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Abstract

The well-known trace reconstruction problem is the problem of inferring an unknown source
string x ∈ {0, 1}n from independent “traces”, i.e. copies of x that have been corrupted by a
δ-deletion channel which independently deletes each bit of x with probability δ and concatenates
the surviving bits. The current paper considers the extreme data-limited regime in which only a
single trace is provided to the reconstruction algorithm. In this setting exact reconstruction is of
course impossible, and the question is to what accuracy the source string x can be approximately
reconstructed.

We give a detailed study of this question, providing algorithms and lower bounds for the
high, intermediate, and low deletion rate regimes in both the worst-case (x is arbitrary) and
average-case (x is drawn uniformly from {0, 1}n) models. In several cases the lower bounds we
establish are matched by computationally efficient algorithms that we provide.

We highlight our results for the high deletion rate regime: roughly speaking, they show that

• Having access to a single trace is already quite useful for worst-case trace reconstruction:
an efficient algorithm can perform much more accurate reconstruction, given one trace
that is even only a few bits long, than it could given no traces at all. But in contrast,

• in the average-case setting, having access to a single trace is provably not very useful: no
algorithm, computationally efficient or otherwise, can achieve significantly higher accuracy
given one trace that is o(n) bits long than it could with no traces.
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1 Introduction

The trace reconstruction problem [Kal73, Lev01b, Lev01a, BKKM04] is one of the oldest and most
basic algorithmic problems involving the deletion channel. In this problem the goal of the recon-
struction algorithm is to infer an unknown n-bit source string x ∈ {0, 1}n given access to a source of
independent “traces” of x, where a trace of x is a draw from Delδ(x). Here Delδ(·) is the “deletion
channel,” which independently deletes each bit of x with probability δ and outputs the concatena-
tion of the surviving bits. The goal of the reconstruction algorithm is to correctly reconstruct the
source string x using as few traces and as little computation time as possible.

A surge of recent work [MPV14, DOS17, NP17, PZ17, HPP18, HHP18, BCF+19, BCSS19,
Cha21a, KMMP19, HPPZ19, Cha21b, NR21, CDL+21b, CDL+21a, CP21, CDL+22] has addressed
many different aspects and variants of the trace reconstruction problem. The version described
above corresponds to a “worst-case” setting, since the n-bit source string can be completely ar-
bitrary; despite intensive research [HMPW08, DOS17, NP17, Cha21b], the best algorithm known
for this problem, for constant deletion rate δ, requires exp(Õ(n1/5)) traces. Many papers such as
[MPV14, PZ17, HPP18, BCSS19, HPPZ19, Cha21a, CDL+21b] have also considered an “average-
case” version of the problem in which the source string x ∼ {0, 1}n is assumed to be a uni-
form random n-bit string; this average-case problem is known to be significantly easier than
the worst-case problem (we refer the reader to [HPPZ19, Cha21a] for state-of-the-art algorith-
mic results and lower bounds on average-case trace reconstruction at constant deletion rates).
Other problem variants which have been studied include “population recovery” versions in which
there is a distribution over source strings rather than a single unknown source string [BCF+19,
BCSS19, NR21]; the “low deletion rate” (δ = on(1)) and “high deletion rate” (δ = 1 − on(1))
settings [BKKM04, HMPW08, MPV14, BCF+19, NR21]; and approximate trace reconstruction
[SDDF18, DRRS21, SB21, GSZ21, CP21, CDK21, CDL+22], in which the goal is only to obtain an
approximate rather than an exact reconstruction of the unknown source string x, and which is the
focus of the current work.

Prior work on approximate reconstruction from few traces. The best algorithms known
for even the easiest versions of exact trace reconstruction, such as the δ = O(1/ log n), average-case
problem setting considered by [BKKM04], typically require a number of traces that grows with
n to achieve exact reconstruction.1 An attractive feature of the recent works [CP21, CDL+22] is
that they give provable performance guarantees for approximate trace reconstruction even when
only constantly many traces are available. In more detail, [CDL+22] gave near-matching upper and
lower bounds on the best possible reconstruction accuracy that any algorithm can achieve given
M = O(1/δ) traces from Delδ(x) in the average-case setting. [CP21] showed that for any constants
δ, ε, there is some constant M = M(ε, δ) such that an M -trace algorithm can achieve reconstruction
error at most ε given traces from Delδ(x) in the average-case setting.2

Results such as [CP21, CDL+22], which shed light on what can be achieved given constantly
many traces, can be particularly valuable in settings where only a severely limited number of
traces are available and the goal is to do as well as possible with the data at hand. Such settings
motivate the present paper, which, as we now describe, studies trace reconstruction in the ultimate
data-constrained regime.

1Indeed, at deletion rate δ = O(1/ log n), it is easy to see that given a sample of o( log n

log log n
) traces, with high

probability there will be coordinates of the source string that are deleted from all of the traces in the sample.
2Several other recent papers [SDDF18, DRRS21, GSZ21, CDK21, SB21] have also studied approximate trace

reconstruction, but focusing on different aspects that make them less relevant to the present paper; see [CDL+22] for
a detailed discussion of those works.
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This work: Approximate reconstruction from a single trace. We consider the problem of
recovering an unknown n-bit source string x as accurately as possible given only a single trace from
Delδ(x). Despite the simplicity and naturalness of this problem, it does not seem to have been
considered in prior work.

We give a detailed study of this problem, analyzing both the worst-case setting of an arbitrary
unknown source string x as well as the average-case setting of a uniform random x ∼ {0, 1}n. In each
of these settings we consider both the low (δ = on(1)), medium (δ = Θ(1)), and high (δ = 1−on(1))
deletion rate regimes. In a number of cases we give upper bounds on the approximate reconstruction
accuracy that any one-trace algorithm can achieve, which are essentially matched by corresponding
one-trace algorithms that we provide. (All of the algorithms we give are computationally efficient.)
For some problem variants our upper bounds on the best achievable accuracy extend beyond one-
trace algorithms to algorithms that receive multiple traces.

We view our results as a first investigation of one-trace reconstruction, and reiterate that very
little was previously known for any of the problem variants that we consider. We describe the state
of prior knowledge in the context of different specific problem variants when describe our results in
Section 1.1 below.

1.1 Our results

We are interested in the abilities and limitations of algorithms A which receive as input a single trace
y from an unknown n-bit source string x and which output an n-bit hypothesis string x̂ = A(y).
We measure the accuracy of x̂ with respect to x by the length of the longest common subsequence
|LCS(x, x̂)|. LCS is closely related to edit distance, since if |LCS(x, x̂)| = n− k for two n-bit strings
x and x̂, then x̂ can be converted into x by a sequence of k deletions and k insertions (and this is
best possible). The goal of an approximate reconstruction algorithm in this setting is to output a
hypothesis string x̂ for which the expectation3 of |LCS(x, x̂)| is guaranteed to be as large as possible;
thus positive (algorithmic) results in our setting yield lower bounds on how large an expected value
of |LCS(x, x̂)| can be achieved, while impossibility results for algorithms give upper bounds on the
best achievable expected |LCS(x, x̂)|.

As alluded to earlier, we consider both the setting of a worst-case (arbitrary) x ∈ {0, 1}n and
the setting of a uniform random x ∼ {0, 1}n. We note that algorithmic results (lower bounds on
E[|LCS(x, x̂)|] for the worst-case setting carry over to the average-case setting, while impossibility
results (upper bounds on E[|LCS(x, x̂)|]) for the average-case setting carry over to the worst-case
setting.

Section 1.1.1 presents our results for the worst-case setting and Section 1.1.2 presents our results
for the average-case setting. In each of these sections we first present our results (upper and lower
bounds) for the high and medium deletion rate regimes, and then the low deletion rate regime.

1.1.1 Worst-case one-trace reconstruction

We first consider the high deletion rate regime. It is convenient to let ρ := 1−δ denote the retention
rate, so in the high deletion rate regime we have ρ = o(1).

If ρ is too small (as a function of n) then it is easy to see that no nontrivial performance is
possible. In particular, if ρ = o(1/n), then by Markov’s inequality with probability 1− o(1) a trace
y ∼ Delδ(x) is zero bits long, and in this case a reconstrution algorithm cannot even distinguish

3In the worst-case setting this expectation is over the random draw of the trace y from Delδ(x); in the average-case
setting, this expectation is also over the uniform random draw of the source string x ∼ {0, 1}n. We give more details
and a precise formulation in Section 2.2.
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between the two possibilities x = 0n and x = 1n. Consequently, if ρ = o(1/n) then the largest
expected LCS achievable by a one-trace algorithm is at most (1/2 + on(1))n (and n/2 is trivially
achieved by outputting any string with an equal number of 0’s and 1’s).

Our first positive result shows that — perhaps surprisingly — if ρ is only slightly larger, then
it is already possible to do much better than the above trivial bound:

Theorem 1 (Worst-case algorithm, small retention rate, informal statement). For any ρ = ω(log(n)/n),
there is a worst-case one-trace algorithm that achieves expected LCS at least (2/3 − o(1))n. More-
over, for any retention rate ρ ≥ ω(1/n1/3), there is a worst-case one-trace algorithm that achieves
expected LCS at least (2/3 + cρ)n, where c > 0 is an absolute constant.

The key to Theorem 1 is a (to the best of our knowledge novel) notion of an LCS-cover, and
a simple construction of an extremely small LCS-cover consisting of just two strings. This already
suffices to give the first sentence of Theorem 1; the second sentence, improving the LCS bound to
(2/3 + cρ), is obtained via a win-win analysis which considers whether or not the single received
trace has many “long runs”. Roughly speaking, if the trace has many long runs then this indicates
that the source string x is highly structured in a way (containing many long segments that are
almost all-0 or almost all-1) that makes it easy to achieve a large LCS, and if the trace has few
long runs then the source string x must have many 01 alternations, which can be leveraged to get
an LCS larger than 2n/3.

Theorem 1 can be viewed as saying that having a log n-bit trace already makes it possible to
achieve an LCS of at least (2/3 − o(1))n. Complementing Theorem 1, we show that even having a
n0.999-bit trace does not make it possible to achieve an LCS of (2/3 + c)n for any c > 0:

Theorem 2 (Worst-case upper bound on any algorithm, small retention rate, informal statement).
Fix any ε > 0. For retention rate ρ = 1/nε, no one-trace algorithm can achieve expected LCS
greater than (2/3 + o(1))n in the worst-case setting.

See Theorem 19 for a detailed theorem statement, which extends Theorem 2 to give an upper
bound on the performance of algorithms that receive multiple traces. Theorem 2 leverages a recent
deep result of Guruswami, Haeupler, and Shahrasbi [GHS20] analyzing a code due to Bukh and
Ma [BM14]. We take advantage of the highly repetitive structure of the Bukh–Ma codewords to
combine the [GHS20] result with a construction of a family of distributions over Bukh–Ma codes
such that the k-decks4 of all of the different distributions coincide. This in turn lets us show
that a single trace does not have enough information to make more accurate reconstruction than
(essentially) LCS 2n/3 possible.

Theorem 1 sheds light on the high deletion rate and medium deletion rate regimes of one-trace
reconstruction. Turning to the medium and low deletion rate regimes, if the retention rate ρ is
large enough (at least some absolute constant), then the algorithm used for Theorem 2 is no longer
best possible, since it would be better to simply output any string x̂ that contains the trace y as a
subsequence. This is because, as observed in [CDL+22], any such string x̂ achieves expected LCS
at least E[|y|] = ρn = (1− δ)n.

Can better performance than this naive (1 − δ)n-length LCS be achieved in the medium and
low deletion rate regimes? We give an improvement by constructing a hypothesis string x̂ that
randomly intermingles random bits with the bits of y. A careful analysis of the LCS between this
x̂ and the source string x yields the following:

4The k-deck of a single string is the multiset of all length-k subsequences of the string, and the k-deck of a distri-
bution over strings is the corresponding mixture of k-decks of the constituent strings in the mixture; see Section 3.2.1
for detailed definitions.
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Theorem 3 (Worst-case algorithm, small deletion rate, informal statement). There is a worst-case
one-trace algorithm that achieves expected LCS at least (1− δ+ δ2/2− δ3/2+ δ4/2− δ5/2− o(1))n
for deletion rate δ.

Given Theorem 3, it is natural to ask about limitations of one-trace reconstruction in the low
deletion rate regime. Taking M = 1 in the main lower bound result (Theorem 1.2) of [CDL+22],
that result shows that no one-trace algorithm can achieve expected LCS greater than (1 − δC)n
in the worst-case setting, where C is some absolute (large) constant. In Section 1.1.2 we will
see that Theorem 6 establishes a stronger and near-optimal bound even for the more challenging
average-case setting.

1.1.2 Average-case one-trace reconstruction

The average-case setting of one-trace reconstruction turns out to present some unexpected chal-
lenges due to connections with difficult unresolved problems in the combinatorics of words. To
see this, let us first consider the problem of average-case trace reconstruction from zero traces; so
the reconstruction algorithm receives no input at all, and simply aims to output the n-bit string x̂
which maximizes the expected value of |LCS(x̂,x)| across uniform random x ∼ {0, 1}n. In contrast
with the worst-case setting (where no zero-trace algorithm can achieve expected LCS better than
1/2 because the source string x could be chosen uniformly at random from {0n, 1n}), in the average-
case setting the hypothesis string x̂ = (01)n/2 already achieves E[|LCS(x̂,x)|] ≥ (3/4− o(1))n: first
greedily match the 0’s in x̂ with the 0’s in x from left to right, and then opportunistically aug-
ment these ≈ n/2 matching edges with edges matching pairs of 1’s where possible. So nontrivial
performance is possible, even with zero traces, in the average-case setting.

Can we do better with a smarter choice of the hypothesis string x̂? A natural idea is to select
x̂ uniformly at random from {0, 1}n. The performance of this zero-trace algorithm is captured by
the Chvátal–Sankoff constant

γ2 := lim
n→∞

Ex,x̂∼{0,1}n [|LCS(x, x̂)|]
n

(the “2” is because we are working with the binary alphabet); the existence of this limit is an
easy consequence of the superadditivity of LCS between random strings (using Fekete’s Lemma
[Wik22b]). Despite much investigation over more than 40 years, the value of γ2 is not known: in
1975 Chvátal and Sankoff showed that 0.727273 ≤ γ2 ≤ 0.866595, and the current state of the art
bounds, due to Lueker [Lue09], are that 0.788071 ≤ γ2 ≤ 0.826280 [Wik22a].

A superadditivity argument similarly establishes the existence of the limit

c2 := lim
n→∞

max
x̂∈{0,1}n

Ex∼{0,1}n [|LCS(x, x̂)|]
n

, (1)

which corresponds to the performance of the information-theoretic optimal zero-trace algorithm
for the average-case setting. Even less is known about c2 than γ2; Bukh and Cox [BC22] have
shown (via an involved argument and an automated search) that c2 ≥ 0.82118, and we show in
Appendix A that c2 ≤ 0.88999, but more detailed bounds on the value of c2 do not seem to be
known, nor is it known what strings might achieve this optimal bound [Buk22].

Given these challenges in understanding zero-trace reconstruction in the average-case setting,
the prospects of analyzing one-trace average-case reconstruction may appear dim. Perhaps sur-
prisingly, for the low deletion rate regime and medium deletion rate regime it turns out that the
difficulty of analyzing zero-trace reconstruction is the only barrier to showing an upper bound on
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average-case one-trace reconstruction. This is shown in the following theorem, which gives an upper
bound on average-case one-trace reconstruction in terms of the quantity c2 from Equation (1):

Theorem 4 (Average-case upper bound on any algorithm, small retention rate, informal state-
ment). Let L1,avg(δ, n) denote the best expected LCS achievable by any one-trace algorithm at dele-

tion rate δ in the average-case setting. Then we have c2 ≤ limn→∞
L1,avg(δ,n)

n ≤ c2 + ρ.

Theorem 4 tells us that for any ρ = on(1) retention rate, it is not possible to asymptotically
improve on the performance of the best zero-trace algorithm. In fact, in Theorem 29 we give a
generalization of Theorem 4 which gives an upper bound on the performance of algorithms that
receive more than one trace. The proof is based on a careful analysis, using a coupling argument,
of the a posteriori distribution of the random source string x given the received collection of traces.

Finally, we consider upper and lower bounds which are applicable for the medium and small
deletion rate regime. In the average-case setting, the algorithm of Theorem 3 can be shown to have
better performance than was established in Theorem 3 for the worst-case setting:

Theorem 5 (Average-case algorithm, small deletion rate, informal statement). There is an average-
case one-trace algorithm that achieves expected LCS at least

(
1− δ + 1

2δ
2 + 17

8 δ
4 + 55

8 δ
5 − o(1)

)
n

for deletion rate δ.

Given Theorem 5, it is natural to investigate the best possible performance of any one-trace
algorithm in the average-case setting for small δ. A relatively simple probabilistic argument (which
is based on a union bound across all possible matchings, and which we give in Appendix B) shows
that the expected LCS achieved by any one-trace algorithm can be at most (1−Ω(δ/ log(1/δ))) ·n.
Via a more involved probabilistic argument we strengthen this to a 1−Θ(δ) bound:

Theorem 6 (Average-case upper bound on any algorithm, small retention rate, informal state-
ment). For any deletion rate δ = ω(1/n), no one-trace algorithm can achieve expected LCS greater
than (1− cδ)n in the average-case setting, where c is some absolute constant.

We observe that by virtue of Theorem 5, Theorem 6 is best possible up to the hidden multi-
plicative constant on the δ-term.

1.2 Future work

A natural first goal for future work is to obtain sharper results. For example, if the deletion rate δ
is 0.1, what is the largest constant c such that expected LCS cn can be achieved in the worst-case
setting? In the average-case setting? What if δ = 0.9? We do not currently have sharp answers to
questions such as these.

A different goal is to go beyond one-trace reconstruction. While our negative results Theorem 2
and Theorem 4 extend to algorithms that receive multiple traces, it would be interesting to extend
positive results such as Theorem 1, Theorem 3 and Theorem 5 to the setting of multiple traces.
In this context we mention the work of Chakraborty et al. [CDK21], which gave an average-case
algorithm for approximate trace reconstruction from three traces in an insertion-deletion model.

2 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1, . . . , n}. Given two integers a ≤ b
we write [a : b] to denote {a, . . . , b}. We write ln to denote natural logarithm and log to denote
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logarithm to the base 2. We denote the set of non-negative integers by Z≥0. We write “a = b± c”
to indicate that b− c ≤ a ≤ b+ c. It will be convenient for us to index a binary string x ∈ {0, 1}n
using [1 : n] as x = (x1, . . . , xn).

Distributions. When we use bold font such as D,y,z, etc., it indicates that the entity in question
is a random variable. We write “r ∼ P” to indicate that random variable r is distributed according
to probability distribution P. If S is a finite set we write “r ∼ S” to indicate that r is distributed
uniformly over S.

We write Geometric(ρ) to denote the geometric distribution with parameter ρ, i.e. the number of
Bernoulli trials with success probability ρ needed to get one success, supported on the set {1, 2, . . . }.
We will use the following tail bound for sums of independent geometric random variables:

Claim 7. Let ρ ∈ [0, 1] and let G1, . . . ,Gm be m independent geometric random variables with
each Gi ∼ Geometric(ρ). For any γ ∈ [0, 1], we have

Pr

[∣∣∣∣
m∑

i=1

Gi − ρ−1m

∣∣∣∣ ≥ γρ−1m

]
≤ e−Ω(γ2m).

Proof. By coupling (G1, . . . ,Gm) with a draw from the Binomial distribution Bin(n, ρ), we observe
that

∑m
i=1 Gi ≥ n if and only if Bin(n, ρ) < m. Let nh := (1+ γ)ρ−1m and nℓ := (1− γ)ρ−1m. We

have

Pr

[∣∣∣∣
m∑

i=1

Gi − ρ−1m

∣∣∣∣ ≥ γρ−1m

]

= Pr
[(

Bin
(
(1 + γ)ρ−1m,ρ

)
< m

)
∨
(
Bin
(
(1− γ)ρ−1m,ρ

)
> m

)]

= Pr

[(
Bin
(
nh, ρ

)
<

1

1 + γ
· ρnh

)
∨
(
Bin
(
nℓ, ρ

)
>

1

1− γ
· ρnℓ

)]

= Pr

[(
Bin
(
nh, ρ

)
<

(
1− γ

1 + γ

)
ρnh

)
∨
(
Bin
(
nℓ, ρ

)
>

(
1 +

1

1− γ

)
ρnℓ

)]

≤ e−Ω(γ2m),

where the inequality is a standard Chernoff bound.

Deletion channel and traces. Throughout this paper the parameter 0 < δ < 1 denotes the
deletion probability. Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the distribution of the
string that results from passing x through the δ-deletion channel (so the distribution Delδ(x) is
supported on {0, 1}≤n), and we refer to a string in the support of Delδ(x) as a trace of x. Recall that
a random trace y ∼ Delδ(x) is obtained by independently deleting each bit of x with probability
δ and concatenating the surviving bits. 5 We may view the draw of a trace y from Delδ(x) as a
two-step process: first a set D of deletion locations is obtained by including each element of [n]
independently with probability δ, and then y is set to be x[n]\D.

LCS and matchings. We write LCS(x, x′) to denote the longest common subsequence between
two strings x and x′ and |LCS(x, x′)| to denote its length. A matching M between two strings
x, x′ ∈ {0, 1}∗ is a list of pairs (v1, v

′
1), (v2, v

′
2), . . . such that v1 ≤ v2 ≤ · · · , v′1 ≤ v′2 ≤ · · · , and for

5In this work we assume that the deletion probability δ is known to the reconstruction algorithm.
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every t we have xvt = x′v′t
. The size of a matching is the number of pairs. We note that the largest

matching between x and x′ is of length |LCS(x, x′)|.
An asymptotic bound on binomial coefficients. We recall the following standard bound on
binomial coefficients:

Fact 8 ([vL82], Theorem 1.4.5). For 0 ≤ k ≤ n/2, we have
∑k

i=0

(n
i

)
≤ 2H(k/n)n, where H(x) =

x log(1/x) + (1− x) log(1/(1 − x)) is the binary entropy function.

2.1 The average-case setting

We record the following simple observation, which is useful for analyses of the average-case setting:

Observation 9 (A posteriori distribution of a uniform random source string given one trace). Let
x be a uniform random source string from {0, 1}n. Given any fixed outcome y ∈ {0, 1}m of a single
trace y = y ∼ Delδ(x), the a posteriori distribution of x given y is as follows:

1. Draw a uniform random m-element subset S ∼
( [n]
[m]

)
of [n] (say S = {s1, . . . , sm} where

1 ≤ s1 < · · · < sm ≤ n);

2. For each i ∈ [m] set xsi = yi (i.e. fill in the locations in S from left to right with the bits of
y), and for each j /∈ S set xj to an independent uniform element of {0, 1}.

We write “x ∼ y” to indicate that x has the distribution described above. We note that a
somewhat counterintuitive corollary of Observation 9 is the following: in the average-case setting
(when x is uniform random), even if the received trace is the string 1m, the a posteriori distribution
of the n−m “unseen bits” of x is that they are independent and uniform random.

An easy corollary of Observation 9 is the following:

Corollary 10. For x a uniform random source string from {0, 1}n, given any fixed outcome y ∈
{0, 1}m of a single trace y = y ∼ Delδ(x), the a posteriori distribution of the other n− |y| bits xD

of x is that they are distributed as a uniform random element of {0, 1}[n]\|y|.

2.2 One-trace and few-trace algorithms.

Optimal worst-case algorithms. We introduce the notation L1,worst(δ, n) to denote the largest
possible LCS that can be achieved in expectation by any one-trace algorithm under deletion rate δ
in the worst-case setting, i.e.

L1,worst(δ, n) := max
A

min
x∈{0,1}n

E
y∼Delδ(x)

[|LCS(A(y, n), x)|], (2)

where the maximum is taken over all algorithms A that take as input the values n, δ and a single
trace y, and output an n-bit hypothesis string (denoted A(y, n) in the expression above). We
observe that (2) could be extended to allow the algorithm A to be randomized (and have the
expectation be also over the randomness of A), but we do not do this since the optimal algorithm
in (2) can without loss of generality be taken to be deterministic.

We will sometimes consider the optimal performance of t-trace algorithms for t > 1, so we
extend the above definition in the obvious way to algorithms that are given t independent traces,
i.e.

Lt,worst(δ, n) := max
A

min
x∈{0,1}n

E
y(1),...,y(t)∼Delδ(x)

[|LCS(A(y(1), . . . ,y(t), n), x)|]. (3)
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Optimal average-case algorithms. We use similar notation to capture the optimal performance
of one-trace and t-trace algorithms in the average-case setting:

L1,avg(δ, n) := max
A

E
x∼{0,1}n

E
y∼Delδ(x)

[|LCS(A(y, n),x)|], (4)

Lt,avg(δ, n) := max
A

E
x∼{0,1}n

E
y(1),...,y(t)∼Delδ(x)

[|LCS(A(y(1), . . . ,y(t), n),x)|]. (5)

3 Worst-case one-trace reconstruction, small retention rate

3.1 An efficient algorithm

We prove Theorem 1 in this subsection. We start with the first part of Theorem 1, i.e., when the
retention rate ρ is large enough (ω(log(n)/n)) that a nontrivial number of bits are expected to be
present in a random trace, then a simple computationally efficient one-trace algorithm can achieve
an LCS significantly better than n/2.

3.1.1 A useful structural result and a (2/3 − o(1))-LCS algorithm for ρ = ω(log(n)/n)

It is helpful for us to consider the following preliminary problem: we are not given any traces, and
the goal is to output a list of m-bit candidates such that the unknown source string x ∈ {0, 1}n
has large LCS with one of the candidate strings in our list. This motivates the following definition:

Definition 11 (LCS-cover). Let m and n be two positive integer. We say a set S ⊆ {0, 1}m is an
h-LCS cover for strings of length n if for every x ∈ {0, 1}n we have

∣∣LCS(S, x)
∣∣ := max

s∈S

∣∣LCS(s, x)
∣∣ ≥ h.

The following simple claim shows that when m is within a factor of two of n, there is a (perhaps
surprisingly) good LCS cover consisting of at most two strings:

Claim 12. For every m ∈ [n/2, 2n], there exists a ((n+m)/3)-LCS-cover of size at most 2.

Proof. We first consider the extreme settings of m = 2n and m = n/2. When m = 2n, we have
|LCS((01)n, x)| = n for every x ∈ {0, 1}n, and thus {(01)n} is an n-LCS cover (of size 1). When m =
n/2, every x ∈ {0, 1}n either contains n/2 many 1s or this many 0s, and so either |LCS(0n/2, x)| ≥
n/2 or |LCS(1n/2, x)| ≥ n/2, and hence the set {0n/2, 1n/2} is a (n/2)-LCS cover of size 2.

We interpolate between these two cases to handle general m’s. Write m = 2a+b and n = a+2b
for some a and b (so a = m− (n+m)/3 and b = n− (n+m)/3). Consider

S :=
{
(01)a0b, (01)a1b

}
⊆ {0, 1}m. (6)

Given x ∈ {0, 1}n, we can write x = x1 ◦ x2 where x1 ∈ {0, 1}a and x2 ∈ {0, 1}2b, and we get that

∣∣LCS(S, x)
∣∣ ≥

∣∣∣LCS
(
(01)a, x1

)∣∣∣+
∣∣∣LCS

(
{0b, 1b}, x2

)∣∣∣ ≥ a+ b = (n+m)/3.

We observe that taking m = n in Equation (6), we have a (2n/3)-LCS cover consisting of the
two strings (01)n/30n/3 and (01)n/31n/3. This suggests a one-trace algorithm that returns an n-bit
string x̂ that achieves |LCS(x̂, x)| ≥ (2/3 − o(1))n with high probability when ρ = ω(log n/n): to
determine which one of the two n-bit strings (01)n/30n/3, (01)n/31n/3 to output, it simply needs to
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determine (with high probability) from the trace y ∼ Delδ(x) whether the majority of the last 2n/3
bits of the unknown x is 0 or 1, which can be done (to accuracy o(1)) by simply taking the majority
of the last 2ρn/3 bits of y. A routine computation now gives the first sentence of Theorem 1.

We further note that the simple (2n/3)-LCS cover given by {(01)n/30n/3, (01)n/31n/3} is es-
sentially best possible among all covers of constant size; more precisely, for any positive constant
ε, any (2/3 + ε)n-LCS cover must have size Ω(log n). This is a consequence of a recent result of
Guruswami, Haeupler, and Shahrasbi [GHS20]; we give the proof in Appendix C.

3.1.2 A (2/3 + Ω(ρ))-LCS algorithm for ρ = ω(1/n1/3)

Next we prove the second part of Theorem 1. It follows from the following theorem:

Theorem 13 (Worst-case algorithm, small retention rate). There exists an absolute constant c > 0
such that the following holds. Let the retention rate ρ := ρ(n) = 1− δ(n) such that ρ = ω(1/n1/3).
There is an O(n)-time algorithm A which is given as input the values n, δ, and a single trace y ∼
Delδ(x), where x ∈ {0, 1}n is an unknown source string. With probability at least 1− e−Ω(ρ3n) over
the randomness of y ∼ Delδ(x), A outputs a hypothesis string x̂ ∈ {0, 1}n satisfying

∣∣LCS(x̂, x)
∣∣ ≥ (2/3 + cρ) · n.

An easy computation using the high-probability bound provided by Theorem 13 shows that if
ρ ≥ ω(1/n1/3), then we get that L1,worst(δ, n) ≥ (2/3+Ω(ρ)) ·n, giving the bound on expected LCS
that is claimed in Theorem 1.

The algorithm for Theorem 13 improves on the (2/3 − o(1))n-LCS algorithm described in
Section 3.1.1. The high-level idea is to do better than the (n+m)/3 benchmark given by Claim 12
on the (n/3)-prefix x(1) of x. For intuition, suppose we could find an x̂(1) ∈ {0, 1}∗ such that

∣∣LCS(x̂(1), x(1))
∣∣ ≥ |x̂(1)|+ |x(1)|

3
+ εn.

Then we could potentially apply the approach of the one-trace algorithm from the previous sub-
section on the remaining bits of x, and outputs x̂ that extends x̂(1) to achieve an LCS of roughly

|x̂(1)|+ |x(1)|
3

+ εn+
(n− |x̂(1)|) + (n− |x(1)|)

3
=

2n

3
+ εn.

We now discuss how to beat the (n +m)/3 benchmark in more detail. Let L = [ρn/3] and yL
be the (ρn/3)-length prefix of the trace y. We divide yL into blocks of size 2000. If a block contains
only 0s, then it is very likely (probability at least, say, 0.9) that there is a corresponding subword in
x of size about 2000/ρ that contains mostly 0s; such a subword has large LCS (say, at least 1999/ρ)
with the string 02000/ρ. So if most blocks contain only 0s or only 1s (Case 2 in the description of
Algorithm A given below), then by outputting an x̂(1) which is a corresponding sequence of 02000/ρ’s
and 12000/ρ’s, such an x̂(1) will have an LCS with x(1) that is much larger than (|x(1)|+ |x̂(1)|)/3.

On the other hand, if most blocks contain both a 0-bit and a 1-bit, then we know that the
string x(1) must alternate between 0s and 1s at least t := Ω(ρn) times. In this case (Case 1 in the
algorithm description), we can use the shorter string (01)n/3−t to achieve an LCS of size n/3 with
x(1), which also gives us an Ω(ρn) savings.

The rest of Section 3 gives a formal proof of Theorem 13.

9



3.1.3 The Algorithm A

In this subsection we describe the algorithm A to prove Theorem 13. Let γ := ρ/720000. We show
that given a trace y ∼ Delδ(x) for any unknown x ∈ {0, 1}n, the algorithm A returns x̂ satisfying

∣∣LCS(x, x̂)
∣∣ ≥ 2n

3
+

ρn

90000
− 4γn (7)

with probability at least 1− e−Ω(γ2ρn). Setting c = 1/180000 in Theorem 13 finishes the proof.
Given a trace y of x ∈ {0, 1}n, A outputs x̂ := 0n if its input trace y has |y| < (ρ − γ)n. We

refer to this case as Case 0; henceforth we will assume |y| ≥ (ρ− γ)n below.
Let L := [ρn/3] and yL be the first ρn/3 bits of y. Divide yL into B := ρn/6000 many blocks

yL1 , . . . , yLB
of length 2000 each (so Li := {2000(i− 1)+ 1, . . . , 2000i}). Algorithm A identifies the

yLi
’s that contain only 0s or only 1s. Specifically, let

B′ :=
{
i ∈ [B] : yLi

= z2000i for some zi ∈ {0, 1}
}
.

There are two cases:

Case 1: |B′| < 0.8B. (In this case, a significant number of blocks are “not pure.”) Let

c :=
n

3
− ρn

60000
, a :=

ρn

45000
and b :=

n

3
− ρn

90000
. (8)

Let z ∈ {0, 1} be the majority of the last 2ρb bits of y. A outputs the n-bit x̂ := (01)c+azb.

Case 2: |B′| ≥ 0.8B. (Most blocks are “pure.”) Let z ∈ {0, 1} be the majority of the last
2ρn/9 bits of y. A outputs the following n-bit string

x̂ := x̂(1) ◦ (01)2n/9 ◦ z2n/9,

where x̂(1) is the concatenation of z
2000/ρ
i for each i ∈ [B] with zi being the bit such that

yLi
= z2000i when i ∈ B′ and zi = 0 when i /∈ B′ (so x̂(1) has length n/3).

3.1.4 Analysis of Algorithm A

Let x ∈ {0, 1}n be the unknown source string. We start by describing an equivalent process of
drawing y ∼ Delδ(x). Let x∞ be the infinite string obtained from x by padding infinitely many
copies of a special symbol ∗ at the end. Consider sampling an infinite subsequence y∞ of x∞ by
the following infinite process: For each round j = 1, 2, . . . , we sample a prefix xj of x∞ of length
|xj | ∼ Geometric(ρ), then output the last bit of xj as the j-th bit of y∞ and delete the prefix xj

from x∞ before moving on to the next value of j. Finally, we set y to be the longest prefix of y∞
that does not contain any special symbol ∗. It is easy to check that y drawn from this process is
identically distributed to Delδ(x).

We introduce some notation for working with xj as a byproduct of the above random process of
drawing y ∼ Delδ(x). For a subset S ⊆ N (e.g., L introduced in the description of the algorithm),
we write xS to denote the concatenation of xj : j ∈ S, where xj is the prefix drawn in the j-th
round. Note that the string x[|y|] does not necessarily contain the source string x (it may not
contain some of its last few bits) but the string x[|y|+1] always contains x as a prefix.

Let y ∼ Delδ(x) be a trace drawn using the process above, and let x̂ be the string returned by
the algorithm A when running on y. We say A succeeds (on y) if x̂ satisfies Equation (7) and A
fails otherwise. It suffices to show that all three probabilities Pry∼Delδ(x)[y in Case 0],

Pry∼Delδ(x)

[
y in Case 1 and A fails

]
and Pry∼Delδ(x)

[
y in Case 2 and A fails

]
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are at most e−Ω(γ2ρn). The upper bound for Case 0 follows by the Chernoff bound (which is indeed
e−Ω(ρn)). Below we analyze the two main cases of the algorithm separately.

Case 1: |B′| < 0.8B. Recall from the description of A that we are in Case 1 if y ∼ Delδ(x) has
length at least (ρ − γ)n and |B′| < 0.8B. Recall from Equation (8) our choices of a, b and c, and
let z ∈ {0, 1} be the majority of the last 2ρb bits in y. We partition x into x(1) ◦ x(2) ◦ x(3) with

|x(1)| = n/3, |x(2)| = a and |x(3)| = 2b.

Our goal is to show that

Pry∼Delδ(x)

[
y in Case 1 and A fails

]
≤ e−Ω(γ2ρn).

This follows from the following two claims: Let E1 denote the event of |xL| ≥ n/3 + γn and E2

denote the event of z appearing less than b− γn many times in x(3).

Claim 14. For any string x ∈ {0, 1}n, we have

Pry∼Delδ(x)

[
y in Case 1 ∧ (E1 ∨ E2)

]
≤ e−Ω(γ2ρn).

Claim 15. The algorithm A succeeds whenever y ∼ Delδ(x) satisfies (1) y falls in Case 1; (2) E1:
|xL| < n/3 + γn; and (3) E2: z appears at least b− γn many times in x(3).

Proof of Claim 14. It follows from Claim 7 that the probability of E1 alone is at most e−Ω(γ2ρn).
So it suffices to upper bound Pry[y in Case 1 and E2]. Assume without loss of generality that x(3)

has at least b+ γn many z’s for some z ∈ {0, 1}; otherwise the probability above is trivially 0. By
Chernoff bound we have

Pry∼Delδ(x)

[
# of bits in x(3) that survive in y ≥ 2ρb+ ργn/3

]
≤ e−Ω(γ2ρn) and

Pry∼Delδ(x)

[
# of z’s in x(3) that survive in y ≤ ρb+ 2ργn/3

]
≤ e−Ω(γ2ρn).

So with probability at least 1 − e−Ω(γ2ρn), the number of bits in x(3) that survive in y is at most
2ρb + ργn/3 and among them at least ρb+ 2ργn/3 bits are z. In this case it cannot happen that
y falls in Case 1 and z 6= z. It follows that Pry[y in Case 1 and E2] ≤ e−Ω(γ2ρn).

Proof of Claim 15. When y ∼ Delδ(x) falls in Case 1, the string x̂ returned by A is

x̂ := (01)c ◦ (01)a ◦ zb.

We lowerbound |LCS(x, x̂)| by
∣∣LCS(x(1), (01)c)

∣∣+
∣∣LCS(x(2), (01)a)

∣∣+
∣∣LCS(x(3),zb)

∣∣

and below we bound each of the three terms separately. The following simple fact will be useful:

Fact 16. Suppose x ∈ {0, 1}n has t many disjoint 01’s. Then LCS(x, (01)m) = n when m ≥ n− t.

We start with |LCS(x(1), (01)c)|. Because |B′| < 0.8B, we have that at least 0.2B of the yLi
’s

contain both 0 and 1, and thus there are at least 0.1B many disjoint 01’s appearing in yL. Given
that |xL| < n/3+γn, the first n/3+γn bits of x contain at least 0.1B many disjoint 01’s, and so the
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first n/3 bits of x (i.e. x(1)) contains at least 0.1B − γn many disjoint 01’s. Using c = n/3− 0.1B
and Fact 16, we have

∣∣LCS(x(1), (01)c)
∣∣ =

∣∣∣∣LCS
(
x(1), (01)n/3−0.1B

)∣∣∣∣ ≥
∣∣∣∣LCS

(
x(1), (01)n/3−(0.1B−γn)

)∣∣∣∣− 2γn ≥ n

3
− 2γn.

Next, given that x(2) only has length a and x(3) contains at least b− γn many z’s, trivially we have

∣∣LCS(x(2), (01)a)
∣∣ = a and

∣∣LCS(x(3),zb)
∣∣ ≥ b− γn.

It follows that ∣∣LCS(x, x̂)
∣∣ ≥ n

3
+ a+ b− 3γn =

2n

3
+

ρn

90000
− 3γn

and A succeeds. This finishes the proof of the claim.

Case 2: |B′| ≥ 0.8B. Recall that we are in Case 2 if y ∼ Delδ(x) has length at least (ρ − γ)n
and |B′| ≥ 0.8B. For each i ∈ [B] we set zi to be the bit such that yLi

= z2000
i if i ∈ B′ and set

zi = 0 if i /∈ B′. We also write z to denote the majority of the last 2ρn/9 bits of y.
The proof proceeds in a similar fashion as Case 1. Let x = x(1) ◦ x(2) ◦ x(3) with

|x(1)| = n/3, |x(2)| = 2n/9 and |x(3)| = 4n/9.

Our goal is to show that

Pry∼Delδ(x)

[
y in Case 2 and A fails

]
≤ e−Ω(γ2ρn).

Let E1 denote the event of |xL| ≥ n/3+γn, E2 denote the event of z appearing less than 2n/9−γn
many times in x(3), and E3 denote the following event:

E3: For at least 0.02B of i ∈ B′, the subword xLi contains at most 0.9 · 2000/ρ many zi’s.

This follows from the following two claims:

Claim 17. For any string x ∈ {0, 1}n, we have

Pry∼Delδ(x)

[
y in Case 1 ∧ (E1 ∨ E2 ∨ E3)

]
≤ e−Ω(γ2ρn).

Claim 18. The algorithm A succeeds whenever y ∼ Delδ(x) satisfies (1) y falls in Case 2; (2) E1:
|xL| < n/3 + γn; (3) E2: z appears at least 2n/9 − γn many times in x(3); and (4) E3: At most
0.02B of i ∈ B′ has xLi contain at most 0.9 · 2000/ρ many zi’s.

Proof of Claim 17. Events E1 and E2 can be handled similarly as in the proof of Claim 14. Below
we show that Pry[E3] ≤ e−Ω(γ2ρn). To this end, note that E3 means there are at least 0.02B many
i ∈ [B] such that yLi

is all zi for some zi ∈ {0, 1} while xLi has at most 0.9 · 2000/ρ many zi.
Let Zi be the indicator random variable for the event above for each i ∈ [B]. We show below

that conditioning on any outcomes of x1, . . . ,x2000(i−1), the probability of Zi = 1 is at most 0.01.
It follows that E2 occurs with probability at most e−Ω(B) = e−Ω(ρn).

For each i ∈ [B], after fixing any outcomes of x1, . . . ,x2000(i−1), a necessary condition for Zi to
be 1 is that among the first 0.9 · 2000/ρ many 0’s in the current x∞, at least 2000 of them survive
in y∞, or among the first 0.9 · 2000/ρ many 1’s in x∞, at least 2000 of them survive in y∞. The
probability of Zi = 1 can be bounded from above by 0.01 using the Chernoff bound.
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Proof of Claim 18. When y ∼ Delδ(x) falls in Case 2, the algorithm A returns

x̂ = x̂
(1) ◦ (01)2n/9 ◦ z2n/9,

where x̂
(1) is the concatenation of z

2000/ρ
i , i ∈ [B]. We lowerbound |LCS(x, x̂)| by

∣∣LCS(x(1), x̂(1))
∣∣+
∣∣LCS(x(2), (01)2n/9)

∣∣+
∣∣LCS(x(3),z2n/9)

∣∣

≥
∣∣LCS(x(1), x̂(1))

∣∣+ 2n/9 + 2n/9− γn.

To bound |LCS(x(1), x̂(1))|, we write B′′ to denote the set of i ∈ B′ such that xLi contains at least
0.9 · 2000/ρ many zi’s. It follows from Item (4) in Claim 18 that |B′′| ≥ 0.98 · 0.8B ≥ 0.78B. We
have

∣∣LCS(x(1), x̂(1))
∣∣ ≥

∣∣LCS(xL, x̂(1))
∣∣− γn

≥
∑

i∈B′′

∣∣LCS(xLi ,z
2000/ρ
i )

∣∣− γn

≥ 0.78 · ρn

6000
· 0.9 · 2000

ρ
− γn

= 0.702 · n
3
− γn.

Therefore, altogether we have

∣∣LCS(x, x̂)
∣∣ ≥ 0.702 · 3 + 4

9
· n− 2γn ≥ (0.678 − 2γ)n

and A succeeds. This finishes the proof of the claim.

3.2 Bounds on the performance of any one-trace (or few-trace) algorithms

Complementing Theorem 13, we show that for worst-case approximate trace reconstruction, even
if the total number of bits obtained across multiple traces is n0.999, it is not possible to achieve
expected LCS of (2/3 + c)n for any constant c > 0. The following theorem gives a more detailed
version of Theorem 2.

Theorem 19 (Worst-case upper bound on any few-trace algorithm, small retention rate). Let
κ > 0 be any absolute constant and let t(n), ρ(n) = 1 − δ(n) be such that t(n)ρ(n) ≤ 1/nκ. For
sufficiently large n, we have

Lt(n),worst(δ(n), n) ≤ (2/3 + on(1))n.

In order to prove Theorem 19, we first introduce some additional notation.

3.2.1 Notation

Decks. For k ∈ N, the k-deck of a string z ∈ {0, 1}n, denoted Dk(z), is the vector in Z
{0,1}k whose

y-th element (for y ∈ {0, 1}k) is the number of occurrences of y as a length-k subsequence of z.
Let M be a mixture of n-bit strings with mixing weights p1, . . . , pm on strings z1, . . . , zm ∈

{0, 1}n (in other words M is a distribution over n-bit strings). The k-deck of M, denoted Dk(M),

is defined to be the following vector in R{0,1}k :

Dk(M) =

m∑

i=1

piDk(z
i).
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Given y ∈ {0, 1}k we write Dk(z)y to denote the y-th element of Dk(z) and Dk(M)y to denote
the y-th element of Dk(M). Note that for any string z ∈ {0, 1}n we have

∑
y∈{0,1}k Dk(z)y =

(n
k

)
,

and likewise
∑

y∈{0,1}k Dk(M)y =
(n
k

)
for any mixture M of n-bit strings.

Segments. We view an n-bit source string x ∈ {0, 1}n as being composed of n/ℓ consecutive
segments of length ℓ, for some ℓ = ℓ(n).

Average LCS of a set. Given any set of strings S ⊆ {0, 1}n, define

AvgLCS(S) := max
x′∈{0,1}n

1

|S|
∑

s∈S
|LCS(x′, s)|,

i.e., AvgLCS(S) is the largest possible value (over all possible hypothesis strings x′ ∈ {0, 1}n) of the
average LCS between an element of S and x′.

We will relate Lt(n),worst(δ(n), n) to AvgLCS(S) of a set S which is (a slight modification of)
the Bukh–Ma code, a set of n-bit strings that was first studied in [BM14] and further analyzed in
[GHS20].

3.2.2 The Bukh–Ma code

Fix a segment length ℓ = ℓ(n) which divides n. Take ε to be a suitable on(1) value, and let Cn,ε be
the Bukh–Ma code analyzed in [GHS20]:

Cn,ε =

{
(0r1r)

n
2r : r =

1

ε4u
, u = 1, . . . ,

1

2
log1/ε4 ℓ

}
. (9)

We denote the string (0r1r)
n
2r where r = 1

ε4u
by Au, for u = 1, . . . , 12 log1/ε4 ℓ. We remark that

for each string Au in the Bukh–Ma code above, the “period” 2r = 2/ε4u divides the segment length
ℓ.

Theorem 20 (Implicit in the proof of [GHS20], Theorem 1.4). For any x ∈ {0, 1}n, there can be
at most 1200

ε3
many strings Au ∈ Cn,ε that have |LCS(x,Au)| ≥ (2/3 + ε/6)n.

Proof sketch: We explain how Theorem 20 is implicit in the proof of Theorem 1.4 of [GHS20].
In [GHS20], it is shown (see Section 3, starting after the proof of their Lemma 3.1) that for any
x ∈ {0, 1}n, if a set of m strings from Cn,ε is such that each of the m strings (call the string s)

has adv(x, s) > ε/2, then we must have m ≤ 1200/ε3. Since adv(x, s) = 3|LCS(x,s)|−|x|−|s|
|x| (see

[GHS20]’s Definitions 2.4 and 2.5), having adv(x, s) > ε/2 is equivalent to having |LCS(x, s)| ≥
(2/3 + ε/6)n.

Fix x ∈ {0, 1}n. Using Theorem 20, we can upper bound the average LCS of x with Cn,ε by

1

|Cn,ε|
∑

s∈Cn,ε

|LCS(x, s)| ≤ 2 · 1200/ε3
log1/ε4 ℓ

· n+ (2/3 + ε/6)n = (2/3 + o(1))n. (10)

As this is true for all x ∈ {0, 1}n, we conclude that

AvgLCS(Cn,ε) ≤ (2/3 + o(1))n. (11)
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3.2.3 Relating Lt(n),worst(δ(n), n) to AvgLCS(S)

The following claim will allow us to upper bound the performance of any algorithm that receives
t = t(n) traces at deletion rate δ(n) by (essentially) AvgLCS(S) for any set S satisfying certain
properties.

Claim 21. Let ℓ be such that both ℓ and nℓ are at least nc for some positive constant c. Let

Sℓ = {s(1)ℓ , s
(2)
ℓ , . . . , s

(m)
ℓ } ⊂ {0, 1}ℓ be a set of ℓ-bit strings. Define the set of n-bit strings Sn =

{s(1)n , s
(2)
n , · · · , s(m)

n } ⊂ {0, 1}n, where each string s
(u)
n is constructed by concatenating n/ℓ copies of

s
(u)
ℓ . For each u ∈ [m] let M(u) be a mixture of ℓ-bit strings with the following properties:

1. With probability 1− o(1), a random ℓ-bit string z drawn from M(u) has LCS(z, s
(u)
ℓ ) ≥ (1 −

o(1))ℓ;

2. For each u ∈ [m] the k-deck Dk(M(u)) is the same.

Let ρ(n) = 1− δ(n). Then we have

Lt(n),worst(δ(n), n) ≤ t(n) · ℓk · ρ(n)k+1 · n2 + AvgLCS(Sn) + o(n).

Proof. Let M be the following distribution over n-bit strings: to draw x ∼ M, first draw a uniform
u ∼ [m], then independently draw n/ℓ many ℓ-bit strings x(1), . . . ,x(n/ℓ) ∼ M(u), and concatenate
them to yield x = x(1) · · ·x(n/ℓ).

Let A be any algorithm that takes as input t := t(n) traces y(1), · · · ,y(t) of x, and outputs an
n-bit hypothesis string. We suppose that in addition to the input traces, A is also told, for each
trace, how many bits of the trace come from each of the n/ℓ segments of the source string; we upper
bound Lt(n),worst(δ(n), n) by upper bounding the performance of any algorithm that also receives
this extra auxiliary information.

The probability that any of the n/ℓ many ℓ-bit segments of x has at least k + 1 bits from it
surviving into any of the t traces is at most t · (n/ℓ) · (ρ(n)ℓ)k+1 = tnℓkρ(n)k+1. In this case we
trivially upper bound the LCS between x and the output of A by n.

Otherwise, at most k bits survive from each segment in each trace. The distribution of these
bits is the same, regardless of the random u ∼ [m] chosen in the construction of x. This follows
from property (2.) above and the easily observable fact that if the k-deck Dk(M(u)) is the same for
each u ∼ [m], then the k′-deck Dk′(M(u)) is also the same for each u ∼ [m], for all k′ ≤ k. In this
case, the optimal string for algorithm A to output is the n-bit string x∗ that achieves AvgLCS(Sn).

By property (1.) above and a standard Chernoff bound, with 1− o(1) probability we have that

a 1 − o(1) fraction of the n/ℓ strings x(1), · · · ,x(n/ℓ) drawn from M(u) satisfy |LCS(x(i), s
(u)
ℓ | ≥

(1−o(1))ℓ, so with 1−o(1) probability the string x = x(1) · · ·x(n/ℓ) has |LCS(x, s(u)n )| ≥ (1−o(1))n.
Recall that x∗ ∈ {0, 1}n is the string achieving AvgLCS(Sn). We will use the triangle inequality

on the edit distance dedit(z, z
′) := n− |LCS(z, z′)| (which is a metric). We have

dedit(x, x
∗) ≥ dedit(x

∗, s(u)n )− dedit(s
(u)
n ,x).

Rewriting this inequality in terms of LCS, we have

|LCS(x, x∗)| ≤ |LCS(x∗, s(u)n )|+ n− |LCS(x, s(u)
n )| ≤ |LCS(x∗, s(u)n )|+ o(n).

We emphasize that x is a function of the random u ∼ [m], while x∗ is independent of u. Taking
expectation over u, we get that

Eu[|LCS(x, x∗)|] ≤ AvgLCS(Sn) + o(n).

Combining the two cases above, we obtain the lemma.
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Proof of Theorem 19 using Claim 21. In Lemma 22 below, for any constant k ∈ N, we will exhibit
a set of mixtures M(u) satisfying the properties in Claim 21, with the set Sn being Cn,ε. Choosing
k = 4/κ (constant), ℓ = n1/k, and using the fact that AvgLCS(Cn,ε) ≤ (2/3 + o(1))n (recall
Equation (11)), we conclude that

Lt(n),worst(δ(n), n) ≤ t(n) ℓk ρ(n)k+1 n2 + AvgLCS(Sn) + o(n)

≤ (t(n)ρ(n))k+1n3 + (2/3 + o(1))n

≤ n3−(k+1)κ + (2/3 + o(1))n

≤ (2/3 + o(1))n.

3.3 Construction of M satisfying Claim 21 for any constant k

Let Sℓ be the set of m := 1
2 log1/ε4 ℓ many ℓ-bit strings

Sℓ =
{
(01/ε

4u
11/ε

4u
)ℓ/(2/ε

4u)
}
, u = 1, . . . ,m.

Fix any positive integer k (which should be thought of as a fixed constant, while ℓ → ∞). In
this section we construct a collection of m mixtures M(1), . . . ,M(m), where each M(u) is a mixture
of ℓ-bit strings, which meet the conditions required by Claim 21. In more detail, we show that the
mixtures M(1), . . . ,M(m) that we construct satisfy the following:

Lemma 22. For each u ∈ [m] we have the following:

1. With probability 1− oℓ(1), a random ℓ-bit string z drawn from M(u) has
∣∣∣∣LCS

(
z, (01/ε

4u
11/ε

4u
)ℓ/(2/ε

4u)
)∣∣∣∣ ≥ (1− oℓ(1))ℓ.

2. For each u ∈ [m] the k-deck Dk(M(u)) is the same.

The mixture M(u). Fix u ∈ [m] and let r0 := 1/ε4u. For t dividing ℓ, let x(t) denote the ℓ-bit
string

x(t) := (0t1t)ℓ/(2t),

so x(r0) is the u-th string (01/ε
4u
11/ε

4u
)ℓ/(2/ε

4u) in Sℓ. The mixture M(u) will be supported on k
strings in {0, 1}ℓ,

supp(M(u)) = {x(r0), x(r1), . . . , x(rk−1)},
where r1, . . . , rk−1 are values that will satisfy r0 ≪ r1 ≪ · · · ≪ rk−1 ≪ ℓ and that will be specified
later. The mixing weight pj on the j-th string x(rj) will be chosen so that each pj ≥ 0,

∑k−1
j=0 pj = 1

(so M(u) is indeed a valid distribution), and p0 = 1− oℓ(1), which gives item (1) of Lemma 22.
To achieve item (2) of Lemma 22 we will carefully choose the weights p0, . . . , pk−1 so that for

each y ∈ {0, 1}k , the value Dk(M(u))y is a function only of ℓ (and in particular is independent of
the value of u). Towards this end, let us begin to analyze the k-deck of a single string x(t). The
following is easily verified:

Claim 23. Fix any y ∈ {0, 1}k. The value Dk(x
(t))y is of the form

Dk(x
(t))y =

k−1∑

i=0

tify,i(ℓ) (12)

for some polynomials fy,0(ℓ), . . . , fy,k−1(ℓ).
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From Equation (12) we immediately get that

Dk(M(i))y =

k−1∑

j=0

pj

(
k−1∑

i=0

rijfy,i(ℓ)

)
=

k−1∑

i=0




k−1∑

j=0

pjr
i
j


 fy,i(ℓ). (13)

Recall that r0 = 1/ε4u, so clearly r0 depends on u, and that we have yet to choose r1, . . . , rk−1.
Equation (13) leads us to consider the following linear system:

V p = b (14)

where V is the k× k Vandermonde matrix whose rows and columns we index by i ∈ {0, . . . , k− 1}
and j ∈ {0, . . . , k − 1},

Vi,j = rij, (15)

and p and b are k × 1 column vectors

p =




p0
...

pk−1


 , b =




b0
...

bk−1


 .

We will prove the following claim:

Claim 24. There are values b0, . . . , bk−1 that have no dependence on u so that the solution

p = V −1b (16)

to the system (14) has each pj ≥ 0,
∑k−1

j=0 pj = 1, and p0 = 1− oℓ(1).

By Equation (13) this means that the k-deck

Dk(M(i))y =

k−1∑

i=0

bify,i(ℓ), y ∈ {0, 1}k ,

has no dependence on u, giving item (2) of Lemma 22 and completing its proof. It thus remains to
prove Claim 24.

3.3.1 Proof of Claim 24

We start by recalling an explicit formula for the inverse of a Vandermonde matrix:

Fact 25 ([Tur66]). Let V = (Vij)i,j∈{0,...,k−1} be the k × k Vandermonde matrix Vi,j = rij as

specified in Equation (15). Let e
(i)
j be the j-th elementary symmetric polynomial on the k − 1

variables r0, . . . , ri−1, ri+1, . . . , rk−1. Then the inverse matrix V −1 is given by

V −1
i,j =

(−1)j · e(i)k−1−j∏
s 6=i(rs − ri)

. (17)
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It will be convenient for us to rewrite Equation (17) in a way which makes the denominator
always positive (recall that we will have r0 ≪ r1 ≪ · · · ≪ rk−1. Doing this, we obtain

V −1
i,j =

(−1)i+j · e(i)k−1−j(∏
0≤s≤i−1(ri − rs)

)
·
(∏

i+1≤s≤k−1(rs − ri)
) , (18)

and consequently we have that

p = V −1b, where for i = 0, . . . , k − 1, pi =

∑k−1
j=0(−1)j+ie

(i)
k−1−j · bj(∏

0≤s≤i−1(ri − rs)
)
·
(∏

i+1≤s≤k−1(rs − ri)
) (19)

(note that the denominator of Equation (19) is independent of j).
We now choose rj, bj : j ∈ [k− 1] appropriately and show that the pi’s satisfy the conditions in

Claim 24. Recall that m = 1
2 log1/ε4 ℓ, so r0 = 1/ε4u ≤ 1/ε4m =

√
ℓ. For j ∈ [k − 1], we define

bj :=
1

(log log ℓ)j
·

j∏

s=1

rj and rj := ℓ2/3 · (log ℓ)j

(observe that r0 is already fixed to 1/ε4u, and that the first row of the Vandermonde matrix
system of equations is all-1’s, which means that b0 = p0 + · · · + pk−1 = 1). These settings are
chosen so that in the summation in the numerator of the expression for pi in Equation (19), the
(j = i)-th term, which is always positive, dominates the sum of the rest of the terms in magnitude.

Specifically, we will show that for j < i, the quantity e
(i)
k−1−jbj is at most O((log ℓ)−1) ·∏k−1

s=1 rs

and for j ≥ i, we have e
(i)
k−1−jbj = (log log ℓ)−j(1 + oℓ(1))

∏k−1
s=1 rs. So the numerator is at least

(log log ℓ)−i(1 − oℓ(1))
∏k−1

s=1 rs ≥ 0, and thus the pi’s are positive because the denominator is

positive. Moreover, the denominator of p0 in Equation (19) is at most
∏k−1

s=1 rs. This shows p0 =
1− oℓ(1).

We now give the full calculation. First observe that for every 0 ≤ j ≤ k−2 and every S ⊆ [k−1]
of size k − 1− j not equal to {j + 1, . . . , k − 1}, we have

∏

s∈S
rs ≤ ℓ2|S|/3 · (log ℓ)

∑
s∈S s ≤ ℓ2|S|/3 · (log ℓ)(

∑k−1
s=j+1 j)−1 =

1

log ℓ

k−1∏

s=j+1

rs. (20)

So for j < i we have i ∈ {j + 1, . . . , k − 1} and so the (positive) quantity e
(i)
k−1−j · bj is “small,” i.e.

at most O((log ℓ)−1) ·
∏k−1

s=1 rs:

e
(i)
k−1−j · bj =

( ∑

S⊆{0,...,k−1}\{i}
|S|=k−1−j

∏

s∈S
rs

)
·
(
(log log ℓ)−j

j∏

s=1

rj

)

≤
((

k − 1

j

)
1

log ℓ

k−1∏

s=j+1

rs

)
·
(
(log log ℓ)−j

j∏

s=1

rs

)

≤ (log log ℓ)−j ·
(k−1∏

s=1

rs

)
· kj

log ℓ
(21)

18



For j = i the (positive) quantity e
(i)
k−1−j · bj is “large,” i.e. at least (log log ℓ)−i

∏k−1
s=1 rs; more

precisely, we have

e
(i)
k−1−j · bj =

( ∑

S⊆{0,...,k−1}\{i}
|S|=k−1−j

∏

s∈S
rs

)
·
(
(log log ℓ)−j

j∏

s=1

rj

)

≥
( k−1∏

s=j+1

rs

)
·
(
(log log ℓ)−j

j∏

s=1

rj

)

= (log log ℓ)−j ·
(k−1∏

s=1

rs

)
. (22)

For j > i the (positive) quantity e
(i)
k−1−j · bj is again “small,” i.e. (log log ℓ)−j(1 + oℓ(1))

∏k−1
s=1 rs:

e
(i)
k−1−j · bj =

( k−1∏

s=j+1

rs +
∑

S⊆{0,...,k−1}\{i}
|S|=k−1−j

S 6={j+1,...,k−1}

∏

s∈S
rs

)
·
(
(log log ℓ)−j

j∏

s=1

rj

)

≤
(( k−1∏

s=j+1

rs

)
·
(
1 +

(
k − 1

j

)
1

log ℓ

))
·
(
(log log ℓ)−j

j∏

s=1

rj

)

= (log log ℓ)−j ·
(k−1∏

s=1

rs

)
·
(
1 +

kj

log ℓ

)
. (23)

Therefore for every i ∈ {0, . . . , k − 1}, the alternating sum is dominated by the contribution from
j = i: more precisely, we have

k−1∑

j=0

(−1)j+ie
(i)
k−1−j · bj ≥

(k−1∏

s=1

rs

)(k−1∑

j=i

(−1)i+j(log log ℓ)−j − 1

log ℓ

∑

0≤j≤k−1
j 6=i

(
k

log log ℓ

)j
)

≥
(k−1∏

s=1

rs

)(
(log log ℓ)−i

(
1− 1

log log ℓ

)
− 2

log ℓ

)

≥ 0.

Since, as noted earlier, the denominator of Equation (19) is positive, this shows that pi ≥ 0 for
every i ∈ {0, . . . , k − 1}. Moreover, we have

p0 =

∑k−1
j=0(−1)je

(i)
k−1−j · bj∏k−1

s=1(rs − r0)

≥

(∏k−1
s=1 rs

)(
1− 1

log log ℓ − 2
log ℓ

)

∏k−1
s=1 rs

≥ 1− 2

log log ℓ
.

This completes the proof of Claim 24.
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Algorithm 1: Small-rate-reconstruct

1: Set j = 1 and py = 1.
2: While py ≤ |y| do:
3: With probability 1− δ set x̂j := ypy and increment py;
4: with the remaining δ probability set x̂j to a uniform bit from {0, 1}.
5: Set j := j + 1.
6: If |x̂| < n then append 0n−|x̂| to x̂, and if |x̂| > n then delete bits x̂n+1, . . . from x̂.
7: Output the n-bit string x̂.

4 Worst-case one-trace reconstruction, medium and small dele-
tion rate

In this section we consider the medium and small deletion rate regime. In particular, throughout
this section we suppose that δ ≤ 1/2. (Note that if δ > 1/2, then the quantity 1− δ+ δ2/2− δ3/2+
δ4/2− δ5/2 is less than 2/3, so the performance guarantee given by Theorem 26 is weaker than the
guarantee given by Theorem 1 / Theorem 13.)

4.1 An efficient algorithm achieving expected LCS (1 − δ + δ2/2 − δ3/2 + δ4/2 −
δ5/2− o(1))n

As mentioned in the introduction, it is very easy for a one-trace algorithm to achieve expected LCS
at least (1− δ)n: this can be accomplished simply by having the hypothesis string x̂ be any string
that contains the input trace y as a subsequence. The expected LCS of such a hypothesis string is
clearly at least E[|y|], which is (1− δ)n by linearity of expectation.

The following theorem shows how to improve on this naive bound:

Theorem 26 (Worst-case algorithm, small deletion rate). Let δ = δ(n) ≤ 1/2 be the deletion rate.
There is an O(n)-time (randomized) algorithm Small-rate-reconstruct which is given as input
the values n and δ and a single trace y ∼ Delδ(x), where x ∈ {0, 1}n is an unknown and arbitrary
source string. For any γ ≤ 1, Small-rate-reconstruct outputs a hypothesis string x̂ ∈ {0, 1}n
which satisfies

E
[
|LCS(x̂, x)|

]
≥
(
1− e−Ω(γ2n)

)(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n− 3γn

(so in particular, taking ω(1/
√
n) ≤ γ ≤ o(1), we get that the expected value of |LCS(x̂, x)| is at

least (1− δ + δ2/2− δ3/2 + δ4/2− δ5/2− o(1))n).

Intuition. The algorithm Small-rate-reconstruct is given as Algorithm 1. To analyze the
algorithm it is convenient to consider the string x̂′ which is x̂ immediately before Step 5 is performed
(i.e. with no padding with 0s or deletion applied). We will show later that x̂′ is with high probability
“very close to x̂”, so we can chiefly reason about x̂′ and take care of the minor difference between
x̂
′ and x̂ at the end of the argument.
We first observe that x̂′ clearly contains y as a subsequence. The main idea of the proof is that a

non-negligible fraction of the times that Step 3 is performed, one or more uniform random bits from
{0, 1} will be placed in between consecutive bits ypy and ypy+1 in creating the hypothesis string x̂′

exactly when one or more bits of x were deleted in between ypy and ypy+1 in the creation of the
trace y. Each time this happens there is a 1/2 chance that at least one “additional bit” beyond the
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subsequence y of x̂′ can be incorporated into a matching between x and x̂′. This is the source of
the extra (δ2/2− δ3/2+ δ4/2− δ5/2)n in the LCS bound. Intuitively, the number of additional bits
between every ypy and ypy+1 in each of x and x̂′ is distributed according to Geometric(1 − δ) − 1,

so there are at least min{Geometric(1− δ)− 1,Geometric(1− δ)− 1} = Geometric(1− δ2)− 1 many
additional bits between ypy and ypy+1 in both of x and x̂

′, and there is a 1/2 chance each uniform

additional {0, 1} bit in x̂
′ matches an additional bit in x.

We now provide formal details.

Proof of Theorem 26. Let x ∈ {0, 1}n be the unknown source string. Consider appending infinitely
many copies of a special symbol ∗ to x to form an infinite string x∞. We sample an infinite
subsequence y∞ of x∞ by the following infinite process: For each j = 1, 2, . . . , we sample a prefix
xj of x∞ of length |xj| ∼ Geometric(1− δ), then output the last bit of xj as the j-th bit of y∞ and
delete the prefix xj from x∞ before moving on to the next value of j.

Note that the longest prefix of y∞ that does not contain any xi : i > n is identically distributed
as the trace y ∼ Delδ(x). Equivalently, the concatenation of the last bit in each of x1, . . . ,x|y| is
identically distributed as y ∼ Delδ(x).

Let T = {t1 < · · · < t|y|} be the set of |y| many locations j ∈ {1, 2, . . . , } such that x̂′
j was set

to ypy in some execution of Step 3 of Small-rate-reconstruct. Note that the elements of T

are the indices of the Trace bits in x̂
′ and that ti is the index such that x̂′

ti was set to yi in Step 3
of the execution of Small-rate-reconstruct. Let

x̂
′1 := x̂

′
[1:t1], x̂

′2 := x̂
′
[t1+1:t2], . . . , x̂

′|y| := x̂
′
[t|y|−1+1:t|y|]

.

Observe that for each i ∈ [|y|], both xi and x̂′i are identically distributed. In particular, their
lengths |xi| and |x̂′i| are distributed according to Geometric(1 − δ), and so the minimum of both
lengths, i.e. di := min{|xi|, |x̂′i|}, is distributed according to Geometric(1− δ2). Moreover, the last
bits in xi and x̂′i are equal to yi, and the rest of the bits in x̂i are uniform.

For each i ∈ [|y|], since the length-(di − 1) prefix of x̂′i is random, in expectation (over the
randomness of x̂′i) it agrees with the length-(di − 1) prefix of xi on (di − 1)/2 of the bits. Also,
the last bit of both xi and x̂

′i are the same. Hence, we have

E
x̂′i

[
|LCS(xi, x̂i)|

]
≥ (di − 1)/2 + 1.

Observe that the concatenation of xi : i ∈ [|y|] is a prefix of x, because the last bit of x|y| is the
last bit of y ∼ Delδ(x), and the concatenation of x̂′i : i ∈ [|y|] is exactly x̂

′. Thus,

Ex̂′

[
|LCS(x, x̂′)|

]
≥

|y|∑

i=1

[
E

xi,x̂′i |LCS(xi, x̂′i)|
]
≥

|y|∑

i=1

(
(di − 1)/2 + 1

)
= |y|+

|y|∑

i=1

(di − 1)/2.

Since di ∼ Geometric(1− δ2), we have E[di − 1] = 1
1−δ2 − 1 = δ2

1−δ2 . So taking expectation over |y|,
we obtain

E
[
|LCS(x, x̂′)|

]
≥ E

[
|y|
]
+E

[
|y|
] δ2

2(1 − δ2)

= (1− δ)n ·
(
1 +

δ2

2(1− δ2)

)

=

(
1− δ +

δ2

2(1− δ2)
− δ3

2(1− δ2)

)
n

≥
(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n.
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To finish the proof, we relate E[|LCS(x̂, x)|] to E[|LCS(x̂′, x)|]. We observe that

|LCS(x̂, x)| ≥ max{0, |LCS(x̂′, x)| − k},

where k is the number of bits x̂n+1, . . . deleted from x̂ in Step 5 of Small-rate-reconstruct

if bits are deleted in that step (and k = 0 otherwise). So it remains only to show that with high
probability k is small.

Recall that the value of |y| is distributed as Bin(n, 1 − δ), and given a particular outcome of
the value of |y|, the number of bits deleted in Step 5 is distributed as min{0,G1 + · · ·+G|y| − n}
where the Gi’s are independent geometric random variables with each Gi ∼ Geometric(ρ) (recall
that ρ = 1− δ). We will use two tail bounds: first, by a multiplicative Chernoff bound, we have

Claim 27. For γ ≤ 1, we have Pr[|y| ≥ (1 + γ)(1− δ)n] ≤ e−Ω(γ2n).

The second tail bound shows that G1 + · · ·+G|y| is unlikely to be much larger than n:

Claim 28. Fix an outcome of |y| such that |y| ≤ (1 + γ)(1 − δ)n, where γ ≤ 1. Then Pr[G1 +
· · ·+G|y| ≥ (1 + 3γ)n] ≤ e−Ω(γ2n).

Proof. Recall that Claim 7 upper bounds the probability that G1 + · · ·+G(1+γ)(1−δ)n ≥ 1+γ
1−δ · (1+

γ)(1− δ)n = (1 + γ)2n. As γ ≤ 1, we get that

Pr[G1 + · · ·+G|y| ≥ (1 + 3γ)n] ≤ e−Ω(γ2|y|) = e−Ω(γ2n),

where the final inequality is by Claim 7.

Combining Claim 27 and Claim 28, we get that k ≤ 3γn except with probability e−Ω(γ2n).
Consequently, we have that

E[|LCS(x̂, x)] ≥
(
1− e−Ω(γ2n)

)(
E[|LCS(x̂′, x)]− 3γn

)

≥
(
1− e−Ω(γ2n)

)(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n− 3γn,

and the theorem is proved.

4.2 Bounds on the performance of one-trace algorithms in the low deletion rate
regime

As noted in the Introduction, it is natural to try to complement Theorem 26 by proving an upper
bound on the best expected LCS that can be achieved by any one-trace algorithm in the low deletion
rate regime. An average-case bound is of course stronger than a worst-case bound of this sort; in
Section 1.1.2 we will show that even in the average-case setting, the best achievable LCS given a
single trace is at most (1−Θ(δ))n.
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5 Average-case one-trace reconstruction, high and medium dele-

tion rate

In this section we bound the performance of any average-case few-trace algorithm when the retention
rate is low. Given the length of the source string n, we write L0,avg(n) to denote the performance
of an optimal zero trace algorithm:

L0,avg(n) = max
z∈{0,1}n

E
x∼{0,1}n

[
|LCS(x, z)|

]

(note that this quantity does not depend on δ), and recall from Section 2.2 that for t > 0, Lt,avg(δ, n)
captures the information-theoretic optimal performance of any t-trace algorithm at deletion rate δ.

We show that when tρ is small, where t is the number of traces and ρ is the retention rate, it
is not possible to do much better than L0,avg(n):

Theorem 29 (Average-case upper bound on any algorithm, small retention rate). Let n be the
length of the source string, t be the number of traces and ρ = 1− δ be the retention rate. Then

L0,avg(n) ≤ Lt,avg(δ, n) ≤ L0,avg(n) + tρ · n.

We note that as a special case of the theorem above, if t(n)ρ(n) = o(n) then the leading constant
of what can be achieved with t traces is no better than if no traces were given. This is in contrast
with the worst-case setting, as witnessed by Theorem 1 and the discussion immediately preceding
it.

The lower bound is immediate so in the rest of this section we prove the upper bound. We start
with some notation for working with multiple traces in the proof of Theorem 29. Given n and t,
let R1, . . . , Rt ⊆ [n] be t subsets which should be viewed as locations retained from an n-bit string
to obtain its t traces (so if the source string is x then the traces are y(s) = xRs for s = 1, . . . , t).
Let i1 < · · · < im be an enumeration of indices in R1 ∪ · · · ∪ Rt. We write C = (C1, . . . , Cm) to
denote the tuple where Cj is the set of those s ∈ [t] such that ij ∈ Rs. We will refer to C as the
collision information of R1, . . . , Rt, denoted by C = C(R1, . . . , Rt).

Example 30. Consider the case that n = 8, t = 3, the source string x is 11010011, and the three
traces y(1) = 1100, y(2) = 110, y(3) = 1001 are obtained from x as shown below:

x : 1 1 0 1 0 0 1 1

y(1) : 1 1 0 0

y(2) : 1 1 0

y(3) : 1 0 0 1

In this case we have that m = 6, i1 = 1, i2 = 2, i3 = 4, i4 = 5, i5 = 6, i6 = 7, and C1 = {1},
C2 = {1, 2, 3}, C3 = {2}, C4 = {1, 2, 3}, C5 = {1, 3}, C6 = {3}. As discussed in Observation 31
below, given the traces y(1), y(2), y(3) and the collision information C, it is possible to reconstruct
an m-bit subsequence y (in this example y = 111001) of x, but not the n − m bits of x that are
missing from y nor the locations of where the m bits of y are situated in x.

We will consider average-case algorithms that are given not only t traces y1, . . . ,yt ∼ Delδ(x) of
a random string x ∼ {0, 1}n but also the collision information C = C(R1, . . . ,Rt), where Rs ⊆ [n]
is the set of locations that are retained in obtaining trace y(s) from x for each s ∈ [t]. Let L∗

t,avg(δ, n)
denote the performance of the best algorithm A under this setting:

L∗
t,avg(δ, n) := max

A
E

x∼{0,1}n
E

R1,...,Rt∼Rρ

[∣∣LCS
(
A(xR1 , . . . ,xRt,C),x

)∣∣
]
,
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where we write Rρ to denote the distribution where R ∼ Rρ is drawn by including each element
in [n] independently with probability ρ and C = C(R1, . . . ,Rt) is the collision information of sets
R1, . . . ,Rt. It is clear that L

∗
t,avg(δ, n) ≥ Lt,avg(δ, n). We prove Theorem 29 by showing that

L∗
t,avg(δ, n) ≤ L0,avg(n) + tρ · n.

Observation 31 (A posteriori distribution of a uniform random source string given t traces and
their collision information). Let x be a uniform random source string drawn from {0, 1}n. Let
I = (y(1), . . . , y(t), C) be any fixed outcome of t traces from Delδ(x) together with the collision
information of their locations retained. Then the a posteriori distribution of x given I is as follows:

1. Let C = (C1, . . . , Cm) for some m ≤ n. We define an m-bit string y as follows. For each
j ∈ [m], pick an s ∈ Cj and set zj = y

(s)
k where k is the number of j′ ≤ j such that s ∈ Cj′ .

(Note that the value of zj does not depend on the choice of s ∈ Cj.)

2. The rest of the process is the same as the description of the a posteriori distribution of x
given one trace y (see Observation 9); for convenience we will write Dy to denote the
distribution of x described below. Draw a uniform random m-element subset of [n] (say
S = {s1, . . . , sm} where 1 ≤ s1 < · · · < sm ≤ n);

3. For each j ∈ [m] set xsj = zj , and for each i /∈ S set xi to an independent uniform bit.

We are now ready to prove Theorem 29.

Proof of Theorem 29. Let A be an optimal algorithm that achieves L∗
t,avg(δ, n). Let x ∼ {0, 1}n and

let I = (y(1), . . . ,y(t),C) be the input of A, where A outputs A(I) ∈ {0, 1}n. Given an outcome I
of I, we write y(I) to denote the string derived from I as in Step 1 of Observation 31. Then

L∗
t,avg(δ, n) =

∑

I

Pr
[
I = I

]
· E
x∼Dy(I)

[∣∣LCS
(
A(I),x

)∣∣
]
, (24)

where the sum is over all possible inputs I of A. We need the following claim:

Claim 32. Fix any string y ∈ {0, 1}m for some m ≤ n. For any string z ∈ {0, 1}n, we have

E
x∼Dy

[∣∣LCS
(
z,x

)∣∣
]
≤ L0,avg(n) +m.

Proof. Consider the following coupling (x,x′) ∼ E of the uniform distribution over {0, 1}n and Dy:
first draw x ∼ {0, 1}n; then draw a size-m subset S of [n] uniformly at random and replace bits of
x at S by y to obtain x′. It is easy to verify that E is a coupling of the uniform distribution over
{0, 1}n and Dy. For any string z ∈ {0, 1}n, we have

E
x′∼Dy

[∣∣LCS
(
z,x′)∣∣

]
= E

(x,x′)∼E

[∣∣LCS
(
z,x′)∣∣

]

≤ E
(x,x′)∼E

[∣∣LCS
(
z,x

)∣∣
]
+m = E

x∼{0,1}n

[∣∣LCS
(
z,x

)∣∣
]
+m ≤ L0,avg(n) +m,

where the inequality used the fact that (x,x′) ∼ E always have Hamming distance at most m.

Combining (24) with Claim 32, we have

L∗
t,avg(δ, n) ≤

∑

I

Pr
[
I = I

]
·
(
L0,avg(n) + |y|

)
= L0,avg(n) +E

[
|y|
]
.

By linearity of expectation, we have

E
[
|y|
]
= n(1− δt) = n(1− (1− ρ)t) ≤ ρt · n.

This finishes the proof of the theorem.
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k = 5 31/32
k = 4 15/16 53/32
k = 3 7/8 23/16 29/16
k = 2 3/4 9/8 23/16 53/32

k = 1 1/2 3/4 7/8 15/16 31/32

value of CS(j, k) j = 1 j = 2 j = 3 j = 4 j = 5

Table 1: Table for values of CS(j, k) for j + k ≤ 6.

6 Average-case one-trace reconstruction, small deletion rate

6.1 An efficient algorithm improving on the Theorem 26 bound

In this section we show that the algorithm Small-rate-reconstruct of Theorem 26, that was
shown to achieve LCS (1− δ + δ2/2− δ3/2 + δ4/2− δ5/2− o(1))n for worst-case source strings, in
fact does better than this for average-case source strings. The high level idea is that when there
are j additional bits between two trace bits in x and k additional bits between two trace bits in x̂

′,
rather than matching only min{j, k}/2 using the randomness of x̂′, we take advantage of the facts
that (i) both the x-bits and the x̂-bits are uniform random, and (ii) if j or k is greater than 1,
then the expected LCS between a random j-bit string and a random k-bit string is strictly larger
than min{j, k}/2, to obtain (on average) a better matching between these two blocks and hence a
larger overall matching. This intuition motivates the following definition:

Definition 33. For integers j, k > 0, we define CS(j, k) as

CS(j, k) := E
x∼{0,1}j ,x′∼{0,1}k

[
|LCS(x,x′)|

]
.

Note that by definition, CS(j, k) = CS(k, j), i.e., the function CS(·, ·) is symmetric in its arguments.

While it is not clear if there is a simple explicit formula for CS(j, k), we note that a brute force
algorithm can be used to compute this function. Further, for the special case of j = k, the function
CS(·, ·) has been studied previously in the literature [CS75]. In particular, for any d > 0, CS(d, d)
is the same as the function f(d, 2) defined in [CS75, Section 2]. Further, once d → ∞, CS(d, d)/d
is the same as the so-called Chvatal–Sankoff constant for the binary alphabet [KLM05, CS75].
Table 1 gives the values of CS(j, k) for all j + k ≤ 6.

Theorem 34. Let δ = δ(n) be the deletion rate. The O(n)-time algorithm Small-rate-reconstruct

given in Theorem 26 has the following property: for any γ > 0 and sufficiently large n, algorithm
Small-rate-reconstruct outputs a hypothesis string x̂ ∈ {0, 1}n satisfying

E
x∈{0,1}n

E
y∼Delδ(x)

[
|LCS(x̂,x)|

]

≥
(
1− e−Ω(γ2n)

)
(1− δ) ·

(
1 + (1− δ)2

∞∑

j,k=1

CS(j, k) · δj+k

)
n− 3γn.

As an example, instantiating with the values of CS(j, k) from Table 1, the above theorem gives us
that

L1,avg(δ, n) ≥
(
1− δ +

1

2
δ2 +

17

8
δ4 +

55

8
δ5 + o(δ5)

)
n,

which improves on the (1− δ + δ2/2− δ3/2 + δ4/2− δ5/2− o(1))n bound of Theorem 26.
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Proof. The proof is analogous to the one in Theorem 26. We first replace x in the proof of
Theorem 26 with a uniform random x ∼ {0, 1}n in the proof.

Now, for each i ∈ [|y|], let us define di to be |xi| and d′
i to be |x̂′i|. Since the length-(di − 1)

prefix of both xi and the length-(d′
i − 1) prefix of x̂′i are independent random strings, and the last

bit of both xi and x̂
′i are the same, we have

E
xi,x̂′i

[
|LCS(xi, x̂i)|

]
≥ CS(di − 1,d′

i − 1) + 1.

As di ∼ Geometric(1− δ) and d′
i ∼ Geometric(1− δ), we have

E
[
CS(di − 1,d′

i − 1)
]
=

∞∑

j,k=1

(
CS(j, k) ·Pr[di = j + 1 and d′

i = k + 1]
)

=

∞∑

j,k=1

(
CS(j, k) ·Pr[Geometric(1− δ) = j + 1] ·Pr[Geometric(1− δ) = k + 1]

)

= (1− δ)2
∞∑

j,k=1

CS(j, k) · δj+k.

So we have

E
[
|LCS(x, x̂′)|

]
≥

|y|∑

i=1

E
xi,x̂′i

[
|LCS(xi, x̂′i)|

]

≥ E
[
|y|
]
+E

[
|y|
]
(1− δ)2

∞∑

j,k=1

CS(j, k) · δj+k

≥ (1− δ)n ·
(
1 + (1− δ)2

∞∑

j,k=1

CS(j, k) · δj+k

)
.

We can again relate E[|LCS(x̂,x)|] to E[|LCS(x̂′,x)|] using the same argument in Theorem 26, from
which we conclude that

E
[
|LCS(x̂,x)|

]
≥
(
1− e−Ω(γ2n)

)(
E
[
|LCS(x̂,x′)|

]
− 3γn

)

≥
(
1− e−Ω(γ2n)

)
(1− δ)n ·

(
1 + (1− δ)2

∞∑

j,k=1

CS(j, k) · δj+k

)
− 3γn,

proving the theorem.

6.2 Bounds on the performance of any one-trace algorithm

Finally, in this section we establish an upper bound on the best possible performance that any
one-trace algorithm can achieve in the small-deletion-rate regime. We consider the average-case
setting (which is of course more challenging for upper bounds, and yields worst-case upper bounds
as an immediate consequence).

A relatively simple analysis shows that L1,avg(δ, n) ≤ (1− cδ/ log(1/δ))n, where c is a universal
positive constant. This argument applies a union bound across all possible matchings of a given
size, and is given as Theorem 45 in Appendix B. It is natural to suspect that this bound is weaker
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than it should be by a Θ(log(1/δ)) factor, but establishing this turns out to be nontrivial. The
following theorem establishes a bound of L1,avg(δ, n) ≤ (1 − cδ)n, which, up to the value of the
universal constant c, is best possible by Theorem 34 (or even by the trivial algorithm which simply
outputs any n-bit string that contains the input trace y, and thereby achieves an LCS of expected
length at least E[|y|] = (1− δ)n).

Theorem 35 (Average-case upper bound on any algorithm, small retention rate). There is an
absolute constant c > 0 such that for any deletion rate δ = δ(n) = ω(1/n) and sufficiently large n,
we have L1,avg(δ, n) ≤ (1− cδ)n.

6.2.1 Outline of the argument

Recall that under the average-case setting, the source string x is uniform random over {0, 1}n, and
our goal is to upperbound the performance of any algorithm which is given as input a single trace
y ∼ Delδ(x). Given any trace string y, the optimal algorithm A will return a string z ∈ {0, 1}n
to maximize Ex∼y[|LCS(z,x)|] (recall Observation 9 for the a posteriori distribution x ∼ y). Let
us write opt(y) for an optimal string z ∈ {0, 1}n for the expectation. Given that y ∼ Delδ(x) and
x ∼ {0, 1}n, our goal is to bound

L1,avg(δ, n) = Ey

[
Ex∼y

[
|LCS(opt(y),x)|

]]
,

where y is a uniform random bitstring of length k where k ∼ Bin(n, 1− δ). For each k, let

OPTk := Ey∼{0,1}k
[
Ex∼y

[
|LCS(opt(y),x)|

]]
.

It is easy to see that OPTk is nondecreasing in k,6 and we have (with k ∼ Bin(n, 1− δ))

L1,avg(δ, n) =

n∑

k=0

Pr
[
k = k] · OPTk. (25)

Let δ′ = δ/2 and m = (1 − δ′)m. To prove Theorem 35, we first show that it suffices to obtain
the following upper bound for OPTm:

OPTm ≤ (1− c1δ
′)n, (26)

for some universal positive constant c1. Consequently it suffices to analyze the optimal one-trace
algorithm which is given as input a uniform random string y ∼ {0, 1}m.

Next, we observe that by a simple triangle inequality argument, it suffices to show that

E
y∼{0,1}m

E
x,x′∼y

[
|LCS(x,x′)|

]
≤ (1− 2c1δ

′)n (27)

for some constant c1; in turn, to prove (27), it is enough to bound (informally)

Pr
y∼{0,1}m,x,x′∼y

[
x and x′ have a “large” matching

]
. (28)

In Claim 37 we give an upper bound on the probability that a fixed large candidate matching
M is a valid matching between x,x′ ∼ y. This upper bound is in terms of a quantity that we call

6To see this, note that any algorithm that receives a random trace of length k can be simulated by an algorithm
that receives a trace of length k + 1 by randomly deleting one bit from its input trace.
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scoreM , which depends on the candidate matching M and is a random variable whose randomness
comes from the sets S and S′ as in Observation 31’s description of the distribution of x ∼ y and
x′ ∼ y. As we show in Claim 38, to establish Equation (28) it is enough to show that for every large
candidate matching M , an upper tail bound on scoreM (S,S′) holds. We prove such a tail bound
in Lemma 39. The two main steps are (i) showing (in Claim 41) that Pr[S is not “well-spaced”] is
very small (see Definition 40 for the definition of well-spaced sets), and (ii) showing (in Claim 42)
that if S = S is good, then PrS′ [ score(S,S′) is large] is very small.

6.2.2 Proof of Theorem 35

We may assume that δ = δ(n) is at most some sufficiently small universal positive constant, since
otherwise the claimed bound follows immediately from Theorem 45. We will use this assumption
in various bounds throughout the proof.

Let δ′ = δ/2 and m = (1 − δ′)n (so δ′ is ω(1/n) and at most some sufficiently small universal
positive constant as well). By the well-known fact [KB80] that the median of the Bin(n, δ) distri-
bution belongs to {⌊nδ⌋, ⌈nδ⌉} (which is at least δ′n using δ = ω(1/n)), it follows from (25) and
the monotonicity of OPTk that

L1,avg(δ, n) ≤ 0.5 ·OPTm + 0.5n

and thus, to prove Theorem 35 it suffices to obtain the upper bound for OPTm in (26).
Instead of working with OPTm directly, an application of the triangle inequality lets us work

with the expression on the LHS of (27) which (conveniently) does not involve opt(y):

Claim 36. Suppose that Equation (27) holds. Then Equation (26) holds.

Proof. For any y ∈ {0, 1}m, any n-bit string opt(y), and any two n-bit strings x, x′, we have that the
length of the LCS between x and x′ is at least the number of coordinates of opt(y) that participate
both in the optimal matching between opt(y) and x and in the optimal matching between opt(y)
and x′. Since this number is at least |LCS(x, opt(y))|+ |LCS(x′, opt(y))| − n, we have that

n+
∣∣LCS(x, x′)

∣∣ ≥
∣∣LCS(x, opt(y))

∣∣+
∣∣LCS(x′, opt(y))

∣∣. (29)

It follows that

2(1− c1δ
′)n = n+ (1− 2c1δ

′)n

≥ n+ E
y∼{0,1}m

E
x,x′∼y

[
|LCS(x,x′)|

]

≥ E
y∼{0,1}m

E
x,x′∼y

[
|LCS(x, opt(y))|+ |LCS(x′, opt(y))|

]

= 2 E
y∼{0,1}m

E
x∼y

[
|LCS(x, opt(y))|

]
,

where the first inequality is by Equation (27), the second is by Equation (29) (averaged over y,
x ∼ y and x′ ∼ y), and the third is because x′ and x are identically distributed.

Given Claim 36, our goal in the rest of the proof is to establish Equation (27). We note that in
Equation (27), given the outcome of y, the two n-bit strings x and x′ are independently distributed
according to x ∼ y and x′ ∼ y; in particular, recalling Observation 31, there are two independent
draws performed to obtain the sets S (for x) and S′ (for x′). This independence will be used heavily
in the rest of the argument.
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Recalling Observation 31, we rewrite Equation (27) as

E
y,S,S′,r,r′

[
|LCS(x,x′)|

]
≤
(
1− 2c1δ

′)n, (30)

where y ∼ {0, 1}m, S and S′ are independent uniform m-element subsets of [n], and r, r′ are
independent uniform draws from {0, 1}n−m representing the “rest of the bits” that get filled into
the locations in [n] \S and [n] \S′ to complete the n-bit strings x and x′, respectively. Recall that
x has y in the m locations of S and r in the other n−m locations, and x′ gets the same y in the
locations of S′ and r′ in the other locations.

Since the length of the LCS between two strings is the size of the largest matching between
them, to establish Equation (30) it suffices to prove that

Pr
y,S,S′,r,r′

[
there exists a matching between x and x′ of size (1− 4c1δ

′)n
]
≤ 1/2 (31)

for some universal positive constant c1. Thus our remaining task is to establish Equation (31).

6.2.3 Matchings and scores

Recall from Section 2 that a matching M of size t between two n-bit strings z, z′ is a sequence of
pairs M = (M1, . . . ,Mt), where

(a) Mi = (vi, v
′
i) are such that 1 ≤ v1 < · · · < vt ≤ n, 1 ≤ v′1 < · · · < v′t ≤ n, and

(b) for each i ∈ [t] we have that the two bits zvi and z′v′i
are the same.

Let us say that a candidate matching is a sequence of pairs M = (M1, . . . ,Mt) satisfying (a); if
moreover (b) holds for a pair of n-bit strings z and z′, we say that the candidate matching M is
valid for (z, z′).

Let M = (M1, . . . ,Mt) be a candidate matching and let

S = {s1 < · · · < sm} and S′ = {s′1 < · · · < s′m}

be two m-element subsets of [n]. We say that an edge Mi = (vi, v
′
i) of M synchs up with the pair

(S, S′) if there is some j ∈ [m] such that vi = sj and v′i = s′j; in words, for some j the candidate
matching attempts to match up the j-th element of S with the j-th element of S′. We say the score
of M on (S, S′), denoted scoreM (S, S′), is

scoreM (S, S′) :=
∣∣∣
{
i ∈ [t] : Mi synchs up with (S, S′)

}∣∣∣,

the number of edges of M that match up corresponding elements of S and S′.

Claim 37. Let M = (M1, . . . ,Mt) be a candidate matching of size t and let S, S′ be m-element
subsets of [n] such that scoreM (S, S′) = ℓ. Then

Pr
y,r,r′

[
M is a valid matching for (x,x′)

]
=

1

2t−ℓ
,

where x and x′ are defined based on S, S′,y, r, r′ as described after Equation (30).
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Proof. For each Mi = (vi, v
′
i) that synchs up with (S, S′), it is clear that xvi = x′

v′i
, because both

are the same bit yj of the string y. There are t− ℓ remaining equalities

xvi1

?
= xv′i1

, . . . ,xvit−ℓ

?
= xv′it−ℓ

, where i1 < · · · < it−ℓ,

that must all hold in order for the candidate matching M to be valid for (x,x′), corresponding to
the t− ℓ edges of M that do not synch up with (S, S′). Each of these equalities holds independently
with probability 1/2. This can be seen by considering the t−ℓ edges of M successively in increasing
order “from left to right”: for each j ∈ [t− ℓ], for any given outcome of the bits of y, r and r′ that
were involved in the first j − 1 edges, there is a “fresh random bit” from either y, r or r′ involved
in the j-th edge that causes the j-th equality to hold with probability 1/2.

For the rest of the proof of Theorem 35, we fix t := (1 − 4c1δ
′)n for some universal constant

c1 to be picked later (recall that that is the size of the matchings that we are concerned with in
Equation (31)). The following claim states that it suffices to establish that for each fixed size-t
candidate matching M , the probability that it has a high score is very low:

Claim 38. Suppose that there is a universal positive constant c1 such that the following inequality
holds for each candidate matching M of size t = (1− 4c1δ

′)n:

Pr
S,S′∼( [n]

[m])

[
scoreM (S,S′) ≥

(
1− 3H(4c1δ

′)
)
n
]
≤ 1

4 · 22H(4c1δ′)n
. (32)

Then Equation (31) holds with the same constant c1.

Proof. We use Pr[A] ≤ Pr[B]+Pr[A | B] where A is the event “there exists some valid matching
between x and x′ of size t” and B is the event “there exists some candidate matching M of size t
with scoreM (S,S′) ≥ (1 − 3H(4c1δ

′))n.” There are

(
n

4c1δ′n

)2

≤ 22H(4c1δ′)n

many candidate matchings M of size t. A union bound together with Equation (32) gives that

Pr[B] ≤ 22H(4c1δ′)n · 1

4 · 22H(4c1δ′)n
=

1

4
.

To upperbound Pr[A | B], fix any particular outcome (S, S′) of (S,S′) such that scoreM (S, S′)
< (1− 3H(4c1δ

′))n holds for every candidate matching M of size t. By Claim 37 we have that

Pr
y,r,r′

[
M is valid for (x,x′) | (S,S′) = (S, S′)

]
≤ 1

2t−(1−3H(4c1δ′))n
<

1

22.5H(4c1δ′)n
,

where the second inequality uses that δ′ is at most some sufficiently small absolute constant. By a
union bound over all (at most 22H(4c1δ′)n) many candidate matchings M of size t, we see that

Pr
[
A | (S,S′) = (S, S′)

]
≤ 22H(4c1δ′)n · 1

22.5H(4c1δ′)n
≤ 1

4
,

where the inequality holds since δ′ = ω(1/n). Hence Pr[A | B] ≤ 1/4, and the claim is proved.
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For the rest of the proof fix M to be any particular size-t candidate matching. By Claim 38,
our remaining task is to establish the tail bound on scoreM (S,S′) that is asserted by Equation (32).
Since δ′ is at most some absolute constant, this is an immediate consequence of the following slightly
stronger (and cleaner to state) version:

Lemma 39. There is a universal positive constant c1 such that

Pr
S,S′∼( [n]

[m])

[
scoreM (S,S′) ≥

(
1−

√
δ′
)
n
]
≤ 1

4 · 22H(4c1δ′)n
. (33)

6.2.4 Proof of Lemma 39

Let the size-t matching M be given by M = ((v1, v
′
1), . . . , (vt, v

′
t)). We define sets L := {v1, . . . , vt}

and R := {v′1, . . . , v′t} with v1 < · · · < vt and v′1 < · · · < v′t.
In the proof of Lemma 39 it will be sometimes convenient for us to view S as a uniform random

string from {0, 1}n conditioned on containing exactly m ones (and S′ as an independent random
string with the same distribution). We write {0, 1}nm to denote the set of all such n-bit strings with
exactly m ones.

The key notion for the proof of Lemma 39 is the following:

Definition 40. We say that an outcome S ∈ {0, 1}nm of the random variable S is well-spaced if it
has the following property: there are at least δ′n/2 many disjoint intervals I1, . . . , Iδ′n/2 ⊂ [n], each
of length exactly 1 + 2β with β := 1/δ′3/4, such that for each j ∈ [δ′n/2] we have that

(i) Ij is entirely contained in L (so Ij contains vij , . . . , vij+2β for some ij) and moreover, their
corresponding indices in R (v′ij , . . . , v

′
ij+2β) also form an interval (i.e., v′ij+2β = v′ij +2β); and

(ii) viewing S as a bit-string from {0, 1}nm, the subword SIj of S is 1β01β , i.e. there is a 0
exactly in the middle of interval Ij and the other 2β bits in the interval are all 1.

Given Definition 40, Lemma 39 is an immediate consequence of Claim 41 and Claim 42 using
Pr[A] ≤ Pr[B] +Pr[A | B] where A is the event “scoreM (S,S′) ≥ (1−

√
δ′)n” and B is the event

“S is not well-spaced,” and taking c1 to be a suitably small constant relative to those constants
hidden in the Ω(·) of these two claims.

Claim 41. We have

Pr
S∼{0,1}nm

[
S is not well-spaced

]
≤ 2−Ω(δ′ log(1/δ′)n).

Claim 42. Fix any well-spaced S ∈ {0, 1}nm. Then

Pr
S′∼{0,1}nm

[
scoreM (S,S′) ≥

(
1−

√
δ′
)
n
]
≤ 2−Ω(δ′ log(1/δ′))n.

Proof of Claim 41. We view the draw of S as a sequential process in which the outcomes of different
groups of coordinates are successively revealed. We first reveal the outcome of S[n]\L = S[n]\L, and
we consider the remaining distribution over the outcome of SL. Let b be the number of 0’s in S[n]\L.
Then the remaining distribution of SL is uniform random over all strings in {0, 1}L that contains
exactly a := n−m− b many zeros. Given that b ≤ |[n] \ L| = 4c1δ

′n ≤ 0.01δ′n (using c1 ≤ 1/400)
we have a ∈ [0.99δ′n, δ′n].

After S[n]\L is drawn, we can view a draw of SL from the above-described distribution as being
obtained through a sequential random process, proceeding for a stages, where in the j-th stage,
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after locations i1, . . . , ij−1 in [t] for zeros have been selected in the first j− 1 stages, a new uniform
random location ij in [t] \ {i1, . . . , ij−1} is selected for the j-th zero (which means that the vij -th
entry of S is set to zero). After each stage we keep track of the number of locations i ∈ [t] selected
so far such that

1. none of i− 2β, . . . , i− 1, i+ 1, . . . , i+ 2β was selected so far; and

2. both vi−β, . . . , vi+β and v′i−β, . . . , v
′
i+β form an interval of length 2β + 1.

We write Xj to denote this random variable after j stages. It suffices to show that Xa, after all a
stages, is at least δ′n/2 with high probability.

To this end, we first notice that after the j-th stage, the number Xj can go down from Xj−1 by
at most two. On the other hand, it goes up by one when ij is not one of the following “disallowed”
locations i ∈ [t]:

1. vi−β, . . . , vi+β or v′i−β, . . . , v
′
i+β does not form an interval; the number of such i ∈ [t] is at

most 2 · 2β · (n − t).

2. i is within 2β of a location already picked; the number of such i is at most (4β + 1)a.

As a result, the probability that Xj does not go up by one is at most

4β(n − t) + (4β + 1)a

t− (j − 1)
=

16c1δ
′1/4n+ (4β + 1)a

t− (j − 1)
≤ 5δ′1/4,

where we used a ≤ δ′n. Consequently, the probability that out of the a stages in which a location
is chosen, at least δ′n/10 times it does not go up by one is at most

2a · (5δ′1/4)δ′n/10 ≤ 2δ
′n · (5δ′1/4)δ′n/10 = 2−Ω(δ′ log(1/δ′)n),

when δ′ is sufficiently small. If this does not happen, then Xa at the end is at least

a− (δ′n/10) − 2 · (δ′n/10) ≥ δ′n/2

using a ≥ 0.99δ′n, so the claim is proved.

Proof of Claim 42. Let S be a well-spaced set in {0, 1}nm, and I1, . . . , Iδ′n/2 be the δ′n/2 intervals
in [n] of length 2β + 1 each that satisfy the conditions of Definition 40. For each Ij , we let ij ∈ [t]
be such that Ij = {vij−β, . . . , vij+β} (so vij is the center of Ij). Let

I ′j =
{
v′
ij−4/

√
δ′
, . . . , v′

ij+4/
√
δ′

}

for each j. Note that since δ′ is at most some sufficiently small constant, we have 4/
√
δ′ < β and

thus, I ′j ’s are mutually disjoint intervals in [n] because Ij’s satisfy conditions of Definition 40.
Let S′ ∼ {0, 1}nm. We claim that, in order to have scoreM (S,S′) ≥ (1−

√
δ′)n, it must be the

case that S′ has at least δ′n/4 many zero entries in the union of I ′j . To see this, suppose that S′

has no more than δ′n/4 many zeros in the union of I ′j . Then at least δ′n/4 many I ′j ’s have all ones

in S′. For each such j, given that SIj = 1β01β , we have that either

(
vij−4/

√
δ′ , v

′
ij−4/

√
δ′

)
, . . . ,

(
vij−1, v

′
ij−1

)
or

(
vij+1, v

′
ij+1

)
, . . . ,

(
vij+4/

√
δ′ , v

′
ij+4/

√
δ′

)

are not synched. As a result, the number of pairs in M that are not synched in (S,S′) is at least
(δ′n/4) · (4/

√
δ′) ≥

√
δ′n and thus, the score is at most (1−

√
δ′)n.
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Finally we bound the probability of S′ ∼ {0, 1}nm having at least δ′n/4 many zeros in the union
of I ′j. Given that the union has size

δ′n
2

·
(

8√
δ′

+ 1

)
< 5

√
δ′n,

the probability is at most (where the summand r is the number of zeros in the union of I ′j)

δ′n∑

r=δ′n/4

(5√δ′n
r

)
·
(n−5

√
δ′n

δ′n−r

)
( n
δ′n

) ≤
(
3δ′n
4

+ 1

)
·
(
5
√
δ′n

δ′n/4

)
·
(n−5

√
δ′n

3δ′n/4

)
( n
δ′n

)

given that the terms are maximized at r = δ′n/4. Using
(n
k

)
≤ (en/k)k, we have

(
5
√
δ′n

δ′n/4

)
≤
(

60√
δ′

)δ′n/4

.

On the other hand, we have

(n−5
√
δ′n

3δ′n/4

)
( n
δ′n

) ≤
( n
3δ′n/4

)
( n
δ′n

) =
(n− δ′n)! · (δ′n)!

(n− 3δ′n/4)! · (3δ′n/4)! ≤
(

δ′n
n− δ′n

)δ′n/4

≤ (2δ′)δ
′n/4.

As a result, the probability is at most

(
3δ′n
4

+ 1

)
·
(
120

√
δ′
)δ′n/4

= 2−Ω(δ′ log(1/δ′)n)

since δ′ is at most some sufficiently small constant. This finishes the proof of Claim 42.
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A An upper bound on average-case zero-trace reconstruction

We recall from Section 1.1.2 that in the asymptotic limit, the best possible performance of any
zero-trace average-case reconstruction algorithm is given by

c2 = lim
n→∞

max
z∈{0,1}n

Ex∼{0,1}n [|LCS(x,z)|]
n

,

and from Section 5 that this quantity equals limn→∞
L0,avg(n)

n .
Via an involved analysis, Bukh and Cox show that Ex∼{0,1}n [|LCS(x, w)|] ≥ 0.82118 where w is

the n-bit string (0110111010010110010001011010)n/28 , and hence c2 ≥ 0.82118. We give an upper
bound on c2:

Claim 43. c2 ≤ 0.88999.

Proof. Fix z ∈ {0, 1}n to be the optimal string that maximizes Ex∼{0,1}n [|LCS(x,z)|]. The claimed
bound on c2 follows from

Pr
x∼{0,1}n

[z has a matching of size 0.88999n with x] ≤ o(1), (34)
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which we establish below by showing that

∑

S⊆[n],|S|=0.88999n

Pr
x∼{0,1}n

[zS matches entirely into x] ≤ o(1). (35)

Via a union bound, Equation (35) in turn follows from showing that for any t-bit string y, where
t := 0.88999n, we have

Pr
x∼{0,1}n

[y matches entirely into x] =
o(1)( n

0.88999n

) . (36)

Fix any t-bit string y and any n-bit string x. The “greedy strategy” for (attempting to) entirely
match y into x is the approach which maintains two pointers py (into the coordinates of y) and px
and scans across x by successively incrementing px, matching each coordinate of y and incrementing
py whenever it is possible to do so. We recall the following well-known fact:

Claim 44 (Greedy matching is optimal for entirely matching one string into another). There is
some matching that entirely matches y into x if and only if the greedy strategy succeeds in entirely
matching y into x.

We return to establishing Equation (36). By Claim 44, y matches entirely into x if and only
if the greedy strategy matches y entirely into x. We may view a uniform x ∼ {0, 1}n as being
generated by successively tossing coins for the successive bits of x; from this perspective it is
clear that Prx∼{0,1}n [the greedy strategy successfully matches y entirely into x] is precisely the
probability that a sequence of n fair coin tosses has at least t “heads” (the i-th coin toss coming
up “heads” corresponds to the i-th bit xi matching the bit of y currently pointed to by py). By
Fact 8, this probability is at most

2H(0.11001)n

2n
, (37)

so again using Fact 8 and 2H(0.11001) < 1 we get that (37) = o(1)

( n
0.88999n)

as required.

B A simple upper bound on average-case one-trace reconstruction

in the small deletion rate regime

In this section we give a simple upper bound on the best possible expected LCS that any one-trace
algorithm can achieve in the average-case small-deletion-rate regime. The argument, which is based
on a union bound over all possible matchings of a given size, is significantly simpler than the proof
of Theorem 35, but it yields a result that is quantitatively weaker by a Θ(log(1/δ)) factor.

Theorem 45 (Weak average-case upper bound on any algorithm, small deletion rate). Let δ = δ(n)
be any ω(1/n) deletion rate. There is an absolute constant c > 0 such that for sufficiently large n
we have L1,avg(δ, n) ≤ (1− cδ/ log(1/δ))n.

Proof. As in the beginning of the proof of Theorem 35, by recalling the well-known fact [KB80]
that the median of the Bin(n, δ) distribution belongs to {⌊nδ⌋, ⌈nδ⌉}, since δ = ω(1/n) we have
that with probability Ω(1) the length |y| of a random trace y drawn from the δ-deletion channel is
at least (1−Ω(δ))n =: (1− δ′)n. Hence to upper bound L1,avg(δ, n) as claimed, it suffices to show
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the following: for any one-trace algorithm A that is given as input a uniform random trace y, of
length exactly (1− δ′)n, from a uniform random source string x ∼ {0, 1}n, we have

Pr
x∼{0,1}n

[
A outputs a hypothesis string z with |LCS(x, z)| ≥

(
1− cδ′

log(1/δ′

)
n

]
≤ 0.9. (38)

We first recall from Corollary 10 that given a trace y of length (1 − δ′)n from a uniform
x ∼ {0, 1}n, the δ′n bits of xD that are missing from y are independent and uniform random.
Next, we note that any candidate matching µ of size (1 − τ)n between a source string x ∈ {0, 1}n
and a hypothesis string z ∈ {0, 1}n is completely specified by two subsets S = {i1 < · · · < iτn} ⊂ [n]
and S′ = {j1 < · · · < jτn} ⊂ [n] of size τn, where S (S′, respectively) is the set of positions in x
(positions in z, respectively) that do not participate in the matching.

Fix any hypothesis string z ∈ {0, 1}n (here z may depend on the trace y ∼ {0, 1}(1−δ′)n that
algorithm A receives as input). Consider a fixed candidate matching µ of size (1 − τ)n between z
and x, defined by two fixed sets S, S′ as described above. For τ < δ′/2 (which will be the case given
our final parameter setting for τ), even if all τn positions in S are contained in the deleted locations
D, there are at least (δ − τ)n ≥ (δ′/2)n bits in xD that are not present in y but are matched to
some bits of z by the candidate matching µ. As mentioned above, these bits are independently
uniform random, and so the probability that µ successfully matches all of those (at least) (δ′/2)n
bits with the right outcomes of their partners in z is at most 2−(δ′/2)n. It follows that Prx[the
candidate matching µ is a valid matching between z and x] ≤ 2−(δ′/2)n. Hence we have

Pr
x∼{0,1}n

[there exists some matching of size (1− τ)n between x and z]

≤
(

n

τn

)2

· 2−(δ′/2)n ≤ 2(2H(τ)−δ′/2)n ≤ 2−(δ′/4)n ≤ 0.9,

where the first inequality is by a union bound over all
( n
τn

)2
many candidate matchings of size

(1− τ)n, the second is Fact 8, the third holds by choosing τ = cδ′/ log(1/δ′) for a suitable absolute
constant c, and the fourth (with room to spare) is because δ′, like δ, is ω(1/n).

C No constant-size (2/3 + ε)n-LCS cover for any constant ε > 0

Claim 46. For any positive constant ε, any (2/3 + ε)n-LCS cover S ⊆ {0, 1}n must have size
Ω(log n).

Proof. Let ε be a positive constant and let ε′ = 6ε. Let S ⊆ {0, 1}n be a (2/3 + ε)n-LCS cover for
strings of length n. As explained in Section 3.2.2, by arguments given in the proof of Theorem 1.4
of [GHS20], for any x ∈ {0, 1}n (and hence in particular for each string x ∈ S), there can be at
most 1200/ε′3 many strings a ∈ Cn,ε′ that have |LCS(x, a)| ≥ (2/3 + ε′/6)n = (2/3 + ε)n. Say a
string a ∈ Cn,ε′ is covered if there is some string x ∈ S such that |LCS(x, a)| ≥ (2/3+ε)n; it follows
that at most |S| · (1200/ε′3) strings in Cn,ε′ are covered. Given that every string in Cn,ε′ is covered
(by the assumption that S is a (2/3 + ε)n-LCS cover), we have

|S| · 1200
ε′3

≥
∣∣Cn,ε′

∣∣ = log n

log(1/ε′4)
,

from which the Ω(log n) lower bound on |S| follows.
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