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Abstract

The ability to resolve detail in the object that is being imaged, named by resolution, is the
core parameter of an imaging system. Super-resolution is a class of techniques that can enhance
the resolution of an imaging system and even transcend the diffraction limit of systems. Despite
huge success in the application, super-resolution is not well understood on the theoretical side,
especially for any dimension d ≥ 2. In particular, in order to recover a k-sparse signal, all
previous results suffer from either/both poly(k) samples or running time.

We design robust algorithms for any (constant) dimension under a strong noise model based
on developing some new techniques in Sparse Fourier transform (Sparse FT), such as inverting a
robust linear system, “eggshell” sampling schemes, and partition and voting methods in high di-
mension. These algorithms are the first to achieve running time and sample complexity (nearly)
linear in the number of source points and logarithmic in bandwidth for any constant dimension,
and we believe the techniques developed in the work can find their further applications on the
Super-resolution and Sparse FT problem.
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1 Introduction

Since people began to design and study optical systems, the resolution has become the core pa-
rameter of an optical system. Roughly speaking, resolution of an imaging system is defined as its
ability to distinguish two points as separate in space and resolve detail in the object being imaged.
Because of the physics of diffraction, there are some fundamental limits on the resolution of an
imaging system. Surprisingly, people find fantastic Super-resolution techniques, and the diffraction
limit of systems is transcended. As an outstanding representative in this field, the Nobel Prize in
Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell, and William E. Moerner " for
the development of super-resolved fluorescence microscopy."

We formalize the Super-resolution problem considered in the work here. Let x∗(t) =
∑

i∈[k] vi ·
e2πif>i t be a signal with k-point sources in d-dimensional space where f1, · · · , fk ∈ Rd. Assume we
are able to observe a complex-valued signal function x(t) = x∗(t) + g(t) ∈ C over a finite duration
t ∈ [0, T ]d, where g(t) captures the noise in the measurement and we do not have any assumption
on g(t). To access the signal x(t) = x∗(t) + g(t), an algorithm can only sample x(τj) at a number of
m time points {τj}j∈[m]. These {τj}j∈[m] can be arbitrarily chosen from the duration t ∈ [0, T ]d.1

Like the standard objective in Super-resolution, we hope to design a fast algorithm that can estimate
{(vi, fi)}i∈[k] with few samples.

Moreover, we are more ambitious and want our algorithm should output a k-Fourier-sparse
recovered signal x′(t) such that, for some approximation ratio C > 1,

signal estimation error :=

∫

B
|x′(t)− x(t)|2 · dt ≤ C2 · N 2, (1)

where
∫
B := 1

T d

∫
[0,T ]d , N 2 :=

∫
B |g(t)|2dt + δ ·∑i∈[k] |vi|2 > 0 be the noise level and δ > 0 is

some parameter to conclude the noiseless case (i.e.
∫
B |g(t)|2dt = 0). For simplicity, we define

‖g‖2T :=
∫
B |g(t)|2dt.

To make the problem interesting, we assume a bounded support supp(x̂∗) = {fi}i∈[k] ⊆ [−F, F ]d

for the frequencies where the parameter F > 0 is known, and {fi}i∈[k] have some minimum distance
η > 0, i.e. mini 6=i′ ‖fi−fj‖2 = η. The band-limited assumption on signal and separation assumption
on frequencies are standard both in Super-resolution [Moi15, HK15, CM21] and Continuous Fourier
Transform [PS15, CKPS16, CP19a, CP19b, SSWZ22]. As mentioned before, there is no requirement
for the noise g(t), which is a strong noise model compared to many previous works.

In the noise-free case, there are a variety of methods to do Super-resolution [Pis73, HS90, Sto93]
when duration T = k/η. Subsequently, there are some new methods [CF14, CFG13] to solve this
problem based on assumption that either it is noise-free or fj ’s are restricted to be on a grid.
Moreover, there are rich literature in high dimension such as [HK15, CFG14, KPRvdO16].

We use Table 1 to give a rough comparison between previous results and ours. Because previous
works are under different noise models (we are the strongest, without any restriction on the noise),
different settings (some of them can only measure the input signal on grid points, which makes
the problem more difficult) or with different focus (e.g., [CM21] focus on the sharp constant c for
the minimum duration c/η such that one can hope to get polynomial statistical and algorithmic
complexity, while [HK15] and ours result lose some logarithmic term on the duration), this is just
a high-level comparison. Some more detailed discussions about related work will be given later.

One natural idea to deal with high dimension problem is to map it to one dimension. If we
do transformation and project d-dimensional signal to one-dimensional, we can directly apply the

1This assumption is standard in the Continuous Fourier Transform literature, though not standard in the Super-
resolution community.
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Refs # Samples Running time
[CC13] Õ(k) Õ(kd)

[HK15] Õd(k
2) Õd(k

2)

[CM21] Õd(k
2) poly(F/η) Õd(k

6) poly(F/η)

Ours Õd(k log(F/η)) Õd(k log(F/η))

Table 1: Rough comparison between previous works and our result for constant dimensions d.

results in one dimension such as [PS15], which loses poly(k) factor in duration, sample and running
time complexity. Another way is to do semi-definite programming (SDP), which is usually based on
results of Candes and Fernandez-Granda [CFG13, CF14] but the sample complexity and running
time can still be very large.

Despite the huge success and developments, Super-resolution in multi-dimensional cases are still
not well-understood, and improving efficiency on sampling complexity and computation complexity
(running time) is an important and fundamental open problem. As described in [HK15],

It remains an open problem to reduce the sample complexity ... from O(k2) to the information
theoretical bound O(k), while retaining the polynomial scaling of the computation complexity.

To be even more ambitious, can we achieve nearly linear computation complexity rather than
being polynomial with nearly linear sample complexity? This leads to the following fundamental
algorithmic and statistical problem:

How efficient a Super-resolution algorithm can be on the running time and sample complexity?

Our work makes an important step towards solving this problem.

1.1 Our results

Roughly speaking, our algorithm RecoveryStage (Algorithm 10) achieves a constant approxima-
tion to the noise level N > 0 in any constant dimension. For the tone estimation, we have the
following guarantees.

Theorem 1.1 (Informal Tone estimation, see Theorem 7.18). When RecoveryStage observes the
signal x(t) over a duration2 T & η−1 · log(k/δ), it outputs k ≥ 1 recovered tones {(v′i, f ′i)}i∈[k] ⊆
C×Rd that approximate the true tones {(vi, fi)}i∈[k] up to an error proportional to the noise level
N > 0, with high probability. The algorithm RecoveryStage takes k · (log k)d+O(1) · log(F/η) ·
2O(d log d) samples and time.

As for the signal estimation, we have the following guarantee, which to our knowledge is a new
guarantee in the Super-resolution literature.

Theorem 1.2 (Informal Signal reconstruction, see Theorem 8.12). When RecoveryStage ob-
serves the signal x(t) over a duration T & η−1 · k1−1/d · log(k/δ), the signal estimation error of the
k-Fourier-sparse recovered signal x′(t) :=

∑
i∈[k] x

′
i(t) against the observed signal x(t) = x∗(t) +g(t)

is bounded as follows:
∫

B
|x′(t)− x(t)|2 · dt . N 2. (2)

2We often denote f & g when f ≥ C0 · g for some universal constant C0 > 0, and the notation f . g has a similar
meaning. Also, we denote f h g when both equations f & g and f . g hold. In this page, these notations hide the
dependence on dimension d.
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Remark 1.3. In one dimension d = 1, our algorithm works when the duration T & η−1 · log(k/δ),
but the state-of-art result [PS15] requires T & η−1 · log2(k/δ) for the signal estimation. (For more
details about this improvement, see Section 8.1.) Indeed, the duration is an equally important opti-
mization goal as the sample complexity and the running time.

Preliminary Discussion: For any constant dimensions, we succeed to get an algorithm with
both nearly optimal sample complexity and run-time, which is the goal in most of the literature on
sparse Fourier transforms. However, due to the exponential dependence on the dimension in our
result, this is not the end of story.

Up to the iterated logarithmic factors, our algorithm RecoveryStage takes k · (log k)d+O(1) ·
log(F/η)·2O(d log d) samples/running time. Merely extending the filter functions into high dimensions
requires some very non-trivial efforts, but it already leads to an exponential loss in the dimension.
This is a consequence of our “precise” filter function, seems to be unavoidable using current filtering
techniques since even if the one-dimensional filter’s support size is off by a constant factor, it would
lead to an exponential loss in the dimension anyways. As quoted:

[Kap16, Kap17] “in the discrete settings ... the price to pay for the precision of the filter,
however, is that each hashing becomes a logd k factor more costly in terms of sample
complexity and running time than in the idealized case ...”

To shave the logd k term in the discrete model, the past works [IK14, Kap16] randomize the noise
by using the “crude” filters. However, randomizing the noise does not work in the continuous model,
since two noise frequencies f, f ′ can be arbitrarily close and, no matter how we randomized the noise,
the errors can accumulate in the estimation. The exponential dependence on dimension seems to
be intrinsic to the current sampling methods, and avoiding it could need completely new methods.

1.2 Related works

1.2.1 Super-resolution with a different focus

The previous results [Moi15, CM21] are focused on finding the minimum possible separations be-
tween source points for fixed cutoff frequency (denoted by duration in this paper), such that there
exists an algorithm with polynomial running time by using a polynomial number of samples. As a
result, their algorithms are not efficient in running time and sample complexity.

In the following, we compare our work with [CM21] in more detail. Chen and Moitra [CM21]
investigate a two-dimensional Super-resolution problem which they reduce to the problem of contin-
uous Sparse FT. The main difference between their model and our model, is the way how the noise
hampers the frequency recovery. Recall that we consider a signal x(t) = x∗(t) + g(t) ∈ C over a du-
ration t ∈ [0, T ]d, where x∗(t) ∈ C is the actual signal that we aim to recover, and the noise g(t) ∈ C
has a small enough constant-proportional energy compared to x∗(t), that is, ‖g‖T ≤ 10−3 · ‖x∗‖T .3
In particular, the noise magnitude |g(t0)| at a certain time point t0 ∈ [0, T ]d has no requirement, and
can even be much larger than the signal magnitude |x∗(t0)|. In contrast, [CM21] make a stronger
assumption on the noise g(t) ∈ C. At any time point t0 ∈ [0, T ]d, they need the noise magnitude
|g(t0)| is always inverse-polynomially small, compared to the corresponding average signal energy
‖x∗‖T .

For their model, Chen and Moitra focus on the two-dimensional case, and their primary emphasis
is on refining the duration requirement in the two-dimensional case, i.e., on the exact constant
in front of η−1 for constant d = 2. For general constant d, Chen and Moitra can (via tensor

3Recall that the average energy, e.g., of the noise g(t) over duration t ∈ [0, T ]d, is defined as ‖g‖T = 1
Td ·

∫ T
0
|g(t)|2dt.
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decomposition) get sample complexity Õd(k2) poly(F/η) and running time Õd(k6) poly(F/η),4 while
our running time and sample complexity are Õd(k log(F/η) logO(1)(k)). As a trade off, their duration
is T & 1/η while ours is T & log(k)/η.

Note that in sparse Fourier transform/sparse recovery literature, the major goal is to get nearly
linear in k sample complexity, and k1+Ω(1) is not allowed (see Table 1 in [NS19] and Table 1 in
[NSW19]). It is well-known that in many cases, k2 or even k1+Ω(1) samples can make the problem
subsequently easier. Also, it is worth mentioning that, [CM21] considers the “tone recovery” problem
only, without studying the “signal recovery” problem, whereas our paper investigates the both
problems.

1.2.2 Prior works on the sparse FT problem

As our technology originates from Fourier Transform, in this and next sub-subsection, we briefly
review several previous works for classic prior works on the discrete FT (DFT) and continuous FT
(CFT) separately. For a more detailed overview, the reader can refer to Section 2.3.

The discrete model. In any dimension d ≥ 1, the Fourier transform x̂ ∈ CN is a vector of length
N = nd. The goal of a sparse DFT algorithm is, given a bunch of samples xi in the time domain
and the sparsity parameter k, to output a k-Fourier-sparse signal x′ with the `2/`2-guarantee

‖x̂′ − x̂‖2 . min
k-sparse z

‖z − x̂‖2.

Following the framework of [GMS05, HIKP12a, IKP14, IK14, Kap16], the idea is to take, multiple
times, a set of B = Bd = Θd(k)5 linear measurements of the form uj :=

∑
i:h(i)=j xi · s(i), where

h : [N ] 7→ [B] are random hash functions and s : [N ] 7→ {±1} are random sign functions. This
means “hashing into B bins”. If the linear measurements are ideal, then O(log(N/k)) hashes are
enough for sparse recovery and the sample complexity is O(k log(N/k)).

Based on the linear combinations of the samples xi, the sparse DFT algorithms will approximate
the uj ’s. That is, we first permute the samples xi via a pseudorandom affine permutation P. Then,
the permuted samples (Px)i are respectively scaled by coefficients G(li), i.e., the values of a filter
function G : Rd 7→ R at a bunch of lattice points li ∈ Rd. Hence, we use a modified combination

uj =
∑

i:h(i)=j(Px)i · G(li). (3)

Different from the binary-valued sign functions, the filter functions G shall be “imperfect” to reduce
the sample complexity. Namely, every coordinate i ∈ [n] not only contributes ≈ 100% fraction to a
target bin, but also “leak” a small fraction to each other bin. (And to balance the trade-off between
the sample complexity and the running time, the past works like [HIKP12a, IK14, Kap16, Kap17]
use different leakage levels.)

The above approach “isolates” most of the head frequencies {fi}i∈[k] (i.e., the top-k coordinates
of x̂). In precise, most {fi}i∈[k] are hashed to unique bins, and the “tail” frequencies [n]d \ {fi}i∈[k]

contribute very little to those bins. So the algorithm can exactly identify the head frequencies and
approximately evaluate the magnitudes x̂(fi), producing a k-sparse estimation x̂′ ≈ x̂.

Also, notice that the DFT preserves the `2-norm of a Fourier spectrum, namely ‖ẑ‖2 = ‖z‖2 for
any z ∈ [n]d, so the `2/`2-guarantees in the frequency/time domains are equivalent.

The continuous model. The one-dimensional sparse CFT problem is introduced by [PS15],
and our formulation is a natural multi-dimensional extension. Different from the discrete model, we

4The notation Õd(f) assumes a constant dimension d ≥ 1 and hides the term poly(log f); similar for Ω̃d and Θ̃d.
5Here the notation Θd(f) assumes a constant dimension d ≥ 1; similar for Od and Ωd.
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cannot recover the exact head frequencies {fi}i∈[k] in the continuous model. The current frequencies
are off-the-grid, so (i) any two frequencies f 6= f ′ can be too close to distinguish [Moi15]; and (ii) even
if a head frequency fi is well separated from the others, we can only recover it up to some precision
that depends on the duration T > 0.

As the frequency recovery is not exact, we cannot hope for the best k-sparse Fourier spectrum.
For this reason, [PS15] considers the tone/signal estimations under the `2/`2-guarantee in the time
domain. In addition to the approximation guarantee, sample complexity and running time, we have
one more optimization goal – minimizing the duration t ∈ [0, T ]d for the sampling.

1.3 Our techniques

Similar to the previous works, our main task is to recover the head frequencies {fi}i∈[k]. As if
we promise a good approximation {f ′i}i∈[k] ≈ {fi}i∈[k], then the magnitudes {vi}i∈[k] can be easily
recovered.

To deal with the continuous model, the overall ideas in [PS15] are to translate the hash functions,
filter functions and estimation algorithms from the DFT setting to the CFT setting, and we adopt
the similar framework. However, extension one/two-dimensional ([PS15]/[CM21]) cases to the multi-
dimensional continuous case presents a number of challenges, which are addressed in this paper by
some interesting techniques. Among these, there are three most remarkable ones.

• Our hashing scheme is specifically designed for the multi-dimensional continuous model, and
the “eggshell” sampling scheme (for time points) which differs from all the previous ones.

• To learn the frequencies fi’s more accurately (while ensuring a logarithmic algorithm in F/η
which also means beating poly(F/η) sample/time in [CM21]), we apply (i) a coarse-grained
location procedure, for which we employ technical ingredients from high-dimensional geometry;
and then (ii) a fine-grained location procedure, which is built upon a robust linear-system
solver.

• The duration bound required by a recovery algorithm is an equally important optimization
goal as the sample complexity and the running time in the super-resolution. To improve
the duration bound against the previous algorithm [PS15], we provide a better analysis by
leveraging Parseval’s theorem and the convolution theorem in a different manner.

1.3.1 Hashing and sampling

The obstacles. As mentioned, we assume the head frequencies (defined by Head := {fi}i∈[k])
locate within the hypercube [−F, F ]d and are separated by η = mini 6=i′∈[k] ‖fi − fi′‖2 > 0, corre-
sponding to the k-Fourier-sparse signal x∗(t). The other tail frequencies Tail correspond to the
noise g(t).

To recover the head frequencies, a direct attempt is to handle all dimensions r ∈ [d] separately,
through the one-dimensional hashing scheme in [PS15]. Unfortunately, this approach fails to work.
For example, suppose two frequencies are equal in the first dimension, i.e., fi,1 = fi′,1 for i 6= i′ ∈ [k]
(but the overall `2-distance in the other dimensions is ≥ η). Then regarding the first dimension, no
hashing scheme can distinguish these two scenarios: (i) the desired tones (fi, vi) and (fi′ , vi′); and
(ii) a single tone (f, v) given that f1 = fi,1 = fi′,1 and v = vi+vi′ . Thus, an algorithm can miscount
the tones, and recover the top-(k + 1) or even more magnitudes. Also, when the miscount happens
(in one or more dimensions), an algorithm cannot match the dimension-wise frequencies correctly.
For these reasons, the multi-dimensional model requires a “not-very-naive” hashing scheme.
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Our approach. Similar to Eq. (3), we will leverage the measurements uj =
∑

i:h(i)=j Px(τi) · G(li),
where τi ∈ [0, T ]d are the sampling time points. To define permutation, we introduce three notations
: Σ ∈ Rd×d is scaling frequency domain, and b ∈ Rd is shifting frequency domain and a ∈ Rd
is shifting time domain. We explain how to select them later. Now, let us present the formal
permutation:

P̂x(frac(Σf − b)) = x̂(f) · det(Σ)−1 · e−2πi·f>a, (4)

where the function frac : Rd 7→ [0, 1)d computes the coordinate-wise fractional part of the input.
There are two requirements for the random matrix Σ: (i) it must be invertible; and (ii) makes

any two different head frequencies ξi 6= ξi′ ∈ Head hashed into the same bin with probability at
most 0.01 · k−1 (i.e., the collision probability). To these ends, we construct the Σ in three steps.

• Step I. We first sample an interim matrix Σ′ ∼ Unif(SO(d)) uniformly at random from the
d-dimensional rotation group, leading to a rotation matrix Σ′ with determinant | det(Σ′)| = 1.
Clearly, such an interim matrix Σ′ ∈ Rd×d is invertible.

• Step II. Let us explain what the bins stand for in the continuous model. Given the transfor-
mation frac(Σf − b) in Eq. (4), we are interested in the codomain [0, 1)d. We partition this
unit hypercube into B = Bd = Θd(k) isomorphic sub-hypercubes, with the volume 1/B each.
These sub-hypercubes are exactly the bins in the continuous setting.

• Step III. We sample a random scaling factor β ∼ Unif[β̂, 2β̂], where the parameter β̂ > 0
is sufficiently large, and derive the ultimate random matrix by letting Σ := βΣ′. Clearly,
Σ ∈ Rd×d is invertible. Below We will explain why this Σ gives a small collision probability.

According to Eq. (4), whether two head frequencies fi 6= fi′ ∈ Head collides or not relies on the
difference vector Σ(fi − fi′) ∈ Rd. Since Σ is a random rotation matrix scaled by β ∼ Unif[β̂, 2β̂],
this difference vector is distributed almost uniformly within the `2-norm “eggshell”

{
z ∈ Rd : β̂ · ‖fi − fi′‖2 ≤ ‖z‖2 ≤ 2β̂ · ‖fi − fi′‖2

}
.

r2r

∆a

(a) Sampling for ∆a

t1

t2

0

∆a

T

T

(b) Sampling for a and a′

Figure 1: Demonstration of the sampling scheme. The time difference ∆a = (a′−a) is sampled from
the pink region in Figure (a), which looks like an “eggshell”. The time points a, a′ are sampled
respectively from the red region and the blue region in Figure (b).

The concerning frequencies fi 6= fi′ have an `2-distance ‖fi−fi′‖2 ≥ η and thus, the above “eggshell”
is thick enough. That is, the random difference vector Σ(fi − fi′) is distributed on a large enough
support. After rounding, the frac(Σ(fi − fi′)) is distributed almost uniformly within the unit
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hypercube [0, 1)d, and the collision probability roughly equals the volume 1/B = Θd(k
−1) of a

single bin. The parameter β̂ is set carefully, to ensure a small collision probability ≤ 0.01 · k−1.
Hence, the matrix Σ is likely to isolate at least 90% head frequencies.

The vector b serves as the “anchor point” of the hashing scheme h . Independent of Σ, we just
sample a uniform b ∼ Unif[0, 1)d from the unit hypercube. Then due to Eq. (4), a certain frequency
f ∈ [−F, F ]d is equally likely to be hashed into one of the B = Bd = Θd(k) bins.

The “eggshell” sampling scheme. As Figure 1 shows, the vector a ∈ Rd is sampled non-
uniformly, which differs from all the previous sampling schemes [HIKP12a, IK14, PS15, Kap16,
Kap17, CKPS16, NSW19]. Recall that this vector a rotates any magnitude x̂(f) ∈ C by a certain
angle −2π · f>a ∈ R (see Eq. (4)). Let S = {f ∈ Tail : h(f) = j} be the tail frequencies hashed
into a certain bin j ∈ [B]d, then we hope a small total rotated magnitude

|
∫
f∈S x̂(f) · e−2πi·f>a · df | � (

∫
f∈S |x̂(f)|2 · df)1/2.

In the continuous model, the vector a ∈ Rd represents a sampling time point t ∈ [0, T ]d. We
must sample this time point almost (but not exactly) uniformly from a constant proportion of the
duration, such as a ∼ Unif[0.01

d · T, (1− 0.01
d ) · T ]d. This is due to the following two reasons.

• Recall that the noise level N 2 involves the term ‖g‖2T = 1
T d
·
∫
t∈[0,T ]d |g(t)|2 ·dt, but we have no

guarantee on the noise g(t) at a specific time point t ∈ [0, T ]d. If the sampling range A 3 a is
too small (namely |A| � T d), the average noise 1

|A| ·
∫
t∈A |g(t)|2 ·dt� ‖g‖2T can be intolerably

large, and makes the samples a ∈ A useless.

• Unlike the discrete case, where the on-the-grid frequencies are perfectly separated, two “con-
tinuous” frequencies f 6= f ′ ∈ [−F, F ]d can be arbitrarily close (when not both of f, f ′ are
head frequencies). If ‖f − f ′‖2 � 1/(

√
d · T ) and x̂(f) = x̂(f ′), then over the whole duration

t ∈ [0, T ]d (i.e., ‖t‖2 ≤
√
d·T ) the two signals are always close x̂(f)·e−2πi·f>t ≈ x̂(f ′)·e−2πi·f ′>t.

To distinguish the frequencies f 6= f ′, sampling the a nearly from the whole duration achieves
the best we can.

We often sample a pair of a, a′ ∈ [0, T ]d and consider their difference ∆a := (a′− a) rather than
a, a′ themselves. Over the difference vector ∆a ∈ Rd, a signal with frequency f ∈ Rd rotates by
an angle 2π · f>∆a ∈ R. Denote by ‖θ‖© := minz∈Z |θ + 2πz| the “circular distance”. Our actual
observation would be the circular distance ‖2π · f>∆a‖© ∈ [0, π].

To distinguish this frequency f ∈ Rd from the others, and to recover f ∈ Rd more accurately,
we need a largest possible `2-norm ‖∆a‖2. Moreover, because we do not know the direction of the
frequency f ∈ Rd (or the direction of the difference between f and the interim estimation of it), the
sampled ∆a ∈ Rd must have a uniformly random direction.

The above two requirements for the time difference ∆a = a′−a can violate our previous require-
ment that, both time points a, a′ shall be sampled almost uniformly from a constant proportion
of the duration t ∈ [0, T ]d. In particular, the dimensionality d ≥ 2 incurs many technical issues.
To overcome these challenges, we sample a, a′ in a coupling fashion. We first determine the time
difference ∆a, making it have a uniform random direction. Moreover, the `2-norm ‖∆a‖2 cannot
be too large; otherwise, we cannot ensure that the sampling ranges A 3 a and A′ 3 a′ are large
enough, namely |A| h |A′| h T d. Both the sampling range of the `2-norm ‖∆a‖2, and the sampling
scheme for a, a′ ∈ [0, T ]d (given a specific ∆a) are carefully chosen.

In contrast, suppose we sample two uniform random a, a′ ∼ Unif[0, T ]d, then the time difference
∆a has a non-uniform direction. So the observed circular distance ‖2π · f>∆a‖© will follow a more
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complicated distribution, being hard to analyze. More importantly, both the true observations
‖2π · f>∆a‖© and the “fake” observations ‖2π · f ′>∆a‖© (due to other frequencies f ′ 6= f) may
concentrate in a small range like [0, π

100 ]. Then, we can’t distinguish f 6= f ′. This issue does not
exist in the one-dimensional continuous case or the discrete case:

• In the one-dimensional continuous case, ∆a is just a random number instead of a vector. We
need not concern the direction of ∆a, let alone whether this direction is uniform random.

• In the multi-dimensional discrete case, the frequencies are on-the-grid. Thereby, the observed
circular distance just has finite possibilities, e.g., {0, 1

N · π, · · · , N−1
N · π, π}. It turns out that

we can easily distinguish true observations from fake observations.

For more details about the sampling scheme, the reader can refer to Section 5.6.

1.3.2 Sparse recovery

The obstacles. Using the hash functions and the filters, several kinds of recovery algorithms have
been developed in the literature. Again, the main task is to recover the head frequencies {fi}i∈[k],
and the continuous model is harder since the estimations f ′i ≈ fi are limited to some precision.

Similar to the past work [PS15], we use a voting-based algorithm. Roughly speaking, [PS15]
handles the one-dimensional case as follows: twist the frequency domain [−F, F ], partition it into
Θ(k) sub-regions, and vote for the probably approximately correct sub-region(s). Although simple in
spirit, generalizing this idea to a higher dimension d ≥ 2 incurs many new challenges.6 For example,
the twist of a hypercube [−F, F ]d is complex (but the twist of [−F, F ] is just an interval), so a more
sophisticated partition scheme is required. Moreover, since we consider the `2-distances among fi’s
but the domain [−F, F ]d is a `∞-ball, switching between the `2-/`∞-norms raises more technical
difficulties. (However, this switch follows automatically in one dimension d = 1.)

En route to the final algorithm, we will address some of these challenges.

Our approach. For ease of presentation, we will restrict our attention to a tone (vi, fi) ∈ C×Rd
that is isolated by the permutation P and hashing h . According to Eq. (4), a sampling time point
a ∈ [0, T ]d gives a measurement yi(a) ∈ C such that yi(a) ≈ vi · det(Σ)−1 · e−2πi·f>i a. Here, the “≈”
notation hides a small error, which stems from the noise frequencies (i.e., g(t) ∈ C) hashed into
the same bin j := h(fi) ∈ [B]d. To recover the frequency fi, the idea is to leverage the difference
∆a := (a′ − a) between two time points a, a′ ∈ [0, T ]d and the relative phase

ψi(a, a
′) := arg(yi(a)/yi(a

′)) ≈ arg(e2πi·f>i ∆a) = 2π · f>i ∆a. (5)

The above “≈” notation hides an error phase of, say, ±(2π)/103.
We recover the frequency f ′i ≈ fi in two steps. First, the “coarse-grained” location (Algorithm 2)

keeps track of a hypothesis region Hi 3 fi for the frequency (e.g., at the beginning Hi = [−F, F ]d)
and shrinks Hi round by round, and get the rough location of the frequencies in the end. Second,
after receiving the “coarse-grained” location Hi, the “fine-grained” locating (Algorithm 4) carefully
derives d linear equations of the form 2π · f ′>i ∆r

a = ψri (for all r ∈ [d]) based on d time differences
∆r
a ∈ Rd, and solves these linear equations to find f ′i ≈ fi within the hypothesis region Hi.

Coarse-grained location via partition and voting in high dimension. Suppose that a
frequency fi locates in some hypothesis region Hi. We carefully divide Hi =

⋃
q∈QHi,q into smaller

6Some of these challenges do not exist (or are less severe) in the discrete model [HIKP12a, IK14], because the
twist of the discrete frequency domain [n]d, under an appropriate modulo operation, is still itself.
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Figure 2: Demonstration for the coarse-grained location in two dimensions d = 2. The black points refer
to the true frequencies. The blue/green/red circles show that we gradually shrink the hypothesis regions for
the frequencies.

sub-regions and pick a candidate frequency ξq for each sub-region. The frequency fi locates in a
unique true sub-region Hi,q∗ . Based on the measurements, we can prune some of the wrong sub-
regions Hi,q 63 fi and get a smaller new hypothesis region. As Figure 2 shows, the coarse-grained
location repeats this pruning process.

Given a pair of sampling time points a, a′ ∈ [0, T ]d, in view of Eq. (5), we will vote for every
candidates frequency ξq that satisfies

‖2π · ξ>q ∆a − ψi(a, a′)‖© ≤ (2π)/50, (6)

where the RHS can be other suitable thresholds. By doing so, (i) the true candidate frequency ξq∗
(for which Hi,q∗ 3 fi) gets a vote with probability 90%, since ξq∗ is close enough to fi. In contrast,
(ii) if a wrong candidate frequency ξq (for which Hi,q 63 fi) is too far from fi, then we hope ξq to
get a vote with probability < 50%. Given Eq. (5) and (6), the wrong candidate frequency ξq loses
a vote when ‖2π · (ξq − fi)>∆a‖© ≥ (2π)/40. Namely, with probability > 50%, we hope the gap
between (ξq − fi)>∆a ∈ R and its closest integer to be at least

minz∈Z |(ξq − fi)>∆a − z| ≥ 1/40, (7)

To this end, the time difference ∆a ∈ Rd is sampled to have a uniform random direction and a
random `2-norm ‖∆a‖2 ∼ Unif[w, 2w], for some w > 0. In any dimension d ≥ 2, we have

(ξq − fi)>∆a = ‖ξq − fi‖2 · ‖∆a‖2 · cos(γ), (8)

where the random angle γ := 〈ξq − fi,∆a〉. Clearly, when a fixed | cos(γ)| ∈ [0, 1] (namely a fixed
direction of ∆a) is not too small, a large enough sampling range for the `2-norm ‖∆a‖2 ∼ Unif[w, 2w]
ensures Eq. (7) with probability > 50%. This is exactly what we desire.

Nonetheless, the coarse-grained location recovers the frequencies by at most ‖ξq∗ − fi‖2 . d/T
(instead of ‖ξq∗ − fi‖2 . 1/T ). When the difference ∆a = (a′ − a) has a uniform random direction,
the angle γ ∈ [0, π] concentrates within the range π/2± π/(2

√
d), so with high probability we have

| cos(γ)| . 1/
√
d. Given Eq. (7) and (8), in order to vote for a wrong candidate frequency ξq with

probability < 50%, we require ‖ξq − fi‖2 · ‖∆a‖2 &
√
d.

Given a specific ∆a ∈ Rd, the largest possible range from which we sample the two time points
A 3 a, a′, has the volume |A| = T d ·(1−‖∆a‖1/T ). As mentioned (Section 1.3.1), this range A must
be a constant proportion of the whole duration t ∈ [0, T ]d, which requires ‖∆a‖1 . T . However,
when ∆a ∈ Rd has a uniform random direction, with high probability we have ‖∆a‖1 h

√
d · ‖∆a‖2.

Thus, it is required that ‖∆a‖2 . T/
√
d.
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Putting the above arguments together gives ‖ξq − fi‖2 &
√
d/‖∆a‖2 & d/T . Namely, we can

not recover the frequency fi ∈ [−F, F ]d too well by the coarse-grained location, but it can provide
some rough estimations.

true f

median

(a) One dimension

true f

(b) Two dimensions

Figure 3: Demonstration of the fine-grained location in one or two dimension(s). When d = 2, each
observation ϕr ∈ R gives a hypothesis line (i.e., a hypothesis one-dimensional hyper-plane) that is close
to the true frequency f , so a pair of observations/lines determines an estimation f ′ ≈ f . Given a bunch
of estimations f ′, we will find a small `∞ ball to cover a sufficient amount of estimations. Since this `∞
ball is small yet (with high probability) contains the true frequency f , its center must be a good enough
approximation to f . (In one dimension, we just take the median of the estimations f ′.)

Fine-grained location via inverting robust linear system. The coarse-grained location re-
covers the frequencies up to an `2-distance .d 1/T .7 Then the fine-grained location improves this
precision to .d 1/(ρT ), where ρ� 1 is the signal-to-noise ratio (Definition 7.1). In one dimension
d = 1, the past work [PS15] easily achieves so by first deriving a bunch of candidates ξq∗ ≈ fi
from getting a few of the coarse-grained locations, and then taking the median of these ξq∗ ’s (as
Figure 3(a) suggests). However, this idea fails in the multi-dimensional case when d ≥ 2, and the
fine-grained location becomes far more complicated.

Roughly speaking, based on a time difference ∆r
a = (a′− a) ∈ Rd, we get an observation ψr ∈ R

such that E[|ψr − f>i ∆r
a|2] = 0.1/ρ2. Due to Markov’s inequality,

Pr[|ψr − f>i ∆r
a| ≤

√
d/ρ] ≥ 1− 0.1/d. (9)

When d = 1, we can just take ψr/∆r
a as an approximation of fi. It suffices to get a good estimation

f ′i ≈ fi via a small number of samples. However, when d ≥ 2, we cannot extract enough information
from the inner product f>i ∆r

a ∈ R of the two vectors. To handle this issue, as Figure 3(b) illustrates,
we will use d random vectors to form a random matrix ∆ = [∆r

a]r∈[d] ∈ Rd×d that has a bounded
spectral norm, 8 and d observations ψ = (ψr)r∈[d]. Then Eq. (9) implies that

Pr[‖ψ −∆fi‖2 ≤
√
d ·
√
d/ρ] ≥ 1− 0.1 = 0.9.

This gives a good estimation ∆−1ψ ≈ fi with ‖∆−1ψ− fi‖2 ≤ ‖∆−1‖ · ‖ψ−∆fi‖2 ≤ ‖∆−1‖ · (d/ρ).
(For a illustration, see Figure 14 in Section 5.7.) This approach needs d observations, and the
estimation error must be amplified by a

√
d factor to enable the union bound.

To get a more accurate estimation, our new sampling method discussed before ensures that ∆r
a

‖∆r
a‖2 & T/d. One additional issue is how to analyze the random matrix ∆ = [∆r

a]r∈[d] ∈ Rd×d.
Fortunately, one can show the vectors ∆r

a ·
√
d/‖∆r

a‖2 are sub-Gaussian isotropic, so we can upper
bound the spectral norm ‖∆−1‖. Combining everything and solving the robust linear systems gives
‖f ′i − fi‖2 = ‖∆−1ψ − fi‖2 .d 1/(ρT ).

7We say a .d b if a ≤ poly(d) · b.
8For a matrix ∆, we use ‖∆‖ to denote the spectral norm of ∆.
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Roadmap

Section 2 provides some basic notations and definitions. Section 3 provides a list of probability tools.
Filter, permutation and hashing in one dimension are given in Appendix A and B for completeness,
which can be skipped if readers are familiar with them. Section 4 presents the counterpart filter,
permutation and hashing in the multi-dimensional setting. In Section 5 and 6, we show to how to
give accurate estimations of the frequencies. In Section 7, we present our sparse recovery algorithm.
In Section 8, we show how to obtain the signal estimation by paying a slightly longer duration.
Finally, in Section 9, we give a short discussion on some bottlenecks of current methods, and some
interesting future directions.

2 Preliminaries

2.1 Notations

We denote by [n] the set {0, 1, 2, · · · , n− 1}, by R the set of real numbers, by Z the set of integers,
and by C the set of complex numbers. Also, N≥a refers to the set of integers no less than a ≥ 0. Let
supp(f) denote the support of a function or vector f , and let ‖f‖0 = | supp(f)| be the cardinality.
For a random variable X, for convenience we may abuse the notation supp(X) to denote the support
of X’s probability density function (PDF).

We use max{a, b} or max(a, b) (resp. min{a, b} or min(a, b)) to denote the maximum (resp. the
minimum) between a, b ∈ R. Given any p ≥ 1, a vector x = (xi)i∈[n] ∈ Rn has the the `p-norm
‖x‖p := (

∑
i∈[n] |xi|p)1/p; in the case that p =∞, we define ‖x‖∞ := maxi∈[n] |xi|.

We use the notations i :=
√
−1 and eiθ := cos(θ) + i · sin(θ) for any phase arg(eiθ) = θ ∈ R. For

a complex number z = a+ i · b ∈ C, let a ∈ R be the real part and let b ∈ R be the imaginary part.
Also, z := a− ib ∈ C denotes the conjugate, and |z| :=

√
zz =

√
a2 + b2 ≥ 0 denotes the norm.

2.2 Fourier transform and convolution

For convenience, throughout this paper we use the shorthand CFT (the continuous Fourier trans-
form), DFT (the discrete Fourier transform), DTFT (the discrete-time Fourier transform) and FFT
(the fast Fourier transform).

• In the time domain, we often use the notations t and τ .

• In the frequency domain, we often use the notations f and ξ.

Given a d-variate function x(t) for t = (ts)s∈[d] ∈ Rd, we have the CFT x̂(f) for f = (fr)r∈[d] ∈ Rd

and the inverse CFT x(t) for t ∈ Rd:

x̂(f) :=

∫

τ∈Rd
x(τ) · e−2πi·f>τ · dτ and x(t) :=

∫

ξ∈Rd
x̂(ξ) · e2πi·t>ξ · dξ.

Definition 2.1 (k-Fourier-sparse signal). Given any k-Fourier-sparse signal x∗(t) with the tones
{(vi, fi)}i∈[k] ⊆ C×Rd, the corresponding CFT x̂∗(f) is the combination of k ≥ 1 many (scaled)
d-dimensional Dirac delta functions, each of which has a point mass (i.e. the involved magnitude)
vi ∈ C at the corresponding frequency fi ∈ supp(x̂∗). Without ambiguity, we denote x̂∗[fi] := vi ∈ C
for convenience. Then the k-sparse Fourier spectrum x̂∗(f) for f ∈ Rd can be formulated as

x̂∗(f) :=
∑

i∈[k]

vi ·Delta=fi(f) =
∑

i∈[k]

x̂∗[fi] ·Delta=fi(f).
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Definition 2.2 (Convolution). The convolution (f ∗ g)(t) for t ∈ Rd of two d-variate continuous
function f(t) and g(t) is given by

(f ∗ g)(t) :=

∫

τ∈Rd
f(τ) · g(t− τ) · dτ,

And the discrete convolution (f ∗ g)[i] for i ∈ Z of two same-length vectors f and g is given by9

(f ∗ g)[i] =
∑

j∈Z
f [j] · g[i− j].

2.3 An overview of previous techniques

The Sparse FT problem falls into the “sparse recovery” paradigm. Among such problems, an exem-
plar is to learn an approximately k-sparse length-N vector ŷ ∈ RN , by just accessing the length-N ′

measurements y := Φŷ resulted from an amount of N ′-to-N sensing matrices Φ ∈ RN ′×N , for some
N ′ � N . Based on the measurements, an algorithm should output a k-sparse vector ŷ′ ∈ RN that
approximates the vector ŷ. E.g., under the `2/`2 guarantee, we aim at achieving

‖ŷ′ − ŷ‖2 . mink−sparse z ‖z − ŷ‖2.

Given the flexibility of designing the Φ’s, the above problem is known as compressed sensing, and the
optimization goals are threefold: (i) to access the fewest measurements, i.e., sample complexity10;
(ii) to fast extract the k-sparse approximation ŷ′ ≈ ŷ, i.e., decoding time; and (iii) to use column-
sparsest possible Φ’s, hence a faster encoding time.11

We instead face the (discrete) sparse Fourier transform problem, if the above vector ŷ ∈ RN is
replaced by a length-N Fourier spectrum x̂ ∈ CN (of any dimension d ≥ 1) and the measurements y
are replaced by the signal samples x ∈ C. Again, the Fourier spectrum x̂ ∈ CN is unknown, and we
can only leverage the signal samples x ∈ C. Now our optimization goals are to reduce the sample
complexity and the decoding/running time.

Compressed sensing. To leverage the measurements, several past works on compressed sensing
[GLPS10, DBIPW10, IP11, IPW11, BIP+16, NS19] first get a bunch of pseudorandom hash functions
h : [N ] 7→ [B], where B = Θd(k) is the number of bins. Such a “hashing” is associated with a random
sign function s : [m] 7→ {±1}.12 In one hashing, we derive the linear combination of the form

uj :=
∑

i∈[m]:h(i)=j yi · s(i), (10)

for every bin j ∈ [B], based on a certain amount of m = o(N) measurements {yi}i∈[m] ⊆ RN ′ . This
scheme is known as “hashing into B bins”. Following such ideas, O(k log(n/k)) samples suffice to
get a desired k-sparse approximation ŷ′ ≈ ŷ [GLPS10, NS19].

Discrete Fourier transform. The very first obstacle to adopting a compressed sensing algorithm
to the discrete Sparse FT problem is, how to implement the “hashing into B bins” scheme by using
the Fourier samples. Now we observe the signal x in the time domain, but aim to recover its Fourier
spectrum x̂ ∈ CN in the frequency domain.

9We define (f ∗ g)[i] := 0 in the case that i /∈ supp(f) = supp(g).
10Only in the literature on compressed sensing, sample complexity is often called the number of measurements.
11Optimizing encoding time only makes sense when we are allowed to design the sensing matrix, for more details

of encoding time, we refer the readers to [NS19].
12Some previous works use the random Gaussian instead of the random sign functions.
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The approach in the past works [HIKP12a, IK14, Kap16, Kap17] is to mimic the transformation
in Eq. (10). That is, we first permute a bunch of m = o(N) signal samples {xi}i∈[m] via a pseudo-
random affine permutation P. Then, the permuted samples {(Px)i}i∈[m] are respectively scaled by
coefficients {G(li)}i∈[m], i.e., the values of a filter function G : Rd 7→ R at m = o(N) many lattice
points {li}i∈[m] ⊆ Rd. Akin to Eq. (10), we use a transformation uj =

∑
i∈[m]:h(i)=j(Px)i · G(li).

The second difficulty is that the hashing is no longer perfect. For compressed sensing, a coordi-
nate i ∈ [N ] contributes 100% to a target bin, and 0% to the other (B − 1) bins. For the discrete
Fourier transform, however, besides the target bin (which still gets 100%), any other bin should get
a δ > 0 fraction of mass from a coordinate i ∈ [N ]. This modification (a.k.a. “leakage” [IK14]) is
to make the “hashing into B bins” efficient. Because of the imperfect hashing, the current sample
complexity must involve an extra log(1/δ) factor.

To get a better sense, let us briefly review the techniques in [IK14]. In any dimension d ≥ 1,
the frequency domain {ξi}i∈[nd] = [n]d is “on-the-grid”. Partition the domain [n]d = Head t Tail
into the head and tail frequencies (i.e., |Head| = k and |Tail| = nd − k = N − k) and denote the
magnitudes by x̂[ξi] ∈ C. Roughly speaking, the permutation by [IK14] works as follows:

P̂x[Σξi − b (mod n)] = x̂[ξi] · e−
2πi
n
·ξ>i a,

where the modulo operation is taken coordinate-wise, Σ ∈ [n]d×d is a random matrix, and b, a ∈ [n]d

are random vectors.
The matrix Σ ∈ [n]d×d is sampled uniformly at random among all integer matrices with odd

determinants. So the inverse Σ−1 (mod n) exists, making the permutation one-to-one. The vector
b ∼ Unif[n]d is uniform random, i.e., the “anchor point” of the permuted frequency domain.

Also, Σ and b together determine the hashing h . Since Σ is invertible, the linear transformation
Σξi − b (mod n) forms a bijection from the “grid” frequency domain {ξi}i∈[nd] = [n]d to itself.
[IK14] partition the codomain [n]d into B = Bd isomorphic Cartesian sub-grid, each of which has
( nB )d = N

B grid points. The sub-grids are exactly the desired bins. For a uniform random “anchor
point” b ∼ Unif[n]d, a frequency ξi ∈ [n]d is equally likely to fall into one of the bins.

Another crucial observation is that, any two different frequencies ξi 6= ξi′ ∈ [n]d fall into the
same bin with probability ≤ 0.01 · k−1 [IK14]. Thus, 90% head frequencies ξi ∈ Head will not
collide with other head frequencies, hence being isolated.

The above permutation samples a uniformly random vector a ∼ Unif[n]d, and thus rotates a
magnitude x̂[ξi] ∈ C by a certain angle −(2π/n)·ξ>i a, i.e., the rotated magnitude x̂[ξi]·e−

2πi
n
·ξ>i a ∈ C

has a random phase. This is crucial because, given any sufficiently large subset S ⊆ Tail of the tail
magnitudes, a uniform random a ∼ Unif[n]d makes the total rotated magnitude (over ξ ∈ S) much
smaller than the sum of the individual magnitudes.

Let S = {ξ ∈ Tail : h(ξ) = j} denote the tail frequencies hashed into a certain bin j ∈ [B]d.
Given the above discussions, the total tail magnitude zj :=

∑
ξ∈S x̂[ξ] ·e− 2πi

n
·ξ>a ∈ C is small enough

such that (i) zj ∈ C will not be identified as a spurious head frequency, when no head frequency is
hashed into the j-th bin; and (ii) zj ∈ C will not falsify an isolated head frequency ξi ∈ Head too
much, when ξi ∈ Head is the unique head frequency in the j-th bin.

Different from [IK14], some other works like [Kap16, Kap17] use more complicated hash schemes,
to improve the sample complexity and/or the running time of the sparse FT algorithm.

2.4 Technical barriers against a better tone estimation duration

The claimed tone estimation guarantee (Theorem 1.1) requires that T & d4.5/η · log(kd/δ) · log d.
Here the poly(d) term stems from several places.
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(i) We sample the time points from a large range | supp(a)| h T d (Section 1.3.1). Since the vector
a = (ar)r∈[d] is in d dimension, we need | supp(ar)| ≥ T − Θ(T/d) in any single dimension.
The second term Θ(T/d) (rather than Θ(T )) incurs a factor-d loss in the duration bound.

(ii) The procedure HashToBins (Algorithm 1) switches the `2-norm to the `∞-norm, and thus
incurs another factor-

√
d loss.

(iii) How we generate the random matrix Σ ∈ Rd×d loses a
√
d factor, to ensure a small collision

probability Pr[h(fi) = h(fi′)] ≤ 0.01 · k−1 for any two frequencies fi 6= fi′ ∈ supp(x̂∗).

(iv) Our filter function G (see Appendix 4) is modified from the one by [CKPS16], which incurs a
factor-d loss in the duration bound T . Without the modification, the approximation factor of
our algorithm would be 2Θ(d) rather than poly(d).

(v) To select the k recovered tones {(vi, fi)}i∈[k] from k′ = Θd(k) candidate tones (Algorithm 9),
we amplify the duration bound by a (d1.5 log d) factor. In particular, we first pay a (d log d)
factor because there are k′ = 2Θ(d log d) · k candidate tones. Moreover, in the selection process,
we cannot afford the running time to query points in `2-space (i.e., the memberships regarding
some `2-regions) even with the best data structure. Instead, we will work in the `∞-space and
choose the gap η′ = η/

√
d, which incurs another factor-

√
d loss.

To sum up, we need a duration T & η′−1 · d3 · log(k′d/δ) = η−1 · d4.5 · log(kd/δ) · log d := Ctone · η−1.

3 Probability tools

In this section, we present a number of classical probability tools to be used in this paper: the Cher-
noff bound (Lemma 3.1), the Hoeffding bound (Lemma 3.2) and the Bernstein bound (Lemma 3.3)
measure the tail bounds of random scalar variables. Further, Lemma 3.4 is a concentration result
about random matrices.

We state the classical Chernoff bound below, which is named after Herman Chernoff but is due
to Herman Rubin. It gives exponentially decreasing bounds for the tail distributions of the sums of
independent random variables.

Lemma 3.1 (Chernoff bound [Che52]). Let {Xi}i∈[n] be n ≥ 1 independent Bernoulli random
variables, such that Xi = 1 with probability pi ∈ [0, 1] and Xi = 0 with probability 1− pi. Then the
following hold for the random sum X :=

∑
i∈[n]Xi and the expectation µ := E[X] =

∑
i∈[n] pi.

Part (a): Pr[X ≥ (1 + δ)µ] ≤ eδ·µ · (1 + δ)−(1+δ)·µ for any δ > 0.

Part (b): Pr[X ≤ (1− δ)µ] ≤ e−δ·µ · (1− δ)−(1−δ)·µ for any 0 < δ < 1.

We state the Hoeffding bound below:

Lemma 3.2 (Hoeffding bound [Hoe63]). Let {Xi}i∈[n] be n ≥ 1 independent random variables
bounded between supp(Xi) ⊆ [ai, bi], for some ai ≤ bi ∈ R. Then the following holds for the random
sum X :=

∑
i∈[n]Xi and any t ≥ 0.

Pr[|X −E[X]| ≥ t] ≤ 2 · exp

(
− 2t2∑

i∈[n](bi − ai)2

)
.

We state the Bernstein inequality below:
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Lemma 3.3 (Bernstein inequality [Ber24]). Let {Xi}i∈[n] be n ≥ 1 independent zero-mean random
variables E[Xi] = 0. Suppose that |Xi| ≤M almost surely, for every i ∈ [n] and some M ≥ 0. Then
the following holds for the random sum X :=

∑
i∈[n]Xi and any t ≥ 0.

Pr [X > t] ≤ exp

(
− t2/2∑

i∈[n] E[X2
i ] +Mt/3

)
.

Matrix concentration inequalities have various applications. Below, we state a matrix Bernstein
inequality by [Tro15], which can be regarded as a matrix version of Lemma 3.3.

Lemma 3.4 (Matrix Bernstein [Tro15, Theorem 6.1.1]). Let {Xi}i∈[m] ⊆ Rn1×n2 be a set of m ≥ 1
i.i.d. matrices with the expectation E[Xi] = 0n1×n2. For some M ≥ 0, assume

‖Xi‖ ≤ M, ∀i ∈ [m].

Let X =
∑

i∈[m]Xi be the random sum. Let Var[X] be the matrix variance statistic of the sum:

Var[X] := max




∥∥∥
∑

i∈[m]

E[XiX
>
i ]
∥∥∥,

∥∥∥
∑

i∈[m]

E[X>i Xi]
∥∥∥



 .

Then

E[‖X‖] ≤
√

2 ·Var[X] · log(n1 + n2) +
M

3
· log(n1 + n2).

Furthermore, the following holds for any t ≥ 0.

Pr[‖X‖ ≥ t] ≤ (n1 + n2) · exp

(
− t2/2

Var[X] +Mt/3

)
.

Lemma 3.5 (Sub-gaussian rows [Ver10, Theorem 5.39]). Let A be an N × n matrix whose rows
Ai for i ∈ [N ] are independent sub-gaussian isotropic random vectors in Rn. Then for every t ≥ 0,
with probability at least 1− 2 exp(−ct2), we have

√
N − C√n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n+ t.

where smax(A)(resp. smin(A)) represents the largest (resp. smallest) singular value of matrix A, and
absolute constants C = CK , c = cK depend only on the sub-gaussian norm K = maxi∈[N ] ‖Ai‖ψ2 of
the rows.

4 Filter, permutation and hashing in multiple dimensions

Different from the previous sections, in this section t = (ts)s∈[d] ∈ Rd and f = (fr)r∈[d] ∈ Rd will
respectively denote the d-dimensional vectors in the time domain and in the frequency domain, and
i ∈ Nd≥0 and j ∈ Nd≥0 will denote the vector indices.
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4.1 Construction of filter (G(t), Ĝ(f))
Definition 4.1 (The multi-dimensional filter). Recall the parameters defined in Definition B.1:

• The number of bins in a single dimension B = Θ(d · k1/d) is a certain multiple of d ∈ N≥1.
Over all the d ∈ N≥1 dimensions, we have B = Bd = 2Θ(d log d) · k many bins.

• The noise level parameter δ ∈ (0, 1).

• α = Θ(1/d) is chosen such that 1
100·(d+1)·α ∈ N≥1 is an integer; clearly α ≤ 1

100·(d+1) ≤ 1
200 .

• s1 = 2B
α and s2 = 1

B+B/d .

• ` = Θ(log(kd/δ)) is an even integer. We safely assume ` ≥ 1000.

Further, the width parameter W = Ω(d · FBη ) is chosen to be a sufficiently large integer. Then for
any t = (ts)s∈[d] ∈ Rd and any f = (fr)r∈[d] ∈ Rd, the filter function (G(t), Ĝ(f)) is given by

G(t) =
∏

s∈[d]

G(ts) and Ĝ(f) =
∏

r∈[d]

Ĝ(fr),

where the single-dimensional filter (G(ts), Ĝ(fr)) is constructed according to Definition B.1, under
the same parameters B, δ, α, s1, s2, ` and W .

Definition 4.2 (Hypercube grid). Define

ΛW (z) := {f ∈ Rd : ‖f − i‖∞ ≤ z for some vector index i ∈ [−W : W ]d}.

This denotes the union of all the hypercubes that (for the chosen i’s) have edge length 2z ≥ 0 and
are centered at i ∈ [−W : W ]d. Notice that ΛW (z) ⊇ ΛW (z′) for any z ≥ z′ ≥ 0.

4.2 Properties of filter (G(t), Ĝ(f))
Lemma 4.3 (The multi-dimensional filter). The filter (G(t), Ĝ(f))[B, δ, α, `,W ] given in Defini-
tion 4.1 satisfies the following:

Property I: e−
δ

poly(k,d) · ≤ Ĝ(f) ≤ 1 for any f ∈ ΛW (1−α
2B ).

Property II: Ĝ(f) ∈ [0, 1] for any f ∈ ΛW ( 1
2B ) \ ΛW (1−α

2B ).

Property III: 0 ≤ Ĝ(f) ≤ δ
poly(k,d) for any f ∈ Rd \ ΛW ( 1

2B ).

Property IV: supp(G) ⊆ [−` · Bα , ` · Bα ]d.

Property V:
∑

i∈Zd G(i)2 ≤ e2 ·B−d = e2 · B−1.
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Figure 4: Demonstration for the filter Ĝ(f) in two dimension d = 2. “yellow” refers to Property I
and f ∈ ΛW (1−α

2B ), where Ĝ(f)’s value is very close to 1; “blue” refers to Property II and f ∈
ΛW ( 1

2B ) \ ΛW (1−α
2B ), where the value of Ĝ(f) drops sharply, and the other "white" region means

Property III and f ∈ Rd \ΛW ( 1
2B ), where Ĝ(f) oscillates near 0. Ai = [i− 1/(2B), i+ 1/(2B)]×R

and Bi = R× [i− 1/(2B), i+ 1/(2B)].
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4.3 Proof of properties

Below we only present the proofs of Properties III and V, and the other properties directly follow
from the corresponding properties of the single-dimensional filter (G(ts), Ĝ(fr)) that are given in
Definition B.1 and Lemma B.2.

Claim 4.4 (Property III of Lemma 4.3). 0 ≤ Ĝ(f) ≤ δ
poly(k,d) for any f ∈ Rd \ ΛW ( 1

2B ).

Proof. We let r∗ ∈ [d] denote (one of) the coordinate that maximizes, over all r ∈ [d], the distance
of fr from the lattice [−W : W ]. Because f ∈ Rd \ΛW ( 1

2B ), that maximum distance is at least 1
2B .

Then by construction (see Definition 4.1),

Ĝ(f) =
∏

r∈[d]

Ĝ(fr) ≤ Ĝ(fr∗) ≤
δ

poly(k, d)
,

where the second step follows because Ĝ(fr) ∈ [0, 1] for each coordinate r ∈ [d] \ {r∗} (see Proper-
ties II to IV of Lemma B.2); and the last step follows from Property III of Lemma B.2.

This completes the proof of Claim 4.4.

Claim 4.5 (Property V of Lemma 4.3).
∑

i∈Zd G(i)2 ≤ e2 ·B−d = e2 · B−1.

Proof. Due to Definition 4.1 that G(t) =
∏
s∈[d] G(ts) for any t ∈ Rd, we have

∑

i∈Zd
G(i)2 =

∑

i∈Zd

( ∏

s∈[d]

G(is)
2
)

=
∏

s∈[d]

(∑

is∈Z
G(is)

2
)

≤
∏

s∈[d]

((
1 +

2

d

)
·B−1

)

=
(

1 +
2

d

)d
·B−d

≤ e2 ·B−d,

where the third step follows from Property VI of Lemma B.2 that
∑

i∈Z G(i)2 ≤ (1 + 2
d) ·B−1; and

the last step follows because (1 + 1
z )z ≤ e for any z > 0.

This completes the proof of Claim 4.5.

4.4 Construction and properties of standard window (G ′(t), Ĝ ′(f))
Now we associate our multi-dimensional filter (G(t), Ĝ(f)) given in Definition 4.1 with another
standard window (G′(t), Ĝ′(f)) in a similar manner as Lemma B.11 and the counterpart results in
[HIKP12a, HIKP12b], which is more convenient for our later use.

Lemma 4.6 (The multi-dimensional standard window). Consider the filter function (G(t), Ĝ(f))
given in Definition 4.1, there is another function (G′(t), Ĝ′(f)) such that:

Property I: Ĝ′(f) = 1 for any f ∈ ΛW (1−α
2B ).

Property II: Ĝ′(f) ∈ [0, 1] for any f ∈ ΛW ( 1
2B ) \ ΛW (1−α

2B ).
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Property III: Ĝ′(f) = 0 for any f ∈ Rd \ ΛW ( 1
2B ).

Property IV: ‖Ĝ′ − Ĝ‖∞ = maxf∈Rd |Ĝ′(f)− Ĝ(f)| ≤ δ
poly(k,d) .

Proof. We define Ĝ′(f) as follows; noticeably, similar to Ĝ(f), this is also an even function in every
coordinate r ∈ [d] given that the other (d− 1) coordinates are fixed:

Ĝ′(f) =





1 ∀f ∈ ΛW (1−α
2B )

Ĝ(f) ∀f ∈ ΛW ( 1
2B ) \ ΛW (1−α

2B )

0 ∀f ∈ Rd \ ΛW ( 1
2B )

.

Then all the properties above can be inferred from Lemma 4.3.
This completes the proof of Lemma 4.6.

4.5 Permutation and hashing

We adopt the following notations for convenience:

• Let bzc ∈ Z denote the greatest integer that is less than or equal to a real number z ∈ R. In
the case that z = (zr)

d
r=1 ∈ Rd is a vector, we would abuse the notation bzc = (bzrc)dr=1 ∈ Zd.

• Let frac(z) = z−bzc ∈ [0, 1) denote the fractional part of a real number z ∈ R. In the case that
z = (zr)

d
r=1 ∈ Rd is a vector, we would abuse the notation frac(z) = (frac(zr))

d
r=1 ∈ [0, 1)d.

• Denote the set [n] = {0, 1, · · · , n− 1}, for any positive integer n ∈ N≥1.

• Let z ∈ C denote the conjugate of a complex number z ∈ C. Notice that |z|2 = zz.

Definition 4.7 (Setup for permutation and hashing). We sample the random matrix Σ ∈ Rd×d
and the random vectors a, b ∈ Rd, and define the parameter D as follows:

• The d-to-d random matrix Σ is constructed in two steps. First, we sample an interim ma-
trix Σ′ ∼ Unif(SO(d)) uniformly at random from the rotation group, namely a rotation
matrix of determinant det(Σ′) = 1. Then, we define Σ := βΣ′, where the scaling factor
β ∼ Unif[2

√
d

Bη ,
4
√
d

Bη ] is uniform random.

• The random vector a ∈ Rd will be specified later in Section 5.6. In this section, we only need
the property of a given in Conditions 4.8 and 4.9, which also will be verified in Section 5.6.

• The random vector b′ = (b′r)r∈[d] ∼ Unif[0, 1]d. Then, let b := Σ−1b′.

• The parameterD = Θ(`/α) = Θ(d·log(kd/δ)) is a sufficiently large integer. Also, let D := Dd.

Condition 4.8 (Duration requirement). Given any i ∈ [BD]d and any choice of the random matrix
Σ ∈ Rd×d according to Definition 4.7, any choice of a ensures that Σ>(i+ a) ∈ [0, T ]d is within the
duration.

Condition 4.9 (Sampling requirement). Given any i ∈ [BD]d and any choice of the random matrix
Σ ∈ Rd×d according to Definition 4.7, the following hold for the random vector a:

E
a

[
g
(
Σ>(i+ a)

)2] . 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt,
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Figure 5: Demonstration for the hashing scheme (Definition 4.10) in two dimensions d = 2, where
p, q ∈ Z are integers. The unit square [p, p+ 1)× [q, q+ 1) are divided into B = B2 subsquares, and
the subsquare in which the frequency f is hashed into, is exactly the index hΣ,b(f) ∈ [B]d.

Definition 4.10 (Hashing). Define the vector-valued function

hΣ,b(f) =
⌊
B · frac

( 1

2B
· 1 + Σ(f − b)

)⌋
∈ [B]d.

This function “hashes” any frequency f ∈ [−F, F ]d into one of the B = Bd = 2Θ(d log d) · k ∈ N≥1

bins. When B = Θ(d · k1/d) is large enough, every bin j ∈ [B]d is likely to have at most one heavy
hitter (namely one tone frequency f ∈ supp(x̂∗)) and if so, we can recover the tone from the hitting
bins via an 1-sparse algorithm. See Figure 5 for a demonstration.

Definition 4.11 (Offset). Define the vector-valued function

oΣ,b(f) = frac
( 1

2B
· 1 + Σ(f − b)

)
− 1

B
· hΣ,b(f)− 1

2B
· 1 ∈

[
− 1

2B
,

1

2B

)d
,

which measures the coordinate-wise distance from the center of the hΣ,b(f)-th bin to f ∈ [−F, F ]d.

Definition 4.12 (Collision). Consider a tone frequency f ∈ supp(x̂∗), the event Ecoll(f) occurs
when hΣ,b(f

′) = hΣ,b(f) for some other tone frequency f ′ ∈ supp(x̂∗) \ {f}, namely both f 6= f ′ ∈
supp(x̂∗) are hashed into the same bin. In this case, the algorithm cannot recover the two collided
tone frequencies f 6= f ′. See Figure 6(a) for a demonstration.

Definition 4.13 (Large offset). Consider a tone frequency f ∈ supp(x̂∗), the event Eoff(f) occurs
when ‖oΣ,b(f)‖∞ ≥ 1−α

2B , i.e. the frequency f ∈ supp(x̂∗) locates on the boundary of the hΣ,b(f)-th
bin. In this case, the algorithm also cannot recover the tone frequency f . See Figure 6(b) for a
demonstration.

Our multi-dimensional permutation scheme is a natural generalization of the single-dimensional
one by [PS15, Definition A.5].

Definition 4.14 (Multi-dimensional permutation). Let PΣ,b,ax(t) = x(Σ>(t+ a)) · e−2πi·b>Σ>t for
any t ∈ Rd.

Lemma 4.15 (Identities). The permutation given in Definition 4.14 satisfies that:
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f ′

· · ·
(p, q) (p+ 1, q)

(p, q + 1) (p+ 1, q + 1)

(p′, q′) (p′ + 1, q′)

(p′, q′ + 1) (p′ + 1, q′ + 1)

1

1/B

(a) Collision

f

(1− α)/B

(b) Large offset

Figure 6: Demonstration for the bad events “collision” (Definition 4.12) and “large offset” (Definition 4.13)
in two dimensions d = 2. In Figure 6(a), the two frequencies f 6= f ′ ∈ supp(x̂∗) may be hashed into two
different unit squares (i.e. possibly either p 6= p′ or q 6= q′ or both), but it is always the case that the two
subsquares have the same index hΣ,b(f) = hΣ,b(f

′) ∈ [B]d. In Figure 6(b), the red region (that gives a large
offset) covers 1− (1− α)2 fractions of the whole plane.

Property I: P̂Σ,b,ax(Σ(f − b)) = x̂(f) · det(Σ)−1 · e2πi·a>Σf for any f ∈ Rd.

Property II: P̂Σ,b,ax(t) = x̂(Σ−1t+ b) · det(Σ)−1 · e2πi·a>(t+Σ>b) for any t ∈ Rd.

Proof. For Property I, by the definition of the CFT, the LHS equals

P̂Σ,b,ax
(
Σ(f − b)

)
=

∫

t∈Rd
PΣ,b,ax(t) · e−2πi·(f>−b>)Σ>t · dt

=

∫

t∈Rd
x
(
Σ>(t+ a)

)
· e−2πi·b>Σ>t · e−2πi·(f>−b>)Σ>t · dt

= e2πi·f>Σ>a ·
∫

t∈Rd
x
(
Σ>(t+ a)

)
· e−2πi·f>Σ>(t+a) · dt

= e2πi·f>Σ>a · det(Σ)−1 ·
∫

τ∈Rd
x(τ) · e−2πi·f>τ · dτ

= e2πi·f>Σ>a · det(Σ)−1 · x̂(f)

= e2πi·a>Σf · det(Σ)−1 · x̂(f),

where the second step follows from Definition 4.14; the fourth step is by substitution; and the last
step is by the definition of the CFT.

We directly infer Property II from Property I by substitution. Lemma 4.15 follows then.

4.6 HashToBins: algorithm

Fact 4.16 (Identities under DFT/DTFT). The following holds for each j ∈ [B]d:

ûj = ŷDj = Ĝ ∗ P̂Σ,b,ax(B−1 · j).

Proof. It is noteworthy that y = (yj)j∈[BD]d is a (BD)d-dimensional vector, and u = (uj)j∈[B]d is a
Bd-dimensional vector. For the first equality ûj = ŷjD, due to the definition of the DFT,

ûj =
∑

i∈[B]d

ui · e−
2πi
B
·j>i
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Algorithm 1 HashToBins in multiple dimensions
1: procedure HashToBins(Σ, b, a,D)
2: Define (G(t), Ĝ(f)) according to Definition B.1.
3: Define PΣ,b,a according to Definition 4.14.
4: Define y = (yj)j∈[BD]d , where yj = G(j) · PΣ,b,ax(j).
5: Define u = (uj)j∈[B]d , where uj =

∑
i∈[D]d yBi+j .

6: return the DFT û = (ûj)j∈[B]d .
7: end procedure

=
∑

i∈[B]d

∑

l∈[D]d

yBl+i · e−
2πi
B
·j>i

=
∑

i∈[B]d

∑

l∈[D]d

yBl+i · e−
2πi
B
·j>(Bl+i)

=
∑

i∈[BD]d

yi · e−
2πi
B
·j>i

=
∑

i∈[BD]d

yi · e−
2πi
BD
·(Dj)>i

= ŷDj ,

where the second step is by Line 5 of HashToBins; the third step follows since both j ∈ [B]d and
l ∈ [D]d are d-dimensional integer vectors and therefore, e−

2πi
B
·j>(Bl) = e−2πi·j>l = 1; the fourth

step is by substitution; and the last step also applies the DFT.
For the second equality, again we know from the definition of the DFT that

ŷDj =
∑

i∈[BD]d

yi · e−
2πi
BD
·(Dj)>i

=
∑

i∈[BD]d

G(i) · PΣ,b,ax(i) · e− 2πi
B
·j>i

=
∑

i∈Zd
G(i) · PΣ,b,ax(i) · e− 2πi

B
·j>i

= ̂G · PΣ,b,ax(B−1 · j)
= Ĝ ∗ P̂Σ,b,ax(B−1 · j),

where the second step is by Line 4 of HashToBins; the third step follows because G(t) = 0 when
‖t‖∞ ≥ ` · B/α (see Lemma 4.3), given a large enough D = Θ(d · log(kd/δ)) (see Definition 4.7);
and the fourth step is by the definition of the DTFT.

This completes the proof of Fact 4.16.

Fact 4.17 (Sample complexity and time complexity). The procedure HashToBins takes O(BD) =
2O(d·log d) · k · logd(k/δ) samples and runs in O(BD + B logB) = 2O(d·log d) · k · logd(k/δ) time.

Proof. Recall that B = Bd = 2Θ(d log d) · k (Definition 4.1) and D = Dd = logd(kd/δ). The sample
complexity is easy to see, because we have exactly B bins, and each bin j ∈ [B] requires exactly D
samples in Line 5 of HashToBins.
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f

f ′

2/B

(0, 0) (1, 0)

(0, 1) (1, 1)

1

1/B

Figure 7: Demonstration for Lemma 4.18 in two dimensions d = 2, where the hashing of f and the
hashing of f ′ are rounded into the same unit square. A sufficient condition to avoid the collision
between f 6= f ′ ∈ supp(x̂∗) is that the `∞ distance ‖hΣ,b(f)− hΣ,b(f

′)‖∞ ≥ 2
B .

The BD-dimensional vector y = (yj)j∈[BD]d can be computed O(BD) time (assuming O(1)-time
query oracles to evaluating the filter (G(t), Ĝ(f)) and to sampling the signal x(t); see Remark B.3).
Furthermore, the B-dimensional vector u = (uj)j∈[B]d , where uj =

∑
i∈[D] yBi+j , can be computed in

O(BD) time. Then we can derive its DFT û = (ûj)j∈[B]d through any FFT algorithm in O(B logB)
time. The claimed time complexity follows as well.

4.7 HashToBins: probabilities of bad events

Lemma 4.18 (Probability of collision). Consider the random matrix Σ ∈ Rd×d and the random
vector b ∈ Rd given in Definition 4.7, for any pair of tone frequencies f 6= f ′ ∈ supp(x̂∗), the
probability of collision

Pr
Σ,b

[
hΣ,b(f) = hΣ,b(f

′)
]
≤ 0.01 · k−1.

Proof. Recall that η = min{‖f−f ′‖2 : f 6= f ′ ∈ supp(x̂∗)} is the minimum `2-distance between any
pair of tone frequencies. Due to Definition 4.10, two distinct tone frequencies f 6= f ′ ∈ supp(x̂∗)
are hashed into bins

hΣ,b(f) =
⌊
B · frac

( 1

2B
· 1 + Σ(f − b)

)⌋

hΣ,b(f
′) =

⌊
B · frac

( 1

2B
· 1 + Σ(f − b) + Σ(f ′ − f)

)⌋
.
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In order to hash f and f ′ into the same bin, a necessary condition (under any realization of the
random vector b) is that ‖Σ(f ′ − f) − i‖∞ ≤ 1

B ; in other words, Σ(f ′ − f) locates in a hypercube
that is centered at some integer vector i = (ir)r∈[d] ∈ Zd and has edge length 2

B .
Given the above two equations and as Figure 7 suggests, a necessary condition for the collision

hΣ,b(f) = hΣ,b(f
′) is that ‖Σ(f ′ − f) − i‖∞ < 2

B for some integer vector i ∈ Zd. Below we upper
bound this probability based on case analysis.

Case (i): when η ≤ ‖f − f ′‖2 ≤ B−2
4
√
d
· η. Recall Definition 4.7 that Σ is a rotation matrix scaled

by a random factor β ∼ Unif[2
√
d

Bη ,
4
√
d

Bη ]. Given this, we have ‖Σ(f − f ′)‖2 = β · ‖f − f ′‖2. Further,
since 2

√
d

Bη ≤ β ≤ 4
√
d

Bη and η ≤ ‖f − f ′‖2 ≤ B−2
4
√
d
· η, we have

‖Σ(f − f ′)‖2 ≥
2
√
d

Bη
· η =

2
√
d

B
,

‖Σ(f − f ′)‖2 ≤
4
√
d

Bη
· B − 2

4
√
d
· η = 1− 2

B
.

Given these, we can easily see that ‖Σ(f ′ − f)− i‖∞ ≥ 2/B for any integer vector i ∈ Zd. Namely,
the collision never occurs in this case.

Case (ii): when ‖f − f ′‖2 > B−2
4
√
d
· η.

As for the case (ii), for simplicity, let r ≥ 1 − 2
√
d

B denote ‖f − f ′‖2 · (2
√
d

Bη ), then we know

‖Σ(f − f ′)‖2 is distributed uniformly on [r, 2r]. Let Vd(r) = πd/2

Γ(d/2+1) · (r)d represent the volume of

d-dimensional Euclidean ball of radius r and Sd(r) = 2πd/2

Γ( d
2

)
rd−1 represent the surface of area. The

probability density function for Σ(f − f ′) = x is PDF(x) = 1
r·Sd(‖x‖2) for r ≤ ‖x‖2 ≤ 2r. Then the

probability for Σ(f − f ′) falls into any region with volume V is at most

V

r · Sd(r)
. V · Γ(d/2)

(
√
πr)d

.

Then we have

Pr
Σ,b

[
hΣ,b(f) = hΣ,b(f

′)
]
≤ (2 · dr +

2
√
d

B
e)d · (2/B)d · Γ(d/2)

(
√
πr)d

. 2O(d)/Bd · (d
2

)d/2

≤ 2O(d log d) 1

B .

where the first step is because that Σ(f ′ − f) must locate in a hypercube that is centered at some
integer vector and has edge length 2/B, and there are at most (2 · dr+ 2

√
d

B e)d different hypercubes
in the sphere. The second step is by the Stirling’s approximation.

This completes the proof of Lemma 4.18.

Lemma 4.19 (Probability of large offset). Consider the random matrix Σ ∈ Rd×d and the random
vector b ∈ Rd given in Definition 4.7, for any tone frequency f ∈ supp(x̂∗), the probability of large
offset

Pr
Σ,b

[
Eoff(f)

]
= Pr

Σ,b

[∥∥oΣ,b(f)
∥∥
∞ ≥

1− α
2B

]
= 1− (1− α)d ≤ 0.01.
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Proof. Recall (see Definition 4.10) that

hΣ,b(f) = bB · frac(
1

2B
· 1 + Σ(f − b))c

and (see Definition 4.11) that

oΣ,b(f) = frac(
1

2B
· 1 + Σ(f − b))− 1

B
· hΣ,b(f)− 1

2B
· 1 ∈ [− 1

2B
,

1

2B
)d.

It can be seen that a large offset |oΣ,b(f)|∞ ≥ 1−α
2B occurs if and only if frac( 1

2B ·1+ Σ(f − b)) /∈ Sd,
where (in each coordinate) the union of intervals

S =
⋃

j∈[B]

( j
B

+
α/2

B
,
j

B
+

1− α/2
B

)
⊆ [0, 1).

Indeed, for any choice of Σ according to Definition 4.7, because b ∈ Rd is uniformly random,
each i-th coordinate of the vector ( 1

2B ·1+Σ(f−b)) is distributed uniformly on an interval of length
| supp(bi)| = 1 ∈ N≥1. Accordingly, each i-th coordinate of the fractional part frac( 1

2B ·1+Σ(f−b))
must be distributed independently and uniformly on [0, 1).

To summarize, the conditional probability Prb[Eoff(f) | Σ] always equals the probability that,
an coordinate-wise independent uniform random vector b̃ ∼ Unif[0, 1)d locates outside the region
Sd ⊆ [0, 1)d. Thus, for any realized Σ given by Definition 4.7, we have

Pr
b

[Eoff(f) | Σ] = 1− |S|d

= 1−
((

1− α/2
B

− α/2

B

)
·B
)d

= 1− (1− α)d.

Since 0 < α ≤ 1
100·(d+1) < 1 (see Definition 4.1), we also have 1− (1−α)d ≤ d ·α ≤ d

100·(d+1) ≤ 0.01.
This completes the proof of Lemma 4.19.

Lemma 4.20 (Hashing into same bin). For any tone frequency f ∈ supp(x̂∗), if the event Eoff(f)
does not happen, then hΣ,b(f) = hΣ,b(f

′) for any other frequency f ′ ∈ Rd that

‖f − f ′‖2 <
α

8
√
d
· η = Θ(d−1.5 · η).

Proof. Since the event Eoff(f) does not happen, the offset ‖oΣ,b(f)‖∞ < 1−α
2B (see Definitions 4.13

and 4.11). Given this, by construction (see Definition 4.10) a sufficient condition for the function
hΣ,b to hash f and f ′ into the same bin is ‖Σ(f − f ′)‖∞ < α

2B . We verify this condition as follows:

‖Σ(f − f ′)‖∞ ≤ ‖Σ(f − f ′)‖2

≤ 4
√
d

Bη
· ‖f − f ′‖2

<
4
√
d

Bη
· α

8
√
d
· η

=
α

2B
,

where the second step follows from Definition 4.7, i.e. Σ is a rotation matrix scaled by a random
factor β ∼ Unif[2

√
d

Bη ,
4
√
d

Bη ]; and the third step follows from our premise ‖f − f ′‖2 < α
8
√
d
· η.

This completes the proof.
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4.8 HashToBins: error due to noise

Lemma 4.21 (The error due to noise). Suppose that Condition 4.8 is true for the random vector
a ∈ Rd and that x∗(t) = 0 for any t ∈ [0, T ]d, then the following holds for any random matrix
Σ ∈ Rd×d given in Definition 4.7:

E
b,a

[
‖û‖22

]
. 1

T d
·
∫

τ∈[0,T ]d
|g(τ)|2 · dτ.

Proof. We know from Parseval’s theorem that ‖û‖22 = B·‖u‖22 = B·∑j∈[B]d |uj |2. To see the lemma,
let us consider a specific coordinate |uj |2. By definition (see Line 5 of HashToBins),

E
b,a

[
|uj |2

]
= E

b,a

[∣∣∣
∑

i∈[D]d

yBi+j

∣∣∣
2]

= E
b,a

[ ∑

i∈[D]d

yBi+j ·
∑

i∈[D]d

yBi+j

]

=
∑

i∈[D]d

E
b,a

[yBi+j · yBi+j ] +
∑

i 6=i′∈[D]d

E
b,a

[
yBi+j · yBi′+j

]
, (11)

where the second step follows as |z|2 = zz for any complex number z ∈ C; and the last step follows
from the linearity of expectation.

As a premise of the current lemma, the signal x(t) = x∗(t) + g(t) = g(t) for any t ∈ [0, T ]d. Due
to Line 4 of HashToBins, for any pair i ∈ [D]d and any j ∈ [B]d we have

yBi+j = G(Bi+ j) · PΣ,b,ag(Bi+ j)

= G(Bi+ j) · g
(
Σ>(Bi+ j + a)

)
· e−2πi·b>(Bi+j)

= Si,j · e−2πi·b>(Bi+j),

where the second step is by Definition 4.14; and in the last step we denote

Si,j = G(Bi+ j) · g
(
Σ>(Bi+ j + a)

)

for ease of notation. Notice that Si,j ∈ R is a real number and is determined by the random matrix
Σ ∈ Rd×d and the random vector a ∈ Rd (see Definition 4.7).

We can reformulate the first term in Equation (11) as follows: for each i ∈ [D]d,

E
b,a

[yBi+j · yBi+j ] = E
a

[
Si,j · Si,j

]
= E

a

[
S2
i,j

]

Indeed, the second term in Equation (11) equals zero. Particularly, for any i 6= i′ ∈ [D]d we
have

E
b,a

[
yBi+j · yBi′+j

]
= E

b,a

[
Si,j · Si′,j · e−2πiB·b>(i−i′)

]

= E
a

[
Si,j · Si′,j

]
· E
b,a

[
e−2πiB·b>(i−i′)

]
, (12)

where the second step follows since b ∈ Rd and Si,j are independent (see Definition 4.7).
Let us investigate the second term in Equation (12). We have b>(i − i′) =

∑
r∈[d] br · (ir − i′r),

in which at least one summand is non-zero (since i 6= i ∈ [D]d). Since both of B and ir − i′r are
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integers and each coordinate br ∼ Unif[0, 1] is independently, the fractional part frac(B · b>(i− i′))
must follow the distribution Unif[0, 1). Accordingly, the second term in Equation (12) is equal to

E
b

[
e−2πiB·b>(i−i′)

]
= 0,

Applying all of the above arguments to Equation (11) leads to Eb,a[|uj |2] =
∑

i∈[D]d Ea[S
2
i,j ].

Taking all vector indices j ∈ [B]d into account, we infer that

E
b,a

[
‖û‖22

]
= B ·

∑

j∈[B]d

E
b,a

[
|uj |2

]

= B ·
∑

j∈[B]d

∑

i∈[D]d

E
a

[S2
i,j ]

= B ·
∑

j∈[B]

∑

i∈[D]

E
a

[
G(Bi+ j)2 · g

(
Σ>(Bi+ j + a)

)2]

= B ·
∑

i∈[BD]d

G(i)2 ·E
a

[
g
(
Σ>(i+ a)

)2]
, (13)

where the third step is by the definition of Si,j ; and the last step is by substitution.
Due to Condition 4.8, given any i ∈ [BD]d and any choice of the random matrix Σ ∈ Rd×d

according to Definition 4.7, the random vector a ∈ Rd satisfies that

E
a

[
g
(
Σ>(i+ a)

)2] . 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt,

Plugging the above equation into Equation (13) gives

E
b,a

[
‖û‖22

]
. 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt ·

(
B ·

∑

i∈[BD]d

G(i)2
)

. 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt,

where the last step follows from Property V of Lemma 4.3 that
∑

i∈Zd G(i)2 ≤ e2 · B−1.
This completes the proof of Lemma 4.21.

4.9 HashToBins: error due to bad events

Lemma 4.22 (The error due to bad events). Suppose g(t) = 0 for any t ∈ [0, T ]d. Given the hash
function hΣ,b under any Σ ∈ Rd×d and any b ∈ Rd (according to Definition 4.7), denote by

H = {f ∈ supp(x̂∗) : neither Ecoll(f) nor Eoff(f) happens}

the set of “good” tone frequencies. Then the following hold:

∀f ∈ H : E
a

[∣∣∣ûhΣ,b(f) − x̂∗[f ] · e2πi·a>Σf
∣∣∣
2
]
≤ δ

poly(k, d)
· ‖x̂∗‖21,

∑

f∈H
E
a

[∣∣∣ûhΣ,b(f) − x̂∗[f ] · e2πi·a>Σf
∣∣∣
2
]
≤ δ

poly(k, d)
· ‖x̂∗‖21,
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Proof. As promised by the lemma, the signal x(t) = x∗(t) + g(t) = x∗(t) for any t ∈ [0, T ]d. For a
specific frequency f ′ ∈ H, w.l.o.g. we assume that f ′ is hashed into the j-th bin, namely hΣ,b(f

′) = j
(see Definition 4.10). According to Property II of Fact 4.16,

ûj = Ĝ ∗ P̂Σ,b,ax∗(B
−1 · j)

= Ĝ′ ∗ P̂Σ,b,ax∗(B
−1 · j) + (Ĝ − Ĝ′) ∗ P̂Σ,b,ax∗(B

−1 · j). (14)

For the second summand in Equation (14), the corresponding function admits the `∞ norm of

∥∥(Ĝ − Ĝ′) ∗ P̂Σ,b,ax∗
∥∥
∞ ≤

∥∥(Ĝ − Ĝ′)
∥∥
∞ ·
∥∥P̂Σ,b,ax∗

∥∥
1
≤ δ

poly(k, d)
·
∥∥P̂Σ,b,ax∗

∥∥
1

where the second step is due to Property IV of Lemma 4.6.
We then have

∥∥P̂Σ,b,ax∗
∥∥

1
=

∫

z∈Rd

∣∣∣∣x̂∗(Σ−1z + b) · det(Σ)−1 · e2πi·a>(z+Σb)

∣∣∣∣ · dz

=

∫

z∈Rd

∣∣∣x̂∗(Σ−1z + b)
∣∣∣ · det(Σ)−1 · dz

=

∫

z∈Rd

∣∣x̂∗(ξ)
∣∣ · dξ

=
∥∥x̂∗
∥∥

1
,

where the first step applies Property II of Lemma 4.15; the second step follows since |eiθ| = 1 for
any θ ∈ R and det(Σ) 6= 0 (Definition 4.7); and the third step is by substitution.

Putting the equations together, we get

∥∥(Ĝ − Ĝ′) ∗ P̂Σ,b,ax∗
∥∥
∞ ≤

δ

poly(k, d)
·
∥∥x̂∗
∥∥

1
. (15)

Moreover, the first summand in Equation (14) equals

Ĝ′ ∗ P̂Σ,b,ax∗(B
−1 · j) =

∫

ξ∈Rd
Ĝ′(B−1 · j − ξ) · P̂Σ,b,ax∗(ξ) · dξ

=

∫

ξ∈Rd
Ĝ′(B−1 · j − ξ) · x̂∗(Σ−1ξ + b) · det(Σ)−1 · e2πi·a>(ξ+Σb) · dξ

=

∫

ξ∈Rd
Ĝ′(B−1 · j − Σ(ξ − b)) · x̂∗(ξ) · e2πi·a>Σξ · dξ, (16)

where the first step applies the convolution operation; the second step follows from Property II of
Lemma 4.15; and the third step is by substitution.

Notably (see Properties I to III of Lemma 4.6 and Definition 4.2), the standard window Ĝ′(ξ) is
supported within the hypercube grid

ΛW

( 1

2B

)
=
{
ξ ∈ Rd : ‖ξ − i‖∞ ≤

1

2B
for some vector index i ∈ [−W : W ]d

}
.

Recall that Σ is a random rotation matrix scaled by a random factor β ∼ Unif[2
√
d

Bη ,
4
√
d

Bη ] (see
Definition 4.7). Further, the Fourier spectrum supp(x̂∗) ⊆ [−F, F ]d is bounded. Under any choice
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Figure 8: Demonstration for Lemma 4.22 in two dimensions d = 2, where the blue subsquares
together denote the region {z ∈ R2 : |B−1 · j − z − i|∞ ≤ 1

2B for some i ∈ Z2}.

of the random matrix Σ of the random vector b ∈ Rd (see Definition 4.7), for any j ∈ [B]d and any
ξ ∈ [−F, F ]d we have

∥∥B−1 · j − Σ(ξ − b)
∥∥
∞ .

∥∥Σ(F, F, · · · , F )>
∥∥
∞

≤
∥∥Σ(F, F, · · · , F )>

∥∥
2

≤ 4
√
d

Bη
·
∥∥(F, F, · · · , F )>

∥∥
2

. d · F
Bη

.

Thus, a sufficiently large width parameter W = Θ(d · FBη ) (see Definition 4.1) guarantees that

{ 1

B
· j − Σ(ξ − b) : ξ ∈ [−F, F ]d

}
⊆ [−W,W ]d,

for any choice of Σ and b (according to Definition 4.7) and any j ∈ [B]d.
Given the above arguments and as Figure 8 suggests, Equation (16) suffices to integrate the

tone frequencies hashed into the j-th bin, namely

Φj =

{
ξ ∈ supp(x̂∗) :

∣∣B−1 · j − Σ(ξ − b)− i
∣∣
∞ ≤

1

2B
for some i ∈ Zd

}

=

{
ξ ∈ supp(x̂∗) : − 1

2B
· 1 � B−1 · j − Σ(ξ − b)− i � 1

2B
· 1 for some i ∈ Zd

}
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=

{
ξ ∈ supp(x̂∗) :

1

B
· j � 1

2B
· 1 + Σ(ξ − b) + i � 1

B
· (j + 1) for some i ∈ Zd

}

=

{
ξ ∈ supp(x̂∗) : j � B ·

( 1

2B
· 1 + Σ(ξ − b) + i

)
� j + 1 for some i ∈ Zd

}
.

In the above condition, 1
2B · 1 + Σ(ξ − b) + i must be bounded within [0, 1]d, as the concerning

bin j ∈ [B]d = {0, 1, · · · , B − 1}d. In particular, the case ‖ 1
2B + Σ(ξ − b) + i‖∞ = 1 occurs with

zero probability, since b ∈ Rd follows a continuous uniform distribution (Definition 4.7); we safely
ignore this case. Given the hash function hΣ,b(ξ) ∈ [B]d in Definition 4.10, we conclude that

Φj =
{
ξ ∈ supp(x̂∗) : hΣ,b(ξ) = j

}
.

The concerning tone frequency f ′ ∈ H ensures that neither Ecoll(f) nor Eoff(f) happens:

• Ecoll(f
′) does not happen. No other tone frequencies f ∈ supp(x̂∗) \ {f ′} collide with f ′ after

the hashing. That is, the j-th bin contains f ′ as the only tone frequency, namely Φj = {f ′}.

• Eoff(f ′) does not happen. The offset ‖oΣ,b(f
′)‖∞ < 1−α

2B is small enough, namely the frequency
f ′ lies within the hypercube grid ΛW (1−α

2B ). We know from Property I of Lemma B.11 that

Ĝ′(B−1 · j − Σ(f ′ − b)) = 1

Also, recall Observation 2.1 that x̂∗(ξ) is the combination of k many scaled d-dimensional Dirac
delta functions (at the tone frequencies ξ ∈ supp(x̂∗)). In precise, for any frequency ξ ∈ [−F, F ]d,

x̂∗(ξ) =
∑

f∈supp(x̂∗)

x̂∗[f ] ·Delta=f (ξ).

Applying all of the above arguments to Equation (16) results in

Ĝ′ ∗ P̂Σ,b,ax∗(j/B) =

∫

ξ∈Rd
x̂∗[f ′] ·Delta=f ′(ξ) · e2πi·a>Σξ · dξ

= x̂∗[f ′] · e2πi·a>Σf ′ .

This equation, together with Equation (14) and Equation (15), implies that
∣∣∣ûj − x̂∗[f ′] · e2πi·a>Σf ′

∣∣∣ ≤ δ

poly(k, d)
· ‖x̂∗‖1

Taking square on the both sides:

∣∣∣ûj − x̂∗[f ′] · e2πi·a>Σf ′
∣∣∣
2
≤ δ2

poly(k, d)
· ‖x̂∗‖21 ≤

δ

poly(k, d)
· ‖x̂∗‖21,

where the last step is by 0 < δ < 1; note that j = hΣ,b(f
′) ∈ [B]d.

Finally, we note that |H| ≤ k, since H ⊆ supp(x̂∗) and there are just k many tone frequencies
f ′ ∈ supp(x̂∗). Apply the last inequality over all f ′ ∈ H and take the expectation over the random
vector a ∈ Rd (see Definition 4.7), then Lemma 4.22 follows.
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4.10 Performance guarantees

Lemma 4.23 (Performance guarantee for HashToBins). Recall Theorem 1.1 for the `2-norm noise
level

N 2 :=
1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt

︸ ︷︷ ︸
N 2
g

+ δ ·
∑

i∈[k]

|x̂∗[fi]|2

︸ ︷︷ ︸
N 2
v

.

Sample the matrix Σ ∈ Rd×d and the vectors b ∈ Rd according to Definition 4.7, and suppose that
Conditions 4.8 and 4.9 hold for the random vector a ∈ Rd. Consider the “good” frequencies

H := {f ∈ supp(x̂∗) : neither Ecoll(ξ) nor Eoff(ξ) happens},

and the bins I := [B] \ hΣ,b(supp(x̂∗)) with no frequency {fi}i∈[k] = supp(x̂∗) hashed into.
Then given any Σ ∈ Rd×d, the following holds for each good frequency f ∈ H:

E
b,a

[∣∣∣ûhΣ,b(f) − x̂[f ] · e2πi·a>Σf
∣∣∣
2]

. B−1 · N 2
g + k−1 · δ

poly(k, d)
· N 2

v

And take all good frequencies f ∈ H and all bins j ∈ I into account:

E
b,a

[∑

f∈H

∣∣∣ûhΣ,b(f) − x̂∗[f ] · e2πi·a>Σf
∣∣∣
2

+
∑

j∈I
|ûi|2

]
. N 2

Proof. This can be easily seen by combining Lemmas 4.21 and 4.22.

5 Locate inner

Statement Section Algorithm Comment
Definitions 5.1 and 5.2 Section 5.1 Algorithm 2 Definitions
Lemma 5.4 Section 5.2 Algorithm 2 Sample complexity and running time
Lemma 5.5 Section 5.3 Algorithm 2 Voting process
Lemma 5.10 Section 5.4 Algorithm 2 Election process
Lemma 5.13 Section 5.5 Algorithm 2 Guarantees
Lemmas 5.14 and 5.15 Section 5.6 Algorithm 3 Sampling scheme
Lemma 5.16 Section 5.7 Algorithm 4 Stronger guarantees

Table 2: List of Lemmas/Algorithms in locate inner section.

5.1 Definitions and algorithm

Definition 5.1 (Setup for LocateInner). We adopt the following notations:

• The guessed approximation ratio C ∈ [120, ρ].

• Let M = 4 · d4
√
d · C2/3e ∈ N≥1.

• Let $ = C−2/3; this parameter will be used in the voting scheme (see Definition 5.3).
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f

Figure 9: Demonstration for Definition 5.2 when d = 2. The “red” point means the true frequency f .
The “lime” region means the true sub-hyperball HB(f

grid [j]
q∗ , 1

M ·Ldia) 3 f . The “blue” regions mean
the wrong sub-hyperballs, and the remaining “yellow” regions (with overlapping parts) represent the
intermediate sub-hyperballs.

• ϕj = arg(ûj)− arg(û′j) denotes the phase difference between ûj and û′j ;

• The number of iterations Rvote = Θ(d · log(C · d) + log log(F/η)) is sufficiently large.

Definition 5.2 (Hyperball and sub-hyperballs). For any frequency List [j] ∈ Rd and any Ldia ≥ 0,
HB(List [j], Ldia) denotes the `2-norm hyperball with center List [j] and diameter Ldia :

HB(List [j], Ldia) :=
{
ξ ∈ Rd :

∥∥ξ − List [j]
∥∥

2
≤ Ldia/2

}
.

Let
⋃
q∈QHB(f

grid [j]
q , 1

M · Ldia) denote a cover of HB(List [j]Ldia), by using a minimum amount of
sub-hyperballs that have the diameter 1

M ·Ldia each. At mostM := |Q| = (4M ·
√
d)d = 2Θ(d·log(C·d))

many sub-hyperballs can be used, namely the external covering number [SSBD14, Page 337].
Given that the hyperball HB(List [j], Ldia) contains the targeted tone frequency f ∈ [−F, F ]d,

all the sub-hyperballs can be classified into three groups (as Figure 9 shows):

• The true sub-hyperball HB(f
grid [j]
q∗ , 1

M · Ldia) 3 f , for some index q∗ ∈ Q. For convenience,
assume that the true sub-hyperball is unique, namely the targeted tone frequency is not on
the boundary of two or more sub-hyperballs.13

• The wrong sub-hyperballs q ∈ Q \ {q∗} have the `2-distances
∥∥∥f grid [j]

q∗ − f grid [j]
q

∥∥∥
2
≥ 1

M
· Ldia ·

⌈
4
√
d/$

⌉
=

1

M
· Ldia ·

⌈
4
√
d · C2/3

⌉
.

• The remaining sub-hyperballs are called the intermediate sub-hyperballs.

34



f

Figure 10: Demonstration for the voting scheme (Definition 5.3)

Definition 5.3 (Voting scheme). Let ‖θ‖© ∈ [0, π] denote the “phase distance” from ei0 = 1 to
any θ ∈ R. As Figure 10 suggests, given any ϕj ∈ R and any ∆a := ∆r

a, let Votej [q]← Votej [q] + 1
(namely adding a vote to any sub-hyperball q ∈ Q) for which

∥∥∥ϕj − 2π ·∆>a f
grid [j]
q

∥∥∥
©
≤ π ·$.

5.2 Sample complexity and running time

The goal of this section is to prove Lemma 5.4.

Lemma 5.4 (Sample complexity and running time of LocateInner). The procedure LocateIn-
ner (Algorithm 2) has the following performance guarantees:

• The sample complexity is

Θ(Rvote · BD) = 2Θ(d·log d) · (log C + log log(F/η)) · k · D.

• The running time is

Θ(Rvote · (BD + B logB + BM)) = 2Θ(d·(log d+log C)) · log log(F/η) · k · (D + log k)

Proof. Throughout the procedure LocateInner, the subroutine HashToBins (Algorithm 1) is
invoked 2 · Rvote times. Recall Definition 5.1 that Rvote = Θ

(
d · log(C · d) + log log(F/η)

)
.

13We make this assumption just to specify the true sub-hyperball; our proof does not rely on the assumption.
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Algorithm 2 LocateInner, Lemmas 5.4, 5.5, 5.10, 5.13

1: procedure LocateInner(Σ, b,D,List , Ldia , C, T )
2: Define M ∈ N≥1 according to Definition 5.1. . Definition 5.2
3: for j ∈ [B]d that List [j] 6= NIL do
4: Cover HB(List [j], Ldia) via sub-hyperballs

⋃
q∈QHB(f

grid [j]
q , 1

M · Ldia).
5: end for

6: Initialize Votej [q] = 0 for all q ∈ Q and each j ∈ [B]d. . Voting process. Lemma 5.5
7: Define Rvote ∈ N≥1 according to Definition 5.1.
8: for r = 1, 2, · · · ,Rvote do
9: (ar,∆

r
a)← SampleTimePoint(M,Ldia , C, T ). . Algorithm 3

10: û← HashToBins(x,Σ, b, ar, D).
11: û′ ← HashToBins(x,Σ, b, ar + ∆r

a, D).
12: Let ϕ = (ϕj)

B
j=1, where ϕj = arg(ûj)− arg(ûj).

13: for j ∈ [B]d that List [j] 6= NIL do
14: Update Votej [q] according to Definition 5.3.
15: end for
16: end for

17: Initialize Listnew[j] = NIL for each j ∈ [B]d. . Election process. Lemma 5.10
18: for j ∈ [B]d that List [j] 6= NIL do
19: Winner [j]← ⋃

q∈Q:Votej [q]≥ 1
2
·Rvote

HB(f
grid [j]
q , 1

M · Ldia).
20: if Winner [j] is non-empty then
21: Let Listnew[j] be any frequency so that HB(Listnew[j], 1

2 · Ldia) ⊇ Winner [j].
22: end if
23: end for
24: return the frequencies Listnew.
25: end procedure

Sample complexity. The procedure LocateInner takes samples only by invoking the sub-
routine HashToBins. Due to Fact 4.17, HashToBins has the sample complexity O(BD). Recall
Definition 4.1 that B = 2Θ(d·log d) · k. Thus, LocateInner has the sample complexity

#sample(LocateInner) = Θ(Rvote · B · D)

= Θ
(
d · log(C · d) + log log(F/η)

)
︸ ︷︷ ︸

Rvote

· 2Θ(d·log d) · k︸ ︷︷ ︸
B

· D

= 2Θ(d·log d) · (log C + log log(F/η)) · k · D.

Running time. The running time of LocateInner is dominated by the Rvote many loops for
the voting process (namely the second for loop). Such a loop invokes the subroutine HashToBins
twice, and then update Votej [q] for all q ∈ Q and all j ∈ [B]d. (The subroutine SampleTimePoint
runs in Od(1) time; see Algorithm 3.)

Due to Fact 4.17, HashToBins has the running time O(BD + B logB) time. Thus, the time
that LocateInner spends on hashing is

#time(hashing) = Θ(Rvote) · (BD + B logB)
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= Θ
(
d · log(C · d) + log log(F/η)

)
︸ ︷︷ ︸

Rvote

· 2Θ(d·log d) · k · (D + log k)︸ ︷︷ ︸
BD+B logB

= 2Θ(d·log d) · (log C + log log(F/η)) · k · (D + log k)

Further, the time that LocateInner spends on voting is

#time(voting) = Θ(Rvote · B ·M)

= Θ(d · log(C · d) + log log(F/η))︸ ︷︷ ︸
Rvote

· 2Θ(d·log d) · k︸ ︷︷ ︸
B

· 2Θ(d·log(C·d))
︸ ︷︷ ︸

M

= 2Θ(d·log(C·d)) · k · log log(F/η).

In total, the procedure LocateInner has the running time

#time(LocateInner) = #time(hashing) + #time(voting)

= 2Θ(d·log(C·d)) · k · (D + log k) · log log(F/η).

This completes the proof.

5.3 Voting process

The goal of this section is to prove Lemma 5.5.

Lemma 5.5 (The voting process of LocateInner). Given any realized matrix Σ and any realized
vector b, assume three premises for a particular good tone frequency f ∈ H = {ξ ∈ supp(x̂∗) :
neither Ecoll(ξ) nor Eoff(ξ) happens}:

• W.l.o.g. the tone frequency f ∈ H is hashed into the bin hΣ,b(f) = j ∈ [B]d (Definition 4.10).

• The tone frequency f ∈ H locates within the hyperball HB(List [j], Ldia).

• Given the guessed approximation ratio C ∈ [120, ρ], the following holds for both a = ar and
a = ar + ∆r

a, in every single iteration r ∈ [Rvote] of the procedure LocateInner:

E
a

[∣∣∣ûj − x̂[f ] · e2πi·a>Σf
∣∣∣
2
]
≤ C−2 ·

∣∣x̂[f ]
∣∣2.

Then the following hold in every single iteration of procedure LocateInner (Algorithm 2):

Property I: The (unique) true sub-hyperball gets a vote with probability at least

1− 4

(C ·$)2
= 1− 4

C2/3
>

1

2
.

Property II: Any wrong sub-hyperball gets a vote with probability at most

8$ +
4

(C ·$)2
=

12

C2/3
<

1

2
.

Claim 5.6 (Property I of Lemma 5.5). The (unique) true sub-hyperball gets a vote with probability
at least

1− 4

(C ·$)2
= 1− 4

C2/3
>

1

2
.
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Proof. For brevity, we rewrite ar and ∆r
a respectively as a and ∆a in this proof. Note that all of

the probabilities and the expectations given below are taken over the random vectors a and ∆a.
Combining the second premise of the lemma and Chebyshev’s inequality together, we know that

the following holds with probability at least 1− 2
(C·$)2 :

∣∣∣ûj − x̂[f ] · e2πi·a>Σf
∣∣∣ ≤

(
$/
√

2
)
·
∣∣x̂[f ]

∣∣,

which is equivalent to
∣∣∣ûj/x̂[f ] · e−2πi·a>Σf − 1

∣∣∣ ≤ $/
√

2.

I.e., the complex number ûj/x̂[f ] · e−2πi·a>Σf lies in the circle {z ∈ C : |z − 1| ≤ $/
√

2}. Clearly,
any complex number in this circle has the phase ≤ sin−1($/

√
2). In particular,

∥∥∥ arg(ûj)− arg(x̂[f ])− 2π · a>Σf︸ ︷︷ ︸
A1

∥∥∥
©
≤ sin−1

(
$/
√

2
)
,

where ‖θ‖© ∈ [−π, π) denotes the “phase distance” from ei0 = 1 to any θ ∈ R.
Similarly, when a is replaced with (a+ ∆a), with probability 1− 2

(C·$)2 we also have

∥∥∥ arg(û′j)− arg(x̂[f ])− 2π · (a+ ∆a)
>Σf

︸ ︷︷ ︸
A2

∥∥∥
©
≤ sin−1

(
$/
√

2
)
,

Put the above two inequalities together, (by the union bound) the following holds for the phase
difference ϕj = arg(ûj)− arg(û′j) with probability 1− 4

(C·$)2 :

∥∥∥ϕj − 2π ·∆>a Σf
∥∥∥
©

=
∥∥A1 −A2

∥∥
©

≤
∥∥A1

∥∥
© +

∥∥A2

∥∥
©

≤ 2 sin−1
(
$/
√

2
)

≤ (π/2) ·$, (17)

where the second step applies the triangle inequality; and last step follows since for any z ∈ (0, 1),
we have sin−1(z/

√
2) ≤ (π/4) · z.

Let q∗ ∈ Q be the index of the true sub-hyperball HB(f
grid [j]
q∗ , 1

M ·Ldia) 3 f . Compared with the

center frequency f grid [j]
q∗ of this sub-hyperball, the tone frequency f differs by has the `2-distance

∥∥∥f − f grid [j]
q∗

∥∥∥
2
≤ 1

2M
· Ldia .

Equation (17) suggests that the phase ϕj = arg(ûj) − arg(û′j) ∈ R is likely to be a good
approximation to 2π · ∆>a f . Indeed, that inequality (if true) guarantees a vote for the true sub-
hyperball HB(f

grid [j]
q∗ , 1

M · Ldia):
∣∣∣2π ·∆>a Σ(f − f grid [j]

q∗ )
∣∣∣ ≤ 2π · ‖Σ>∆a‖2 ·

∥∥∥f − f grid [j]
q∗

∥∥∥
2

≤ 2π · ‖Σ>∆a‖2 ·
( 1

2M
· Ldia

)
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≤ 2π ·
($ ·M

2Ldia

)
·
( 1

2M
· Ldia

)

= (π/2) ·$, (18)

where the second step uses the `2-distance derived above; and the third step follows because the
vector ∆a is sampled such that ‖Σ>∆a‖2 ∼ Unif[$·M

4Ldia ,
$·M
2Ldia ] (see Algorithm 3).

Combining everything together, with probability at least 1− 4
(C·$)2 we have

∥∥∥ϕj − 2π ·∆>a Σf
grid [j]
q∗

∥∥∥
©

=
∥∥∥ϕj − 2π ·∆>a Σf

∥∥∥
©

+
∣∣∣2π ·∆>a Σ(f − f grid [j]

q∗ )
∣∣∣

≤ (π/2) ·$ + (π/2) ·$
= π ·$,

where the first step follows from the triangle inequality; and the second step follows by applying
inequalities (17) and (18).

Recall Definitions 5.1 and 5.3 that $ = C−2/3 and C ≥ 120. Via elementary calculation, it can
be seen that

1− 4

(C ·$)2
= 1− 4

C2/3
≥ 1− 4

1202/3
≈ 0.8356 >

1

2
.

This completes the proof of Claim 5.6.

Claim 5.7 (Property II of Lemma 5.5). Any wrong sub-hyperball gets a vote with probability at
most

8$ +
4

(C ·$)2
=

12

C2/3
<

1

2
.

Proof. Once again, we rewrite ar and ∆r
a respectively as a and ∆a for simplicity, and all of the

probabilities and the expectations in this proof are taken over the random vectors a and ∆a.
Let q∗ ∈ Q be the index of the true sub-hyperball HB(f

grid [j]
q∗ , 1

M ·Ldia) 3 f . For a specific wrong

sub-hyperball HB(f
grid [j]
q , 1

M · Ldia), where q ∈ Q \ {q∗}, the next inequality turns out to hold with
probability at least 1− 8$:

∥∥∥2π ·∆>a Σ
(
f

grid [j]
q∗ − f grid [j]

q

)∥∥∥
©
≥ 2π ·$. (19)

We assume this fact for a while, and will justify this fact in the last part of this proof.
As shown in the proof of Claim 5.6, the following holds with probability at least 1− 4 · (C$)−2:

∥∥∥ϕj − 2π ·∆>a Σf
grid [j]
q∗

∥∥∥
©
≤ π ·$. (20)

Conditioned on both Inequalities (19) and (20), we must have
∥∥∥ϕj − 2π ·∆>a Σf

grid [j]
q

∥∥∥
©

=
∥∥∥2π ·∆>a Σ

(
f

grid [j]
q∗ − f grid [j]

q

)
+
(
ϕj − 2π ·∆>a Σf

grid [j]
q∗

)∥∥∥
©

≥ π ·$.

Given this, we know from Definition 5.3 that the q-th (wrong) sub-hyperball is guaranteed to lose
a vote. And based on the union bound, we derive Claim 5.7 as desired:

Pr
[
q-th sub-hyperball gets a vote

]
≤ Pr

[
Equation (19) does not hold

]
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+ Pr
[
Equation (20) does not hold

]

= 8$ +
4

(C$)2

=
12

C2/3

≤ 12

1202/3

≤ 0.4933

≤ 1

2

where the third step follows because $ = C−2/3 (see Definition 5.3); and the fourth step follows
because C ≥ 120 (see Definition 5.1).

To establish the claim, we are left to justify that Equation (19) holds with probability at least
1− 8$. Indeed, an equivalent condition of Equation (19) is that

“∆>a Σ(f
grid [j]
q∗ − f grid [j]

q ) differs from its closest integer b∆>a Σ(f
grid [j]
q∗ − f grid [j]

q ) + 1
2c by at

least $”,

because ‖z‖© ∈ [−π, π) denotes the “phase distance” from 0 = arg(ei0) to any z ∈ R.
We then observe that the vector ∆a is sampled (see Algorithm 3) such that Σ>∆a has a uniform

random direction, and the `2-norm follows the uniform distribution

‖Σ>∆a‖2 ∼ Unif
[$ ·M

4Ldia ,
$ ·M
2Ldia

]
.

Given these, we infer (e.g. from [CFJ13]) that ∆>a Σ(f
grid [j]
q∗ − f grid [j]

q ) has the same distribution as
the random variable (w̃ · cos θ̃), where

• θ̃ ∈ [0, π] is the angle between the vectors Σ>∆a and (f
grid [j]
q∗ − f grid [j]

q ). It is known that θ̃ has
the following probability density function: for all θ̃ ∈ [0, π],

PDF(θ̃) =
sind−2(θ̃)∫ π

0 sind−2(z) · dz
.

• w̃ ∼ Unif[w, 2w] with the parameter

w =
$ ·M
4Ldia ·

∥∥∥f grid [j]
q∗ − f grid [j]

q

∥∥∥
2

≥ $ ·M
4Ldia ·

1

M
· Ldia ·

⌈4
√
d

$

⌉

≥
√
d,

where the second step follows from the definition of a wrong sub-hyperball (see Definition 5.2).

We conclude from the above that

Pr
∆a

[Equation (19) does not hold] = Pr
w̃,θ̃

[∣∣∣w̃ · cos θ̃ −
⌊
w̃ · cos θ̃ + 1/2

⌋∣∣∣ ≤ $
]

(21)
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It turns out that $ ≤ 1/5 and that w ≥ 1. Concretely, we know from Definitions 5.1 and 5.3 that

$ = C−2/3 ≤ 120−2/3 ≈ 0.0411 <
1

5
.

Further, we have shown that the parameter w ≥
√
d. Given these, Claim 5.8 (presented below) is

applicable to the RHS of Equation (21). By doing so, we accomplish Claim 5.7.
This completes the proof.

Claim 5.8 (Technical result for Claim 5.7). Given any u ∈ (d/2d, 1/5] and any w ≥
√
d, it follows

Pr
w̃,θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u
]

. u,

where w̃ ∼ Unif[w, 2w], and the random phase θ̃ ∈ [0, π] has the probability density function

PDF(θ̃) =
sind−2(θ̃)∫ π

0 sind−2(z) · dz
, ∀θ̃ ∈ [0, π].

Proof. Fix θ̃ first. We know that
∫ π

0
sind−2(z) · dz = π · (2(d− 2)− 1)!!

(2(d− 2))!!

h 1/d,

where the first step is by induction and the second step follows from the Wallis formula.
We need some asymptotic evaluations:

• | sin(z)| h 1− cos2 z
2 when | cos(z)| � 1.

• sinx h x when |x| � 1.

In the next a few paragraphs, we discuss the three cases for | cos(θ̃)|.

• Case 1. | cos(θ̃)| ≤ c/
√
d

• Case 2. c/
√
d ≤ | cos(θ̃)| ≤ 1/2

• Case 3. | cos(θ̃)| > 1/2

Case 1. If | cos(θ̃)| ≤ c/
√
d.

First consider the range that | cos(θ̃)| ≤ c/
√
d for some small constant c > 1. Then in this range

we know that | sin z| h 1 − cos2(θ̃)
2 ≥ 1 − c2

d , which implies that | sin(θ̃)|d−2 = Ω(1). In other word,
we can treat θ̃ as nearly uniform distributed in this range. By similar arguments in Claim 5.9, we
can prove in this range

Pr
θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u, | cos(θ̃)| ≤ c/
√
d
]
. u

Case 2. If c/
√
d ≤ | cos(θ̃)| ≤ 1/2.

We fix an integer i > c.
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We have that | sin(z)| ≥ 1/2. We can use a straight line to simulate cos function. For any integer
i ≥ c, we have that

cos−1(
i− u
w̃

)− cos−1(
i+ u

w̃
) . u · (cos−1(

i− 1 + u

w̃
)− cos−1(

i− u
w̃

)).

We know that PDF(θ̃) is increasing, then we have that

u · Pr
θ̃

[θ̃ ∈ [cos−1(
i− u
w̃

), cos−1(
i− 1 + u

w̃
)] & Pr

θ̃
[θ̃ ∈ [cos−1(

i+ u

w̃
), cos−1(

i− u
w̃

)].

We have that

Pr
θ̃

[∣∣∣w̃ · cos(θ̃)− i
∣∣∣ ≤ u, 1

2
≥ | cos(θ̃)| ≥ c/

√
d

]
. u · Pr

θ̃

[∣∣∣w̃ · cos(θ̃)− i
∣∣∣ ≤ 1,

1

2
≥ | cos(θ̃)| ≥ c/

√
d

]
.

Combine this together, we know that

Pr
θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u, 1/2 ≥ | cos(θ̃)| ≥ c/
√
d
]
. u.

Case 3. If | cos(θ̃)| > 1/2.
Then we have

Pr
θ̃

[∣∣∣| cos(θ̃)| ≥ 1/2
]
≤ π · (1/2)d−2

∫ π
0 sind−2(z) · dz

. d

2d

≤ u.

The first step is because | sin(θ̃)| < 1/2.
Combine three cases. Then combine these three cases together, we have

Pr
θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u
]

≤ Pr
θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u, 1/2 ≥ | cos(θ̃)| ≥ c/
√
d
]

+ Pr
θ̃

[| cos(θ̃)| > 1/2] + Pr
θ̃

[∣∣∣w̃ · cos(θ̃)−
⌊
w̃ · cos(θ̃) + 1/2

⌋∣∣∣ ≤ u, | cos(θ̃)| ≤ c/
√
d
]

. u.

This completes the proof.

Claim 5.9 (Technical result for Claim 5.7). Given any u ∈ (0, 1/5] and any w ≥ 1, the following
holds for the random variables w̃ ∼ Unif[w, 2w] and θ̃ ∼ Unif[−π, π):

Pr
w̃,θ̃

[∣∣∣w̃ · sin(θ̃)−
⌊
w̃ · sin(θ̃) + 1/2

⌋∣∣∣ ≤ u
]
≤ 8u.
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i− u
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Figure 11: Demonstration for Claim 5.9, where i ∈ Z is an integer.

Proof. To improve the readability, we provide Figure 11 for demonstration. We denote

d̃θ = |w̃ · sin(θ̃)− bw̃ · sin(θ̃) + 1/2c|

for ease of notation. Notice that d̃θ represents the distance between (w̃ · sin(θ̃)) and its closest
integer. By symmetry, the following random distance d̃ψ has the same distribution as d̃θ:

d̃ψ =
∣∣∣w̃ · sin(ψ̃)−

⌊
w̃ · sin(ψ̃) + 1/2

⌋∣∣∣,

where the new random phase ψ̃ is distributed uniformly on [0, π2 ] rather than on [−π, π).
Let us investigate the new random distance d̃ψ via case analysis.

Case (i): when (1− u)/(2w) ≤ sin(ψ̃) ≤ 1.

Notice that this case is non-empty, since u ∈ (0, 1/5] and w ≥ 1. Suppose the random
phase ψ̃ is fixed. Because the random variable w̃ ∼ Unif[w, 2w], the random closest integer
bw̃ · sin(ψ̃) + 1/2c admits the following lower and upper bounds:

⌊
w̃ · sin(ψ̃) + 1/2

⌋
≥ w̃ · sin(ψ̃)− 1/2 ≥ w · sin(ψ̃)− 1/2

⌊
w̃ · sin(ψ̃) + 1/2

⌋
≤ w̃ · sin(ψ̃) + 1/2 ≤ 2w · sin(ψ̃) + 1/2

Namely, the random closest integer bw̃ · sin(ψ̃) + 1/2c has at most (w · sin(ψ̃) + 1) many
possibilities. Consider the set Ãψ of all possible (w̃ · sin(ψ̃)) such that the random distance
d̃ψ ≤ u:

Ãψ =
{
w̃ · sin ψ̃ : w̃ ∈ [w, 2w] and d̃ψ ≤ u

}
.
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Since the closed integer bw̃ · sin(ψ̃) + 1/2c has at most (w · sin(ψ̃) + 1) many possibilities, the
total length of this set Ãψ is at most

∣∣Ãψ
∣∣ ≤ 2u · (w · sin(ψ̃) + 1). (22)

Hence, under any choice of the random phase ψ̃, the conditional probability (over the uniform
random variable w̃ ∼ Unif[w, 2w]) below is at most

Pr
w̃

[
d̃ψ ≤ u | case (i)

]
=

∣∣Ãψ
∣∣

(2w − w) · sin(ψ̃)

≤ 2u · (w · sin(ψ̃) + 1)

(2w − w) · sin(ψ̃)

= 2u ·
(

1 + (w · sin(ψ̃))−1
)

≤ 2u ·
(

1 +
2

1− u

)

≤ 7u,

where the second step applies Equation (22); the fourth step follows because (in this case) we
assume that sin(ψ̃) ≥ 1−u

2w ; and the last step is because u ∈ (0, 1/5].

Case (ii): when u/w < sin(ψ̃) < (1− u)/(2w).

Notice that this case is non-empty, since u < 1−u
2 for any u ∈ (0, 1/5]. Of course, any realized

random variable w̃ ∼ Unif[w, 2w] satisfies w̃ ≥ w and w̃ ≤ 2w. On the lower-bound part:

w̃ · sin(ψ̃) ≥ w · sin(ψ̃) > w · u
w

= u.

Further, on the upper-bound part:

w̃ · sin(ψ̃) ≤ 2w · sin(ψ̃) < 2w · 1− u
2w

= 1− u.

Combining both inequalities together, regardless of the realized w̃ ∼ Unif[w, 2w], the random
variable (w̃ · sin(ψ̃)) locates between (u, 1− u) and differs from its closest integer by at least
u.

From the above arguments, we conclude that the next conditional probability equals zero.

Pr
w̃,ψ̃

[
d̃ψ ≤ u | case (ii)

]
= 0.

Case (iii): when 0 ≤ sin(ψ̃) ≤ u/w.
Of course, the following conditional probability is at most one:

Pr
w̃,ψ̃

[
d̃ψ ≤ u | case (iii)

]
≤ 1.

Observe that u/w ≤ u ≤ 1/5, because u ∈ (0, 1/5] and w ≥ 1. Then, since the random phase
ψ̃ is distributed uniformly on [0, π2 ], this case happens with probability

Pr
w̃,ψ̃

[case (iii)] =
2

π
· sin−1(u/w)
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≤ 2

π
· sin−1(u)

≤ 2

3
· u,

where the last step follows since z ≤ sin(π3 · z) for any z ∈ [0, 1/2] and we have u ∈ (0, 1/5] ⊆
[0, 1/2].

Putting all the three cases together, we conclude that

Pr
w̃,ψ̃

[
d̃ψ ≤ u

]
≤ 7u · Pr

w̃,ψ̃
[case (i)] + 0 · Pr

w̃,ψ̃
[case (ii)] + 1 · Pr

w̃,ψ̃
[case (iii)]

= 7u · Pr
w̃,ψ̃

[case (i)] + 1 · Pr
w̃,ψ̃

[case (iii)]

≤ 7u · 1 + 1 · 2

3
· u

≤ 8u,

where the first step applies the bounds on the conditional probabilities derived before.
This completes the proof of Claim 5.9.

5.4 Election process

The goal of this section is to prove Lemma 5.10.

Lemma 5.10 (The election process of LocateInner). For any matrix Σ ∈ Rd×d and any vector
b ∈ Rd, assume three premises for a particular good tone frequency f ∈ H = {ξ ∈ supp(x̂∗) :
neither Ecoll(ξ) nor Eoff(ξ) happens}:

• The tone frequency f ∈ H is hashed into the bin hΣ,b(f) = j ∈ [B]d (Definition 4.10).

• The tone frequency f ∈ H locates within the hyperball HB(List [j], Ldia).

• Given the guessed approximation ratio C ∈ [120, ρ], the following holds for both a = ar and
a = ar+∆r

a, in every single iteration r ∈ [Rvote] of the procedure LocateInner (Algorithm 2):

E
a

[∣∣∣ûj − x̂[f ] · e2πi·a>Σf
∣∣∣
2
]
≤ C−2 ·

∣∣x̂[f ]
∣∣2.

Then with probability at least 1−M·2−Ω(Rvote), the following hold for the algorithm LocateInner:

Property I: The tone frequency f ∈ H locates in one of the winning sub-hyperballs

Winner [j] =
⋃

q∈Q:Votej [q]≥ 1
2
·Rvote

HB(f
grid [j]
q ,M−1 · Ldia).

Property II: All the winning frequencies Winner [j] can be included within the smaller hyperball

Winner [j] ⊆ HB(f
grid [j]
q∗ , Ldia

new),

which is centered at f grid [j]
q∗ and has the new diameter Ldia

new := 1
2 · Ldia .
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f

Figure 12: Demonstration for Property III of Lemma 5.10 in two dimensions d = 2. The given
(black) circle HB(List [j], Ldia) narrows down into a smaller (red) circle HB(Listnew[j], Ldia

new).

Property III: The output frequency Listnew[j] ∈ Rd makes the tone frequency f ∈ H locate in a
new hyperball that is centered at Listnew[j] and has a new diameter Ldia

new = 1
2 · Ldia :

f ∈ HB(Listnew[j], Ldia
new).

To make Lemma 5.10 meaningful, later we will choose a large enough Rvote ∈ N≥1 such that the
failure probabilityM · 2−Ω(Rvote) � 1. Furthermore, we observe that Property III of Lemma 5.10
(see Figure 12 for demonstration) is a direct follow-up to Properties I and II. Below, we would show
that Property I holds with probability 1 − 2−Ω(Rvote), and that Property II holds with probability
1− (M− 1) · 2−Ω(Rvote). Then, all the properties can be inferred via the union bound.

Claim 5.11 (Property I of Lemma 5.10). With probability at least 1−2−Ω(Rvote), the tone frequency
f ∈ H locates in one of the winning sub-hyperballs

Winner [j] =
⋃

q∈Q:Votej [q]≥ 1
2
·Rvote

HB(f
grid [j]
q ,M−1 · Ldia).

Proof. Given the second premise of Lemma 5.10 that, the tone frequency f ∈ H locates within
the hyperball HB(List [j], Ldia), there is a unique true sub-hyperball HB(f

grid [j]
q∗ , 1

M ·Ldia) containing
f ∈ H (see Definition 5.2 ), for some vector index q∗ ∈ Q. Apparently, a necessary condition for
f ∈ H to locate in none of the winning sub-hyperballs is the event

Eq∗ =
{
the q∗-th sub-hyperball in total gets less than 1

2 · Rvote votes
}
.

Based on Property I of Lemma 5.5, in every iteration r ∈ [Rvote], the q∗-th sub-hyperball
independently loses a vote with probability at most 4 · C−2/3 < 1/2. Combining a simple coupling
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argument together with the Chernoff bound (see Part (a) of Lemma 3.1), the event Eq∗ happens
with probability at most

Pr
[
Eq∗
]
≤ exp

(
−Rvote

2
·
(

ln
(C2/3

8

)
+

8

C2/3
− 1

))

≤ exp

(
−Rvote

2
·
(

ln
(1202/3

8

)
+

8

1202/3
− 1

))

= exp
(
− Ω(Rvote)

)

where the second step follows because the formula ln z + 1
z is increasing in z ∈ R>0 (and C ≥ 120;

see Definition 5.1); and the last step follows as ln(1202/3

8 ) + 8
1202/3 − 1 ≈ 0.1174 = Ω(1).

This completes the proof of Claim 5.11.

Claim 5.12 (Property II of Lemma 5.10). All the winning frequencies Winner [j] can be included
within the smaller hyperball

Winner [j] ⊆ HB(f
grid [j]
q∗ , Ldia

new),

which is centered at f grid [j]
q∗ and has the new diameter Ldia

new := 1
2 · Ldia .

Proof. Recall Definition 5.2 that we cover the hyperball HB(List [j], Ldia) by usingM = 2Θ(d·log(C·d))

many sub-hyperballs. Given the second premise of Lemma 5.10, one particular sub-hyperball q∗ ∈ Q
is the true sub-hyperball, and there are at most (M− 1) many wrong sub-hyperballs.

We first demonstrate that, a specific wrong sub-hyperball q ∈ Q “wins” with probability at most
2−Ω(Rvote). By definition (see Line 19 of LocateInner), this wrong sub-hyperball “wins” if and
only if the following event happens:

Eq =
{
the q-th sub-hyperball in total gets at least 1

2 · Rvote votes
}
.

According to Property II of Lemma 5.5, in each iteration r ∈ [Rvote], the q-th sub-hyperball in-
dependently gets a vote with probability at most 12 · C−2/3 < 1/2. Combining a simple coupling
argument together with the Chernoff bound (see Part (a) of Lemma 3.1), the event Eq happens
with probability at most

Pr
[
Eq
]
≤ exp

(
−Rvote

2
·
(

ln
(C2/3

24

)
+

24

C2/3
− 1

))

≤ exp

(
−Rvote

2
·
(

ln
(1202/3

24

)
+

24

1202/3
− 1

))

= exp
(
− Ω(Rvote)

)

where the second step follows because the formula ln z + 1
z is increasing in z ∈ R>0 (and C ≥ 120;

see Definition 5.1); and the last step follows as ln(1202/3

24 ) + 24
1202/3 − 1 ≈ 9.2161× 10−5 = Ω(1).

Since there are at most (M− 1) many wrong sub-hyperballs, we can apply the union bound for
all of them. Hence, with probability at least 1−(M−1)·2−Ω(Rvote), none of the wrong sub-hyperballs
“win” in the election process.

47



According to Definition 5.2, the diameter of a sub-hyperball is 1
M · Ldia , and any intermediate

sub-hyperball q ∈ Q (or the true sub-hyperball q∗ ∈ Q itself) satisfies that
∥∥∥f grid [j]

q∗ − f grid [j]
q

∥∥∥
2
≥ 1

M
· Ldia ·

⌈
4
√
d · C2/3

⌉
.

For these reasons, the `2-distance between any f ∈ Winner [j] and the center frequency f grid [j]
q∗ of the

true sub-hyperball is at most

∥∥f − f grid [j]
q∗

∥∥
2
≤

(
d4
√
d · C2/3e − 1 +

1

2

)
· 1

M
· Ldia

≤ 1

4
· Ldia ,

where the last step is because M = 4 · d4
√
d · C2/3e (see Definition 5.1).

Thus, any frequency f ∈ Winner [j] can be included in a smaller hyperball HB(f
grid [j]
q∗ , Ldia

new) that

is centered at f grid [j]
q∗ and has the new diameter Ldia

new := 1
2 · Ldia .

This accomplishes the proof of Claim 5.12.

5.5 Performance guarantees

The goal of this section is to prove Corollary 5.13.

Corollary 5.13 (The guarantee of LocateInner). Given Σ and b (according to Definition 4.7),
let H ⊆ supp(x̂∗) be a subset of “good” tone frequencies:

H = {ξ ∈ supp(x̂∗) : neither Eoff(ξ) nor Ecoll(ξ) happens}

Let j := hΣ,b(f) ∈ [B]d where a good frequency f ∈ H is hashed into. Suppose f ∈ HB(List [j], Ldia)
at the beginning, then with failure probability at most M · 2−Ω(Rvote), the procedure LocateInner
outputs a new frequency Listnew[j] ∈ [−F, F ]d so that

f ∈ HB(Listnew[j], Ldia
new),

where the new diameter Ldia
new = Ldia/2.

Proof. This follows immediately from Property III of Lemma 5.10.

5.6 Sampling time points

The procedure SampleTimePoint is given in Algorithm 3, which is illustrated in Figure 13.

5.6.1 Duration requirement

The goal of this part is to prove Lemma 5.14, and thus to obtain the duration bound required by
Condition 4.8.

Lemma 5.14 (Duration of LocateInner). To satisfy Condition 4.8, the sampling duration re-
quirement of the procedure LocateInner (Algorithm 2) is

T = Ω
(
d3 · η−1 · log(kd/δ)

)
.
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Algorithm 3 SampleTimePoint, Lemmas 5.14 and 5.15

1: procedure SampleTimePoint(M,Ldia , C, T )
2: Define $ ∈ (0, 1) according to Definition 5.1.
3: Sample ∆a ∈ Rd such that Σ>∆a ∼ Unif{z ∈ Rd : ‖z‖2 = 1}. . |Σ| 6= 0; Definition 4.7
4: Scale ∆a by a random factor β ∼ Unif[$·M

4Ldia ,
$·M
2Ldia ].

5: Let A := {z ∈ Rd : {z, z + Σ>∆a} ⊆ [0.01
d · T,

(
1− 0.01

d

)
· T ]d}.

6: Sample a ∈ Rd such that Σ>a ∼ Unif(A).
7: return a and ∆a.
8: end procedure

r2r

Σ>∆a

(a) Sampling for Σ>∆a

t1

t2

A

Σ>∆a

0.01
d · T (1− 0.01

d ) · T

0.01
d · T

(1− 0.01
d ) · T

(b) Sampling for Σ>a and Σ>(a+ ∆a)

Figure 13: Demonstration of the sampling for ∆a, and then for a and (a+∆a), where in Figure 13(a)
the parameter r := $·M

4Ldia .

Proof. The procedure LocateInner uses the samples in the time domain by invoking the subrou-
tine HashToBins (Algorithm 1) with a number of pairs a′ ∈ {a, a+ ∆a} output by SampleTime-
Point (Algorithm 3). In particular (see Line 4 of HashToBins), we take the following sample for
all i ∈ [BD]d and both a′ ∈ {a, a+ ∆a}:

PΣ,b,a′x(i) = x
(
Σ>(i+ a′)

)
· e−2πi·b>i,

where the equation follows from Definition 4.14.
To meet Condition 4.8, we shall have

Σ>(i+ a′) ∈ [0, T ]d, (23)

for all i ∈ [BD]d and both a′ ∈ {a, a + ∆a}, under any choice of the random matrix Σ ∈ Rd×d
(according to Definition 4.7).

We know from Line 5 that both a′ ∈ {a, a+ ∆a} satisfy that

Σ>a′ ∈
[0.01

d
· T,

(
1− 0.01

d

)
· T
]d
.
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Given this, a sufficient condition for Equation (23) is that

‖Σ>i‖∞ ≤
0.01

d
· T,

for all i ∈ [BD]d, under any choice of the random matrix Σ ∈ Rd×d.
For the above equation, we deduce that

‖Σ>i‖∞ ≤ ‖Σ>i‖2

≤ 4
√
d

Bη
· ‖i‖2

≤ 4
√
d

Bη
·
√
d ·BD

. d2 · η−1 · log(kd/δ),

where the second step follows because Σ ∈ Rd×d is a rotation matrix scaled by a random factor
β ∼ Unif[2

√
d

Bη ,
4
√
d

Bη ] (Definition 4.7); the third step follows since i ∈ [BD]d = {0, 1, · · · , BD − 1}d;
and the last step follows because D = Θ(d · log(kd/δ)) (see Definition 4.7).

Putting the above arguments together, we know that Condition 4.8 holds for any sufficiently
large T = Ω(d3 · η−1 · log(kd/δ)).

This completes the proof.

5.6.2 Performance guarantees

The goal of this part is to prove Lemma 5.15, and thus to verify Condition 4.9.

Lemma 5.15 (Performance guarantees). Suppose that Condition 4.8 is true and that Ldia ≥ 20d
T

(which will be ensured by Definition 6.1), then Condition 4.9 holds for both a′ ∈ {a, a+ ∆a} derived
from the procedure SampleTimePoint (Algorithm 3):

E
a′

[
g
(
Σ>(i+ a′)

)2] . 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt,

for all i ∈ [BD]d, under any choice of the random matrix Σ ∈ Rd×d (according to Definition 4.7).

Proof. Since both time points a′ = a and a′ = a+ ∆a are constructed in a symmetric fashion (see
Line 5 of SampleTimePoint), we only need to reason about the time point a ∼ Unif(A) given in
SampleTimePoint. Denote T ′ := (1− 0.02/d) · T ≥ 0.98 · T . By construction (see Line 3),

‖Σ>∆a‖2 ≤ $ ·M
2Ldia

≤ 17
√
d

2Ldia

≤ 17

40
√
d
· T

≤ 1

2
√
d
· T ′,

where the second step follows since C ≥ 120 and $ = C−2/3 and M = 4 · d4
√
d · C2/3e ≤ 17

√
d · C2/3

(see Definition 5.1); the third step follows from the premise that Ldia ≥ 20d
T ; and the last step holds

because T ′ ≥ 0.98T .
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We have
‖Σ>∆a‖∞ ≤ ‖Σ>∆a‖1 ≤

√
d · ‖Σ>∆a‖2 ≤

1

2
· T ′.

Let (Σ>∆a)r denote the r-th coordinate of Σ>∆a ∈ Rd. For any choice of ∆a by SampleTime-
Point, the volume of the sampling range Σ>a ∼ Unif(A) is

vol(A) =
∏

r∈[d]

(
T ′ − |(Σ>∆a)r|

)

= T ′d ·
∏

r∈[d]

(
1− |(Σ>∆a)r| · T ′−1

)

≥ T ′d ·
∏

r∈[d]

exp
(
− 2 · |(Σ>∆a)r| · T ′−1

)

= T ′d · exp
(
− 2 · ‖Σ>∆a‖1 · T ′−1

)

≥ T ′d · e−1

≥ T d · 0.98 · e−1,

where the first step is by Line 5 of SampleTimePoint; the third step follows since |(Σ>∆a)r| ≤
‖Σ>∆a‖∞ ≤ 1

2 · T ′ and 1− z ≥ e−2z when z ∈ [0, 1
2 ]; the fifth step follows since ‖Σ>∆a‖1 ≤ 1

2 · T ′;
and the last step is because T ′d = (1− 0.02/d)d · T d ≥ 0.98 · T d.

We conclude from the above that, for any choice of ∆a by SampleTimePoint, the time point
Σ>a ∼ Unif(A) is sampled uniformly from a constant proportion of the duration t ∈ [0, T ]d. And
because Σ>(i + a) is guaranteed to be within the duration t ∈ [0, T ]d, for any choice of Σ ∈ Rd×d
and any i ∈ [BD]d, we have

E
a

[
g
(
Σ>(i+ a)

)2] . 1

T d
·
∫

t∈[0,T ]d
|g(t)|2 · dt.

This completes the proof.

5.7 Stronger Guarantee

Lemma 5.16 (Stronger guarantees). Let

ρ2 = |x̂[f ]|2/E
a

[|ûj − x̂[f ] · e2πi·a>Σf |2]

Let C∗ = d2. Let Rreg = C · d for some constant C. Let Ldia = 20d/T . There is an algorithm
(procedure LocateInner* in Algorithm 4) that output a list of frequencies such that there is a
mapping π : [k]→ [m],

‖f ′π(i) − fi‖2 . C∗
ρT

, ∀i ∈ [k].

Proof. We provide Figure 14 for demonstration. Let d′ = Rreg = Cd for simplicity. By Markov
inequality, we know that the following holds with probability at least 1− 1

10d′ :
∣∣∣ûj − x̂[f ] · e2πi·a>Σf

∣∣∣ ≤
∣∣x̂[f ]

∣∣ · 10
√
d′/ρ,
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Algorithm 4 A stronger version of LocateInner when search range is small

1: procedure LocateInner*(Σ, b,D,List , Ldia , C, T ) . Lemma 5.16
2: for r = 1, 2, · · · ,Rreg do
3: (ar,∆

r
a)← SampleTimePoint(M,Ldia , C, T ). . Algorithm 3

4: û← HashToBins(x,Σ, b, ar, D).
5: û′ ← HashToBins(x,Σ, b, ar + ∆r

a, D).
6: ϕj,r = arg(ûj)− arg(ûj).
7: end for
8: Listnew ← ∅
9: Form matrix ∆> := [Σ>∆1

a, · · · ,Σ>∆
Rreg
a ] ∈ Rd×Rreg .

10: for j ∈ [B] do
11: Form vector ϕj ∈ RRreg .
12: Listnew ← Listnew ∪ { 1

2π ·∆†ϕj}.
13: end for
14: return Listnew.
15: end procedure

which is equivalent to
∣∣∣ûj/x̂[f ] · e−2πi·a>Σf − 1

∣∣∣ ≤ 10
√
d′/ρ.

Namely, the complex number ûj/x̂[f ] ·e−2πi·a>Σf lies in the circle {z ∈ C : |z−1| ≤ $/
√

2}. Clearly,
any complex number in this circle has the phase less than sin−1(10

√
d′/ρ.). In particular,

∥∥∥ arg(ûj)− arg(x̂[f ])− 2π · a>Σf︸ ︷︷ ︸
A1

∥∥∥
©
≤ sin−1

(
10
√
d′/ρ

)
,

where ‖θ‖© ∈ [−π, π) denotes the “phase distance” minz∈Z |θ − 2π · z|.
Similarly, when a is replaced with (a+ ∆a), with probability 1− 1

10d we also have
∥∥∥ arg(û′j)− arg(x̂[f ])− 2π · (a+ ∆a)

>Σf
︸ ︷︷ ︸

A2

∥∥∥
©
≤ sin−1(10

√
d′/ρ),

Put the above two inequalities together, (by the union bound) the following holds for the phase
difference ϕj,r = arg(ûj)− arg(û′j) with probability 1− 2

10d′ :

‖ϕj,r − 2π ·∆r>
a Σf‖© = ‖A1 −A2‖©

≤ ‖A1‖© + ‖A2‖©
≤ 2 sin−1(10

√
d/ρ)

≤ 10
√
d′/ρ.

where the second step applies the triangle inequality; and last step follows since for any z ∈ (0, 1),
we have sin−1(z/

√
2) ≤ (π/4) · z.

Then with probability at least 0.8, we have that

‖ϕ− 2π ·∆ · f‖∞ ≤ 10
√
d′/ρ,
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frequency f ∈ supp(x̂∗)

approximation f ′ ≈ f

(a) Two dimensions

approximation
f ′ ≈ f

frequency
f ∈ supp(x̂∗)

(b) Three dimensions

Figure 14: Demonstration for Algorithm 4 in two dimensions d = 2 and three dimensions d = 3.

where

ϕ :=




ϕj,1
ϕj,2
...

ϕj,d′


 ∈ Rd

′
and ∆ :=




∆1>
a Σ

∆2>
a Σ
...

∆d>
a Σ


 ∈ Rd

′×d.

We deduce from the above that

‖ϕ− 2π ·∆f‖2 ≤
√
d′ · 10

√
d′/ρ = 10d′/ρ.

{Σ>∆r
a}r∈[d′] are uniformly distributed on a sphere. Consider any r ∈ [d′], by Theorem 3.4.6

in [Ver18], we know that Σ>∆r
a is sub-guassian. Besides, the value of each coordinate of Σ>∆r

a

follows a Beta-distribution, and d
‖Σ>∆r

a‖22
· E[∆r>

a ΣΣT∆r
a] = I. Thus we know that

√
d

‖Σ>∆r
a‖2

Σ>∆r
a

is a sub-gaussian isotropic random vector. By selecting ‖Σ>∆r
a‖2 h T/d and the constant C = d′/d

large enough, then by Lemma 3.5, we can show that with probability at least 1−1/ poly(d), we have
smin(∆) ≥

√
d · T

d1.5 = T
d . Let ∆† represent the Generalized inverse of ∆, let fLS = ∆†ϕ represent

the least squares solution, then we have

2π‖∆(f − fLS)‖2 ≤ 2‖ϕ− 2π ·∆ · f‖2 . d/ρ.

Then we have

‖f − fLS‖2 ≤ ‖∆(f − fLS)‖2/smin(∆)

. d

ρ
· d
T

= C∗ ·
1

Tρ
.

where the first step is by ‖∆x‖2/‖x‖2 ≥ smin(∆); the second step follows from smin(∆) ≥ T/d
and the last step follows because we define C∗ := d2.
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This completes the proof.

6 Locate signal

Statement Section Algorithm Comment
Definition 6.1 Section 6.1 Algorithm 5 Definitions
Lemma 6.2 Section 6.2 Algorithm 5 Sample complexity and running time
Lemma 6.3 Section 6.3 Algorithm 5 Duration
Lemma 6.4 Section 6.4 Algorithm 5 Guarantees, without Alg. 4
Lemma 6.5 Section 6.5 Algorithm 5 Stronger guarantees, with Alg. 4

Table 3: List of Lemmas/Algorithms in locate signal section.

6.1 Algorithm

Denote H := {ξ ∈ supp(x̂∗) : neither Ecoll(ξ) nor Eoff(ξ) happens}. Recall the performance guar-
antees given in Corollary 5.13:

Assume that a specific “good” tone frequency good frequency f ∈ H locates in a hy-
perball HB(List [j], Ldia) that is centered at some frequency List [j] ∈ Rd and has the
diameter Ldia > 0.

Then with probability at least 1−M· 2−Ω(Rvote), then procedure LocateInner (Algo-
rithm 2) outputs Listnew[j] for which

f ∈ HB(Listnew[j], Ldia
new).

where the new diameter Ldia
new := 1

2 · Ldia .

Given this, we would estimate the good frequencies by invoking the procedure LocateInner re-
peatedly. This idea is implemented as the procedure LocateSignal (Algorithm 5).

Definition 6.1 (Setup for LocateSignal). The procedure LocateSignal keeps track of a num-
ber of B = 2Θ(d·log d) · k hyperballs. These hyperballs have

• The same initial diameter Ldia := 2
√
d · F .

• The final diameter Ldia ∈ (20d
T , 40d

T ] is chosen so that log2( initial L
dia

final Ldia ) is an integer; clearly, this
final Ldia is well defined and is unique.

• The number of iteration Rsearch := log2( initial L
dia

final Ldia ) = O(log(T · F )).

That is, each hyperball is initialized to be HB(0, 2
√
d·F ) ⊇ [−F, F ]d. Clearly, such a hyperball con-

tains all the “good” tone frequencies f ∈ H at the beginning. Then, the subroutine LocateInner
is invoked Rsearch times, until the diameter shrinks to the final Ldia ∈ (20d

T , 40d
T ].

54



Algorithm 5 LocateSignal, Lemmas 6.2, 6.3, 6.4
1: procedure LocateSignal(Σ, b,D, C, T )
2: List [j]← 0 ∈ Rd for each j ∈ [B]d. . Initialize the center frequency
3: Ldia = 2

√
d · F . . Initialize the diameter

4: for r = 1, 2, · · · ,Rsearch do
5: Listnew ← LocateInner(Σ, b,D,List , Ldia , C, T ). . Algorithm 2
6: List ← Listnew.
7: Ldia ← 1

2 · Ldia .
8: end for
9: . Ldia = Θ(d/T )

10: List ← LocateInner*(Σ, b,D,List , Ldia , C, T ) . Algorithm 4
11: List∗ ← List (after removing the NIL’s) . the frequencies
12: return List∗.
13: end procedure

6.2 Sample complexity and running time

The goal of this section is to prove Lemma 6.2.

Lemma 6.2 (Sample complexity and running time of LocateSignal). The procedure LocateS-
ignal (Algorithm 5) has the following performance guarantees:

• The sample complexity is 2Θ(d·log d) · k · D · (log C + log log(F/η)) · log(T · F ).

• The running time is 2Θ(d·log(C·d)) · k · (D + log k) · log log(F/η) · log(T · F ).

• The output List∗ contains at most O(B) = O(Bd) = 2O(d·log d) · k many candidate frequencies.

Proof. How many frequencies the output List∗ contains is easy to see, since List∗ is indexed by the
bins j ∈ [B]d. Below we quantify the sample complexity and the running time.

Sample complexity. The procedure LocateSignal invokes the subroutine LocateInner
Rsearch times. Due to Lemma 5.4, the subroutine LocateInner has the sample complexity

#sample(LocateInner) = 2Θ(d·log d) · k · D · (log C + log log(F/η)).

Thus, LocateSignal has the sample complexity

#sample(LocateSignal) = #sample(LocateInner) · Rsearch

= 2Θ(d·log d) · k · D · (log C + log log(F/η)) · log(T · F ).

Running time. Due to to Lemma 5.4, the subroutine LocateInner has the running time

#time(LocateInner) = 2Θ(d·log(C·d)) · k · (D + log k) · log log(F/η).

Thus, LocateSignal has the running

#time(LocateSignal) = #time(LocateInner) · Rsearch

= 2Θ(d·log(C·d)) · k · (D + log k) · log log(F/η) · log(T · F ).

This completes the proof of Lemma 6.2.
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true f

Figure 15: Demonstration of Algorithm 5 for a single frequency f ∈ supp(x̂∗) in two dimensions
d = 2. The blue/green/red circles refer to the coarse-grained location, and the “orange” lines refer
to the fine-grained location.

6.3 Duration requirement

The goal of this section is to prove Lemma 6.3.

Lemma 6.3 (Duration of LocateSignal). The sampling duration requirement of the procedure
LocateSignal (Algorithm 5) is

T = Ω
(
d3 · η−1 · log(kd/δ)

)
.

Proof. This follows immediately from Lemma 5.14.

6.4 Performance guarantees

The goal of this section is to prove Lemma 6.4.

Lemma 6.4 (Guarantees of LocateSignal). Given Σ ∈ Rd×d and b ∈ Rd, the output list List∗ of
procedure LocateSignal (Algorithm 5) contains at most B = 2O(d·log d) · k many frequencies with
minimum separation Ω(η). Let H ⊆ supp(x̂∗) be a subset of “good” tone frequencies:

H = {ξ ∈ supp(x̂∗) : neither Eoff(ξ) nor Ecoll(ξ) happens}

For any good frequency f ∈ H, suppose that its signal-to-noise ratio ρ(i) ≥ C (see Definition 7.1),
then with probability at least 99%, there exists an output frequency f ′ ∈ List∗ such that

‖f − f ′‖2 . d

T
.

Proof. The concerning frequency f ∈ H w.l.o.g. is hashed into the bin j := hΣ,b(f) ∈ [B]d. Recall
Definition 6.1 that the procedure LocateSignal keeps track of a number of B = 2Θ(d·log d) · k
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hyperballs. The j-th hyperball is initialized to be HB(0, 2
√
d · F ) ⊇ [−F, F ]d, and thus contains

the frequency f ∈ H. Then, the procedure LocateSignal invokes the subroutine LocateInner
Rsearch times, each of which shrinks the diameter of the j-th hyperball by half, until the diameter
drops down to the final Ldia ∈ (20d

T , 40d
T ].

Failure probability. For the concerning frequency f ∈ H, we know from Corollary 5.13 that
each invocation of LocateInner fails with probability at mostM·2−Ω(Rvote). By the union bound,
the failure probability of LocateSignal is at most

Rsearch · M · 2−Ω(Rvote) = O(log(F · T ))︸ ︷︷ ︸
Rsearch

· 2Θ(d·log(C·d))
︸ ︷︷ ︸

M

· 2−Ω(Rvote)

≤ 1%,

where the first step follows because the parameters Rsearch = O(log(T · F )) andM = 2Θ(d·log(C·d))

(see Definitions 6.1 and 5.1); and the last step holds since we choose in Definition 5.1 a sufficiently
large Rvote = Θ

(
d · log(C · d) + log log(F/η)).

Performance guarantee. At the beginning, the initial j-th hyperball HB(0, 2F ) = [−F, F ]d

contains the concerning frequency f ∈ H. If the procedure LocateSignal succeeds in all of
the first r ∈ [Rsearch] iterations, then (Corollary 5.13) we locate f ∈ H within a hyperball that
is centered at some frequency Listnew[j] ∈ [−F, F ]d and has the diameter Ldia

new = 2
√
d · F · 2−r.

Formally, we have

f ∈ HB(Listnew[j], Ldia
new).

In particular, if all of the Rsearch iterations succeed, the diameter drops down to the final
Ldia ∈ (20d

T , 40d
T ]. As a consequence, we have

f ∈ HB(List∗[j], 40d/T ).

That is, the `2-distance between the concerning tone frequency f ∈ H and the output frequency
List∗[j] is at most 1

2 · 40d
T = 20d

T .
This completes the proof of Lemma 6.4.

6.5 Stronger guarantees

The goal of this section is to improve Lemma 6.4.

Lemma 6.5 (Stronger guarantees, compared to Lemma 6.4). Given Σ ∈ Rd×d and b ∈ Rd (according
to Definition 4.7), the output list List∗ of procedure LocateSignal (Algorithm 5) contains at most
B = 2O(d·log d) · k many frequencies with minimum separation Ω(η). Let H ⊆ supp(x̂∗) be a subset
of “good” tone frequencies:

H = {ξ ∈ supp(x̂∗) : neither Eoff(ξ) nor Ecoll(ξ) happens}

For any good frequency f ∈ H, suppose that its signal-to-noise ratio ρ(i) ≥ C (see Definition 7.1),
then with probability at least 99%, there exists an output frequency f ′ ∈ List∗ such that

‖f − f ′‖2 . C∗ ·
1

ρT
.

Proof. The proof follows from Lemma 5.16.
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Statement Section Algorithm Comment
Definition 7.1 Section 7.1 None Definitions and facts
Lemma 7.3 Section 7.2 Algorithm 6 Estimate signal
Lemma 7.4 Section 7.3 Algorithm 7 One stage, sample complexity and running time
Lemma 7.5 Section 7.4 Algorithm 7 One stage, guarantees
Lemma 7.9 Section 7.5 Algorithm 8 Multi sage
Lemma 7.11 Section 7.6 Algorithm 9 Merged stage, running time
Lemma 7.14 Section 7.7 Algorithm 9 Merged stage, guarantees
Lemma 7.16 Section 7.8 Algorithm 10 Running merged stage twice
Theorem 7.18 Section 7.9 Algorithm 10 Recovery stage

Table 4: List of Lemmas/Algorithms in sparse recovery section

7 Sparse recovery

7.1 Definitions and facts

Definition 7.1 (Signal-to-noise ratio). For the i-th tone (vi, fi), define the signal-to-noise ratio
ρi := |vi|/µi ≥ 0, where the noise µi ≥ 0 is given by

µ2
i = E

Σ,b,a
[|û′j · e−2πi·a>fi − vi|2],

where j = hΣ,b(fi) ∈ [B]d is the bin that the tone frequency fi ∈ [−F, F ]d is hashed into according
to Definition 4.10, and û′j = ûj · e−(πi/B)·‖j‖1 .

Definition 7.2 (Hypercube). For any frequency f ∈ Rd and any Ledge ≥ 0, we denote byHC(f, Ledge)
the `∞-norm hypercube with center f ∈ Rd and the edge length Ledge :

HC(f, Ledge) :=
{
ξ ∈ Rd : ‖ξ − f‖∞ ≤ Ledge/2

}
.

7.2 EstimateSignal

The goal of this section is to prove Lemma 7.3.

Algorithm 6 EstimateSignal

1: procedure EstimateSignal(Σ, b, a,D, T,List)
2: Sample a ∈ Rd according to Definition 5.1.
3: Let û← HashToBins(Σ, b, a,D). . Algorithm 1
4: Let v′(ξ) = ûhΣ,b(ξ) · e−(πi/B)·‖hΣ,b(ξ)‖1 · e−2πi·a>ξ for ξ ∈ List .
5: return {v′(ξ)}ξ∈List .
6: end procedure

Lemma 7.3 (EstimateSignal). The procedure EstimateSignal (Algorithm 6) satisfies that:

• The sample complexity is upper bounded by the sample complexity of the procedure LocateS-
ignal (Algorithm 5).

• The running time is upper bounded by the running time of the procedure LocateSignal
(Algorithm 5).
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Denote by H ⊆ [k] the indices of a subset of true tones {(vi, fi)}i∈[k] for which neither Ecoll(fi) nor
Eoff(fi) happens. There is a subset S ⊆ H and an injection π : S 7→ [k] such that

Property I: For the tones in set S, the (partial) tone estimation error

∑

i∈S
E
Σ,b

[
1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ
]

. (C2 + dC2
∗ ) · N 2.

Property III: For each tone i ∈ S, the (single) tone estimation error

|v′i − vπ(i)| . (C +
√
dC∗) · N .

Proof. The bounds on the sample complexity and the running time are direct follow-ups to the
previous lemmas. Also, Properties I and II will be proved soon after in Lemma 7.5; particularly, we
will specify the subset S ⊆ H therein.

7.3 OneStage: algorithm, sample complexity and running time

The goal of this section is to prove Lemma 7.4.

Algorithm 7 OneStage, Lemma 7.4, 7.5
1: procedure OneStage(x,Σ, b,D, C, T )
2: List ← LocateSignal(Σ, b,D,M, C, T ). . Algorithm 5
3: for ξ ∈ List do
4: if either Ecoll(ξ) or Eoff(ξ) or both happen then
5: Remove ξ from List .
6: end if
7: end for
8: {v′(ξ)}ξ∈List ← EstimateSignal(Σ, b, a,D, T,List) . Algorithm 6
9: Add an supplementary list Listsup = {(0, ξi)}ki=1, for which minξ,ξ′∈Listsup ‖ξ − ξ′‖2 ≥ η, and

minξ∈List ,ξ′∈ListSup ‖ξ − ξ′‖2 ≥ η. . Used in Claim 7.7
10: return {(v′(ξ), ξ)}ξ∈List ∪ {(0, ξ)}ξ∈ListSup .
11: end procedure

Lemma 7.4 (Sample complexity and running time of OneStage). The procedure OneStage
(Algorithm 7) has the following performance guarantees:

• The sample complexity is 2Θ(d·log d) · (log C + log log(F/η)) · k · log(F · T ) · D.

• The running time is O(2Θ(d·(log d+log C)) · log(F · T ) · log log(F/η) · k · (D + log k)).

• The output {(v′(ξ), ξ)}ξ∈List contains at most O(B) = 2O(d·log d) · k many candidate tones.

Proof. It follows directly from previous Lemma.
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7.4 OneStage: performance guarantees

The goal of this section is to prove Lemma 7.5.

Lemma 7.5 (Guarantees of OneStage). The procedure OneStage (Algorithm 7) has the following
performance guarantees. For each true tone (vi, fi), it “succeeds” in LocateSignal (Algorithm 5)
with probability at least 0.99. More specifically, let S ⊆ H denote the set of successful tones in
LocateSignal (Algorithm 5). There exists an injection π : S 7→ [k] such that

Property I: Each true tone (vi, fi) is estimated well with probability Pr[i ∈ S] ≥ 0.9 and if so,
those tones whose signal-to-noise ratio ρ(i) ≥ C (see Definition 7.1) has the estimation error

‖f ′i − fπ(i)‖2 . C∗
1

ρπ(i) · T
.

Property II: For all the successfully recovered tones S, the (partial) tone estimation error

∑

i∈S
E
Σ,b

[
1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ
]

. (C2 + dC2
∗ ) · N 2.

Property III: For each successfully recovered tone i ∈ S, if its signal-to-noise ratio ρ(i) ≥ C,
the (single) tone estimation error

|v′i − vπ(i)| . (C +
√
dC∗) · N .

The performance guarantees on the sample complexity, the duration, the success probability,
and the running time are controlled by the counterpart performance guarantees of the subroutine
LocateSignal. For ease of presentation, here we omit the formal proofs of these performance
guarantees.

Claim 7.6 (Property I of Lemma 7.5). For each successfully recovered tone i ∈ S with large enough
signal-to-noise ratio, the frequency estimation error

‖f ′i − fπ(i)‖2 . C∗
1

ρπ(i) · T
.

Proof. This follows directly from Lemma 6.5.

Claim 7.7 (Property II of Lemma 7.5). For all the successfully recovered tones S, the (partial) tone
estimation error

∑

i∈S
E
Σ,b

[
1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ
]

. (C2 + dC2
∗ ) · N 2.

Proof. Consider a specific true tone (vπ(i), fπ(i)) that i ∈ S ⊆ H, for which neither Ecoll(fπ(i)) nor
Eoff(fπ(i)) happens, and this tone “succeeds” in LocateSignal (Algorithm 5). Assume w.l.o.g.
that the tone frequency is hashed into the bin j = hΣ,b(fπ(i)) ∈ [B]d (according to Definition 4.10).
For simplicity, we adopt the following notations in this proof:

• j′ = hΣ,b(f
′
i) ∈ [B]d is the bin where the estimation frequency f ′i hashed into;
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• v′i = û′j′ · e−2πi·a>f ′i ∈ C is the estimation magnitude returned by the procedure EstimateS-
ignal (Algorithm 6);

• v′′i = û′j′ · e−2πi·a>fi ∈ C; and

• µ2
π(i) = EΣ,b,a[|û′j · e−2πi·a>fπ(i) − vπ(i)|2] ≥ 0 according to Definition 7.1.

We discuss two cases for the signal-to-noise ratio ρπ(i) = |vi|/µπ(i).
Case (i): when the signal-to-noise ratio ρπ(i) = |vi|/µπ(i) ≥ C, i.e. when the premise for

Lemma 5.5 holds.
According to Markov inequality, the equation below holds with probability at least 1 − C−2 ≥

0.9999 (given that C ≥ 120; see Definition 5.1). In what follows, We assume that this equation
holds.

∣∣∣û′j · e−2πi·a>fπ(i) − vπ(i)

∣∣∣
2
≤ C2 · µ2

i . (24)

The procedure LocateSignal and the follow-up procedures have the desired performance guar-
antees. In particular, we derive a “good” frequency estimation f ′i ∈ [−F, F ]d from the procedure
LocateSignal. Also, it follows from Lemma 6.5 that

‖f ′i − fπ(i)‖2 . C∗
1

ρπ(i) · T
. (25)

Since we choose a large enough duration T = Ω(d
4.5 log(dk/δ) log d

η ) finally according to Theorem 1.1
and ρπ(i) ≥ C ≥ 120, the `2-norm frequency error ‖f ′i − fπ(i)‖2 is sufficiently small and thus
Lemma 4.20 is applicable. That is, the tone frequency fπ(i) and the estimation frequency f ′i are
hashed into the same bin j = j′ ∈ [B]d (see Lemma 4.20). Combining the above arguments together,
we have

1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ

=
1

T d
·
∫

τ∈[0,T ]d

∣∣û′j′ · e−2πi·a>f ′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ

=
1

T d
·
∫

τ∈[0,T ]d

∣∣û′j · e−2πi·a>f ′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ

≤ 1

T d
·
∫

τ∈[0,T ]d

∣∣û′j · e−2πi·a>f ′i · e2πi·f ′>i τ − vπ(i) · e2πi·f ′>i τ
∣∣2

︸ ︷︷ ︸
A1(τ)

·dτ

+
1

T d
·
∫

τ∈[0,T ]d

∣∣vπ(i) · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ

= A1(τ) + 2 · |vπ(i)|2 · (1− sincT (f ′i − fπ(i)))

≤ A1(τ) + 2 · |vπ(i)|2 · (
π2

6
· T 2 · ‖f ′i − fπ(i)‖22)

. A1(τ) + C2
∗ · |vπ(i)|2/ρ2

π(i) (26)

where the first step is by the definition of v′i (see Algorithm 6); the second step follows because the
tone frequency fπ(i) and the estimation frequency f ′i are hashed into the same bin j = j′ ∈ [B]d;
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the third step applies the triangle inequality; the forth step applies Property II of Lemma 8.4 to the
second summand; the fifth step applies Part (e) of Fact 8.2; the last step applies Equation (25).

Then we consider A1(τ). We have

A1(τ)

=
1

T d
·
∫

τ∈[0,T ]d

∣∣û′j · e−2πi·a>f ′i · e2πi·f ′>i τ − vπ(i) · e2πi·f ′>i τ
∣∣2 · dτ

≤ 1

T d
·
∫

τ∈[0,T ]d

∣∣û′j · e−2πi·a>f ′i · e2πi·f ′>i τ − vπ(i) · e2πi·f ′>i τ · e−2πi·a>(f ′i−fπ(i))
∣∣2 · dτ

+
1

T d

∫

τ∈[0,T ]d

∣∣vπ(i) · e2πi·f ′>i τ · e−2πi·a>(f ′i−fπ(i)) − vπ(i) · e2πi·f ′>i τ
∣∣2 · dτ

=
∣∣∣ûj · e−2πi·a>fπ(i) − vπ(i)

∣∣∣
2
· 1

T d

∫

τ∈[0,T ]d

∣∣e2πi·f ′>i τ
∣∣2 · dτ

+
1

T d

∫

τ∈[0,T ]d

∣∣vπ(i) · e2πi·f ′>i τ · e−2πi·a>(f ′i−fπ(i)) − vπ(i) · e2πi·f ′>i τ
∣∣2 · dτ

≤ C2 · µ2
i +

1

T d

∫

τ∈[0,T ]d

∣∣vπ(i) · e2πi·f ′>i τ · e−2πi·a>(f ′i−fπ(i)) − vπ(i) · e2πi·f ′>i τ
∣∣2 · dτ

= C2 · µ2
i + |vπ(i)|2 · |e−2πi·a>(f ′i−fπ(i)) − 1|2

. C2 · µ2
i + |vπ(i)|2 · |a>(f ′i − fπ(i))|2

. C2 · µ2
i + |vπ(i)|2 · ‖a‖2 · ‖f ′i − fπ(i)‖2

. C2 · µ2
i + dC2

∗ |vπ(i)|2/ρ2
π(i) (27)

where the second step is by triangle inequality; the fourth step is by the integral equals to 1 and
follows from Equation (24); the sixth step is because |e2πix − 1| ≤ |x|; the last step is because
‖a‖2 ≤

√
dT (see Algorithm 3) and ‖f ′i − fπ(i)‖2 . C∗/(Tρπ(i)), which implies |a>(f ′i − fππ(i)

)| .√
dC∗/ρπ(i).
Combine Equation (26) and Equation (27) together, we prove that

1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ . C2 · µ2
i + dC2

∗ |vπ(i)|2/ρ2
π(i)

. (C2 + dC2
∗ ) · µ2

i

The last step follows because the signal-to-noise ratio ρπ(i) = |vπ(i)|/µπ(i) (see Definition 7.1). This
accomplishes Case (i).

Case (ii): when the signal-to-noise ratio ρπ(i) = |vπ(i)|/µπ(i) ≤ C, i.e. when the premise for
Lemma 5.5 does not hold. Under this case, we can use (0, f ′i) to recover the true tone (vi, fi), as

1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ ∣∣2 · dτ = |vπ(i)|2 ≤ C2 · µ2
i .

Recall that we add a supplementary list Listsup in the Line 9 of OneStage, and there are
enough candidates with zero magnitude and minimum separation in the list. We can let S include
some tones (0, ξ) from Listsup when needed.

This completes the proof.

Claim 7.8 (Property III of Lemma 7.5). For each successfully recovered tone i ∈ S, the (single)
tone estimation error

|v′i − vπ(i)| . (C +
√
dC∗) · N .
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Proof. This can be directly inferred from Claim 7.7.

7.5 MultiStage

The goal of this section is to prove Lemma 7.9.

Lemma 7.9 (MultiStage). The procedure MultiStage (Algorithm 8) satisfies the following:

• The sample complexity is Rmerge times the sample complexity of OneStage (Algorithm 7).

• The running time is Rmerge times the running time of OneStage (Algorithm 7).

Proof. All these properties can be easily inferred from Lemma 7.4.

Algorithm 8 MultiStage

1: procedure MultiStage(x,D, C, T,Rmerge) . Lemma 7.9
2: Let List∗ ← ∅.
3: for r = 1, 2, · · · ,Rmerge do
4: Sample Σ ∈ Rd×d and b ∈ Rd according to Definition 4.7.
5: Listnew ← OneStage(x,Σ, b,D, C, T ). . Algorithm 7
6: List∗ ← List∗ ∪ Listnew.
7: end for
8: return the tones List∗.
9: end procedure

Lemma 7.10 (Guarantees of MultiStage). The procedure MultiStage (Algorithm 8) repeat
the procedure OneStage (Algorithm 7) for Rmerge = Θ(d · log d · log k) times, and returns a set
List = {(v′i, f ′i)}i∈[m] of m = |List | = 2O(d·log d)·k·log k ∈ N≥1 many candidate tones. With probability
at least 1 − 1/poly(k), there are at least Rmerge different disjoint subsets {Sr} of List , where for
each r we have that Sr ⊂ List and |Sr| ≤ k, and for r 6= r′ we have that Sr ∩ Sr′ = ∅. For each Sr,
there is a injective projection πr : Sr → [k] and has the following properties:

Property I: For each true tone (vi, fi), Pr[i ∈ Sr] ≥ 0.9 and if the signal-to-noise ratio is large
enough, the frequency estimation error

‖f ′i − fπr(i)‖2 . C∗
1

ρπr(i) · T
.

Property II: For all the successfully recovered tones Sr, the (partial) tone estimation error

∑

i∈Sr

E
Σ,b

[
1

T d
·
∫

τ∈[0,T ]d

∣∣v′i · e2πi·f ′>i τ − vπr(i) · e
2πi·f>

πr(i)
τ ∣∣2 · dτ

]
. (C2 + dC2

∗ ) · N 2.

Property III: For each successfully recovered tone i ∈ Sr, if its signal-to-noise ratio is large
enough, then we can bound the (single) tone estimation error

|v′i − vπr(i)| . (C +
√
dC∗) · N .

Proof. This lemma can be proved directly by Lemma 7.5.
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7.6 MergedStage: algorithm and running time

The goal of this section is to prove Lemma 7.11. The concerning Algorithm 9 (MergedStage) is
demonstrated in Figure 16.

Lemma 7.11 (MergedStage, Input size and Running time). The procedure MergedStage
(Algorithm 9) has the following properties:

• The input List = {(vj , fj)}j∈[m] is a multi-set of m = |List | = 2O(d·log d) · k · Rmerge many
candidate tones, where Rmerge = Θ(d · log d · log k) is sufficiently large.

• The running time is 2O(d·log d) · k · Rmerge · logd(k · Rmerge) = 2O(d·log d) · k · logO(d) k.

Proof. The first property about the input List is guaranteed by Lemma 7.9.
The second property is proved by using a well-known data-structure. We use a textbook d-

dimensional range tree data-structure (see section 5 in [KSBO00]).

Theorem 7.12 (Theorem 5.11 in [KSBO00]). Let P be a set of n points in d-dimensional space,
with d ≥ 2. A layered range tree for P uses O(n logd−1 n) storage and it can be constructed in
O(n logd−1 n) time. With this range tree one can report the points in P that lie in a rectangular
query range in O(logd−1 n+ q) time, where q is the number of reported points.

The above theorem works for `∞-norm. By choosing

n = m = |List |

we complete the proof of running time.

Algorithm 9 MergedStage, Lemmas 7.11 and 7.14
1: procedure MergedStage(List ,Rmerge)
2: Denote List = {(vj , fj)}j∈[m] for m = |List |.
3: Build a d-dimensional segment tree Tree on the frequencies {fj}j∈[m] ⊆ [−F, F ]d.
4: All these frequencies {fj}j∈[m] are unmarked.
5: List∗ ← ∅.
6: while Tree has at least one unmarked frequency do
7: Choose an arbitrary unmarked frequency ξi from Tree.
8: if Tree.count(HC(ξi, η/d

3)) ≥ 8/10 · Rmerge then . Theorem 7.12
9: f∗ ← ξi.

10: v∗ ← median{vj : j ∈ [m] and fj ∈ HC(ξi, η/d
3)}.

11: List∗ ← List∗ ∪ (v∗, f∗).
12: Delete {fj : j ∈ [m] and fj ∈ HC(ξi, η/(10

√
d))} from Tree.

13: Delete {(vi, fj) : j ∈ [m] and fj ∈ HC(ξi, η/(10
√
d))} from List .

14: else
15: Mark the chosen frequency ξi in Tree.
16: end if
17: end while
18: return the tones List∗.
19: end procedure
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(a) MergedStage in one dimension
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(b) MergedStage in two dimensions

Figure 16: Demonstration for Algorithm 9 in one dimension (d = 1) and two dimensions (d = 2).
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7.7 MergedStage: performance guarantees

The goal of this section is to prove Lemma 7.14.

Claim 7.13 (Approximate formula for tone-wise error). The following holds for any pair of tones
(v, f) ∈ C×Rd and (v∗, f∗) ∈ C×Rd:

err :=
1

T d
·
∫

τ∈[0,T ]d

∣∣v · e2πi·f>τ − v∗ · e2πi·f∗>τ ∣∣2 · dτ

h |v − v∗|2 + |v∗|2 ·
(
1− sincT (f − f∗)

)

h |v − v∗|2 + |v∗|2 ·min{1, T 2 · ‖f − f∗‖22}.

Proof. We first prove the second part of the claim, which is equivalent to

1− sincT (f − f∗) h min{1, T 2 · ‖f − f∗‖22}. (28)

Indeed, when T 2 · ‖f − f∗‖22 ≥ (2.05
π )2 h 1, we know from Part (d) of Fact 8.2 that

1− sincT (f − f∗) = 1± 1

2
h 1.

And when T 2 · ‖f − f∗‖22 < (2.05
π )2 h 1, we know from Part (c) of Fact 8.2 that

1− sincT (f − f∗) ≥ 1− exp
(
− (π2/6) · T 2 · ‖f − f∗‖22

)

& T 2 · ‖f − f∗‖22,

and that

1− sincT (f − f∗) ≤ 1− exp
(
− (π2/5) · T 2 · ‖f − f∗‖22

)

. T 2 · ‖f − f∗‖22,

Combining the above arguments together implies Equation (28).
In what follows, we prove the first part of the claim that

err h |v − v∗|2 + |v∗|2 ·
(
1− sincT (f − f∗)

)
. (29)

We know Property II of Lemma 8.4 that

err = |v|2 + |v∗|2 −
(
v · v∗ + v · v∗

)
· sincT (f − f∗).

For brevity, we denote w1 ·ei·θ = v/v∗ for some norm w1 ≥ 0 and some phase θ ∈ [0, 2π), and denote
w2 = sincT (f − f∗) ∈ [−1

4 , 1] (see Part (e) of Fact 8.2). We notice that the formula

|v − v∗|2 + |v∗|2 ·
(
1− sincT (f − f∗)

)

is non-negative. As a consequence, to verify Equation (29), it suffices to show that the following
function L(w1, w2, θ) h 1, for any w1 ≥ 0, any w2 ∈ [−1

4 , 1] and any θ ∈ [0, 2π):

L(w1, w2, θ) :=
err

RHS of (29)

=
|v∗ · w1 · ei·θ|2 + |v∗|2 − 2 · |v∗ · w1 · ei·θ| · |v∗| · cos(θ) · w2

|v∗ · w1 · ei·θ − v∗|2 + |v∗|2 · (1− w2)
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=
w2

1 + 1− 2 · w1 · w2 · cos(θ)

|w1 · ei·θ − 1|2 + 1− w2

=
w2

1 + 1− 2 · w1 · w2 · cos(θ)

w2
1 − w2 + 2− 2 · w1 cos(θ)

,

where the second step is by the definition of w1, w2 and θ; the third step divides both the numerator
and the denominator by |v′i|2; and the last step can be seen via elementary calculation.

Let us investigate the partial derivative ∂L
∂θ in θ ∈ [0, 2π):

∂L

∂θ
=

2 · w1 · w2 · sin(θ)

w2
1 − w2 + 2− 2 · w1 cos(θ)

− w2
1 + 1− 2 · w1 · w2 · cos(θ)

(
w2

1 − w2 + 2− 2 · w1 cos(θ)
)2 · 2 · w1 · sin(θ)

= − sin(θ) · 2 · w1 ·
w2

1 · (1− w2) + (1− w2)2

(
w2

1 − w2 + 2− 2 · w1 cos(θ)
)2

︸ ︷︷ ︸
A4

,

where the second step can be seen via elementary calculation.
Because w1 ≥ 0 and w2 ∈ [−1

4 , 1], we must have A4 ≥ 0. As a result, for any fixed w1 and w2,
the function L(w1, w2, θ) is non-increasing when θ ∈ [0, π], and is non-decreasing when θ ∈ [π, 2π).
The functions Lmin(w1, w2) := minθ∈[0,2π) L(w1, w2, θ) and Lmax(w1, w2) := maxθ∈[0,2π) L(w1, w2, θ)

for any w1 ≥ 0 and any w2 ∈ [−1
4 , 1] are given by

Lmin(w1, w2) = L(w1, w2, π) =
A5(w1, w2)

A6(w1, w2)
,

A5(w1, w2) := w2
1 + 1 + 2 · w1 · w2,

A6(w1, w2) := w2
1 + 2 · w1 − w2 + 2,

and

Lmax(w1, w2) = L(w1, w2, 0) =
A7(w1, w2)

A8(w1, w2)
,

A7(w1, w2) := w2
1 + 1− 2 · w1 · w2,

A8(w1, w2) := w2
1 − 2 · w1 − w2 + 2.

We now justify the lower-bound part of Equation (29) by exploring the function Lmin(w1, w2).
For any fixed w1 ≥ 1, the numerator A5(w1, w2) is a non-decreasing function in w2 ∈ [−1

4 , 1], while
the denominator A6(w1, w2) is a non-increasing non-negative function in w2 ∈ [−1

4 , 1]. Given these,
we can infer the lower-bound part of Equation (29) as follows:

L(w1, w2, θ) ≥ min
w1∈[0,1]

min
w2∈[− 1

4
,1]
Lmin(w1, w2)

= min
w1∈[0,1]

Lmin(w1,−1/4)

= min
w1∈[0,1]

w2
1 + 1− (1/2) · w1

w2
1 + 2 · w1 − (1/4) + 2

≈ 0.3107,

where the last step can be seen via numeric calculation.
We next show the upper-bound part of Equation (29) by exploring the function Lmax(w1, w2).

For any fixed w1 ≥ 1, both of the numerator A7(w1, w2) and the denominator A8(w1, w2) are linear
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functions in w2 ∈ [−1
4 , 1]. Accordingly, Lmax(w1, w2) itself is a monotone function in w2 ∈ [−1

4 , 1].
We can infer the upper-bound part of Equation (29) as follows:

max
w1∈[0,1]

max
w2∈[− 1

4
,1]
Lmax(w1, w2) = max

w1∈[0,1]
max

{
Lmax(w1,−1/4), Lmax(w1, 1)

}

= max
w1∈[0,1]

max

{
w2

1 + 1 + (1/2) · w1

w2
1 − 2 · w1 + (9/4)

, 1

}

≈ 2.7247,

where the last step can be seen via numeric calculation.
This completes the proof.

Lemma 7.14 (Guarantees for MergedStage). The procedures MergedStage (Algorithm 9)
returns a set List = {(v′i, f ′i)}i∈[m] of m = |List | = 2O(d·log d) · k ∈ N≥1 many candidate tones. With
probability at least 1− 1/poly(k), the outputs List = {(v′i, f ′i)}i∈[m] satisfies the following:

Property I: The set size m = 2O(d·log d) · k, and the frequency separation

min
i,j∈[m]

‖f ′i − f ′j‖2 & η/
√
d.

Property II: For the true tones {(vi, fi)}i∈[k], there is an injection π : [k] 7→ [m] such that

∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′π(i) · e
2πi·f ′>

π(i)
τ − vi · e2πi·f>i τ

∣∣∣
2
· dτ ≤ (C2 + dC2

∗ ) · N 2.

Proof. The size of output is straightforward from Algorithm 9. If we add one candidate tone into
the output, we will delete at least 8/10 · Rmerge tones.

Property I: The set size can be induced from proof of the Property II. As for the frequency
separation, it comes from that if we choose to take the median of HC(ξi, η/d

3) for ξi, we will clear
a larger region HC(ξi, η/(10

√
d)).

It is safe to clear the larger region, as we have an assumption that mini 6=j ‖fi − fj‖2 ≥ η, which
implies that mini 6=j ‖fi − fj‖∞ ≥ η/

√
d for true tones {(vi, fi)}. Suppose ξi is a successful recovery

of true tone fi. Then if we find a cluster of successful recovered tones HC(ξi, η/d
3), for all other

successful recovered tones ξj where j 6= i, we have that

‖ξi − ξj‖∞ = ‖ξi − fi + fi − fj + fj − ξj‖∞
≥ ‖fi − fj‖∞ − ‖ξi − fi‖∞ − ‖fj − ξj‖∞
≥ ‖fi − fj‖2/

√
d− ‖ξi − fi‖2 − ‖fj − ξj‖2

& η/
√
d− 2C∗/(ρT )

& η/
√
d− 2C∗/T

& η/
√
d

where the second step follows from triangle inequality, the third step follows from ‖ · ‖2/
√
d ≤

‖ · ‖∞ ≤ ‖ · ‖2 , the last step follows from T ≥ C∗
√
d/η.

This means that ξj /∈ HC(ξi, η/(10
√
d)) and proves the safety of the operation.

Property II:
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For each true tone (vi, fi), by Lemma 7.10, with probability at least 1− 1/ poly(k), there are at
least 0.8Rmerge a successful recovery {(v′i, f ′i)} of it, where ‖f ′i − fi‖2 . C∗/(ρT ). By the choice of
duration T = Ω

(
d3 ·η−1 · log(kd/δ)

)
by Lemma 5.14, we know that ‖f ′i −fi‖∞ ≤ ‖f ′i −fi‖2 � η/d3.

And let µ2(fi) denote the expected error of successful recovery (v′i, f
′
i) :

µ2(fi) = E
Σ,b,v′i,f

′
i

[
1

T d

∫

t∈[0,T ]d
|v′i · e2πi·f ′>i t − vi · e2πif>i t|2 · dt

]

Then by Markov Inequality, we know that

Pr

[∫

t∈[0,T ]d
|v′i · e2πi·f ′>i t − vi · e2πif>i t|2 · dt ≥ 10µ2(fi)

]
≤ 1/10. (30)

By Lemma 7.5, we can bound the summation of expected errors of successful recovery:
∑

i∈[k]

µ2(fi) . (C2 + dC2
∗ ) · N 2. (31)

As a summary, for each true tone (vi, fi), we have shown that there are at least 0.8Rmerge

successful recovery {(v′i, f ′i)} of it, ie. Tree.count(HC(ξi, η/d
3)) ≥ 8/10 · Rmerge. Then we will

take the any frequency f∗i in HC(fi, η/d
3) in Line 9 and coordinate-wise median of magnitude v∗i

of successful recovery in HC(fi, η/d
3) in Line 10.

Among the successful recovery {(v′i, ξi)|f ′i ∈ HC(ξi, η/d
3)} of (vi, fi), with probability 1 −

1/ poly(k), at least half of them will have error less than 10µ2(fi). Note that f∗ = ξi. 14 To
be more specific, with probability at least 1− 1/ poly(k),

1

T d
·
∫

t∈[0,T ]d

∣∣v∗i · e2πi·f∗>i − vi · e2πi·f>i t
∣∣2ḋt . µ2(fi),

Then we have
∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vi · e2πi·f>i τ
∣∣∣
2
· dτ .

∑

i∈[k]

µ2(fi) ≤ (C2 + dC2
∗ ) · N 2.

This completes the proof.

7.8 Running MergedStage twice

The goal of this section is to prove Lemma 7.16.

Definition 7.15 (Setup for RecoveryStage). Given two sets

List∗1 = {(v′i, f ′i)}i∈[k′] and List∗2 = {(v′′i , f ′′i )}i∈[k′′]

of sizes k′, k′′ = 2O(d·log d) ·k ∈ N≥1, output each pair (v′′i , f
′′
i ) in the second set (for i ∈ [k′′]) that has

a small frequency distance ‖f ′′i −f ′j‖2 ≤ c/T , against some frequency f ′j in the first set (for j ∈ [k′]).
Denote the resulting set by {(v′′i , f ′′i )}i∈S ⊆ {(v′′i , f ′′i )}i∈[k′′] of size |S| = k∗ ≤ k′′ = 2O(d·log d) · k.

14Note that we only need to take coordinate wise median for v, for frequency f , using ξi is good enough. Since ξi
is close to the true f .
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Algorithm 10 RecoveryStage

1: procedure RecoveryStage(x,D, C, T ) . Theorem 7.18
2: Rmerge ← Θ(d · log d · log k).
3: List ′ ←MultiStage(x,D, C, T,Rmerge). . Algorithm 8
4: List∗1 ←MergedStage(List ′,Rmerge). . Algorithm 9
5: List ′′ ←MultiStage(x,D, C, T,Rmerge). . Algorithm 8
6: List∗2 ←MergedStage(List ′′,Rmerge). . Algorithm 9
7: Derive List∗ from List∗1 and List∗2 according to Definition 7.15. . Lemma 7.16
8: Sort List∗ = {(v∗i , f∗i )}|List∗|

i=1 in decreasing order of magnitudes |v∗i |.
9: List∗[k] ← the top-k tones {(v∗i , f∗i )}ki=1 in List∗

10: return List∗[k].
11: end procedure

Lemma 7.16 (Running MergedStage twice). Given two sets {(v′i, f ′i)}i∈[k′] and {(v′′i , f ′′i )}i∈[k′′]

of sizes k′, k′′ = 2O(d log d) · k ∈ N≥1, assume w.l.o.g. that Definition 7.15 selects k∗ ≤ k′′ pairs
{(v′′i , f ′′i )}i∈[k∗] of the second set, then these k∗ = 2O(d log d) · k pairs can be reindexed such that

∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣vi · e2πi·f>i τ − v′i · e2πi·f ′>i τ
∣∣∣
2
· dτ +

∑

i∈[k∗]\[k]

|v′i|2 . C2 · N 2.

Proof. By Claim 7.13, the following holds for any pair of tones (v, f) ∈ C×Rd and (v∗, f∗) ∈ C×Rd:

err((v, f), (v∗, f∗)) =
1

T d
·
∫

τ∈[0,T ]d

∣∣v · e2πi·f>τ − v∗ · e2πi·f∗>τ ∣∣2 · dτ

h |v − v∗|2 + (|v∗|2 + |v|2) ·min{1, T 2 · ‖f − f∗‖22}

Then by Lemma 7.14, with probability at least 1 − 1/ poly(k), there is a permutation of the
output of the first run {(v′i, f ′i)}i∈[k′] and an injective projection π : [k]→ [k], subject to

k∑

i=1

(
(|v′i|2 + |vπ(i)|2) ·min{1, T 2 · ‖f ′i − fπ(i)‖22}+ |v′i − vπ(i)|2

)
. (C2 + dC2

∗ )N 2

If ‖f ′i − fπ(i)‖2 > 1/T , then err((0, f ′i), (vπ(i), fπ(i))) ≤ err((v′i, f
′
i), (vπ(i), fπ(i))). Let S = {i ∈

[k] : ‖f ′i − fπ(i)‖2 ≤ c/T} for any c = O(1). We can rewrite the result:
∑

i∈S

(
(|v′i|2 + |vπ(i)|2) ·min{1, T 2 · ‖f ′i − fπ(i)‖22}+ |v′i − vπ(i)|2

)
+
∑

i∈[k]/S

(|vπ(i)|2 + |v′i|2)

. (C2 + dC2
∗ )N 2.

If we can know the set S and the right permutation of the output of the first run, we can output
a set of tones that meet this lemma easily. But the problem is that we do not have the information.
This is why we run the MergedStage twice. Recall that the signal x∗ we want to recover is defined
by {vi, fi}ki=1, then it is equivalent to define x∗ by {vi, fi}ki=1 ∪ {0, f ′i}k

′
i=1, where f

′
i is the output of

the first run of MergedStage. Then the number of frequencies is 2O(d log d)k and the separation
gap is Ω(η/

√
d), then Lemma 7.14 applies again.

Define

S′ = {i ∈ [k′′] : ∃j ∈ [k′], ‖f ′j − f ′′i ‖2 ≤ 1/T},
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and we can reindex {v′′i , f ′′i } such that:

(C2 + dC2
∗ )N 2 &

∑

S′∩[k]

(
(|v′′i |2 + |vi|2) min{1, T 2 · ‖f ′′i − fi‖22}+ (|v′′i |2 + |vπ(i)|2)

)

+
∑

i∈S′\[k]

((02 + |v′′i |2) ·min{1, T 2‖f ′′i − f ′i‖22}+ |v′′i − 0|2)

+
∑

i∈[k]\S′
(|vi|2 + |v′′i |2) +

∑

i∈[k′]\(S′∪[k])

|v′′i |2

≥
∑

S′∩[k]

(
(|v′′i |2 + |vi|2) min{1, T 2 · ‖f ′′i − fi‖22}+ (|v′′i |2 + |vπ(i)|2)

)

+
∑

i∈S′\[k]

|v′′i |2 +
∑

i∈[k]\S′
|vi|2

This is exactly the summation of error of {(v′′i , f ′′i )}i∈S′ , and |S′| = k∗ ≤ k′′ = 2O(d log d)k which
complete the proof.

7.9 RecoveryStage

The goal of this section is to prove Theorem 7.18. Before the proof of the main result, we need the
following lemma:

Lemma 7.17. The following holds for any three tones (vπ(i), fπ(i)) ∈ C×Rd and (v∗i , f
∗
i ) ∈ C×Rd

and (v′i, f
′
i) ∈ C×Rd that |v′i| & |v∗i | h |vπ(i)|:

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ

︸ ︷︷ ︸
A1

. 1

T d
·
∫

τ∈[0,T ]d

∣∣∣v∗i · e2πi·f∗>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ

︸ ︷︷ ︸
A2

+ |v′i|2.

Proof. We will show in Property II of Lemma 8.4 (see Section 8.3) that

A1 = |v′i|2 + |vπ(i)|2 −
(
v′i · vπ(i) + v′i · vπ(i)

)
· sincT (f ′i − fπ(i)),

A2 = |v∗i |2 + |vπ(i)|2 −
(
v∗i · vπ(i) + v∗i · vπ(i)

)
· sincT (f∗i − fπ(i)).

Because |v′i| & |v∗i | h |vπ(i)|, we can easily verify the lemma by elementary calculation (notice
that | sincT (f ′i − fπ(i))| ≤ 1 and | sincT (f∗i − fπ(i))| ≤ 1 for any fπ(i), f

∗
i , f

′
i ∈ Rd).

Theorem 7.18 (RecoveryStage, formal of Theorem 1.1). Let

T ≥ d4.5 log(kd/δ) log d

η
.

Let C be some universal constant and C∗ = d2. The procedure RecoveryStage (Algorithm 10)
takes

2Θ(d log d) · k · logd+1(k/δ) · log(F/η) · log log(F/η)
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samples over [0, T ], runs in

2O(d·log d) · k · logO(d)(k/δ) · log(F/η) · log log(F/η).

time and outputs a set {(v′i, f ′i)}i∈[k] ⊂ C×Rd of size k ∈ N≥1 such that the following hold with
probability 1− 1/ poly(k)

Property I Magnitude estimation

|vi − v′i| ≤ (C +
√
dC∗) · N ,∀i ∈ [k].

Property II Frequency estimation

‖fi − f ′i‖2 ≤ C∗
1

ρ · T , ∀i ∈ [k].

Property III Tone estimation (Total)

∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣vi · e2πi·f>i τ − v′i · e2πi·f ′>i τ
∣∣∣
2
· dτ . (C2 + dC2

∗ ) · N 2.

Property IV The frequency separation of output frequencies

min
i 6=j∈[k]

‖f ′i − f ′j‖2 ≥ η/2.

Recall that C∗ = d2 is stated in the statement in Lemma 5.16.

Claim 7.19 (Sample complexity, running time and duration of Theorem 7.18).

Proof. Sample complexity.

Rmerge · 2Θ(d·log d) · (log C + log log(F/η)) · k · log(F · T ) · D
= 2Θ(d log d) · k · logd+1(k/δ) · log log(F/η) · log(F/η)

Running time.

Rmerge(2
O(d·log d) · k · logd(k · Rmerge) + 2Θ(d·(log d+log C)) · log(F · T ) · log log(F/η) · k · (D + log k))

= 2O(d·log d) · k · logO(d) k + 2Θ(d log d) · log(F/η) · k · log log(F/η) · logd+1(k/δ)

= 2O(d·log d) · k · logO(d)(k/δ) · log(F/η) · log log(F/η).

Duration. As we run MergedStage twice, the first run for k-sparsity signal and the second
run for k′ = 2O(d log d)k-sparsity signal, η′ = η√

d
, by Lemma 6.3, the duration is

T = Ω
(d3 log(dk′/δ)

η′

)
= Ω

(d4.5 log(dk/δ) log d

η

)
.
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Claim 7.20 (Property I of Lemma 7.18).

|vi − v′i| ≤ (C +
√
dC∗) · N ,∀i ∈ [k]

Proof. This proof is a direct application of previous Lemma.

Claim 7.21 (Property II of Lemma 7.18).

‖fi − f ′i‖2 ≤ C∗
1

ρ · T ,∀i ∈ [k]

Proof. The proof is a direct application of previous Lemma.

Claim 7.22 (Property III of Lemma 7.18).

∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣vi · e2πi·f>i τ − v′i · e2πi·f ′>i τ
∣∣∣
2
· dτ . (C2 + dC2

∗ ) · N 2.

Proof. We denote by {(v∗i , f∗i )}i∈[k′′] the set of tones derived according to Definition 7.15, where
k′′ = 2O(d·log d) · k (and we safely assume k′′ ≥ k in view of Lemma 7.14). We assume w.l.o.g. that
each (v∗i , f

∗
i ) ∈ C×Rd of the top-k largest-magnitude tones (for each i ∈ [k]) is mapped to a true

tone (vπ(i), fπ(i)) ∈ C×Rd according to Lemma 7.16.
Let {(v′i, f ′i)}i∈[k] be a subset of the recovered tones {(v∗i , f∗i )}i∈[k′′] that have the top-k largest

magnitudes; these k ∈ N≥1 tones together form the output of the procedure RecoveryStage
(Algorithm 10). Upon reindexing, we safely assume that |v′i| ≥ |v∗i | for each i ∈ [k]. Also, we know
from Lemma 7.16 that mini 6=j∈[k] ‖f ′i − f ′j‖ & η.

For each i ∈ [k], let us consider these three tones (vπ(i), fπ(i)) and (v∗i , f
∗
i ) and (v′i, f

′
i). In the

case i ∈ S for which (v∗i , f
∗
i ) 6= (v′i, f

′
i), it follows from Lemma 7.17 that

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ

. 1

T d
·
∫

τ∈[0,T ]d

∣∣∣v∗i · e2πi·f∗>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ + |v′i|2.

And in the other case i ∈ S ⊆ [k] for which (v∗i , f
∗
i ) = (v′i, f

′
i), of course we have

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ

=
1

T d
·
∫

τ∈[0,T ]d

∣∣∣v∗i · e2πi·f∗>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ.

Taking all the indices i ∈ [k] into account, we know from the above two equations that

∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ

.
∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v∗i · e2πi·f∗>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ +

∑

i∈S
|v′i|2.
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Because {(v′i, f ′i)}i∈[k] are chosen to be the top-k largest-magnitude recovered tones among
{(v∗i , f∗i )}i∈[k′′], the set S involved in the summation

∑
i∈S |v′i|2 only includes those small-magnitude

recovered tones. We thus conclude that
∑

i∈[k]

1

T d
·
∫

τ∈[0,T ]d

∣∣∣v′i · e2πi·f ′>i τ − vπ(i) · e2πi·f>
π(i)

τ
∣∣∣
2
· dτ . (C2 + dC2

∗ ) · N 2.

This completes the proof of Property III of Theorem 7.18.

Claim 7.23 (Property IV of Lemma 7.18).

min
i 6=j∈[k]

‖f ′i − f ′j‖2 ≥ η/2.

Proof. Since mini 6=j∈[k] ‖fi − fj‖2 ≥ η and for all i ∈ [k], ‖fi − f ′i‖2 ≤ min(C∗
1
ρ·T , d/T ) ≤ η/10

(given Lemma 6.4, Claim 7.21 and the duration

T = Ω
(d4.5 log(kd/δ) log d

η

)
,

we can infer the current claim.

8 Converting tone estimation into signal estimation

This section is structured in the following way:

• Section 8.1 briefly discusses the high-level idea of the proof.

• Section 8.2 provides some basic definitions and mathematical facts.

• Section 8.3 splits the signal estimation error into the tone-wise errors (which we call the
diagonal terms) and the cross-tone errors (which we call the off-diagonal terms).

• Section 8.4 provides an upper bound for the cross-tone errors (i.e. the off-diagonal terms) via
some advanced analytic tools.

• Section 8.5 combines everything together, converting the tone estimation error into the signal
estimation error as desired.

• Section 8.6 states several geometry properties.

• Section 8.7 presents our main result.

For ease of presentation, throughout this section we would shift the sampling time domain from
t ∈ [0, T ]d to t ∈ [−T/2, T/2]d.

8.1 Improvement of signal estimation duration

The claimed tone estimation guarantee holds when the duration T & η−1 · Ctone (Theorem 1.1; see
Section 2.4 for more discussions), for Ctone := d4.5 · log(kd/δ) · log(d). To further get the signal
estimation guarantee (Theorem 1.2), we adopt the proof framework of [PS15] but provide a better
analysis. Particularly, we will show that the signal estimation holds when

T & η−1 · (Ctone + d1.5 · k1−1/d · log k).
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In one dimension d = 1, this bound is η−1 · log(k/δ), which improves the η−1 · log2(k/δ) bound by
[PS15] and answers an open question in the thesis [Son19].

Following [PS15], we rewrite the signal estimation error as LHS of Eq. (2) =
∑

i,j∈[k] erri,j , where

erri,j := 1
T d
·
∫
t∈[0,T ]d(x

′
i(t)− x∗i (t)) · (x′j(t)− x∗j (t)) · dt.

To get the signal estimation, [PS15] proves that the cross-tone errors |erri,j | for i 6= j ∈ [k] converge
to zero at the rate

|erri,j | . √
erri,i · errj,j ·

√
d · log(1+‖fi−fj‖2·T )

‖fi−fj‖2·T = O(
√
d · T−1 · log T ). (32)

Based on a new application of Parseval’s theorem and the convolution theorem, we will prove
that the O(log T ) term in Eq. (32) can be removed. More concretely, Parseval’s theorem gives the
analytic formulas of the errors |erri,i| and |erri,j |, in the case of an infinite duration t ∈ Rd. Inspired
by this, we access the proof details of Parseval’s theorem. Following the involved arguments and the
convolution theorem, we get the counterpart formulas (Lemma 8.4) in the case of a finite duration
t ∈ [0, T ]d. These analytic formulas and other arguments together give the faster convergence rate
|erri,j | = O(

√
d · T−1). In contrast, [PS15] just uses the approximate formulas of the errors |erri,i|

and |erri,j |, which incurs the factor-log(k/δ) loss in their signal estimation duration.
Indeed, we have a concrete example for which |erri,j | = Ω(

√
d · T−1), matching our new conver-

gence rate in the duration T and the dimension d ≥ 1. We believe that this tight convergence rate,
as well as the analytic formulas in Lemma 8.4, can find their applications in the future.

8.2 Preliminaries and mathematical facts

In this part, we introduce some useful notations and mathematical facts. Recall Definition A.1 for
the functions rects1(ξ) and sins1(τ) in the single-dimensional setting (namely ξ, τ ∈ R). Below, we
define in Definition 8.1 two counterpart functions (redenoted by rects1(ξ) and sins1(τ) for conve-
nience) when ξ, τ ∈ Rd are d-dimensional vectors, and then show in Fact 8.2 several properties of
these functions (which can be easily inferred from Fact A.2 or the previous literature like [CKPS16]).

Definition 8.1 (Two basic functions). Given any s1 > 0, for all ξ, τ ∈ Rd, the rects1(ξ) function
and the sincs1(τ) function are defined as follows:

• rects1(ξ) =
∏
r∈[d] rects1(ξr) for any ξ ∈ Rd. When s1 = 1, we shorthand it as rect(ξ).

• sincs1(τ) =
∏
r∈[d] sincs1(τr) for any τ ∈ Rd. When s1 = 1, we shorthand it as sinc(τ).

Fact 8.2 (Facts about basic functions). Given any s1 > 0, the following hold for the functions
sincs1(τ) and rects1(ξ) in the d-dimensional setting, as Figure 17 suggests:

Part (a): | sincs1(τ)| ≤∏r∈[d] min{1, 1
π·s1·|τr|} for any τ ∈ Rd.

Part (b): sincs1(τ) = r̂ects1(τ) for any τ ∈ Rd, and rects1(ξ) = ŝincs1(ξ) for any ξ ∈ Rd.

Part (c): exp(−π2·s21
5 · ‖τ‖22) ≤ sincs1(τ) ≤ exp(−π2·s21

6 · ‖τ‖22) for any τ ∈ Rd that ‖τ‖2 ≤ 2.05
πs1

.

Part (d): | sincs1(τ)| ≤ exp(−2.052

6 ) < 1
2 for any τ ∈ Rd that ‖τ‖2 ≥ 2.05

πs1
.

Part (e): −1
4 ≤ sincs1(τ) ≤ 1 and sincs1(τ) ≥ 1− π2

6 · s2
1 · ‖τ‖22 for any τ ∈ Rd.

Also, in the single-dimensional setting:

Part (f): | d
dτ sincs1(τ)| = | cos(π·s1·τ)

τ − sincs1 (τ)
τ | ≤ 7

5 ·min{s1,
1
|τ |} for any τ ∈ R.
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Figure 17: Demonstration for the two-dimensional sinc function.

8.3 Tone-wise errors and cross-tone errors

The goal of this section is to prove Lemma 8.4. We first start with the following definitions.

Definition 8.3 (Tone-wise errors in time domain). Given any pair of tones (vi, fi) ∈ C×Rd and
(v′i, f

′
i) ∈ C×Rd, where i ∈ [k], the error is given by the complex-valued function ai(τ) ∈ C:

• Define ai(τ) = vi · e2πi·f>i τ − v′i · e2πi·f ′>i τ for all τ ∈ [−T/2, T/2]d for notational brevity.

• The CFT is given by âi(ξ) = vi ·Delta=fi(ξ)−v′i ·Delta=f ′i
(ξ) for all ξ ∈ Rd.

• Define the error ‖ai‖T =
√

Eτ [|ai(τ)|2] =

√
Eτ [ai(τ) · ai(τ)], where τ ∼ Unif[−T/2, T/2]d is

uniformly random, or equivalently,

∥∥ai
∥∥
T

=
( 1

T d
·
∫

τ∈[−T/2,T/2]d

∣∣ai(τ)
∣∣2 · dτ

)1/2

=
( 1

T d
·
∫

τ∈[−T/2,T/2]d
ai(τ) · ai(τ) · dτ

)1/2

Lemma 8.4 (Tone-wise and cross-tone errors in time domain). Respecting a pair of error functions
ai(τ) ∈ C and aj(τ) ∈ C given in Definition 8.3, where i, j ∈ [k], the following hold:

Property I: When τ ∼ Unif[−T/2, T/2]d is uniformly random,

E
τ

[
ai(τ) · aj(τ)

]
= vi · vj · sincT (fi − fj) − vi · v′j · sincT (fi − f ′j)

− v′i · vj · sincT (f ′i − fj) + v′i · v′j · sincT (f ′i − f ′j).
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Property II: In the special case that i = j,

∥∥ai
∥∥2

T
= E

τ

[
ai(τ) · ai(τ)

]
= |vi|2 + |v′i|2 −

(
vi · v′i + vi · v′i

)
· sincT (f ′i − fi).

Proof. Assume Property I to be true, then we can infer Property II by elementary calculation.
Before proving Property I, let us consider the following function yi(τ) for all τ ∈ Rd:

yi(τ) = ai(τ) · I
{
τ ∈ [−T/2, T/2]d

}

= T d · ai(τ) · rectT (τ),

as well as its CFT ŷi(ξ) for all ξ ∈ Rd:

ŷi(ξ) = T d · ̂ai ∗ rectT (ξ)

= T d · âi ∗ r̂ectT (ξ)

= T d · âi ∗ sincT (ξ)

= T d · vi · sincT (fi − ξ) − T d · v′i · sincT (f ′i − ξ), (33)

where the second step applies the convolution theorem; the third step is due to Part (d) of Fact A.2;
and the last step follows from Definition 8.3 that âi(ξ) = vi ·Delta=fi(ξ)−v′i ·Delta=f ′i

(ξ) for ξ ∈ Rd.
Similar to Equation (33), we also have

ŷj(ξ) = T d · vj · sincT (fj − ξ)− T d · v′j · sincT (f ′j − ξ). (34)

Based on the above arguments, we deduce that when τ ∼ Unif[−T/2, T/2]d is uniformly random,

E
τ

[
ai(τ) · aj(τ)

]
=

1

T d
·
∫

τ∈[−T/2,T/2]d
ai(τ) · aj(τ) · dτ

=
1

T d
·
∫

τ∈Rd
<
(
yi(τ) · yj(τ)

)
· dτ

=
1

T d
·
∫

ξ∈Rd
ŷi(ξ) · ŷj(ξ) · dξ

= T d · vi · vj ·
∫

ξ∈Rd
sincT (fi − ξ) · sincT (fj − ξ) · dξ

︸ ︷︷ ︸
A1

− T d · vi · vj ′ ·
∫

ξ∈Rd
sincT (fi − ξ) · sincT (f ′j − ξ) · dξ

︸ ︷︷ ︸
A2

− T d · v′i · vj ·
∫

ξ∈Rd
sincT (f ′i − ξ) · sincT (fj − ξ) · dξ

︸ ︷︷ ︸
A3

+ T d · v′i · vj ′ ·
∫

ξ∈Rd
sincT (f ′i − ξ) · sincT (f ′j − ξ) · dξ

︸ ︷︷ ︸
A4

,

where the second step follows because yi(τ) = T d · ai(τ) · rectT (τ) = 0 for any τ /∈ [−T/2, T/2]d;
the third step applies Parseval’s theorem; and the last step employs Equations (33) and (34).
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We next give in Equation (35) an explicit formula for A1, and similar formulas respectively for
A2 and A3 and A4 can be obtained in the same way. Concretely, we have

A1 =

∫

ξ∈Rd
sincT (fi − ξ) · sincT (fj − ξ) · dξ

=
1

T d
·
∫

ξ∈Rd
sinc(Tfi − ξ) · sinc(Tfj − ξ) · dξ

=
1

T d
·
∫

ξ∈Rd
sinc(ξ + Tfi − Tfj) · sinc(ξ) · dξ

=
1

T d
· sinc(Tfi − Tfj)

=
1

T d
· sincT (fi − fj), (35)

where the second step follows by substitution; the third step also follows by substitution; the fourth
step follows from Part (b) of Fact 8.5; and the last step follows by substitution.

Applying Equation (35) and the counterpart formulas for A2 and A3 and A4, we conclude that
when τ ∼ Unif[−T/2, T/2]d is uniformly random,

E
τ

[
ai(τ) · aj(τ)

]
= vi · vj · sincT (fi − fj) − vi · v′j · sincT (fi − f ′j)

− v′i · vj · sincT (f ′i − fj) + v′i · v′j · sincT (f ′i − f ′j).

This completes the proof.

8.4 Upper bounding cross-tone errors

Fact 8.5. The following hold for the single-/multi-dimensional sinc function:

Part (a): Single dimension. sinc(∆r) =
∫
ξr∈R sinc(ξr + ∆r) · sinc(ξr) · dξ for any ∆r ∈ R.

Part (b): Multi dimension. sinc(∆) =
∫
ξ∈Rd sinc(ξ + ∆) · sinc(ξ) · dξ for any ∆ ∈ Rd.

Proof. Part (b) can be easily inferred from Part (a), since sinc(∆) =
∏
r∈[d] sinc(∆r) is a product

and we deal with all the coordinates r ∈ [d] separately.
We deduce Part (a) as follows:

∫

ξr∈R
sinc(ξr + ∆r) · sinc(ξr) · dξr =

∫

ξr∈R
sinc(∆r − ξr) · sinc(ξr) · dξr

= sinc ∗ sinc(∆r)

=

∫

τ∈R
̂sinc ∗ sinc(τ) · e−2πi·∆r·τ · dτ

=

∫

τ∈R
rect2(τ) · e−2πi·∆r·τ · dτ

=

∫ 1/2

−1/2
e−2πi·∆r·τ · dτ

= sinc(∆r),

where the first step follows by substitution and the fact that sinc(ξr) is an even function; the second
step follows from Definition 2.2; the third step follows the definition of the CFT; the fourth step
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applies the convolution Theorem as ̂sinc ∗ sinc(τ) = rect(τ) · rect(τ) = rect2(τ); the fifth follows
because rect(τ) = I{|τ | ≤ 1/2}; and the last step can be seen via elementary calculation.

This completes the proof.

Lemma 8.6 (Upper bounds on the cross-tone errors). For any pair of indices i < j ∈ [k]. Assume
the following for both (v, f, v′, f ′) = (vi, fi, v

′
i, f
′
i) and (v, f, v′, f ′) = (vj , fj , v

′
j , f
′
j):

• ‖f − f ′‖2 ≤ ∆fi,j, where the distance ∆fi,j ≥ 0 is given by

∆fi,j := min
{∥∥f ′′i − f ′′j

∥∥
2

: f ′′i ∈ {fi, f ′i} and f ′′j ∈ {fj , f ′j}
}
.

Then for the functions ai(τ) : Rd → C and aj(τ) : Rd → C given in Definition 8.3, the cross-tone
error satisfies the following when T = Ω( d

∆fi,j
) is large enough:

∣∣E
τ

[ai(τ) · aj(τ) + ai(τ) · aj(τ)]
∣∣ .

√
d

∆fi,j · T
·
∥∥ai
∥∥
T
·
∥∥aj
∥∥
T
,

where τ ∼ Unif[−T/2, T/2]d is uniformly random.

Proof. In this proof, we use fi,s ∈ R to denote the s-th coordinate of the i-th frequency fi ∈ Rd.
For simplicity of notation, we define

erri,j := E
τ

[ai(τ) · aj(τ) + ai(τ) · aj(τ)].

According to Property II of Lemma 8.4, we can rewrite erri,j as follows:

erri,j = E
τ

[
ai(τ) · aj(τ) + ai(τ) · aj(τ)

]

=
(
vi · vj + vi · vj

)
· sincT (fi − fj) −

(
vi · v′j + vi · v′j

)
· sincT (fi − f ′j)

−
(
v′i · vj + v′i · vj

)
· sincT (f ′i − fj) +

(
v′i · v′j + v′i · v′j

)
· sincT (f ′i − f ′j). (36)

Below, we would prove the lemme based on case analysis.
In total there are four cases:

• T · ‖f ′i − fi‖2 ≥ 2.05
π and T · ‖f ′j − fj‖2 ≥ 2.05

π (see Claim 8.7).

• T · ‖f ′i − fi‖2 < 2.05
π and T · ‖f ′j − fj‖2 < 2.05

π (see Claim 8.8).

• T · ‖f ′i − fi‖2 ≥ 2.05
π and T · ‖f ′j − fj‖2 < 2.05

π (see Claim 8.9).

• T · ‖f ′i − fi‖2 < 2.05
π and T · ‖f ′j − fj‖2 ≥ 2.05

π (see Claim 8.9).

Combining all the four cases completes the proof.

8.4.1 Both pairs are far

Claim 8.7 (Case (i) for Lemma 8.6). If T · ‖f ′i − fi‖2 ≥ 2.05
π and T · ‖f ′j − fj‖2 ≥ 2.05

π , then we have

∣∣erri,j
∣∣ . 1

∆fi,jT
· ‖ai‖T · ‖aj‖T .
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Proof. Let us first bound the tone-wise errors ‖ai‖2T and ‖aj‖2T from below. Respecting the i-th
pair of tones (vi, fi) and (v′i, f

′
i), we know from Part (d) of Fact 8.2 that

| sincT (f ′i − fi)| <
1

2
.

Then, the tone-wise error ‖ai‖2T between (vi, fi) and (v′i, f
′
i) admits the lower bound

‖ai‖2T = |vi|2 + |v′i|2 −
(
vi · v′i + vi · v′i

)
· sincT (f ′i − fi)

= |vi|2 + |v′i|2 − 2 · |vi| · |v′i| · cos
(

arg(v′i/vi)
)
· sincT (f ′i − fi)

≥ |vi|2 + |v′i|2 − 2 · |vi| · |v′i| ·
∣∣∣ cos

(
arg(v′i/vi)

)∣∣∣ ·
∣∣∣ sincT (f ′i − fi)

∣∣∣

≥ |vi|2 + |v′i|2 − 2 · |vi| · |v′i| · 1 ·
1

2

≥ 1

4
·
(
|vi|+ |v′i|

)2
, (37)

where the first step is by Property II of Lemma 8.4; the fourth step follows since | cos(arg(v′i/vi))| ≤ 1
and | sincT (f ′i − fi)| < 1

2 ; and the last step applies the AM-GM inequality.
Applying the same arguments to the j-th tone-wise error ‖aj‖2T , we also have

‖aj‖2T ≥ 1

4
·
(
|vj |+ |v′j |

)2
. (38)

We next establish an upper bound on the cross-tone error |Eτ [ai(τ) ·aj(τ)+ai(τ) ·aj(τ)]|, where
τ ∼ Unif[−T

2 ,
T
2 ]2 is uniformly random. For simplicity, we denote

sincmax
T,i,j = max

{∣∣ sincT (f ′′i − f ′′j )
∣∣ : f ′′i ∈ {fi, f ′i} and f ′′j ∈ {fj , f ′j}

}
≥ 0. (39)

Following Equation (36), we deduce that

∣∣erri,j
∣∣ =

∣∣∣
(
vi · vj + vi · vj

)
· sincT (fi − fj) −

(
vi · v′j + vi · v′j

)
· sincT (fi − f ′j)

−
(
v′i · vj + v′i · vj

)
· sincT (f ′i − fj) +

(
v′i · v′j + v′i · v′j

)
· sincT (f ′i − f ′j)

∣∣∣
≤ 2 · |vi| · |vj | ·

∣∣ sincT (fi − fj)
∣∣ + 2 · |vi| · |v′j | ·

∣∣ sincT (fi − f ′j)
∣∣

+ 2 · |v′i| · |vj | ·
∣∣ sincT (f ′i − fj)

∣∣ + 2 · |v′i| · |v′j | ·
∣∣ sincT (f ′i − f ′j)

∣∣
≤ 2 · |vi| · |vj | · sincmax

T,i,j + 2 · |vi| · |v′j | · sincmax
T,i,j

+ 2 · |v′i| · |vj | · sincmax
T,i,j + 2 · |v′i| · |v′j | · sincmax

T,i,j

= 2 ·
(
|vi|+ |v′i|

)
·
(
|vj |+ |v′j |

)
· sincmax

T,i,j

≤ 2 ·
(
2 · ‖ai‖T

)
·
(
2 · ‖aj‖T

)
· sincmax

T,i,j

= 8 · ‖ai‖T · ‖aj‖T · sincmax
T,i,j , (40)

where the second step uses the triangle inequality; the third step follows from the definition of
sincmax

T,i,j (see Equation (39)); the fifth step follows from Equations (37) and (38); and the last step
follows from the AM-GM inequality.

To accomplish Case (i), given Equation (40), we are left to justify that sincmax
T,i,j ≥ 0 diminishes

to zero when T > 0 goes to the infinity (at the claimed rate). We safely assume T = Ω( d
∆fi,j

) to
be large enough, and consider a specific pair of frequencies f ′′i ∈ {fi, f ′i} and f ′′j ∈ {fj , f ′j}. For
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simplicity, we denote δr = max(0, π ·T · |f ′′i,r−f ′′j,r|−1) ≥ 0 for each coordinate r ∈ [d]. Given these,
one can easily see that

∑

r∈[d]

δr ≥
∑

r∈[d]

(
π · T ·

∣∣f ′′i,r − f ′′j,r
∣∣− 1

)

= π · T ·
∥∥f ′′i − f ′′j

∥∥
1
− d

= π · T ·
∥∥f ′′i − f ′′j

∥∥
2
− d

≥ π · T ·∆fi,j − d ≥ 0. (41)

In addition, we have

∣∣ sincT (f ′′i − f ′′j )
∣∣ ≤

∏

r∈[d]

min
{

1,
1

π · T · |f ′′i,r − f ′′j,r|
}

=
∏

r∈[d]

1

1 + δr

≤ 1

1 +
∑

r∈[d] δr

≤ 1

π · T ·∆fi,j − (d− 1)

. 1

T ·∆fi,j
, (42)

where the first step applies Part (a) of Fact 8.2; the second step is due to the definition of δr’s; the
third step follows because δr ≥ 0 for each r ∈ [d]; the fourth step follows from Equation (41); and
the last step holds whenever T = Ω( d

∆fi,j
) is large enough.

We observe that Equation (42) holds for any pair of frequencies f ′′i ∈ {fi, f ′i} and f ′′j ∈ {fj , f ′j}.
In other words,

sincmax
T,i,j . 1

T ·∆fi,j
Combining the above equation and Equation (40) together completes the proof.

8.4.2 Both pairs are close

Claim 8.8 (Case (ii) for Lemma 8.6). If T · ‖f ′i − fi‖2 < 2.05
π and T · ‖f ′j − fj‖2 < 2.05

π , then we
have

erri,j .
√
d

∆fi,jT
· ‖ai‖T · ‖aj‖T .

Proof. Let us first bound the tone-wise errors ‖ai‖2T and ‖aj‖2T from below. Respecting the i-th
pair of tones (vi, fi) and (v′i, f

′
i), we know from Part (d) of Fact 8.2 that

exp
(
− π2

5
· T 2 · ‖f ′i − fi‖22

)
≤ sincT (f ′i − fi) ≤ exp

(
− π2

6
· T 2 · ‖f ′i − fi‖22

)
.

Then, the tone-wise error ‖ai‖2T between (vi, fi) and (v′i, f
′
i) admits the lower bound

‖ai‖2T = |vi|2 + |v′i|2 −
(
vi · v′i + vi · v′i

)
· sincT (f ′i − fi)
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= |vi|2 + |v′i|2 − 2 · |vi| · |v′i| · cos
(

arg(v′i/vi)
)
· sincT (f ′i − fi), (43)

where the first step applies Property II of Lemma 8.4.
Given Equation (43), we would prove that ‖ai‖2T is lower bounded by

‖ai‖2T ≥ 3

13
·
(
|vi − v′i|2 +

(
|vi|2 + |v′i|2

)
·
(
1− sincT (f ′i − fi)

))
. (44)

To see so, we denote w1 · ei·θ = vi/v
′
i for some norm w1 ≥ 0 and some phase θ ∈ [0, 2π), and denote

w2 = sincT (f ′i − fi) ∈ [−1
4 , 1] (see Part (e) of Fact 8.2). We notice that the RHS of Equation (44)

is non-negative. Thus, it suffices to show that the following function L(w1, w2, θ) ≥ 3
11 , for any

w1 ≥ 0, any w2 ∈ [−1
4 , 1] and any θ ∈ [0, 2π):

L(w1, w2, θ) :=
RHS of (43)
RHS of (44)

=
|v′i · w1 · ei·θ|2 + |v′i|2 − 2 · |v′i · w1 · ei·θ| · |v′i| · cos(θ) · w2

|v′i · w1 · ei·θ − v′i|2 + (|v′i · w1 · ei·θ|2 + |v′i|2) · (1− w2)

=
w2

1 + 1− 2 · w1 · w2 · cos(θ)

|w1 · ei·θ − 1|2 + (w2
1 + 1) · (1− w2)

=
w2

1 + 1− 2 · w1 · w2 · cos(θ)

(w2
1 + 1) · (2− w2)− 2 · w1 · cos(θ)

where the second step is by the definition of w1, w2 and θ; the third step divides both the numerator
and the denominator by |v′i|2; and the last step can be seen via elementary calculation.

Let us investigate the partial derivative ∂L
∂θ in θ ∈ [0, 2π):

∂L

∂θ
=

2 · w1 · w2 · sin(θ)

(w2
1 + 1) · (2− w2)− 2 · w1 · cos(θ)

−
(
w2

1 + 1− 2 · w1 · w2 · cos(θ)
)
·
(
2 · w1 · sin(θ)

)
(
(w2

1 + 1) · (2− w2)− cos(θ)
)2

= − sin(θ) · 2 · w1 · (w2
1 + 1) · (w2 + 1)2

(
(w2

1 + 1) · (2− w2)− 2 · w1 · cos(θ)
)2

︸ ︷︷ ︸
A5

,

where the second step can be seen via elementary calculation.
Because w1 ≥ 0 and w2 ∈ [−1

4 , 1], we must have A5 ≥ 0. Hence, for any fixed w1 and w2,
the function L(w1, w2, θ) is non-increasing when θ ∈ [0, π], and is non-decreasing when θ ∈ [π, 2π).
Then we conclude that the function L1(w1, w2) := minθ∈[0,2π) L(w1, w2, θ) for any w1 ≥ 0 and any
w2 ∈ [−1

4 , 1] is given by

L1(w1, w2) = L(w1, w2, π) =
A6(w1, w2)

A7(w1, w2)
,

A6(w1, w2) := w2
1 + 1 + 2 · w1 · w2,

A7(w1, w2) := (w2
1 + 1) · (2− w2) + 2 · w1.

Clearly, for any fixed w1 ≥ 1, the numerator A6(w1, w2) is a non-decreasing function in w2 ∈ [−1
4 , 1],

while the denominator A7(w1, w2) is a non-increasing non-negative function in w2 ∈ [−1
4 , 1]. Given

these, we deduce that

min
w1∈[0,1]

min
w2∈[− 1

4
,1]
L1(w1, w2) = min

w1∈[0,1]
L1(w1,−1/4)
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= min
w1∈[0,1]

w2
1 + 1− (1/2) · w1

(9/4) · (w2
1 + 1) + 2 · w1

= min
w1∈[0,1]

(4

9
− 50/81

w1 + (1/w1) + 8/9

)

=
4

9
− 50/81

1 + 1 + 8/9

=
3

13
,

which implies Equation (44) immediately.
Following Equation (44), we further have

‖ai‖2T & |vi − v′i|2 +
(
|vi|2 + |v′i|2

)
·
(
1− sincT (f ′i − fi)

)

≥ |vi − v′i|2 +
(
|vi|2 + |v′i|2

)
·
(

1− exp
(
− π2

6
· T 2 · ‖f ′i − fi‖22

))

≥ |vi − v′i|2 +
(
|vi|2 + |v′i|2

)
· T 2 · ‖f ′i − fi‖22

≥ 1

2
·
(
|vi − v′i| +

√
|vi|2 + |v′i|2 · T · ‖f ′i − fi‖2

)2

≥ 1

2
·
(
|vi − v′i| +

√
2

2
·
(
|vi|+ |v′i|

)
· T · ‖f ′i − fi‖2

)2

≥ 1

4
·
(
|vi − v′i| +

(
|vi|+ |v′i|

)
· T · ‖f ′i − fi‖2

)2
, (45)

where the first step applies Equation (44); the second step applies Part (d) of Fact 8.2; the third
step follows from the premise that T 2 · ‖f ′i − fi‖22 < (2.05

π )2, together with the fact that, for any
0 ≤ z < (2.05

π )2 ≈ 0.4258, we have exp(−π2

6 · z) ≤ 1 − z; and both of the fourth step and the fifth
step apply the AM-GM inequality.

Applying the same arguments to the j-th tone-wise error ‖aj‖2T , we also have

‖aj‖2T ≥ 1

9
·
(
|vj − v′j | +

(
|vj |+ |v′j |

)
· T · ‖f ′j − fj‖2

)2
. (46)

Following Equation (36), we deduce that

∣∣erri,j
∣∣ =

∣∣∣
(
vi · vj + vi · vj

)
· sincT (fi − fj) −

(
vi · v′j + vi · v′j

)
· sincT (fi − f ′j)

−
(
v′i · vj + v′i · vj

)
· sincT (f ′i − fj) +

(
v′i · v′j + v′i · v′j

)
· sincT (f ′i − f ′j)

∣∣∣

=
∣∣∣
(
(vi − v′i) · (vj − v′j) + (vi − v′i) · (vj − v′j)

)
· sincT (fi − fj)

+
(
vi · v′j + vi · v′j

)
·
(

sincT (fi − fj)− sincT (fi − f ′j)
)

+
(
v′i · vj + v′i · vj

)
·
(

sincT (fi − fj)− sincT (f ′i − fj)
)

−
(
v′i · v′j + v′i · v′j

)
·
(

sincT (fi − fj)− sincT (f ′i − f ′j)
)∣∣∣

≤
∣∣∣
(
(vi − v′i) · (vj − v′j) + (vi − v′i) · (vj − v′j)

)
· sincT (fi − fj)

∣∣∣

+
∣∣∣
(
vi · v′j + vi · v′j

)
·
(

sincT (fi − fj)− sincT (fi − f ′j)
)∣∣∣

+
∣∣∣
(
v′i · vj + v′i · vj

)
·
(

sincT (fi − fj)− sincT (f ′i − fj)
)∣∣∣
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+
∣∣∣
(
v′i · v′j + v′i · v′j

)
·
(

sincT (fi − fj)− sincT (f ′i − f ′j)
)∣∣∣

≤ 2 · |vi − v′i| · |vj − v′j | ·
∣∣∣ sincT (fi − fj)︸ ︷︷ ︸

A8

∣∣∣

+ 2 · |vi| · |v′j | ·
∣∣∣ sincT (fi − fj)− sincT (fi − f ′j)︸ ︷︷ ︸

A9

∣∣∣

+ 2 · |v′i| · |vj | ·
∣∣∣ sincT (fi − fj)− sincT (f ′i − fj)︸ ︷︷ ︸

A10

∣∣∣

+ 2 · |v′i| · |v′j | ·
∣∣∣ sincT (fi − fj)− sincT (f ′i − f ′j)︸ ︷︷ ︸

A11

∣∣∣, (47)

where the second step follows by elementary calculation; and the third step follows from the triangle
inequality.

In what follows, we safely assume T = Ω( d
∆fi,j

) to be large enough, and upper bound the terms
|A8| and |A9| and |A10| and |A11| one by one.

Bound on |A8|. Recall the quantity sincmax
T,i,j defined in Equation (39). We have

∣∣A8

∣∣ ≤ sincmax
T,i,j

. 1

T ·∆fi,j
(48)

where the last step is by Equation (42), and holds whenever T = Ω( d
∆fi,j

) is large enough.
Bound on |A9|. Under the premises ‖f ′j−fj‖2 ≤ ∆i,j and ‖fi−fj‖2 ≥ ∆i,j and ‖fi−f ′j‖2 ≥ ∆i,j

(see the statement of Lemma 8.6), via a standard geometric argument, we know that the next
equation holds for any λ ∈ [0, 1]:

∥∥fi − f ′′j (λ)
∥∥

2
≥
√

3

2
·∆i,j , (49)

where f ′′j (λ) = λ · fj + (1− λ) · f ′j .
Due to the mean value theorem, there exists a particular λ ∈ [0, 1] such that

A9 = sincT (fi − fj)− sincT (fi − f ′j) =
(
∇(fi − f ′′j )

)>
(f ′j − fj), (50)

where the gradient ∇(fi − f ′′j ) ∈ Rd is given by ∇l(fi − f ′′j ) = ( ∂
∂ξl

sincT (ξ))|ξ=fi−f ′′j for each
coordinate l ∈ [d].

Consider a specific coordinate l ∈ [d]. The corresponding partial derivative is
∣∣∣∇l(fi − f ′′j )

∣∣∣ =

∣∣∣∣
( d

dξl
sincT (ξl)

)∣∣∣
ξl=fi,l−f ′′j,l

∣∣∣∣ ·
∏

r∈[d]\{l}

∣∣∣∣ sincT (fi,r − f ′′j,r)
∣∣∣∣

≤ 7

5
· T ·min

{
1,

1

T · |fi,l − f ′′j,l|
}
·
∏

r∈[d]\{l}

∣∣∣∣ sincT (fi,r − f ′′j,r)
∣∣∣∣

≤ 7

5
· T ·min

{
1,

1

T · |fi,l − f ′′j,l|
}
·
∏

r∈[d]\{l}

min
{

1,
1

π · T · |fi,r − f ′′j,r|
}

. T ·min
{

1,
1

T · |fi,l − f ′′j,l|
}
·
∏

r∈[d]\{l}

min
{

1,
1

π · T · |fi,r − f ′′j,r|
}
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. T · 1

T · ‖fi − f ′′j ‖2

. 1

∆fi,j
, (51)

where the second step uses Part (f) of Fact 8.2; the third step uses Part (a) of Fact 8.2; the fifth
step holds whenever T = Ω( d

∆fi,j
) is large enough, and can be seen by reusing the arguments for

Equation (42); and the last step follows from Equation (49).
We emphasize that Equation (51) holds for any coordinate l ∈ [d], and therefore holds for the

`∞-norm ‖∇(fi − f ′′j )‖∞ as well. Putting everything together,

|A9| = |(∇(fi − f ′′j ))>(f ′j − fj)|
≤ ‖∇(fi − f ′′j )‖∞ · ‖f ′j − fj‖1
. 1

∆fi,j
· ‖f ′j − fj‖1

.
√
d

∆fi,j
· ‖f ′j − fj‖2, (52)

where the first step is by Equation (50); the third step is by Equation (51); and the last step follows
because

√
d · ‖f ′j − fj‖2 ≥ ‖f ′j − fj‖1.

Reapplying the above arguments for |A9|, we also have

|A10| .
√
d

∆fi,j
· ‖f ′i − fi‖2, (53)

|A11| .
√
d

∆fi,j
· (‖f ′i − fi‖2 + ‖f ′j − fj‖2). (54)

Plugging Equations (48) and (52) and (53) and (54) into Equation (47) results in

|erri,j | . |vi − v′i| · |vj − v′j | · |A8|
+ |vi| · |v′j | · |A9| + |v′i| · |vj | · |A10| + |v′i| · |v′j | · |A11|

. |vi − v′i| · |vj − v′j | ·
1

T ·∆fi,j

+ (|vi|+ |v′i|) · (|vj |+ |v′j |) ·
√
d

∆fi,j
· (‖f ′i − fi‖2 + ‖f ′j − fj‖2)

. ‖ai‖T · ‖aj‖T ·
√
d

T ·∆fi,j
,

where the second step uses Equations (48) and (52) and (53) and (54); and the last step uses
Equations (45) and (46).

This completes the proof.

8.4.3 One pair is far and one pair is close

Claim 8.9 (Case (iii) for Lemma 8.6). If T · ‖f ′i − fi‖2 ≥ 2.05
π and T · ‖f ′j − fj‖2 < 2.05

π , then we
have

|erri,j | .
√
d

∆fi,jT
· ‖ai‖T · ‖aj‖T .
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Proof. We have shown in Equation (37) that

‖ai‖T & |vi|+ |v′i|, (55)

and have shown in Equation (46) that

‖aj‖T & |vj − v′j | +
(
|vj |+ |v′j |

)
· T · ‖f ′j − fj‖2. (56)

Following Equation (47), we deduce that

∣∣erri,j
∣∣ . |vi − v′i| · |vj − v′j | ·

∣∣∣ sincT (fi − fj)
∣∣∣

+ |vi| · |v′j | ·
∣∣∣ sincT (fi − fj)− sincT (fi − f ′j)

∣∣∣

+ |v′i| · |vj | ·
∣∣∣ sincT (fi − fj)− sincT (f ′i − fj)

∣∣∣

+ |v′i| · |v′j | ·
∣∣∣ sincT (fi − fj)− sincT (f ′i − f ′j)

∣∣∣

. |vi − v′i| · |vj − v′j | ·
∣∣∣ sincT (fi − fj)︸ ︷︷ ︸

A12

∣∣∣

+ |vi| · |v′j | ·
∣∣∣ sincT (fi − fj)− sincT (fi − f ′j)︸ ︷︷ ︸

A13

∣∣∣

+ |v′i| · |vj | ·
( ∣∣∣ sincT (fi − fj)

∣∣∣+
∣∣∣ sincT (f ′i − fj)

∣∣∣
︸ ︷︷ ︸

A14

)

+ |v′i| · |v′j | ·
( ∣∣∣ sincT (fi − fj)

∣∣∣+
∣∣∣ sincT (f ′i − f ′j)

∣∣∣
︸ ︷︷ ︸

A15

)

. |vi − v′i| · |vj − v′j | ·
1

T ·∆fi,j

+ |vi| · |v′j | ·
√
d

∆fi,j
· ‖f ′j − fj‖2

+ |v′i| · |vj | ·
1

T ·∆fi,j
+ |v′i| · |v′j | ·

1

T ·∆fi,j
, (57)

where the first step applies the triangle inequality; the second step applies Equation (42) to A12,
applies Equation (52) to A13, applies Equation (42) to A14, and applies Equation (42) to A15.

Combining Equations (55) and (56) and (57) together, it can be easily seen that

∣∣erri,j
∣∣ .

√
d

T ·∆fi,j
· ‖ai‖T · ‖aj‖T .

This completes the proof.

8.5 Combining tone-wise errors and cross-tone errors

Let <(z) ∈ R denote the real part of a complex number z ∈ C.
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Lemma 8.10. Let {(vi, fi)}i∈[k] and {(v′i, f ′i)}i∈[k] be two sets of k ∈ N≥1 tones, for which

min
i 6=j
‖fi − fj‖1 ≥ η and min

i 6=j
‖f ′i − f ′j‖1 ≥ η and min

i∈[k]
‖fi − f ′i‖1 ≤ η/100

Then these two sets can be reindexed such that

1

T d
·
∫

τ∈[−T/2,T/2]d

∣∣∣
∑

i∈[k]

ai(τ)
∣∣∣
2
· dτ ≤ (1 + α) ·

∑

i∈[k]

1

T d

∫

τ∈[−T/2,T/2]d
|ai(τ)|2dτ. (58)

where

α := O(η−1 · T−1) ·
√
d ·min

{
k,

k−1∑

j=1

√
d · j−1/d

}
,

which further implies

α =

{
O(η−1 · T−1) · log k, if d = 1;

O(η−1 · T−1) ·
√
d ·min{k,

√
d · k1−1/d}, if d ≥ 2.

Proof. It follows that

LHS of (58) =
1

T d
·
∫

τ∈[−T/2,T/2]d

∑

i∈[k]

ai(τ) ·
∑

i∈[k]

ai(τ) · dτ

= diagonal terms + off-diagonal terms

where

diagonal terms =
∑

i∈[k]

1

T d
·
∫

τ∈[−T/2,T/2]d

∣∣ai(τ)
∣∣2 · dτ =

∑

i∈[k]

∥∥ai
∥∥2

T
,

off-diagonal terms =
∑

i<j

1

T d
·
∫

τ∈[−T/2,T/2]d

(
ai(τ) · aj(τ) + ai(τ) · aj(τ)

)
· dτ

=
∑

i<j

E
τ∼Unif[−T/2,T/2]d

[
ai(τ) · aj(τ) + ai(τ) · aj(τ)

]

First we can simplify the off-diagonal terms in the following sense:

∣∣off-diagonal terms
∣∣ =

∣∣∣∣
∑

i<j

E
τ∼Unif[−T/2,T/2]d

[
ai(τ) · aj(τ) + ai(τ) · aj(τ)

]∣∣∣∣

≤
∑

i<j

∣∣∣∣ E
τ∼Unif[−T/2,T/2]d

[
ai(τ) · aj(τ) + ai(τ) · aj(τ)

]∣∣∣∣

.
∑

i<j

√
d

T ·∆fi,j
· ‖ai‖T · ‖aj‖T

≤
∑

i<j

√
d

T ·∆fi,j
· (‖ai‖2T + ‖aj‖2T )

where the second step uses the triangle inequality, and the third step applies Lemma 8.6.
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We consider two cases. Case 1. d = 1. Case d ≥ 2. The reason we consider d = 1 separately
because, for d = 1 we can get a much better bound than general d.

Case 1. d = 1.
We have

∣∣off-diagonal terms
∣∣ . 1

Tη
·
∑

i<j

1

|i− j| · (‖ai‖
2
T + ‖aj‖2T )

≤ 1

Tη
·
k∑

i=1

‖ai‖2T
k∑

j=1

1

j

≤ 1

Tη
· log k ·

k∑

i=1

‖ai‖2T .

Case 2. d ≥ 2. We give two bounds which are not comparative.
Case 2a.
We have

∣∣off-diagonal terms
∣∣ .
√
d

Tη
·
∑

i<j

(‖ai‖2T + ‖aj‖2T )

≤
√
d

Tη
· k ·

k∑

i=1

‖ai‖2T .

Case 2b.
We have

∣∣off-diagonal terms
∣∣ .
√
d

Tη
·
∑

i<j

√
d

|i− j|1/d · (‖ai‖
2
T + ‖aj‖2T )

≤
√
d

Tη
·
√
d ·

k∑

i=1

‖ai‖2T
k∑

j=1

1

j1/d

≤ d

Tη
· k1−1/d ·

k∑

i=1

‖ai‖2T .

where the first step follows from Lemma 8.11.
This completes the proof.

8.6 Geometric property

Lemma 8.11 (Geometric property). Given a set {fj}j∈[k] ⊆ Rd of k ∈ N≥1 many d-dimensional
frequencies with the minimum `2-norm separation η := mini 6=j∈[k] ‖fi − fj‖2 > 0. Consider any
particular frequency f in the set, then these frequencies can be reindexed such that f1 = f and

‖f1 − fj‖2 & j1/d · η/
√
d, ∀j ∈ [k]

which further implies
∑

j∈[2:k]

1

‖f1 − fj‖2
. k1−1/d ·

√
d/η.
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Figure 18: Demonstration for the proof of Lemma 8.11.

Proof. Fix an arbitrary f1 = f from the set, and w.l.o.g. reindex the frequencies {fj}j∈[k] such that

‖f2 − f1‖2 ≤ · · · ≤ ‖fj − f1‖2 ≤ · · · ≤ ‖f1 − fk‖2.

We would prove that ‖fj − f1‖2 & (|j − 1|1/d/
√
d) · η for each j ∈ [2 : k].

Consider the `2-balls that are centered at the frequencies {fj}j∈[k] and have the radius η/2 each.
Those `2-balls are disjoint, because the distance of every two frequencies is at least η > 0.

For a specific j ∈ [2 : k], let us denote L := ‖fj − f1‖2 ≥ η. Clearly (as Figure 18 suggests), all
the radius-(η/2) balls centered at f1, · · · , fj are contained within the bigger `2-ball that is centered
at f1 and has the radius (L+ η/2). Now consider another geometric question:

How many disjoint radius-(η/2) balls we can pack within a bigger radius-(L+η/2) ball?
Let m ≥ 1 denote this number, and it is easy to see m ≥ j.

Indeed, the m ≥ 1 is call the packing number. According to [SSBD14, Page 337], we have

m ≤ (2
√
d · (L+ η/2)/(η/2))d,

which after being rearranged gives L & m1/d · η/
√
d and further

‖fj − f1‖2 & j1/d · η/
√
d, ∀j ∈ [2 : k].

Then it is easy to get

∑

j∈[2:k]

1

‖f1 − fj‖2
.
∑

j∈[2:k]

1

j1/d · η/
√
d
. k1−1/d ·

√
d/η.

This finishes the proof.

8.7 Main result

Theorem 8.12 (Signal reconstruction. Formal version of Theorem 1.2). Let C be some univer-
sal constant and C∗ = d2. When RecoveryStage observes the signal x(t) over a duration
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T & η−1 · (d4.5 · log(d) + d1.5 · k1−1/d) · log(kd/δ), the signal estimation error of the k-Fourier-
sparse recovered signal x′(t) :=

∑
i∈[k] x

′
i(t) against the observed signal x(t) = x∗(t)+g(t) is bounded

as follows:

1

T d

∫

[0,T ]d
|x′(t)− x(t)|2 · dt ≤ (1 + α)(C2 + dC2

∗ )N 2, (59)

where

α =

{
O(η−1 · T−1) · log k, if d = 1;

O(η−1 · T−1) ·
√
d ·min{k,

√
d · k1−1/d}, if d ≥ 2.

Proof. This result follows directly by Property III of Theorem 7.18 and Lemma 8.10.

9 Conclusion, future directions, other related work

In this paper, we designed a randomized non-adaptive algorithm for the multi-dimensional contin-
uous sparse Fourier transform problem, which achieves a constant approximation under the `2/`2
guarantee and, in any constant dimension, takes sublinear samples and running time. Many attrac-
tive directions deserve exploring in the future, for which we give a short discussion below.

9.1 Future directions

Approximation ratio. First, whether we can improve the approximation guarantees to O(N 2)
(i.e., making it independent of the dimension d ≥ 1) or even (1 + ε) · N 2? In the discrete settings,
what enables the (1 + ε) approximation algorithms is that the noise spectrum ĝ = x̂− x̂∗ is on the
grid (i.e., the whole spectrum except the top-k frequencies) and the noise g(t) is the sum of the
sine/cosine functions with given frequencies. The past works like [IK14, Kap16] use Θd(k/ε) bins,
so the average noise in most of bins is Θd(εN 2/k) each.

But in the continuous model, achieving an (1+ε) approximation seems difficult, and the hurdles
come from the current hashing and sampling methods. First, because the noise g(t) is arbitrary,
we cannot hope the noise energy to distribute almost uniformly among the bins after the hashing.
Second, as mentioned in Section 1.3.1, the sampling range of the time points a ∈ [0, T ]d cannot be
too large. Namely, we can only hope | supp(a)| = c · T d for some 0 < c < 1, limiting the precision
to which the frequencies f ′i ≈ fi can be recovered. These are the two main reasons why, even in
the one-dimensional case d = 1, the past work [PS15] can only get a constant approximation rather
than an (1 + ε) approximation. (See [PS15, Lemma 3.3] for more details.)

Deterministic algorithm. Actually, no deterministic sublinear-sample algorithm can achieve the
`∞/`2-guarantee or the `2/`2-guarantee [DBIPW10]. But under the (weaker) `∞/`1-guarantee, the
past works [MZIC19, LN20] design an Õ(k2)-sample deterministic algorithm for the discrete Fourier
transform; both works reply on the tools from functional analysis. It would be interesting to see a
deterministic algorithm for the continuous Fourier transform (even in one dimension d = 1).

Õ(N)-time algorithms. For the discrete model (i.e., recover top-k frequencies out ofN = nd ones),
several past works improve the sample complexity or other performance guarantees by allowing an
Õ(N)-time Fourier transform (instead of a sublinear-time one). In the multi-dimensional case,
the past works [IK14, NSW19] implement the “point-query” idea (which originates from the sparse
recovery/heavy hitter literature) in a clever way, and thus optimize the sample complexity. Can we
obtain such results in the continuous model? The main difficulty is that, different from the discrete
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cases where the “on-the-grid” frequencies can be checked coordinate by coordinate, the “continuous”
frequencies have infinitely many possibilities.

Sample complexity. As mentioned in the introduction, another potential direction is to reduce the
sample complexity. Up to the iterated logarithmic factors, our algorithm RecoveryStage takes
k · (log k)d+O(1) · log(F/η) · 2O(d log d) samples/running time. Here the term logd k is a consequence
of our “precise” filter function. As quoted:

[Kap16, Kap17] “in the discrete settings ... the price to pay for the precision of the filter,
however, is that each hashing becomes a logd k factor more costly in terms of sample
complexity and running time than in the idealized case ...”

To shave the logd k term in the discrete model, the past works [IK14, Kap16] randomize the noise
by using the “crude” filters. However, randomizing the noise does not work in the continuous model,
since two noise frequencies f, f ′ ∈ Tail can be arbitrarily close and, no matter how we randomized
the noise, the errors can accumulate in the estimation. The exponential dependence on dimension
seems to be intrinsic to the current sampling methods, and avoiding it seems need completely
different methods.

Set query. A problem in the “sparse recovery” paradigm has two primary tasks: (i) to recover the
heavy locations; and (ii) to pin down the masses/densities in those locations. Price [Pri11] pulls the
second task out from the sparse recovery literature and defines the “set query” problem. Kapralov
[Kap17] introduces and studies the Fourier set query problem in the discrete settings. It would be
interesting to explore such problems in the continuous settings.

9.2 Further related works

Over the last two decades, the Sparse FT problem has been investigated and extended in various
directions. By now we can even say that it constitutes a “subarea” within sublinear algorithms.
These former works can be classified into two lines: (i) those in the one-/multi-dimensional discrete
settings [HIKP12a, HIKP12b, IKP14, IK14, Kap16, Kap17, NSW19, KVZ19, BKM+21] and follow-
ups. (ii) those in the one-dimensional continuous setting [BCG+12, Moi15, PS15, CKPS16] and
follow-ups.

Compressed sensing is initiated by [CT06, Don06]. Since then, there is a long line of works
exploring and extending it in various directions [GLPS10, GLPS10, IP11, IPW11, IR13, PW13,
Pri13, AZGR16, LNNT16, BIP+16, KP19, NS19]. Compressed sensing allows us to design the
sensing matrices, which is the main difference between it and the Sparse FT problem.

Apart from the one-/multi-dimensional discrete/continuous Sparse FT problems that we have
considered thus far, where the sampling is carried out in an arbitrary yet non-adaptive way, there
are other meaningful adjustments to the model.

For example, there is (i) a line of works studying the model where the sampling is conducted in
a (more restricted) uniform way [RV08, BD08, CGV13, Bou14, HR16, BLL+19, and the references
therein]; and (ii) another line of works studying the model that allows an algorithm to adaptively
take the samples and recover the Fourier spectrum [PW13, CKSZ17, and the references therein].

Within theoretical compute science (TCS), Fourier Transform also finds an abundance of ap-
plications: integer multiplication [Für09], Subset Sum and 3SUM [CLRS09], linear programming
[LSZ19, BLSS20, JSWZ21], learning mixture of regressions [CLS20], and fast Johnson-Lindenstrauss
transform [LDFU13] etc.
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A Building-block function (G(t), Ĝ(f)) in a single dimension

This appendix presents the construction of a basic function (G(t), Ĝ(f)) as well as its properties,
which serves as the building block of our single-dimensional filter function (see Appendix B) and
multi-dimensional filter function (see Appendix 4).

A.1 Construction of function (G(t), Ĝ(f))

To introduce the building-block function (G(t), Ĝ(f)), we will employ the rectangular function
rects1(f) and the sinc function sincs1(t). Both functions are widely used in the previous literature,
and we shall be familiar with their properties given in Fact A.2 (e.g. see [CKPS16]).

Definition A.1 (Two basic functions). Given any s1 > 0, the rects1(f) function and the sincs1(t)
function are defined as follows:

• rects1(f) = 1/s1 · I{|f | ≤ s1/2} for any f ∈ R. When s1 = 1, we shorthand it as rect(f).

• sincs1(t) = sin(πs1t)
πs1t

for any t 6= 0 and sincs1(0) = 1. When s1 = 1, we shorthand it as sinc(t).

Fact A.2 (Facts about basic functions [CKPS16, Appendix C]). Given any s1 > 0, the following
hold for the functions sincs1(t) and rects1(f):

Part (a): 1− π2

6 · (s1t)
2 ≤ | sincs1(t)| ≤ 1 for any t ∈ R.

Part (b): | sincs1(t)| ≤ 1− π2

8 · (s1t)
2 for any |t| ≤ 2.3

πs1
.

Part (c): | sincs1(t)| ≤ min(1, 1
π·|s1t|) for any t ∈ R.

Part (d): sincs1(t) = r̂ects1(t) for any t ∈ R, and rects1(f) = ŝincs1(f) for any f ∈ R.
Our building-block function (G(t), Ĝ(f)) is constructed in the following Definition A.3. This

construction is similar to [CKPS16, Definition C.11], and we carefully modify the involved param-
eters for our later use. We present several important properties of (G(t), Ĝ(f)) in Section A.2, and
then prove these properties in Section A.3.

Definition A.3 (Building-block function in a single dimension). We set the parameters as follows:

• The number of bins in a single dimension B = Θ(d · k1/d) is a certain multiple of d ∈ N≥1.

• The noise level parameter δ ∈ (0, 1).

• α = Θ(1/d) is chosen such that 1
100·(d+1)·α ∈ N≥1 is an integer; clearly α ≤ 1

100·(d+1) ≤ 1
200 .

• s1 = 2B
α and s2 = 1

B+B/d .

• ` = Θ(log(kd/δ)) is an even integer. We safely assume ` ≥ 1000.

Then for any t, f ∈ R the building-block function (G(t), Ĝ(f)) is given by

G(t) = s0 · rect∗`s1(t) · sincs2(t)

= s0 · rect∗`2B/α(t) · sinc1/(B+B/d)(t),

Ĝ(f) = s0 · (sincs1(f))·` ∗ rects2(f)

= s0 · (sinc2B/α(f))·` ∗ rect1/(B+B/d)(f),

where the scalar s0 > 0 achieves the normalization Ĝ(0) = 1. Notice that both G(t) and Ĝ(f) take
real values, and are even functions.
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Figure 19: Demonstration for the function Ĝ(f) in Lemma A.4.

A.2 Properties of function (G(t), Ĝ(f))

Lemma A.4 (Building-block function in a single dimension). The function (G(t), Ĝ(f))[B, δ, α, `]
given in Definition A.3 satisfies the following (as Figure 19 illustrates):

Property I: The scalar s0 h s1s2

√
` h
√
`/α.

Property II: 1− δ
poly(k,d) ≤ Ĝ(f) ≤ 1 when |f | ≤ 1−α

2B .

Property III: Ĝ(f) ∈ [0, 1] when 1−α
2B ≤ |f | ≤ 1

2B .

Property IV: 0 ≤ Ĝ(f) ≤ (πBf)−` ≤ δ
poly(k,d) when |f | ≥ 1

2B .

Property V: supp(G) ⊆ [−` · Bα , ` · Bα ].

Property VI: maxt∈R |G(t)| = G(0) ∈ [1−α−δ/(4kd)
B , 1+δ/(4kd)

B ].

Property VII:
∑

i∈ZG(i+ 1/2)2 ≤ (1 + δ
4kd)2 · (1 + 1

d) ·B−1 . B−1.

A.3 Proof of properties

Claim A.5 (Property I of Lemma A.4). The scalar s0 h s1s2

√
` h
√
`/α.

Proof. Recall that the scalar s0 > 0 achieves the normalization Ĝ(0) = 1. By definition,

Ĝ(0) = s0 ·
∫ +∞

−∞

(
sincs1(ξ)

)` · rects2(0− ξ) · dξ

=
s0

s2
·
∫ +s2/2

−s2/2

(
sincs1(ξ)

)` · dξ

=
2s0

s2
·
∫ s2/2

0

(
sincs1(ξ)

)` · dξ

=
2s0

s2
·
∫ s2/2

0

∣∣ sincs1(ξ)
∣∣` · dξ,
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where the second step follows because rects2(ξ) = 1
s2
· I{|ξ| ≤ s2

2 } for any ξ ∈ R (see Definition A.1);
the third step follows because sincs1(ξ) is an even function in ξ ∈ R; and the last step is because
` ∈ N≥1 is an even integer (see Definition A.3).

Given that s1 = 2B
α and s2 = 1

B+B/d and 0 < α ≤ 1
100·(d+1) (see Definition A.3), one can easily

check that 2
πs1
≤ s2

2 . Accordingly, we know from the additivity of integration that

Ĝ(0) =
2s0

s2
·
∫ 2/(πs1)

0
| sincs1(ξ)|` · dξ +

2s0

s2
·
∫ s2/2

2/(πs1)
| sincs1(ξ)|` · dξ

=
2s0

s2
·
∫ 2/(πs1)

0
| sincs1(ξ)|` · dξ

︸ ︷︷ ︸
A1

± 2s0

s2
·
∫ +∞

2/(πs1)
| sincs1(ξ)|` · dξ

︸ ︷︷ ︸
A2

,

where the second step follows because (sincs1(ξ))` ≥ 0 for any ξ ∈ R (note that ` is an even integer;
see Definition A.3), and thus Ĝ(0) · s22s0

is bounded between (A1 −A2) and (A1 +A2).
We will verify respectively in Claims A.13 and A.14 (see Section A.5 for the proofs of both

claims) that A1 h 1
s1
· `−1/2 and A2 = O( 1

s1
· 2−`). Under our choice of ` = Θ(log(kd/δ)), it follows

that A1 � A2 and thus, that

1 = Ĝ(0) h
2s0

s2
·A1 h

s0

s1s2
· `−1/2,

which implies s0 h s1s2

√
` h
√
`/α (since s1 = 2B

α and s2 = 1
B+B/d).

This completes the proof of Claim A.5.

Claim A.6 (Property II of Lemma A.4). 1− δ
poly(k,d) ≤ Ĝ(f) ≤ 1 when |f | ≤ 1−α

2B .

Proof. We first prove the upper-bound part that Ĝ(f) ≤ Ĝ(0) = 1 for any f ∈ R. Since Ĝ(f) is an
even function (see Definition A.3), it suffices to deal with the case that f ≥ 0. By definition,

Ĝ(f)− Ĝ(0) = s0 ·
∫ +∞

−∞
(sincs1(ξ))` ·

(
rects2(f − ξ)− rects2(0− ξ)

)
· dξ

=
s0

s2
·
∫ s2/2+f

−s2/2+f
(sincs1(ξ))` · dξ − s0

s2
·
∫ s2/2

−s2/2
(sincs1(ξ))` · dξ

=
s0

s1s2
·
∫ s1s2/2+s1f

−s1s2/2+s1f
(sinc(ξ))` · dξ − s0

s1s2
·
∫ s1s2/2

−s1s2/2
(sinc(ξ))` · dξ

=
s0

s1s2
·
(∫ s1s2/2+s1f

s1s2/2
−
∫ −s1s2/2+s1f

−s1s2/2

)
(sinc(ξ))` · dξ

=
s0

s1s2
·
(∫ s1s2/2+s1f

s1s2/2
−
∫ s1s2/2

s1s2/2−s1f

)
(sinc(ξ))` · dξ

=
s0

s1s2
·
∫ s1f

0

(
(sinc(

s1s2

2
+ ξ))` − (sinc(

s1s2

2
− ξ))`

)

︸ ︷︷ ︸
A3

·dξ, (60)

where the second step follows because rects2(ξ) = 1
s2
· I{|ξ| ≤ s2

2 } for any ξ ∈ R (see Definition A.1);
the third step is by substitution; the fourth step applies the additivity of integration; the fifth step
follows because sinc(ξ) is an even function in ξ ∈ R; and the last step is by substitution.
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Given Equation (60), it suffices to show that A3 ≤ 0 when ξ ∈ [0, s1f ]. Recall that ` ∈ N≥1

is an even integer, and s1s2
2 = (2B

α ) · ( 1
B+B/d) · 1

2 = 1
100·(d+1)·α · (100 · d) ∈ N≥1 is an integer (see

Definition A.3). Therefore, for any ξ ∈ [0, s1f ] we have

A3 =
∣∣∣sinc(

s1s2

2
+ ξ)

∣∣∣
`
−
∣∣∣sinc(

s1s2

2
− ξ)

∣∣∣
`

=

∣∣sin(π · s1s22 + π · ξ)
∣∣`

∣∣π · s1s22 + π · ξ
∣∣` −

∣∣sin(π · s1s22 − π · ξ)
∣∣`

∣∣π · s1s22 − π · ξ
∣∣`

=
|sin(π · ξ)|`

∣∣π · s1s22 + π · ξ
∣∣` −

|sin(−π · ξ)|`
∣∣π · s1s22 − π · ξ

∣∣`

= |sin(π · ξ)|` ·
(∣∣∣π · s1s2

2
+ π · ξ

∣∣∣
−`
−
∣∣∣π · s1s2

2
− π · ξ

∣∣∣
−`
)

≤ 0,

where the first step follows because ` ∈ N≥1 is an even integer; the third step follows because
| sin(π · ξ)| is a periodic function in ξ ∈ R and its basic period is 1 (notice that s1s2

2 is an integer);
and the fourth step follows because | sin(π · ξ)| is a even function.

To see the lower-bound part, due to the normalization Ĝ(0) = 1, we have

1− Ĝ(f) = Ĝ(0)− Ĝ(f)

=
s0

s1s2
·
∫ s1f

0

((
sinc

(s1s2

2
+ ξ
))`
−
(

sinc
(s1s2

2
− ξ
))`)

· dξ

≤ s0

s1s2
·
∫ s1f

0

∣∣∣sinc
(s1s2

2
+ ξ
)∣∣∣
`
· dξ

≤ s0

s1s2
·
∫ s1f

0

1

π` · |s1s2/2 + ξ|` · dξ

≤ s0

s1s2
· s1f ·

1

π` · (s1s2/2)`

= s0 · (B +B/d) · f ·
(

(d+ 1) · α
π · d

)`

≤ s0 · 2B · f ·
(

(d+ 1) · α
π · d

)`
,

where the second step follows from Equation (60); the third step follows because ` is an even integer
(see Definition A.3), namely (sinc(ξ))` ≥ 0 for any ξ ∈ R; the fourth step is by Part (c) of Fact A.2;
and the sixth step is by s1 = 2B

α and s2 = 1
B+B/d (see Definition A.3).

According to Claim A.5, for some universal constant C0 > 0, we have s0 ≤ C0 ·
√
`/α. Also, as

promised by the concerning claim, |f | ≤ 1−α
2B ≤ 1

2B . Plugging these into the above inequality:

1− Ĝ(f) ≤
(
C0 ·
√
`/α
)
· 2B · 1

2B
·
(

(d+ 1) · α
π · d

)`

= C0 ·
√
` · d+ 1

π · d ·
(

(d+ 1) · α
π · d

)`−1

≤ C0 ·
√
` ·
(

(d+ 1) · α
π · d

)`−1
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≤ C0 ·
√
` ·
(

1

100π · d

)`−1

≤ δ

poly(k, d)
,

where the third step follows because d+1
π·d ≤ 2

π ≤ 1; the fourth step follows because 0 < α ≤ 1
100·(d+1)

(see Definition A.3); and the last step holds for any large enough ` = Θ(log(kd/δ)).
This completes the proof of Claim A.6.

Claim A.7 (Property III of Lemma A.4). Ĝ(f) ∈ [0, 1] when 1−α
2B ≤ |f | ≤ 1

2B .

Proof. The upper-bound part has been shown in the proof of Claim A.6, namely Ĝ(f) ≤ Ĝ(0) = 1
for any f ∈ R. The lower-bound part is trivial, since both functions (sincs1(f))` and rects2(f) are
nonnegative (note that ` ∈ N≥1 is an even integer; see Definition A.3).

This completes the proof of Claim A.7.

Claim A.8 (Property IV of Lemma A.4). 0 ≤ Ĝ(f) ≤ (πBf)−` ≤ δ
poly(k,d) when |f | ≥ 1

2B .

Proof. The lower-bound part has been shown in the proof of Claim A.7, namely ` ∈ N≥1 is an even
integer (see Definition A.3) and thus both functions (sincs1(f))` and rects2(f) are nonnegative.

For the upper-bound part, since Ĝ(f) is an even function, it suffices to handle the case f ≥ 1
2B .

By definition,

Ĝ(f) = s0 ·
∫ +∞

−∞
(sincs1(ξ))` · rects2(f − ξ) · dξ

=
s0

s2
·
∫ f+s2/2

f−s2/2
(sincs1(ξ))` · dξ

=
s0

s2
·
∫ f+s2/2

f−s2/2
| sincs1(ξ)|` · dξ

≤ s0

s2
·
∫ f+s2/2

f−s2/2

1

π` · |s1ξ|`
· dξ,

where the second step follows because rects2(ξ) = 1
s2
· I{|ξ| ≤ s2

2 } for any ξ ∈ R (see Definition A.1);
the third step follows because ` ∈ N≥1 is an even integer (see Definition A.3); and the last step is
by Part (c) of Fact A.2.

Recall Definition A.3 that s2 = 1
B+B/d . Given this and since we assume f ≥ 1

2B , one can easily
check that the above interval of integral is lower bounded by f − s2/2 ≥ f/(d+ 1). Hence,

Ĝ(f) ≤ s0

s2
· s2 ·

1

π` · |s1ξ|`
∣∣∣∣
ξ=f/(d+1)

= s0 ·
(

(d+ 1) · α
2πBf

)`
,

where the second step follows because s1 = 2B
α and s2 = 1

B+B/d . According to Claim A.5, for some
universal constant C0 > 0, we have s0 ≤ C0

√
`/α. As a consequence,

Ĝ(f) ≤ C0 ·
√
`

α
·
(

(d+ 1) · α
2πBf

)`
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≤ C0 · 100 · (d+ 1) ·
√
` · (200πBf)−`

≤ (πBf)−`,

where the second step follows because, given that ` ≥ 1000, the concerning formula C0 ·
√
`
α ·(

(d+1)·α
2πBf )`

is an increasing function when 0 < α ≤ 1
100·(d+1) (see Definition A.3); and the last step, which is

equivalent to C0·100·(d+1)·
√
`

200`
≤ 1, holds for any large enough ` = Θ(log(kd/δ)).

Following the above calculation, for any f ≥ 1
2B we have

Ĝ(f) ≤ (πBf)−` ≤ (π/2)−` ≤ δ

poly(k, d)
,

where the last step holds for any large enough ` = Θ(log(kd/δ)).
This completes the proof of Claim A.8.

Claim A.9 (Property V of Lemma A.4). supp(G) ⊆ [−` · Bα , ` · Bα ].

Proof. Recall that s1 = 2B
α . By definition, the function rects1(t) = 1

s1
· I{|t| ≤ s1

2 } is supported on
the interval t ∈ [− s1

2 ,
s1
2 ], and thus rect∗`s1(t) is supported on t ∈ [−` · s12 , ` · s12 ] = [−` · Bα , ` · Bα ].

Clearly, the later interval contains the support of the function G(t) = s0 · rect∗`s1(t) · sincs2(t).
This completes the proof of Claim A.9.

Claim A.10 (Property VI of Lemma A.4). maxt∈R |G(t)| = G(0) ∈ [1−α−δ/(4kd)
B , 1+δ/(4kd)

B ].

Proof. Observe that Ĝ(ξ) = s0 · (sincs1(f))·` ∗ rects2(f) is an even function in ξ ∈ R, since both
sincs1(ξ) and rects2(ξ) are even functions.

We first prove that maxt∈R |G(t)| = G(0). By the definition of the inverse CFT,
∫ +∞

−∞
Ĝ(ξ) · dξ = G(0) ≤ max

t∈R
G(t) ≤ max

t∈R
|G(t)| .

Also, for any t ∈ R we can derive G(t) from Ĝ(f) via the inverse CFT:

|G(t)| =

∣∣∣∣
∫ +∞

−∞
Ĝ(ξ) · e2πit·ξ · dξ

∣∣∣∣

=

∣∣∣∣
∫ +∞

−∞
Ĝ(ξ) ·

(
cos(2πt · ξ) + i · sin(2πt · ξ)

)
· dξ
∣∣∣∣

=

∣∣∣∣
∫ +∞

−∞
Ĝ(ξ) · cos(2πt · ξ) · dξ

∣∣∣∣

≤
∫ +∞

−∞

∣∣∣Ĝ(ξ)
∣∣∣ ·
∣∣ cos(2πt · ξ)

∣∣ · dξ

≤
∫ +∞

−∞

∣∣∣Ĝ(ξ)
∣∣∣ · dξ

=

∫ +∞

−∞
Ĝ(ξ) · dξ

where the third step follows because Ĝ(ξ) is an even function in ξ ∈ R (see Definition A.3), whereas
sin(2πt · ξ) is an odd function; the fifth step is because | cos(2πt · ξ)| ≤ 1 for any ξ ∈ R; and the last
step follows as Ĝ(ξ) ≥ 0 for any ξ ∈ R (see Claims A.6, A.7 and A.8).
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We conclude from the above that

max
t∈R
|G(t)| =

∫ +∞

−∞
Ĝ(ξ) · dξ = 2 ·

∫ +∞

0
Ĝ(ξ) · dξ = 2 · (A4 +A5 +A6), (61)

where the second step follows as Ĝ(ξ) is an even function in ξ ∈ R; and for the third step we denote
the terms A4 and A5 and A6 as follows:

A4 =

∫ (1−α)/(2B)

0
Ĝ(ξ) · dξ,

A5 =

∫ 1/(2B)

(1−α)/(2B)
Ĝ(ξ) · dξ,

A6 =

∫ +∞

1/(2B)
Ĝ(ξ) · dξ.

Let us quantify the three terms A4 and A5 and A6 respectively:

• A4 ∈ [1−α−δ/(4kd)
2B , 1−α

2B ]. This is because 1− δ
4kd ≤ Ĝ(ξ) ≤ 1 for any ξ ∈ [0, 1−α

2B ] (Claim A.6);
we shall notice that 0 < α ≤ 1

100·(d+1) < 1 and that B > 1 (see Definition A.3).

• A5 ∈ [0, α
2B ]. This is because Ĝ(ξ) ∈ [0, 1] for any ξ ∈ [1−α

2B , 1
2B ] (see Claim A.7).

• A6 ∈ [0, δ/(4kd)
2B ]. Based on Claim A.8, we have 0 ≤ Ĝ(ξ) ≤ (πBξ)−` for any ξ ≥ 1

2B . Then
the lower-bound part A6 ≥ 0 follows immediately. For the upper-bound part, we have

A6 ≤
∫ +∞

1/(2B)
(πBξ)−` · dξ

=
1

πB
·
∫ +∞

π/2
ξ−` · dξ

=
1

2B
· 1

`− 1
· (π/2)−`

≤ δ/(4kd)

2B
,

where the second step is by substitution; the third step is by elementary calculation; and the
last step, given Definition A.3, holds for any large enough ` = Θ(log(kd/δ)).

Applying the above bounds to Equation (61) completes the proof of Claim A.10.

Claim A.11 (Property VII of Lemma A.4).
∑

i∈ZG(i+ 1/2)2 ≤ (1 + δ
4kd)2 · (1 + 1

d) ·B−1 . B−1.

Proof. We first prove by induction that rect∗`s1(t) is an even function and is non-increasing for any
t ≥ 0. Obviously, rects1(t) itself meets the both properties. Given any `′ < `, w.l.o.g. we assume
rect∗`

′
s1 (t) to satisfy the two properties as well. Then for any t ∈ R, it follows that

rect∗`
′+1

s1 (−t) =

∫ +∞

−∞
rects1(−t− τ) · rect∗`

′
s1 (τ) · dτ

=

∫ +∞

−∞
rects1(t+ τ) · rect∗`

′
s1 (−τ) · dτ

= rect∗`
′+1

s1 (t),
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namely rect∗`
′+1

s1 (t) is also an even function. In addition, for any t′ ≥ t ≥ 0 we have

rect∗`
′+1

s1 (t′)− rect∗`
′+1

s1 (t) =

∫ +∞

−∞
rects1(t′ − τ) · rect∗`

′
s1 (τ) · dτ

−
∫ +∞

−∞
rects1(t− τ) · rect∗`

′
s1 (τ) · dτ

= 1/s1 ·
∫ t′+s2/2

t′−s2/2
rect∗`

′
s1 (τ) · dτ − 1/s1 ·

∫ t+s2/2

t−s2/2
rect∗`

′
s1 (τ) · dτ

= 1/s1 ·
∫ t′+s2/2

t+s2/2
rect∗`

′
s1 (τ) · dτ − 1/s1 ·

∫ t′−s2/2

t−s2/2
rect∗`

′
s1 (τ) · dτ

= 1/s1 ·
∫ t′

t

(
rect∗`

′
s1 (τ + s2/2)− rect∗`

′
s1 (τ − s2/2)

)
· dτ

≤ 0,

where the second step follows since rects1(ξ) = 1
s1
· I{|ξ| ≤ s1

2 } for any ξ ∈ R (see Definition A.1);
the third step is by the additivity of integration; the fourth step is by substitution; and the last step
uses our induction hypotheses that rect∗`

′
s1 (t) is an even function and is non-increasing when t ≥ 0.

Thus, rect∗`
′+1

s1 (t) also meets the properties, and our claim follows by induction.
Further, it is easy to see that rect∗`s1(t) is a non-negative function. Put everything together:

max
τ∈R

{
s2

0 · rect∗`s1(τ)2
}

= s2
0 · rect∗`s1(0)2

= G(0)2/ sincs2(0)2

= G(0)2

≤
(
1 + δ/(4kd)

)2 ·B−2,

where the third step follows because sincs1(0) = 1 (see Definition A.1); and the fourth step follows
from Claim A.10.

For any t ∈ R, we infer from the above that

G(t)2 = s2
0 · rect∗`s1(t)2 · sincs2(t)2

≤ max
τ∈R

{
s2

0 · rect∗`s1(τ)2
}
· sincs2(t)2

≤
(
1 + δ/(4kd)

)2 ·B−2 · sincs2(t)2

Further, given that s2 = 1
B+B/d < 1 (see Definition A.3), we have

∑

i∈Z
G(i+ 1/2)2 ≤

(
1 + δ/(4kd)

)2 ·B−2 ·
∑

i∈Z
sinc1/(B+B/d)(i+ 1/2)2

=
(
1 + δ/(4kd)

)2 ·B−2 · (B +B/d)

=
(
1 + δ/(4kd)

)2 · (1 + 1/d) ·B−1,

where the second step, which is equivalent to
∑+∞

i=0 sinc1/(B+B/d)(i + 1/2)2 = B + B/d, can be
directly inferred from [BJP73, Equation (1)].

This completes the proof of Claim A.11.
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A.4 Construction and properties of standard window function (G′(t), Ĝ′(f))

We associate the building-block function with the standard window function (G′(t), Ĝ′(f))[B, δ, α, `]
(similar to the ones used in [HIKP12a, HIKP12b]), which is more convenient for our later use.

Lemma A.12 (Standard window function in a single dimension). Consider the building-block func-
tion (G(t), Ĝ(f))[B, δ, α, `] given in Definition A.3, there exists another function (G′(t), Ĝ′(f)) such
that:

Property I: Ĝ′(f) = 1 when |f | ≤ 1−α
2B .

Property II: Ĝ′(f) ∈ [0, 1] when 1−α
2B ≤ |f | ≤ 1

2B .

Property III: Ĝ′(f) = 0 when |f | ≥ 1
2B .

Property IV: ‖Ĝ′ − Ĝ‖∞ = maxf∈R |Ĝ′(f)− Ĝ(f)| ≤ δ
poly(k,d) .

Proof. We define Ĝ′(f) as follows; note that, similar to Ĝ(f), this is also an even function:

Ĝ′(f) =





1, ∀|f | ≤ 1−α
2B ;

Ĝ(f), ∀|f | ∈
(

1−α
2B , 1

2B

]
;

0, ∀|f | > 1
2B .

By construction, Properties I and III follows directly. Further, Property II follows from Property III
of Lemma A.4, and Property IV follows from Properties II to IV of Lemma A.4.

This completes the proof of Lemma A.12.

A.5 Facts

The following facts are helpful in proving Claim A.5.

Claim A.13.
∫ 2/(πs1)

0
(sincs1(ξ))` · dξ h 1

s1
· `−1/2.

Proof. Let i∗ = d2/π ·
√
`/8e− 1. We safely that assume ` = Θ(log(kd/δ)) is an integer larger than

1000 (see Definition A.3), which guarantees the following facts:

(a): The integrand (sincs1(ξ))` ≥ 0 for any ξ ∈ R;

(b): i∗ ≥ 2/π ·
√
`/8− 1 ≥ 2/π ·

√
1000/8− 1 ≈ 6.118 ≥ 6.

(c): i∗ ·
√

8/` ≤ 2/π ·
√
`/8 ·

√
8/` = 2/π;

(d): (i∗ + 1) ·
√

8/` ≥ 2/π ·
√
`/8 ·

√
8/` = 2/π; and

(e): (i∗ + 1) ·
√

8/` ≤ (2/π ·
√
`/8 + 1) ·

√
8/` ≤ 2/π +

√
8/1000 ≈ 2.281

π ≤ 2.3
π .

These facts are useful in proving the current claim.
For the upper-bound part, we have

∫ 2/(πs1)

0
(sincs1(ξ))` · dξ =

1

s1
·
∫ 2/π

0
(sinc(ξ))` · dξ
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=
1

s1
·
∫ 2/π

0
| sinc(ξ)|` · dξ

≤ 1

s1
·
∫ (i∗+1)·

√
8/`

0
| sinc(ξ)|` · dξ

=
1

s1
·
i∗∑

i=0

∫ (i+1)·
√

8/`

i·
√

8/`
| sinc(ξ)|` · dξ, (62)

where the first step is by substitution; the second step by because ` ∈ N≥1 is an even integer (see
Definition A.3); the third step follows from the above Fact (d); and the last step follows from the
additivity of integration.

Given the above Fact (e), the whole interval of integral ξ ∈ [0, (i∗ + 1) ·
√

8/`] is a subset of
ξ ∈ [0, 2.3

π ], namely Parts (b) of Fact A.2 is applicable here. In particular, each i-th summand in
Equation (62) equals

∫ (i+1)·
√

8/`

i·
√

8/`
| sinc(ξ)|` · dξ ≤

∫ (i+1)·
√

8/`

i·
√

8/`

(
1− π2/8 · ξ2

)` · dξ

≤
∫ (i+1)·

√
8/`

i·
√

8/`

(
1− π2i2/`

)` · dξ

=
√

8/` ·
(
1− π2i2/`

)`

≤
√

8/` · e−π2·i2 , (63)

where the first step is follows from Parts (b) of Fact A.2; the second step is because 1− π2/8 · t2 ≤
(1− π2/8 · t2)|

t=i·
√

8/`
= 1− π2i2/`; and the last step is by 0 ≤ 1− 1

x ≤ e−x for any x ∈ (0, 1).
Applying Equation (63) to Equation (62) over all i ∈ [0 : i∗] results in

∫ 2/(πs1)

0
(sincs1(ξ))` · dξ ≤ 1

s1
·
i∗∑

i=0

√
8/` · e−π2·i2

≤ 1

s1
·
√

8/` ·
+∞∑

i=0

e−π
2·i2

≤ 1

s1
·
√

8/` ·
+∞∑

i=0

1

(1 + i)2

=
1

s1
·
√

8/` · π
2

6

≤ 5/s1 · `−1/2,

where the third step is because e−π2·i2 ≤ e−2i ≤ e−2 ln(1+i) = (1 + i)−2 for each i ∈ N≥0; and the
last step is because

√
8 · π2/6 ≈ 4.6526 < 5.

Further, we can infer the lower-bound part as follows:
∫ 2/(πs1)

0
(sincs1(ξ))` · dξ =

1

s1
·
∫ 2/π

0
(sinc(ξ))` · dξ

=
1

s1
·
∫ 2/π

0
| sinc(ξ)|` · dξ
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≥ 1

s1
·
∫ i∗·
√

8/`

0
| sinc(ξ)|` · dξ

≥ 1

s1
·
∫ √8/`

0
| sinc(ξ)|` · dξ, (64)

where the first step is by substitution; the second step by because ` ∈ N≥1 is an even integer (see
Definition A.3); the third step follows from the Fact (c) given in the beginning of this proof; and
the last step is due to the above Fact (b) that i∗ ≥ 6 > 1.

Under the assumption ` ≥ 1000, we have 0 < π2/6 · ξ2 ≤ π2/6 · 8
` ≤ π2/6 · 8

1000 ≈ 0.013 ≤ 1 for
any ξ ∈ [0,

√
8/`]. Then for any ξ ∈ [0,

√
8/`] we have

| sinc(ξ)|` ≥
(
1− π2/6 · ξ2

)`

≥
(

1− π2/6 · 8

`

)`

≥
(

1− π2/6 · 8

1000

)1000

=
(
1− π2/750

)1000
, (65)

where the first step is by Part (a) of Fact A.2; and the third step is because 0 ≤ π2/6 · 8
` ≤ 1 and

that y = (1− z)1/z is a decreasing function for any z ∈ (0, 1).
Plugging Equation (65) back into Equation (64) results in

∫ 2/(πs1)

0
(sincs1(ξ))` · dξ ≥ 1

s1
·
√

8/` ·
(
1− π2/750

)1000 ≥ 1/218 · 1

s1
· `−1/2,

where the last step follows from elementary calculation.
This completes the proof of Claim A.13.

Claim A.14.
∫ +∞

2/(πs1)
(sincs1(ξ))` · dξ = O(

1

s1
· 2−`).

Proof. We check the claim as follows:
∫ +∞

2/(πs1)
(sincs1(ξ))` · dξ =

∫ +∞

2/(πs1)
|sincs1(ξ)|` · dξ

≤
∫ +∞

2/(πs1)

1

π` · |s1ξ|`
· dξ

=
1

πs1
·
∫ +∞

2
ξ−` · dξ

=
1

πs1
· 2

`− 1
· 2−`

= O
( 1

s1
· 2−`

)
,

where the first step is because ` ∈ N≥1 is an even integer (see Definition A.3); the second step is by
Part (c) of Fact A.2; and the third step is by substitution.

This completes the proof of Claim A.14.
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B Filter, permutation and hashing in a single dimension

In this section, we first construct our single-dimensional filter function (G(t), Ĝ(f)) and investigate
several properties of it, based on the building-block function (G(t), Ĝ(f)) introduced in Section A.
In particular:

• Sections B.1 to B.3. We first leverage the function (G(t), Ĝ(f)) introduced in Definition A.3
to construct our ultimate single-dimensional filter (G(t), Ĝ(f)), and then prove the properties
of this filter (by applying Lemma A.4 and extra arguments).

• Section B.4. We associate the filter (G(t), Ĝ(f)) with another standard window (G′(t), Ĝ′(f))
(in a manner similar to Lemma A.12), which is more convenient for our later use.

B.1 Construction of filter (G(t), Ĝ(f))

Definition B.1 (The single-dimensional filter). Recall the parameters defined in Definition A.3:

• The number of bins in a single dimension B = Θ(d · k1/d) is a certain multiple of d ∈ N≥1.

• The noise level parameter δ ∈ (0, 1).

• α = Θ(1/d) is chosen such that 1
100·(d+1)·α ∈ N≥1 is an integer; clearly α ≤ 1

100·(d+1) ≤ 1
200 .

• s1 = 2B
α and s2 = 1

B+B/d .

• ` = Θ(log(kd/δ)) is an even integer. We safely assume ` ≥ 1000.

Further, the width parameter W = Θ( F
Bη ) is chosen to be a sufficiently large integer. Based on the

building-block function (G(t), Ĝ(f)) given in Definition A.3, for i ∈ Z, define the shifted function

Ĝi(f) := Ĝ(f + i),

Gi(t) :=

∫ +∞

−∞
Ĝi(ξ) · e2πit·ξ · dξ.

Then for any t, f ∈ R the single-dimensional filter (G(t), Ĝ(f)) is given by

Ĝ(f) = e
− δ

poly(k,d) ·
∑

i∈[−W :W ]

Ĝi(f),

G(t) =

∫ +∞

−∞
Ĝ(ξ) · e2πit·ξ · dξ.

B.2 Properties of filter (G(t), Ĝ(f))

Later we will employ another slightly different filter (G(t), Ĝ(f)), just by shifting the one given in
Definition B.1. For ease of presentation, the following Lemma B.2 is stated for the shifted filter,
but we show in Section B.3 the counterpart claims for the unshifted filter.

Lemma B.2 (The single-dimensional filter). The filter (G(t), Ĝ(f))[B, δ, α, `,W ] given in Defini-
tion B.1 satisfies the following (as Figure 20 illustrates):

Property I: e−
δ

poly(k,d) ≤ Ĝ(f) ≤ 1 when |f − i| ≤ 1−α
2B for some integer |i| ≤W .
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Ĝ(f)

A−1

B−1

A0

B0

A1

B1

A−W

B−WB−(W+1)

· · ·

AW

BWBW B(W+1)

· · ·

11/B

Figure 20: Demonstration for Lemma B.2. Bi = [i − 1/(2B), i + 1/(2B)] and Ai = [i − (1 −
α)/(2B), i+ (1− α)/(2B)]. Intuitively, Ĝ(f) has 2W + 1 “peaks” near the 2W + 1 integers, where
its value is very close 1. And its value drops very quickly and oscillates near 0 outside the “peaks”.

Property II: 0 ≤ Ĝ(f) ≤ 1 when 1−α
2B ≤ |f − i| ≤ 1

2B for some integer |i| ≤W .

Property III: 0 ≤ Ĝ(f) ≤ δ
poly(k,d) when |f − i| ≥ 1

2B for any integer |i| ≤W .

Property IV: G(t) = (2W + 1) · e−
δ

poly(k,d) ·G(t) · sinc(2W+1)(t+1/2)

sinc(t+1/2) for any t ∈ R.

Property V: supp(G) ⊆ supp(G) ⊆ [−` · Bα , ` · Bα ].

Property VI:
∑

i∈Z G(i)2 = e
− δ

poly(k,d) ·∑i∈ZG(i)2 ≤ (1 + 2
d) ·B−1.

Remark B.3. The function values G(i) are the scaling coefficients for our samples in the time
domain. In fact, we just need the values G(i) at a few fixed points. Thus, we can calculate and store
those effective coefficients before the sampling process.

B.3 Proof of properties

Recall that eδ/(4kd) ·Ĝ(f) =
∑

i∈[−W :W ] Ĝi(f) (see Definition B.1) and, that every summand function
Ĝi(f) has an axis of symmetry f = −i (see Definition A.3). The next Claim B.4 suggests that, at
any f ∈ R, the value eδ/(4kd) · Ĝ(f) is dominated by one particular summand Ĝi∗(f), and the other
2W summands are negligibly small. Given this observation, we can easily conclude Properties I to
III of Lemma B.2 from Properties II to IV of Lemma A.4.

Claim B.4 (Auxiliary result for Lemma B.2). Given any f ′ ∈ R, let i∗ = argmini∈[−W :W ]|f ′ + i|
be the particular summand function Ĝi(f) with the closest-to-f ′ axis of symmetry, then

0 ≤ e
δ

poly(k,d) · Ĝ(f ′)− Ĝi∗(f ′) =
∑

i∈[−W :W ]\{i∗}

Ĝi(f
′) ≤ δ

poly(k, d)
.

Proof. The first part
∑

i∈[−W :W ]\{i∗} Ĝi(f
′) ≥ 0 follows because each summand function Ĝi(f ′) is

non-negative (see Properties II to IV of Lemma A.4).
We now show the second part

∑
i∈[−W :W ]\{i∗} Ĝi(f) ≤ δ/(4kd). Clearly, the summand functions

Ĝi(f) have axes of symmetry f = −i ∈ [−W : W ] (see Definition B.1). Since f = −i∗ is the axis
closet to f ′, the distances between f ′ and either the left-hand-side axes (i.e. f = −i ≤ −i∗ − 1) or
the right-hand-side axes (i.e. f = −i ≥ −i∗+ 1) are at least (1− 1

2), (2− 1
2), (3− 1

2), · · · . Further,
when the distance between f ′ and an axis f = −i is at least j − 1

2 ≥
j
2 ≥ 1

2B (for some j ∈ N≥1;
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recall Definition B.1 that B = Θ(d · k1/d) is the number of bins in a single dimension), it follows
from Property IV of Lemma A.4 that

Ĝi(f
′) ≤ (πB · (j − 1/2)

)−`

≤
(
πB · j/2)−`. (66)

Take all of the 2W remaining summands i ∈ [−W : W ] \ {i∗} into account:
∑

i∈[−W :W ]\{i∗}

Ĝi(f
′) ≤

∑

i∈Z\{i∗}

Ĝi(f
′)

≤ 2 ·
∑

j∈N≥1

(πB · j/2)−`

≤ δ

poly(k, d)
,

where the first step follows because each summand function Ĝi(f ′) is non-negative (see Properties II
to IV of Lemma A.4); the second step follows from Inequality 66; and the last step holds whenever
B = Θ(d · k1/d) and ` = Θ(log(kd/δ)) are large enough.

This completes the proof of Claim B.4.

Claim B.5 (Property I of Lemma B.2). e−
δ

poly(k,d) ≤ Ĝ(f) ≤ 1 when |f − i| ≤ 1−α
2B for some integer

|i| ≤W .

Proof. We let i∗ = argmini∈[−W :W ]|f + i| index the summand function with the closest-to-f axis of
symmetry. For the lower-bound part, we observe that

Ĝ(f) = e
− δ

poly(k,d) ·
∑

i∈[−W :W ]

Ĝi(f)

≥ e
− δ

poly(k,d) · Ĝi∗(f)

≥ e
− δ

poly(k,d) ·
(
1− δ

poly(k, d)

)

≥ e
− δ

poly(k,d) ,

where the first step follows from Claim B.4; the third step applies Property II of Lemma A.4; and
the last step is because 1− z/4 ≥ e−3z/4 for any z ∈ [0, 1] (recall Definition B.1 that the noise level
parameter 0 < δ < 1).

In addition, for the upper-bound part we have

Ĝ(f) = e
− δ

poly(k,d) · Ĝi∗(f) + e
− δ

poly(k,d) ·
∑

i∈[−W :W ]\{i∗}

Ĝi(f)

≤ e
− δ

poly(k,d) · 1 + e
− δ

poly(k,d) · δ

poly(k, d)

≤ 1,

where the second step applies Property II of Lemma A.4 (to the first term) and Claim B.4 (to the
second term); and the last step is because 1 + z ≤ ez for any z ≥ 0.

This completes the proof of Claim B.5.
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Claim B.6 (Property II of Lemma B.2). 0 ≤ Ĝ(f) ≤ 1 when 1−α
2B ≤ |f − i| ≤ 1

2B for some integer
|i| ≤W .

Proof. The first part Ĝ(f) ≥ 0 follows because each summand function Ĝi(f) is non-negative (see
Properties II to IV of Lemma A.4). For the upper-bound part, by definition we have

Ĝ(f) = e
− δ

poly(k,d) · Ĝi∗(f) + e
− δ

poly(k,d) ·
∑

i∈[−W :W ]\{i∗}

Ĝi(f)

≤ e
− δ

poly(k,d) · 1 + e
− δ

poly(k,d) · δ

poly(k, d)

≤ 1,

where the second step applies Property III of Lemma A.4 (to the first term) and Claim B.4 (to the
second term); and the last step is because 1 + z ≤ ez for any z ≥ 0.

This completes the proof of Claim B.6.

Claim B.7 (Property III of Lemma B.2). 0 ≤ Ĝ(f) ≤ δ
poly(k,d) when |f − i| ≥ 1

2B for any integer
|i| ≤W .

Proof. The first part Ĝ(f) ≥ 0 has been justified in the proof of Claim B.6. For the upper-bound
part, by definition we have

Ĝ(f) = e
− δ

poly(k,d) · Ĝi∗(f) + e
− δ

poly(k,d) ·
∑

i∈[−W :W ]\{i∗}

Ĝi(f)

≤ e
− δ

poly(k,d) · δ

poly(k, d)
+ e
− δ

poly(k,d) · δ

poly(k, d)

≤ δ

poly(k, d)
,

where the second step applies Property IV of Lemma A.4 (to the first term) and Claim B.4 (to the
second term); and the last step follows from elementary calculation.

This completes the proof of Claim B.7.

Claim B.8 (Property IV of Lemma B.2). G(t) = (2W + 1) · e−
δ

poly(k,d) · G(t) · sinc(2W+1)(t)

sinc(t) for any
t ∈ R.

Proof. For convenient, in this proof we ignore the 0
0 issue; this can be easily remedied by applying

L’Hospital’s rule. According to the definition of the inverse CFT,

G(t) =

∫ +∞

−∞
Ĝ(ξ) · e2πit·ξ · dξ

= e
− δ

poly(k,d) ·
∑

i∈[−W :W ]

∫ +∞

−∞
Ĝ(ξ + i) · e2πit·ξ · dξ

= e
− δ

poly(k,d) ·
∑

i∈[−W :W ]

e−2πit·i ·
∫ +∞

−∞
Ĝ(ξ + i) · e2πit·(ξ+i) · dξ

= e
− δ

poly(k,d) ·
∑

i∈[−W :W ]

e−2πit·i ·
∫ +∞

−∞
Ĝ(ξ) · e2πit·ξ · dξ
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= e
− δ

poly(k,d) ·G(t) ·
∑

i∈[−W :W ]

e−2πit·i,

where the second step is by Definition B.1; the fourth step is by substitution; and the last step is
by the definition of the CFT.

It remains to calculate the sum of the geometric sequence
∑

i∈[−W :W ] e
−2πi·(t+1/2)·i. Concretely,

for any τ ∈ R we have

∑

i∈[−W :W ]

e−2πit·i = e2πit·W ·
(

1− e−2πit·(2W+1)

1− e−2πit

)

= e2πit·W ·
(
e−πit·(2W+1)

e−πit
· e

πit·(2W+1) − e−πit·(2W+1)

eπit − e−πit

)

=
eπit·(2W+1) − e−πit·(2W+1)

eπit − e−πit

=
2i · sin

(
πt · (2W + 1)

)

2i · sin(πt)

=
sinc(2W+1)(t)

sinc(t)
· (2W + 1),

where the fourth step is by Euler’s formula (note that cos(z) is an even function while sin(z) is an
odd function); and the last step follows from Definition A.1.

Combining everything together completes the proof of Claim B.8.

Claim B.9 (Property V of Lemma B.2). supp(G) ⊆ supp(G) ⊆ [−` · Bα , ` · Bα ].

Proof. By Claim B.8, the filter G(t) = (2W + 1) · e−
δ

poly(k,d) ·G(t) · sinc(2W+1)(t)

sinc(t) has the same support
as the function G(t). Thus we immediately infer this claim from Property V of Lemma A.4.

Claim B.10 (Property VI of Lemma B.2). It follows that
∑

i∈Z
G(i+ 1/2)2 = e

− δ
poly(k,d) ·

∑

i∈Z
G(i+ 1/2)2 ≤ (1 + 2/d) ·B−1.

Proof. The second part of the claim is a direct follow-up to Property VII of Lemma A.4. That is,

e
− δ

poly(k,d) ·
∑

i∈Z
G(i+ 1/2)2 ≤ e

− δ
poly(k,d) ·

(
1 +

δ

4kd

)2

·
(

1 +
1

d

)
·B−1

≤ (1 + 2/d) ·B−1,

where the first step follows from Property VII of Lemma A.4; and the last step applies the fact that
e−z · (1 + z) ≤ 1 for any z ∈ R≥0.

To see the first part, it suffices to show that

|G(i+ 1/2)| = e
− δ

poly(k,d) · |G(i+ 1/2)|,∀i ∈ Z.

Based on Claim B.8, this equation is equivalent to
∣∣∣(2W + 1) ·

sinc(2W+1)(i+ 1/2)

sinc(i+ 1/2)

∣∣∣ = 1.
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Ĝ′(f)

A−1

B−1

A0

B0

A1

B1

A−W

B−WB−(W+1)

· · ·

AW
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· · ·
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Figure 21: Demonstration for Lemma B.11. Bi = [i − 1/(2B), i + 1/(2B)] and Ai = [i − (1 −
α)/(2B), i+ (1−α)/(2B)]. Intuitively, Ĝ′(f) has 2W + 1 “peaks”, where its value is exactly 1. And
its value drops to 0 very quickly outside the “peaks”.

According to Definition A.1, we have

∣∣∣∣(2W + 1) ·
sinc(2W+1)(i+ 1/2)

sinc(i+ 1/2)

∣∣∣∣ =

∣∣∣∣∣
sin
(
π · (2W + 1) · (i+ 1/2)

)

sin
(
π · (i+ 1/2)

)
∣∣∣∣∣

=

∣∣∣∣∣
sin
(
π · (2i ·W +W + i) + π/2

)

sin(π · i+ π/2)

∣∣∣∣∣

=

∣∣∣∣
(−1)2i·W+i+W

(−1)i

∣∣∣∣
= 1,

where the third step follows because both (2i ·W + W + i) and i are integers; thus we can apply
certain properties of the sin(z) function.

This completes the proof of Claim B.10.

B.4 Construction and properties of standard window (G′(t), Ĝ′(f))

Now we associate the filter (G(t), Ĝ(f)) introduced in Definition B.1 with another standard window
(G′(t), Ĝ′(f)) (in a manner similar to Lemma A.12), which is more convenient for our later use.

Lemma B.11 (The single-dimensional standard window). For the filter (G(t), Ĝ(f)) given in Def-
inition A.3, there exists another function (G′(t), Ĝ′(f)) such that(as Figure 21 illustrates):

Property I: Ĝ′(f) = 1 when |f − i| ≤ 1−α
2B for some integer |i| ≤W .

Property II: Ĝ′(f) ∈ [0, 1] when 1−α
2B ≤ |f − i| ≤ 1

2B for some integer |i| ≤W .

Property III: Ĝ′(f) = 0 when |f − i| ≥ 1
2B for any integer |i| ≤W .

Property IV: ‖Ĝ′ − Ĝ‖∞ = maxf∈R |Ĝ′(f)− Ĝ(f)| ≤ δ
poly(k,d) .

Proof. Recall Definition B.1 for the parameters B, δ, α, ` and W . We define the single-dimensional
standard window Ĝ′(f) as follows:

• Ĝ′(f) = 1 when |f − i| ≤ 1−α
2B for some integer |i| ≤W ;

• Ĝ′(f) = Ĝ(f) when 1−α
2B ≤ |f − i| ≤ 1

2B for some integer |i| ≤W ; and
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• Ĝ′(f) = 0 when |f − i| ≥ 1
2B for any integer |i| ≤W .

By construction, Properties I and III follows directly. Further, Property II follows from Property II
of Lemma B.2, and Property IV can be inferred from Properties I to III of Lemma B.2.

This completes the proof of Lemma B.11.
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