. The set of nodes that are still marked then
clearly form an independent set of G. The expected number of marked nodes is n/∆ and for every
edge, both nodes are marked with probability 1/∆2. The expected number of edges for which both
nodes are marked is therefore at most |E|/∆2 ≤ n/(2∆). Therefore, in expectation, we obtain an
independent set of size at least n/(2∆). In order to obtain a deterministic variant of this algorithm,
we can try to adapt the idea of [GK21]. A fractional independent set is an assignment of fractional
values xv ∈ [0, 1] to each node and we can define a potential function Φ(~x) that measures the
expected size of the resulting independent set when running the randomized algorithm described
above, i.e., if each node v gets marked independently with probability xv and if for every edge
{u, v}, if both u and v are marked, the lower-ID node unmarks itself. When doing this, we obtain

Φ(~x) =
∑

v∈V
xv −

∑

{u,v}∈E
xu · xv =

∑

{u,v}∈E

(
xu

deg(u)
+

xv
deg(v)

− xu · xv
︸ ︷︷ ︸

=:φ{u,v}(~x)

)
.

That is, the expected size of the resulting independent set can be expressed by a potential function
Φ(~x) that can be written as a sum over individual edge potentials φe(~x). By iterating over the
colors of a proper coloring of the graph G, we can therefore again round the fractional value of
each node such that the independent set in the resulting rounded solution is at least as large as
the expected independent set size initially. However, unlike in the case of the coloring algorithm
of [GK21], when speeding up defective coloring and rounding gradually, a direct generalization of
the algorithm of [GK21] does not work. We next discuss the reason and explain what we do instead.

Fast Rounding of Large Fractional Independent Sets. Note that the potential Φ(~x) can
be split into a positive utility u(~x) and a negative cost c(~x). We have Φ(~x) = u(~x) − c(~x) =∑

e∈E φe(~x) =
∑

e∈E
(
ue(~x)− ce(~x)

)
, where

u(~x) =
∑

v∈V
xv, c(~x) =

∑

e∈E
xuxv, and for e = {u, v} ∈ E : ue(~x) =

xu
deg(u)

+
xv

deg(v)
, ce(~x) = xuxv.

Assume again that we round gradually such that in a single rounding step each fractional xv value
is at most doubled and that we use a defective coloring to obtain a fast implementation of such a
rounding step. We then again have to assume that the rounding on monochromatic edges happens
in a worst-case way. However, while gradual rounding guarantees that ce(~x) can increase by at most
a factor 4, we cannot lower bound ue(~x) and even if we could, the difference φe(~x) = ue(~x)− ce(~x)
can change by an arbitrary factor. Note that before the rounding step we could even have φe(~x) = 0
so that the multiplicative change in the edge potential even becomes unbounded.

It is however possible to efficiently implement a gradual rounding step if for the fractional
assignment ~x before the rounding, u(~x) is by a constant factor larger than c(~x), i.e., if for example
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u(~x) ≥ 2c(~x). In this case, one can compute a weighted δ-relative defective coloring w.r.t. edge
weights ue(~x) + ce(~x). One can then show that even doing a worst-case gradual rounding step
for all the monochromatic edges (w.r.t. the defective coloring), the potential decreases by at most
O
(
δ · (u(~x) + c(~x))

)
= O

(
δ · Φ(~x)

)
. For our initial fractional independent set, the condition

u(~x) ≥ 2c(~x) is satisfied and we can therefore efficiently carry out the first rounding step. However,
in a single rounding step, we can only guarantee that the difference u(~x) − c(~x) is approximately
preserved and we cannot guarantee that the terms u(~x) and c(~x) are approximately preserved
individually. We therefore cannot guarantee that the condition u(~x) ≥ 2c(~x) is also approximately
preserved. To cope with this challenge, we introduce one additional idea, which we describe next.

Dynamically Adapting the Potential Function. Instead of using a single potential function
Φ(~x) for the whole rounding process, we use a sequence Φ0(~x),Φ1(~x), . . . ,ΦT (~x) of potential func-
tions for the T = O(log∆) gradual rounding steps. Assume that initially, we have u(~x) ≥ 2c(~x)
and that we are satisfied if we can maintain the value of u(~x)− c(~x) within some constant factor.
We can then define

Φi(~x) := u(~x)− ηi · c(~x), where ηi =
1

2

(
3− i

T

)
. (4)

That is, we have Φ0(~x) = u(~x) − 3
2 · c(~x), ΦT (~x) = u(~x) − c(~x), and Φi+1(~x) − Φi(~x) =

3
2T · c(~x).

In rounding step i, we use the potential function Φi for the rounding. By slightly increasing the
gap between the positive and the negative term in the potential function for each rounding step,
we can make sure that u(~x) is always sufficiently larger than c(~x) in order to efficiently perform
the rounding step and to make sure that after the rounding step i, Φi is within a (1−O(δ))-factor
of Φi−1. That is, in the end, we obtain an integral assignment ~x′ for which u(~x′)− c(~x′) is within
a constant factor of u(~x) − 3

2 · c(~x) for the original fractional assignment ~x. Overall, we obtain
an algorithm to obtain an independent set of size Ω(n/∆) in O(log2 ∆+ log∗ n) rounds, where the
O(log∗ n)-term comes from computing a proper O(∆2)-coloring of G at the very beginning of the
algorithm. The technical details of the rounding procedure appear in Section 2.2.

The described rounding method for independent sets works for all fractional independent set as-
signments ~x with u(~x) ≥ 2c(~x). In this way, we can directly obtain an independent of size n/degavg,
where degavg denotes the average degree, and analogously in weighted graphs, we can obtain an
independent set of total weight asymptotically at least a weighted average degree fractional of the
total weight. For the corresponding definitions and details, we refer to Section 4.2. In the same
way, in graphs of neighborhood independence at most β, we can obtain a 1/O(β)-approximation
to the maximum weight independent set problem in time O(log2(∆W ) + log∗ n) (where W is the
ratio between largest and smallest weight). By adapting an idea of [KKSS20] and repeating the
1/O(β)-approximation algorithm in an appropriate way, at the cost of an additional log(1/ε) fac-
tor in the round complexity, we can even obtain a (1 − ε)/β-approximation for maximum weight
independent set.

1.3.3 Our Generic Rounding Algorithm

In Section 2, we describe a general rounding algorithm that is based on the ideas discussed for
the maximum independent set problem above. We consider local graph problems where each node
has to choose one label from a finite alphabet Σ of labels. In the (∆ + 1)-coloring problem, the
set of labels is Σ = {1, . . . ,∆+ 1} or more generally the colors from some given color space if we
consider the list coloring variant of the problem. In the independent set problem discussed above,
there are only two possible labels, either a node decides to be in the independent set or it decides
not to be in the independent set. In fact, in all problems for which is provide a new algorithm in
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this paper, we only have two labels. However, to cover the larger range of possible problems, the
generic algorithm in Section 2 is written for an arbitrary set Σ of labels.

As in the maximum independent set example above, the quality of an assignment of labels to
the nodes is measured by utility function u(·) and a cost function c(·). Both functions can be
expressed as the sum of pairwise functions and the set of node pairs that contribute to the overall
utility and/or cost naturally define a graph H = (VH , EH) on the set of nodes. That is, utility and
cost are defined as the sum of individual edge utilities and costs over the edges in EH . Sometimes
this graph H is equal to the communication graph (such as in the discussed vertex coloring and
maximum independent set examples) and sometimes H is a graph that can be simulated efficiently
by a distributed algorithm on the network graph (such as in the examples of MIS and set cover
discussed below). In the latter case, the graph H might also contain multiple edges between the
same pair of nodes and those parallel edges might be simulated in different ways on the underlying
communication graph. In our formal set-up, we therefore think of H as a multigraph. A fractional
label assignment λ assigns a fractional value λα(v) ∈ [0, 1] for every label α ∈ Σ to every node
v ∈ V such that for all v ∈ V ,

∑
α∈Σ λα(v) = 1, i.e., the fractional assignment defines a probability

distribution over the labels to each node. The utility and cost of a fractional assignment are given
as the expected utility and cost values when each node v picks its label independently according to
the distribution given by its fractional values λα(v).

Given some fractional label assignment λ, the goal of the rounding algorithm is to obtain an
integral label assignment λ′ for which u(λ′)−c(λ′) ≥ (1−ε) ·

(
u(λ)−c(λ

)
for some given parameter

ε > 0. If initially u(λ) − c(λ) ≥ µu(λ) for some µ ∈ (0, 1], our rounding algorithm achieves this
in time linear proportional 1/(εµ). Our algorithm is based on gradually rounding the solution
as described above for rounding fractional independent set solutions. More specifically, for some
integer k ≥ 0, we call a fractional label assignment λ 2−k-integral if all fractional values λα(v)
are integer multiples of 2−k. In a single rounding step, we turn a 2−k-integral solution into a
2−(k−1)-integral one. In the general case, the rounding is implemented in exactly the same way
as sketched above for the case of independent sets. in particular, we have to use a dynamically
changing potential function analogous to (4) in order to keep utility and cost sufficiently separated
to make each rounding step efficient. In each step, we have to use a weighted average defective
coloring with O(k/(εµ)) colors so that an implementation of a single rounding step would take
O(k/(εµ)) rounds when running it on H and with potentially large messages. Below, we discuss
some of the ideas that are necessary to implement the rounding algorithm with small messages.
The precise formal setup, the detailed generic rounding algorithm, its analysis, and implementation
in the distributed setting appear in Section 2.

1.3.4 Maximal Independent Set

The standard randomized distributed algorithm to compute an MIS of a graph G = (V,E) is
an algorithm that is usually referred to as Luby’s algorithm [ABI86, Lub86]. One version of this
algorithm consists of iteratively applying the following basic step. Every node v ∈ V marks itself
with probability 1/(2 deg(v)). Each marked node u joins the independent set unless u has a higher
priority marked neighbor v. A neighbor v has higher priority if either deg(v) > deg(u) or if
deg(v) = deg(u) and if v has a larger ID than u. After that, the new independent set nodes
and their neighbors are removed from the graph and the step is again applied on the remaining
graph. The standard analysis shows that, in expectation, a constant fraction of the edges of the
graph are removed in each step. This is shown by defining a set of good nodes, showing that a
constant fraction of all edges are incident to at least one good node, and showing that good nodes
are removed with constant probability. In Section 3, we show that this algorithm and analysis can
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be adapted to the setting to which we can apply our generic rounding method. This allows to
deterministically find an independent set that removes a constant fraction of the good nodes and
thus a constant fraction of all the edges.

To illustrate some of the key ideas, in this overview, we consider a significantly simpler setting.
We assume that G is ∆-regular and we discuss how to find an independent set that removes a
constant fraction of all the nodes in this case. In Section 3, we do a careful per-node analysis to
count the number of edges incident on good nodes that are removed. Here, where things are more
symmetric, we can directly analyze the total number of nodes that are removed.

For the initial fractional solution, we set xv = 1/(2∆) for each node v ∈ V . After rounding to
an integral solution, we proceed as in the independent set algorithm above. For every edge {u, v}
on which both nodes are marked, we unmark the lower-ID node. The set of marked nodes then
forms an independent set. In order for this independent set to remove a constant fraction of the
nodes, we have to build a utility and a cost function that measures the total number of nodes that
get removed. Each node v ∈ V can remove all its ∆ neighbors if v joins the independent set. We
therefore define the overall utility as u(~x) = ∆ ·∑v∈V xv. In order to lower bound the number of
nodes that get removed, we have to (a) deduct the number of neighbors of nodes that get unmarked
because they have a higher-ID marked neighbor and (b) make sure that we do not double count the
removal of nodes. For (a), we can proceed in the same way as when computing large independent
sets. For each edge {u, v} for which both nodes are marked, the lower-ID node gets unmarked and
we have to subtract ∆ from the number of removed nodes. Therefore, the cost function contains a
term of the form ∆ ·∑{u,v}∈E xuxv. For (b), note that the removal of a node v is counted κ times
if κ neighbors of v join the independent set. Hence, the removal of node v is counted at most κ
times if κ neighbors of v are initially marked. Further, the number of marked neighbors of v minus
1 (i.e., the number of times v’s removal is overcounted) can clearly be upper bounded by the total
number of node pairs among the neighbors of v such that both nodes in the pair are marked. The
cost function therefore also contains a second term that upper bounds the number of overcounted
node removals as

∑
u∈V

∑
{v,w}∈(N(u)

2 ) xvxw, where
(
N(u)
2

)
denotes the set of 2-element subsets of

N(u). We can therefore lower bound the expected number of removed nodes as

u(~x)− c(~x) = ∆ ·
∑

u∈V
xu − ∆ ·

∑

{u,v}∈E
xu · xv −

∑

u∈V

∑

{v,w}∈(N(u)
2 )

xv · xw.

Note that the utility and cost functions can be expressed as sums over individual edge utilities and
costs, if we do this on a graph H for which we add an edge between any two nodes at distance 2
in G. By using our generic rounding algorithm, we can therefore round a fractional solution to an
integral one of approximately the same quality (i.e., an independent set that removes approximately
u(~x)−c(~x) nodes, where ~x is the initial fractional assignment). For the initial fractional assignment
xv = 1/(2∆) for all v ∈ V , the expected number of removed nodes can be lower bounded by

u(~x)− c(~x) =
n

2
−∆ · n∆

2
· 1

4∆2
− n ·

(
∆

2

)
· 1

4∆2
≥ n

4
.

Since we start with a Θ(1/∆)-fractional assignment, the rounding will require O(log∆) steps and
each step requiresO(log∆) rounds (when communicating onH). In timeO(log2 ∆) we can therefore
compute an independent set that removes a constant fraction of the nodes (after computing an initial
O(∆2)-coloring in time O(log∗ n) at the very beginning of the algorithm). We show in Section 3
that, in the same time complexity and with a natural generalization of the same cost function, we
can compute an independent set that removes a constant fraction of the edges in time O(log2 ∆)
in the LOCAL model. Therefore, we obtain an O(log2 ∆ · log n)-round deterministic MIS algorithm
for the LOCAL model.
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1.3.5 Set Cover Approximation

We do not provide a complete overview of our set cover approximation algorithm here, however,
we remark one key difference: In the set cover problem, we have O(log s) iterations of rounding the
fractional solution (where s is the maximum set size). To avoid the need for gathering the parame-
ters of the instance remaining after each iteration (which would require global communication), we
define a potential function (in the format of utility minus cost) for the entirety of the iterations.
This is unlike the maximal independent set solution, where each iteration is handled separately,
with its own potential function. The particular potential function we use and our gradual rounding
ensure that, while per iteration we lose a constant factor in comparison to what the randomized
algorithm would achieve, over the entire span of the O(log s) iterations, we still manage to cover
all but a 1/poly(s) fraction of elements. After that, a simple greedy step of taking a set for each
remaining element finishes the problem at a negligible cost. We refer to Section 5 for the details
and the algorithm.

1.3.6 Implementation With Small Messages

Note that both for computing an MIS and for computing a small set cover, the rounding graph
includes edges that are between nodes at distance of 2 in the communication graph G. While such
edges are trivial to simulate in the LOCAL model with only a factor 2 overhead, the same is not true
for the CONGEST model. That is, when running a CONGEST algorithm on the rounding graph
H on the underlying communication graph G, the necessary message size on G can potentially
grow by a factor linear in ∆, which would not be feasible within poly(log n)-time. Therefore, to
obtain efficient CONGEST algorithms on G that perform rounding algorithms on H, we cannot
work with a black-box interface; we have to instead examine the actual communication needed for
the rounding.

For each virtual edge of H which is between two nodes v and u that are at distance 2 and
have a common neighbor w, we make w the manager of this virtual edge and let w simulate
the computations and communications relevant for this edge. Notice that a node v might not
even know all of its virtual edges. However, the managers of all those virtual edges are direct
neighbors of v. Since v can share its state (e.g., its current color, or its current fractional label
assignment) efficiently with its neighbors, the managers are able to simulate the computations and
communications of the virtual edges. The only possible difficulty is that this information has to be
delivered back to node v, who is the endpoint of those virtual edges and will use this information to
take some action, e.g., set its new color or increase/decrease its fractional value. Fortunately, in all
cases, simply aggregating the information that needs to be sent back to v suffices, so each manager
w can send to its direct neighbor v some aggregate information about all the virtual edges that
w is managing for v. Furthermore, we note that doing this naively would result in an additional
log∆ factor in the round complexity, due to the message sizes in a part of the defective coloring
procedure. However, fortunately, in that case, we can make do with a 2 approximate aggregation
of the values, instead of the exact values, and this reduces the round complexity loss exponentially,
to only a log log∆ factor (which is essentially the only difference between the round complexity in
the LOCAL model and that of the CONGEST model. Please see Section 2.3.2 for details.

1.4 Mathematical Preliminaries and Notation

We use R≥0 := {x ∈ R : x ≥ 0} to denote the non-negative reals. Further, for a positive integer N ,
we use [N ] as a shortcut for [N ] := {1, . . . , N}. For an undirected multigraph G = (V,E) and a
node v ∈ V , we use the following notation. For every edge e, we use V (e) to denote the set of nodes
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of e ∈ E (note that if G has no self-loops, |V (e)| = 2 for all e ∈ E). Further, for every node v ∈ V ,
we use E(v) ⊆ E to denote the set of edges that contain node v. For convenience, for any subsets
F ⊆ E of the edges and any node v ∈ V , we also define the shortcut F (v) := E(v) ∩ F . If G is
equipped with edge (or node) weights w : E → R (or w : V → R), for any set F ⊆ E (or U ⊆ V ),
we use w(F ) (or w(U)) to denote the sum of the weights of all edges in F (or nodes in U). When
dealing with simple graphs, we also use the more standard definition and consider the edges E as
a subset of

(V
2

)
, where

(V
2

)
denotes the set of 2-element subsets of V . For a node v ∈ V , we use

N(v) to denote the set of neighbors of v and we use N+(v) := {v} ∪N(v) to denote the inclusive
neighborhood of v. For a graph G = (V,E), we will typically use n and ∆ to refer to the number
of nodes and the maximum degree of G, respectively. Finally, we say that a graph G = (V,E) has
neighborhood independence β ≥ 1 if for every node v ∈ V , the the largest independent set of the
subgraph induced by N(v) (or equivalently by N+(v)) is of size at most β. Note that in particular,
line graphs of hypergraphs of rank r have neighborhood independence at most r.

As a technical tool to obtain fast deterministic rounding algorithms, we need to compute defec-
tive colorings of the graph. More concretely, we need an edge-weighted version of standard defective
coloring as it was introduced in [KS18]. In order to obtain efficient defective coloring algorithms,
we use a relaxed variant of defective coloring in which the (relative) defect per node only needs to
be small on average.

Definition 1.1 (Weighted Defective and Weighted Average Defective Coloring). Given a weighted
undirected multigraph G = (V,E,w) with non-negative edge weights w(e) ≥ 0 for all e ∈ E, a
parameter ε > 0, and an integer C ≥ 1, a weighted ε-relative defective C-coloring of G is an
assignment ϕ : V → [C] of colors in [C] to the nodes of G such that

∀v ∈ V :
∑

e∈E(v), V (e)={v,u}
1{ϕ(u)=ϕ(v)} · w(e) ≤ ε ·

∑

e∈E(v)

w(e).

The coloring is called a weighted average ε-relative defective C-coloring if the above condition only
holds on average over all nodes:

∑

v∈V

∑

e∈E(v), V (e)={v,u}
1{ϕ(u)=ϕ(v)} · w(e) ≤ ε ·

∑

v∈V

∑

e∈E(v)

w(e).

As shown in [KS18], by slightly adapting an algorithm of [Kuh09], an ε-relative defective
O(1/ε2)-coloring can be computed in time O(log∗ ξ) in the CONGEST model, if an initial proper
vertex coloring with ξ colors is given. Further, by using algorithm of [GK21] (or by adapting an
coloring algorithm of [BEG18]), an ε-relative average defective O(1/ε)-coloring can be computed
in time O(1/ε+log∗ ξ). We also note that the notion of average defect is a relaxation of the notion
of arbdefect that was introduced in [BE10].

2 Generic Distributed Rounding Algorithm

2.1 Setup: Multigraph with Edge Utilities and Costs

Let H = (V,E) be an undirected multigraph with no self-loops and let Σ be a finite set of possible
node labels. A label assignment for H is a function ℓ : V → Σ that assigns a label α = ℓ(v) ∈ Σ
to each node v ∈ V . A fractional label assignment λ : V → [0, 1]|Σ| for H is an assignment of a
distribution (i.e., convex combination) of labels to each node. That is, for each node v ∈ V , we
have

∑
α∈Σ λα(v) = 1, where we use λα(v) ∈ [0, 1] to refer to the component corresponding to label
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α in the vector λ(v). For an integer K ≥ 1, a fractional label assignment λ is called 1/K-integral
if for every v ∈ V and every α ∈ Σ, λα(v) = a/K for some integer a ≥ 0. For a set of nodes S ⊆ V
and a label assignment ℓ (or a fractional label assignment λ), we use ℓ(S) (or λ(S)) to denote the
(fractional) label assignment to the set of nodes in S. Similarly for an edge e ∈ E, we use ℓ(e) and
λ(e) to denote ℓ(V (e)) and λ(V (e)). Further, for each node v, we use L(v) (and Λ(v)) to denote
the set of possible (fractional) label assignments to v and we similarly use L(S), Λ(S), L(e), Λ(e)
for node sets S and edges e.

For a multi-graph H = (V,E), we define a non-negative utility function u : E × L(V ) → R≥0

and a non-negative cost function c : E × L(V ) → R≥0. That is, for a given label assignment
ℓ ∈ L(V ), u and c assign non-negative utility and cost values u(e, ℓ) and c(e, ℓ) to every edge
e ∈ E. Although utility and cost of an edge e are defined as a function of the label assignment to
all nodes in V , they must only depend on the label assignment to the two nodes V (e) of e. That
is, for any two label assignments ℓ, ℓ′ ∈ L(V ) such that ℓ(e) = ℓ′(e) (i.e., ℓ and ℓ′ assign the same
labels to the nodes in V (e)), it must hold that u(e, ℓ) = u(e, ℓ′) and c(e, ℓ) = c(e, ℓ′).

We slightly overload notation and also define u and c for a fractional label assignment λ ∈ Λ(V ).
In this case, utility and cost of e are defined as the expected values of u and c if the labels of the two
nodes V (e) of e are chosen independently at random from the distributions given by the fractional
label assignment. That is, if V (e) = {u, v} and if for each (α, β) ∈ Σ2, ℓα,β(e) is a label assignment
that assigns label α to u and label β to v, then for λ ∈ Λ(V ), we have

u(e, λ) :=
∑

(α,β)∈Σ2

λα(u) ·λβ(v) ·u(e, ℓα,β(e)) and c(e, λ) :=
∑

(α,β)∈Σ2

λα(u) ·λβ(v) ·c(e, ℓα,β(e)). (5)

Finally, for a set of edges F ⊆ E and a label assignment ℓ, we use u(F, ℓ) =
∑

e∈F u(e, ℓ), and
c(F, ℓ) =

∑
e∈F c(e, ℓ). The definitions extend analogously if the label assignment ℓ is replaced with

a fractional label assignment λ. Finally, to denote the total cost and utility of a label assignment
ℓ, we define u(ℓ) := u(E, ℓ) and c(ℓ) := c(E, ℓ). Again, the definition extends analogously if ℓ is
replaced with a fractional label assignment λ.

Polynomially Bounded Instances. In some cases, the message sizes (or the time complexities
in case message sizes are bounded) of our algorithms depend on the range of values that utilities
and costs can have. We say that a given instance (i.e., multigraph with corresponding utility and
cost functions and with a fractional label assignment λ) is polynomially bounded in q for some
parameter q > 1 if there is a value Q ≤ qd for some constant d > 0 such that every non-zero
edge utility or cost is lower bounded by a value 1/Q and upper bounded by Q and such that any
non-zero fractional value λα(v) ≥ 1/Q. Most of our instances will be polynomially bounded in the
maximum degree ∆ of the graph.

2.2 Abstract Basic Rounding Algorithm

In the following, we first describe our local rounding algorithm in an abstract form, which is some-
what independent of the specific communication model. In the concrete distributed implementation
of the algorithm, we will assume that in the multigraph G = (V,E) on which we run the rounding,
the nodes V are active entities that locally perform their part of the rounding algorithm. In some
applications, some edges of G might however not be physical communication links, so the com-
munication between nodes in V depends on the relation between G and the underlying physical
communication network. In Algorithm 1, we first describe the algorithm for a single rounding step
in detail. The full rounding procedure is then given by Algorithm 2.
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Algorithm 1 Basic Rounding Step, Parameters δ ∈ [0, 1], η ≥ 1

Given: multigraph G = (V,E) with utility and cost functions u and c and with a 1/(2K)-integral
fractional label assignment λ (for a given integer K ≥ 1).

1: For each e ∈ E, define weight we := u(e, λ) + ηc(e, λ)
2: Compute a weighted δ/6-relative average defective p-coloring of G w.r.t. the edge weights we

3: Define Eb ⊆ E to be the set of bichromatic edges (w.r.t. the defective coloring)
4: for all colors γ ∈ {1, . . . , p} do
5: for all nodes v ∈ V of color γ (in the defective coloring) in parallel do
6: Σv :=

{
α ∈ Σ : λα(v) =

2i+1
2K for some integer i ≥ 0

}

7: for all labels α ∈ Σv do
8: Define λ(v,α) s.t. λ

(v,α)
α (v) = 1, λ

(v,α)
β (v) = 0 for β 6= α, and λ(v,α) = λ otherwise

9: Define φv,α := u
(
Eb(v), λ

(v,α)
)
− η · c

(
Eb(v), λ

(v,α)
)

10: Define θv,α := u
(
Eb(v), λ

(v,α)
)
+ η · c

(
Eb(v), λ

(v,α)
)
.

11: v obtains estimate φ̂v,α satisfying φv,α ≥ φ̂v,α ≥ φv,α − δ
6 · θv,α

12: Partition Σv into Σ+
v and Σ−

v s.t. |Σ+
v | = |Σ−

v | and s.t. ∀(α, β) ∈ Σ+
v × Σ−

v , φ̂v,α ≥ φ̂v,β

13: For α ∈ Σ+
v , set λα(v) := λα(v) +

1
2K and for α ∈ Σ−

v , set λα(v) := λα(v)− 1
2K

For line 12 of the algorithm, note that the set Σv must have an even size. Therefore, it can be split
into Σ+

v and Σ−
v such that |Σ+

v | = |Σ−
v |.

Lemma 2.1. Let G = (V,E) be a multigraph, which is equipped with utility and cost functions
u and c and with a 1/(2K)-integral fractional label assignment λ for a given integer K ≥ 1. Let
δ ∈ [0, 1] and η ≥ 1 be two parameters. Assume that Algorithm 1 is run on G with the given
parameters and let λ′ be the fractional label assignment after running the algorithm. Then, λ′ is a
1/K-integral fractional label assignment and

u(λ′)− ηc(λ′) ≥ u(λ)− ηc(λ) − δ ·
(
u(λ) + ηc(λ)

)
.

Proof. First, the algorithm only changes fractional values λα(v) of the form (2i + 1)/(2K) and
all those values are either decremented or incremented by exactly 1/(2K). The fractional label
assignment at the end of the algorithm is thus 1/K-integral.

For each color γ ∈ {1, . . . , p} of the average defective coloring, we define λγ to be the fractional
label assignment after processing the nodes of color γ in Algorithm 1. We further define λ0 to be
the fractional label assignment at the beginning of the algorithm. Note that λ0 = λ and λp = λ′.

We first upper bound how the utility and cost of an edge change during the algorithm. Consider
an edge e between two nodes u and v (i.e., V (e) = {u, v}). Assume that in the average defective
coloring u has color γu and v has color γv and w.l.o.g., assume that γu ≤ γv. Note that when
rounding the fractional label assignment, the fractional value of a node for a given label can at
most double. When rounding a single node, the utility and cost of its incident edges can therefore
also at most double and when rounding both nodes of an edge, the utility and cost can grow by a
factor at most 4. For any γ ∈ {0, . . . , p} and edge e between u and v, we therefore have

u(e, λγ) ≤





u(e, λ) if γ < γu

2u(e, λ) if γu ≤ γ < γv

4u(e, λ) if γ ≥ γv

and c(e, λγ) ≤





c(e, λ) if γ < γu

2c(e, λ) if γu ≤ γ < γv

4c(e, λ) if γ ≥ γv.

(6)

As defined in Algorithm 1, let Eb the the set of bichromatic edges w.r.t. the computed average
defective p-coloring and let Em := E\Eb be the set of monochromatic edges w.r.t. the same coloring.
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Note that we have u(λ) = u(E,λ) = u(Eb, λ)+u(Em, λ) and analogously also for the cost function
c(·) and the fractional assignment λ′. We first consider the contribution of the monochromatic
edges to u(λ′)− ηc(λ′). We have

u(Em, λ′)− ηc(Em, λ′)
u(·)≥0,(6)

≥ −4ηc(Em, λ)

= u(Em, λ)− ηc(Em, λ)− u(Em, λ)− 3ηc(Em, λ)

≥ u(Em, λ)− ηc(Em, λ)− 3
(
u(Em, λ) + ηc(Em, λ)

)

≥ u(Em, λ)− ηc(Em, λ)− δ

2
·
(
u(λ) + ηc(λ)

)
. (7)

The last inequality follows because the given vertex coloring is a weighted δ/6-average defective
coloring w.r.t. edge weights u(e, λ) + ηc(λ) and thus u(Em, λ) + ηc(Em, λ) ≤ δ/6 · (u(λ) + ηc(λ)).

We next look at the contribution of the bichromatic edges to u(λ′)− ηc(λ′). For this, we first
consider the effect of the rounding of a single node v. Assume that node v has color γv in the
average defective coloring. Note that before iteration γv of the for loop of Algorithm 1 in which
the fractional assignment of v is changed, the fractional label assignment is λγv−1 and directly after
changing the fractional assignment of v, the fractional label assignment is λγv . Also note that by
the definition of φv,α in line 9 of Algorithm 1, we have

u(Eb(v), λγv−1)− ηc(Eb(v), λγv−1) =
∑

α∈Σ
λγv−1,α(v) · φv,α, (8)

where λγv−1,α(v) denotes the fractional value that v has for label α in the fractional label assignment
λγv−1. When rounding the fractional values of v, the fractional values are incremented by 1/(2K)
for all labels α ∈ Σ+

v and the fractional values are decremented by 1/(2K) for all labels α ∈ Σ−
v .

Because the neighbors of a color different from γv do not change their fractional values at the same
time, after rounding the values of v (i.e., at the end of iteration γv of the for loop), we have

u(Eb(v), λγv )− ηc(Eb(v), λγv ) =
∑

α∈Σ
λγv ,α · φv,α

(8)
= u(Eb(v), λγv−1)− ηc(Eb(v), λγv−1) + ϕv . (9)

where

ϕv =
1

2K
·



∑

α∈Σ+
v

φv,α −
∑

α∈Σ−
v

φv,α


 . (10)

As in line 10 of Algorithm 1, define θv,α := u
(
Eb(v), λ

(v,α)
γv−1

)
+ ηc

(
Eb(v), λ

(v,α)
γv−1

)
, where λ

(v,α)
γv−1 is a

fractional label assignment that is equal to λγv−1, except that at node v, we have λγv−1,α(v) = 1
and λγv,β(v) = 0 for β 6= α. Note that similarly to (8) we have

u
(
Eb(v), λγv−1

)
+ ηc

(
Eb(v), λγv−1

)
=
∑

α∈Σ
λγv−1,α(v) · θv,α. (11)

By line 11 of Algorithm 1, for every α ∈ Σ+
v ∪ Σ−

v , v obtains an estimate φ̂v,α such that φv,α ≥
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φ̂v,α ≥ φv,α − δ
6 · θv,α. We can therefore rewrite ϕv (cf. Equation (10)) as

ϕv ≥ 1

2K
·



∑

α∈Σ+
v

φ̂v,α −
∑

α∈Σ−
v

φ̂v,α




︸ ︷︷ ︸
≥0 (by def. of Σ+

v and Σ−
v )

− 1

2K
·
∑

α∈Σ−
v

δ

6
· θv,α

(λγv−1,α(v)≥ 1
2K

)

≥ −δ

6
·
∑

α∈Σ−
v

λγv−1,α(v) · θv,α

(11)

≥ −δ

6
·
(
u
(
Eb(v), λγv−1

)
+ ηc

(
Eb(v), λγv−1

))
. (12)

By (9), we have

u(Eb, λ
′)− ηc(Eb, λ

′) = u(Eb, λ)− ηc(Eb, λ) +
∑

v∈V
ϕv (13)

By using (12), the term
∑

v∈V ϕv can be lower bounded as

∑

v∈V
ϕv ≥ −δ

6
·
∑

v∈V

(
u
(
Eb(v), λγv−1

)
+ ηc

(
Eb(v), λγv−1

))

= −δ

6
·
∑

e∈Eb

∑

v∈V (e)

(
u
(
e, λγv−1

)
+ ηc

(
e, λγv−1

))

≥ −δ

6
·
∑

e∈Eb

3
(
u(e, λ) + ηc(e, λ)

)
(14)

= −δ

2
·
(
u(Eb, λ) + ηc(Eb, λ)

)
≥ −δ

2
·
(
u(λ) + ηc(λ)

)
.

Inequality (14) follows because by (6) for a bichromatic edge e with V (e) = {u, v} and γu < γv,
we have u(e, λγu−1) ≤ u(e, λ) and u(e, λγv−1) ≤ 2u(e, λ) and analogously c(e, λγu−1) ≤ c(e, λ)
and c(e, λγv−1) ≤ 2c(e, λ). The last inequality follows because utility and cost are non-negative
functions. In combination with Equations (7) and (13), we obtain

u(λ′)− ηc(λ′) ≥ u(λ)− ηc(λ) − δ ·
(
u(λ) + ηc(λ)

)

as required by the claim of the lemma.

Algorithm 1 describes a single rounding step of our abstract generic rounding algorithm. One
application of this basic step doubles the integrality of a given fractional label assignment. Given
a 1/K-integral fractional label assignment, we therefore have to invoke Algorithm 1 logK times in
order to obtain an integral label assignment. The details of this are given by Algorithm 2.

Lemma 2.2. Let G = (V,E) be a multigraph, which is equipped with utility and cost functions u
and c and with a 1/2k-integral fractional label assignment λ for a given integer k ≥ 1. Let ε ∈ [0, 1]
and µ ∈ (0, 1] be two parameters. If u(λ) − c(λ) ≥ µu(λ), Algorithm 2 returns an integral label
assignment ℓ with

u(ℓ)− c(ℓ) ≥ (1− ε) ·
(
u(λ) − c(λ)

)
.

Proof. For the proof, we define λ0 to be the 1/2k-integral fractional label assignment with which
Algorithm 2 is started and for i ∈ {1, . . . , k}, we define λi to be the fractional label assignment at
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Algorithm 2 Basic Rounding Algorithm, Parameters ε ∈ [0, 1], µ ∈ (0, 1]

Given: multigraph G = (V,E) with utility and cost functions u and c and with a 1/2k-integral
fractional label assignment λ (for a given integer k ≥ 1) such that u(λ)− c(λ) ≥ µu(λ).

1: Define δ := ε·µ
6k

2: for i ∈ {1, . . . , k} do
3: ηi := 1 +

(
1− i

k

) ε·µ
2

4: Run Algorithm 1 with param. δ and ηi on the current 1
2k−i+1 -integral fract. assignment λ

5: Define integral label assignment ℓ s.t. ∀v ∈ V, α ∈ Σ : ℓ(v) = α ⇔ λα(v) = 1

the end of the ith iteration of the for loop in Algorithm 2. For all i ∈ {0, . . . , k}, we further define
a potential

Φi := u(λi)− ηi · c(λi),

where ηi = 1 +
(
1 − i

k

)ε·µ
2 for all i ∈ {0, . . . , k}. By induction on i, we first show that a) λi is a

2i/2k-integral fractional label assignment and b)

Φi ≥ (1− δ)i · Φ0. (15)

Base Case i = 0: We know that λ0 is a 1/2k-integral fractional label assignment and Equation (15)
certainly also holds for i = 0. Thus, both a) and b) hold.

Induction Step i > 0: The induction hypothesis implies that a) λi is a 2i/2k-integral fractional
label assignment and b) Φi ≥ (1 − δ)i · Φ0. We need to show that a) λi+1 is a 2i+1/2k-integral
fractional label assignment and b) Φi+1 ≥ (1− δ)i+1 · Φ0.

For a), notice that at the beginning of the i+ 1st iteration of the for loop of Algorithm 2, the
current fractional label assignment is λi, which by the induction hypothesis is a 2i/2k-integral frac-
tional label assignment. By Lemma 2.1, Algorithm 1 doubles the integrality of the given fractional
label assignment. Hence, when applying Algorithm 1 in iteration i + 1 of Algorithm 2, we obtain
a 2i+1/2k-integral fractional label assignment and thus a) follows.

For b), by Lemma 2.1, at the end of the i+1st iteration of the for loop in Algorithm 2, we have

Φi+1 = u(λi+1)− ηi+1c(λi+1)

(L. 2.1)
≥ u(λi)− ηi+1c(λi)− δ · (u(λi) + ηi+1c(λi))

= u(λi)− ηi · c(λi) + (ηi − ηi+1) · c(λi)− δ · (u(λi) + ηi+1 · c(λi))

= (1− δ) ·
(
u(λi)− ηi · c(λi)

)
︸ ︷︷ ︸

=Φi

+(ηi − ηi+1)︸ ︷︷ ︸
= ε·µ

2k

·c(λi)− δ · (ηi + ηi+1)︸ ︷︷ ︸
≤3

·c(λi)

≥ (1− δ) · Φi + c(λi) ·
(ε · µ

2k
− 3 · δ

)

(
δ= ε·µ

6k

)
= (1− δ) · Φi

(I.H.)

≥ (1− δ)i+1 · Φ0.

In the fourth line, ηi + ηi+1 ≤ 3 holds because by definition, ηj ≤ 1 + ε·µ
2 ≤ 3

2 for all j ∈ {0, . . . , k}.
Hence, Equation (15) holds and thus the induction step is complete.

We next show that for the initial potential Φ0, it holds that

Φ0 ≥
(
1− ε

2

)
·
(
u(λ0)− c(λ0)

)
. (16)
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We need to show that Φ0 = u(λ0)− η0 · c(λ0) ≥
(
1− ε

2

)
·
(
u(λ0)− c(λ0)

)
, which is equivalent

to showing that η0 · c(λ0) ≤ u(λ0)−
(
1− ε

2

)
·
(
u(λ0) − c(λ0)

)
= ε

2 · (u(λ0)− c(λ0)) + c(λ0). This
is equivalent to showing that (η0 − 1) · c(λ0) ≤ ε

2 · (u(λ0)− c(λ0)), which follows because

(η0 − 1) · c(λ0) ≤ (η0 − 1) · (1− µ) · u(λ0)

=
((

1 +
ε · µ
2

)
− 1
)
· (1− µ) · u(λ0)

≤ ε · µ
2
· u(λ0)

≤ ε

2
·
(
u(λ0)− c(λ0)

)
.

The first and last inequality follow since we have that u(λ0) − c(λ0) ≥ µu(λ0). The claim of the
lemma now follows because

u(λk)− c(λk) = Φk

(15)

≥ (1− δ)k · Φ0

(16)

≥ (1− δ)k ·
(
1− ε

2

)
·
(
u(λ0)− c(λ0)

)

≥ (1− ε) ·
(
u(λ0)− c(λ0)

)
.

The last inequality follows because δ = εµ
8k ≤ ε

2k and thus (1− δ)k ≥ 1− ε
2 .

2.2.1 Preprocessing of Fractional Label Assignments

Algorithm 2 requires the given fractional solution to be 1/2k-integral for some positive integer k. It
is often more natural to write down a fractional solution by using general real fractional values. The
following simple technical lemma shows how a given fractional label assignment can be rounded to
a 1/2k-fractional label assignment.

Lemma 2.3. Let G = (V,E) be a multigraph, which is equipped with utility and cost functions u
and c and with a fractional label assignment λ such that for all v ∈ V and all α ∈ Σ, λα(v) = 0
or λα(v) ≥ λmin for some given value λmin. Let ε ∈ [0, 1] and µ ∈ (0, 1] be two parameters.
If u(λ) − c(λ) ≥ µu(λ), the nodes can internally (i.e., without communication) compute a new
1/2k-integral fractional label assignment λ′ for some integer k such that 2k = O

(
1

ε·µ·λmin

)
,

u(λ′)− c(λ′) ≥ (1− ε) ·
(
u(λ)− c(λ)

)
, and u(λ′)− c(λ′) ≥ µ

2
· u(λ′).

Proof. Clearly, for a given integer k ≥ 0, each node v ∈ V can compute new values λ′
α(v) such that

for every α ∈ Σ, λ′
α(v) = 0 if λα(v) = 0 and otherwise, λ′

α(v) is an integer multiple of 2−k such
that |λα(v)− λ′

α(v)| ≤ 2−k. Node v can just round up or down each λα(v) to the nearest larger or
smaller integer multiple of 2−k such that the total sum of all fractional values of v remains 1. For
all v ∈ V and α ∈ Σ, we then have

(
1− 1

λmin · 2k
)
· λα(v) ≤ λ′

α(v) ≤
(
1 +

1

λmin · 2k
)
· λα(v). (17)

Recall that utility and cost are computed as a sum over the individual edge utilities and costs. By
the definition of the utility and cost of an edge for a fractional assignment (Equation (5)), for an
edge e ∈ E with V (e) = {u, v}, we have

u(e, λ′)
(5)

≥ min
(α,β)∈Σ2

λ′
α(u) · λ′

β(v)

λα(u) · λβ(v)
· u(e, λ)

(17)

≥
(
1− 1

λmin · 2k
)2

· u(e, λ), (18)

u(e, λ′)
(5)

≤ max
(α,β)∈Σ2

λ′
α(u) · λ′

β(v)

λα(u) · λβ(v)
· u(e, λ)

(17)

≤
(
1 +

1

λmin · 2k
)2

· u(e, λ). (19)
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We choose k as the smallest integer such that 2k ≥ 9
ε·µ·λmin

. We then get

u(λ′) =
∑

e∈E
u(e, λ′) ≥

(
1− ε · µ

9

)2
·
∑

e∈E
u(e, λ) ≥

(
1− ε · µ

4

)
u(λ), (20)

u(λ′) =
∑

e∈E
u(e, λ′) ≤

(
1 +

ε · µ
9

)2
·
∑

e∈E
u(e, λ)

(εµ≤1)

≤
(
1 +

ε · µ
4

)
u(λ). (21)

Clearly, Equations (18), (19), (20), and (21) also hold for the cost function c(·) in exactly the same
way. We therefore obtain

u(λ′)− c(λ′)
((21),(20) for c(·))

≥ u(λ)− c(λ)− εµ

4
·
(
u(λ) + c(λ)

)

(c(λ)≤u(λ))

≥ u(λ)− c(λ)− εµ

2
· u(λ)

(u(λ)≤ 1
µ
·(u(λ)−c(λ))

≥ (1− ε) ·
(
u(λ)− c(λ)

)
.

Hence, the first lower bound on u(λ′)− c(λ′) claimed by the lemma holds. We further get

u(λ′)− c(λ′)
((21) for c(·))
≥ u(λ′)−

(
1 +

εµ

4

)
· c(λ)

(c(λ)≤(1−µ)u(λ))

≥ u(λ′)−
(
1 +

εµ

4

)
· (1− µ) · u(λ)

(21)

≥ u(λ′)−
(
1 +

εµ

4

)2
· (1− µ) · u(λ′)

=

[(
1− ε

2

)
· µ+

(
ε

2
− ε2

16

)
· µ2 +

ε2µ3

16

]
· u(λ′)

(ε≤1)

≥ µ

2
· u(λ′).

Hence, also the second claim of the lemma holds.

2.2.2 Node Utilities and Costs

In some applications, a part of the cost and/or utility only depends on the labeling of individual
nodes and not on the combined labeling of neighboring nodes. In such cases, it is natural to extend
the cost and utility functions and also define the utility/cost of single nodes. The following lemma
shows that node utilities and costs can be easily incorporated into our rounding framework.

Lemma 2.4. Let G = (V,E) be a multigraph, which is equipped with utility and cost functions
u and c. Assume that, the functions u and c are extended to also assign a non-negative utility
and cost to each node v ∈ V , where the utility and cost of a node is a function of the node’s
label. Algorithms 1 and 2 can be adapted to incorporate node utilities and costs so that Lemmas 2.1
and 2.2 hold accordingly.

Proof. Essentially, a node v ∈ V can distribute its utility and cost arbitrarily among its edges
and then use Algorithms 1 and 2 to do the rounding. To make sure that handling node utilities
and costs is independent of the concrete communication model, we do this as follows. For every
node v ∈ V , we define a virtual dummy node ṽ, which is simulated by node v. Nodes v and ṽ are
connected by a virtual edge ẽv and ẽv is the only edge of node ṽ. The utility and cost of edge ẽv is
always equal to the utility and cost of node v. The edge utility and cost of ẽv therefore only depend
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on the (fractional) label assignment to v and are independent of the label of ṽ. We can therefore
initially assign an arbitrary label α to node ṽ (i.e., if we start with a fractional label assignment
λ, then λα(ṽ) = 1 and λβ(ṽ) = 0 for all β 6= α. In this way, the fractional label assignment of ṽ
is never changed during the rounding process. When computing the defective coloring, we always
assign ṽ a color that is different from v’s color so that the edge ẽv is bichromatic. Note that we can
clearly assume that the defective coloring always has at least 2 colors as otherwise all edges would
be monochromatic and the rounding could not satisfy any non-trivial guarantees.

2.3 Distributed Implementation of Basic Rounding Algorithm

As long as every edge e ∈ E in the multigraph G = (V,E) is between nodes that are close in
the underlying communication graph, implementing Algorithms 1 and 2 is straightforward in the
LOCAL model. We however need to be more careful if the communication links in the underly-
ing communication graph have limited capacity (e.g., when implementing the algorithms in the
CONGEST model).

2.3.1 Direct Communication on G

We first assume that communication is done directly between neighbors in G and we explicitly
analyze the necessary maximum message size for implementing our rounding algorithm.

Lemma 2.5. Let G = (V,E) be a multigraph, which is equipped with utility and cost functions u
and c and with a fractional label assignment λ such that for every label α ∈ Σ and every v ∈ V ,
if λα(v) > 0, then λα(v) ≥ λmin for some given value λmin ∈ (0, 1]. Further assume that G
is equipped with a proper ζ-vertex coloring. Let ε ∈ [0, 1] and µ ∈ (0, 1] be two parameters. If
u(λ) − c(λ) ≥ µu(λ) and if each node knows the utility and cost functions of its incident edges,
there is a deterministic O

(
1
εµ · log2

(
1

εµλmin

)
+log

(
1

εµλmin

)
· log∗ ζ

)
-round distributed message passing

algorithm on G that computes an integral label assignment ℓ for which

u(ℓ)− c(ℓ) ≥ (1− ε) ·
(
u(λ) − c(λ)

)
.

The algorithm uses messages of at size most O
(
min {|Σ|, log |Σ|/(εµλmin)} + log ζ

)
bits. If the

given fractional label assignment λ is 1/2k-integral for some integer k ≥ 1, the round complexity of

the algorithm is O
(
k2

εµ + k log∗ ζ
)
and the maximum message size is O

(
min

{
|Σ|, 2k log |Σ|

}
+log ζ

)

bits.

Proof. The algorithm is Algorithm 2 which itself is simply a number of invocations of Algorithm 1.
In the beginning, each node sends its initial fractional label assignments to all of its neighbors.

This can be done using messages of size O(|Σ|k), where we use O(k) bits to encode the fractional
value of each label. Since the runtime of the overall algorithm exceeds Θ(k), without any loss
in round complexity, we can perform this communication by using k rounds and sending one
message of size O(|Σ|) per round. When 2k < |Σ|, a more efficient method would be to send
O(log |Σ|) bits for each of the at most 2k non-zero fractional values, for a total of O(2klog|Σ|)
bits. These share the initial fractional label assignments in at most k rounds using messages of size
O
(
min

{
|Σ|, 2k log |Σ|

} )
bits.

Then, we have k rounding steps, where we invoke Algorithm 1. Per step, in line 2 of Algorithm 1,
we first compute an average defective coloring with defect δ/6 = εµ

36k , in time O
(

k
εµ + log∗ ζ

)
using

messages of O(log ζ) bits, via the average weighted defective coloring algorithm of Ghaffari and
Kuhn [GK21, Lemma 2.3]. The produced coloring has O

(
k
εµ

)
colors and therefore the inner loop

in line 4 of Algorithm 1 has O
(

k
εµ

)
iterations.
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In each iteration, it is needed that each node v knows the fractional label assignment of all
its neighbors. In the first rounding step, this is given as nodes shared their initial fractional
label assignments at the beginning, as we discussed above. After that, in each rounding step, the
value of each label either decreases by a 2 factor, increases by a 2 factor, or remains as it was.
Hence, each node can inform its neighbors about the update to its fractional label assignment
using messages with O(1) bits per label, i.e., O(|Σ|). Alternatively, as above, when 2k < |Σ|, a
more efficient method would be to send O(log |Σ|) bits for each of the at most 2k non-zero fractional
values, for a total of O(2k log |Σ|) bits. Hence, the fractional value updates can be performed using
messages of size at most O

(
min

{
|Σ|, 2k log |Σ|

} )
bits. Then, given that each node v knows the

fractional label assignment of its neighbors, it can compute φv,α and θv,α, in lines 9 and 10 of
Algorithm 1. It thus can perform the rest of the computations of this rounding step locally, after
which it can inform its neighbors about its fractional label assignment update using a message of
size O

(
min

{
|Σ|, 2k log |Σ|

} )
bits, as discussed above. Since there are k rounding steps and each

takes O
(

k
εµ + log∗ ζ

)
rounds, the claimed complexity follows.

2.3.2 Communication on G
2

In some cases, the graph on which one runs the rounding algorithm is not equal to the communica-
tion graph G. For example, for computing an MIS in Section 3 or a set cover in Section 5, our cost
functions has contributions by pairs of nodes that are not direct neighbors in G, but which have a
common neighbor in G. We generically analyze such a communication setting here.

Communication Model. Formally, we assume that G = (V,E) is the communication graph and
that the rounding is done on a virtual multigraph H = (VH , EH) with the following properties.

Definition 2.1 (d2-Multigraph). A d2-multigraph is a multigraph H = (VH , EH) that is simulated
on top of an underlying communication graph G = (V,E) by a distributed message-passing algorithm
on G. The nodes of H are a subset of the nodes of G, i.e., VH ⊆ V . The edge set EH consists of
two kinds of edges, physical edges and virtual edges. Physical edges in EH are edges between direct
neighbors in G. For each physical edge in e ∈ EH with V (e) = {u, v}, both nodes u and v know
about e. Virtual edges in EH are edges between two nodes u, v ∈ VH for which there is a common
neighbor in G. Each virtual edge between two nodes u and v is known and managed by a common
neighbor u and v. We define a function ξ : EH → V to refer to the node managing the virtual edge.

We will always assume that the nodes know all relevant information about the edges of H they
manage. For example, if we run an algorithm on a graph H with edge weights w : EH → R≥0, then
for every physical edge e between u and v, we assume that u and v know w(e) and if e is a virtual
edge between u and v, the common neighbor ξ(e) of u and v knows w(e). Similarly, when running
an instance of the rounding algorithm of Section 2.2 on H, the node(s) simulating an edge e ∈ EH

know the utility and cost functions for edge e. Note also that nodes u and v might not be aware
of virtual edges between them and that H might have several edges between two nodes u and v.
If u and v are neighbors in G, there can be one physical edge between u and v. If u and v have
common neighbors in G, there can potentially be a virtual edge between u and v for each common
neighbor of u and v in G. We could also allow multiple physical edges or multiple virtual edges
for the same common neighbor in G. However such edges can typically also easily be aggregated
into a single physical edge and one virtual edge per common neighbor in G. In the following, we
assume standard synchronous, distributed message-passing algorithms on G, where in each round,
a message of a certain size can be exchanged over each edge in G and we show how to utilize this
communication to implement Algorithms 1 and 2 on the virtual multigraph H.
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Computation of a Defective Coloring. As an important part of Algorithm 1, the nodes have
to compute a weighted average defective coloring of H. We first analyze how efficiently such a
defective coloring can be computed. In the following, we say that an edge weight function w is
polynomially bounded in q if there is a value Q ≤ poly(m) such that for every edge e, w(e) = 0 or
w(e) ∈ [1/Q,Q]. Note that the following lemma statement contains a somewhat artificial technical
condition δ > 2−O(

√
logn) on the relative defect parameter δ. This condition is added to make

the bounds look slightly nicer and cleaner. At the cost of a minor additional term in the round
complexity, the condition could also be dropped. Also, the condition could also be strengthened to
δ > 2−O(logϑ n) for any constant ϑ < 1 and in fact even for some ϑ = 1 − o(1). Note than in our
applications the value of δ is typically 1/poly log∆ or 1/poly log n.

Lemma 2.6. Let H = (VH , EH) be an n-node d2-multigraph with edge weights w : EH → R≥0,
assume that G = (V,E) is the underlying communication graph, and let ∆ denote the maximum
degree of G. Assume that the edge weights w(e) are polynomially bounded in q ≥ ∆ and let
δ > 2−O(

√
logn) be a parameter. A weighted average δ-relative defective O(1/δ)-coloring of H can

be computed deterministically O
( log log q

δ + log∗ n
)
CONGEST rounds on G.

Proof. As a first step, we describe how to compute a weighted δ-relative defective O(1/δ2)-coloring.
For this, we adapt an algorithm that has been described in [Kuh09] and that has been adapted to
the weighted case in [KS18]. The algorithm is based on a classic O(log∗ n)-round O(∆2)-coloring
algorithm of Linial [Lin87]. The algorithm starts with an initial (defective) vertex coloring (in
our case given by the unique O(log n)-bit IDs) and consists of O(log∗ n) consecutive steps. In
each step, the coloring is improved in the following way. As a function of its current color (and
without communicating), each node computes a set of candidate colors for the next coloring. Each
node then picks a candidate color that (approximately) minimizes the total weight to neighbors (of
different initial colors) that also have this candidate color. If in each step of the algorithm, a node
chooses a candidate color for which the total weight to neighbors with the same candidate color is
within a factor 2 of the minimum, the relative defect in the end also only grows by a factor 2. In
order to determine its new color, in each step, each node, therefore for each of its candidate colors
needs to approximately learn the total weight of its edges to neighboring nodes that also have this
candidate color.

Before making the algorithm more concrete, let us focus on the communication required from
a single step. First note that since node colors can always be represented by O(log n) bits (we
start with O(log n)-bit IDs), in a single round on the communication graph G, each node can learn
the colors of all its G-neighbors. This implies that each node knows the candidate colors of all
its G-neighbors. Assume now that in a given step, each node v has at most p candidate colors.
Therefore, for each of its at most p candidate colors z, each node v ∈ VH needs to learn an estimate
of the total weight of its edges in EH to nodes that also have z as a candidate color. Because v
knows the candidate colors of its G-neighbors, it exactly knows the total weight of the physical
edges to neighbors with z as a candidate color. Let us consider a virtual edge e between node v
and some other node u. The common G-neighbor ξ(e) of u and v knows the weight of e and ξ(e)
also knows that candidate sets of both v and u and potentially also of other virtual edges of v for
which it is responsible. For each candidate color z of v, node ξ(e) can aggregate the total weight of
v’s virtual edges for which ξ(e) is responsible and which go to nodes that also have candidate color
z. Because the weights are polynomially bounded in q ≥ ∆, the total weight of those virtual edges
is either 0 or a value between 1/poly(q) and poly(q). Since v only needs to learn the weight to
other nodes with candidate color z up to a factor 2, it suffices to communicate one of the O(log q)
different possible values over each edge of G. Therefore, for each candidate color, the algorithm
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has to send O(log log q) bits over each G-edge. A defective coloring step with at most p candidate
colors can therefore be carried out in O

(
1 + p log log q

logn

)
rounds in the CONGEST model.

Let us now look at the details of the individual steps of the defective O(1/δ2)-coloring algorithm.
In [Lin87] (also cf. [EFF82,MT20]), it is shown that for positive integer parameters s and N and
a sufficiently large constant c > 0, there are N sets S1, . . . , SN such that

∀i ∈ [N ] : Si ∈ [s2 · τ ], |Si| ≤ s · τ, and ∀i 6= j : |Si ∩ Sj| ≤ τ, where τ = c ·min
{
logN, log2s N

}
.

Note that if we have a proper N -coloring of the nodes, and when choosing s = 1/δ, we can compute
a weighted δ-defective τ/δ2-coloring as follows. Each node v of initial color i ∈ [N ], picks set Si

as its set of candidate colors. Because the candidate sets of nodes of different colors (and thus
of neighbors) intersect in at most τ colors, each neighbor of v only shares at most a δ-fraction of
v’s candidate colors. Therefore, there must be a color among v’s candidate colors such that the
total weight of v’s edges to neighbors that also have this candidate color is at most a δ-fraction of
the total weight of all of v’s edges. If v only knows a constant factor approximation to the total
weight of its edges for each candidate color, taking the color with the best estimate still guarantees
a relative defect of δ if we choose s = c′/δ for a sufficiently large constant c′. In the following, we
will implicitly assume that all s-values are multiplied by a sufficiently large constant factor to make
sure that a constant-factor estimate for the total edge weight per candidate color is sufficient. If the
initial N -coloring is already a defective coloring with some relative defect δ0, then the argument
holds for the bichromatic edges (w.r.t. to the initial N -coloring) and the new defective coloring
becomes (δ0 + δ)-relative defective.

In [Kuh09,KS18], it is shown that when starting with an N -coloring and running t = O(log∗ n)
steps i = 1, . . . , t of the above algorithm with si = 2t−i+1/δ, the overall relative defect in the end
is 1/s1 + · · · + st < δ and the final number of colors is O(s2t−1) = O(1/δ2). In the very first step,
when starting with the initial O(log n)-bit IDs, we have τ = Θ(log n) and in subsequent steps, τ
will be exponentially smaller. As τ goes linearly into the number of candidate colors and thus the
number of bits that have to be transmitted, we would like s to be as small as possible in the very
first step. We therefore add a step 0, where we set s0 = 4/δ and we multiply all the si for i > 0
by 4. Let τi be the value of τ in step i and let pi be the maximum number of candidate colors per
node in step i. The overall relative defect is then less than δ/2. In step 0, the number of candidate
colors per node is then at most p0 = s0 ·τ0 = O

( logn
δ

)
. In subsequent steps i = 1, . . . , t, the number

of candidate colors is at most pi ≤ si · τi ≤ s1 · τ1. After the step 0, the number of colors is O
( logn

δ2

)

and we therefore have τ1 = O(log log n + log(1/δ)). We further have s1 = 2O(log∗ n)/δ. The total
number of CONGEST rounds on G to run all O(log∗ n) steps is therefore

O

(
log∗ n+

(s0τ0 + s1τ1 · log∗ n) · log log q
log n

)
= O

(
log∗ n+

log log q

δ

)
.

In the above equation, we use that s1τ1 log
∗ n = O(1/δ)·2O(log∗ n)·O(log∗ n)·O(log log n+log(1/δ)) =

O(log(n)/δ). Note that we have δ ≥ 2−O(
√
logn) and thus log(1/δ) = O(

√
log n).

We now have a weighted δ/2-relative defective coloring with O(1/δ2) colors and we still need
to turn this into a δ-relative average defective coloring with O(1/δ) colors. For this, we adapt
a distributed coloring algorithm that was presented in [BEG18]. At the core of the algorithm
of [BEG18] is the following idea. For any prime p, there are p2 orderings of the numbers 1, . . . , p
such that any two orderings coincide in at most 1 place. We now choose p ≥ 8/δ and such that p2

is larger than the initial number of O(1/δ2) colors. In this way, nodes of a different initial color
pick different orderings of the numbers 1, . . . , p. The algorithm now consists of p steps. For a node
v, let zv,1, . . . , zv,p be the ordering of colors 1, . . . , p of node v. In step i, v tries to take color zv,i
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and it takes the color if less than a δ/4-fraction of the weight of its edges go to nodes that have
already committed to taking color zv,i in previous steps or that are currently also trying to take
color zv,i. Note that if every node takes a color, the weighted average relative defect is at most
δ/2. This can be seen by orienting every edge towards the node that first commits to taking a color
and orienting arbitrarily in case both nodes take the color in the same step. Because every node
v can conflict with each neighbor at most twice (once when trying the same color and once when
u has already committed to a color and v tries this color), the total weight of the monochromatic
outgoing edges of a node v is at most at δ/4-factor of the total total weight of all edges of v. The
total weight of all monochromatic edges is therefore a δ/4-factor of 2 times the total weight of all
edges. For further details, we refer to [BEG18].

It remains to show that each step of this algorithm can be implemented efficiently on the d2-
multigraph H in the CONGEST model on G. To implement a step, a node v needs to know the
total weight of all its edges to neighbors that have already committed to the color that v currently
tries or that are currently trying the same color. Again, the algorithm can easily be adapted such
that it suffices for each node v to learn a constant approximation of this total edge weight. This
now is the same communication problem that we had in the first part of the algorithm for a single
candidate color. We therefore need to communicate O(log log q) bits over each edge of G. This can
clearly be done in O

(
1+ log log q

logn

)
= O(log log q) rounds in the CONGEST model. The total time for

the second step is therefore O(p log log q) = O
( log log q

δ

)
rounds. This concludes the proof.

Implementing the Rounding Algorithm. We next show how efficiently Algorithms 1 and 2
can be implemented on a d2-multigraph of an underlying communication graph, when using
CONGEST algorithms on the communication graph. For the following lemma, recall that a round-
ing instance is called polynomially bounded in some value q if all utility and cost values are either
0 or bounded between 1/poly(q) and poly(q) and if all fractional node values are either 0 or lower
bounded by 1/poly(q).

Lemma 2.7. Let H = (VH , EH) be a d2-multigraph of an underlying communication graph G =
(V,E) of maximum degree ∆. Assume that H is equipped with utility and cost functions u(·) and c(·)
(with label set Σ) and with a fractional label assignment λ. Further assume that the given rounding
instance is polynomially bounded in a parameter q ≤ n. Then for every constant c > 0 and every

ε, µ > max
{
1/qc, 2−c

√
logn

}
, if u(λ)− c(λ) > µu(λ), there is a deterministic CONGEST algorithm

on G to compute an integral label assignment ℓ for which u(ℓ)− c(ℓ) ≥ (1− ε) ·
(
u(λ)− c(λ)

)
and

such that the round complexity of the algorithm is

O

(
log2 q

ε · µ ·
( |Σ| log(q∆)

log n
+ log log q

)
+ log q · log∗ n

)
.

Proof. First note that by applying Lemma 2.3, we can turn the initial fractional label assign-
ment into a 2−k-integral fractional label assignment with k = O

( log q
ε·µ
)
(recall that the initial

fractional assignment is polynomially bounded in q). Since we assume that ε, µ ≥ 1/poly(q), we
have O

( log q
ε·µ
)
= O(log q).

We assume that throughout the algorithm, each node of the communication graph G keeps
track of the fractional assignment of all neighbors in G. To achieve this, initially, each node of G
needs to learn O(log q) bits per label. This requires O

(
1 + |Σ| log q

logn

)
rounds in the CONGEST model

on G. To maintain the fractional values of all G-neighbors, each node has to learn O(1) bits per
label from each neighbor after each change to the fractional assignment (i.e., after each iteration
of the outer for loop in Algorithm 1). We will account for the time for doing this, when analyzing
the cost of such a step in the following.
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Algorithm 2 consists of O
( log q

ε·µ
)
= O(log q) runs of Algorithm 1. We therefore need to under-

stand the time required to run a single instance of Algorithm 1. At the beginning of Algorithm 1,
we compute a weighted δ-relative defective coloring. Note that since all utilities, costs, and frac-
tional values are polynomially bounded in q, also the edge weights of this defective coloring instance
is polynomially bounded in q. Further, because nodes in G know the fractional assignments of their
G-neighbors, each node knows the weights of all edges in H for which it is responsible (i.e., nodes
know the weights of their physical edges and of the virtual edges for which they are the responsible
middle node). By Lemma 2.6, we can therefore compute such a weighted δ-relative defective col-
oring in O

( log log q
δ + log∗ n

)
rounds and with O(1/δ) colors. By the description of Algorithm 2, we

have δ = Θ
( εµ
log q

)
and thus, the time for computing the defective coloring is O

( log q·log log q
ε·µ +log∗ n

)
.

Now, the algorithm iterates over the O(1/δ) colors. In each of these iterations, each node v for
each label α ∈ Σ needs to learn an estimate of φv,α as defined in lines 9–11 of Algorithm 1. By
knowing the fractional assignment of all G-neighbors, each node v exactly know the contribution
of its physical edges to φv,α. However, this information is not sufficient to know the contribution of
the virtual edges to φv,α. Node v has to learn this information from its neigbors that are responsible
for those edges. Consider some neighbor w of v and let Ew,v be the set of virtual edges of v for
which w is the responsible middle node. Further, let E′

w,v be the subset of those edge that are
bichromatic w.r.t. to the current defective coloring. Node w knows the fractional assignment of
both nodes for all edges in E′

w,v and it can therefore compute the exact contribution of the edges in
E′

w,v to φv,α. Note that the number of edges in E′
w,v is at most O(∆). The contribution of edges in

E′
w,v to φv,α is therefore upper bounded by O(∆) ·poly(q) = poly(q∆). Node v however only needs

to learn an estimate of φv,α that is accurate up Θ(δ · θv,α). The value of θv,α is either 0 (in this case
φv,α and also the contribution of E′

w,v to φv,α are also 0) or it is lower bounded by 1/poly(q). If the
contribution of E′

w,v to φv,α is non-zero, v therefore has to learn an estimate of it that is accurate
up to an additive term that is lower bounded by 1/poly(q). We can therefore discretize so that the
approximate contribution of edges in E′

w,v to φv,α can only take poly(q∆) different values. Hence,
w only has to send O(log(q∆)) bits for each possible label α ∈ Σ to v. To accomplish line 11 of
Algorithm 1, we therefore have to send at most O(|Σ| · log(q∆)) bits over each edge of G. Updating
the knowledge of the fractional assignment of G-neighbors can then be done by exchanging another
O(|Σ|) bits over each edge of G. The total time for running one loop (iterating over one color of

the defective coloring) in Algorithm 1 is therefore O
(
1 + |Σ|·log(q∆)

logn

)
in the CONGEST model on G.

Combining everything, we therefore obtain a time complexity of

O

(
log q · log log q

ε · µ + log∗ n+
log q

ε · µ ·
(
1 +
|Σ| · log(q∆)

log n

))

for each instance Algorithm 1. By multiplying with O(log q), i.e., with the number of times we run
Algorithm 1, we obtain the bound that is claimed by the lemma.

Remark on a slight generalization For some applications, we use a slight generalization of the
d2-multigraph definition, provided above in Definition 2.1, where we allow the managers of virtual
edges to be some node further away, so long as we can provide some communication primitives, as
we describe next.

Definition 2.2 (long-range d2-Multigraph). A long-range d2-multigraph is a multigraph H =
(VH , EH) that is simulated on top of an underlying communication graph G = (V,E) by a distributed
message-passing algorithm on G. The nodes of H are a subset of the nodes of G, i.e., VH ⊆ V .
The edge set EH consists of two kinds of edges, physical edges and virtual edges. Physical edges in
EH are edges between direct neighbors in G. For each physical edge in e ∈ EH with V (e) = {u, v},
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both nodes u and v know about e. Virtual edges in EH are edges between two nodes u, v ∈ VH , and
for each such virtual edge, there is a manager node w which knows about this edge. We define a
function ξ : EH → V to refer to the node managing the virtual edge.

We next describe the assumed communication primitives. Let M(v) be the set of nodes w who
manage virtual edges that include v. We assume T -round primitives that provide the following: (1)
each node v can send one O(log n)-bit message that is delivered to all nodes in M(v) in T rounds;
(2) given O(log n)-bit messages prepared at nodes M(v) specific for node v, node v can receive an
aggregation of these messages, e.g., the summation of the values, in T rounds.

We get an analogue of Lemma 2.7 for rounding in long-range d2-multigraphs:

Lemma 2.8. Let H = (VH , EH) be a long-range-d2-multigraph of an underlying communication
graph G = (V,E) of maximum degree ∆, where the communication primitives have round complexity
T . Assume that H is equipped with utility and cost functions u(·) and c(·) (with label set Σ)
and with a fractional label assignment λ. Further assume that the given rounding instance is
polynomially bounded in a parameter q ≤ n. Then for every constant c > 0 and every ε, µ >

max
{
1/qc, 2−c

√
logn

}
, if u(λ)− c(λ) > µu(λ), there is a deterministic CONGEST algorithm on G

to compute an integral label assignment ℓ for which u(ℓ)− c(ℓ) ≥ (1− ε) ·
(
u(λ)− c(λ)

)
and such

that the round complexity of the algorithm is

T ·O
(
log2 q

ε · µ ·
( |Σ| log(q∆)

log n
+ log log q

)
+ log q · log∗ n

)
.

Proof Sketch. One change is that we need a version of Lemma 2.6 for long-range d2-multigraph,
but that follows by the same proof, with only a T factor slow down, because each virtual edge
manager needs to learn the current color of its endpoints, and then informs each endpoint about
the total weight of edges to endpoints that have chosen each particular color (in the collection this
endpoint is interested in). The former clearly fits the first communication primitive of long-range
d2 multi-graphs, sending from v to M(v), and the latter fits the second primitive, v receiving an
aggregation of messages prepared by M(v) for v.

Then, the rest of the proof is identical to that of Lemma 2.7, again with only a T factor slow-
down, where T denotes the round complexity of the corresponding two communication primitives.
Namely, in our rounding, each virtual edge manager needs to receive the current fractional label of
each of the endpoints. Then it prepares a message for each endpoint, and each endpoint needs to
receive the summation of these messages. Again, the former fits the first communication primitive
of long-range d2 multi-graphs, sending from v to M(v), and the latter fits the second primitive, v
receiving an aggregation of messages prepared by M(v) for v.

3 Maximal Independent Set

In this section, we describe a deterministic distributed algorithm that computes an MIS in O(log2 ∆ ·
log n) rounds of the LOCAL model. Furthermore, we explain how a variant of this MIS algorithm
can be implemented in Õ(log2 ∆ · log n) rounds of the CONGEST model.

Theorem 3.1. There is a deterministic distributed algorithm that computes a maximal independent
set in O(log2 ∆ · log n) rounds of the LOCAL model, and in O(log2∆ · log log∆ · log n) rounds of
the CONGEST model, in any n-node graph with maximum degree at most ∆.

The rest of the section is devoted to the proof of Theorem 3.1. We first recall Luby’s classic
algorithm [Lub86], which in each iteration chooses an independent set of nodes such that, when we
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add them to the output and remove them from the graph along with their neighbors, in expectation
half of the edges of the graph are removed. We discuss the randomized analysis of this algorithm
and explain how we can formulate it in the framework of the rounding procedure of Section 2, such
that we can derandomize each iteration in O(log2 ∆) rounds of the LOCAL model, and O(log2∆ ·
log log∆ + log∆ · log∗ n) rounds of the CONGEST model. In the latter bound, the second term is
upper bounded by the first term in all cases of interest where ∆ > log n and thus log∆≫ log∗ n.
This is because for ∆ < log n, the theorem statement already follows from the classic O(∆+log∗ n)-
round algorithm of Barenboim, Elkin, and Kuhn [BEK15].

Luby’s Randomized MIS Algorithm. The starting point is to recall Luby’s classic randomized
algorithm from [Lub93]. Each iteration of it works as follows. We mark each node v with probability
1/(20 deg(v)). Then, for each edge {u, v}, let us orient this edges as u→ v if and only if deg(u) <
deg(v) or deg(u) = deg(v) and ID(u) < ID(v). For each marked node v, we add v to the
independent set if and only if v does not have a marked out-neighbor. Finally, as a clean-up step
at the end of this iteration, we remove all nodes that have been added to the independent set along
with their neighbors. We then proceed to the next iteration.

Derandomizing Luby via Local Rounding. It is well-known that in each iteration of Luby’s
algorithm a constant fraction of the edges of the remaining graph gets removed, in expectation.
Hence, the process terminates in O(log n) iterations with probability 1 − 1/poly(n). We explain
how to derandomize each iteration of the algorithm in O(log2∆) rounds, such that we still remove
a constant fraction of the edges per iteration. For the rest of this proof, we focus on an arbitrary
iteration, and we assume that G = (V,E) is the graph induced by the remaining vertices at the
beginning of this iteration. Let ~x ∈ {0, 1}|V | be the indicator vector of whether different nodes are
marked, that is, we have xv = 1 if v is marked and xv = 0 otherwise. Let Rv(~x) be the indicator
variable of the event that v gets removed, for the marking vector ~x. Let Z(~x) be the corresponding
number of removed edges. Luby’s algorithm determines the markings ~x randomly. Our task is to
derandomize this and select the marked nodes in a deterministic way such that when we remove
nodes added to the independent set (those marked nodes that do not have a marked out-neighbor)
and their neighbors, along with all the edges incident on these nodes, at least a constant fraction
of edges E get removed.

Good and bad nodes and prevalence of edges incident on good nodes. We call any node
v good if and only if it has at least deg(v)/3 incoming edges. A node v that is not good is called
bad. It can be proven [Lub93] that

∑

good vertex v

deg(v) ≥ |E|/2. (22)

Even though the reader may skip this paragraph, for completeness we include the reason as
it is a simple and intuitive charging argument. Recall that by definition any bad node has less
than 1/3 of its edges incoming. Thus any edge incoming to a bad node v can be charged to two
unique edges going out of v, in such a manner that each edge of the graph is charged at most
once. Hence, the number of edges incoming to bad nodes is at most |E|/2. Thus, the number
of edges that have at least one good endpoint is at least |E|/2, which implies the desired bound∑

good vertex v deg(v) ≥ |E|/2.
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Lower bounding removed edges. We can lower bound the number of removed edges as

Z(~x) ≥
∑

good vertex v

deg(v) ·Rv(~x)/2.

Here, the 2 factor in the denominator is because for an edge, both endpoints might be good nodes
and get removed. Given that

∑
good vertex v deg(v) ≥ |E|/2, to prove that E[Z(~x)] = Ω(|E|), it suf-

fices to show that each good vertex v has Pr[Rv(~x)] = Ω(1). This fact can be proven via elementary
probability calculations. Next, we discuss how to prove it using only pairwise independence in the
analysis and then how this nicely fit our deterministic local rounding framework.

Pessimistic estimator of removed edges via pairwise-independent analysis. Let us use
IN(u) and OUT (u) to denote in-neighbor and out-neighbors of a vertex u. Consider a good
node v and consider all its incoming neighbors u, i.e., neighbors u such that (deg(u), ID(u)) <
(deg(v), ID(v)). We know that for each such neighbor u, we have Pr[xu] ≥ 1

20 deg(v) . Furthermore,

since v is good, it has at least deg(v)/3 such neighbors. Hence, we have
∑

incoming neighbor u Pr[xu] ≥
1/60. Choose a subset IN∗(v) ⊆ IN(v) of incoming neighbors such that

∑

u∈IN∗(v)

Pr[xu] ∈ [1/60, 4/60]. (23)

Notice that such a subset IN∗(v) exists since the summation over all incoming neighbors is at
least 1/60 and each neighbor’s probability is at most 1/20. On the other hand, notice that for any
node u, we have

∑

w∈OUT (u)

Pr[xw] ≤ 1/20. (24)

This is because |OUT (u)| ≤ deg(u) and for each w ∈ OUT (u), we have (deg(w), ID(w)) >
(deg(u), ID(u)) and thus Pr[xw] ≤ 1/(20 deg(u)).

A sufficient event E(v, u) that causes v to be removed is if some u ∈ IN∗(v) is marked and no
other node in IN∗(v)∪OUT (u) is marked. By union bound, this event’s indicator is lower bounded
by

xu −
∑

u′∈IN∗(v),u 6=u′

xu · xu′ −
∑

w∈OUT (u)

xu · xw.

Furthermore, the events E(v, u1), E(v, u2), . . . , E(v, u|IN∗(v)|) are mutually disjoint for different u1, u2, . . . ,
u|IN∗(v)| ∈ IN∗(v). Hence, we can sum over these events for different u ∈ IN∗(v) and conclude
that

Rv(~x) ≥
∑

u∈IN∗(v)

(
xu −

∑

u′∈IN∗(v),u 6=u′

xu · xu′ −
∑

w∈OUT (u)

xu · xw
)

=
∑

u∈IN∗(v)

xu −
∑

u,u′∈IN∗(v)

xu · xu′ −
∑

u∈IN∗(v)

∑

w∈OUT (u)

xu · xw

Therefore, our overall pessimistic estimator for the number of removed edges gives that

Z(~x) ≥
∑

good vertex v

(deg(v)/2) ·Rv(~x)

≥
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu −
∑

u,u′∈IN∗(v)

xu · xu′ −
∑

u∈IN∗(v)

∑

w∈OUT (u)

xu · xw
)
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Formulating the pessimistic estimator in our rounding framework. We next describe
how we can formulate the above pessimistic estimator in the framework of our rounding procedure
described in Section 2.2. The labeling space is whether each node is marked or not, i.e., each node
takes simply one of two possible labels {0, 1} where 1 indicates that the node is marked. For a
given label assignment ~x ∈ {0, 1}|V |, we define the utility function as

u(~x) =
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu
)
,

and the cost function as

c(~x) =
∑

good vertex v

(deg(v)/2) ·
( ∑

u,u′∈IN∗(v)

xu · xu′ +
∑

u∈IN∗(v)

∑

w∈OUT (u)

xu · xw
)
.

If the label assignment is relaxed to be a fractional assignment ~x ∈ [0, 1]|V |, where intuitively
now xv is the probability of v being marked, the same definitions apply for the utility and cost of
this fractional assignment.

The utility function is simply a summation of functions, each of which depends on the label of
only one vertex. Hence, it directly fits out rounding framework as discussed in Section 2.2.2.

To capture the cost function as a summation of costs over edges, we next define an auxiliary
multi-graph H as follows: For each good node v, for every two vertices u, u′ ∈ IN∗(v), we add an
auxiliary edge between u and u′, with a cost function which is equal deg(v)/2 when both u and u′

are marked, and zero otherwise. Furthermore, for each u ∈ IN∗(v) and each w ∈ OUT (u), we add
to the edge (u,w) a cost function which is equal to deg(v)/2 when both u and w are marked and
zero otherwise. Notice that H is a d2-multigraph of G according to the definition in Section 2.3.2.

For the fractional label assignment ~x ∈ [0, 1]|V | in Luby’s algorithm — i.e., where xv =
1/(20 deg(v))— these utility and cost functions are clearly polynomially bounded in ∆, simply
because each term is at least 1/20∆ and there are no more than poly(∆) terms per node. We
next argue that these utility and cost functions also satisfy the key requirement of Lemma 2.7 with
µ = 1/2:

Claim 3.2. For the fractional label assignment ~x ∈ [0, 1]|V | in Luby’s algorithm — i.e., where
xv = 1/(20 deg(v))— we have u(~x)− c(~x) ≥ u(~x)/2.

Proof. We have

u(~x)− c(~x) =
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu −
∑

u,u′∈IN∗(v)

xu · xu′ −
∑

u∈IN∗(v)

∑

w∈OUT (u)

xu · xw
)

=
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu ·
(
1−

∑

u′∈IN∗(v)

xu′ −
∑

w∈OUT (u)

xw
))

≥
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu
(
1− 4/60 − 1/20

))

≥
∑

good vertex v

(deg(v)/2) ·
( ∑

u∈IN∗(v)

xu/2
)
= u(~x)/2

where we have used Eqs. (23) and (24).
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Then, in the CONGEST model, we apply the rounding procedure of Lemma 2.7 with ε =
1/2 on the fractional label assignment ~x ∈ [0, 1]|V | in Luby’s algorithm. The algorithm runs
in O(log2∆ · log log∆ + log∆ log∗ n) rounds of the CONGEST model. If we were in the more
relaxed LOCAL model which allows unbounded message sizes, then auxiliary graph H can be
directly simulated in graph G with no asymptotic round complexity loss, and we can already
invoke Lemma 2.5 which performs a rounding with the same guarantees in O(log2 ∆+log∆ log∗ n)
rounds. The log∗ n term can be replaced by a O(log∗ ∆), which thus makes the entire second
additive term negligible, by computing a poly(∆)-color distance-2 coloring of G at the beginning of
the first iteration. The one-time O(log∗ n) additive round complexity of computing this distance-2
coloring of G, which happens at the very beginning of the algorithm, is subsumed by our O(log n)
number of iterations.

Suppose that we get an integral marking assignment ~y ∈ {0, 1}|V |. From Lemma 2.7, we know
that Z(~y) = u(~y)− c(~y) ≥ (1/2) · (u(~x)− c(~x)). Next, we argue that this implies Z(~y) ≥ |E|/500.

Claim 3.3. For the fractional label assignment ~x ∈ [0, 1]|V | in Luby’s algorithm — i.e., where xv =
1/(20 deg(v))— we have Z(~x) = u(~x)−c(~x) ≥ |E|/240. Hence, for the integral marking assignment
we obtain from rounding ~x by invoking Lemma 2.7 in the CONGEST model or Lemma 2.5 in the
LOCAL model, we have Z(~y) = u(~y)− c(~y) ≥ (1/2) · (u(~x)− c(~x)) ≥ |E|/500.

Proof. From Claim 3.2, we have Z(~x) ≥ u(~x)− c(~x) ≥ u(~x)/2. Hence,

Z(~x) ≥ u(~x)/2 =
∑

good vertex v

(deg(v)/2)

( ∑

u∈IN∗(v)

xu/2

)

≥
∑

good vertex v

(deg(v)/2) · (1/120) ≥ |E|/240,

where we first used Eq. (23) that says that
∑

u∈IN∗(v) xu ≥ 1/60 and then we used Eq. (22) that
bounds

∑
good vertex v deg(v) ≥ |E|/2.

Since Z(~y) = u(~y)− c(~y) ≥ (1/2) · (u(~x)− c(~x)), the claim follows.

Hence, from the rounding procedure described above, which runs in O(log2∆ · log log∆+log∆ ·
log∗ n) rounds of the CONGEST model or O(log2∆+ log∆ log∗∆) = O(log2∆) rounds of LOCAL
model, we get an integral marking assignment ~y with the following guarantee: if we add marked
nodes u that have no marked out-neighbor to the independent set and remove them along with
their neighbors, we remove at least a 1/500 fraction of the remaining edges. Hence, O(log n) such
iterations suffice to complete the computation and have a maximal independent set. This completes
the proof of Theorem 3.1.

4 Maximum Weight Independent Set

In this section, we apply our generic rounding scheme of Section 2.2 to obtain fast deterministic
algorithms for computing a large weight independent set of a graph G = (V,E) with node weights
w : V → N.3 Note that we here assume that G is a simple graph and we can therefore define E
as a subset of

(
V
2

)
. Further, when discussing distributed algorithms on G, for simplicity, we will

generally assume that initially all nodes u ∈ V know the weights of all their neighbors. Equivalently

3We assume that the node weights are positive integers to keep the algorithms and their analyses simpler. The
algorithms can however all be generalized to handle arbitrary positive weights.
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we can assume that we have enough bandwidth to exchange this information in a single round (e.g.,
that node weights can be encoded using O(log n) bits when using the CONGEST model). Further,
for a subset U ⊆ V of nodes, we use w(U) :=

∑
u∈U w(u) as a shortcut for the total weight of nodes

in U . We will also assume that all nodes know an upper bound W on the maximum node weight.
While our rounding method allows us to study problems with a potentially large alphabet of

node labels, as in Section 3, we will only need 2 labels: either a node is in the independent set or
the node is not in the independent set. We can thus again characterize a fractional solution by
a single fractional value xv ∈ [0, 1] per node v ∈ V , where xv is the fractional value for label 1,
i.e., the fractional value for being in the set. In an integral solution, we have xv ∈ {0, 1} and the
computed subset of nodes is defined by the nodes v with xv = 1.

Definition of Utility and Cost. We next define the utility and cost function for computing
heavy independent sets. For simplicity, we define the utility as a sum over nodes instead of edges.
It is however straightforward to get an equivalent definition that fits the framework of Section 2.1.
Let ~x ∈ [0, 1]|V | be the vector of fractional values xv. Utility u(~x) and cost c(~x) are then defined as

u(~x) :=
∑

v∈V
w(v) · xv and c(~x) :=

∑

{u,v}∈E
min {w(u), w(v)} · xu · xv. (25)

From an Integral Solution to an Independent Set. Given integral node value xv ∈ {0, 1},
it is straightforward to obtain an independent set of total value u(~x)− c(~x): we start with the set
I0 of nodes v for which xv = 1 and for every two neighbors u, v in I0 we simply remove the one
with smaller weight. This is formalized as follows.

Lemma 4.1. Let G = (V,E) be a graph with node weights w : V → N and let ~x be a vector of
(integral) node values xv ∈ {0, 1}. Then, there is a deterministic 1-round CONGEST algorithm to
compute an independent set I of G of total weight at least u(~x)− c(~x).

Proof. Let I0 ⊆ V be the set of nodes v ∈ V with xv = 1. We define a set I ′ ⊆ V of nodes to be
removed as follows. A node u ∈ I0 is in I ′ iff there is a neighbor v ∈ N(u) ∩ I0 such that either
w(v) > w(u) or w(v) = w(u) and the ID of v is larger than the ID of u. The independent set I
is then defined as I := I0 \ I ′. Clearly, this algorithm can be implemented in a single CONGEST

algorithm. To determine if a node u ∈ I0 is in the set I, it only needs to know which of its neighbors
are in I0 and it needs to know the weights and IDs of those neighbors (recall that we assume that
node weights can be communicated in a single round or that they the node weights of neighbors
are known initially). It is further not hard to see that I is an independent set. For every edge
{u, v} ∈ E, if u ∈ I0 and v ∈ I0, at least one of the two nodes is added to I ′. If w(u) 6= w(v),
then the node of smaller weight is added to I ′, otherwise, the node of smaller ID is added to I ′. It
remains to show that the weight w(I) of the independent set I is as claimed. We clearly have

w(I) = w(I0)− w(I ′) and w(I0) = u(~x).

We therefore need to show that w(I ′) ≤ c(~x). To see this, note that by the construction of I ′,
the inclusion of a node v in I ′ can be blamed on an incident edge {u, v} and every edge with
xu = xv = 1. Further, every such edge can be blamed by at most one node v ∈ I ′ and we also know
that if v ∈ I ′ is blamed on edge {u, v}, then w(u) ≥ w(v). The contribution of edge {u, v} to c(~x)
is equal to min {w(u), w(v)} · xu · xv = w(v) and we therefore have w(I ′) ≤ c(~x) as required.
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Basic Independent Set Rounding Algorithm. We next show that given a fractional solution
~x for which the utility is sufficiently larger than the cost, there is an efficient CONGEST algorithm
to compute a large independent set. Specifically, we prove the following lemma, which we will use
in the remaining algorithms of this section.

Lemma 4.2. Let G = (V,E) be a graph with maximum degree ∆ and node weight function w : V →
N. Further assume that we are given a fractional independent set solution ~x with u(~x) ≥ 2c(~x). If
G is equipped with a ζ-vertex coloring for some ζ ≤ poly(n), for every ε ∈ (0, 1], an independent
set of total weight at least (1/2 − ε)u(~x) can be computed in O(log2(∆/ε) + log∗ ζ) deterministic
rounds in the CONGEST model.

Proof. We first show that the fractional solution ~x can be transformed into a fractional solution ~x′

with no small positive fractional values. Specifically, for all v ∈ V , we set x′v := xv +
ε
2∆ . We then

have

u(~x′) =
∑

v∈V
w(v) ·

(
xv +

ε

2∆

)
= u(~x) + w(V ) · ε

2∆
, (26)

c(~x′) =
∑

{u,v}∈E
min{w(u), w(v)} ·

(
xu +

ε

2∆

)
·
(
xv +

ε

2∆

)

≤
∑

{u,v}∈E

(
min{w(u), w(v)} · xuxv + w(u)xu

ε

2∆
+ w(v)xv

ε

2∆
+

w(u) + w(v)

2
·
( ε

2∆

)2)

≤
∑

{u,v}∈E
min{w(u), w(v)} · xuxv +

∑

v∈V

degG(v) · w(v) · xv · ε
2∆

+
1

2
·
∑

v∈V

degG(v) · w(v) · ε2
4∆2

≤ c(~x) +
ε

2
· u(~x) +w(V ) · ε

2

8∆

≤
(
1

2
+

ε

2

)
· u(~x) + ε

4
·
(
u(~x′)− u(~x)

)
. (27)

In the last inequality, we use that u(~x) ≥ 2c(~x) and we use (26). We now have

u(~x′)− c(~x′) = u(~x) +
(
u(~x′)− u(~x)

)
− c(~x′)

(27)

≥
(
1

2
− ε

2

)
· u(~x) +

(
1− ε

4

)
·
(
u(~x′)− u(~x)

)
≥
(
1

2
− ε

2

)
u(~x′).

In the last inequality, we use that u(~x′) ≥ u(~x) and that 1− ε/4 ≥ 0. By using Lemma 2.5 and the
fact that for all v ∈ V , x′v ≥ ε

2∆ , we directly get that an independent set of size (1−ε)·
(
1
2− ε

2

)
·u(~x′) ≥(

1
2 − ε

)
·u(~x) can be computed deterministically in O(log2(∆/ε) + log∗ ζ) rounds in the CONGEST

model. Here, we also use that the necessary message size of Lemma 2.5 is O(log n), since |Σ| = 2
and log ζ = O(log n)).

4.1 Approximation for Graphs with Bounded Neighborhood Independence

We next show how to efficiently compute a (1 − ε)/β-approximation to the maximum weight
independent set (MWIS) problem of a graph G = (V,E), where β denotes the neighborhood
independence of G (i.e., the maximum number of pairwise non-adjacent neighbors of a node). We
use the following linear program (LP) to define the family of fractional solutions that we use.

max
∑

v∈V
w(v) · xv s.t. ∀v ∈ V :

∑

u∈N+(v)

xu ≤ 1 and xv ≥ 0. (28)
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In the following, let S∗(w) be the value of an optimal solution of LP (28) on graph G with weight
function w. Note that in a graph of neighborhood independence β, for each node u ∈ V , the number
of nodes in N+(u) in any independent set is at most β. Hence, the weight of a maximum weight
independent set is at most β · S∗(w). We therefore need to show that we can efficiently compute
an independent set of weight at least (1− ε)S∗(w). We first show that we can efficiently compute
an independent set of weight at least S∗(w)/4.

Lemma 4.3. Let G = (V,E) be a graph with maximum degree ∆ and node weight function w :
V → N. If G is equipped with an O(∆2)-vertex coloring, an independent set of total weight at least
S∗(w)/4 can be computed in O

(
log2(∆W )

)
deterministic rounds in the CONGEST model.

Proof. First, observe that a (2/3)-approximation of the LP (28) can be computed in O
(
log2(∆W )

)

rounds by using the distributed covering and packing LP algorithm of [KMW06].
Next, note that any feasible solution of (28) satisfies u(~x) ≥ 2c(~x):

c(~x) =
∑

{u,v}∈E
xu · xv ·min{w(u), w(v)}

=
1

2

∑

u∈V

∑

v∈N(u)

xu · xv ·min{w(u), w(v)}

≤ 1

2

∑

u∈V
xu · w(u) ·

∑

v∈N(u)

xv

(28)

≤ 1

2

∑

u∈V
xu · w(u) =

1

2
u(~x),

The claim of the lemma now directly follows from Lemma 4.2.

Note that in Lemma 4.3, the constant 4 could be replaced by any constant larger than 2. In
order to obtain an independent set of weight (1− ε)S∗(w), we however have to combine the lemma
with some additional ideas. To this end, we adapt a technique that has been used in [KKSS20]
(and which is based on the local-ratio technique described in [BNRBY+01]). We first describe
and analyze an abstract iterative process to compute an independent set. Consider a sequence
of independent sets I1, I2, . . . , IT and node weight functions w1, w2, . . . , wT+1 and w′

1, w
′
2 . . . , w

′
T ,

which are constructed as follows. The weight function w1 is equal to the original weight function
w (i.e., w1 := w) and I1 is an arbitrary independent set of G. For each i ∈ {1, . . . , T}, wi+1 and w′

i

are defined as follows:

∀u ∈ V : wi+1(u) = max



0, wi(u)−

∑

v∈N+(u)∩Ii

wi(v)



 and w′

i(u) := wi(u)− wi+1(u).

Further, for i > 1, Ii is an arbitrary independent set of the subgraph of G induced by the nodes
v with wi(v) > 0. Hence, the process runs in phases. In phase i, we start with edge weights wi

and we determine some independent set Ii of the nodes of G with positive weight. We then adjust
the weights as follows. For each node in Ii, we set the weight wi+1 to 0 and for each node that
has neighbors in Ii, we deduce the sum of the weights of the neighboring nodes in Ii (or we set the
weight to 0 in case it would become negative otherwise). The weights w′

i are just defined as the
amount by which the weights are reduced when going from weights wi to weights wi+1. Because
for nodes v ∈ Ii, we set wi+1(v) = 0 and for such nodes, we therefore have wi(v) = w′

i(v). Also
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note that since the weights wi+1 of nodes in independent set Ii are set to 0, the independent sets
Ii for different i are disjoint.

We now define a combined independent set I as follows. We start with I = ∅ and go through
the sets I1, . . . , IT in reverse order (i.e., starting with IT ). When considering set Ij, we add all
nodes of Ij to I, which do not already have a neighbor in I. That is, more formally, we consider
j = T, T − 1, . . . , 1 and in step j, we first define I ′j := Ij \N+(I) and we then set I := I ∪ I ′j . The
following lemma shows that the total weight w(I) of the independent set I can be lower bounded
by the sum of the weights of the independent sets Ii w.r.t. the weight function wi that is used when
computing Ii.

Lemma 4.4.

w(I) ≥
T∑

i=1

wi(Ii) =

T∑

i=1

w′
i(Ii).

Proof. Let Ī := I1 ∪ · · · ∪ IT . Note that we have I ⊆ Ī. For each node u ∈ Ī, we define iu as the
index i ∈ {1, . . . , T} for which v ∈ Ii. We further define a function ν : Ī → I as follows. For u ∈ I,
we set ν(u) = u. Now, consider a node u ∈ Ī \ I. The fact that u was not added to I implies that
there is at least one neighbor v ∈ N(u) such that v was added to I before considering set Iiu , i.e.,
iv > iu. If there are several such nodes, we pick v arbitrarily among them and we set ν(u) = v.
For each node v ∈ I, we further define ν−1(v) :=

{
u ∈ Ī : ν(u) = v

}
. We next show that

∀v ∈ I : w(v) ≥
∑

u∈ν−1(v)

wiu(u) (29)

To see (29), recall the above process. Also recall that iv > iu for all u ∈ ν−1(v). Whenever a
neighbor u of v is added to independent set Ij for some j < iu, the weight of v is reduced by wiu(u).
Note that since v ∈ Iiv , we have wiv(v) > 0 and thus when u is added to Ij, the full weight wj(u)
is reduced from the weight of v. We therefore have

wiu(v) = w(v) −
iu−1∑

j=1

wj(Ij ∩N(v))

Eq. (29) now follows because ν−1(v) ⊆ {v} ∪⋃j<iu
(Ij ∩N(v)). From Eq. (29), we directly get the

claim of the lemma by summing over all nodes in I. For the second part of the claim, note that for
every v ∈ Ii, we have w′

i(v) = wi(v).

Recall that w′
i is the difference between wi and wi+1, i.e., it is the amount by which the weights

wi are decreased after adding independent set Ii to the sequence. The next technical lemma shows
that w.r.t. the weights w′

i, independent set Ii achieves the bound given by the LP (28).

Lemma 4.5.
∀i ∈ {1, . . . , T} , wi(Ii) = w′

i(Ii) ≥ S∗(w′
i).

Proof. We prove this by considering the dual LP of LP (28) on graph G with weight function w′
i:

min
∑

v∈V
yv s.t. ∀v ∈ V :

∑

u∈N+(v)

yu ≥ w′
i(v) and yv ≥ 0. (30)

Note that by the strong duality theorem for linear programs, the optimal value of the dual LP (30)
is equal to the optimal value of LP (28) and thus equal to S∗(w′

i). We next show that a feasible
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solution to (30) is achieved by setting yv = w′
i(v) if v ∈ Ii, yv = 0 otherwise. We need to show that

for all v ∈ V ,
∑

u∈N+(v) yu ≥ w′
i(v). This is clearly true for v ∈ Ii. It is also true if v 6∈ Ii and v has

no neighbor in Ii because in this case w′
i(v) = 0. Let us therefore assume that N(v) ∩ Ii 6= ∅. Note

that in this case, w′
i(v) = min

{
wi(v),

∑
u∈N(v)∩Ii wi(u) =

∑
u∈N(v)∩Ii w

′
i(u)

}
. We therefore have∑

u∈N+(v) yu ≥ w′
i(v) and thus yv = w′

i(v) gives a feasible solution for (30). The objective value of

this feasible solution is exactly w′
i(Ii) = wi(Ii), which is therefore an upper bound on the optimal

value S∗(w′
i) of LP (30).

The following theorem shows that if each independent set Ii is chosen such that wi(Ii) =
Ω(S∗(wi)), then after computing a sequence of O(log(1/ε)) independent sets, the resulting inde-
pendent set I has weight at least (1− ε) · S∗(w).

Lemma 4.6. Let G = (V,E) be a graph with node weights w : V → N s.t. w(v) ≤W for all v ∈ V .
Assume that in the above iterative process, for every i ≥ 1, independent set Ii is chosen such that
wi(Ii) ≥ ρ · S∗(wi) for some given ρ ∈ (0, 1). Then after computing independent sets I1, . . . , IT for
T ≥ ln(1/ε)/ρ, the resulting independent set I has a total weight of w(I) ≥ (1− ε)S∗(w).

Proof. Let I(t) be the independent set that we obtain when running the above process for t ≤ T
steps. That is, I(t) is the independent set that we get when greedily going through the independent
sets It, It−1, . . . , I1. Note that by Lemma 4.4, we have w(I(t)) ≥∑t

i=1 wi(Ii). For t ≥ 0, we define
a potential Υt as

Υt := S∗(w)−
t∑

i=1

wi(Ii)

to measure the progress towards obtaining an independent set of weight w(I) approaching S∗(w).
For all t ≥ 0, we inductively prove the following properties:

(I) : Υt ≤ S∗(wt+1) and (II) : Υt ≤ (1 − ρ)t ·Υ0.

Note that both statements are clearly true for t = 0 (recall that for all v, w1(v) = w(v)). For the
induction step, note first that by assumption, we have that wt(It) ≥ ρS∗(wt) and thus by the induc-
tion hypothesis (property (I) for t−1), wt(It) ≥ ρΥt−1. Since we have Υt = max {0,Υt−1 − wt(It)},
this implies that Υt ≤ Υt−1 − ρΥt−1, which together with the induction hypothesis (property (II)
for t−1) proves the induction step for property (II). To do the induction step for property (I), first
consider three weight functions wa, wb, and wab such that for all v ∈ V , wab(v) = wa(v) + wb(v).
Clearly, for any feasible solution for LP (28), the objective value for weights wab is equal to the
sum of the objective values for weights wa and wb. For the optimal objective values w.r.t. the
three weight functions, we therefore have S∗(wa) + S∗(wb) ≥ S∗(wab). Now recall that we have
w′
t = wt − wt+1 and we therefore have S∗(wt+1) + S∗(w′

t) ≥ S∗(wt). From Lemma 4.5, we know
that S∗(w′

t) ≤ wt(It). We therefore have

S∗(wt+1) ≥ S∗(wt)− S∗(w′
t) ≥ S∗(wt)− wt(It)

≥ S∗(wt)− (Υt−1 −Υt) ≥ Υt−1 − (Υt−1 −Υt) = Υt.

The last inequality follows from the induction hypothesis (property (I) for t−1). This also completes
the induction step for property (I) for t.

By Lemma 4.4 and the definition of ΥT , we have w(I) ≥ Υ0 − ΥT . Note that we have T ≥
ln(1/ε)/ρ ≥ ln(1/ε)/ ln(1/(1−ρ)). This holds because ln(1/(1−ρ)) =

∑∞
i=1 ρ

i/i! ≥ ρ. By property
(II) for t = T , we therefore have

ΥT ≤ (1− ρ)T ·Υ0 = (1− ρ)ln(1/ε)/ ln(1/(1−ρ)) ·Υ0 = ε ·Υ0.

We therefore have w(I) ≥ (1− ε) ·Υ0 = (1− ε) · S∗(w) as required.
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Proof of Theorem 1.3, Part 1: The following lemma proves result (1) of Theorem 1.3.

Lemma 4.7. Let G = (V,E) be a graph with maximum degree ∆, node weight function w : V →
R≥0, neighborhood independence β, and assume that G is equipped with a proper ξ-vertex coloring.
For any ε > 0, there is deterministic CONGEST algorithm that computes a (1−ε)/β-approximation
to the maximum weight independent set problem on G. The round complexity of the algorithm is
O
(
log2(∆W ) · log(1/ε) + log∗ ξ

)
.

Proof. At the start, we compute a proper O(∆2)-vertex coloring of G. This can be done in O(log∗ ξ)
deterministic rounds in the CONGEST model by using a classic algorithm of [Lin92]. We then use
the above framework, where in each step i, we use the algorithm of Lemma 4.3 to compute an
independent set Ii of weight wi(Ii) ≥ S∗(wi)/4. By Lemma 4.3 and by using the initial O(∆2)-
coloring, the round complexity for computing each such independent set Ii is O

(
log2(∆W )

)
. By

Lemma 4.6, we have to do O(log(1/ε)) steps to obtain an independent set of weight (1− ε)S∗(w).
To see that this is a (1−ε)/β-approximation, note that in a graph of neighborhood independence β,
clearly the neighborhoodN+(v) of every node v can contain at most β nodes of any independent set.
Hence, if we replace the right-hand sides of all constraints in LP (28) by β, the LP is a relaxation
of the maximum weight independent set problem (any independent set satisfies the constraints).
Clearly, increasing the right-hand sides of all constraints to β increases the optimal objective value
by exactly a factor β. Consequently, the weight of an optimal weighted independent set in a graph
of neighborhood independence β is at most β · S∗(w). This completes the proof.

Proof of Theorem 1.3, Part 2: Result (2) of Theorem 1.3 can be proven in a similar way. The
following lemma proves (2) by adapting the inductive argument in Lemma 4.6.

Lemma 4.8. Let G = (V,E) be a graph with maximum degree ∆ and node weight function w :
V → R≥0, and assume that G is equipped with a proper ξ-vertex coloring. Then, for any ε > 0,
there is deterministic CONGEST algorithm that computes an independent set of G of total weight
at least (1− ε) · w(V )

∆+1 in O(log2 ∆ · log(1/ε) + log∗ ξ) rounds.

Proof. As a initial step, we compute a proper O(∆2)-vertex coloring of G in time O(log∗ ξ) by
using an algorithm of [Lin92]. Now, we again use the method of iteratively computing independent
sets I1, . . . , IT as above. First note that for a given weight function w : V → N, we can efficiently
compute an independent set of weight w(V )/(4(∆ + 1)) in O(log2 ∆ + log∗(∆2)) = O(log2 ∆)
rounds by using Lemma 4.3. To see this, observe that setting the fractional value of all nodes v
to xv = 1/(∆ + 1) gives a feasible solution to LP (28) with objective value w(V )/(∆ + 1). We
therefore in particular have S∗(w) ≥ w(V )/(∆ + 1) and for W ≤ poly(∆), the claim of the lemma
directly follows from Lemma 4.6. In the following, we show that by using a similar argument as in
the proof of Lemma 4.6, we can also get a round complexity of O(log2 ∆+ log∗ ξ).

As discussed, we use the iterative framework from above. In each iteration t, we choose the
independent set It such that wt(It) ≥ wt(V )/(4(∆ + 1)). As discussed above, we can find such an
independent set It in O(log2 ∆) rounds. We again define a potential Υt that measures how close
we are to achieving our goal:

∀t ≥ 0 : Υt :=
w(V )

∆ + 1
−

t∑

i=1

wi(Ii).

For all t ≥ 0, we inductively prove the following two properties:

(i) : Υt ≤
wt+1(V )

∆ + 1
and (ii) : Υt ≤

(
1− 1

4

)t

·Υ0.
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Both statements are clearly true for t = 0. Let us therefore consider the induction step from t− 1
to t. We have

Υt = Υt−1 − wt(It) ≤ Υt−1 −
wt(V )

4(∆ + 1)
≤ Υt−1 ·

(
1− 1

4

)
.

The first inequality follows from wt(It) ≥ wt(V )/(4(∆+1)) and the second inequality follows from
the induction hypothesis for t−1 (part (i)). Together with the induction hypothesis (part (ii)), the
above inequality directly implies statement (ii) for t. To also prove statement (i) for t, recall that
w′
t(V ) = wt(V )−wt+1(V ). Also note that we have w′

t(V ) ≤ (∆+1) ·wt(It) because for every node
v ∈ It, the weight wt(v) is deducted (and thus added to w′

t) for at most ∆+ 1 nodes. We therefore

have wt(It) ≥ wt(V )
∆+1 −

wt+1(V )
∆+1 . We thus obtain

Υt = Υt−1 − wt(It) ≤ Υt−1 +

(
wt+1(V )

∆ + 1
− wt(V )

∆ + 1

)
≤ wt+1(V )

∆ + 1
.

The last step follows from the induction hypothesis (part (i)). For T = log4/3(1/ε), statement (ii)

implies ΥT ≤ εΥ0 = ε· w(V )
∆+1 and Lemma 4.4 then gives w(I) ≥ (1−ε)· w(V )

∆+1 as required. The overall

time complexity is O(log∗ ξ) for the initial O(∆2)-coloring and O(log2∆ · log(1/ε)) for computing
independent sets I1, . . . , IT and then independent set I.

We conclude Section 4.1 by showing that our method yields an alternative to Fischer’s O(log2∆·
log n)-round deterministic CONGEST algorithm [Fis20] for computing a maximal matching of a
graph. This show that all the four classic symmetry breaking problems (MIS, maximal matching,
(∆+1)-vertex coloring, and (2∆−1)-edge coloring) can be solved by the same general method and
in all cases, the method yields the best current distributed algorithms.

Theorem 4.9. A maximal matching in an n-node graph G = (V,E) of maximum degree ∆ can be
computed deterministically in O(log2 ∆ · log n) rounds in the CONGEST model.

Proof Sketch. We start by computing an O(∆2)-edge coloring. A simple way to do this in O(log∗ n)
rounds in the CONGEST model is the following (also see [Kuh09]). Each node v first uniquely labels
its deg(v) edges with the number 1, . . . ,deg(v) in an arbitrary way. In this way, each edge obtains
two numbers in [∆], and we thus have a coloring of the edges with O(∆2) colors. The coloring is
however not proper. For each of the colors, each node can however have at most 2 incident edges.
Therefore, the color classes induce paths and cycles. Those paths and cycles can be properly
edge-colored with 3 colors in O(log∗ n) rounds by using a standard algorithm [CV86,Lin92].

Given an O(∆2)-edge coloring, we next show that a constant factor approximation for the
maximum cardinality matching problem can be computed in O(log2∆) rounds. One can then
obtain a maximal matching by repeating O(log n) times. The matching approximation is computed
by using the rounding approach for graphs with bounded neighborhood independence.

As a first step, we need to be able to compute a constant factor approximate feasible solution
for LP (28) on the line graph of G (and with all weights being equal to 1). This can be done by
slightly adapting a standard fractional matching approximation algorithm (see, e.g., [Fis20]). We
first assign a fractional value ye = 1/(2∆) to each edge. We call a node saturated if the sum of the
fractional values of its edges is at least 1/4 and we call an edge frozen if at least one of its nodes is
saturated. We now proceed in O(log∆) phases, where in each phase, we double the fractional value
of all non-frozen edges. At the end all edges are frozen and it is not hard to see that this gives a 1/4
approximation for LP (28) (multiplying each fractional edge value with 4 gives a feasible solution
of the dual LP and in the unweighted case, LP (28) and its dual LP both have the same objective
function).
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We now just have to show that the rounding of this fractional solution to an integral solution
can be done in O(log2 ∆) rounds. For this, observe that we can use the algorithm for rounding
in d2-multigraphs (Definition 2.1): An edge of the line graph of G is defined by a pair of edges
that share a common node and we can thus use this node as the managing node of the edge. We
therefore obtain at least the same round complexity as for d2-multigraphs. For the case of rounding
independent sets, we have |Σ| = 2 and as a consequence, the only expensive step is the computation
of the weighted relative average defective coloring. Once the defective coloring is given, doing one
rounding step for the edges of a single color can be done in O(1) CONGEST rounds (cf. the proof of
Lemma 2.7). The computation of the defective coloring in Lemma 2.6 consists of two parts. First,
one computes a weighted δ-relative defective coloring with O(1/δ2) colors and one then reduces the
number of colors to O(1/δ) by adapting the algorithm of [BEG18]. The second step requires only
O(1/δ) rounds in d2-multigraphs (cf. the proof of Lemma 2.6) and only the first step is expensive
and requires the additional log log∆ factor (note that in our case q = O(∆)). However, on line
graphs, a weighted δ-relative defective coloring can be computed fast by using a similar approach
as for computing a proper O(∆2)-edge coloring at the beginning of the algorithm.

We proceed as follows. Each node v first marks all its edges of weight more than a δ/4-fraction
of the total weight of all of v’edges. As every node has at most 4/δ such edges, those edges can be
properly colored with O(1/δ2) colors by using the same algorithm as above. An edge might only
be marked from one of its nodes, however, the algorithm also works if an edge only gets a number
in [∆] from one side. We now proceed with all the edges that are not yet colored and we use a
new set of O(1/δ2) colors for those. Each node v now labels its edges with numbers between 1
and 4/δ in such a way that each label is given to edges of total weight at most a δ/2-fraction of
the initial total weight of all of v’s edges. This is possible by greedily assigning the labels. Now
for each combination of two labels, at most at δ-fraction of the total weight of v’s edges have this
combination of labels (because v must assign one of the two labels). The algorithm can clearly be
implemented in O(log∗ ∆) rounds in the CONGEST model (with a given initial proper O(∆2)-edge
coloring.

4.2 Approximating a Generalized Caro-Wei-Turán Bound

It is well-known that there exist independent sets of size at least
∑

v∈V
1

deg(v)+1 (sometimes known

as the Caro-Wei bound [Wei81,Gri83]). This can be lower bounded by n/degavg, which is known
as the Turán bound [Tur41]. Moreover, the Caro-Wei independent set can be computed sequen-
tially in polynomial time by a simple greedy algorithm (see, e.g., [HR97]) and a simple random-
ized one-round algorithm (one round of the classic Luby algorithm [Lub86]) achieves an indepen-
dent set of this size in expectation. For node-weighted graphs, a simple generalization of this

greedy algorithm [KOHH05] gives an independent set of weight
∑

v∈V
(w(v))2

w(N+(v)) ≥
w(V )

wdegavg+1 , where

wdegavg =
∑

v∈V w(N(v))

w(V ) =
∑

v∈V w(v) deg(v)

w(V ) .4 We next show that there is an efficient deterministic

CONGEST algorithm to get within an
(
1
2 − ε

)
-factor of those bounds.

Proof of Theorem 1.3, Part 3: The following lemma proves (3), the third claim of Theorem 1.3.

Lemma 4.10. Let G = (V,E) be a graph with node weights w : V → N and let ~x be a vector of

fractional node values xv = w(v)
Wv

, where Wv := w(N+(v)). Then, for any ε > 0, we can determinis-

4The inequality
∑

v∈V

(w(v))2

w(N+(v))
≥ w(V )

wdegavg+1
can be obtained by a simple application of the Cauchy-Schwarz

inequality (
∑

i
x2
i )(

∑

i
y2
i ) ≥ (

∑

i
xiyi)

2 by assigning xv =
√

w(N+(v)) and yv = w(v)√
w(N+(v))

.
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tically compute an independent set of total weight
(
1
2−ε

)
·∑v∈V

(w(v))2

Wv
in time O

( log2(∆/ε)
ε +log∗ n

)

in the CONGEST model.

Proof. Recall that u(~x) =
∑

v∈V w(v) · xv and c(~x) =
∑

{u,v}∈E min {w(u), w(v)} · xu · xv. We first
show that for the fractional values xv as given, we have u(~x) ≥ 2c(~x). For this, we first give an
upper bound on the cost c(e, ~x) = min {w(u), w(v)} · xu · xv of a single edges e = {u, v}. We have

c(e, ~x) = w(u) · w(v) ·min {w(u), w(v)} · 1

Wu ·Wv

≤ w(u) · w(v) ·min {w(u), w(v)} · 1
2
·
[

1

W 2
u

+
1

W 2
v

]
(31)

≤ 1

2
·
[
(w(u))2 · w(v)

W 2
u

+
(w(v))2 · w(u)

W 2
v

]
. (32)

Inequality (31) follows because
(

1
Wu
− 1

Wv

)2
= 1

W 2
u
+ 1

W 2
v
− 2

Wu·Wv
≥ 0. We can now use this to

obtain an upper bound on the total cost c(~x):

c(~x) =
∑

e={u,v}∈E
c(e, ~x)

(32)

≤
∑

{u,v}∈E

1

2
·
[
(w(u))2 · w(v)

W 2
u

+
(w(v))2 · w(u)

W 2
v

]

=
1

2
·
∑

u∈V

∑

v∈N(u)

(w(u))2 · w(v)
W 2

u

=
1

2
·
∑

u∈V

(w(u))2

Wu
︸ ︷︷ ︸

=u(~x)

·
∑

v∈N(u)

w(v)

Wu

︸ ︷︷ ︸
≤1

≤ 1

2
· u(~x).

The claim of the lemma now follows directly from Lemma 4.2.

5 Minimum Set Cover

In this section we use our framework to give a fast deterministic algorithm for the set cover problem.
In this problem, the input consists of a universe of elements and a family of their subsets. We want
to find the smallest subfamily covering all elements. We will use the following bipartite-graph
formulation of the problem.

Definition 5.1. In the set cover problem, the input consists of a bipartite graph G with V (G) =
U ⊔ V . The goal is to find the smallest possible subfamily Vout ⊆ V such that N(Vout) = U .

The section is dedicated to the proof of the following theorem.

Theorem 5.1. Consider an instance of a set cover problem where maxu∈U deg(u) ≤ t (i.e., each
element u ∈ U is present in at most t sets) and maxv∈V deg(v) ≤ s (i.e., each set v ∈ V contains
at most s elements). There is a distributed O(log s)-approximation algorithm for the problem with
round complexity of

1. O(log s · log2 t+ log∗ n) in the LOCAL model,
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2. O
(
log s ·

(
log2 t · log log t+ log t · log∗ n

))
in the CONGEST model.

The rest of this section is devoted to the proof of Theorem 5.1. The outline of the proof is
similar to the MIS algorithm from Section 3: We first discuss how this problem can be solved using
a randomized algorithm, then we construct a natural pessimistic estimator for the randomized
algorithm, and finally we verify that the estimator satisfies the requirements of Lemma 2.7.

A Randomized Set Cover Algorithm We start with an informal discussion of a randomized
algorithm that we derandomize to get Theorem 5.1. We rely on the following result of [KMW06]
for the fractional variant of the set cover problem. There, we ask for a function x : V → [0, 1]
that assigns a fractional value to each set v ∈ V and we require each element u ∈ U to satisfy that∑

v∈N(u) xv ≥ 1. Note that a solution to the set cover problem directly implies a solution to its
fractional variant.

Theorem 5.2 (Kuhn, Moscibroda, and Wattenhofer [KMW06]). There exists a distributed algo-
rithm that computes a 2-approximate solution to the fractional set cover problem in O(log s · log t)
rounds of the CONGEST model.

Consider the following randomized algorithm that has τ = O(log s) rounds and in each round
it simply constructs a subset V ′

i ⊆ V by including each v ∈ V ′
i with probability xv. Note that if

we define V ′ =
⋃τ

i=1 V
′
i , we have for the expected size of V ′ that E[xV ′ ] = O(log s) · OPT . On

the other hand, we observe that whenever we consider some node u not covered by V ′
1 ∪ · · · ∪ V ′

i ,
i.e., u 6∈ N(V ′

1 ∪ · · · ∪ V ′
i ), we have u ∈ N(V ′

i+1) with constant probability because
∑

v∈N(u) xv ≥ 1.
Hence, choosing τ = O(log s) large enough, we get that the expected number of uncovered elements
is E [U \N(V ′)] ≤ |U |/s.

This means that although V ′ is not expected to be a solution to the set cover problem, we can
fix this issue as follows. Observe that for the size of the optimum solution OPT we have

OPT ≥ |U |/s (33)

because every subset of V smaller than |U |/s would cover less than |U |/s · s = |U | elements. This
means that we can define V ′′ by letting each uncovered element of U \N(V ′) choose an arbitrary
neighboring node v ∈ V that we add to V ′′. The set V ′ ∪ V ′′ clearly covers all nodes of U and its
expected size is at most |V ′|+ |U \N(V ′)| = O(log s) · OPT + |U |/s = (1 +O(log s)) · OPT .

The Deterministic Algorithm In Algorithm 3, we present the derandomized version of the
above randomized procedure. In the rest of the section, we first explain the algorithm, then verify
that we can use Lemma 2.5, prove that the algorithm is O(log s)-approximate, and finally discuss
its implementation in the LOCAL and CONGEST models.

Let us explain the intuition behind Algorithm 3. The issue with the derandomization is that
we want to optimize two conflicting goals. On one hand, we want to cover as many elements of
the remaining set Ui as possible. This means that we want to round our fractional solution x
to maximize the value of the following pessimistic lower bound for |Ui| \ |Ui+1| coming from the
pairwise analysis:

∑

u∈Ui

∑

v∈V


xv −

∑

v′ 6=v∈V
xv′


 .

On the other hand, we want to minimize the number of selected nodes of V , i.e.,
∑

v∈V
xv.
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To optimize these two conflicting expressions, we simply subtract the second one from the first
one and invoke Lemma 2.5 that can deal with summing terms of different signs. An issue with
this approach is that to optimize both expressions at once, they should be of the same order of
magnitude. The value of |Ui| however gradually decreases from |U | to |U |/sO(1) until we can finish
by constructing the set V ′′ as in the randomized algorithm. This is why in Algorithm 3 we slowly
increase the relative weight of the first optimized expression with respect to the second one (see

Lines 8 and 9). We also add a constant term of 10
∑

v∈V xv to the utility function u(~̃x) so that our
functions satisfy u(~x)− c(~x) ≥ u(~x)/2 which is needed to apply Lemma 2.5.

Algorithm 3 Deterministic Set Cover

Input: A bipartite graph G with V (G) = U ⊔ V .
Output: A set Vout ⊆ V with N(Vout) = U

1: τ ← O(log s)
2: ~x0 : V → [0, 1] is a 2-approximate fractional set cover of [KMW06]
3: For every v ∈ V , define xv ← x0(v)/10 unless x0(v) ≤ 1/(2t) in which case xv ← 0.
4: For every u ∈ Ui define N∗(u) ⊆ N(u) such that 1

20 ≤
∑

v∈N∗(u) xv ≤ 1
5 (see Eq. (36))

5: Compute a 2-hop coloring of G with ζ = (st)2 colors using Linial’s algorithm [Lin87]
6: for i← 1, . . . , τ do
7: Ui ← U \

(
V ′
1 ∪ · · · ∪ V ′

i−1

)

8: Define u(~̃x)← 1
1.01τ−i ·

∑
u∈Ui

∑
v∈N∗(u) x̃v + 10

∑
v∈V xv

9: Define c(~̃x)← 1
1.01τ−i ·

∑
u∈Ui

∑
v∈N∗(u)

∑
v′ 6=v∈N∗(u) x̃vx̃v′ +

∑
v∈V x̃v

10: By plugging ~̃x = ~x, use Lemma 2.5 with u, c, ζ, ε = 1
100 , µ = 1

2 , λmin = 1
2t to round ~x to ~x′i

11: Define V ′
i ← {v ∈ V : x′i(v) = 1}

12: Define V ′′ by letting each element of U \N (V ′
1 ∪ · · · ∪ V ′

τ ) choose an arbitrary neighbor.
13: return Vout = V ′

1 ∪ · · · ∪ V ′
τ ∪ V ′′

Properties of Fractional Weights Let us first discuss the properties of the fractional solution
~x that we repeatedly round inside Algorithm 3. By definition, ~x satisfies for every u ∈ U that

xv ∈ {0} ∪ [1/(20t), 1/10], (34)

so in particular ~x is t-fractional. Next, we note that for every u ∈ U we have

∑

v∈N(u)

xv ≥ 1/20. (35)

To see this, let Nsmall(u) ⊆ N(u) be the subset of nodes v ∈ N(u) such that x0(v) ≤ 1/(2t).
We have

∑
v∈Nsmall(u)

xv ≤ t · 1/(2t) ≤ 1/2 where we used |Nsmall(u)| ≤ |N(u)| ≤ t. Hence∑
v∈N(u) xv ≥

∑
v∈N(u)\Nsmall(u)

xv ≥ (1/2)/10 = 1/20.
In view of Eq. (35), in Line 4 we can defineN∗(u) for each u ∈ U by repeatedly adding neighbors

of u to N∗(u) until
∑

v∈N∗(u) xv ≥ 1/20. By Eq. (34) we then get
∑

v∈N∗(u) xv ≤ 1/20+1/10 ≤ 1/5.
Hence, we have

1/20 ≤
∑

v∈N∗(u)

xv ≤ 1/5 (36)
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as required in Line 4. Finally, observe that

∑

v∈V
xv ≤ 2 ·OPT/10 (37)

where we use that x0 is 2-approximation of OPT .

Checking Assumptions for Lemma 2.5 We continue by verifying the assumptions of Lemma 2.5.
Eq. (34) implies that λmin = 1/(20t) is the smallest nonzero value to round. Next, we need to prove
that u(~x)− c(~x) ≥ u(~x)/2. To see this, note that for every u we have

∑

v∈N∗(u)

∑

v′ 6=v∈N∗(u)

xvxv′ ≤
∑

v∈N∗(u)


xv ·




∑

v′∈N∗(u)

xv′




 ≤

∑

v∈N∗(u)

xv/5 (38)

using Eq. (36). That is, the first term of c(~x) is dominated by the first term of u(~x). Similarly, by
definition the second term of c(~x) is dominated by the second term in u(~x) and we thus have

c(~x) ≤ u(~x)/5. (39)

Analyzing One Step With Pessimistic Estimators The utility and cost functions u(~x) and
c(~x) correspond to a pessimistic estimator for the original randomized procedure. Namely, consider
sampling each v ∈ Si with probability xv that yields a binary vector ~x′. For a fixed u ∈ Ui let
Eu,v be the event that v is the only neighbor of u in N∗(u) that is sampled. By union bound the
indicator of the event Ru(~x) that u ∈ Ui gets covered by a set selected in x̃′ can be bounded for
any ~x′ as

Ru(~x′) ≥
∑

v∈N∗(u)


x′v −

∑

v′ 6=v∈N∗(u)

x′vx
′
v′


 (40)

For our rounded weights x′, this fact implies that after we plug in the definition of u(~x′), c(~x′)
we have

u(~x′)− c(~x′)− 10
∑

v∈V
xv ≤

1

1.01τ−i

∑

u∈Ui

Ru(~x′)−
∑

v∈V
x′(v) =

1

1.01τ−i
(|Ui| − |Ui+1|)− |V ′

i | (41)

On the other hand, let us now bound the value of u(~x′)− c(~x′) from the other side by comparing
it with the ideal randomized process corresponding to fractional weights ~x. For those we have

u(~x)− c(~x)− 10
∑

v∈V
xv =

1

1.01τ−i

∑

u∈Ui

∑

v∈N∗(u)


xv −

∑

v′ 6=v∈N∗(u)

xvxv′


− 10

∑

v∈V
xv (42)

≥ 1

1.01τ−i
· |Ui| ·

4

5
· 1
20
− 2OPT

where we first used Eq. (38) to get rid of the quadratic term and then used the lower bound on∑
v∈N(u) xu ≥ 1/20 from Eq. (36). We also used Eq. (37). We now use Lemma 2.5 to relate x′ with
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x. Our choice of εL2.5 = 1/100 implies that

u(~x′)− c(~x′)− 10
∑

v∈V
xv ≥

99

100
· (u(~x)− c(~x))− 10

∑

v∈V
xv (43)

=
99

100
·
(
u(~x)− c(~x)− 10

∑

v∈V
xv

)
− 0.1

∑

v∈V
xv

≥ 0.02 · 1

1.01τ−i
|Ui| − 3OPT

where the last inequality follows from Eq. (42) together with the fact that 0.1
∑

v∈V xv < OPT by
Eq. (37). By comparing Eq. (41) with Eq. (43), we conclude that

1

1.01τ−i
(|Ui| − |Ui+1|)− |V ′

i | ≥ 0.02 · 1

1.01τ−i
|Ui| − 3OPT (44)

Finishing the analysis To analyze the progress of the algorithm, we define the following poten-
tial function Φ in every step.

Definition 5.2. For every 0 ≤ i ≤ τ = O(log s), we define

Φi =
1

1.01τ−i
· |Ui|+ |V ′

1 |+ |V ′
2 |+ · · ·+ |V ′

i−1|+ 3(τ − i) ·OPT

At the very beginning before the first step of the algorithm, we have |U0| = |U | and |S0| = 0,
hence Φ0 =

1
1.01τ · |U |+ 2τ ·OPT . Choosing τ = O(log s) large enough, we have Φ0 ≤ |U |/s+ 2τ ·

OPT ≤ 3τ ·OPT using Eq. (33).
We will now prove that the potential Φ is monotone, that is Φi+1 ≤ Φi for every 1 ≤ i ≤ τ .

Let us first see why the proof of monotonicity of Φ also finishes the analysis. It implies that
Φτ ≤ 3τ · OPT . Using the definition of Φ, this means that |Uτ | + |V ′

1 | + · · · + |V ′
τ | ≤ 3τ · OPT .

Since |Uτ | = |V ′′|, we conclude that |Vout| ≤ 3τ ·OPT = O(log s) ·OPT as needed.
To see that Φ is monotone, we write the difference of two consecutive potentials as

Φi − Φi+1 =
1

1.01τ−i
(|Ui| − 1.01|Ui+1|)− |V ′

i |+ 3OPT (45)

=
1

1.01τ−i
(|Ui| − |Ui+1|)− |V ′

i |+ 3OPT − 0.01|Ui+1|/1.01τ−i (46)

(47)

Applying Eq. (44), we conclude that

Φi − Φi+1 ≥ 0.02 · 1

1.01τ−i
|Ui| − 3OPT + 3OPT − 0.01|Ui+1|/1.01τ−i ≥ 0 (48)

and we are done.

Implementation and Round Complexity We begin by discussing the implementation in the
LOCAL model. The algorithm of [KMW06] needs O(log s · log t) rounds and we construct the 2-
hop coloring of G with ζ = (st)2 colors in O(log∗ n) rounds using Linial’s ∆2-coloring algorithm
[Lin87]. The complexity of every subsequent step is dominated by the call to Lemma 2.5 with round
complexity O(log2(1/λmin) + log∗(ζ)) = O(log2 t+ log∗(st)). We note that if the first term in this
expression does not dominate the second one, we have in particular t < log s. In that case, we can
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however achieve O(log s)-approximation by simply taking all nodes v ∈ V with x0(v) ≥ 1/t to Vout.
This solution clearly covers all elements of U since every u ∈ U has necessarily a neighbor with
x0(v) ≥ 1/|N(u)| ≥ 1/t. Moreover, its weight is at most t-times larger than the fractional weight
x. Hence, we may assume that O(log2 t + log∗(st)) = O(log2 t) and we are getting an algorithm
with round complexity O(log s · log2 t+ log∗ n) as needed.

We continue by discussing the implementation in the CONGEST model. There, we simply
replace all calls of Lemma 2.5 by calls to Lemma 2.7. Another change that we do is that we do
not construct the 2-hop coloring with ζ = (st)2 colors at the beginning, but simply use the unique
identifiers instead, i.e., we have ζ = nO(1). We are using the d2-multigraph H where each node
u ∈ U simulates a virtual edge between every pair of its neighbors v, v′. The round complexity of
one round of the algorithm becomes O

(
log s ·

(
log2 t · log log t+ log t · log∗ n

))
.

Remark 5.3. We believe that one can directly generalize Theorem 5.1 to give an O(log(sW ))-
approximation for the more general min cost set cover problem. There, each node v ∈ V comes
with a cost w(v) such that 1 ≤ w(v) ≤ W . The goal is to find a subset Vout ⊆ V of smallest total
cost such that N(Vout) = U .

We discuss the changes that need to be done in Algorithm 3. We use a min-cost version of the
fractional algorithm of [KMW06] that needs O(log(sW ) · log t) rounds. Then, on Lines 8 and 9
in Algorithm 3 we change the utility 10

∑
v∈V xv to 10

∑
v∈V w(v) · xv and the cost

∑
v∈V ) x̃v to∑

v∈V )w(v) · x̃v. Finally, we run the algorithm for τ = O(log(sW )) steps. This way, we have

|U \ N(V1 ∪ · · · ∪ Vτ )| ≤ |U |/(sW ) which implies that w(V ′′) ≤ OPT . The distributed complexity
of this algorithm is

1. O(log(sW ) · log2 t+ log∗ n) in the LOCAL model,

2. O
(
log(sW ) ·

(
log2 t · log log t+ log t · log∗ n

))
in the CONGEST model, assuming W ≤ nO(1).
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[GMRV20] Christoph Grunau, Slobodan Mitrović, Ronitt Rubinfeld, and Ali Vakilian. Improved
local computation algorithm for set cover via sparsification. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2993–3011. SIAM,
2020.

[Gri83] Jerrold R Griggs. Lower bounds on the independence number in terms of the degrees.
Journal of Combinatorial Theory, Series B, 34(1):22–39, 1983.

[Har19] D. G. Harris. Distributed local approximation algorithms for maximum matching in
graphs and hypergraphs. In Proc. 60th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 700–724, 2019.
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