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Abstract

A seminal work of Jerrum (1992) showed that large cliques elude the Metropolis process.
More specifically, Jerrum showed that the Metropolis algorithm cannot find a clique of size
k = Θ(nα), α ∈ (0, 1/2), which is planted in the Erdős-Rényi random graph G(n, 1/2), in
polynomial time. Information theoretically it is possible to find such planted cliques as soon as
k ≥ (2 + ε) logn.

Since the work of Jerrum, the computational problem of finding a planted clique in G(n, 1/2)
was studied extensively and many polynomial time algorithms were shown to find the planted
clique if it is of size k = Ω(

√
n), while no polynomial-time algorithm is known to work when

k = o(
√
n). The computational problem of finding a planted clique of k = o(

√
n) is now widely

considered as a foundational problem in the study of computational-statistical gaps. Notably,
the first evidence of the problem’s algorithmic hardness is commonly attributed to the result of
Jerrum from 1992.

In this paper we revisit the original Metropolis algorithm suggested by Jerrum. Interestingly,
we find that the Metropolis algorithm actually fails to recover a planted clique of size k = Θ(nα)
for any constant 0 ≤ α < 1, unlike many other efficient algorithms that succeed when α > 1/2.
Moreover, we strengthen Jerrum’s results in a number of other ways including:

• Like many results in the MCMC literature, the result of Jerrum shows that there exists
a starting state (which may depend on the instance) for which the Metropolis algorithm
fails to find the planted clique in polynomial time. For a wide range of temperatures, we
show that the algorithm fails when started at the most natural initial state, which is the
empty clique. This answers an open problem stated in Jerrum (1992). It is rather rare to
be able to show the failure of a Markov chain starting from a specific state.

• We show that the simulated tempering version of the Metropolis algorithm, a more sophis-
ticated temperature-exchange variant of it, also fails at the same regime of parameters.

Our results substantially extend Jerrum’s result. Furthermore, they confirm recent predic-
tions by Gamarnik and Zadik (2019) and Angelini, Fachin, de Feo (2021). Finally, they highlight
the subtleties of using the sole failure of one, however natural, family of algorithms as a strong
sign of a fundamental statistical-computational gap.
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1 Introduction

The problem of finding in polynomial-time large cliques in the n-vertex Erdős-Rényi random graph
G(n, 1/2), where each edge is present independently with probability 1/2, is a fundamental open
problem in algorithmic random graph theory [Kar79]. In G(n, 1/2) it is known that there is a clique
of size (2 − o(1)) log n with high probability (w.h.p.) as n → +∞, and several simple polynomial-
time algorithms can find a clique of size (1 + o(1)) log n w.h.p. which is nearly half the size of
the maximum clique (e.g. see [GM75]). (Note that here and everywhere we denote by log the
logarithm with base 2.) Interestingly, there is no known polynomial-time algorithm which is able
to find a clique of size (1 + ε) log n for some constant ε > 0. The problem of finding such a clique
in polynomial-time was suggested by Karp [Kar79] and still remains open to this day.

Jerrum’s result and the planted clique model Motivated by the challenge of finding a
clique in G(n, 1/2), Jerrum in [Jer92] established that large cliques elude the Metropolis process in
G(n, 1/2). Specifically, he considered the following Gibbs Measure for β > 0, G ∼ G(n, 1/2)

πβ(C) ∝ exp(β|C|), (1)

where C ⊆ V (G) induces a clique in the instance G. Notice that since β > 0, by definition πβ assigns
higher mass on cliques of larger size. Jerrum considered the Metropolis process with stationary
measure πβ, which is initialized in some clique, say X0 of G. Then the process moves “locally”
between cliques which differ in exactly one vertex. In more detail, every step of the Metropolis
process is described as follows (see also Algorithm 1). Choose a vertex v ∈ V uniformly at random.
If v ∈ Xt where Xt is the current clique, then let Xt+1 = Xt \ {v} (a “downward” step) with
probability e−β and let Xt+1 = Xt with the remaining probability; else if v /∈ Ct and Xt ∪ {v}
is a clique, then let Xt+1 = Xt ∪ {v} (an “upward” step); otherwise, let Xt+1 = Xt. For this
process, Jerrum established the negative result that it fails to reach a clique of size (1 + ε) log n
in polynomial-time for any constant ε > 0. We note that, as customary in the theory of Markov
chains, the failure is subject to the Metropolis process being “worst-case initialized”, that is starting
from some “bad” clique X0. This is a point we revisit later in this work.

The planted clique problem was introduced by Jerrum in [Jer92] in order to highlight the failure
of the Metropolis process. For k ∈ N, k ≤ n the planted clique model G(n, 1/2, k) is defined by first
sampling an instance of G(n, 1/2), then choosing k out of the n vertices uniformly at random and
finally adding all the edges between them (if they did not already exist from the randomness of
G(n, 1/2)). The set of k chosen vertices is called the planted clique PC. It is perhaps natural to
expect that the existence of PC in G can assist the Metropolis process to reach faster cliques of
larger size. Yet, Jerrum proved that as long as k = ⌊nα⌋ for some constant α < 1/2 the Metropolis
process continues to fail to find a clique of size (1 + ε) log n in polynomial-time, for any ε > 0. As
he also noticed when α > 1/2 one can actually trivially recover PC from G via a simple heuristic
which chooses the top-k degrees of the observed graph (see also [Kuč95]). In particular, one can
trivially find a clique of size much larger than log n when α > 1/2. Importantly though, he never
proved that the Metropolis process actually succeeds in finding large cliques when α > 1/2, leaving
open a potentially important piece of the performance of the Metropolis process in the planted
clique model. In his words from the conclusion of [Jer92]:

“If the failure of the Metropolis process to reach (1 + ε) log n-size cliques could be
shown to hold for some α > 1/2, it would represent a severe indictment of the Metropolis
process as a heuristic search technique for large cliques in a random graph.”

In this work, we seek to investigate the performance of the Metropolis process for all α ∈ (0, 1).

1



Algorithm 1: Metropolis Process [Jer92]

Input: a graph G, a starting clique X0 ∈ Ω, stopping time T
for t = 1, . . . , T do

Pick v ∈ V uniformly at random;
C ← Xt−1 ⊕ {v};
if C ∈ Ω then

Xt ←
{
C, with probability min{1, exp(β(|C| − |Xt|))};
Xt−1, with remaining probability;

else
Xt ← Xt−1;

end

end
Output: XT

The planted clique conjecture Following the work of Jerrum [Jer92] and Kucera [Kuč95] the
planted clique model has received a great deal of attention and became a hallmark of a research
area that is now called study of statistical-computational gaps. The planted clique problem can be
phrased as a statistical or inference problem in the following way: given an instance of G(n, 1/2, k)
recover PC, the planted clique vertices. It is impossible to recover the clique when it is of size
k < (2 − ε) log n for any constant ε > 0 (see e.g. [ACV14]), but possible information theoretically
(and in quasi-polynomial time nO(logn)) whenever k > (2 + ε) log n for any constant ε > 0 (see
e.g. the discussion in [FGR+17]). Meanwhile, multiple polynomial-time algorithms have been
proven to succeed in recovering the planted clique but only under the much larger size k = Ω(

√
n)

[AKS98, RF10, DGGP14, DM15]. The intense study of the model, as well as the failure to find
better algorithms, has lead to the planted clique conjecture, stating that the planted clique recovery
task is impossible in polynomial-time, albeit information-theoretically possible, whenever (2 +
ε) log n ≤ k = o(

√
n). The planted clique conjecture has since lead to many applications, a highlight

of which is that it serves as the main starting point for building reductions between a plethora of
statistical tasks and their computational-statistical trade-offs (see e.g. [BR13, MW15, BB20]).

Unfortunately, because of the average-case nature of the planted clique model, a complexity
theory explanation is still lacking for the planted clique conjecture. For this reason, researchers
have so far mainly focused on supporting the conjecture by establishing the failure of restricted fam-
ilies of polynomial-time methods, examples of which are Sum-of-Squares lower bounds [BHK+19],
statistical-query lower bounds [FGR+17] and low-temperature MCMC lower bounds [GZ19]. Be-
cause of the focus on establishing such restricted lower bounds, the vast majority of works studying
the planted clique conjecture cite the result of Jerrum [Jer92] on the failure of the Metropolis
process as the “first evidence” for the validity of it. Note though that given what we discussed
above, such a claim for Jerrum’s result can be problematic. Indeed, recall that Jerrum have not
established the success of the Metropolis process when k = ⌊nα⌋ , α > 1/2 in reaching cliques of
size (1 + ε) log n, let alone identifying the planted clique. That means that the Metropolis process
could in principle simply be not recovering the planted clique for all α ∈ (0, 1), offering no evidence
for the planted clique conjecture.

In fact, in 2019, Gamarnik and Zadik [GZ19] studied the performance of various MCMCmethods
(not including the Metropolis process described above) for the planted clique model and conjectured
their failure to recover the planted clique when k < n2/3, that is the failure much beyond the

√
n

threshold. For this reason, they raised again the question whether Jerrum’s original Metropolis
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process actually fails for k larger than
√
n. Later work by Angelini, Fachin and de Feo [AFdF21]

simulated the performance of the Metropolis process and predicted its failure to recover the planted
clique again much beyond the

√
n threshold. Both of these results suggest that the Metropolis

process may not be able to recover the planted clique for some values of k = nα, α > 1/2. We
consider the absence of a negative or positive result for whether the Metropolis process of [Jer92]
recovers the planted clique a major gap in the literature of the planted clique conjecture which we
investigate in this work.

Empty clique initialization A common deficiency of many Markov chain lower bounds is their
failure to establish lower bounds for starting from any particular state. Indeed, many of the lower
bounds in the theory of Markov chains including spectral and conductance lower bounds are proved
with high probability or in expectation over the stationary measure of the chain. Of course, since
the lower bounds provide usually evidence that is hard to sample from the stationary distribution,
the deficiency of the lower bound is that it is hard to find a state where the lower bound applies!
This is indeed the case for the specific example of the Metropolis process in [Jer92], where a-priori,
other than the empty set we do not know which subsets of the nodes make a clique.

Jerrum noted this deficiency in his paper [Jer92]:

“The most obviously unsatisfactory feature of Theorems ... is that these theorems
assert only the existence of a starting state from which the Metropolis process takes
super-polynomial time to reach a large clique ... It seems almost certain that the empty
clique is a particular example of a bad starting state, but different proof techniques would
be required to demonstrate this.”

In this work we develop a new approach based on comparison with birth and death processes
allowing us to prove lower bounds starting from the empty clique. We note that previous work on
birth and death processes established Markov chain bounds starting from a specific state [DSC06].

2 Main Contribution

We now present our main contributions on the performance of the Metropolis process for the
planted clique model G(n, 1/2, k), where k = ⌊nα⌋ for some constant α ∈ (0, 1). Our results hold
for the Metropolis process associated with any Gibbs measure defined as follows. For an arbitrary
Hamiltonian vector h = (hq, q ∈ [n]) and arbitrary β ≥ 0, let

πβ(C) ∝ exp(βh|C|), C ∈ Ω(G) (2)

where by Ω(G) we denote the cliques of G. In some results, we would require a small degree of
regularity from the vector h, which for us is to satisfy h0 = 0 and to be 1-Lipschitz in the sense
that

|hq − hq′ | ≤ |q − q′|,∀q, q′ ∈ [⌊2 log n⌋]. (3)

We call these two conditions, as simply h being “regular”. The regularity property is for technical
reasons, as it allows to appropriately bound the transition probabilities of the Metropolis process
between small cliques. Notice that hq = q, q ∈ [n] is trivially regular and corresponds to the Gibbs
measure and Metropolis process considered by Jerrum, per (1).

Our first theorem is a very general lower bound which holds under worst-case initialization for
all α ∈ (0, 1).

3



Theorem 2.1 (Informal version of Theorem 6.1 and Theorem 7.1). Let k = ⌊nα⌋ for any α ∈ (0, 1).

I. For arbitrary h and arbitrary inverse temperature β, for any constant γ > 0 there exists a
“bad” initialization such that the Metropolis process requires nΩ(logn) time to reach γ log n
intersection with the planted clique.

II. For arbitrary regular h and arbitrary inverse temperature β = O(log n), for any constant
ε > 0, there exists a “bad” initialization such that the Metropolis process requires nΩ(logn)

time to reach a clique of size (1 + ε) log n.

One way to think about the two parts of Theorem 2.1 is in terms of the statistical failure and
the optimization failure of the Metropolis algorithm. The first part establishes the statistical failure
as the algorithm cannot even find γ log n vertices of the planted clique. The second part shows that
it fails as an optimization algorithm: the existence of a huge planted clique still does not improve
the performance over the (1 + ε) log n level.

Note that second part extends the result of [Jer92] to all α ∈ (0, 1), when β = O(log n). (The
case β = ω(log n) is proven below in Theorem 2.3 since for that low temperature the process
behaves like the greedy algorithm). In Jerrum’s words, our result reveals “a severe indictment of
the Metropolis process in finding large cliques in random graphs”; even a n1−δ-size planted clique
does not help the Metropolis process to reach cliques of size (1 + ε) log n in polynomial time. At
a technical level it is an appropriate combination of the bottleneck argument used by Jerrum in
[Jer92], which focus on comparing cliques based on their size, and a separate bottleneck argument
comparing cliques based on how much they intersect the planted clique.

Our next result concerns the case where the Metropolis process is initialized from the empty
clique. We obtain for all β = o(log n) the failure of the Metropolis process starting from any
o(log n)-size clique (including in particular the empty clique). In particular, this answers in the
affirmative the question from [Jer92] for all β = o(log n).

Theorem 2.2 (Informal version of Theorem 6.2 and Theorem 7.6). Let k = ⌊nα⌋ for any α ∈ (0, 1).
Then for arbitrary regular h and arbitrary inverse temperature β = o(log n), the Metropolis process
started from any clique of size o(log n) (in particular the empty clique) requires nΩ(logn) time to
reach a clique which for some constants γ, ε > 0 either

• has at least γ log n intersection with the planted clique or,

• has size at least (1 + ε) log n.

The proof of Theorem 2.2 is based on the expansion properties of all (1 − ε) log n-cliques of
G(n, 1/2). The expansion properties allow us to compare the Metropolis process to an one dimen-
sional birth and death process that keeps track of the size of the clique (or the size of the intersection
with the hidden clique). The analysis of this process is based on a time-reversal argument.

One can wonder, whether a lower bound can be also established in the case β = Ω(log n) when
we start from the empty clique. We partially answer this, by obtaining the failure of the Metropolis
process starting from the empty clique in the case where hq = q, q ∈ [n] and β = ω(log n).

Theorem 2.3 (Informal version of Theorem 7.7). Let k = ⌊nα⌋ for any α ∈ (0, 1). For hq = q, q ∈
[n] and arbitrary inverse temperature β = ω(log n), the Metropolis process started from any clique
of size o(log n) (in particular the empty clique) requires nω(1) time to reach a clique which for some
constants γ, ε > 0 either

• has at least γ log n intersection with the planted clique or,
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• has size at least (1 + ε) log n.

The key idea here is that for hq = q, if β = ω(log n) then with high probability the Metropolis
process never removes vertices, so it is in fact the same as the greedy algorithm. This observation
allows for a much easier analysis of the algorithm.

In a different direction, Jerrum in [Jer92] asked whether one can extend the failure of the
Metropolis process to the failure of simulated annealing on finding large cliques in random graphs.
We make a step also in this direction, by considering the simulated tempering (ST) version of the
Metropolis process [MP92]. The simulated tempering is a celebrated Monte Carlo scheme originated
in the physics literature that considers a Gibbs measure, say the one in (2), at different temperatures
β1 < β2 < . . . < βm, in other words considers the Gibbs measures πβ1 , πβ2 , . . . , πβM

. Then it runs a
Metropolis process on the product space between the set of temperatures and the Gibbs measures,
which allows to modify the temperature during its evolution and interpolate between the different
πβi

(for the exact definitions see Section 8.1). The ST dynamics have been observed extensively
in practise to outperform their single temperature Metropolis process counterparts but rigorous
analysis of these processes is rather rare, see [BR04].

It turns out that our “bad” initialization results extend in a straightforward manner to the ST
dynamics.

Theorem 2.4 (Informal version of Theorem 8.3, and Theorem 8.4). Let k = ⌊nα⌋ for any α ∈ (0, 1).

• For arbitrary h, arbitrary m ∈ N and arbitrary sequence of inverse temperatures β1 < β2 <
. . . < βm, there exists a “bad” initialization such as the ST dynamics require nΩ(logn) time to
reach ε log n intersection with the planted clique, for some constant ε > 0.

• For arbitrary regular h, arbitrary m ∈ N and arbitrary sequence of inverse temperatures
β1 < β2 < . . . < βm with maxi |βi| = O(log n), there exists a “bad” initialization such as the
ST dynamics require nΩ(logn) time to reach a clique of size (1+ε) log n-size for some constant
ε > 0.

The key idea behind the proof of Theorem 2.4 is that the bottleneck set considered in the proof
of Theorem 2.1 is “universal”, in the sense that the same bottleneck set applies to all inverse tem-
peratures β. For this reason, the same bottleneck argument can be applied to simulated tempering
that is allowed to change temperatures during its evolution.

On top of this, we establish a lower bound on the ST dynamics, when started from the empty
clique.

Theorem 2.5 (Informal version of Theorem 8.5). Let k = ⌊nα⌋ for any α ∈ (0, 1). For arbitrary
regular and increasing hq = q, q ∈ [n], arbitrary m = o(log n) and arbitrary sequence of inverse
temperatures β1 < β2 < . . . < βm with maxi |βi| = O(1), the ST dynamics started from the pair
of the empty clique and the temperature β1 require nω(1) time to reach a clique which for some
constant γ, ε > 0 either

• has at least γ log n intersection with the planted clique or,

• has size at least (1 + ε) log n.

2.1 Further Comparison with Related Work

Comparison with [AFdF21] As mentioned in the Introduction, the authors of [AFdF21] pre-
dicted the failure of the Metropolis process for the Gibbs measure (1) to recover the planted clique.
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Specifically, based on simulations they predicted the failure for all k = ⌊nα⌋ , for α < α∗ ≈ 0.91,
though they comment that the exact predicted threshold α∗ ≈ 0.91 could be an artifact of fi-
nite sized effects. In this work, using Theorem 2.1 we establish that (worst-case initialized) the
Metropolis process fails for all α ∈ (0, 1), confirming their prediction but for α∗ = 1. In the same
work, the authors suggest studying instead the Metropolis process for another Gibbs measure of
the form (2), which they call BayesMC. Their suggested Gibbs measure for a specific value of β
matches a (slightly perturbed) version of the posterior of the planted clique recovery problem. The
authors predict based on simulations that by appropriately turning (and “mismatching”) β > 0,
the Metropolis chain now recovers the planted clique for all k = ⌊nα⌋ , α > 1/2. In this work, we
partially refute this prediction using Theorem 2.1, as (worst-case initialized) the Metropolis process
for any Gibbs measure (2), including the mismatched posterior that [AFdF21] considers, fails to
recover the planted clique for all α ∈ (0, 1).

MCMC underperformance in statistical inference Our lower bounds show the suboptimal-
ity of certain natural MCMC methods in inferring the planted clique in a regime where simple algo-
rithms work. Interestingly, this agrees with a line of work establishing the suboptimality of MCMC
methods in inferring hidden structures in noisy environments. Such a phenomenon have been
generally well-understood in the context of tensor principal component analysis [RM14, BAGJ20],
where Langevin dynamics and gradient descent on the empirical landscape are known to fail to
infer the hidden tensor, when simple spectral methods succeed. Moreover, this suboptimality has
been recently observed through statistical physics methods for other models including sparse PCA
[AFUZ19], the spiked matrix-tensor model [MKUZ19] and phase retrieval [MBC+20]. Finally, it
has been also observed for a different family of MCMC methods but again for the planted clique
model in [GZ19].

3 Proof Techniques and Intuitions

In this section, we offer intuition regarding the proofs of our results. In the first two subsections,
we make a proof overview subsection we provide intuition behind our worst-case initialization
results for the Metropolis process Theorem 2.1 and ST dynamics Theorem 2.4. In the following
one we discuss about our results on the Metropolis process and ST dynamics with the empty clique
initialization Theorems 6.2 and 7.6.

3.1 Worst-case Initialization for Reaching Large Intersection

We start with discussing the lower bound for obtaining γ log n intersection with the planted clique.
We employ a relatively simple bottleneck argument, based on Lemma 5.5.

For q, r ∈ N let us denote by Wq,r the number of cliques in G ∼ G(n, 1/2, k) which have size q
and intersect the planted clique exactly on r vertices. Our first starting point towards building the
bottleneck is the following simple observation. For any q < 2 log n, and r = γ log n for a constant
0 < γ < 2(1− α) we have w.h.p. as n→ +∞.

Wq,r/Wq,0 ≤ n−Ω(logn). (4)

In words, the number of q-cliques of intersection r with the planted clique are a quasi-polynomial
factor less than the number of q-cliques which are disjoint with the planted clique. Indeed, at the

first-moment level it can be checked to hold E[Wq,r]/E[Wq,0] = exp((−((1 − α)γ + γ2

2 ) ln 2(log n)
2)
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and a standard second moment argument gives the result (both results are direct outcomes of
Lemma 5.1). Notice that this property holds for all α ∈ (0, 1).

Now let us assume for start that β = 0. In that case the Gibbs measure π0 is simply the uniform
measure over cliques of G. For r = γ log n let Ar be the subset of the cliques with intersection with
the planted clique at most r. Using standard results (see Lemma 5.5) to prove our hitting time
lower bound it suffice to show for any r = γ log n with constant γ > 0,

π0(∂Ar)

π0(Ar)
=

∑n
q=1 Wq,r∑

q∈[n],0≤s≤rWq,s
≤ n−Ω(logn), (5)

w.h.p. as n→ +∞. Indeed, given such result based on Lemma 5.5 there is an initialization of the
Metropolis process in Ar from which it will take quasi-polynomial time to reach the boundary of
Ar, which are exactly the cliques of intersection r with the planted clique.

Now another first moment argument, (an outcome of part (3) of Lemma 5.1) allows us to
conclude that since γ < 2(1 − α) is not too large, the only cliques of intersection r = γ log n with
the planted clique satisfy q < (2 − ε) log n for small enough ε > 0. In other words Wq,r = 0 unless
q < (2− ε) log n. But now using also (4) we have

∑

q∈[n],0≤s≤r

Wq,s ≥
∑

q∈[(2−ε) logn]

Wq,0 ≥ nΩ(logn)
∑

q∈[(2−ε) logn]

Wq,r = nΩ(logn)
∑

q∈[n]
Wq,r,

and the result follows.
Now, the interesting thing is that the exact same calculation works for arbitrary β ≥ 0 and

arbitrary Hamiltonian vector h. Consider as before the same subset of cliques Ar. It suffices to
show

πβ(∂Ar)

πβ(Ar)
=

∑n
q=1Wq,re

βhq

∑
q∈[n],0≤s≤r Wq,seβhq

≤ n−Ω(logn), (6)

But as before

∑

q∈[n],0≤s≤r

Wq,se
βhq ≥

∑

q∈[(2−ε) logn]

Wq,0e
βhq ≥ nΩ(logn)

∑

q∈[(2−ε) logn]

Wq,re
βhq = nΩ(logn)

∑

q∈[n]
Wq,re

βhq ,

and the general result follows.
Interestingly, this bottleneck argument transfers easily to a bottleneck for the ST dynamics.

The key observation is that to construct the bottleneck set for the Metropolis process, we used
the same bottleneck set Ar for all inverse temperatures β and Hamiltonian vectors h. Now the ST
dynamics are a Metropolis process on the enlarged product space of the temperatures times the
cliques. In particular, the stationary distribution of the ST dynamics is simply a mixture of the
Gibbs distributions πβi

, i ∈ [m] say πST =
∑m

i=1 viπβi
for some weights vi, i ∈ [m] (see Section 8.1

for the exact choice of the weights vi, i ∈ [m], though they are not essential for the argument). Now
using (6) and that the boundary operator satisfies ∂([m]×Ar) = [m]×∂(Ar) we immediately have

πST(∂([m] ×Ar))

πST([m]×Ar)
=

∑m
i=1 viπβi

(∂Ar)∑m
i=1 viπβi

(Ar)
≤ n−Ω(logn). (7)

The result then follows again using Lemma 5.5.
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3.2 Worst-case Initialization for Reaching Large Cliques

The worst-case initialization lower bound for reaching (1 + ε) log n cliques is also based on a bot-
tleneck argument. This time the argument is more involved and is a combination of the bottleneck
argument by Jerrum in [Jer92] which worked for α < 1/2 and the bottleneck argument used in
the previous subsection for reaching large intersection with the planted clique which worked for all
α < 1.

We first need some notation. For r ≤ q we denote by Ωq,r the set of q-cliques of intersection
r with the planted clique and Ωq,∗ the set of all cliques of size q. We also define Ωq,<r the set of
q-cliques of intersection less than r with the planted clique and analogously by Ω<q,r the set of
cliques of size less than q and intersection r with the planted clique

We first quickly remind the reader the argument of Jerrum. Recall the notion of a q-gateway
clique from [Jer92], which informally is the last clique of its size in some path starting from the
empty clique and ending to a clique of size q (see Section 7 for the exact definition). For q we
call Ψq the set of of q-gateway cliques. Importantly, for any p < q any path from the empty
clique to a q-clique crosses from some q-gateway of size p. Jerrum’s bottleneck argument in [Jer92]
is then based on the observation that assuming α < 1/2 for ε > 0 a small enough constant, if
p = ⌊(1 + 2ε/3) log n⌋ and q = ⌊(1 + ε) log n⌋ then

|Ψq ∩ Ωp,∗|/|Ωp,∗| ≤ n−Ω(logn). (8)

Unfortunately, such a bottleneck argument is hopeless if α > 1/2 since in that case most cliques of
size at most q are fully included in the planted clique and the ratio trivializes.

We identify the new bottleneck by leveraging more the “intersection axis” with the planted
clique”. Our first observation is that a relation like (8) holds actually for all α < 1 if the cliques
are restricted to have low-intersection with the planted clique, i.e. for all α ∈ (0, 1) if r = γ log n
for small enough constant γ > 0 and p, q defined as above then it holds

|Ψq ∩Ωp,<r|/|Ωp,<r| ≤ n−Ω(logn). (9)

The second observation, is that for the Metropolis process to hit a clique of size q = (1 + ε) log n
one needs to hit either Ω<q,r, that is a clique of size less than q and intersection r with the planted
clique, or a clique in Ψq ∩ Ωp,<r, that is a q-gateway of size p and intersection less than r. Set this
target set B = (Ψq ∩ Ωp,<r) ∪ Ω<q,r which we hope to be “small” enough to create a bottleneck.

We now make the following construction which has boundary included in the target set B.
Consider A the set of all cliques reachable from a path with start from the empty clique and uses
only cliques not included in B, except maybe for the destination. It is easy to see ∂A ⊆ B and
because of the inclusion of q-gateways in the definition of B, one can also see that no q-clique is in
A. Therefore using Lemma 5.5 it suffices to show that w.h.p.

πβ(B)/πβ(A) ≤ n−Ω(logn). (10)

To show (10) we observe that Ωp,<r ∪ Ω≤p,0 ⊂ A, that is A contains all cliques of size p and
intersection less than r with the planted clique, or size less than p and are disjoint with the planted
clique. Indeed, it is straightforward than one can reach these cliques from a path from the empty
clique without using cliques from B besides maybe the destination.

A final calculation then gives

πβ(B)/πβ(A) ≤ |Ψq ∩ Ωp,<r|/|Ωp,<r|+ πβ(Ω<q,r)/πβ(Ω≤p,0) (11)
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The first term is quasipolynomially small according to (9). For the second term, notice that from
the equation (5) from the previous subsection for all x ≤ q it holds

|Ωx,r| = Wx,r ≤ n−Ω(logn)Wx,0 = n−Ω(logn)|Ωx,0|.

Now using a first and second moment argument mostly based on Lemma 5.1 we prove that for all
p < p′ ≤ q it holds w.h.p.

πβ(Ωp,0) ≤ exp(O((β + log n)(|p− p′|))πβ(Ωp′,0).

Combining the above with a small case-analysis this allows us to conclude

πβ(Ω<q,r)/πβ(Ω≤p,0) ≤ exp (O((β + log n)(q − p)))n−Ω(logn).

Now since |q − p| = O(ε log n) and β = O(log n) we can always choose ε > 0 small enough but
constant so that βε/ log n is at most a small enough constant and in particular

πβ(Ω<q,r)/πβ(Ω≤p,0) ≤ n−Ω(logn).

This completes the proof overview for the failure of the Metropolis process.
For the ST dynamics notice that the only way the value of β is used for the construction of the

bottleneck is to identify a value of ε so that the term βε/ log n is small enough, which then allows to
choose the values of p, q. But now if we have a sequence of inverse temperatures β1 < β2 < . . . < βm
with maxi |βi| = O(log n) we can choose a “universal” ε so that for all i, (maxmi=1 βi) ε is small
enough, leading to a “universal” bottleneck construction for all πβi

. The proof then follows exactly
the proof for the ST failure described in the previous subsection.

3.3 Failure when Starting from the Empty Clique

Here we explain the failure of the Metropolis process in the high temperature regime β = o(log n)
when starting from the empty clique. We show in Theorems 6.2 and 7.6 that, when starting from
the empty clique which is the most natural and common choice of initialization, the Metropolis
process fails to reach either cliques of intersection with the empty clique at least γ log n for any
small constant γ > 0, or cliques of size (1 + ε) log n for any small constant ε > 0.

One important observation is that since we are only considering when the process reaches either
intersection γ log n or size (1 + ε) log n, we may assume that the process will stop and stay at the
same state once hitting such cliques. In particular, this means we can exclude from the state space
all cliques of intersection > γ log n and all cliques of size > (1 + ε) log n, and consider only cliques
C such that

|C ∩ PC| ≤ γ log n and |C| ≤ (1 + ε) log n. (12)

Indeed, the geometry of the restricted state space to these cliques are what really matters for
whether the Metropolis process starting from the empty clique can reach our desired destinations
or not. In particular, for γ sufficiently small (say, γ ≤ 1 − α), most of cliques satisfying Eq. (12)
will have intersection o(log n) and also size (1 ± o(1)) log n. Note that this partially explains why
having a large planted clique of size nα does not help much for the tasks of interest, since for the
restricted state space (those satisfying Eq. (12)) most cliques do not have vertices from the planted
clique and so any constant α < 1 does not help.

The key property that allows us to establish our result is a notion we call the “expansion”
property. Observe that, for a clique C of size q = ρ log n with intersection o(log n), the expected
number of vertices which can be added to C to become a larger clique is n/2q = n1−ρ; this is also

9



the number of common neighbors of vertices from C. Via the union bound and a concentration
inequality, one can easily show that in fact, for all cliques with ρ < 1 the number of common neigh-
bors is concentrated around its expectation with constant multiplicative error; see Definition 6.4
and Lemma 6.5 (where we actually only need the lower bound). This immediately implies that

Pr(|Xt| = p− 1 | |Xt−1| = p) =
p

n
e−β and Pr(|Xt| = p+ 1 | |Xt−1| = p) ≈ 1

2p
.

which allows us to track how the size of cliques evolves for the Metropolis process, under the
assumption that the intersection is always o(log n).

To actually prove our result, it will be helpful to consider the time-reversed dynamics and argue
that when starting from cliques of intersection γ log n or cliques of size (1+ ε) log n, it is unlikely to
reach the empty clique. Suppose we have the identity Hamiltonian function hi = i for simplicity.
Consider as an example the probability of hitting cliques of large intersection as in Theorem 6.2.
Recall that Ωp,s is the collection of cliques of size p = ρ log n for ρ ≤ 1 + ε and of intersection
s = γ log n. Then by reversibility we have that for all t ≥ 1,

Pr (Xt ∈ Ωp,s | X0 = ∅) =
∑

σ∈Ωp,s

Pr (Xt = σ | X0 = ∅) = eβp
∑

σ∈Ωp,s

Pr (Xt = ∅ | X0 = σ)

Notice that eβp = no(logn) as β = o(log n). Our intuition is that in fact, for any clique σ of size
p, the probability of reaching the empty clique when starting from σ is at most 1/E[Wp′,∗] where
p′ = min{p, log n}; that is, for all integer t ≥ 1 and all clique σ of size p,

Pr (Xt = ∅ | X0 = σ) ≤ 1

E[Wp′,∗]
, (13)

and hence we obtain

Pr (Xt ∈ Ωp,s | X0 = ∅) . eβp
E[Wp,s]

E[Wp′,∗]
≤ n−c′ logn,

where the last inequality is because most cliques has intersection o(log n) and size (1 + o(1)) log n.
The proof of Eq. (13) utilizes the expansion property mentioned above to analyze the time-

reversed dynamics for |Xt|. More specifically, we introduce an auxiliary birth and death process
{Yt} on [n] which is stochastically dominated by {|Xt|}, in the sense that

Pr(Yt = p− 1 | Yt−1 = p) =
p

n
e−β = Pr(|Xt| = p− 1 | |Xt−1| = p);

Pr(Yt = p+ 1 | Yt−1 = p) =
1

20 · 2p <
1

2p
≈ Pr(|Xt| = p+ 1 | |Xt−1| = p).

Through step-by-step coupling it is easy to see that Yt ≤ |Xt| always, and thus,

Pr (Xt = ∅ | X0 = σ) ≤ Pr (Yt = 0 | Y0 = p) .

This allows us to establish Eq. (13) by studying the much simpler process {Yt}. Furthermore, we
assume the Yt process does not go beyond value log n (in fact, (1 − η) log n for any fixed constant
η ∈ (0, 1)) so that we are in the regime where the expansion property holds; this is the reason
p′ = min{p, log n} appears.

The same approach works perfectly for bounding the probability of hitting cliques of size
(1 + ε) log n when starting from the empty clique, as in Theorem 7.6. For the low-temperature
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metropolis process with β = ω(log n) in Theorem 7.7, we also need one more observation that
the process in fact does not remove any vertex in polynomially many steps and so it is equivalent
to a greedy algorithm. In particular, we can apply the same approach to argue that the process
never reaches cliques of size log n that are subsets of cliques with large intersection or large size,
which have much smaller measure. For the ST dynamics in Theorem 8.5, the same approach also
works but we need a more sophisticated auxiliary process for the pair of clique size and inverse
temperature, along with more complicated coupling arguments.

4 Organization of Main Body

The rest of the paper is organized as follows. In Section 5 we introduce the needed definitions
and notation for the formal statements and proofs. In Section 6 we present our lower bounds for
reaching a clique of intersection γ log n with the planted clique. First we present the worst-case
initialization result and then the case of empty clique initialization. Then in Section 7 we discuss
our lower bounds for reaching a clique of size (1+ε) log n. As before, we first present the worst-case
initialization result, and then discuss the empty clique initialization ones. Finally, in Section 8 we
present our lower bounds for the simulated tempering dynamics.

5 Getting Started

For n ∈ N, let [n] = {0, 1, . . . , n} to be the set of all non-negative integers which are at most n.
Throughout the paper, we use log to represent logarithm to the base 2, i.e., log x = log2 x for
x ∈ R

+.
We say an event A holds with high probability (w.h.p.) if 1− Pr(A) ≤ o(1).

5.1 Random Graphs with a Planted Clique

Let G(n, 12) denote the random graph on n vertices where every pair {u, v} is an edge with prob-
ability 1/2 independently. For k ∈ [n], we denote by G(n, 12 , k) the random graph G(n, 12) with
a planted k-clique, where a subset of k out of n vertices is chosen uniformly at random and the
random graph is obtained by taking the union of G(n, 12) and PC the k-clique formed by those
vertices.

Let Ω = Ω(G) be the collection of all cliques of an instance of graph G ∼ G(n, 12 , k), and for
q, r ∈ [n] with q ≥ r let

Ωq,r = {C ∈ Ω : |C| = q, |C ∩ PC| = r}.
We also define for convenience Ωq,r = ∅ when q < r or q > n. Furthermore, let

Ωq,∗ =
q⋃

r=0

Ωq,r and Ω∗,r =
n⋃

q=r

Ωq,r.

We also define Ω≤q,∗ =
⋃q

q′=0 Ωq′,∗ and Ω∗,≤r =
⋃r

r′=0 Ω∗,r′ .
For q, r ∈ [n] with q ≥ r, let Wq,r = |Ωq,r| the number of q-cliques C in G with |C ∩ PC| = r.

Similarly, Wq,r = 0 when q < r or q > n.

Lemma 5.1. Let a constant α ∈ [0, 1) and consider the random graph G(n, 12 , k = ⌊nα⌋) with a
planted clique. Fix any absolute constant ε > 0.

11



(1) For any q = ⌊ρ log2 n⌋ with parameter ρ > 0 and any r = ⌊γ log2 n⌋ with parameter 0 ≤ γ ≤ ρ,
it holds

E[Wq,r] = exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
+ o(1)

)]

w.h.p. as n→ +∞.

(2) For r = 0 and any q = ⌊ρ log2 n⌋ with 0 < ρ ≤ 2− ε, it holds

Wq,0 ≥
1

2
E[Wq,0]

w.h.p. as n→ +∞.

(3) For any r = ⌊γ log n⌋ with 0 ≤ γ ≤ 1 − α and any q = ⌊ρ log2 n⌋ satisfying the inequality
ρ ≥ 1 +

√
(1− γ)2 + 2αγ + ε, it holds

Wq,r = 0

w.h.p. as n→ +∞.

The proof of the lemma is deferred to the Appendix.

Definition 5.2 (Clique-Counts Properties Pupp and Plow). Let ε ∈ (0, 1) be an arbitrary constant.

(1) (Upper Bounds) We say the random graph G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the
property Pupp(ε) if the following is true: For all integers q, r ∈ N with 0 ≤ r ≤ q ≤ n, it holds

Wq,r ≤ n3
E[Wq,r];

in particular, for 0 ≤ r ≤ (1−α) log n and q ≥ (1+
√

(1− γ)2 + 2αγ+ε) log n where γ = r/ log n,
it holds

Wq,r = 0.

(2) (Lower Bounds) We say the random graph G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the
property Plow(ε) if the following is true: For every integer q ∈ N with 0 ≤ q ≤ (2− ε) log n, it
holds

Wq,0 ≥
1

2
E[Wq,0].

Lemma 5.3. For any constant α ∈ (0, 1) and any constant ε ∈ (0, 1), the random graph G(n, 12 , k =
⌊nα⌋) with a planted clique satisfies both Pupp(ε) and Plow(ε) with probability 1− o(1) as n→∞.

Proof. Follows immediately from Lemma 5.1, the Markov’s inequality, and the union bound.

5.2 Hamiltonian and Gibbs Measure

For given n ∈ N, let h : [n] → R be an arbitrary function. For ease of notations we write
hq = h(q), q ∈ [n] and thus the function h is identified by the vector (h0, h1, . . . , hn). Given an
n-vertex graph G, consider the Hamiltonian function H : Ω → R where H(C) = h|C|. For β ∈ R,
the corresponding Gibbs measure is defined as

πβ(C) ∝ wβ(C) := exp
(
βh|C|

)
. (14)
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Let Z(β) = Z(G,h;β) to be the partition function given by

Z(β) =
∑

C∈Ω
wβ(C).

Furthermore, let

Zq,∗(β) =
∑

C∈Ωq,∗

wβ(C) and Z∗,r(β) =
∑

C∈Ω∗,r

wβ(C).

Assumption 5.4. We assume that the Hamiltonian h satisfies

(a) h0 = 0;

(b) h is 1-Lipschitz, i.e., |h(q)− h(q′)| ≤ |q − q′| for q, q′ ≤ 2.1 log n.

5.3 Metropolis Process and the Hitting Time Lower Bound

In this work, we study the dynamics of the Metropolis process with the respect to the Gibbs measure
defined in (14). The Metropolis process is a Markov chain on Ω = Ω(G), the space of all cliques of
G. The Metropolis process is described in Algorithm 2.

Algorithm 2: Metropolis Process

Input: a graph G, a starting clique X0 ∈ Ω, stopping time T
for t = 1, . . . , T do

Pick v ∈ V uniformly at random;
C ← Xt−1 ⊕ {v};
if C ∈ Ω then

Xt ←
{
C, with probability min{1, πβ(C)/πβ(Xt)};
Xt−1, with remaining probability;

else
Xt ← Xt−1;

end

end
Output: XT

The Metropolis process is an ergodic and reversible Markov chain, with the unique stationary
distribution πβ except in the degenerate case when β = 0 and G is the complete graph; see [Jer92].

The following lemma is a well-known fact for lower bounding the hitting time of some target set
of a Markov chain using conductance; see [MWW09, Claim 2.1], [LP17, Theorem 7.4] and [AWZ20,
Proposition 2.2]. We rely crucially on the following lemma for our worst-case initialization results.

Lemma 5.5. Let P be the transition matrix of an ergodic Markov chain on a finite state space Ω
with stationary distribution π. Let A ⊆ Ω be a set of states and let B ⊆ Ω be a set of boundary
states for A such that P (x, y) = 0 for all x ∈ A \B and y ∈ Ac \B. Then for any t > 0 there exists
an initial state x ∈ A such that

Pr (∃i ≤ t such that Xi ∈ Ac | X0 = x) ≤ π(B)

π(A)
t.
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6 Quasi-polynomial Hitting Time of Large intersection

6.1 Existence of a Bad Initial Clique

Theorem 6.1. Let α ∈ (0, 1) be any fixed constant. For any constant γ > 0, the random graph
G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general Gibbs measure given by Eq. (14) for arbitrary h and arbitrary inverse
temperature β. There exists a constant c = c(α, γ) > 0 and an initialization state for the Metropolis
process from which it requires at least nc logn steps to reach a clique of intersection with the planted
clique at least γ log n, with probability at least 1 − n−c logn. In particular, under the worst-case
initialization it fails to recover the planted clique in polynomial-time.

Proof. Notice that we can assume without loss of generality that the constant γ satisfies 0 < γ ≤
1− α. We pick

ε =
1

2

(
1−

√
(1− γ)2 + 2αγ

)
. (15)

Note that ε > 0 since 0 < γ ≤ 1 − α. Then, by Lemma 5.3 we know that the random graph
G(n, 12 , ⌊nα⌋) satisfies both properties Pupp(ε) and Plow(ε) simultaneously with probability 1− o(1)
as n→∞. In the rest of the proof we assume that both Pupp(ε) and Plow(ε) hold.

For any γ ∈ (0, 1 − α], let r = ⌊γ log n⌋. It suffices to show that there exists a constant
c = c(α, γ) > 0 such that

πβ(Ω∗,r)

πβ(Ω∗,≤r)
=

Z∗,r
Z∗,≤r

≤ exp
(
−c log2 n

)
. (16)

Indeed, given Eq. (16), Theorem 6.1 is an immediate consequence of Lemma 5.5.
By the property Pupp(ε) we have that Wq,r = 0 for all q > q̄ where

q̄ =
⌊
1 +

√
(1− γ)2 + 2αγ + ε

⌋
log n = ⌊2− ε⌋ log n.

Hence, we get from the definition of the restricted partition function Z∗,r that

Z∗,r =
n∑

q=r

Zq,r =

n∑

q=r

Wq,r exp (βhq) =

q̄∑

q=r

Wq,r exp (βhq) ≤ n3
q̄∑

q=r

E [Wq,r] exp (βhq) ,

where the last inequality again follows from Pupp(ε). We define

q∗ = argmax
q∈[q̄]

E [Wq,r] exp (βhq) .

Thus, we have that
Z∗,r ≤ n4

E [Wq∗,r] exp (βhq∗) . (17)

Meanwhile, we have
Z∗,≤r ≥ Zq∗,0 = Wq∗,0 exp (βhq∗) .

We deduce from q∗ ≤ q̄ ≤ (2− ε) log n and the property Plow(ε) that

Z∗,≤r ≥
1

2
E [Wq∗,0] exp (βhq∗) . (18)
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Combining Eqs. (17) and (18), we get that,

Z∗,r
Z∗,≤r

≤ 2n4 E [Wq∗,r]

E [Wq∗,0]
.

Suppose that ρ = q∗/ log n. Then, an application of Item 1 of Lemma 5.1 implies that,

Z∗,r
Z∗,≤r

≤ 2n4
exp

[
(ln 2)(log n)2

(
ρ− ρ2

2 − (1− α)γ + γ2

2 + o(1)
)]

exp
[
(ln 2)(log n)2

(
ρ− ρ2

2 + o(1)
)]

≤ exp

[
(ln 2)(log n)2

(
−(1− α)γ +

γ2

2
+ o(1)

)]
.

This establishes (16) for c = c(α, γ) := (1− α)γ − γ2

2 > 0 since 0 < γ ≤ 1− α, as we wanted.

6.2 Starting from the Empty Clique

In this section, we strengthen Theorem 6.1 for a wide range of temperatures by showing that the
Metropolis Dynamics still fails to obtain a significant intersection with the planted clique when
starting from the empty clique (or any clique of sufficiently small size), a nature choice of initial
configuration in practice.

6.2.1 Our Result

Theorem 6.2. Let α ∈ (0, 1) be any fixed constant. For any constant γ ∈ (0, 1 − α), the random
graph G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the following with probability 1 − o(1) as
n→∞.

Consider the general Gibbs measure given by Eq. (14) for arbitrary 1-Lipschitz h with h0 = 0 and
inverse temperature β ≤ (ln 2)γ log n. Let {Xt} denote the Metropolis process on G with stationary
distribution πβ. Then there exist constants ξ = ξ(α, γ) > 0 and c = c(α, γ) > 0 such that for any
clique C ∈ Ω of size at most ξ log n, one has

Pr
(
∃t ∈ N ∧ t ≤ nc logn s.t. |Xt ∩ PC| ≥ γ log n

∣∣∣ X0 = C
)
≤ n−c logn.

In particular, the Metropolis process starting from the empty clique requires nΩ(logn) steps to reach
cliques of intersection with the planted clique at least γ log n, with probability 1 − n−Ω(logn). As a
consequence, it fails to recover the planted clique in polynomial time.

We proceed with the proof of the theorem.

6.2.2 Key Lemmas

We start with tracking how the size of the clique changes during the process. It is also helpful to
consider the reversed process: show that it is unlikely to hit the empty clique ∅ when starting from
some clique of size log n.

Definition 6.3. For a graph G = (V,E) and a subset U ⊆ V of vertices, we say a vertex v ∈ V \U
is fully adjacent to U if v is adjacent to all vertices in U ; equivalently, U ⊆ N(v) where N(v)
denotes the set of neighboring vertices of v in the graph G. Let A(U) denote the set of all vertices
in V \U that are fully adjacent to U ; equivalently, A(U) is the set of all common neighbors in V \U
of all vertices from U .
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Definition 6.4 (Expansion Property Pexp). Let η ∈ (0, 1) be an arbitrary constant. We say the
random graph G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the expansion property Pexp(η) if
the following is true: For every U ⊆ V with |U | ≤ (1− η) log n, it holds

|A(U)| ≥ n

20 · 2|U | .

The following lemma establishes the desired “expansion lemma” on the cliques of size less than
log n in G(n, 12 , k).

Lemma 6.5 (“Expansion Lemma”). For any constant α ∈ (0, 1) and any constant η ∈ (0, 1), the
random graph G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the expansion property Pexp(η) with
probability 1− o(1) as n→∞.

The proof of the lemma is deferred to the Appendix.
The Lemma 6.5 is quite useful for us, as it allows us to obtain the following bounds on the size

transitions for the Metropolis process:

Pr (|Xt| = q − 1 | |Xt−1| = q) =
q

n
min {1, exp [β (hq−1 − hq)]} (19)

Pr (|Xt| = q + 1 | |Xt−1| = q) ≥ 1

20 · 2q min {1, exp [β (hq+1 − hq)]} . (20)

The proof is also making use of the following delicate lemma.

Lemma 6.6. Consider the random graph G(n, 12 , k = ⌊nα⌋) with a planted clique conditional on
satisfying the property Pupp(0.1) and the expansion property Pexp(η) for some fixed constant η ∈
(0, 1). Let t, p, q, r ∈ N+ be integers with p ≤ r ≤ q. Denote also ξ = p/ log n, ρ = q/ log n and
γ = r/ log n. For any C ∈ Ωp,∗ we have

Pr (Xt ∈ Ωq,r | X0 = C) ≤

t exp

[
(ln 2)(log n)2

((
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)
−

(
(1− α)γ − γ2

2
− ξ +

ξ2

2

)
+ o(1)

)]
,

where ρ′ = min{ρ, 1− η} and β̂ = β/((ln 2)(log n)).

We postpone the proof of Lemma 6.6 to Section 6.2.4 and first show how it can be used to prove
Theorem 6.2. On a high level, we bound the probability of hitting Ωq,r by studying how the size

of the clique evolves during the process up to size (1− η) log n. The term ((1 + β̂)ρ− ρ2/2)− ((1+
β̂)ρ′ − (ρ′)2/2) represents the approximation error when the clique goes beyond size (1 − η) log n;
in particular, when the destination clique size q = ρ log n is at most (1 − η) log n, we have ρ′ = ρ
and this error is zero. Meanwhile, the term (1−α)γ − γ2/2− ξ+ ξ2/2 corresponds to the fact that
the number of cliques of size q and intersection r = γ log n with the planted clique is much smaller
than the total number of cliques of size q, and hence reaching intersection r is very unlikely.

6.2.3 Proof of Theorem 6.2, given Lemma 6.6

Proof of Theorem 6.2. Let β̂ = β/((ln 2)(log n)) and recall β̂ ≤ γ < 1 − α. As will be clear later,
we shall choose

ξ =
1

4
(1− α− γ)γ and η = min

{
1

8
(1− α− γ), γ

}
.
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By Lemmas 5.3 and 6.5, the random graph G(n, 12 , ⌊nα⌋) satisfies both Pupp(0.1) and Pexp(η)
with probability 1 − o(1) as n → ∞, for the choice of η given above. In the rest of the proof we
assume that both Pupp(0.1) and Pexp(η) are satisfied.

Suppose that |C| = p = ξ′ log n ≤ ξ log n. By the union bound we have

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω∗,r

∣∣∣ X0 = C
)
≤

T∑

t=1

n∑

q=r

Pr (Xt ∈ Ωq,r | X0 = C)

≤ Tn max
t∈[T ]

max
q∈[n]

Pr (Xt ∈ Ωq,r | X0 = C) . (21)

Now let us fix some t ∈ [T ], q ∈ [n]. By Lemma 6.6,

Pr (Xt ∈ Ωq,r | X0 = C)

≤ t exp

[
(ln 2)(log n)2

((
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)
−

(
(1− α)γ − γ2

2
− ξ′ +

(ξ′)2

2

)
+ o(1)

)]

≤ t exp

[
(ln 2)(log n)2

((
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)
−

(
(1− α)γ − γ2

2
− ξ +

ξ2

2

)
+ o(1)

)]
,

where we have used that ξ′ ≤ ξ ≤ 1. Write for shorthand

A =

(
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)
and B = (1− α)γ − γ2

2
− ξ +

ξ2

2
.

So we have

Pr (Xt ∈ Ωq,r | X0 = C) ≤ t exp
[
(ln 2)(log n)2 (A−B + o(1))

]
. (22)

Given (22) it suffices to show that for all α ∈ (0, 1), γ ∈ (0, 1 − α) there exists c0(α, γ) > 0 such
that uniformly for all values of interest of the parameters ρ, β̂ we have A−B ≤ −c0(α, γ). Indeed,
then by (21) we have

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω∗,r

∣∣∣ X0 = C
)
≤ T 2n exp

[
−c0(α, γ)(ln 2)(log n)2

]

and Theorem 6.2 follows e.g. for c(α, γ) = ln 2
20 c0(α, γ).

We now construct the desired function c0(α, γ) > 0. If ρ ≤ 1 − η, then ρ′ = ρ and A = 0.
Meanwhile, we have

B = (1− α)γ − γ2

2
− ξ +

ξ2

2
≥ (1− α)γ − γ2

2
− 1

4
(1− α− γ)γ ≥ 3

4
(1− α− γ)γ.

So A−B ≤ −3
4(1− α− γ)γ.

If ρ > 1− η, then ρ′ = 1− η and we have

A =

(
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)

= β̂(ρ− 1)− 1

2
(ρ− 1)2 + β̂η +

η2

2

≤ γ2

2
+

1

4
(1− α− γ)γ,
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where the last inequality follows from

β̂(ρ− 1)− 1

2
(ρ− 1)2 ≤ β̂2

2
≤ γ2

2

and also

β̂η +
η2

2
≤ γ · 1

8
(1− α− γ) +

γ

2
· 1
8
(1− α− γ) ≤ 1

4
(1− α− γ)γ

since η ≤ (1− α− γ)/8 and η ≤ γ. Meanwhile, we have

B = (1− α)γ − γ2

2
− ξ +

ξ2

2
≥ (1− α)γ − γ2

2
− 1

4
(1− α− γ)γ.

So, we deduce that

A−B ≤ γ2

2
+

1

4
(1− α− γ)γ − (1− α)γ +

γ2

2
+

1

4
(1− α− γ)γ = −1

2
(1− α− γ)γ.

Hence, in all cases A−B ≤ −c0(α, γ) for

c0(α, γ) =
1

2
(1− α− γ)γ.

This completes the proof of the theorem.

6.2.4 Proof of Lemma 6.6

In this subsection we prove the crucial Lemma 6.6. Throughout this subsection we assume that
the property Pupp(0.1) and the expansion property Pexp(η) hold for some fixed constant η ∈ (0, 1).
First, recall that Wq,r = |Ωq,r|. We have from Pupp(0.1) that

Pr (Xt ∈ Ωq,r | X0 = C) =
∑

σ∈Ωq,r

Pr (Xt = σ | X0 = C)

≤Wq,r max
σ∈Ωq,r

Pr (Xt = σ | X0 = C)

≤ n3
E[Wq,r] max

σ∈Ωq,r

Pr (Xt = σ | X0 = C) . (23)

For now, we fix a σ ∈ Ωq,r and focus on bounding Pr (Xt = σ | X0 = C) . The key idea to bound
this probability is to exploit the reversibility of the Metropolis process. The following two standard
facts are going to be useful.

Fact 6.7 ([LP17]). If P is the transition matrix of a reversible Markov chain over a finite state
space Γ with stationary distribution µ, then for all x, y ∈ Γ and all integer t ≥ 1 it holds

µ(x)P t(x, y) = µ(y)P t(y, x).

Fact 6.8 ([LP17]). For a birth-death process on [n] with transition probabilities

P (i, i+ 1) = pi, P (i, i − 1) = qi, and P (i, i) = 1− pi − qi,

the stationary distribution is given by

µ(i) ∝
i∏

s=1

ps−1

qs
, ∀i ∈ [n].
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Now, notice that using the time-reversed dynamics it suffices try to bound the probability of
reaching a small clique C when starting from a large clique σ. Indeed, by reversibility we have

Pr (Xt = σ | X0 = C) = exp (β (hq − hp)) Pr (Xt = C | X0 = σ) . (24)

which is an application of Fact 6.7.
We introduce a birth-death process on [n] denoted by {Yt} with transition matrix P given by

the following transition probabilities:

P (s, s− 1) =
s

n
min {exp (β (hs−1 − hs)) , 1} , 1 ≤ s ≤ n;

P (s, s+ 1) =

{
1

20·2s min {exp (β (hs+1 − hs)) , 1} , 0 ≤ s < ⌊(1− η) log n⌋ ;
0, ⌊(1− η) log n⌋ ≤ s ≤ n− 1;

P (s, s) = 1− P (s, s− 1)− P (s, s+ 1), 0 ≤ s ≤ n.

Denote the stationary distribution of {Yt} by ν, which is supported on {0, 1, . . . , ⌊(1− η) log n⌋}.
The process {Yt} serves as an approximation of {|Xt|}; note that {|Xt|} itself is not a Markov
process.

The following lemma shows that Yt is stochastically dominated by |Xt|. The proof of this fact
is essentially based on the expansion property Pexp(η), and the derived in the proof below bounds
on the size transition of |Xt|, described in Eqs. (19) and (20).

Lemma 6.9. Let {Xt} denote the Metropolis process starting from some X0 = σ ∈ Ωq,∗. Let {Yt}
denote the birth-death process described above with parameter η ∈ (0, 1) starting from Y0 = q. Then
there exists a coupling {(Xt, Yt)} of the two processes such that for all integer t ≥ 1 it holds

Yt ≤ |Xt|.
In particular, for all integer t ≥ 1 it holds

Pr (Xt = C | X0 = σ) ≤ Pr
(
∃t′ ∈ N ∧ t′ ≤ t : Yt′ = p | Y0 = q

)
≤

t∑

t′=1

Pr (Yt′ = p | Y0 = q) .

Proof. We couple {|Xt|} and {Yt} as follows. Suppose that Yt−1 ≤ |Xt−1| for some integer t ≥ 1.
We will construct a coupling of Xt and Yt such that Yt ≤ |Xt|. Notice that the following probability
inequality is a straightforward corollary of that.

Since the probability that Yt = Yt−1 + 1 is less than 1/2 and so does the probability of |Xt| =
|Xt−1| − 1, we may couple Xt and Yt such that |Xt| − Yt decreases at most one; namely, it never
happens that Yt increases by 1 while Xt decreases in size. Thus, it suffices to consider the extremal
case when |Xt−1| = Yt−1 = s. We have

Pr (|Xt| = s− 1 | |Xt−1| = s) =
s

n
min {1, exp [β (hs−1 − hs)]} = P (s, s− 1) (25)

Meanwhile, recall that A(Xt−1) is the set of vertices v such that Xt−1 ∪{v} ∈ Ω. Then we have

|A(Xt−1)| ≥
n

20 · 2s
whenever s ≤ nη := ⌊(1− η) log n⌋ by the expansion property Pexp(η). Hence, we deduce that

Pr (|Xt| = s+ 1 | |Xt−1| = s) =
|A(Xt−1)|

n
min {1, exp [β (hs+1 − hs)]}

≥ 1{s < nη}
20 · 2s min {1, exp [β (hs+1 − hs)]} = P (s, s+ 1) (26)
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Using (25) and (26) we can couple |Xt| and Yt such that either |Xt| = Yt or |Xt| = s+1 and Yt = s,
as desired.

The next lemma upper bounds the t-step transition probability Pr (Yt = p | Y0 = q).

Lemma 6.10. Let {Yt} denote the birth-death process described above with parameter η ∈ (0, 1)
starting from Y0 = q = ρ log n and let p = ξ log n with ξ ≤ 1−η. Then for all integer t ≥ 1 we have

Pr (Yt = p | Y0 = q) ≤ exp

[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ ξ − ξ2

2
+ o(1)

)]
exp

[
β
(
hp − hq′

)]
(27)

where ρ′ = min{ρ, 1− η} and q′ = ρ′ log n.

Proof. We consider first the case where ρ ≤ 1− η. By Fact 6.7, we have

Pr (Yt = p | Y0 = q) = P t(q, p) =
ν(p)

ν(q)
P t(p, q) ≤ ν(p)

ν(q)
. (28)

By Fact 6.8, we have

ν(p)

ν(q)
=

q∏

s=p+1

s
n min {exp [β (hs−1 − hs)] , 1}
1

20·2s−1 min {exp [β (hs − hs−1)] , 1}

=

q∏

s=p+1

20s · 2s−1

n
exp [β (hs−1 − hs)]

=
20q−p · (q!/p!) · 2(q2)−(p2)

nq−p
exp [β (hp − hq)]

= exp

[
(ln 2)(log n)2

(
−ρ+ ρ2

2
+ ξ − ξ2

2
+ o(1)

)]
exp [β (hp − hq)] .

Next, consider the case where ρ > 1 − η, or equivalently q > q′. Let τ be the first time that
Yt′ = q′ and we obtain from (28) that

Pr (Yt = p | Y0 = q) =

t∑

t′=0

Pr
(
τ = t′ | Y0 = q

)
Pr

(
Yt−t′ = p | Y0 = q′

)

≤ ν(p)

ν(q′)

t∑

t′=0

Pr
(
τ = t′ | Y0 = q

)
=

ν(p)

ν(q′)
Pr (τ ≤ t | Y0 = q) ≤ ν(p)

ν(q′)
.

This completes the proof of the lemma.

We now proceed with the proof of Lemma 6.6.

Proof of Lemma 6.6. From Lemmas 6.9 and 6.10, we have for each σ ∈ Ωq,r

Pr (Xt = σ | X0 = C) = exp [β (hq − hp)] Pr (Xt = C | X0 = σ)

≤ exp [β (hq − hp)] max
t′∈[t]

tPr (Yt′ = p | Y0 = q)

≤ t exp

[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ ξ − ξ2

2
+ o(1)

)]
exp

[
β
(
hq − hq′

)]
,
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where ρ′ = min{ρ, 1− η} and q′ = ρ′ log n.
Combining now with Eq. (23) and Lemma 5.1 we have that Pr (Xt ∈ Ωq,r | X0 = C) is at most

n3
E[Wq,r] max

σ∈Ωq,r

Pr (Xt = σ | X0 = C)

≤ n3t exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
+ o(1)

)]

· exp
[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ ξ − ξ2

2
+ o(1)

)]
exp

[
β
(
hq − hq′

)]

= t exp

[
(ln 2)(log n)2

((
ρ− ρ2

2

)
−

(
ρ′ − (ρ′)2

2

)
−

(
(1− α)γ − γ2

2
− ξ +

ξ2

2

)
+ o(1)

)]
exp

[
β
(
hq − hq′

)]
.

Since h is 1-Lipschitz and q′ ≤ q, we have

exp
[
β
(
hq − hq′

)]
≤ exp

[
β
(
q − q′

)]
≤ exp

[
(ln 2)(log n)2

(
β̂
(
ρ− ρ′

))]

where we recall that β = (ln 2)β̂ log n. Therefore,

Pr (Xt ∈ Ωq,r | X0 = C)

≤ t exp

[
(ln 2)(log n)2

((
(1 + β̂)ρ− ρ2

2

)
−

(
(1 + β̂)ρ′ − (ρ′)2

2

)
−

(
(1− α)γ − γ2

2
− ξ +

ξ2

2

)
+ o(1)

)]
.

The proof of the lemma is complete.

7 Quasi-polynomial Hitting Time of Large Cliques

In this section, we present our results about the failure of the Metropolis process to even find cliques
of size at least (1 + ε) log n, for any planted clique size k = ⌊nα⌋ , α ∈ (0, 1).

7.1 Existence of a Bad Initial Clique

We start with the “worst-case” initialization result which now works for all inverse temperatures
β = O(log n), but establishes that from this initialization the Metropolis process fails to find either
a clique of size at least (1 + ε) log n or to find a clique with intersection at least γ log n with the
planted clique.

Theorem 7.1. Let α ∈ [0, 1) be any fixed constant. Then the random graph G(n, 12 , k = ⌊nα⌋) with
a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general Gibbs measure given by Eq. (14) for arbitrary h satisfying Assumption 5.4
and arbitrary inverse temperature β = O(log n). For any constants ε ∈ (0, 1−α) and γ ∈ (0, 1−α],
there exists a constant c > 0 and an initialization state for the Metropolis process from which it
requires at least nc logn steps to reach

• either cliques of size at least (1 + ε) log n,

• or cliques of intersection with the planted clique at least γ log n,

with probability at least 1− n−c logn.

We now present the proof of Theorem 7.1. We first need the notion of gateways as introduced
by [Jer92] in his original argument for the failure of the Metropolis process.
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Definition 7.2 (Gateways). For q ∈ [n], we say a clique C ∈ Ω is a q-gateway if there exists ℓ ∈ N

and a sequence of cliques C0 = C,C1, . . . , Cℓ ∈ Ω such that

(1) For every 1 ≤ i ≤ ℓ, Ci−1 and Ci differ by exactly one vertex;

(2) For every 0 ≤ i ≤ ℓ, |Ci| ≥ |C|;

(3) |Cℓ| = q.

Let Ψq denote the collection of all cliques that are q-gateways.

Notice that by definition if a clique σ is a q-gateway then |σ| ≤ q.

Definition 7.3 (Gateway-Counts Property Pgw). We say the random graph G(n, 12 , k = ⌊nα⌋) with
a planted clique satisfies the gateway-counts property Pgw if the following is true: For all integers
q = ⌊(1 + ε) log n⌋, p = ⌊(1 + ε− θ) log n⌋, and u = ⌊(ε/6) log n⌋ with parameters ε ∈ (0, 1 − α)
and θ ∈ (0, ε), it holds

|Ψq ∩ Ωp,≤u| ≤ exp

[
(ln 2)(log n)2

(
(1 + ε− θ)− 1

2
(1 + ε− θ)2 − θ

(
5

6
ε− 2θ

)
+ o(1)

)]
.

The following lemma follows immediately from arguments in [Jer92].

Lemma 7.4. For any constant α ∈ [0, 1), the random graph G(n, 12 , k = ⌊nα⌋) with a planted clique
satisfies the gateway-counts property Pgw with probability 1− o(1) as n→∞.

Proof. We follow the same approach as in [Jer92] with the slight modification that θ is not equal
to ε/3 but arbitrary. For any C ∈ Ψq ∩ Ωp,≤u, there exists a set U ∈ V \ C of size |U | = q − p
and a subset W ⊆ C \ PC of size 2p − q − u such that every vertex from U is adjacent to every
vertex from W . To see this, consider a path C0 = C,C1, . . . , Cℓ as in Definition 7.2, and consider
the first clique C ′ in the path such that |C ′ \ C| = q − p. Such C ′ must exist since the destination
clique Cℓ has size q while |C| = p < q. Note that C ′ corresponds to the first time when q − p
new vertices are added. Meanwhile, since |C ′| ≥ p, we have |C ∩ C ′| ≥ p − (q − p) = 2p − q and
|C∩C ′ \PC| ≥ 2p−q−u. We can thus take U = C ′ \C and any W ⊆ C∩C ′ \PC of size 2p−q−u.

Hence, we can associate every q-gateway C in Ωp,≤u with a tuple (C,U,W ) satisfying all the
conditions mentioned above: C is a clique of size p and intersection at most u with PC, U ⊆ V \C
has size q − p, W ⊆ C \ PC has size 2p − q − u, and U,W are fully connected. Let X denote the
number of such tuples. Then, |Ψq ∩ Ωp,≤u| ≤ X. The first moment of X is given by

E[X] =

u∑

r=0

(
k

r

)(
n− k

p− r

)(
n− p

q − p

)(
p− r

2p− q − u

)(
1

2

)(p2)−(r2)+(q−p)(2p−q−u)

≤ exp

[
(ln 2)(log n)2

(
(1 + ε− θ)− 1

2
(1 + ε− θ)2 − θ

(
5

6
ε− 2θ

)
+ o(1)

)]
,

where in the first equality,
(k
r

)(n−k
p−r

)
counts the number of choices of C for r ranging from 0 to u,

(1/2)(
p

2)−(
r

2) is the probability C being a clique,
(n−p
q−p

)
is the number of choices of U ,

( p−r
2p−q−u

)
is

for W , and finally (1/2)(q−p)(2p−q−u) is the probability of U,W being fully connected. The lemma
then follows from the Markov’s inequality

|Ψq ∩ Ωp,≤u| ≤ X ≤ nE[X],

and a union bound over the choices of q, p, and u.
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We now present the proof of Theorem 7.1.

Proof of Theorem 7.1. By Lemmas 5.3 and 7.4, the random graph G(n, 12 , ⌊nα⌋) satisfies both the
clique-counts properties Pupp(ε0) and Plow(ε0) for ε0 = α ≤ 1−ε and the gateway-counts properties
Pgw simultaneously with probability 1 − o(1) as n → ∞. Throughout the proof we assume that
Pupp(ε0), Plow(ε0), and Pgw are all satisfied.

Suppose β̂ is such that β̂ = β/((ln 2)(log n)) so that β̂ = O(1). Pick a constant θ ∈ (0, ε/3)
such that

β̂θ ≤ 1

2

(
(1− α)γ − γ2

2

)
.

Let q = (1 + ε) log n, p = (1 + ε− θ) log n, and r = γ log n. We define

B = (Ψq ∩Ωp,<r) ∪Ω<q,r

to be the “bottleneck” set to which we will apply Lemma 5.5. Let A ⊆ Ω denote the collection of
cliques that are reachable from the empty clique through a path (i.e. a sequence of cliques where
each adjacent pair differs by exactly one vertex) not including any clique from B except possibly
for the destination. The following claim, whose proof is postponed to the end of this subsection,
follows easily from the definitions of A and B.
Claim 7.5. 1. Cliques from A \ B are not adjacent to cliques from Ac (i.e., they differ by at

least two vertices);

2. Ωq,∗ ⊆ Ac \ B;

3. Ω∗,r ⊆ Ac ∪ B.
Now observe from Claim 7.5 that to prove what we want, it suffices to show that starting from

an appropriate state the Metropolis process does not hit any clique from B in exp(c log2 n)-time
with probability 1 − exp(−c log2 n). For a collection U ⊆ Ω of cliques we write Z(U) = Z(β;U) =∑

σ∈U eβh|σ| to represent the partition function restricted to the set U . Since the boundary of A is
included in B by Claim 7.5 it suffices to show that there exists a constant c > 0 such that

Z(B)
Z(A) ≤ exp

(
−c log2 n

)
. (29)

Given (29), Theorem 7.1 is an immediate consequence of Lemma 5.5.
Observe that we have the following inclusion,

A ⊇ Ωp,<r ∪ Ω≤p,0.

To see this, for every clique in Ωp,<r, it can be reached from the empty clique by adding vertices
one by one in any order, so that none of the intermediate cliques are from Ωp,<r ⊇ (Ψq ∩ Ωp,<r) or
from Ω<q,r, except for possibly the last one. Similarly, every clique in Ω≤p,0 can be reached from
the empty clique in the same way. (Note that cliques in Ω≤q,0, however, may not be reachable from
∅ without crossing B; for example, by adding vertices one by one to reach a clique of size q, it may
first reach a clique of size p < q which is a q-gateway with intersection < r.) Thus, we have

Z(B)
Z(A) ≤

Z (Ψq ∩ Ωp,<r)

Z(A) +
Z(Ω<q,r)

Z(A) ≤ Z (Ψq ∩ Ωp,<r)

Z(Ωp,<r)
+

Z(Ω<q,r)

Z(Ω≤p,0)
=
|Ψq ∩ Ωp,<r|

Wp,<r
+

Z<q,r

Z≤p,0
. (30)

The rest of the proof aims to upper bound the two ratios in Eq. (30) respectively.
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For the first ratio, the key observation is that since γ ≤ 1 − α, Ωp,<r is dominated by cliques
of intersection o(log n) (almost completely outside the planted clique) or more rigorously speaking
those with sufficiently small intersection, say, in Ωp,≤u where u = (ε/6) log n. Hence, we write

|Ψq ∩ Ωp,<r| = |Ψq ∩ Ωp,≤u|+ |Ψq ∩ Ωp,u<·<r| ≤ |Ψq ∩ Ωp,≤u|+Wp,u<·<r,

and combining Wp,<r ≥Wp,0 we get

|Ψq ∩ Ωp,<r|
Wp,<r

≤ |Ψq ∩Ωp,≤u|
Wp,0

+
Wp,u<·<r

Wp,0
. (31)

By Lemma 5.1, the clique-counts property Plow(ε0), and the gateway-counts property Pgw, we upper
bound the first term in Eq. (31) by

|Ψq ∩ Ωp,≤u|
Wp,0

≤ 2 |Ψq ∩ Ωp,≤u|
E[Wp,0]

≤ exp

[
(ln 2)(log n)2

(
(1 + ε− θ)− 1

2
(1 + ε− θ)2 − θ

(
5

6
ε− 2θ

)
+ o(1)

)]

· exp
[
(ln 2)(log n)2

(
−(1 + ε− θ) +

1

2
(1 + ε− θ)2 + o(1)

)]

= exp

[
(ln 2)(log n)2

(
−θ

(
5

6
ε− 2θ

)
+ o(1)

)]
. (32)

For the second term in Eq. (31), Pupp(ε0) and Plow(ε0) imply that

Wp,u<·<r

Wp,0
≤ 2n3 E [Wp,u<·<r]

E [Wp,0]
≤ 2n4 E [Wp,u]

E [Wp,0]
≤ exp

[
(ln 2)(log n)2

(
− 1

12
(1− α)ε + o(1)

)]
, (33)

where the last inequality uses ε ≤ 1− α. Combining Eqs. (31) to (33), we obtain

|Ψq ∩ Ωp,<r|
Wp,<r

≤ exp
(
−c1 log2 n+ o(log2 n)

)

for some constant c1 = c1(α, ε, θ). This bounds the first ratio in Eq. (30).
For the second ratio in Eq. (30), we have from Pupp(ε0) and Plow(ε0) that

Z<q,r

Z≤p,0
≤ 2n3 E [Z<q,r)]

E [Z≤p,0]
. (34)

Using linearity of expectation we have that

E [Z<q,r] =

q−1∑

q′=r

E
[
Zq′,r

]
=

q−1∑

q′=r

E
[
Wq′,r

]
exp

(
βhq′

)
.

Let
q∗ = argmax

q′∈[n]: r≤q′<q
E
[
Wq′,r

]
exp

(
βhq′

)
.

It follows that
E [Z<q,r] ≤ nE [Wq∗,r] exp (βhq∗) . (35)
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Meanwhile, let q∗′ = min{q∗, p}, and we have

E [Z≤p,0] ≥ E
[
Wq∗′,0

]
exp

(
βhq∗′

)
. (36)

Combining Eqs. (34) to (36), we get that

Z<q,r

Z≤p,0
≤ 2n4 E [Wq∗,r]

E
[
Wq∗′,0

] exp
[
β(hq∗ − hq∗′)

]
.

Let ρ = q∗/ log n and ρ′ = q∗′/ log n. Then by definition we have that ρ′ ≤ ρ ≤ 1 + ε and
ρ′ = min{ρ, 1 + ε− θ}. Furthermore by Assumption 5.4 we have

β(hq∗ − hq∗′) ≤ (ln 2)(log n)2β̂(ρ− ρ′).

Then, an application of Item 1 of Lemma 5.1 implies that

Z<q,r

Z≤p,0
≤ exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
− ρ′ +

(ρ′)2

2
+ β̂(ρ− ρ′) + o(1)

)]

= exp

[
(ln 2)(log n)2

(
(ρ− ρ′)

(
β̂ + 1− 1

2
(ρ+ ρ′)

)
−

(
(1− α)γ − γ2

2

)
+ o(1)

)]
.

If ρ = ρ′ then Z<q,r/Z≤p,0 ≤ exp
(
−c2 log2 n+ o(log2 n)

)
for c2 = (ln 2)

(
(1− α)γ − γ2/2

)
. If ρ > ρ′

then

(ρ− ρ′)

(
β̂ + 1− 1

2
(ρ+ ρ′)

)
≤ θβ̂ ≤ 1

2

(
(1− α)γ − γ2

2

)

since 1 ≤ 1+ ε− θ = ρ′ < ρ ≤ 1+ ε. Therefore, we have Z<q,r/Z≤p,0 ≤ exp
(
−c2 log2 n+ o(log2 n)

)

for c2 = ln 2
2

(
(1− α)γ − γ2/2

)
. This bounds the second ratio in Eq. (30). Hence, we establish

Eq. (29) and the theorem then follows.

Proof of Claim 7.5. The first item is obvious, since if a clique σ ∈ A \ B is adjacent to another
clique σ′, then by appending (σ, σ′) to the path from ∅ to σ we get a path from ∅ to σ′ without
passing through cliques from B except possibly at σ′′, since σ /∈ B. This implies that σ′′ ∈ A which
proves the first item.

For the second item, suppose for contradiction that there exists a clique C of size q that is in
A ∪ B. Clearly C /∈ B and so C ∈ A. Then there exists a path of cliques ∅ = C0, C1, . . . , Cℓ = C
which contain no cliques from B. Let Cj for j ∈ [ℓ] be the first clique of size q in this path; that
is, |Ci| < q for 0 ≤ i < j. Then, the (sub)path ∅ = C0, C1, . . . , Cj must contain a q-gateway of
size p, call it C ′, as one can choose the largest i < j for which |Ci| = p and set C ′ = Ci. If C

′ has
intersection with the planted clique less than r, then C ′ ∈ Ψq∩Ωp,<r ⊆ B, contradiction. Otherwise,
C ′ has intersection at least r which means at some earlier time, it will pass a clique of intersection
exactly r whose size is less than q, which is again in Ω<q,r ⊆ B leading to a contradiction. This
establishes the second item.

For the third one, if σ is a clique of intersection r, then either |σ| < q meaning σ ∈ Ω<q,r ⊆ B
or |σ| ≥ q meaning any path from ∅ to σ must pass through a clique of size exactly q and by the
second item must pass through cliques from B, implying σ ∈ Ac.
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7.2 Starting from the Empty Clique

Theorem 7.6. Let α ∈ [0, 1) be any fixed constant. For any constant ε ∈ (0, 1), the random graph
G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general Gibbs measure given by Eq. (14) for arbitrary 1-Lipschitz h with h0 = 0
and inverse temperature β = o(log n). Let {Xt} denote the Metropolis process on G with stationary
distribution πβ. Then there exist constants ξ = ξ(α, ε) > 0 and c = c(α, ε) > 0 such that for any
clique C ∈ Ω of size at most ξ log n, one has

Pr
(
∃t ∈ N ∧ t ≤ nc logn s.t. |Xt| ≥ (1 + ε) log n

∣∣∣ X0 = C
)
≤ n−c logn.

In particular, the Metropolis process starting from the empty clique requires nΩ(logn) steps to reach
cliques of size at least (1 + ε) log n, with probability 1− n−Ω(logn).

Proof. By Lemmas 5.3 and 6.5, the random graph G(n, 12 , ⌊nα⌋) satisfies both Pupp(0.1) and Pexp(η)
for η = ε/2 with probability 1 − o(1) as n → ∞. In the rest of the proof we assume that both
Pupp(0.1) and Pexp(η) are satisfied.

Suppose that |C| = p = ξ′ log n, for 0 ≤ ξ′ ≤ ξ and ξ > 0 is a sufficiently small constant to
be determined. Let q = (1 + ε) log n and s = (1 − α) log n. First observe that if the chain arrives
at a clique in Ωq,∗, it either hits a clique from Ωq,<s or previously reached a clique in Ω<q,s. This
implies that

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ωq,∗

∣∣∣ X0 = C
)

≤ Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ωq,<s

∣∣∣ X0 = C
)
+ Pr

(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω<q,s

∣∣∣ X0 = C
)
.

It suffices to upper bound each of the two terms respectively.
Similar as in Eq. (21), we deduce from the union bound and Pupp(0.1) that

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ωq,<s

∣∣∣ X0 = C
)
≤ Tn max

t∈[T ]
max
r∈[s]

Pr (Xt ∈ Ωq,r | X0 = C) ;

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω<q,s

∣∣∣ X0 = C
)
≤ Tn max

t∈[T ]
max
p∈[q]

Pr (Xt ∈ Ωp,s | X0 = C) .

It suffices to show that for all integer t ≥ 1, all pairs

(p, r) ∈ {(q, r) : r ∈ [s]} ∪ {(p, s) : p ∈ [q]} ,
and all clique σ ∈ Ωp,r, it holds

Pr (Xt ∈ Ωp,r | X0 = C) ≤ tn−c logn (37)

for some constant c > 0.
Without loss of generality we may assume that ε ≤ 1 − α. Let η = ε/2 and ξ = ε2/8. Write

β = (ln 2)β̂ log n with β̂ = o(1). Consider first the pair (q, r) where r ∈ [s]. Suppose that r = γ log n
with 0 ≤ γ ≤ 1 − α. We deduce from Lemma 6.6, with β̂ = o(1), ρ = 1 + ε, γ ∈ [0, 1 − α], and
ρ′ = min{ρ, 1 − η} = 1− η, that

Pr (Xt ∈ Ωq,r | X0 = C)

≤ exp

[
(ln 2)(log n)2

((
(1 + ε)− 1

2
(1 + ε)2

)
−

(
(1− η)− 1

2
(1− η)2

)
−

(
(1− α)γ − γ2

2
− ξ +

ξ2

2

)
+ o(1)

)]

≤ exp

[
(ln 2)(log n)2

(
−ε2

2
+

η2

2
+ ξ + o(1)

)]
= exp

[
(ln 2)(log n)2

(
−ε2

4
+ o(1)

)]
.
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This shows Eq. (37) for the first case.
For the second case, we have the pair (p, s) where p ∈ [q]. Suppose p = ρ log n with 0 ≤ ρ ≤ 1+ε.

Also recall that s = (1− α) log n. Again, we deduce from Lemma 6.6, with β̂ = o(1), ρ ∈ [0, 1 + ε],
γ = 1− α, and ρ′ = min{ρ, 1− η}, that

Pr (Xt ∈ Ωp,s | X0 = C)

≤ exp

[
(ln 2)(log n)2

((
ρ− ρ2

2

)
−

(
ρ′ − (ρ′)2

2

)
−

(
1

2
(1− α)2 − ξ +

ξ2

2

)
+ o(1)

)]

≤ exp

[
(ln 2)(log n)2

(
−1

2
(ρ− 1)2 +

1

2
(ρ′ − 1)2 − 3

8
(1− α)2 + o(1)

)]
,

where the last inequality follows from

1

2
(1− α)2 − ξ +

ξ2

2
≥ 1

2
(1− α)2 − ε2

8
≥ 3

8
(1− α)2

since ε ≤ 1−α. If ρ′ = ρ ≤ 1− η, then −1
2(ρ− 1)2 + 1

2(ρ
′− 1)2 = 0. If ρ′ = 1− η < ρ ≤ 1+ ε, then

−1

2
(ρ− 1)2 +

1

2
(ρ′ − 1)2 ≤ η2

2
≤ ε2

8
≤ 1

8
(1− α)2

where the last inequality is because ε ≤ 1− α. Hence,

Pr (Xt ∈ Ωp,s | X0 = C) ≤ exp

[
(ln 2)(log n)2

(
−1

4
(1− α)2 + o(1)

)]
.

This shows Eq. (37) for the second case. The theorem then follows from Eq. (37).

7.3 Low Temperature Regime and Greedy Algorithm

Theorem 7.7. Let α ∈ [0, 1) be any fixed constant. For any constant ε ∈ (0, 1), the random graph
G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general Gibbs measure given by Eq. (14) for the identity function hq = q and
inverse temperature β = ω(log n). For any constant γ ∈ (0, 1 − α], there exists constant ξ =
ξ(α, ε) > 0 such that for any clique C ∈ Ω of size at most ξ log n and any constant c ∈ N

+, with
probability at least 1− n−ω(1) the Metropolis process starting from C will not reach

• either cliques of size at least (1 + ε) log n,

• or cliques of intersection at least γ log n with the planted clique,

within nc steps.

For a subset S ⊆ Ω of cliques and an integer p ∈ N
+, let S [p] denote the collection of all cliques

of size p that are subsets of cliques from S, i.e.,

S [p] = {C ∈ Ωp,∗ : ∃σ ∈ S s.t. C ⊆ σ} .

For 0 ≤ r ≤ q we define W
[p]
q,r =

∣∣∣Ω[p]
q,r

∣∣∣ and similarly for W
[p]
q,<r, W

[p]
<q,r, etc.
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Lemma 7.8. Consider the random graph G(n, 12 , k = ⌊nα⌋) with a planted clique conditional on
satisfying the property Pupp(0.1). For any 0 ≤ p ≤ q = ρ log n with ρ ≥ 0 and any r = γ log n with
0 ≤ γ ≤ ρ we have

W [p]
q,r ≤ exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
+ o(1)

)]

with high probability as n→∞.

Proof. Notice that every clique of size q has
(q
p

)
≤ 2q ≤ n2 subsets of size p. The lemma then

follows immediately from Pupp(ε).

We now give the proof of Theorem 7.7.

Proof of Theorem 7.7. By Lemmas 5.3 and 6.5, the random graph G(n, 12 , ⌊nα⌋) satisfies both
Pupp(0.1) and Pexp(η) for η = ε/2 with probability 1− o(1) as n→∞. In the rest of the proof we
assume that both Pupp(0.1) and Pexp(η) are satisfied.

First, a simple observation is that the process actually never remove vertices. Indeed, the
probability of removing a vertex from the current clique in one step is at most e−β = n−ω(1). Since
we run the Metropolis process for polynomially many steps, the probability that the chain ever
remove a vertex is upper bounded by poly(n) · n−ω(1) = n−ω(1). Hence, in this low temperature
regime the Metropolis process is equivalent to the greedy algorithm.

Without loss of generality, we may assume that

ε ≤
√

2

(
(1− α)γ − γ2

2

)
.

Let q = (1 + ε) log n and s = γ log n. Suppose the initial state is a clique C of size ξ log n for
ξ ≤ ε2/8. Let η = ε/2 and q′ = (1 − η) log n. If the chain arrives at a clique in Ωq,∗, it either
hits a clique from Ωq,<s or previously reached a clique in Ω<q,s. Similarly, if the chain hits Ω∗,s,
then it must also reach either Ω<q,s or Ωq,<s. Hence, to bound the probability of reaching either
Ωq,∗ or Ω∗,s, we only need to bound the probability of reaching Ωq,<s or Ω<q,s. Furthermore, since
the process never removes a vertex with high probability in polynomially many steps, in the case

this happens it must first reach a clique from Ω
[q′]
q,<s, or Ω

[q′]
q′<·<q,s, or Ω≤q′,s. To summarize, we can

deduce from the union bound that

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ωq,∗ ∪ Ω∗,s

∣∣∣ X0 = C
)

≤ Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω

[q′]
q,<s

∣∣∣ X0 = C
)
+ Pr

(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω

[q′]
q′<·<q,s

∣∣∣ X0 = C
)

+Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω≤q′,s

∣∣∣ X0 = C
)
+

1

nω(1)
.

We bound each of the three probabilities respectively.
For the first case, we have from the union bound and Pupp(0.1) that,

Pr
(
∃t ∈ N∧ t ≤ T : Xt ∈ Ω

[q′]
q,<s

∣∣∣ X0 = C
)
≤ Tn4 max

t∈[T ]
max
r∈[s]

max
σ∈Ω[q′]

q,r

E

[
W [q′]

q,r

]
Pr (Xt = σ | X0 = C) .
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Suppose r = γ′ log n ∈ [s]. We deduce from Lemmas 5.1 and 7.8 and Lemma 6.6 (with ρ = ρ′ = 1−η
and γ = 0 for the notations of Lemma 6.6) that for every integer t ≥ 1 and every clique σ ∈ Ω

[q′]
q,r

(note that |σ| = q′ since q′ < q),

E

[
W [q′]

q,r

]
Pr (Xt = σ | X0 = C)

≤
E

[
W

[q′]
q,r

]

E
[
Wq′,0

] · E
[
Wq′,0

]
Pr (Xt = σ | X0 = C)

≤ t exp

[
(ln 2)(log n)2

(
(1 + ε)− 1

2
(1 + ε)2 − (1− α)γ′ +

(γ′)2

2
− (1− η) +

1

2
(1− η)2 + ξ − ξ2

2
+ o(1)

)]

≤ t exp

[
(ln 2)(log n)2

(
−ε2

2
+

η2

2
+ ξ + o(1)

)]
≤ t exp

[
(ln 2)(log n)2

(
−ε2

4
+ o(1)

)]
,

where the last inequality follows from

η2

2
+ ξ ≤ ε2

8
+

ε2

8
=

ε2

4
.

Next consider the second case, where we have

Pr
(
∃t ∈ N∧t ≤ T : Xt ∈ Ω

[q′]
q′<·<q,s

∣∣∣ X0 = C
)
≤ Tn4 max

t∈[T ]
max

p∈[q]\[q′]
max
σ∈Ω[q′]

p,s

E

[
W [q′]

p,s

]
Pr (Xt = σ | X0 = C) .

Suppose p = ρ log n ∈ [q] \ [q′] and so 1 − η ≤ ρ ≤ 1 + ε. Also recall that s = γ log n. We deduce
from Lemmas 5.1 and 7.8 and Lemma 6.6 (with ρ = ρ′ = 1 − η and γ = 0 for the notations of

Lemma 6.6) that for every integer t ≥ 1 and every clique σ ∈ Ω
[q′]
p,s (note that |σ| = q′ since q′ < q),

E

[
W [q′]

p,s

]
Pr (Xt = σ | X0 = C)

≤
E

[
W

[q′]
p,s

]

E[Wq′,0]
· E[Wq′,0] Pr (Xt = σ | X0 = C)

≤ t exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
− (1− η) +

1

2
(1− η)2 + ξ − ξ2

2
+ o(1)

)]

≤ t exp

[
(ln 2)(log n)2

(
−
(
(1− α)γ − γ2

2

)
+

η2

2
+ ξ + o(1)

)]

≤ t exp

[
(ln 2)(log n)2

(
−1

2

(
(1− α)γ − γ2

2

)
+ o(1)

)]
,

where the last inequality follows from

η2

2
+ ξ ≤ ε2

4
≤ 1

2

(
(1− α)γ − γ2

2

)
.

Finally consider the third case. Again we have

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ω≤q′,s

∣∣∣ X0 = C
)
≤ Tn4 max

t∈[T ]
max
p∈[q′]

max
σ∈Ωp,s

E[Wp,s] Pr (Xt = σ | X0 = C) .

Suppose p = ρ log n ∈ [q′] and so ρ ≤ 1−η. Also recall that s = γ log n. We deduce from Lemma 6.6
that for every integer t ≥ 1 and every clique σ ∈ Ωp,s,
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E[Wp,s] Pr (Xt = σ | X0 = C) ≤ t exp

[
(ln 2)(log n)2

(
−
(
(1− α)γ − γ2

2

)
+ ξ − ξ2

2
+ o(1)

)]

≤ t exp

[
(ln 2)(log n)2

(
−3

4

(
(1− α)γ − γ2

2

)
+ o(1)

)]
,

where the last inequality follows from

ξ ≤ ε2

8
≤ 1

4

(
(1− α)γ − γ2

2

)
.

Therefore, we conclude that

Pr
(
∃t ∈ N ∧ t ≤ T : Xt ∈ Ωq,∗ ∪ Ω∗,s

∣∣∣ X0 = C
)
≤ Tn2

nΩ(logn)
+

1

nω(1)
≤ 1

nω(1)
,

as we wanted.

8 Simulated Tempering

In this section, we discuss our lower bounds against the simulated tempering versions of the
Metropolis process.

8.1 Definition of the dynamics

We start with the formal definition. Suppose for some m ∈ N we have a collection of inverse
temperatures β0 < β1 < · · · < βm. For each i ∈ [m], let Ẑ(βi) denote an estimate of the partition
function Z(βi). The simulated tempering (ST) dynamics is a Markov chain on the state space
Ω× [m], which seeks to optimize a Hamiltonian defined on Ω× [m], say given according to H(C) =
h|C| for an arbitrary vector {hq, q ∈ [n]}. The transition matrix is given as follows.

• A level move: For C,C ′ ∈ Ω and i ∈ [m] such that C and C ′ differ by exactly one vertex,

Pst((C, i), (C
′, i)) =

a

n
min

{
1, exp

[
βi

(
h|C′| − h|C|

)]}

• A temperature move: For i, i′ ∈ [m] such that |i− i′| = 1,

Pst((C, i), (C, i
′)) =

1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi′)
exp

[
(βi′ − βi)h|C|

]
}
.

Some remarks are in order.

Remark 8.1. The stationary distribution of the ST dynamics can be straightforwardly checked to
be given by µ(C, i) ∝ Z(βi)

Ẑ(βi)
πβi

(C), for πβi
(C) the generic Gibbs measure defined in Eq. (14). Notice

that if Ẑ(βi) = Z(βi) for all i ∈ [m] then we have

µ(C, i) =
1

m+ 1
πβi

(C).

and along a single temperature the ST dynamics is identical to the Metropolis process introduced
in Section 5.3.

Remark 8.2. The use of estimates Ẑ(βi) of the partition function Z(βi) in the definition of the
ST dynamics, as opposed to the original values is naturally motivated from applications where one
cannot efficiently compute the value of Z(βi) to decide the temperature move step.
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8.2 Existence of a Bad Initial Clique

We now present our lower bound results which are for the ST dynamics under a worst-case initial-
ization.

Our first result is about the ST dynamics failing to reach γ log n intersection with the planted
clique, similar to the Metropolis process according to Theorem 6.1. Interestingly, the lower bound
holds for any choice of arbitrarily many temperatures and for any choice of estimators of the
partition function.

Theorem 8.3. Let α ∈ (0, 1) be any fixed constant. For any constant γ > 0, the random graph
G(n, 12 , k = ⌊nα⌋) with a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general ST dynamics given in Section 8.1 for arbitrary h, arbitrary m ∈ N, arbi-
trary inverse temperatures β1 < β2 < . . . < βm, and arbitrary estimates Ẑ(βi), i = 1, . . . ,m. Then
there is an initialization pair of temperature and clique for the ST dynamics from which it requires
exp(Ω(log2 n))-time to reach a pair of temperature and clique where the clique is of intersection
with the planted clique at least γ log2 n, with probability at least 1− exp(−Ω(log2 n)). In particular,
under worst-case initialization it fails to recover the planted clique in polynomial-time.

Proof. Throughout the proof we assume that both Pupp(ε) and Plow(ε) are satisfied for ε > 0 given
by Eq. (15), which happens with probability 1− o(1) as n→∞ by Lemma 5.3.

Notice that we can assume without loss of generality that γ satisfies 0 < γ < 2(1 − α). We
let r = ⌊γ log n⌋. Now from the proof of Theorem 6.1 we have that for any such γ, there exists a
constant c = c(α, γ) > 0 such that for all βi, i = 1, . . . ,m and the corresponding πβi

, i = 1, . . . ,m
Gibbs measure per Eq. (14),

πβi
(Ω∗,r)

πβi
(Ω∗,≤r)

=
Z∗,r
Z∗,≤r

≤ exp
(
−c log2 n

)
, (38)

w.h.p. as n → +∞. We now consider the set A =
⋃

i∈[m]Ω∗,≤r × {βi} the subset of the state
space of the ST dynamics, and notice ∂A =

⋃
i∈[m]Ω∗,r ×{βi}, where ∂A is the boundary of A. In

particular using (38) we conclude that w.h.p. as n→ +∞

µ(∂A)
µ(A) =

∑m
i=1

Z(βi)

Ẑ(βi)
πβi

(Ω∗,r)
∑m

i=1
Z(βi)

Ẑ(βi)
πβi

(Ω∗,≤r)
≤ exp

(
−c log2 n

)
, (39)

Given Eq. (39), Theorem 8.3 is an immediate consequence of Lemma 5.5.

Our second result is about the ST dynamics under the additional restriction that maxi∈[m] |βi| =
O(log n). In this case, similar to the Metropolis process per Theorem 7.1, we show that the ST
dynamics fail to reach either (1 + ε) log n-cliques or cliques with intersection at least γ log n with
the planted clique. Interestingly, again, the lower bound holds for any choice of arbitrarily many
temperatures of magnitude O(log n) and for any choice of estimators of the partition function.

Theorem 8.4. Let α ∈ [0, 1) be any fixed constant. Then the random graph G(n, 12 , k = ⌊nα⌋) with
a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general ST dynamics given in Section 8.1 for arbitrary h satisfying Assumption 5.4,
arbitrary m ∈ N, arbitrary inverse temperatures β1 < β2 < . . . < βm with maxi∈[m] |βi| = O(log n),

and arbitrary estimates Ẑ(βi), i = 1, . . . ,m. For any constants ε ∈ (0, 1 − α) and γ ∈ (0, 1 − α],
there is an initialization pair of temperature and clique for the ST dynamics from which it requires
exp(Ω(log2 n))-time to reach a pair of temperature and clique where
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• either the clique is of size at least (1 + ε) log n,

• or the clique is of intersection at least γ log n with the planted clique,

with probability at least 1− exp(−Ω(log2 n)).

Proof. Throughout the proof we assume that Pupp(ε0), Plow(ε0), and Pgw are all satisfied for ε0 =
α ≤ 1− ε, which happens with probability 1− o(1) as n→∞ by Lemmas 5.3 and 7.4.

We start with following the proof of Theorem 7.1. For i = 1, . . . ,m let β̂i be such that β̂i =
βi/((ln 2)(log n)). By assumption we have maxi∈[m] |β̂i| = O(1). Pick a constant θ ∈ (0, ε/3) such
that for all i ∈ [m]

β̂iθ ≤
1

2

(
(1− α)γ − γ2

2

)
.

Let q = (1 + ε) log n, p = (1 + ε− θ) log n, and r = γ log n. Let also

B = (Ψq ∩ Ωp,<r) ∪ Ω<q,r.

Let also A ⊆ Ω denote the collection of cliques that are reachable from the empty clique through a
path (i.e. a sequence of cliques where each adjacent pair differs by exactly one vertex) not including
any clique from B except possibly for the destination.

From the proof of Theorem 7.1 we have that there exists a constant c = c(α, γ, θ) > 0 such
that for all βi, i = 1, . . . ,m and the corresponding πβi

, i = 1, . . . ,m being the Gibbs measure per
Eq. (14),

πβi
(∂A)

πβi
(A) ≤

πβi
(B)

πβi
(A) ≤ exp

(
−c log2 n

)
, (40)

w.h.p. as n → +∞. We now consider the set G =
⋃

i∈[m]A × {βi} the subset of the state space
of the ST dynamics, and notice ∂G =

⋃
i∈[m] ∂A× {βi}. In particular using (40) we conclude that

w.h.p. as n→ +∞

µ(∂G)
µ(G) =

∑m
i=1

Z(βi)

Ẑ(βi)
πβi

(∂A)
∑m

i=1
Z(βi)

Ẑ(βi)
πβi

(A)
≤ exp

(
−c log2 n

)
, (41)

Given Eq. (41), Theorem 8.3 is an immediate consequence of Lemma 5.5.

8.3 Starting From the Empty Clique

Theorem 8.5. Let α ∈ [0, 1) be any fixed constant. Then the random graph G(n, 12 , k = ⌊nα⌋) with
a planted clique satisfies the following with probability 1− o(1) as n→∞.

Consider the general ST dynamics given in Section 8.1 for monotone 1-Lipschitz h with h0 = 0,
arbitrary inverse temperatures β0 < β1 < . . . < βm with m = o(log n) and βm = O(1), and arbitrary
estimates Ẑ(β0) < Ẑ(β1) < · · · < Ẑ(βm). For any constants c ∈ N, ε ∈ (0, 1−α), and γ ∈ (0, 1−α],
the ST dynamics starting from (∅, 0) will not reach within nc steps a pair of temperature and clique
where

• either the clique is of size at least (1 + ε) log n,

• or the clique is of intersection at least γ log n with the planted clique,

with probability 1− n−ω(1).
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In what follows we condition on both Pupp(0.1) and Pexp(η) for η = ε/2, which by Lemmas 5.3
and 6.5 hold with probability 1− o(1) as n→∞. Also, we may assume that

Ẑ(βi)

Ẑ(βi+1)
≥ 1

n

√
logn

m

(42)

for all i = 0, 1, . . . ,m− 1. Otherwise, for any clique C of size O(log n) one has

Pst((C, i), (C, i + 1)) =
1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi+1)
exp

[
(βi+1 − βi)h|C|

]
}
≤ eO(log n)

n

√
log n

m

=
1

nω(1)

since βm = O(1), h|C| ≤ |C| = O(log n) and m = o(log n). This means that the chain with high
probability will never make a move to the inverse temperature βi+1 in polynomially many steps,
unless already having clique size, say, ≥ 10 log n. Since we are studying reaching cliques of size
(1+ε) log n, we may assume that Eq. (42) holds for all i, by removing those temperatures violating
Eq. (42) and those larger since the chain does not reach them with high probability in poly(n)
steps. An immediate corollary of Eq. (42) is that

Ẑ(βm)

Ẑ(β0)
≤ n

m
√

logn

m = n
√
m logn = no(logn). (43)

Let q = (1 + ε) log n and s = γ log n. By the union bound we have

Pr
(
∃t ∈ N ∧ t ≤ T : (Xt, It) ∈ (Ωq,<s ∪ Ω<q,s)× [m]

∣∣∣ (X0, I0) = (∅, 0)
)

≤ T (m+ 1)n4 max
t∈[T ]

max
ℓ∈[m]

max
r∈[s]

max
σ∈Ωq,r

E[Wq,r] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0))

+ T (m+ 1)n4 max
t∈[T ]

max
ℓ∈[m]

max
p∈[q]

max
σ∈Ωp,s

E[Wp,s] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0)) (44)

We will show that for all integer t ≥ 1, all integer ℓ ∈ [m], all integer r ≤ s, and all clique σ ∈ Ωq,r,
it holds

E[Wq,r] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0)) ≤ n−ω(1), (45)

and all integer p ≤ q, and all clique σ ∈ Ωp,s, it holds

E[Wp,s] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0)) ≤ n−ω(1), (46)

The theorem then follows from Eqs. (44) to (46).
It will be helpful to consider the time-reversed dynamics and try to bound the probability of

reaching ∅ when starting from a large clique σ. By reversibility, we have

Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0)) = Ẑ(β0)

Ẑ(βℓ)

exp (βℓhq)

exp (β0h0)
Pr ((Xt, It) = (∅, 0) | (X0, I0) = (σ, ℓ)) .

(47)
which is an application of Fact 6.7.
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Let η ∈ (0, 1) be a constant. Introduce a random walk {(Yt, Jt)} on [n] × [m] with transition
matrix P given by

P ((s, j), (s − 1, j)) =
as

n
min {1, exp [βj (hs−1 − hs)]} ;

P ((s, j), (s + 1, j)) =





a

20 · 2s min {1, exp [βj (hs+1 − hs)]} , for 0 ≤ s < ⌊(1− η) log n⌋ ;
0, for ⌊(1− η) log n⌋ ≤ s ≤ n;

P
(
(s, j), (s, j′)

)
=

1− a

2
min

{
1,

Ẑ(βj)

Ẑ(βj′)
exp

[(
βj′ − βj

)
hs
]
}

for j′ = j ± 1.

and for all (s, j),

P ((s, j), (s, j)) = 1−
∑

s′=s±1

P
(
(s, j), (s′, j)

)
−

∑

j′=j±1

P
(
(s, j), (s, j′)

)
.

To be more precise, the above definition of P ((s, j), (s′, j′)) applies when (s′, j′) ∈ [n]× [m] and we
assume P ((s, j), (s′, j′)) = 0 if (s′, j′) /∈ [n]× [m], e.g., when j = 0 and j′ = −1.

We now calculate the stationary distribution of P on states (s, i) when restricted to s ≤
⌊(1− η) log n⌋. We start with proving that the random walk is time-reversible. Note that the
random walk introduced is clearly aperiodic, positive recurrent and irreducible. Hence, by the Kol-
mogorov’s criterion the random walk is time-reversible if and only if for any cycle in the state space,
the probability the random walk moves along the cycle in one direction equals to the probability of
moving in the opposite direction. Given that the minimal cycles in the finite box [n]×[m] are simply
squares of the form {s, s + 1} × {j, j + 1}, it suffices to show that for any s ∈ [n − 1], j ∈ [m− 1],
the criterion solely for these cycles, that is to show

P ((s, j), (s + 1, j))P ((s + 1, j), (s + 1, j + 1))P ((s+ 1, j + 1), (s + 1, j)) P ((s+ 1, j), (s, j))

=P ((s, j), (s, j + 1))P ((s, j + 1), (s + 1, j + 1))P ((s+ 1, j + 1), (s, j + 1))P ((s, j + 1), (s, j)) ,

which can be straightforwardly checked to be true.
We now calculate the stationary distribution. Using the reversibility and that hℓ is monotoni-

cally increasing in ℓ ∈ Z, we have for arbitrary s, j

ν((s, j)) = ν((0, j))

s∏

t=1

P ((t, j), (t − 1, j))

P ((t− 1, j), (t, j))

= ν((0, j))

s∏

t=1

at
n min {exp [βj (ht−1 − ht)] , 1}
a

20·2t min {exp [βj (ht − ht−1)] , 1}

= ν((0, j))
s∏

t=1

20t · 2t
n

exp [βj (ht−1 − ht)]

= ν((0, j))
20s · s! · 2(s2)

ns
exp [βj(h0 − hs)] .

Furthermore, since h0 = 0, we have again by reversibility,
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ν((0, j)) = ν((0, 1))

j∏

t=1

P ((0, t), (0, t − 1))

P ((0, t− 1), (0, t))

= ν((0, 1))

j∏

t=1

1−a
2 min

{
1, Ẑ(βt)

Ẑ(βt−1)
exp [(βt−1 − βj) h0]

}

1−a
2 min

{
1, Ẑ(βt−1)

Ẑ(βt)
exp [(βt − βt−1)h0]

}

= ν((0, 1))

j∏

t=1

Ẑ(βt)

Ẑ(βt−1)

∝ Ẑ(βj).

Combining the above, we conclude

ν((s, j)) ∝ Ẑ(βj)
20s · s! · 2(s2)

ns
exp [−βjhs] . (48)

The following lemma shows that (Yt, Jt) is stochastically dominated by the pair (|Xt|, It).

Lemma 8.6. Let {(Xt, It)} denote the Simulated Tempering process starting from some X0 =
σ ∈ Ωq,∗ and I0 = ℓ. Let {(Yt, Jt)} denote the stochastic process described above with parameter
η ∈ (0, 1) starting from Y0 = q and J0 = ℓ. Assume that G satisfies the conclusion of Lemma 6.5
with parameter η, then there exists a coupling {((Xt, It), (Yt, Jt))} of the two processes such that for
all integer t ≥ 1 it holds

Yt ≤ |Xt| and Jt ≤ It.

In particular, for all integer t ≥ 1 it holds

Pr ((Xt, It) = (∅, 0) | (X0, I0) = (σ, ℓ)) ≤ Pr ((Yt, Jt) = (0, 0) | (Y0, J0) = (q, ℓ)) .

Proof. We couple {(Xt, It)} and {(Yt, Jt)} as follows. Suppose that {(Yt−1, Jt−1)} ≤ {(Xt−1, It−1)}
for some integer t ≥ 1. We will construct a coupling of {(Xt, It)} and {(Yt, Jt)} such that {(Yt, Jt)} ≤
{(Xt, It)}. With probability a, the two chains both attempt to update the first coordinate, and
with probability 1− a the second.

Consider first updating the first coordinate. Since the probability that Yt = Yt−1+1 is less than
1/2 and so does the probability of |Xt| = |Xt−1| − 1, we may couple Xt and Yt such that |Xt| − Yt

decreases at most one; namely, it never happens that Yt increases by 1 while Xt decreases in size.
Thus, it suffices to consider the extremal case when |Xt−1| = Yt−1 = s. Since i = It−1 ≥ Jt−1 = j,
we have βi ≥ βj and thus

Pr (|Xt| = s− 1 | |Xt−1| = s, It−1 = i) =
as

n
min {1, exp [βi (hs−1 − hs)]}

≤ as

n
min {1, exp [βj (hs−1 − hs)]} = P ((s, j), (s − 1, j))

So we can couple {(Xt, It)} and {(Yt, Jt)} such that either |Xt| = Yt or |Xt| = s, Yt = s − 1.
Meanwhile, recall that A(Xt−1) is the set of vertices v such that Xt−1 ∪ {v} ∈ Ω. Then we have

|A(Xt−1)| ≥
n

20 · 2s
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whenever s ≤ nη by Lemma 6.5. Hence, we deduce that

Pr (|Xt| = s+ 1 | |Xt−1| = s, It−1 = i) =
a|ext(Xt−1)|

n
min {1, exp [βi (hs+1 − hs)]}

≥ a1{s ≤ nη}
20 · 2s min {1, exp [βj (hs+1 − hs)]} = P ((s, j), (s + 1, j))

So we can couple {(Xt, It)} and {(Yt, Jt)} such that either |Xt| = Yt or |Xt| = s+ 1 and Yt = s, as
desired.

Next we consider update the second coordinate. Since the probability that Jt = Jt−1 +1 is less
than 1/2 and so does the probability of It = It−1 − 1, we can couple It and Jt such that it never
happens both Jt = Jt−1 + 1 and It = It−1 − 1. This means that it suffices for us to consider the
extremal case where It = Jt = i. Since g = |Xt−1| ≥ Yt−1 = s, we have hg ≥ hs and therefore

Pr (It = i− 1 | It−1 = i, |Xt−1| = g) =
1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi−1)
exp [(βi−1 − βi)hg]

}

≤ 1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi−1)
exp [(βi−1 − βi)hs]

}
= P ((s, i), (s, i − 1)) .

and similarly,

Pr (It = i+ 1 | It−1 = i, |Xt−1| = g) =
1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi+1)
exp [(βi+1 − βi)hg]

}

≥ 1− a

2
min

{
1,

Ẑ(βi)

Ẑ(βi+1)
exp [(βi+1 − βi)hs]

}
= P ((s, i), (s, i + 1)) .

Therefore, we can couple It and Jt such that only one of the followings can happen:

(i) It = Jt;

(ii) It = i and Jt = i− 1;

(iii) It = i+ 1 and Jt = i.

Therefore, one always has It ≥ Jt under the constructed coupling.

The next lemma upper bounds the t-step transition probability Pr (Yt = p | Y0 = q).

Lemma 8.7. Let {(Yt, Jt)} denote the Markov process on Z
2 described above with parameter η ∈

(0, 1) starting from Y0 = q = ρ log n and J0 = j. Then for all integer t ≥ 1 we have

Pr ((Yt, Jt) = (0, 0) | (Y0, J0) = (q, ℓ)) ≤ exp

[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ o(1)

)]
Ẑ(βℓ)

Ẑ(β0)

exp (β0h0)

exp (βℓhq)
.

where ρ′ = min{ρ, 1− η}.

Proof. When ρ > 1 − η, namely q > (1 − η) log n, the chain will first move to (1 − η) log n before
reaching p. By Fact 6.7, we have

Pr ((Yt, Jt) = (0, 0) | (Y0, J0) = (q, ℓ)) = P t((q, ℓ), (0, 0)) =
ν((q, ℓ))

ν((0, 0))
P t((0, 0), (q, ℓ)) ≤ ν((q, ℓ))

ν((0, 0))
.
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By (48),

ν((q, ℓ))

ν((0, 0))
. =

Ẑ(βℓ)

Ẑ(β0)

20q · (q!) · 2(q2)
nq

exp [β0h0 − βℓhq]

=
Ẑ(βℓ)

Ẑ(β0)

exp (β0h0)

exp (βℓhq)
exp

[
(ln 2)(log n)2

(
−ρ+ ρ2

2
+ o(1)

)]
.

For ρ > 1− η, let τ be the first time that the chain reach size q′ = (1− η) log n. Then we have

Pr ((Yt, Jt) = (0, 0) | (Y0, J0) = (q, ℓ))

=

t∑

t′=0

Pr(τ = t′)
∑

ℓ′∈[m]

Pr
(
(Yt′ , Jt′) = (q′, ℓ′) | (Y0, J0) = (q, ℓ), τ = t′

)

· Pr
(
(Yt−t′ , Jt−t′) = (0, 0) | (Y0, J0) = (q′, ℓ′)

)

≤ max
ℓ′∈[m]

ν((q′, ℓ′))
ν((0, 0))

≤ max
ℓ′∈[m]

Ẑ(βℓ′)

Ẑ(β0)

exp (β0h0)

exp
(
βℓ′hq′

) exp
[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ o(1)

)]
.

The lemma then follows from the fact that for all ℓ′ ∈ [m]

Ẑ(βℓ′)

Ẑ(βℓ)

exp (βℓhq)

exp
(
βℓ′hq′

) ≤ no(logn)eO(log n) = no(logn),

where we use Eq. (43).

We now present the proof of Theorem 8.5 provided Lemmas 8.6 and 8.7.

Proof of Theorem 8.5. Recall that γ < 2(1− α). As will be clear later, we define

η =

√
(1− α)γ − γ2

2
.

We assume that our graph satisfies the conclusions of Lemmas 5.1 and 6.5 with parameter η.
Consider first Eq. (45). From Lemmas 8.6 and 8.7, we deduce that

E[Wq,r] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0))

= E[Wq,r]
Ẑ(β0)

Ẑ(βℓ)

exp (βℓhq)

exp (β0h0)
Pr ((Xt, It) = (∅, 0) | (X0, I0) = (σ, ℓ))

≤ E[Wq,0]
Ẑ(β0)

Ẑ(βℓ)

exp (βℓhq)

exp (β0h0)
Pr ((Yt, Jt) = (0, 0) | (Y0, J0) = (q, ℓ))

≤ exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
+ o(1)

)]
Ẑ(β0)

Ẑ(βℓ)

exp (βℓhq)

exp (β0h0)

· exp
[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ o(1)

)]
Ẑ(βℓ)

Ẑ(β0)

exp (β0h0)

exp (βℓhq)

= exp

[
(ln 2)(log n)2

(
−ε2

2
+

η2

2
+ o(1)

)]
≤ exp

[
(ln 2)(log n)2

(
−3

8
ε2 + o(1)

)]
,
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where recall that ρ = 1 + ε and ρ′ = 1− η and we choose η = ε/2.
For Eq. (46), by similar argument we have

E[Wp,s] Pr ((Xt, It) = (σ, ℓ) | (X0, I0) = (∅, 0))

≤ exp

[
(ln 2)(log n)2

(
1

2
− 1

2
(1− α)2 + o(1)

)]
Ẑ(β0)

Ẑ(βℓ)

exp (βℓhq)

exp (β0h0)

· exp
[
(ln 2)(log n)2

(
−ρ′ + (ρ′)2

2
+ o(1)

)]
Ẑ(βℓ)

Ẑ(β0)

exp (β0h0)

exp (βℓhq)

= exp

[
(ln 2)(log n)2

(
−1

2
(1− α)2 +

η2

2
+ o(1)

)]
≤ exp

[
(ln 2)(log n)2

(
−3

8
(1− α)2 + o(1)

)]
,

where recall that ρ = 1 (for maximizing E[Wp,s]) and ρ′ = 1−η and we choose η = ε/2 ≤ (1−α)/2.
Therefore, we obtain Eqs. (45) and (46). The theorem then follows.

9 Conclusion

In this work we revisit the work by Jerrum [Jer92] that large cliques elude the Metropolis process.
We extend [Jer92] by establishing the failure of the Metropolis process (1) for all planted clique
sizes k = nα for any constant α ∈ (0, 1), (2) for arbitrary temperature and Hamiltonian vector
(under worst-case initialization), (3) for a large family of of temperatures and Hamiltonian vectors
(under the empty clique initialization) and obtain as well (4) lower bounds for the performance of
the simulated tempering dynamics.

An important future direction would be to explore the generality of our proposed reversibility
and birth and death process arguments which allowed us to prove the failure of the Metropolis
process when initialized at the empty clique. It is interesting to see whether the proposed method
can lead to MCMC lower bounds from a specific state in other inference settings beyond the planted
clique model.

Moreover, it would be interesting to see if our results can be strengthened even more. First,
a current shortcoming of our lower bounds for the Metropolis process when initialized from the
empty clique do not completely cover the case where β = C log n for an arbitrary constant C > 0.
While we almost certainly think the result continues to hold in this case, some new idea seem to
be needed to prove it. Second, it seems interesting to study the regime where α = 1− o(1). Recall
that there are polynomial-time algorithms that can find a clique of size (log n/ log log n)2 whenever
a (worst-case) graph has a clique of size n/(log n)b, for some constant b > 0 [Fei05]. If our lower
bounds for the Metropolis process could be extended to the case α = 1 − O(log log n/ log n), this
would mean that for some k the Metropolis process fails to find in polynomial-time a clique of size
(1 + ε) log n when a k-clique is planted in G(n, 1/2), while some other polynomial-time algorithm
can find a clique of size (1 + ε) log n on every (worst-case) graph which has a clique of size k. Such
a result, if true, will make the failure of the Metropolis process even more profound.
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A Deferred Proofs

Proof of Lemma 5.1. For part (1), notice that by linearity of expectation and the elementary appli-
cation of Stirling’s formula that for m2 ≤ m1 with m2 = o(m1) it holds

(m1

m2

)
= (m1/m2)

m2(1+o(1))

we have

E[Wq,r] =

(
k

r

)(
n− k

q − r

)
2(

r

2)−(
q

2)

=

(
nα

⌊γ log n⌋

)(
n− nα

⌊ρ log n⌋ − ⌊γ log n⌋

)
2(

⌊γ log n⌋
2 )−(⌊ρ log n⌋

2 )

= exp

[
(ln 2)(log n)2

(
αγ + (ρ− γ) +

γ2

2
− ρ2

2
+ o(1)

)]

= exp

[
(ln 2)(log n)2

(
ρ− ρ2

2
− (1− α)γ +

γ2

2
+ o(1)

)]
.

For part (2), notice that Wq,0 is distributed as the number of q-cliques in G(n − k, 12 ). Hence,
standard calculation (e.g. [BE76, Proof of Theorem 1]) prove that since ρ = 2− Ω(1),

Var(Wq,0)

E[Wq,0]2
= O(

q4

n2
) = O(

1

n
).

Hence, Chebyshev’s inequality yields that with probability 1−O(1/n), Wq,0 ≥ 1
2E[Wq,0]. Taking a

union bound over the different values of q = O(log n) completes the proof of this part.
Finally, part (3) follows directly from part (1), Markov’s inequality and a union bound over the

possible values of r, q.

Proof of Lemma 6.5. It clearly suffices to establish this result for k = 0, i.e. for an the random
graph G(n, 12). For any fixed |U | ≤ (1 − η) log n, |A(U)| follows a Binomial distribution with
n − |U | trials and probability 1

2|U| . In particular, it has a mean (1 + o(1)) n
2|U| = Ω(nη). Hence, by

Hoeffding’s inequality with probability 1−exp(−Ω(nη)) it holds |A(U)| ≥ n
20·2|U| . As there are only( n

⌊logn⌋
)
= nO(logn) the result follows from a union bound over |U |.
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