
Fully Dynamic Exact Edge Connectivity in Sublinear Time

Gramoz Goranci∗ Monika Henzinger† Danupon Nanongkai‡

Thatchaphol Saranurak§ Mikkel Thorup¶ Christian Wulff-Nilsen‖

March 25, 2024

Abstract

Given a simple n-vertex, m-edge graph G undergoing edge insertions and deletions, we give
two new fully dynamic algorithms for exactly maintaining the edge connectivity of G in Õ(n)
worst-case update time and Õ(m1−1/31) amortized update time, respectively. Prior to our
work, all dynamic edge connectivity algorithms assumed bounded edge connectivity, guaranteed
approximate solutions, or were restricted to edge insertions only. Our results answer in the
affirmative an open question posed by Thorup [Combinatorica’07].

∗Institute for Theoretical Studies, ETH Zurich. This project is supported by Dr. Max Rössler, the Walter Haefner
Foundation and the ETH Zürich Foundation. Part of this work was done while the author was at the University of
Glasgow. email: gramoz.goranci@eth-its.ethz.ch

†Faculty of Computer Science, University of Vienna. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science
Fund (FWF) project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding
from the netidee SCIENCE Stiftung, 2020–2024. email: monika.henzinger@univie.ac.at

‡Max Planck Institute for Informatics & University of Copenhagen & KTH. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 715672. Nanongkai was also partially supported by the Swedish Research Council (Reg.
No. 2019-05622). email: danupon@mpi-inf.mpg.de

§University of Michigan. email: thsa@umich.edu
¶University of Copenhagen. This project is supported by Investigator Grant 16582, Basic Algorithms Research

Copenhagen (BARC), from the VILLUM Foundation. email: mikkel2thorup@gmail.com
‖University of Copenhagen. This project is supported by the Starting Grant 7027-00050B from the Independent

Research Fund Denmark under the Sapere Aude research career programme. email: koolooz@di.ku.dk

1

ar
X

iv
:2

30
2.

05
95

1v
2

 [
cs

.D
S]

 2
2

M
ar

 2
02

4

1 Introduction

The edge connectivity of an undirected, unweighted graph G = (V,E) is the minimum number of
edges whose removal disconnects the graph G. Finding the edge connectivity of a graph is one of
the cornerstone problems in combinatorial optimization and dates back to the work of Gomory and
Hu [23] in 1961. Since then, a large body of research work has dealt with the question of obtaining
faster algorithms for this problem in the classical sequential setting [12, 45, 26, 15, 55, 37, 36, 38, 27,
42, 6, 16, 44, 17, 41]. This line of work culminated in a breakthrough result by Kawarabayashi and
Thorup [38] in 2015 who obtained a deterministic algorithm that runs in Õ(m)1 time on a n-vertex,
m-edge graph, which was later improved by Henzinger, Rao, and Wang [27] to O(m log2 n log log2 n).
Edge connectivity has also been extensively studied in various models of computation including
the parallel model [34, 18, 43], the distributed models [51, 19, 49, 20, 10, 50, 21, 22, 11], the semi-
streaming model [1, 44, 4], and several query models [52, 44, 40]. All these models admit non-trivial,
if not near-optimal, algorithms for exactly computing edge connectivity.

We study edge connectivity in the fully dynamic setting, where the underlying graph G under-
goes edge insertions and deletions, known as edge updates, and the goal is to maintain the edge
connectivity of G after each update with as small update time as possible. In contrast to the long
line of research work in other computational models, the only known algorithm for the fully dy-
namic edge connectivity problem is the trivial solution of recomputing the edge connectivity from
scratch after each update, which costs Θ̃(m) time per update. Thorup [56] introduced this problem
and gave a fully dynamic edge connectivity algorithm that supports fast updates as long as the
edge connecitvity is upper bounded by some parameter η, where η is a small polynomial in n.
Concretely, his algorithm achieves Õ(η29/2

√
n) worst-case time per edge update, and thus is slower

than the trivial algorithm whenever η = Ω̃(m2/29n−1/29). In spite of dynamic graph algorithms
being a flourishing research field, prior to our work, there has been no progress on the fully dynamic
edge connectivity problem in the last 15 years.

In this paper we give the first solutions with o(m) update time, answering in the affirmative
an open question posed by Thorup [56] of whether this is possible. More concretely, we show the
following two results.

Theorem 1.1. Given an undirected, unweighted n-vertex, m-edge graph G = (V,E), there is a fully
dynamic randomized algorithm that processes an online sequence of edge insertions or deletions and
maintains the edge connectivity of G in Õ(n) worst-case update time with high probability.

The above randomized algorithm works against an adaptive adversary and achieves sub-linear
update time as long as m = Ω(n1+ϵ) where ϵ where is some positive constant. We complement
both points of this result by designing a second algorithm that is (i) deterministic and (ii) achieves
sub-linear update times regardless of graph density.

Theorem 1.2. Given an undirected, unweighted n-vertex, m-edge graph G = (V,E), there is a fully
dynamic deterministic algorithm that processes an online sequence of edge insertions or deletions
and maintains the edge connectivity of G in Õ(m29/31n1/31) = Õ(m1−1/31) amortized update time.

Both algorithms can also report the edges on a cut that attains the edge connectivity of G in
time nearly proportional to the edge connectivity, with the caveat that the algorithm from Theorem
1.1 then only works against an oblivious adversary.

1We use Õ(·) to hide poly-logarithmic factors.

2

1.1 Our Techniques

In this section, we discuss the main obstacles that explain the lack of progress on fully dynamic
exact edge connectivity algorithms and point out the key ideas that enable us to achieve our results.

Before 2015, all near-linear time algorithms for exact edge connectivity reduced to computing a
minimum 2-respecting cut of a spanning tree [36]. This problem involves setting up a sophisticated
dynamic programming solution, and the question of whether this solution admits fast dynamic algo-
rithms remains a notoriously hard open problem. For the somewhat easier problem of maintaining
a minimum 1-respecting cut of a spanning tree [13, 3, 56], state-of-the-art dynamic algorithms allow
us to solve the problem efficiently. In fact, this is used as a key subroutine in Thorup’s algorithm
[56] that (1 + ϵ)-approximates edge connectivity in Õ(

√
n) worst-case update time.

In a breakthrough work, Kawarabayashi and Thorup [38] in 2015 showed a largely different
approach to tackling the edge connectivity problem. Their key insight was to introduce a notion
of sparsification for edge connectivity in a subtle way: given an undirected, unweighted n-vertex
G, one can contract edges of G and obtain a graph G′ such that (i) G′ has only O(n) edges and
(ii) G′ preserves all non-singleton minimum cuts of G.2 Throughout, we call the graph G′ a non-
singleton minimum cut sparsifier (abbrv. NMC sparsifier). Since maintaining singleton minimum
cuts boils down to maintaining the minimum degree of G, and the latter can be easily achieved as
G undergoes edge updates, we can focus our attention to designing fully dynamic algorithms for
maintaing the NMC sparsifier G′.

In the insertions-only setting, Goranci, Henzinger, and Thorup [24] observed that an NMC
sparsifier interacts well with edge insertions, as it satisfies a certain composability property. Specif-
ically, they showed that given an NMC sparsifier G′ of a graph G and an edge insertion e to G,
the graph G′ ∪ {e} remains an NMC sparsifier of G ∪ {e}. This was in turn combined with Hen-
zinger’s insertions-only algorithm [29] for maintaining small edge connectivity and k-connectivity
certificates. Periodically invoking a static algorithm for computing NMC sparsifier in a black-box
manner then led to a dynamic algorithm with poly-logarithmic amortized update time per edge
insertion.

We may be tempted to employ the same approach for handling edge deletions. However, a short
afterthought reveals that the crucial composability property we used for edge insertions completely
fails for edge deletions. This suggests that restricting to edge deletions does not seem to help in
the dynamic NMC sparsifier problem, so in this work we refocus our attention to the fully dynamic
setting.

We devise two new fully dynamic NMC sparsifier algorithms which lead us to Theorems 1.1
and 1.2, respectively. The first one is randomized and is based on a dynamic variant of the random
2-out contraction technique leveraged by Ghaffari, Nowicki, and Thorup [22] (Section 3), whereas
the second one is deterministic and builds upon the expander decomposition-based approach for
computing edge connectivity by Saranurak [53] (Section 4). We note that the original construction
of NMC sparsifiers [38] is already quite involved in the static setting and seems difficult to adapt in
the dynamic setting. In the paragraphs below, we give a succinct summary of the technical ideas
behind both of our algorithms.

Key to our randomized algorithm for dynamically maintaining an NMC sparsifier is the fol-
lowing construction: given a graph G, for each vertex u ∈ V , sample two incident edges to u
independently, with replacement, and contract them to obtain the graph G′, which we call a ran-

2A non-singleton minimum cut is a minimum cut where both sides of the cut contain at least 2 vertices.

3

dom 2-out contraction of G. Despite the fact that G′ is known to have only O(n/δ) vertices [22],
where δ is the minimum degree of G, the number of edges in G′ could potentially still be large,
say ω(n), and thus inefficient for our purposes. The main technical component of our dynamic
algorithm is to efficiently maintain a sparse δ-connectivity certificate H ′ of G′. Towards achieving
this goal, we have to deploy a variety of algorithmic tools from sequential, parallel, and streaming
algorithms, namely (i) sequential and parallel constructions of k-connectivity certificates [46, 10],
and (ii) constructing spanning forests in sub-linear time using linear ℓ0-sampling sketches [9, 33].
A more detailed description of the algorithm can be found in Section 3.

Our deterministic algorithm follows the now-widespread and powerful algorithmic approach of
employing expander decompositions for solving graph-based optimization problems. At a high level,
an expander decomposition is a partitioning of a graph into well-connected clusters, whose expansion
is controlled by a parameter ϕ ∈ (0, 1), such that there are few inter-cluster edges left, say roughly
ϕm. If ϕ ≈ δ−1, then Saranurak [53] recently showed that contracting a carefully chosen vertex
subset of each expander in the decomposition leads to a NMC sparsifier G′. Our main technical
contribution is a simple, deletions-only algorithm for maintaining an expander decomposition (based
on expander prunning [54]), which in turn leads to a deletions-only algorithm for maintaining the
NMC sparsifier G′. While expander pruning has been already used for dynamically maintaining
other graph-based properties [25, 5], we believe that our construction is one of the simplest and
may prove useful in future applications. We extend our deletions-only NMC algorithm to a fully
dynamic one by keeping edge insertions “on the side” and rebuilding periodically. Finally, for
achieving our claimed sub-linear update time, our NMC sparsifier algorithm is run in “parallel”
with the exact fully dynamic edge connectivity algorithm of [56] which returns correct answers only
for small edge connectivity. For further details we point the reader to Section 4.

1.2 Related Work

The study of approximation algorithms for the fully dynamic edge connectivity problem was initi-
ated by Karger [35] who gave a randomized algorithm that maintains a

√
1 + 2/ϵ to edge connec-

tivity in Õ(n1/2+ε) expected amortized time per edge operation. Karger and Thorup [57] showed
a fully dynamic algorithm that (2 + ϵ)-approximates edge connectivity in Õ(1) amortized updated
time. Thorup [56] improved the approximation factor to (1+ϵ) at the cost of increasing the update
time to Õ(

√
n). However, his running time guarantees are worst-case instead of amortized.

Prior to our work, all known fully dynamic algorithms for exactly computing the edge con-
nectivity λ(G) of G take sub-linear time only when λ(G) is small. In the same work [56], Tho-
rup also showed an exact fully dynamic algorithm with Õ(λ(G)29/2

√
n) worst-case update time,

which is sub-linear whenever λ(G) = o(m2/29n−1/29).3 For λ(G) being a small constant, edge
connectivity can be maintained in Õ(1) amortized update time. Specifically, there were a series
of refinements in the literature for designing fully dynamic algorithms for graph connectivity (i.e.,
checking whether λ(G) ⩾ 1) [13, 28, 31, 33, 48, 7] and 2-edge connectivity (i.e., checking whether
λ(G) ⩾ 2) [14, 30, 31, 32]. When the underlying dynamic graph is guaranteed to remain planar
throughout the whole sequence of online updates, Lacki and Sankowski [39] gave an algorithm with
Õ(n5/6) worst-case update time per operation.

Partially dynamic algorithms, i.e., algorithms that are restricted to either edge insertions or
deletions only, have also been studied in the context of exact maintenance of edge connectiv-

3Nevertheless, Thorup’s result does not assume that G is an undirected, unweighted graph.

4

ity. Henzinger [29] designed an insertions-only algorithm with O(λ(G) log n) amortized update
time. Recently, Goranci, Henzinger, and Thorup [24] showed how to improve the update time to
O(log3 n log log2 n), thus removing the dependency on edge connectivity from the running time.

To summarize, all previous dynamic edge connectivity algorithms either maintain an approxi-
mation to λ(G), require that λ(G) is small, handle edges insertions only, or are restricted to special
family of graphs such as planar graphs. Hence, our results are the first fully dynamic exact edge
connectivity algorithms that achieve sub-linear update times on general graphs.

2 Preliminaries

Let G = (V,E) be an n-vertex, m-edge graph. For a set U ⊆ V, the volume of U in G is defined
as volG(U) :=

∑
u∈U d(u), where d(u) denotes the degree of u in G. Let δ = minu∈U{d(u)} denote

the minimum degree in G. A cut is a subset of vertices C ⊆ V where min{|C| ,
∣∣V \C∣∣} ⩾ 1. A

cut C is non-singleton iff min{|C| ,
∣∣V \C∣∣} ⩾ 2. For two disjoint sets S, T ⊆ V , let E(S, T) ⊆ E

be the set of edges with one endpoint in S and the other in T . Let ∂(S) := E(S, V \S). The edge
connectivity in G, denoted by λ(G), is the cut C that minimizes

∣∣∂(C)
∣∣.

It is a well-known fact that edge connectivity can be computed in near-linear time on the number
of edges.

Theorem 2.1 ([36]). Let G = (V,E) be a weighted, undirected graph with m edges. There is an
algorithm that computes the edge connectivity λ(G) of G in Õ(m) time.

3 Randomized Algorithm with Õ(n) Update Time

In this section we prove Theorem 1.1. Our algorithm requires several tools from different works
and we review them below.

3.1 Algorithmic Tools

Random 2-Out Subgraph and Contraction. Let G = (V,E) be a undirected simple graph.
Let R = (V,E′) be a random 2-out subgraph of G which is obtained from G using the following
procedure

• Set R← (V,E′), where E′ ← ∅.
• For each u ∈ V :

▷ Sample from E two incident edges (u, v1), (u, v2) independently, with replacement.

▷ Add (u, v1) and (u, v2) to E′.

The graph G′ = G/R obtained by contracting all edges of R is called a random 2-out contraction.
Ghaffari, Nowicki and Thorup [22] showed that a random 2-out contraction reduces the number of
nodes to O(n/δ) whp, while preserving any fixed non-singleton nearly minimum cut with constant
probability, as in the theorem below.

Theorem 3.1 (Theorem 2.4 of [22]). A random 2-out contraction of a graph with n vertices and
minimum degree δ has O(n/δ) vertices, with high probability, and preserves any fixed non singleton
(2− ϵ) minimum cut, for any constant ϵ ∈ (0, 1], with some constant probability pϵ > 0.

5

Sequential and Parallel Constructions of k-Connectivity Certificates. Given a graph
G = (V,E), a k-connectivity certificate H of G is a subgraph of G that preserves all cuts of size
at most k. Concretely, for any vertex set S ⊆ V , min{k, |EH(S, V \S)|} = min{k, |EG(S, V \S)|}.
Nagamochi and Ibaraki [46] designed a sequential algorithm for computing a sparse k-connectivity
certificate in linear time. Below we shall review an algorithm that does not run in linear time but
it’s simpler and suffices for our purposes.

Algorithm 1 A sequential algorithm for computing a k-edge connectivity certificate

Input: A graph G = (V,E) with n vertices, and a parameter k.
Output: A k-connectivity certificate H of G.

1. Set G1 ← G.

2. For i← 1, . . . , k:

(a) Find a spanning forest Fi of Gi.

(b) Set Gi+1 ← Gi\Fi.

3. Return H = ∪ki=1Fi.

Theorem 3.2 ([46]). Given a graph G = (V,E) with n vertices and an integer parameter k ⩾ 1,
Algorithm 1 returns a k-connectivity certificate H of G containing O(nk) edges.

Observe that Algorithm 1 for constructing a k-connectivity certificate computes k nested span-
ning forests. When k is large, this long chain of dependency is too inefficient in the dynamic
setting. Although Algorithm 1 will prove useful at some point in our final construction, we need to
bypass this dependency issue. To this end, we will exploit an alternative k-connectivity certificate
construction by Daga et al. [10] which was developed in the context of distributed and parallel algo-
rithms. We describe this construction in Algorithm 2. The key advantage of this algorithm is that
it reduces the k-connectivity certificate problem to O(k/ log n) instances of k′-connectivity certifi-
cate where k′ = O(log n). This suggests that we can afford using algorithms even with polynomial
dependency on k′ since k′ is logarithmic on the number of nodes.

Theorem 3.3 (Section 3 of [10]). Given a graph G = (V,E) with n vertices and an integer
parameter k, Algorithm 2 returns a subgraph H of G such that (a) H contains O(nk) edges, and
(b) H is a k-connectivity certificate of G with high probability.

Spanning Forest From ℓ0-Sampling Sketches. A well-known tool in the streaming algorithms
literature is the ℓ0-sampling technique. This tool is particularly useful in the context of the following
natural problem: given a N -dimensional vector x, we would like to construct a data structure
supporting the following:

• if x = 0, it reports null,

• if x ̸= 0, then it returns some e ∈ support(x) with high probability,

6

Algorithm 2 A parallel algorithm for computing a k-edge connectivity certificate

Input: A graph G = (V,E) with n vertices, and a parameter k.
Output: A k-connectivity certificate H of G.

1. Choose c ← k/(4τ lnn) where τ is a big enough constant and c is an integer. Let k′ ←
⌈6τ log n⌉.

2. Randomly color each edge of G using colors from {1, . . . , c}. Let Ei be a set of edges with
color i. Let Gi = (V,Ei).

3. For i← 1, . . . , c:

(a) Apply Algorithm 1 to compute a k′-connectivity certificate Hi of Gi.

4. Return H = ∪ci=1Hi.

where support(x) consists of all non-zero entries of x. In our concrete application, x will corre-
spond to a vertex of the graph and we will store the edges incident to x in such a data structure,
i.e., support(x) will be the edges incident to x. By itself such a data structure is trivial: just keep
an adjacency list for every vertex x. However, for the concrete implementation of the above data
structure, we use a linear function, widely reffered to as a linear sketching transformation (aka
linear sketch) Π, such that given Π(x) for x and Π(y) for y, we get that Π(x) + Π(y) gives a data
structure that (1) returns an edge incident to x or y (but not to both) and (2) Π(x) + Π(y) can be
computed in Õ(1) time.

More formally, in the theorem below we present the main result relating the ℓ0-sampling tech-
nique to the above data structure problem and focusing on running time instead of space guarantees.

Theorem 3.4 ([9]). For any dimension parameter N , there is a randomized algorithm for con-

structing a representation of a linear sketching transformation Π : RN → RO(log3 N) in Õ(1) time,
such that for any vector x ∈ RN ,

1. we can compute Π(x) in Õ(|support(x)|) time, and

2. given Π(x), we can obtain a non-zero entry of x in Õ(1) time with high probability.

The sketch Π can be represented using simple hash functions (see [9]) and avoids explicitly
representing Π as a matrix of size O(log3N)×N . This is why it only takes Õ(1) to initialize Π.

We call Π(x) an ℓ0-sampling sketch of x. Our algorithm will maintain the ℓ0-sampling sketch
of the row-vectors of the signed vertex-edge incidence matrix of a graph G, which is defined as
follows. Given a graph G = (V,E) with n vertices, the signed vertex-edge incidence matrix B ∈
{−1, 0, 1}n×(n2) of G is

Bu,(v,w) :=

1 (v, w) ∈ E and u = v

−1 (v, w) ∈ E and u = w

0 otherwise.

Let bu ∈ {−1, 0, 1}(
n
2) denote the u-th row of B. We observe that one can efficiently compute and

update the sketches Π(bu) for all u ∈ V .

7

Proposition 3.5. Given a n-vertex graph G with m edges, there is an algorithm to compute a
linear transformation Π(bu) for all u ∈ V in Õ(m) time. Upon an edge insertion or deletion in G,
one can update the sketches Π(bu) for all u ∈ V in Õ(1) time.

Proof. When computing Π(bu), we only spend Õ(|support(bu)|) time by Theorem 3.4 (1). Since
the incidence matrix B contains only

∑
u |support(bu)| = O(m) non-zeros, the first claim of the

proposition follows. The second claim holds since (i) each edge update affects only two entries of
B and (ii) Π is a linear transformation. Concretely, let (u, v) be the updated edge and let eu and
ev be the elementary unit vectors with the non-zero entry only at u and v, respectively. We start
by computing Π(eu) and Π(ev) in Õ(1) time, and then proceed to evaluating Π(bu) ± Π(eu) and
Π(bv)∓Π(ev) in Õ(1) time, where the sign depends on whether (u, v) is inserted or deleted.

The sketches Π(bu) for all u ∈ V are particularly useful since for any given any set S ⊆ V , they
allow us to obtain an edge crossing the cut (S, V \S) in Õ(|S|) time. This is better than the trivial
approach which scans through all edges incident to S and takes O(|S|2 + |E(S, V \S)|) time in the
worst case. More formally, let bS :=

∑
u∈S bu for any vertex set S ⊆ V . Now, by Theorem 3.4 each

Π(bu) can be queried in Õ(1) time. Using the linearity of Π, we compute Π(bS) =
∑

u∈S Π(bu)

in Õ(|S|) time. Observing that non-entries of bS correspond exactly to the edges crossing the cut
(S, V \S), we can obtain one of these edges from Π(bS) in Õ(1) time. This observation has proven
useful for building a spanning forest of a graph G in Õ(n) time4 when give access to the sketches
Π(bu), u ∈ V . More precisely, it is implicit in previous works [2, 33] that if O(log n) independent
copies of the sketches are maintained, then a spanning forest can be constructed using Boruvka’s
algorithm, as summarized in the theorem below.

Theorem 3.6 ([2, 33]). Let G = (V,E) be an n-vertex graph. Let Π1, . . . ,ΠO(logn) be linear
transformations for the ℓ0-sampling sketch from Theorem 3.4 generated independently. Let Πi(bu)
be the sketches for all vertices u ∈ S and all i = 1, . . . , O(log n). Then there is an algorithm to
construct a spanning forest of G in Õ(n) time with high probability.

Sum of ℓ0-Sampling Sketches via Dynamic Tree. Suppose our goal is to maintain a data
structure for a (not necessarily spanning) forest F of a graph G. We next review a result that
allows us to a build a data structure on F such that for any connected component S of F , we can
compute Π(bS) in Õ(1) time, which is faster than the previous approach that yielded an Õ(|S|)
time algorithm by explicitly summing

∑
u∈V Π(Bu). This construction is implicit in [33] and can be

alternatively obtained by combining Theorem 4.16 of [47] with Theorem 3.4 and Proposition 3.5.

Theorem 3.7. Let Π be a linear transformation for the ℓ0-sampling sketch from Theorem 3.4.
There is a data structure D(Π, G, F) that maintains an n-vertex graph G = (V,E) and a (not
necessarily spanning) forest F on the same vertex set V that supports the following operations

• insert or delete an edge in G in Õ(1) time,

• insert or delete an edge in F (as long as F remains a forest) in Õ(1) time, and

• given a pointer to a connected component S of F , return Π(bS) =
∑

u∈V Π(bu), where bu is

the u-th row of the incidence matrix B of G, in Õ(1) time.

4Note that this sub-linear in the size of the graph since G has m edges

8

3.2 The Algorithm

In this section, we show an algorithm for maintaining the edge connectivity of an n-vertex dy-
namic graph undergoing edge insertions and deletions in Õ(n) worst-case update time with high
probability, i.e., we prove Theorem 1.1.

Let G be a graph undergoing edge insertions and deletions. We make the following two simpli-
fying assumptions

(1) the edge connectivity is attained at a non-singleton minimum cut C∗ of G, and

(2) the minimum degree δ of G is between some fixed range [δ0/2, δ0], and we shall construct a
data structure depending on δ0.

We lift (1) by observing that if this assumption doesn’t hold, then we have that the edge
connectivity λ = δ, and the minimum degree δ of G can be maintained in a straightforward way.
Assumption (2) can be lifted by constructing O(log n) data structures for the ranges [2i, 2i+1] for
i ⩽ log n + 1, and query the data structure for range [2i, 2i+1] whenever δ ∈ [2i, 2i+1].

Before we proceed further, recall that R is a random 2-out subgraph and G′ = G/R is the
random 2-out contraction of G. By Theorem 3.1, the minimum cut C∗ is preserved in G′ with
some positive constant probability. We can boost this to a high probability bound by repeating the
whole algorithm O(log n) times. As G′ contains O(n/δ0) vertices with high probability, throughout
we will also assume that this is the case.

Despite the size guarantee on the vertex set of G′, maintaining G′ and running a static edge
connectivity algorithm on G′ is not enough as the number of edges in G′ could potentially be large.
This leads us to the main component of our data structure that instead maintains a δ0-connectivity
certificate H ′ of G′ while supporting updates as well as querying H ′ in Õ(n) update time.

Theorem 3.8. Let G be a dynamic graph and let G′ be the random 2-out contraction of G. Let δ0
be an integer parameter such that n ≥ δ0 > λ. There is a data structure that supports edges updates
to G (and thus to G′) and gives query access to a δ0-connectivity certificate H ′ of G′ containing
Õ(n) edges with high probability. The updates can be implemented in Õ(δ0) worst-case time, the
queries in Õ(n) worst-case time.

We claim that Theorem 3.8 proves Theorem 1.1. To see this, recall that H ′ preserves all cuts
of size at most δ0 in G′ by the definition of δ0-connectivity certificate. By our assumption λ < δ0,
this implies that the minimum cut C∗ is preserved in H ′ and suggests that we can simply run a
static edge connectivity algorithm on top of H ′ to find C∗ in Õ(|E(H ′)|) = Õ(n) time. Therefore,
the rest of this section is devoted to proving Theorem 3.8.

The first component of the data-structure is to maintain (i) a random 2-out subgraph R of G
and (ii) a spanning forest F of R. By the definition of R, (i) can be implemented in O(1) worst-case
update time per edge update. For (ii), we use the dynamic spanning forest data structure of Kapron,
King and Mountjoy [33] that guarantees a Õ(1) worst-case update time. Since for each edge update
to G, there are only O(1) edge updates to R, this can be implemented in Õ(1) worst-case time per
edge update as well. We use the following two-step approach to prove our result

(1) reducing the dynamic δ0-connectivity certificate problem to the dynamic O(log n)-connectivity
certificate problem via the template presented in Algorithm 2, and

(2) solving the dynamic O(log n)-connectivity certificate problem using the linear sketching tools
developed in the previous section.

9

Reducing δ0-Connectivity Certificates to O(log n)-Connectivity Certificates. We follow
the template of Algorithm 2 from Theorem 3.3: Set k = δ0 and let c = k/(4τ lnn) and k′ =
⌈6τ log n⌉ be defined as in Algorithm 2. Then, color each edge of G by randomly choosing a color
from {1, . . . , c}. Let Gi be the subgraph of G containing edges of color i. We observe that all graphs
Gi can be maintained explicitly together with G with in Õ(1) time per edge update. Similarly, let
G′

i be the subgraph of the random 2-out contraction G′ containing edges of color i, i.e., G′
i = G′∩Gi.

Our goal is to not explicitly maintain G′
i, but instead build a dynamic data structure with Õ(1)

worst-case update time per edge update in G that gives query access to a k′-connectivity certificate
H ′

i of G′
i in Õ(n/δ0) time with high probability.

We claim that this suffices to prove Theorem 3.8. To see this, note that for each i = 1, . . . , c we
can query H ′

i in Õ(n/δ0) time. Then we simply union all these certificates to compute H ′ = ∪ci=1H
′
i

in c · Õ(n/δ0) = δ0/(4τ lnn) · Õ(n/δ0) = Õ(n) time, which bounds the query time. To bound the
update time, note that the worst-case cost for maintaining these c data structures is c·Õ(1) = Õ(δ0).
By Theorem 3.3 it follows that (i) H ′ is indeed a δ0-connectivity certificate H ′ of G′ and (ii) the
size of H ′ is at most δ ·O(n/δ) = O(n), which completes the proof of Theorem 3.8.

O(log n)-Connectivity Certificates of G′
i via Linear Sketching. Let us fix a color i =

1, . . . , c. Recall that our goal is to obtain a O(log n)-connectivity certificate H ′
i of G′

i in time
Õ(n/δ0) per query and Õ(1) per edge update.

Recall that Gi, which is the graph containing all color-i edges of G, is explicitly maintained.
Let F be a spanning forest of the random 2-out subgraph R which we also maintain explicitely as
discussed above. For all j, ℓ = 1, . . . , O(log n), we independently generate the linear transformation
for a ℓ0-sampling sketch Π(j,ℓ) using Theorem 3.4. For each index pair (j, ℓ), we build a data
structure D(j,ℓ) := D(Π(j,ℓ), Gi, F)5 and maintain whenever G or F changes using Theorem 3.7.
Since for each edge update to G, there are only O(1) edge updates to Gi and F , respectively, we
can maintain all D(j,ℓ)’s in Õ(1) worst-case update time per edge update to G. This completes the
description of handling edge updates and its running time analysis.

It remains to show how to query a O(log n)-connectivity certificate H ′
i of G′

i using D(j,ℓ) in
Õ(n/δ0) time. The main idea of our construction is the following simple but crucial observation.
Each vertex u in G′

i corresponds to a tree Su of F as Su is contracted into u. The latter holds by
the definition of G′

i. Therefore, if we let B and B′ denote the incidence matrices of Gi and G′
i,

respectively, then we have bSu = b′u. Now, using the data structures D(j,ℓ) we can retrieve Π(j,ℓ)(bS)
for all components S of F , which in turn gives us Π(j,ℓ)(b′u) for all u ∈ V (G′

i). Note that the total
time to query D(j,ℓ) for all j, ℓ = 1, . . . , O(log n) and all u ∈ V (G′

i) is Õ(|V (G′
i)|) = Õ(n/δ0).

Now, the sketches Π(j,ℓ)(b′u) for all u ∈ V (G′
i) and all j, ℓ = 1, . . . , O(log n) allow us to compute

O(log n)-connectivity certificate H ′
i of G′

i as shown below. Note that the algorithms modifies the
sketches Π(j,ℓ)(b′u) but we may revert the sketches back to their initial state after computing and
returning H ′

i.
We finally explain the procedure for querying H ′

i. To this end, we follow the template of
Algorithm 1 from Theorem 3.2. Set Gtmp

1 ← G′
i to be the temporary graph that we will work with.

Consider the j-th round of the algorithm where j = 1, . . . , O(log n). We compute a spanning forest
Fj of Gtmp

j using the sketches Π(j,1), . . . ,Π(j,logn) on vertices of G′
i in Õ(|V (G′

i)|) = Õ(n/δ0) time

using Theorem 3.6. Next, we update Gtmp
j+1 ← Gtmp

j \Fj and also update the sketches Π(j′,ℓ) for

5Here we deliberately omit the subscript i from D(j,ℓ) since the color i was fixed in the beginning of the paragraph
and this omission simplifies the presentation.

10

all j′ > j so that they maintain information of graph Gtmp
j+1 and not of Gtmp

j . This takes Õ(n/δ0)

time because Fj contains Õ(n/δ0) edges. This ends the j-th round. After all rounds have been
completed, we return H ′

i = ∪jFj which is a O(log n)-connectivity certificate by Theorem 3.2. Since
there are O(log n) iterations, the total query time is Õ(n/δ0), what we wanted to show. Note that
algorithm internally stores the edge connectivity value only and not the edges on a cut that attains
the edge connectivity. Therefore, the adversary cannot reveal anything useful from querying this
information, and thus it follows that our algorithm works against an adaptive adversary.

4 Deterministic Algorithm with O(m1−ε) Update Time

In this section we prove Theorem 1.2. Our algorithm requires several tools from different works
and we review them below.

4.1 Algorithmic Tools

Expander Decomposition and Pruning. The key to our approach is the notion of expander
graphs. The conductance of an unweighted, undirected graph is defined by

Φ(G) := min
∅⊂S⊂V

∂(S)/min{volG(S), volG(V \S)}.

We say that a graph G is ϕ-expander if Φ(G) ⩾ ϕ. Next, we introduce the notion of expander
decomposition.

Definition 4.1 (Expander Decomposition). Let G = (V,E) be an undirected, unweighted graph
and let ϕ ∈ (0, 1) be a parameter. A ϕ-expander decomposition of G is a vertex-disjoint partitioning
U = {U1, . . . , Uk} of V such that

•
∑

1⩽i⩽k

∣∣∂(Ui)
∣∣ = O(ϕm), and

• for each 1 ⩽ i ⩽ k, Φ(G[Ui]) ⩾ ϕ.

We now review an efficient algorithm for finding expander decompositions.

Theorem 4.2 ([54]). Let G = (V,E) be an undirected, uniweighted graph and let ϕ ⩾ 0 be a
parameter. There is an algorithm Expander(G,ϕ) that in Õ(m/ϕ) time finds a ϕ-expander de-
composition.

The next result allows us to turn static expander decompositions into their dynamic variants,
as shown in Section 4.2

Theorem 4.3 (Expander Pruning, [54]). Let G = (V,E) be an undirected, unweighted ϕ-expander.
Given an online sequence of k ⩽ ϕvol(G)/20 edge deletions in G, there is an algorithm that main-
tains a pruned set P ⊆ V satisfying the following properties; let Gi and Pi be the graph G and the
set P after the i-th deletion. For 1 ⩽ i ⩽ k,

1. P0 = ∅ and Pi ⊆ Pi+1,

2. volG(Pi) ⩽ 8i/ϕ and |∂(Pi)| ⩽ 4i, and

3. Gi[V \Pi] is a ϕ/6-expander.

The total time for updating P0, . . . , Pk is O(k logm/ϕ2).

11

Non-singleton Minimum Cut Sparsifiers. Our algorithm relies on sparsifiers that preserve
non-singleton cuts of simple graphs.

Definition 4.4. Let G = (V,E) be an undirected, unweighted graph. A multi-graph H = (V ′, E′)
is a non-singleton minimum cut sparsifiers (abbrv. NMC sparsifier) of G if H preserves all non-
singleton minimum cuts of G, i.e., for all cuts C ⊂ V with min{|C|, |V \C|} ⩾ 2 and ∂G(C) = λ(G),∣∣∂H(C)

∣∣ =
∣∣∂G(C)

∣∣ .
We say that H is of size k if |E′| ⩽ k.

Kawarabayashi and Thorup [38] showed that undirected, simple graphs admit NMC sparsifiers
of size Õ(m/δ). They also designed a deterministic Õ(m) time algorithm for computing such
sparsifiers. We will construct NMC sparsifiers that are based on expander decompositions, following
the work of Saranurak [53], as we can turn them into a dynamic data structure. To do so, we need
to formally define the procedures of trimming and shaving vertex subsets of a graph.

Definition 4.5 (Trim and Shave). Let U by any vertex subset in G = (V,E). Define trim(U) ⊆
U to be the set obtained by the following procedure: while there exists a vertex u ∈ U with
|E(u, U)| < 2

5d(u), remove u from U . Let shave(U) = {u ∈ U | |E(u, U)| > 1
2d(u) + 1}.

Observe that the trimming procedure recursively removes a vertex with few connections inside
the current set U while the shaving procedure removes all vertices with few connections inside the
initial set U . Saranurak [53] showed that we can construct NMC sparsifiers by applying triming and
shaving to each cluster in the expander decomposition. We formally summarize his construction in
the lemma below.

Lemma 4.6 ([53]). Let G = (V,E) be an undirected, simple graph with m edges, and let ϕ = c/δ,
where δ is the minimum degree in G and c ⩾ 40 some positive constant. Let

U = Expander(G,ϕ), U ′ = {trim(U) | U ∈ U} and U ′′ = {shave(U ′) | U ′ ∈ U ′}.

Let H = (V ′, E′) be the graph obtained from G by contracting every set U ′′ ∈ U ′′. Then H is an
NMC sparsifier of size Õ(ϕm) for G. The running time for computing H is Õ(m).

4.2 Decremental Expander Decomposition

In this section we show that the expander pruning procedure from Theorem 4.3 allows us to de-
sign a dynamic algorithm for maintaining an expander decomposition under edge deletions. While
the theorem below is already implicit in other works leveraging the power of expander decom-
positions [25, 5] (albeit with slightly different guarantees and variations depending on the specific
application), here we give a simple, self-contained version that suffices to solve the edge connectivity
problem.

Theorem 4.7. Given an unweighted, undirected graph G = (V,E) with m edges and a parameter
ϕ ∈ (0, 1), there is a decremental algorithm that supports an online sequence of up to ϕ2m edge
deletions and maintains a ϕ/6-expander decomposition in Õ(m/ϕ) total update time.

12

We initialize our data structure by (i) constructing a ϕ-expander decomposition U of the initial
graph G using Theorem 4.2, where ϕ ∈ (0, 1) is a parameter, and (ii) starting a pruning data-
structure D(U) for each expander U ∈ U using Theorem 4.3. We also maintain a counter #del(U)
that denotes the number of edge deletions inside the cluster U . Initially, #del(U) = 0 for each
U ∈ U . If the total number of edge deletions exceeds ϕ2m, our data-structure terminates.

We next show how to handle edge deletions. Consider the deletion of edge e from G. If e is
an inter-cluster edge in U , then we simply remove it from G since its removal does not affect the
expansion of any of the clusters in U . Otherwise, e is an intra-cluster edge, and let Ue ∈ U be the
unique cluster that contains e. First, we increase the counter #del(Ue) by 1. Next we compare the
number of deletions in the cluster relative to the number of deletions the pruning procedure can
handle.

Concretely, if #del(Ue) ⩽ ϕvolG(Ue)/20, we pass the deletion of e to the pruning data structure
D(Ue). Let Pi, resp., Pi−1 be the pruned set that D(Ue) maintains after, resp. before the deletion
e. We define S = {{u} | u ∈ Pi\Pi−1} to be the set of singleton clusters, and then replace Ue in U
with {Ue\{Pi\Pi−1}, S}. The last step can be thought of as including every vertex in Pi\Pi−1 as a
singleton cluster in U and removing these vertices from the current expander Ue.

However, if #del(Ue) > ϕvolG(Ue)/20, then we declare every vertex in the current cluster Ue to
be a singleton cluster. Specifically, we remove Ue from U and for each u ∈ Ue, add {u} to U . Note
that the latter implies that all vertices that belonged to the original cluster Ue are included as
singletons in the current expander decomposition. This completes the description of the procedure
for deleting an edge.

We next show that the above algorithm correctly maintains an expander decomposition under
edge deletions while paying a small constant factor in the expansion guarantee of each cluster and
in the number of inter cluster edge.

Lemma 4.8 (Correctness). The decremental algorithm maintains a ϕ/6-expander decomposition.

Proof. Let U be expander decomposition that the algorithm maintains for the current graph G.
Our first goal is to show that for each U ∈ U , Φ(G[U]) ⩾ ϕ/6. Observe that by construction

each cluster U in U can either be (i) a singleton, (ii) a pruned cluster (i.e., a cluster that is
formed by removing vertices from the original cluster) or (iii) an original cluster from the initial
expander decomposition. If a cluster is a singleton, then the expansion bound trivially holds. If
we have a type (ii) cluster, then by expander pruning (Theorem 4.3, Property 3), it follows that
Φ(G[U]) ⩾ ϕ/6, where G is the current graph. Finally, for a type (iii) cluster, the initial expander
decomposition (Theorem 4.2) gives that Φ(G[U]) ⩾ ϕ ⩾ ϕ/6. Combining the above cases, leads to
the expansion bound we were after.

We now bound the number of inter cluster edges in U . Recall that initially, the expander
decomposition has at most O(ϕm) inter-cluster edges (Theorem 4.2). During the handling of
edge deletions, the algorithm introduces new inter-cluster edges when vertices from the pruned
set are included as singletons. Thus, our ultimate goal is to bound the volume of the pruned
set with the number of edge deletions in a cluster. To this end, let U be a cluster in U . We
distinguish two cases. If #del(U) ⩽ ϕvolG(U)/20 then, then by expander pruning (Theorem 4.3,
Property 2) we have that the maintained pruned set PU satisfies vol(PU) ⩽ 8 ·#del(U)/ϕ. However,
if #del(U) > ϕvolG(U)/20, then by construction, the pruned set PU is the entire original cluster
U . By rearranging the inequality in the last condition, we get vol(PU) = vol(U) ⩽ 20 ·#del(U)/ϕ.
Combining the above bounds, we get that at any time during our decremental algorithm, the
volume of the maintained pruned set of a cluster satisfies vol(PU) = vol(U) ⩽ 20 ·#del(U)/ϕ.

13

Summing this over all clusters in the expander decomposition U , we have the number of the
new inter-cluster edges is bounded by∑

U∈U
vol(PU) ⩽

20

ϕ

∑
U∈U

#del(U) ⩽
20

ϕ
ϕ2m = O(ϕm),

where the penultimate inequality follows from the fact the number of edge deletions to G is bounded
by ϕ2m by the assumption of the lemma. Thus, the number of inter-cluster edges increases by a
constant multiplicative factor, which concludes the proof of the lemma.

We next bound the running time of our decremental algorithm.

Lemma 4.9 (Running Time). The decremental expander decomposition runs in Õ(m/ϕ) total
update time.

Proof. The running time of the algorithm is dominated by (1) the time required to compute the
initial expander decomposition and (2) the total time to perform expander pruning on each cluster
of this decomposition. By Theorem 4.2, (1) is bounded by Õ(m/ϕ). By Theorem 4.3, the pruning
process on a cluster U can be implemented in Õ(ϕvolG(U) · logm/ϕ2) = Õ(volG(U)/ϕ). Summing
over all the clusters in the expander decomposition U and recalling that they form a partition of
V (G), we get that the running time of (2) is bounded by∑

U∈U
Õ(volG(U)/ϕ) = Õ(m/ϕ).

Bringing together (1) and (2) proves the claim of the lemma.

4.3 Fully Dynamic NMC sparsifier

In this section present a fully dynamic algorithm for maintaining a NMC sparsifier of undirected,
simple graphs.

4.3.1 Decremental NMC sparsifier

We start by showing that the decremental expander decomposition (Theorem 4.7) almost immedi-
ately yields a decremental algorithm for maintaining a NMC sparsifier. More specifically, we show
the following theorem in this subsection.

Theorem 4.10. Given an unweighted, undirected graph G = (V,E) with m edges and a parameter
ϕ ∈ (0, 1) satisfying ϕ ⩾ c/δ for some positive constant c ⩾ 240, there is a decremental algorithm
that supports an online sequence of up to ϕ2m edge deletions and maintains a NMC sparsifier H
of size Õ(ϕm) in Õ(m/ϕ) total update time.

Let ϕ ∈ (0, 1) be parameter with ϕ ⩾ c/δ for some positive constant c ⩾ 240. Our data-structure
internally maintains an expander decomposition under edge deletions DecExpander(G,ϕ) (Theo-
rem 4.7). Let U(0) be the expander decomposition of the initial graph G(0) from DecExpander(G,ϕ).

Let U ′
(0) = {trim(U) | U ∈ U(0)} and U ′′

(0) = {shave(U ′) | U ′ ∈ U ′
(0)}. We define H(0) = (V ′, E′) to

be the graph obtained from G(0) by contracting every set U ′′ ∈ U ′′
(0). As we will shortly see, H(0) will

correspond to a NMC sparsifier of G(0). This suggests that in order to maintain such a sparsifier

14

under edge deletions we need to efficiently maintain the sets U ′ = trim(U) and U ′′ = shave(U ′) for
every cluster U in the current expander decomposition U . We achieve this by keeping track of the
following counters:

• the degree deg(u) of each vertex u in V , and

• the degree degU ′(u) := |E(u, U ′)| for all u ∈ U ′ and all U ′ ∈ U ′, i.e., the degree of vertex u
restricted to the cluster U ′.

Note that both degree values can be computed for each vertex in the initial graph G0 by performing
a graph traversal.

Now, consider the deletion of an edge e = (u, v) from G. We first decrement the value of both
counters deg(u) and deg(v) by one to account for the deletion of e. Then we pass this deletion
to the data-structure DecExpander(G,ϕ). This in turn reports a subset of vertices PU that are
pruned out of a cluster U due to the deletion of e. At this point observe that the decremental
expander decomposition algorithm already has updated U with respect to PU . Thus it remains to
update the sets U ′ and U ′′ respectively.

For each u ∈ PU we do the following. First, note that when u ̸∈ U ′, we don’t need to do
anything since U ′′ ⊆ U ′ asserts that u cannot belong to the contracted set U ′′. If u ∈ U ′, then we
remove u from U ′ and potentially U ′′ by invoking the subprocedure Remove(u) defined as follows:

Remove(u)

• Set U ′
old ← U ′, and set U ′ ← U ′\{u}.

• If u ∈ U ′′ then

▷ Set U ′′ ← U ′′\{u}, and Uncontract(u)

• For every neighbour v ∈ E(u, U ′
old):

▷ Set degU ′(v)← degU ′(v)− 1.

▷ If degU ′(v) < 2/5 deg(v) then

− Remove(v)

▷ If degU ′(v) < deg(v)/2 + 1 and v ∈ U ′′ then

− Set U ′′ ← U ′′\{v}, and Uncontract(v).

Procedure Uncontract(u) simply reverts the operation of contracting u into some cluster U ′′.
It can also be interpreted as adding the vertex u together with its incident edges in G to the current
sparsifier H. This completes the description of the algorithm.

The next lemma shows that the algorithm maintains a sparsifier that preserves non-singleton
minimum cuts exactly.

Lemma 4.11 (Correctness). The decremental algorithm correctly maintains a NMC sparsifier H
of size O(ϕm).

Proof. We begin by showing that H is a NMC sparsifier of some current graph G. To this end,
let G(i) be the graph after the i-th deletion and let H(i) be the sparsifier after the data-structure
has processed the i-th deletion. To prove that H(i) is a NMC sparsifier of G(i) it suffices to show
that (i) U (i) is ϕ/6-expander decomposition of G(i) (ii) U(i)′ = {trim(U) | U ∈ U(i)}, and (iii)

15

U ′′
(i) = {shave(U ′) | U ′ ∈ U ′

(i)}. To see why this is true, note that ϕ/6 ⩾ 240/(6δ) ⩾ 40/δ by

assumption of Theorem 4.10, and apply Lemma 4.6 with the parameter ϕ/6.
If i = 0, recall that by construction U(0) is a ϕ-expander decomposition of the initial graph G(0),

U ′
(0) = {trim(U) | U ∈ U(0)} and U ′′

(0) = {shave(U ′) | U ′ ∈ U ′
(0)}. Since the parameter ϕ satisfies

ϕ ⩾ 240/δ ⩾ 40/δ, we get the graph H(0) obtain by contracting every set U ′′ ∈ U ′′
(0) is a NMC

sparsifier of G(0).
If i ⩾ 1, inductively assume that U(i−1),U ′

(i−1),U
′′
(i−1) have been correctly maintained until the

(i−1)-st edge deletion. By Theorem 4.7, we already know that U(i) is a ϕ/6-expander decomposition

of the graph G(i). Thus it remains to argue about the correctness of U ′
(i) and U ′′

(i).

Let PU be the set of vertices pruned out of a cluster U that the data-structure DecExpander(G,ϕ)
returns upon the i-th edge deletion. To prove that the update of U ′ = trim(U) and U ′′ = shave(U ′)
with respect to PU is correct, by Definition 4.5, consider the following invariants

(1) for all u ∈ U ′ = trim(U), degU ′(u) ⩾ 2/5 deg(u).

(2) U ′′ = shave(U ′) = {u ∈ U ′ | degU ′(u) ⩾ deg(u)/2 + 1}.

For every vertex u ∈ PU with u ∈ U ′, note that our subprocedure Remove(u) removed from
U ′ = trim(U) all vertices v for which degU ′(v) < 2/5 deg(v), and thus the invariant (1) holds for the
vertices that are left in U ′. Moreover, as already pointed out in [8], trim(U) is unique so the order in
which vertices are removed does not matter. Similarly, by construction we have that subprocedure
Remove(u) detects all vertices in U ′′ = shave(U ′) that do not satisfy invariant (2). It follows that
U ′ and U ′′ are maintained correctly, which in turn implies that U ′

(i) and U ′′
(i) are also correct.

The guarantee on the size of the sparsifier follows directly from Lemma 4.6.

We next study the running time of our algorithm.

Lemma 4.12 (Running Time). The decremental algorithm for maintaining a NMC sparsifier runs
in Õ(m/ϕ) total update time.

Proof. The running time of the algorithm is dominated by (1) the time to maintain a decremental
expander decomposition U , (2) the total time to maintain U ′ and U ′′ and (3) the cost of perform-
ing vertex uncontractions. By Theorem 4.7, (1) is bounded by Õ(m/ϕ). To bound (2), we can
implement subprocedure Remove(u) for a vertex u in O(deg(u)) time, excluding the recursive
calls to its neighbours. Since the updates from G and U are decremental (as they consist of either
edge deletions or vertex deletions), once a vertex leaves a set U ′ or U ′′, it can never join back.
Hence, it follows that (2) is bounded by

∑
u∈V O(deg(u)) = O(m). Similarly, a vertex u can be

uncontracted at most once, and this operation can also be implemented in O(deg(u)) time, giving
a total runtime of

∑
u∈V O(deg(u)) = O(m) for (3). Bringing (1), (2) and (3) together proves the

claim of the lemma.

4.3.2 Extension to Fully Dynamic NMC sparsifier

We follow a widespread approach in data structures for turning a decremental algorithm into a
fully dynamic algorithm and apply it to our problem for maintaining a NMC sparsifier.

At a high level, our approach uses a decremental algorithm for maintaining a NMC sparsifier of
the graph and handles edge insertions by keeping them “on the side”. It crucially relies on the
fact that adding an edge to the sparsifier yields a sparsifier for the new graph augmented by that

16

edge. To make sure that the size of the sparsifier remains small after these edge augmentations, we
restart our decremental algorithm from scratch after the number of updates exceeds a predefined
threshold. This leads to the following result.

Theorem 4.13. Given an unweighted, undirected graph G = (V,E) with m edges and a parameter
ϕ ∈ (0, 1) satisfying ϕ ⩾ c/δ for some positive constant c ⩾ 240, there is a fully dynamic algorithm
that maintains a NMC sparsifier H of size Õ(ϕm) in Õ(1/ϕ3) amortized time per edge insertion
or deletion.

Our data structure subdivides the sequence of edge updates into phases of length ϕ2m, where
ϕ ∈ (0, 1), satisfying ϕ ⩾ c/δ for some positive constant c ⩾ 240. Our algorithm maintains

• the set of edges I that represents the edges inserted since the beginning of a phase that have
not been subsequently deleted.

At the beginning of each phase, we initialize (i) the decremental algorithm DecSparsifier(G,ϕ)
(Theorem 4.10) to maintain a NMC sparsifier H of the current graph G, and (ii) set I ← ∅.

Let e be an edge update to G. If e is an edge insertion to G, we add it to the set I. If e is
deleted from G, we consider two cases: If e ∈ I, we simply delete e from I. If e ̸∈ I, we pass the
deletion of e to DecSparsifier(G,ϕ) to update the sparsifier H. We maintain H ′ ← H ∪ I as the
sparsifier of the current graph. This completes the description of the algorithm.

We next show that our fully dynamic algorithm maintains a correct NMC sparsifier at any time.

Lemma 4.14 (Correctness). The fully dynamic algorithm correctly maintains a NMC sparsifier H ′

of size O(ϕm).

Proof. Let G = (G0\D) ∪ I be the current graph, where G0 is the graph at the beginning of a
phase, D is the set of edges deleted from G0, and I is the of edges inserted since the beginning of a
phase that have not been subsequently deleted. Let H ′ = H ∪I by the sparsifier our data-structure
maintains.

By Theorem 4.13, we know that H is a NMC sparsifier of G0\D. We claim that H ∪ I is a
NMC sparsifier of (G0\D)∪ I. To see this, consider the case when I = {e}, where e = (u, v). Once
proving this simpler case, our general claim follows follows by induction. As H is a contraction
of G0\D (Lemma 4.6), there is a vertex mapping f : V (G0\D) → V (H) assigning nodes that are
contracted together to a single node in V (H). We distinguish two cases. If f(u) ̸= f(v), then e
increases a non-singleton minimum cut in G0\D ∪ {e} by at most one. Since the edge is present
both in G0\D ∪ {e} and H ∪ {e}, it follows H ∪ {e} preserves all non-singleton minimum cuts of
G0\D ∪ {e}. If f(u) = f(v), i.e., both endpoints of e are contracted into a single vertex in H, then
we claim that e cannot participate in any non-singleton minimum cut in G0\D ∪ {e}. Suppose for
contradiction that the latter holds. Then there exists a non-singleton minimum cut (C, V \C) in
G\D ∪ {e} such that

|EG\D∪{e}(C, V \C)| = |EG\D(C, V \C)|+ 1,

where the above equality uses the fact that e is a cut edge. Since a non-singleton minimum cut G\D
can increase by at most 1 when adding a single edge, it follows that (C, V \C) is a non-singleton
minimum cut in G. Since H is NMC sparsifier of G, we have that (C, V \C) must also be non-
singleton minimum cut in H. Let s ∈ V (H) be the supervertex in H containing u and v. It follows
min{|s ∩ C|, |s\C|} ≠ 0, which contradicts the fact that H is NMC sparsifier of G.

To bound the size of H ′, observe that (1) H is of size O(ϕm) at any time (Theorem 4.10), and
(2) |I| ⩽ ϕ2m. Therefore, H ′ is of size O(ϕ2m + ϕm) = O(ϕm).

17

Lemma 4.15 (Running Time). The fully dynamic algorithm for maintaining a NMC sparsifier runs
in Õ(1/ϕ3) amortized time per edge insertion or deletion.

Proof. The total update to maintain a decremental sparsifier is Õ(m/ϕ) (Theorem 4.10) under the
condition that the number of deletions is smaller then ϕ2m. Our data-structure makes sure that
the number of updates within a phase never exceeds ϕ2m. Charging the total update time to these
updates, we get an amortized update time of Õ(m/ϕ · 1/(ϕ2m)) = O(1/ϕ3).

4.4 The Algorithm

In this section we show an algorithm for Theorem 1.2. Our main idea is to run in “parallel” a
variant of the fully algorithm for maintaining a NMC sparsifier (Theorem 4.13) and the exact
fully dynamic edge connectivity algorithm due to Thorup [56] which is efficient whenever the edge
connectivity is polylogarithmic or a small polynomial in the number of vertices. We also maintain
a carefully chosen threshold edge connectivity value which tells us when to switch between the
two algorithms. We start by observing that the fully dynamic algorithm for maintaining a NMC
sparsifier H of a graph G (Theorem 4.13) gives the following simple algorithm for edge connectivity:
(i) maintain the minimum degree δ of the current graph G, (ii) after each edge update compute
λ(H) on the graph H (Theorem 2.1), and (iii) set the edge connectivity λ(G) of the current graph
to be min{δ, λ(H)}. The following corollary is an immediate consequence of Theorem 4.13.

Corollary 4.16. Given an unweighted, undirected graph G = (V,E) with m edges and a parameter
ϕ ∈ (0, 1), there is a fully dynamic algorithm for maintaining an edge connectivity estimate µ(G) in
Õ(1/ϕ3 +ϕm) amortized time per edge insertion or deletion. If ϕ ⩾ c/δ, for some positive constant
c ⩾ 240, then the edge connectivty estimate is correct, i.e., µ(G) = λ(G).

Next we review the result of Thorup [56] concerning efficient maintenance of small edge con-
nectivity.

Theorem 4.17 (Theorem 26, [56]). Given an unweighted, undirected graph G = (V,E) with n
edges, and a parameter η ∈ (0, n), there is a fully dynamic algorithm for maintaining an edge
connectivity estimate µ(G) in Õ(η29/2

√
n) worst-case time per edge insertion or deletion. If λ(G) ⩽

η, then the edge connectivity estimate is correct, i.e., µ(G) = λ(G).

We now have all the tools to present our sub-linear fully dynamic edge connectivity algorithm,
which proceeds as follows. Let τ = na be a threshold value on the edge connectivity to be determined
shortly, where a ∈ (0, 1) is a parameter. We run

(1) the fully dynamic algorithm A1 from Theorem 4.17 with parameter η = (τ + 1), and

(2) the fully dynamic algorithm A2 from Corollary 4.16 with parameter ϕ = 240/τ .

We extend both algorithms A1 and A2 to perform a test on how edge connectivity λ(G) of the
current graph compares to the threshold value τ after the algorithm that is currently being used to
answer queries has processed an edge update. These extensions allow us to switch between these
two algorithms, so the queries we answer regarding λ(G) are correct.

First, observe that both algorithms internally explicitly maintain λ(G). We proceed as follows

• Suppose A1 is currently being used to answer queries. If λ(G) ⩽ τ after an update operation
operation, then we do not switch. Otherwise (i.e., λ(G) = (τ + 1)), we switch to A2 for the
next operation.

18

• Suppose A2 is currently being used to answer queries. If λ(G) ⩾ (τ + 1) after an update
operation, then we do not switch. Otherwise (i.e., λ(G) = τ), we switch to A1 for the next
operation.

We next prove the correctness. It suffices to verify that our parameter requirements from
Theorem 4.17 and Corollary 4.16 are satisfied whenever we use one of the algorithms to answer
queries. Let G be the current graph. Note that if λ(G) was at most τ before an update operation,
we used algorithm A1, which works correctly, even then λ(G) reaches τ + 1 after that operation. If
λ(G) was at least τ + 1 before the operation, we use A2 which works correctly even if λ(G) drops
to τ after the operation as τ ≤ λ(G). In either case we have that ϕ = 240/τ ≥ 240/λ(G) ≥ 240/δ.
This completes the correctness proof.

The running time is bounded as follows. By Theorem 4.17 and λ(G) ⩽ τ + 1, (1) supports
edge updates in Õ(τ29/2

√
n) worst-case time. By Corollary 4.16, (2) guarantees a Õ(1/ϕ3 +ϕm) =

Õ(τ3 + m/τ) amortized time per update. Bringing these running times together, we get that the
amortized time per edge update is

Õ(τ29/2
√
n + τ3 + m/τ) = Õ(τ29/2

√
n + m/τ).

Balancing the two terms in the above expression, we get τ = m2/31/n1/31, which in turn implies
that the amortized update time of our algorithm is O(m29/31n1/31). This completes the proof of
Theorem 1.2.

5 Concluding remarks and open problems

We showed two sub-linear algorithms for exactly maintaining edge connectivity in fully dynamic
graphs. The main idea behind both algorithms was to maintain sparsifiers that preserve non-
singleton cuts dynamically, and this was achieved by leveraging the power of random 2-out con-
tractions and expander decompositions in the context of edge connectivity.

Our work leaves several natural open problems.

(1) Can our update time for dynamically maintaining exact edge connectivity be improved? We
remark that a closer examination of our result based on expander decompositions reveals that
an improvement to Thorup’s result [56] for bounded edge connectivity (specifically, improving
the polynomial dependency on the edge connectivity) would immediately lead to an improved
running time. It would be very interesting to investigate whether this can be achieved.

(2) Is there a fully dynamic algorithm for (1+ε)-approximating edge connectivity in poly(log n)ε−O(1)

update time? The best-known algorithm due to Thorup achieves Õ(
√
n) update time, and

even going beyond this Õ(n1/2) barrier remains an important open problem in dynamic graph
algorithms.

Acknowledgments

We thank Tijn de Vos and Aleksander Bjørn Grodt Christiansen for pointing out an error when
citing Thorup [56] in a previous version of the paper.

19

References

[1] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 328–338, 2009. 2

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measure-
ments. In Symposium on Discrete Algorithms (SODA), pages 459–467, 2012. 8

[3] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining information
in fully dynamic trees with top trees. ACM Transactions on Algorithms (TALG), 1(2):243–264, 2005.
3

[4] Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global minimum cuts. In
Symposium on Simplicity in Algorithms (SOSA), pages 172–180, 2021. 2

[5] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol
Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against an adaptive adversary. In
International Colloquium on Automata, Languages, and Programming (ICALP), volume 229 of LIPIcs,
pages 20:1–20:20, 2022. 4, 12

[6] Nalin Bhardwaj, Antonio Molina Lovett, and Bryce Sandlund. A simple algorithm for minimum cuts
in near-linear time. In Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages
12:1–12:18, 2020. 2

[7] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A
deterministic algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond.
In Symposium on Foundations of Computer Science (FOCS), pages 1158–1167, 2020. 4

[8] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest paths
with applications to vertex-capacitated flow and cut problems. In Symposium on Theory of Computing
(STOC), pages 389–400, 2019. 16

[9] Graham Cormode and Donatella Firmani. A unifying framework for ℓ0-sampling algorithms. Distributed
and Parallel Databases, 32(3):315–335, 2014. 4, 7

[10] Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed edge
connectivity in sublinear time. In Symposium on Theory of Computing (STOC), pages 343–354, 2019.
2, 4, 6

[11] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed weighted min-
cut in nearly-optimal time. In Symposium on Theory of Computing (STOC), pages 1144–1153, 2021.
2

[12] LR Ford and DR Fulkerson. Flows in networks. 1962. 2

[13] Greg N Frederickson. Data structures for on-line updating of minimum spanning trees, with applications.
SIAM Journal on Computing, 14(4):781–798, 1985. 3, 4

[14] Greg N Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest span-
ning trees. SIAM Journal on Computing, 26(2):484–538, 1997. 4

[15] Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. Journal
of Computer and System Sciences, 50(2):259–273, 1995. Announced at STOC’91. 2

[16] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n) time. In In-
ternational Colloquium on Automata, Languages, and Programming (ICALP), pages 57:1–57:15, 2020.
2

[17] Pawe l Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm for minimum cut.
In Symposium on Simplicity in Algorithms (SOSA), pages 74–79, 2021. 2

20

[18] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth.
In Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 1–11, 2018. 2

[19] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International Sympo-
sium on Distributed Computing (DISC), pages 1–15, 2013. 2

[20] Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum cut problem.
In Symposium on Principles of Distributed Computing (PODC), pages 357–366, 2018. 2

[21] Mohsen Ghaffari and Krzysztof Nowicki. Massively parallel algorithms for minimum cut. In Symposium
on Principles of Distributed Computing (PODC), pages 119–128, 2020. 2

[22] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connectivity via
random 2-out contractions. In Symposium on Discrete Algorithms (SODA), pages 1260–1279, 2020. 2,
3, 4, 5

[23] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961. 2

[24] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in polylogarithmic
amortized update time. ACM Transactions on Algorithms (TALG), 14(2):1–21, 2018. 3, 5

[25] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierarchy and
its applications to dynamic graph algorithms. In Symposium on Discrete Algorithms (SODA), pages
2212–2228, 2021. 4, 12

[26] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a directed graph.
J. Algorithms, 17(3):424–446, 1994. 2

[27] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity. SIAM
J. Comput., 49(1):1–36, 2020. 2

[28] Monika R Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarith-
mic time per operation. Journal of the ACM (JACM), 46(4):502–516, 1999. 4

[29] Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity and incremental
approximation algorithms for edge and vertex connectivity. J. Algorithms, 24(1):194–220, 1997. 3, 5

[30] Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in polyloga-
rithmic time per operation. SRC Technical Note, 4, 1997. 4

[31] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM
(JACM), 48(4):723–760, 2001. 4

[32] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in o (log2 n) amortized time.
In Symposium on Discrete Algorithms (SODA), pages 35–52. SIAM, 2018. 4

[33] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic
worst case time. In Symposium on Discrete algorithms (SODA), pages 1131–1142, 2013. 4, 8, 9

[34] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In
Symposium on Discrete Algorithms (SODA), pages 21–30, 1993. 2

[35] David R. Karger. Using randomized sparsification to approximate minimum cuts. In Symposium on
Discrete Algorithms (SODA), pages 424–432, 1994. 4

[36] David R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000. Announced
at STOC’96. 2, 3, 5

[37] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–
640, 1996. 2

21

[38] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear time. J.
ACM, 66(1):4:1–4:50, 2019. Announced at STOC’15. 2, 3, 12

[39] Jakub Lacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in o (n loglogn) time.
In European Symposium on Algorithms, pages 155–166. Springer, 2011. 4

[40] Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang. On the cut dimension of a graph. arXiv
preprint arXiv:2011.05085, 2020. 2

[41] Jason Li. Deterministic mincut in almost-linear time. In Symposium on Theory of Computing (STOC),
pages 384–395, 2021. 2

[42] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In Symposium
on Foundations of Computer Science (FOCS), pages 85–92, 2020. 2

[43] Andrés López-Mart́ınez, Sagnik Mukhopadhyay, and Danupon Nanongkai. Work-optimal parallel min-
imum cuts for non-sparse graphs. arXiv preprint arXiv:2102.06565, 2021. 2

[44] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and stream-
ing algorithms. In Symposium on Theory of Computing (STOC), pages 496–509, 2020. 2

[45] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM J. Discret. Math., 5(1):54–66, 1992. 2

[46] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of ak-connected graph. Algorithmica, 7(1):583–596, 1992. 4, 6

[47] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update
time: adaptive, las vegas, and o (n1/2-ε)-time. In Symposium on Theory of Computing (STOC), pages
1122–1129, 2017. 8

[48] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum spanning
forest with subpolynomial worst-case update time. In Symposium on Foundations of Computer Science
(FOCS), pages 950–961, 2017. 4

[49] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms. In Interna-
tional Symposium on Distributed Computing (DISC), pages 439–453, 2014. 2

[50] Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. arXiv preprint
arXiv:1908.03022, 2019. 2

[51] David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space sampling.
ACM Transactions on Algorithms (TALG), 7(4):1–30, 2011. 2

[52] Aviad Rubinstein, Tselil Schramm, and S Matthew Weinberg. Computing exact minimum cuts without
knowing the graph. arXiv preprint arXiv:1711.03165, 2017. 2

[53] Thatchaphol Saranurak. A simple deterministic algorithm for edge connectivity. In Symposium on
Simplicity in Algorithms (SOSA), pages 80–85, 2021. 3, 4, 12

[54] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger, and
simpler. In Symposium on Discrete Algorithms (SODA), pages 2616–2635, 2019. 4, 11

[55] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591, 1997. 2

[56] Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. 2, 3, 4, 18, 19

[57] Mikkel Thorup and David R Karger. Dynamic graph algorithms with applications. In Scandinavian
Workshop on Algorithm Theory (SWAT), pages 1–9. Springer, 2000. 4

22

	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Preliminaries
	3 Randomized Algorithm with (n) Update Time
	3.1 Algorithmic Tools
	3.2 The Algorithm

	4 Deterministic Algorithm with O(m1-) Update Time
	4.1 Algorithmic Tools
	4.2 Decremental Expander Decomposition
	4.3 Fully Dynamic NMC sparsifier
	4.3.1 Decremental NMC sparsifier
	4.3.2 Extension to Fully Dynamic NMC sparsifier

	4.4 The Algorithm

	5 Concluding remarks and open problems

