
Quantum tomography using state-preparation unitaries∗

Joran van Apeldoorn† Arjan Cornelissen‡ András Gilyén§ Giacomo Nannicini¶

Abstract

We describe algorithms to obtain an approximate classical description of a d-dimensional quantum state
when given access to a unitary (and its inverse) that prepares it. For pure states we characterize the query

complexity for `q-norm error up to logarithmic factors. As a special case, we show that it takes Θ̃(d/ε)
applications of the unitaries to obtain an ε-`2-approximation of the state.

For mixed states we consider a similar model, where the unitary prepares a purification of the state. We
characterize the query complexity for obtaining Schatten q-norm estimates of a rank-r mixed state, up to
polylogarithmic factors. In particular, we show that a trace-norm (q = 1) estimate can be obtained with

Θ̃(dr/ε) queries. This improves (assuming our stronger input model) the ε-dependence over the works of
O’Donnell and Wright (STOC 2016) and Haah et al. (IEEE Trans. Inf. Theory, 63.9, 2017), that use a joint

measurement on Õ(dr/ε2) copies of the state.

To our knowledge, the most sample-efficient results for pure-state tomography come from setting the rank
to 1 in generic mixed-state tomography algorithms, which can require a large amount of computing resources.
We describe sample-optimal algorithms for pure states that are simple and fast to implement.

Along the way we show that an `∞-norm estimate of a normalized vector induces a (slightly worse) `q-
norm estimate for that vector, without losing a dimension-dependent factor in the precision. We also develop
an unbiased and symmetric version of phase estimation, where the probability distribution of the estimate
is centered around the true value. Finally, we give an efficient method for estimating multiple expectation
values, improving over the recent result by Huggins et al. (arXiv:2111.09283) when the measurement operators
do not fully overlap. More specifically, we show that for E1, . . . , Em normalized measurement operators, all

expectation values Tr(Ejρ) can be efficiently learned up to error ε with Õ(
√

‖
∑

j E
2
j ‖/ε) applications of a

state-preparation unitary for a purification of ρ.

1 Introduction

Quantum state tomography is the process of obtaining a classical description of a quantum state. Tomography
is a fundamental tool in quantum information science, where it finds numerous applications. In the context of
quantum algorithms, pure quantum state tomography can be used to retrieve a classical description of the final
state of the algorithm, e.g., the solution of a linear system [26] or the evolution of a quantum system [37]. The
more general mixed quantum state tomography finds applications in quantum information theory, and in the
simulation of quantum many-body and thermodynamic systems. In some settings we are not interested in the
full state, but only in its expectation value under a certain set of (possibly overlapping) measurements. This was
first introduced by Aaronson [1] under the name shadow tomography, and has since received a lot of attention in
the literature, e.g., [30, 2, 29].

Most of the existing work on this topic has focused on the sample complexity of these problems: how many
copies of the state are needed to perform tomography? In this paper we consider the problem under a different
input model: we assume access to a unitary (and its inverse) that prepares the state. This model is very natural
when the state is the output of a quantum algorithm. In fact, it is conceivable that in most practical situations one
has a quantum circuit to prepare the quantum state of interest, and in this setting our assumptions are satisfied.
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Suprisingly, this model has received little attention so far. The main improvements in this model come from the
ability to use techniques related to amplitude estimation to reduce the dependence on the error parameter, but
attaining such quadratic improvements requires the development of several new tools, and the analysis does not
follow from a simple application of amplitude estimation.

Throughout the paper we consider either a d-dimensional pure state |ψ〉 =
∑d−1
j=0 αj |j〉 or a rank-r mixed

state ρ ∈ Cd×d. We are interested in learning the state up to error ε in some `q-norm or Schatten q-norm, often

with some probability of failure ≤ δ. In the introduction we often use Õ(· · ·) notation to hide polylogarithmic

factors in the parameters d, r, 1/ε, and 1/δ, even if these parameters do not appear polynomially in the Õ(· · ·).
For more precise complexity statements we refer to the relevant theorems in the main text.

Related work. Classical algorithms that estimate probabilities generally depend quadratically on 1/ε, as
that many samples are required to bring down the variance. In certain settings quantum algorithms can improve
on this classical complexity. Brassard et al. [9] introduced the amplitude estimation algorithm, and showed that
it can estimate an amplitude (or probability) with a 1/ε dependence, if a state-preparation unitary and its inverse
are available.

Van Apeldoorn [4] generalized this for finding an `∞-norm estimate of a discrete probability distribution. In
the model of van Apeldoorn, access to the distribution is given by a state-preparation oracle (and its inverse),
such that the probability distribution corresponds to computational-basis measurements of the prepared state.
Van Apeldoorn [4] showed that Õ(1/ε) applications of the input unitary are sufficient to compute the desired
`∞-norm estimate. In the same paper the question was posed whether one can also speed-up the estimation of
multiple expectation values over the same distribution. A lower bound of Ω(min{

√
m/ε, 1/ε2}) was given when m

expectation values need to be estimated op to precision ε. It was later shown by Huggins et al. [31] that Õ(
√
m/ε)

queries are sufficient even when estimating expectation values of observables on a pure quantum state.
Kerenidis and Prakash [33] gave a sampling-based approach for estimating the real-valued amplitudes resulting

from a quantum linear system solver, including their sign, taking Õ
(
d/ε2

)
applications of a (controlled) state-

preparation unitary to compute an `2-norm estimate. We subsume their approach, and show that besides
estimating real-valued amplitudes, one can even estimate complex amplitudes with the same sample complexity.

Besides these few results for pure quantum state tomography, the most frequently studied setting is that of
mixed-state tomography. In this setting we want to determine how many copies are necessary to obtain a classical
description with a given maximum error ε in trace-norm; it is often assumed that some upper bound r on the rank
of the state is known (if the state is pure, r = 1). An algorithm of Gross et al. [23], that applies measurements
on one copy of the state at once, achieves O

(
dr2/ε2

)
sample complexity, see also [24]. Haah et al. [25] show that

the bound is optimal when the measurements are on a single copy at a time, and Chen et al. [11] complete our
understanding of this setting by showing that the bound cannot be improved even with adaptive measurements
schemes, as long as we require single-copy measurements. A better sample complexity can be achieved if we allow
joint measurements on multiple copies of the state: with this more powerful access model, the best algorithm
for tomography is due to O’Donnell and Wright [42] and Haah et al. [25], and it requires Õ

(
dr/ε2

)
copies of the

quantum state (in fact, the analysis of [42] eliminates polylogarithmic factors). Haah et al. also show matching
lower bounds up to polylogarithmic factors, therefore their algorithm is essentially optimal (Yuen [49] eliminates
the polylogarithmic factors from the lower bound, if the distance is computed in terms of fidelity). The main
drawback of their approach is that it does not only requires joint measurements on many states at once, but it
also has time complexity exponential in d.

Our contribution. Our results on quantum state tomography for pure states can be divided into two
settings: the sampling-based setting, in which copies of the state are available, and the state-preparation unitary
setting, in which we require controlled access to a state-preparation unitary and its inverse.

To give optimal algorithms for `q-norms in general, we prove a norm-conversion lemma relating estimates
in different `q-norms. The standard approach for norm conversion is to decrease the allowed error ε by a factor
d1/q, but this introduces a dependence on the dimension that can be suboptimal. We show that a dimension-
independent norm conversion is possible for normalized vectors, and therefore for quantum states. We also relate
estimates of the amplitudes to estimates of the corresponding probability distribution.

For pure quantum state tomography using samples, the best sample complexity is obtained by setting r = 1
in general mixed-state tomography algorithms, but these methods are highly impractical from a computational
standpoint; i.e., even though the sample complexity is optimal, the time complexity is much worse (exponential
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in d for [42, 25]; if we are willing to accept a worse sample complexity of Õ
(
dr2/ε2

)
, then Guţă et al. [24] give an

algorithm with Õ
(
d3
)

time complexity, which is large but polynomial in d). We cover three different models with
our sampling-based pure-state tomography results, and for each give an easy to implement tomography algorithm:

1. Classical samples. In this model we are given classical samples from computational-basis measurements.
As we cannot recover information about the phases, we aim to produce an estimate of |α|, the vector of
absolute values of the amplitudes.

2. Copies of the state. In this model we are given copies of the quantum state, and aim to give an estimate up
to a global phase. Our algorithm does not require joint measurements on different copies, but the algorithm
is adaptive in the sense that it proceeds in two phases, where the outcomes of the first phase are used to
transform the state before subsequent measurements.

3. Conditional copies of the state. In this model we are given copies of (|0〉|ψ〉 + |1〉|0〉)/
√

2, and aim to give
an estimate of |ψ〉 including the global phase. This is inspired by controlled usage of a state-preparation
unitary (but not its inverse), as that allows producing such samples.

Our algorithms for these three models all give the same sample complexity, up to polylogarithmic factors:

Theorem 1.1. (Informal) In all three sampling input models Õ
(
1/ε2

)
samples are sufficient to obtain an `∞-

norm estimate with error at most ε. For `q-norm error (q ≥ 2) the sample complexity1 is Õ
(

min

{(
3
ε

) 1
1
2
− 1
q , d

2
q

ε2

})
.

See Thorems 4.1, 4.2, 4.3.

All our sampling-based approaches require a number of samples that scales quadratically with 1/ε to obtain
an `∞-norm estimate. For sampling approaches this error dependence is optimal even when estimating a single
amplitude only. However, when estimating a single amplitude with access to a state-preparation unitary and its
inverse, amplitude estimation can be used to improve this dependence to linear [9]. Van Apeldoorn [4] shows
that this can be generalized to estimate all probabilities in the corresponding distribution with linear dependence.
Unfortunately, for amplitudes it is impossible to get an O(1/ε) error dependence that is independent of the
dimension. However, for the high-precision regime there is still an improvement.

Theorem 1.2. (Informal) Given controlled access to a state-preparation unitary for |ψ〉 and its inverse,

Õ
(

min
{√

d
ε ,

1
ε2

})
uses of these unitaries are sufficient to estimate the vector α with `∞-norm error at most

ε. For `q-norm error (q ≥ 2) this bound becomes Õ
(

min

{(
3
ε

) 1
1
2
− 1
q , d

1
2
+ 1
q

ε

})
. See Theorem 5.1.

In the final section of our paper we show matching lower bounds for the above sample and query complexities.
We show an Ω̃(d/ε2) bound for `1-norm estimation of the probability distribution induced by a state |ψ〉 given

access to copies of |0〉|ψ〉+|1〉|0〉√
2

, using a communication complexity argument. We also show that with access to a

state-preparation unitary, this requires Ω
(
d
ε

)
applications of the input unitary, with a reduction from the problem

of determining an unknown bit string via queries to a fractional phase oracle. Using our results on the relation
between different norms (and between probability estimates and amplitude estimates), we obtain the following
result.

Theorem 1.3. (Informal) All the upper bounds on pure-state tomography given in this paper are optimal, up to
polylogarithmic factors. See Theorems 9.1, 9.2.

We then turn to mixed quantum states of rank at most r. We show how to find an entry-wise ε-approximation

using Õ
(√

d
ε

)
queries with entry-wise independent error, and that this yields an ε-operator-norm estimate if we

set the entry-wise error to ε/
√
d. This leads to the following result.

1Here, and in the rest of the paper, when working with norms we use 1/0 =∞ and 1/∞ = 0. If one of the terms in the min{. . . }
goes to ∞ due to this, then the complexity is simply the other term.
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Sampling models Unitary model

`∞-norm 1
ε2 min{ 1

ε2 ,
√
d
ε }

`2-norm d
ε2

d
ε

`q-norm min{
(
3
ε

) 1
1
2
− 1
q , d

2
q

ε2 } min{
(
3
ε

) 1
1
2
− 1
q , d

1
2
+ 1
q

ε }

Table 1: Sample and query complexities of recovering a d-dimensional pure quantum state up to error ε in the
specified norm, for the different models. All results are Θ̃, i.e., they are tight up to polylogarithmic factors in d,
1/ε and 1/δ, where δ is the maximum failure probability.

Theorem 1.4. (Informal) Given access to a state-preparation unitary (and its inverse) for a purification of a

rank-r quantum state ρ ∈ Cd×d, Õ
(
d
ε

)
uses of these unitaries are sufficient to estimate ρ in operator norm. For

trace norm error Õ
(
dr
ε

)
uses suffice. See Theorem 8.2.

To obtain this we develop two new intermediate results of independent interest: unbiased and symmetric
phase estimation, and a computationally improved shadow tomography with state-preparation unitaries. The
unbiased version of phase estimation is required for the conversion between entry-wise error and operator-norm
error mentioned above (if all entry-wise errors go in the same direction then the best possible conversion would
give a factor d, not

√
d). We show that phase estimation can be made unbiased and symmetric by adding a random

phase before applying the inverse quantum Fourier transform, then removing this phase from the estimate.

Theorem 1.5. (Informal) Quantum phase estimation can be used to give an unbiased and symmetric estimator
of the phase. See Theorem 6.4.

Second, we implement a version of shadow tomography when given access to a state-preparation unitary for
a purification of the state. Huggins et al. [31] show that we can learn the expectation values of m normalized

measurement operators using Õ(
√
m/ε) queries to the state-preparation unitary. (They prove a slightly more

general results if the operators are not normalized, see Section 7.) We improve on this for the case where the
measurement operators do not fully overlap, while recovering the same bound for the general case.

Theorem 1.6. (Informal) Let E1, . . . Em be measurement operators with operator norm at most 1. Given
controlled access to a state-preparation unitary (and its inverse) for a purification of a quantum state ρ ∈ Cd×d,

Õ
(√
‖
∑
j E

2
j ‖/ε

)
uses of these unitaries are sufficient to estimate all Tr(ρEj) up to error ε. See Theorem 7.3.

Unitary model
Upper bound Lower bound

Max-norm
√
d
ε

1
ε

Operator norm d
ε

d
ε

Frobenius norm min{d
√
r
ε , dε2 } min{d

√
r
ε , dε2 }

Trace norm dr
ε

dr
ε

Schatten-q-norm min{dr
1
q

ε , d

ε

1
1− 1

q

} min{dr
1
q

ε , d

ε

1
1− 1

q

}

Table 2: Our upper and lower bounds on the query complexities of recovering a d-dimensional, rank-r mixed
quantum state up to error ε in the specified norm, when given access to unitary that prepares its purification.
All upper bound results are Õ, i.e., they are given up to polylogarithmic factors in d, 1/ε and 1/δ, where δ is
the maximum failure probability. The lower bound results are Ω, and we observe that our results are tight up to
polylogarithmic factors everywhere, except for the max-norm.

Finally, we prove lower bounds on the estimation of a density matrix given access to a unitary (and its
inverse) that prepares a purification of it. The lower bound proof on high level consists of three steps. First,
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we embed a bit string of length dr into a family of density matrices. Then, we quantify how much information
about the embedded bit string can be obtain by an algorithm that recovers any of these density matrices up to
the specified precision. We conclude by arguing that obtaining this amount of information about the bit string
requires a particular number of queries to the state-preparing unitary. Our results show a Ω(dr/ε) lower bound
for all ε = O(1), and Table 2 gives an overview of the other lower bound results that follow from this.

2 Preliminaries

In this section we introduce some notation, our computational model, and give a brief overview of some
important technical tools that we use. In particular we introduce some important results in the block-encoding
framework [20], and a version of Jordan’s gradient algorithm [32].

2.1 Notation and computational model For any integer j, we define [j] := {0, . . . , j − 1}. Let ⊕ denote

the direct sum, i.e., A ⊕ B =

(
A 0
0 B

)
. We write ~1 for the all-ones vector and J for the all-ones matrix, with

dimensions that will be clear from context. We write ∆d for the set of d-dimensional probability distributions.
We write [a,∞] for the set [a,∞) ∪ {∞}. All logarithms are base 2 unless otherwise indicated.

Given a vector v, we write ‖v‖q for the standard `q-norm. We use the convention that 1/0 =∞ and 1/∞ = 0
in calculations involving the value of q for an `q-norm. Although the letter p is commonly used to denote norms
(i.e., `p-norms), in this paper we use p to denote vectors containing the entries of a discrete probability distribution;
hence, we use different letters for norms. For a matrix M we use write ‖M‖q for the Schatten q-norm, i.e., the
`q-norm of the vector of singular values. For operator norm (Schatten ∞-norm) we just write ‖M‖. We write
that α̃ is an ε-`q-norm estimate of α if ‖α− α̃‖q ≤ ε. For a vector α, we denote by |α| the vector with entries
given by the modulus of the entries of α.

We assume that the quantum computer is controlled by a classical computer (with a RAM) that can choose
the gates to run depending on intermediate measurement results. For simplicity, we neglect the cost of any
classical computation as long as it is only a polylogarithmic factor (in all input parameters) slower than the
quantum gate complexity. Our gate set consists of all single-qubit gates and CNOT. To simplify the statements
of our results we assume access to a QRAM-like gate, the indexed-SWAP gate. This gate acts on a state with
many qubits as follows:

indexed-SWAP|i〉|j〉|x1〉 . . . |xd〉 = |i〉|j〉SWAPi,j(|x1〉 . . . |xd〉)

where SWAPi,j swaps the i-th and j-th qubit. Such a gate can be built using O(d) gates, and log(d) depth, see
Appendix B for details on this implementation. We always state the number of calls to such a gate and the size
of the memory it acts on.

2.2 Block-encodings We list the technical results that we need to efficiently manipulate matrices given via
block-encoding circuits. For more background see [17]. First we define a block-encoding as follows.

Definition 2.1. (Block-encoding) A unitary U is an a-qubit block-encoding of A if the top-left block of the
unitary U is A:

A =
(
〈0|⊗a ⊗ I

)
U
(
|0〉⊗a ⊗ I

)
⇐⇒ U =

[
A .
. .

]
.

Note that we are simplifying the block-encoding framework: traditionally, block-encodings are defined with three
parameters (normalization factor, number of additional qubits, error of the implementation), but in this paper
the normalization factor and error of the implementation are easily tracked without additional notation. Thus,
we use a simpler presentation. Readers familiar with block-encodings can easily restate our results using the more
familiar notation.

Although we do not use POVMs (positive-operator-valued measures) directly, we mention the following lemma
to showcase that the block-encoding framework is applicable in large generality. In particular, thanks to the
following lemma, some of our results in the block-encoding framework are directly applicable to POVMs.

Lemma 2.1. [5] If a two-outcome POVM denoted by E can be coherently implemented on a quantum computer
using a ancillary qubits via the unitary U , then an (a+ 1)-block-encoding of E can be implemented using a single
call to U , U†, and a CNOT gate.
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The following two lemmas show how to add and amplify block-encodings, which we use repeatedly for mixed-
state tomography.

Lemma 2.2. (Linear combination of block encodings) [20, 5] Let E =
∑m
j=0 yjEj be a w-qubit operator

for y ∈ Rm, and let β ≥ ‖y‖1. If Uy is a state-preparation oracle for 1√
β

∑
j

√
yj |j〉|0〉 + |ψ〉|1〉 for some

unnormalized state |ψ〉, and UE implements an a-block-encoding of Ej conditioned on j, then an (a+dlog(m)e+1)-
block-encoding of E/β can be implemented with a single use of Uy, U†y , and UE, and a single two-qubit gate.

Lemma 2.3. (Uniform amplification of block-encodings, [39],[19, Theorem 33]) Let U be an a-block-
encoding of A, and let ‖A‖ ≤ β ≤ 1. Then an (a+1)-block-encoding of A/(2β) can be implemented, up to operator
norm error ε, using O(β log(β/ε)) applications of U and U†, and O(aβ log(β/ε)) additional gates with circuit
depth O(log(a)β log(β/ε)).

One of the main motivations for defining block-encodings is the following Hamiltonian simulation result, that
we use for implementing “phase oracles” required for gradient computation.

Lemma 2.4. (Hamiltonian simulation using block-encodings, [40],[19, Corollary 63]) Let U be an a-
block-encoding of A. Then an (a + 2)-block-encoding of eitA can be implemented, up to operator norm error ε,
using O(t+ log(1/ε)) applications of (controlled) U and U†, and O(a(t+ log(1/ε))) additional gates with circuit
depth O(log(a)(t+ log(1/ε))).

Finally, we will use the following lemma to construct block-encodings for gradient computation:

Lemma 2.5. (Block-encoding inner products with controlled state-preparation unitaries) Let
U :=

∑
x Ux ⊗ |x〉〈x| and V :=

∑
x Vx ⊗ |x〉〈x| be controlled (by the second register) state-preparation unitaries,

where Ux : |0〉|0〉⊗a 7→ |0〉|ψx〉 + |1〉|ψ̃x〉 and Vx : |0〉|0〉⊗a 7→ |0〉|φx〉 + |1〉|φ̃x〉 are (a + 1)-qubit state-preparation
unitaries for some (subnormalized) a-qubit quantum states |ψx〉, |φx〉. Then (I1 ⊗ V †) · (SWAP⊗ I) · (I1 ⊗ U) is
an (a+ 2)-block-encoding of the diagonal matrix diag({〈φx, ψx〉}), where I1 acts on a single qubit and the SWAP
gate acts on the first two qubits.

Proof.

〈0|⊗a+2〈x|(I ⊗ V †) · (SWAP⊗ I) · (I ⊗ U)|0〉⊗a+2|y〉

= 〈0|
(
〈0|〈φx|+ 〈1|〈φ̃x|

)
〈x|(SWAP⊗ I)|0〉

(
|0〉|ψx〉+ |1〉|ψ̃x〉

)
|y〉

= (〈00|〈φx|+ 〈01|〈φ̃x|)〈x|(|00〉|ψx〉+ |10〉|ψ̃x〉)|y〉
= 〈φx, ψy〉δxy

2.3 Quantum gradient computation We now briefly review Jordan’s algorithm for estimating the gradient
and provide a generic analysis of its behavior. Before describing the algorithm, we introduce appropriate
representation of our qubit strings suitable for fixed-point arithmetics.

Definition 2.2. ([18, Definition 5.1]) For every b ∈ {0, 1}n, let j(b) ∈ {0, . . . , 2n − 1} be the integer
corresponding to the binary string b = (b1, . . . , bn). We label the n-qubit basis state |b1〉|b2〉 · · · |bn〉 by |x(b)〉,
where

x(b) =
j(b)

2n
− 1

2
+ 2−n−1.

We denote the set of corresponding labels as Gn :=
{
j(b)

2n −
1
2 + 2−n−1 : j(b) ∈ {0, . . . , 2n − 1}

}
. Note that there

is a bijection between {j(b)}b∈{0,1}n and {x(b)}b∈{0,1}n , so we will use |x(b)〉 and |j(b)〉 interchangeably.

Following [18, Definition 5.2] for x ∈ Gn we define the Fourier transform of a state |x〉 as

QFTGn : |x〉 7→ 1√
2n

∑
k∈Gn

e2πi2
nxk|k〉.
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In [18, Claim 5.1] it is shown that this unitary is the same as the usual quantum Fourier transform up to
conjugation with a tensor product of n single-qubit unitaries.

We now prove a simplified version of [18, Lemma 5.1] in order to give some intuition about Jordan’s gradient
computation algorithm, which can be viewed as a continuous extension of the Bernstein-Vazirani algorithm [8].

Lemma 2.6. (The core of Jordan’s gradient computation algorithm) Let N = 2n, and g ∈ Rd such

that ‖g‖∞ ≤ 1/3. If
∥∥∥|ψ〉 − 1√

Nd

∑
x∈Gdn

e2πiN〈g,x〉|x〉
∥∥∥+

∥∥∥Q̃−QFT−1Gn

∥∥∥ ≤ 1
12 then measuring the state Q̃⊗d|ψ〉 in

the computational basis yields an estimate k ∈ Gdn such that

Pr[|kj − gj | >3/N ] ≤ 1/3 for every j ∈ [d].

Proof. The proof is analogous to that of [18, Lemma 5.1]. Observe that the “ideal” state is a product state

d⊗
j=1

1√
N

∑
xj∈Gn

e2πiNgjxj |xj〉.

If we apply QFT−1Gn to the j-th component of the state we get

1

N

∑
xj ,kj∈Gn

e2πiNxj(gj−kj)|kj〉.

In the analysis of phase estimation [41], it can be shown2 that for every i ∈ [d], the we have

(2.1) Pr

[
|kj − gj | >

3

N

]
≤ 1

4
.

Since we work with the state |ψ〉 instead of the “ideal” state, and apply Q̃ as opposed to QFT−1Gn the measurement
statistics might differ. On the other hand the closeness condition implies that∥∥∥∥∥∥

(
I
⊗[j−1]
Gb

⊗ Q̃⊗ I⊗[d]\[j]Gb

)
|ψ〉 −

(
I
⊗[j−1]
Gb

⊗QFT−1Gn ⊗ I
⊗[d]\[j]
Gb

) 1√
Nd

∑
x∈Gdn

e2πiN〈g,x〉|x〉

∥∥∥∥∥∥ ≤ 1

12
.

This means that the probability of the above event Eq. (2.1) changes by at most 1
12 (see for example [48, Exercise

4.3]). Even though we analysed the procedure only for a single coordinate, the measurement statistics of the j-th
coordinate is unaffected by operations that act on the other qubits. Therefore, the error analysis still holds if
apply Q̃ to all coordinates and then measure.

Now we derive the corollary that we use for estimating various quantities. Before proving it we invoke two
technical results that we use in the proof.

Theorem 2.1. (Chernoff-Hoeffding [28, Theorem 1]) Let X1, X2, . . . , Xn be independent random vari-
ables such that 0 ≤ Xi ≤ 1 for every i ∈ [n], and let X := 1

n

∑
i∈[n]Xi. If p := E[X] ∈ (0, 1), then for

0 ≤ ε ≤ 1− p we have that

Pr(X ≥ p+ ε) ≤ exp(−D(p+ ε‖p)n) ≤ exp(−2nε2),

where D(x‖y) = x ln(xy ) + (1− x) ln( 1−x
1−y ).

Let QFTn denote the standard quantum Fourier transform over n qubits. We rely on the following efficient
implementations devised by Cleve and Watrous.

2Note that this is where we use the assumption |gj | ≤ 1/3 in order to convert the phases to the intervals [− 1
3
, 1
3

]. Also note that
the Fourier transform we use is slightly altered, but the same argument still holds as in [41, (5.34)]. One can also directly translate

the result by considering the conjugation of the ordinary quantum Fourier transform with a tensor product of n single-qubit unitaries
derived in [18].
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Theorem 2.2. (Parallel QFT circuits [12, Theorems 1-2]) For any n ∈ N there is a quantum circuit of
depth O(n) implementing QFTn with O

(
n(log n)2 log log n

)
gates. Moreover, for any ε ∈ (0, 1) there is a quantum

circuit Q̃ of depth O(log n+ log log(1/ε)) such that
∥∥∥Q̃−QFTn

∥∥∥ ≤ ε and Q̃ consists of O(n log(n/ε)) gates.

Since QFTGn can be obtained from QFTn via conjugation by a layer of single-qubit gates [18, Claim 5.1], the
above complexity bounds also apply for implementing QFTGn . Now we are ready to prove the main corollary of
this preliminary section.

Corollary 2.1. (Almost-linear block-Hamiltonian to gradient) Let ε, δ ∈ (0, 16 ], b := dlog2( 24
ε )e,

B = 2b and β := 1
48 . Suppose that we have an a-block-encoding W of a diagonal matrix with diagonal entries

f(x) ∈ R for x ∈ Gdb satisfying |f(x) − 〈x, g〉| ≤ εβ
6π for at least a (1 − β2) fraction of the points in Gdb . Then

with O
(
1
ε log(dδ )

)
(controlled) uses of W (and its inverse) and O

((
d log( 1

ε ) log log( 1
ε ) + a

ε

)
log(dδ )

)
other gates with

circuit depth O
(

log(a)
ε

)
we can compute a vector k ∈ [− 8

3 ,
8
3 ]d such that Pr[‖k − g‖∞ > ε] ≤ δ.

Proof. The main idea is to apply Lemma 2.6 with preparing the (approximate) initial state via block-Hamiltonian
simulation Lemma 2.4. The first step is to prepare a uniform superposition over the grid Gdb by applying a
Hadamard gate to all d · b qubits, that are initially in the |0〉 state.

Note that due to the assumptions in the statement we have that |f(x)| ≤ 1 and so |〈x, g〉| ≤ 1 + ε ≤ 7
6 for at

least 1− 2−10 fraction of points in Gdb since β ≤ 2−5, in turn implying that ‖g‖∞ ≤
8
3 . Indeed, let us assume that

gj >
8
3 , we show that this would imply that for at least half of the points with xj ≥ 7

16 we have that 〈x, g〉 > 7
6 .

First, clearly xj · gj > 7
6 . Let ḡ ∈ Rd−1 be the vector we get from g by removing its j-th coordinate. Then for

any x̄ ∈ Gd−1b we have that 〈x̄, ḡ〉 = −〈−x̄, ḡ〉 so at least one of 〈x̄, ḡ〉, 〈−x̄, ḡ〉 is greater than or equal zero. Since
b ≥ 4 at least a 1

16 fraction of points x ∈ Gb satisfy x ≥ 7
16 , and so for at least a 1

32 fraction of points x ∈ Gdb we
would get 〈x, g〉 > 7

6 . Therefore, we will apply Lemma 2.6 to the gradient g
8 with precision ε

8 .

First let us assume that we have access to a perfect phase oracle P :=
∑
x∈Gdb

|x〉〈x|e2πiB8 f(x) so that

we can prepare the sate |ψ′〉 = 1√
Bd

∑
x∈Gdb

|x〉e2πiB8 f(x). We can bound the difference from the ideal state

|φ〉 = 1√
Nd

∑
x∈Gdb

e2πiN〈g,x〉|x〉 analogously to the proof of [18, Lemma 5.1]. Let S ⊆ Gdb be the set of points for

which |f(x)− 〈x, g〉| ≤ εβ
4π holds, then

‖|ψ′〉 − |φ〉‖2 =
1

Bd

∑
x∈Gdb

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2
=

1

Bd

∑
x∈S

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2+ 1

Bd

∑
x∈Gdb\S

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2
≤ 1

Bd

∑
x∈S

∣∣∣∣2πB8 f(x)− 2π
B

8
〈x, g〉

∣∣∣∣2+ 1

Bd

∑
x∈Gdb\S

4(|eiz − eiy| ≤ |z − y|)

=
1

Bd

∑
x∈S

(2π
B

8
)2|f(x)− 〈x, g〉|2+ 4

|Gdb \ S|
Bd

≤ 1

Bd

∑
x∈S

4β2 + 4β2(by the assumptions of the corollary)

≤ 8β2.

We can implement a (3 − 2
√

2)β-approximation P̃ of the perfect phase oracle P by applying block-Hamiltonian

simulation Lemma 2.4 to W .3 This enables us to prepare an approximate state |ψ̃〉 such that
∥∥∥|ψ̃〉 − |ψ′〉∥∥∥ ≤

(3− 2
√

2)β and so in turn
∥∥∥|ψ̃〉−|φ〉∥∥∥ ≤ 3β. If we apply an approximate (inverse) quantum Fourier transform Q̃

3An ε-precise (a + 2)-block-encoding of eitH is O
(√
ε
)
-close in operator norm to a perfect Hamiltonian simulation unitary U of

the form |0〉〈0|⊗a+2 ⊗ eitA + V , where V (|0〉a+2 ⊗ I) = 0.
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[6] such that
∥∥∥Q̃−QFT−1Gn

∥∥∥ ≤ β then the conditions of Lemma 2.6 hold, therefore measuring the state yields and

estimate satisfying for each j ∈ [d]

Pr

[
|kj − gj | >

3

B

]
≤ 1

3
.

Finally, we repeat the entire procedure 2m-times for m :=
⌈
10 ln(dδ )

⌉
and take the median of the estimates

for each coordinate j ∈ [d]. If |kj − gj | ≤ 3
B holds for at least m + 1 estimates, then the median will give

a 3
B ≤

ε
8 -precise estimate for gj . We use the Chernoff-Hoeffding theorem to bound the probability of failure.

Indeed, Theorem 2.1 shows that the probability that |kj − gj | > 3
B holds for at least m out of 2m estimates is

at most exp(−D( 1
2‖

1
3 )2m)) ≤ exp(−m

10 ) ≤ δ
d . By the union bound this implies that Pr[‖k − g‖∞ > ε] ≤ δ. Since

‖g‖∞ ≤
8
3 we can always truncate each coordinate into [− 8

3 ,
8
3 ] without affecting this failure probability.

The query complexity follows from the fact that we prepare the state |ψ̃〉 a total of O
(
log(dδ )

)
times, each time

makingO(B) = O
(
1
ε

)
(controlled) queries to W . The additional gate complexity of preparing |ψ̃〉 isO(a) times the

query complexity (coming from Lemma 2.4) plus the number of initial Hadamard gates. The biggest contribution
to the gate complexity comes from the implementation of the approximate (inverse) quantum Fourier transform

Q̃. By Theorem 2.2 the gate complexity of Q̃ can be bounded by O(b log(b/β)) = O
(
log( 1

ε ) log log( 1
ε )
)

while its

depth by O(log(b) + log log(1/β)) = O
(
log log( 1

ε )
)
. The additional classical computation can also be performed

in parallel with depth O(poly(b,m)) which is O
(
polylog( dδε )

)
, since m = O

(
log(dδ )

)
, and b = O

(
log( 1

ε )
)
.

In Section 6 we improve upon the above Lemma 2.6 and Corollary 2.1 by making them (essentially) unbiased, by

using our new unbiased phase estimation subroutine instead of just applying
(
QFT−1Gn

)⊗n
to each coordinate in

Jordan’s algorithm. Those improvements play a vital role for our mixed-state tomography results, but they are
not necessary for pure-state tomography. Since the unbiased version has some additional log log factors, we use
the simpler routine for now.

3 Relations between vector estimates

In this section we prove two lemmas that relate different types of estimates for vectors. The first lemma shows
a relation between estimates of the vector of amplitudes, and of the vector of corresponding probabilities. The
second lemma relates `q-estimates for different values of q when the vector is normalized (as is the case with
amplitudes and probabilities). Together, these two lemmas allow us to upper bound the complexity of giving
`q-norm estimates for both amplitudes and probabilities, starting from an `∞-norm estimate for amplitudes.
Similarly, with these lemmas a lower bound on the complexity of finding an `1-norm estimate for probabilities
translates to a lower bound on all other cases.

3.1 Relation between amplitude and probability estimation For a classical probability distribution, we
learn all aspects of the distribution by estimating it in `1-norm error, i.e., total variation distance. For pure
quantum states the `2-norm error plays a similar role. It is natural to ask how an `2-norm estimate of a quantum
state relates to an `1-norm estimate of the probability distribution given by computational-basis measurements
on that state. In a similar fashion, we want to understand this question also when using `∞-norm error on the
quantum state. We provide answers to these questions by showing a relation between `q-norm error on a state
and `r-norm error on the corresponding probability distribution; the special case q = 2, r = 1 is also discussed in
[8, Lemma 3.6].

Lemma 3.1. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state. Let p ∈ Rd given by pj = |αj |2 be the probability

distribution arising from a computational-basis measurement. Let q ∈ [2,∞] and let t := 1
1
q+

1
2

∈ [1, 2]. An

ε-`q-norm estimate |α̃| of |α| can be used to compute a 4ε-t-norm estimate p̃ of p, using O(d) gates.

Proof. We first note that for any `q-norm estimate |α̃| of a unit vector |α| we may assume ‖|α̃|‖2 = 1, that is,
the vector represents a pure state. Indeed, if this is not the case, we can instead use |α̃|/‖|α̃|‖q, which we can
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compute using O(d) gates, and which satisfies∥∥∥∥∥|α| − |α̃|
‖|α̃|‖q

∥∥∥∥∥
q

≤ ‖|α| − |α̃|‖q +

∥∥∥∥∥|α̃| − |α̃|
‖|α̃|‖q

∥∥∥∥∥
q

≤ ε+ ‖|α̃|‖q ·

(
1− 1

‖|α̃|‖q

)

≤ ε+ (1 + ε) ·
(

1− 1

1 + ε

)
= 2ε.

By assumption, q = t
1−t/2 . Using Hölder’s inequality for λ1, λ2 ≥ 1 with 1

λ1
+ 1
λ2

= 1, we obtain the following

upper bound on the `t-norm error in an estimate of p:

‖p− p̃‖t =

∑
j∈[d]

|pj − p̃j |t
1/t

=

∑
j∈[d]

||αj |2 − |α̃|2j |t
1/t

≤

∑
j∈[d]

||αj | − |α̃|j |t||αj |+ |α̃|j |t
1/t

≤

∑
j∈[d]

||αj | − |α̃||tλ1

 1
tλ1
∑
j∈[d]

||αj |+ |α̃|j |tλ2

 1
tλ2

= ‖|α| − |α̃|‖tλ1
‖|α|+ |α̃|‖tλ2

.

(Recall that λ1, λ2, t ≥ 1, so tλ1 ≥ 1 and tλ2 ≥ 1.) Pick λ2 = 2/t. We then have

‖|α|+ |α̃|‖tλ2
= ‖|α|+ |α̃|‖2 ≤ ‖|α|‖2 + ‖|α̃|‖2 ≤ 2.

Combining this with λ1 = 1
1− 1

λ2

= 1
1− t2

, we get

‖p− p̃‖t ≤ ‖|α| − |α̃|‖tλ1
‖|α|+ |α̃|‖tλ2

≤ ‖|α| − |α̃|‖ t
1−t/2

· 2

= 2‖|α| − |α̃|‖q
≤ 4ε.

Note that the reverse does not hold, and in particular ε-`1-norm estimates of p are not equivalent to Θ(ε)-`2-
norm estimates of α . This is not only due to the information about the phases being lost: even for the case d = 2
where the αj are positive reals, estimating the probabilities is not enough to learn the amplitudes to a similar
error. In particular, let p0 = α2

0 = ε ≤ 1 and let p̃0 = p0 + ε be an ε-estimate for the probability. The amplitude
satisfies

α̃0 =
√
p̃0 =

√
p0 + ε =

√
2ε ≥

(
1 +

1

4

)√
ε = α0 +

1

4

√
ε.

Thus, the precision gets quadratically worse for small amplitudes.
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3.2 Dimension-independent norm conversion for normalized vectors If we have an estimate of a vector
with error at most ε in, for example, the `∞-norm, we can use norm conversion to show that this is also an estimate
with error at most εd1/q in the `q-norm. However, this bound is poor for large d. Here, we show that we can
do better if we know that the vector we are estimating is normalized in some `s-norm, using the fact that such
a vector cannot have too many large entries. In fact, we obtain a norm conversion lemma that does not depend
on the dimension at all. We first prove a very general version of the following lemma; for results in subsequent
sections of the paper we always use s = 2 (for quantum states) or s = 1 (for probability distributions), and set
γ = 1.

Lemma 3.2. Let α ∈ Cd be such that ‖α‖s ≤ γ. Let α̃ ∈ Cd be such that ‖α− α̃‖∞ ≤ η. Let ᾱ ∈ Cd
be the vector defined as ᾱj = α̃j if |α̃j | ≥ 2η, ᾱj = 0 otherwise. Then for all q ∈ (s,∞) we have

‖α− ᾱ‖q ≤ min{4η
q−s
q γ

s
q , 3d1/qη}.

Proof. The second term in the min follows from the standard norm conversion and the fact that ᾱ is an 3η-`∞-
approximation; thus, we only need to prove the first term.

We know that ‖α− α̃‖∞ ≤ η. Let J = {j ∈ [d] : |α̃j | ≥ 2η}. Then

{j ∈ [d] : |αj | ≥ 3η} ⊆ J ⊆ {j ∈ [d] : |αj | ≥ η}.

And, as ‖α‖s ≤ γ, we have |J | ≤ γs

ηs .
Now, let ᾱ be α̃ on all j ∈ J and 0 everywhere else. On the indices in J we know that ᾱ is an η estimate of

α. Then

‖α− ᾱ‖q =

∑
j∈[d]

|αj − ᾱj |q
1/q

≤

∑
j 6∈J

|αj − ᾱj |q
1/q

+

∑
j∈J
|αj − ᾱj |q

1/q

≤

∑
j 6∈J

|αj |q−s|αj |s
1/q

+

(
|J |max

j
|αj − ᾱj |q

)1/q

≤

∑
j 6∈J

(3η)q−s|αj |s
1/q

+

(
γs

ηs
ηq
)1/q

= (3η)
q−s
q

∑
j 6∈J

|αj |s
1/q

+ η
q−s
q γ

s
q

≤ 4η
q−s
q γ

s
q .

The lemma stated above is very general, but we only use it with several very specific parameter settings.
Thus, we present the following simplified statement.

Corollary 3.1. Let ε ∈ (0, 1], s ≤ q, and let y be an `s-normalized complex vector. In order to obtain an
ε-`q-norm estimate of y, an η-`∞-norm estimate suffices for

η = max

{
1

3

(ε
3

) 1
1− s

q ,
ε

d
1
q

}
.

Proof. The first term follows from Lemma 3.2 by letting γ = 1. The second term in the max comes from a
standard norm-conversion on the vector of errors, as a v ∈ [−ε, ε]d has q-norm at most εd1/q.
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This corollary has an immediate consequence. If one is only interested in finding an `q-estimate of the

vector of probabilities pj prepared by some unitary operation U : |0〉 7→
∑d
j=1

√
pj |j〉, then one can directly

apply Corollary 3.1 in conjunction with the Õ(1/ε)-query algorithm for `∞-algorithm from [4]. The number of
controlled and inverse calls to U then becomes

Õ(1/η) = Õ

(
min

{(
3

ε

) 1

1− 1
q
,
d

1
q

ε

})
,

which we show to be optimal up to polylogarithmic factors in Section 9.2.

4 Pure-state tomography using copies

In this section we present and analyze pure-state tomography algorithms that use very little quantum power.
The first algorithm that we describe, in Section 4.1, is part of the folklore: we just take measurements in the
computational basis, and obtain the absolute values of the amplitudes from the measurement outcomes. We
are not aware of a specific reference for the sample complexity of this method, hence we provide a proof for
completeness. Then, we add the ability to perform some operations on the quantum state, in Section 4.2 and
Section 4.3: the first section simplifies the analysis of the tomography algorithm given in [33], the second one
relaxes some of the assumptions with a slight increase in the sample complexity. The strongest model in this
section relates to the case where we have access to a state-preparation unitary and its controlled version, but not
its inverse. We discuss the setting where the inverse is available in Section 5.

4.1 Absolute values using computational-basis measurements Given classical samples via
computational-basis measurements, how many samples do we need for an `q-norm estimate of α? Clearly we
cannot learn the phases, so we have to limit ourselves to the absolute values of the amplitudes. Even then, the
remark at the end of Section 3.1 seems discouraging: on the surface, estimation of the related distribution p
seems the best that we can do with computational-basis measurements, and converting the error bound from
probabilities to amplitudes makes the precision quadratically worse. However, as we discuss next, Õ

(
1
ε2

)
samples

suffice and are optimal to give an `∞-norm estimate of |α|.

Proposition 4.1. Let 0 < ε, δ < 1. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with αj ∈ C, and let p ∈ Rd,

defined by pj = |αj |2, be the probability distribution of the outcomes of a computational-basis measurement. Then,
O
(
log(d/δ)/ε2

)
measurements of |ψ〉 in the computational basis suffice to learn an ε-`∞-norm estimate |α̃| of |α|,

with success probability at least 1− δ.

Proof. Let us consider a single coordinate αj with associated probability pj = |αj |2. Our goal is to estimate |αj |.
We take k samples to find an estimate p̃j of pj . The Chernoff bound tells us that for the error εj in this coordinate
we have

P[p̃j > pj + εj ] ≤ e−D(pj+εj ||pj)k, if pj + εj < 1,

P[p̃j > pj − εj ] ≤ e−D(pj−εj ||pj)k, if pj − εj > 0,

where D(x||y) is Kullback–Leibler divergence. We need the conditions shown on the right-hand side because the
Kullback-Leibler divergence is only defined for x, y ∈ (0, 1), but it is easily observed that if the conditions on the

right are not satisfied, the probabilities on the left-hand side trivially become 0. Since D(x||y) ≥ (x−y)2
2max{x,y} , for

all x, y ∈ (0, 1), we get

P[|p̃j − pj | > εj ] ≤ 2e
−

ε2j
2(pj+εj)

k
,

and it is easily checked that this bound also holds whenever pj + εj ≥ 1, or pj − εj ≤ 0. Hence, picking

k ≥ 2(pj+εj) ln(2/δ
′)

ε2j
=

2(|αj |2+εj) ln(2/δ′)
ε2j

ensures that P [|p̃j − pj | ≥ εj ] ≤ δ′.
We now pick εj = ε|αj |/2 + (ε/2)2. Note that we do not actually know this value, as it depends on the

yet-to-be-estimated αj , but with this choice we find that

2(|αj |2 + εj) ln( 2
δ′ )

ε2j
=

2(|αj |2 +
ε|αj |
2 + ( ε2 )2) ln( 2

δ′ )

(
ε|αj |
2 + ( ε2 )2)2

≤
2(|αj |2 + ε|αj |+ ( ε2 )2) ln( 2

δ′ )

( ε2 )2(|αj |+ ε
2 )2

=
8 ln( 2

δ′ )

ε2
.
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Thus, it suffices to choose k = 8 ln(2/δ′)/ε2. Letting δ′ = δ/d and applying the union bound, we have that, with
probability 1− δ, for all j ∈ [d], the resulting estimates p̃j satisfy |p̃j − pj | ≤ εj . First, this implies

|α̃j | − |αj | ≤
√
pj + εj − |αj |

=

√
|αj |2 +

ε|αj |
2

+
(ε

2

)2
− |αj |

≤
√
|αj |2 + ε|αj |+

(ε
2

)2
− |αj |

= |αj |+
ε

2
− |αj |

=
ε

2
< ε.

Next we show that |αj | − |α̃j | < ε. First consider the case where pj ≤ εj . In that case, we have

|αj |2 = pj ≤
ε|αj |

2
+
(ε

2

)2
⇔

(
2|αj |
ε

)2

≤ 2|αj |
ε

+ 1 ⇔ |αj | ≤
1 +
√

5

4
ε.

Hence, we find that

|αj | − |α̃j | ≤ |αj | ≤
1 +
√

5

4
ε < ε.

On the other hand, if pj > εj , we have

|αj | − |α̃j | ≤ |αj | −
√
pj − εj = |αj | −

√
|αj |2 −

ε|αj |
2
−
(ε

2

)2
= |αj | −

(
|αj | −

ε

4

)√
1−

5( ε2 )2

4(|αj | − ε
4 )2

≤ |αj | −
(
|αj | −

ε

4

)(
1−

5( ε2 )2

4(|αj | − ε
4 )2

)
=
ε

4
+

5( ε2 )2

4(|αj | − ε
4 )
≤ ε

4
+

5ε2

16
√
5
4 ε

=
ε

4
+

√
5ε

4
< ε,

where in the last line, we used that |α̃j | > (1 +
√

5)ε/4. Thus, we can compute a vector |α̃| that is an ε-`∞-norm
estimate of |α| with O

(
log(d/δ)/ε2

)
samples.

We can use the above theorem to approximate the vector of absolute values of the amplitudes in other norms
as well.

Theorem 4.1. Let 0 < δ < 1, ε > 0, d ∈ N and q ∈ [2,∞]. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with

αj ∈ C. Then,

O

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

2
q

ε2

}
· log

(
d

δ

))
computational-basis measurements of |ψ〉 suffice to learn an ε-`q-norm estimate |α̃| of |α|, with success probability
1− δ.
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Proof. Since the vector |α| is normalized in `2-norm, we know from Corollary 3.1, that in order to obtain an
ε-`q-norm estimate of |α|, it suffices to find an η-`∞-estimate of |α|, where

η = max

{
1

3

(ε
3

) 1

1− 2
q ,

ε

d
1
q

}
.

From Lemma 4.1, we now find that this can be done using

O

(
log
(
d
δ

)
η2

)
= O

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

2
q

ε2

}
· log

(
d

δ

))
.

computational-basis measurements.

4.2 Recovering the phase information using conditional samples Our discussion above shows how to
estimate the vector of the absolute values of the amplitudes αj with O

(
log d/ε2

)
copies of the quantum state. In

this section, we consider having conditional samples of the state |ψ〉, by which we mean states of the form

|0〉|ψ〉+ |1〉|0〉√
2

,

and we consider the problem of recovering all complex amplitudes of |ψ〉, including the phases.
We note here that if we have access to a controlled state-preparation unitary, we can prepare such a conditional

sample of the state with one call to this operation. Crucially, we do not need the inverse of the state-preparation
unitary – if we have access to that as well, then the results from Section 5 improve over those presented here.

The algorithm is based on the Hadamard test, as described in the next result.

Lemma 4.1. Let |ψ0〉 =
∑
j∈[d] αj |j〉, |ψ1〉 =

∑
j∈[d] βj |j〉, and let

|φ〉 =
|0〉|ψ0〉+ |1〉|ψ1〉√

2
.

Using O
(
log(d/δ)/ε2

)
copies of |φ〉, we can, with success probability at least 1−δ, compute an ε-`∞-norm estimate

of the 2d-dimensional vector containing entries |αj ± βj |, for all j = 0, . . . , d− 1.

Proof. Note that

|φ〉 =
1√
2

|0〉∑
j∈[d]

αj |j〉+ |1〉
∑
j∈[d]

βj |j〉

.
Applying a Hadamard gate to the first qubit yields

1

2

|0〉∑
j∈[d]

(αj + βj)|j〉+ |1〉
∑
j∈[d]

(αj − βj)|j〉

.
We can now perform computational-basis measurements on this new state, and build up a histogram of the
observed outcomes. The proposition then follows from Lemma 4.1, by setting the precision to ε/2.

Inspired by the method used by Kerenidis and Prakash [33], we apply the above proposition to two states
with amplitudes α and |α|. The algorithm of Kerenidis and Prakash is only concerned with real amplitudes, hence
it only needs to estimate the sign of each large αj . Clearly this can be learned from a sufficiently precise estimate
of |αj − |αj ||. Since we consider general phases we need to be more careful, as we need to distinguish between a
very small positive complex component εi and a very small negative complex −εi. To this end we also apply the
proposition to α and i|α|, and we give a more careful geometric analysis.

Proposition 4.2. Let 0 < ε, δ < 1, and let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with αj ∈ C. Then

O
(
log(d/δ)/ε2

)
copies of (|0〉|ψ〉 + |1〉|0〉)/

√
2 suffice to compute an ε-`∞-norm estimate α̃ of α, with success

probability at least 1− δ.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited1278

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

93
.2

24
.7

9.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



r
z

y

r̃

ir̃

w
r̃ − b

b

a r̃ − a

Figure 1: Geometry of the different points in C involved in the proof of Proposition 4.2. Subscripts “j” have been
dropped for clarity.

Proof. Let us consider a single amplitude αj = (aj , bj). Let rj = |αj |. Using Lemma 4.1 we get an ε/32 estimate
r̃j of rj with O

(
log(d/δ)/ε2

)
samples. We only consider the elements where r̃j ≥ ε/2, as we can set the rest to 0

without introducing too much error.
Let zj = |αj − r̃j |, and wj = |αj − ir̃j |; see Figure 1. Using Lemma 4.1 we can find an ε/32-approximation

of zj with the same number of samples as before, and similarly for wj , because we can construct a controlled
unitary that transforms (|0〉|ψ〉 + |1〉|0〉)/

√
2 into (|0〉|ψ〉 + |1〉

∑
j r̃j |j〉)/

√
2, and similarly with an extra phase

(we assume w.l.o.g. that ‖r̃‖2 = 1, as in the proof of Lemma 3.1).
We now show how to find aj from rj and zj , should we know them exactly; note that zj is still defined using

measured value r̃j , i.e., we are in the situation of Figure 1. The squared length of the vertical line down from αj
is b2j = r2j − a2j by Pythagoras. Applying Pythagoras again, we find that

z2j = b2j + (r̃j − aj)2 = r2j − a2j + (r̃j − aj)2 = r2j + r̃2j − 2r̃jaj ,

hence aj = 1
2 r̃j + 1

2

r2j
r̃j
− z2j

2r̃j
. Thus, we have a formula for aj , and we just need to bound the error that may affect

aj when we use the estimates r̃j and z̃j instead of rj and zj . Here it is important that we used our estimate r̃j
for the βj in Lemma 4.1, and hence r̃j is the exact length of the horizontal line, not an estimate of it.

To give an upper bound on the error induced by the error in our estimates r̃j and z̃j , we consider the gradient

of the function faj (rj , zj) = 1
2 r̃j + 1

2

r2j
r̃j
− z2j

2r̃j
in terms of rj and zj :

∇faj =

(
rj
r̃j
,−zj

r̃j

)
.

We bound the `1-norm of the gradient on the box defined by the constraints |rj − r̃j | ≤ ε/32, |zj − z̃j | ≤ ε/32.
We know that ε/2 ≤ r̃j , and hence that rj + ε/32 ≤ r̃j + ε/16 ≤ 2r̃j , so the first coordinate is upper bounded

in absolute value by 2. Furthermore, zj ≤ r̃j + rj ≤ 3r̃j by the triangle inequality, so | − zj+ε/32
r̃j
| ≤ 4. Hence,

the sum of absolute values of the entries of the gradient is upper bounded by 8 over the whole box, therefore the
additive error on aj is at most 8 times the additive error on rj and zj . Since |rj − r̃j | ≤ ε/16 and |zj − z̃j | ≤ ε/16,

we have |aj − (r̃j −
z̃2j
2r̃j

)| ≤ 8ε/16 = ε/2.
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With a similar argument, but using wj instead of zj , we also find bj up to error ε/2, and hence αj up to error
ε.

As a controlled state-preparation unitary can be used to prepare the conditional samples we immediately get the
following corollary.

Corollary 4.1. Let 0 < ε, δ < 1, and let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with αj ∈ C. Then

O
(
log(d/δ)/ε2

)
applications (in parallel) of a controlled state-preparation unitary for |ψ〉 suffice to compute an

ε-`∞-norm estimate α̃ of α, with success probability at least 1− δ.

The sample complexity of Corollary 4.1 is asymptotically the same as in the algorithm of Kerenidis and Prakash
[33], but our analysis is simpler thanks to Lemma 4.1, we estimate both the real and the imaginary part, and we
directly get O

(
log 1

δ

)
dependence on the probability of failure (as opposed to probability of success 1 − 1/dc for

some constant c in [33]).
Using the above result, we can also construct algorithms that approximate α in other `q-norms.

Theorem 4.2. Let 0 < ε, δ < 1, and let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with αj ∈ C. Then,

O

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

2
q

ε2

}
· log

d

δ

)

copies of the state (|0〉|ψ〉+ |1〉|0〉)/
√

2 suffice to compute an ε-`q-norm estimate α̃ of α, with success probability
at least 1− δ.

Proof. The proof follows from Corollary 3.1 combined with Proposition 4.2, in exactly the same way as in the
proof of Theorem 4.1.

4.3 Amplitudes up to a global phase with only copies of the state Finally we consider the model
in which we simply have access to copies of the pure state. Although this model is conceptually simple, the
estimation algorithm is more complicated than before. The number of samples required is still Õ

(
1/ε2

)
, but

slightly worse in polylogarithmic factors. In fact the method is very similar to the proof of Proposition 4.2, but
instead of comparing αj to |αj |, we have to compare the amplitudes to each other.

Proposition 4.3. Let 0 < ε, δ < 1, and let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with αj ∈ C.

Then O
(
log(d) log(d/δ)/ε2

)
copies of |ψ〉, with the ability to perform unitary operations on each copy before

measurement, suffice to compute an ε-`∞-norm estimate α̃ of α, up to global phase, with success probability at
least 1− δ.

Proof. As before, let rj = |αj | and let αj = aj + bji. We first use Lemma 4.1 to compute an ε/(16m)-estimate
r̃j of rj . We only consider the coordinates where r̃j ≥ ε/2, and permute the basis states in all remaining copies
of |ψ〉 in such a way that these form the first k coordinates of the state. Let m be the smallest value such that
k < 2m, i.e., we are only interested in the amplitudes for basis states where all but the last m qubits are 0. For
ease of notation we consider the sub-normalized state |φ〉 corresponding to this part and relabel the indices so
the r̃j are in decreasing order. Note that the remaining part of |ψ〉 has `∞-norm less than ε/2, hence it can be
ignored for our estimation.

For h ∈ [m] we consider the state resulting from applying a Hadamard gate to the h-th qubit of |φ〉 (below,
for an m-digit binary string j ∈ [2m], we write jh to denote the h-th binary digit):

I⊗h−1 ⊗H ⊗ I⊗m−h|φ〉 =
1√
2

∑
j∈[2m]
jh=0

(αj + αj+2h)|j〉+ (αj − αj+2h)|j + 2h〉.

Hence we can learn ε/(16m)-estimates of sj,h = |αj−αj+2h | using computational-basis measurements with success
probability at least 1− δ/(2m). Note that this can be interpreted as an application of Lemma 4.1, where the h-th
qubit is considered the flag. Repeating this with an additional phase gate also gives estimates tj,h = |αj− iαj+2h |.
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We now consider a single value of h and aim to learn αj+2h relative to αj . For now, we assume that αj ∈ R≥0
and show how to give an estimate of αj + 2h; we discuss how to relax the assumption subsequently. Note that:

s2j,h = |αj |2 + |αj+2h |2 − 2<(α†jαj+2h),

and therefore, due to our assumption on αj , we have:

aj+2h =
r2j + r2j+2h − s

2
j,h

2rj
,

with a similar argument as in Proposition 4.2. As in Proposition 4.2, we consider this estimate of aj+2h as a
function of rj , rj+2h , and sj,h, and compute its gradient, which now consists of three partial derivatives; we then
bound the `1-norm of the gradient over the possible values for sj,h, rj , rj+2h :∣∣∣∣∂aj+2h

∂rj+2h

∣∣∣∣ =

∣∣∣∣rj+2h

rj

∣∣∣∣ ≤ 1 +
3

16m
≤ 3

2
,∣∣∣∣∂aj+2h

∂sj,h

∣∣∣∣ =

∣∣∣∣−sj,hrj
∣∣∣∣ ≤ 3,∣∣∣∣∂aj+2h

∂rj

∣∣∣∣ =

∣∣∣∣∣12 +
s2j,h − r2j+2h

4r2j

∣∣∣∣∣ ≤ 1

2
+

1

4

∣∣∣∣sj,hrj
∣∣∣∣2 +

1

4

∣∣∣∣rj+2h

rj

∣∣∣∣2 ≤ 7

2
.

For the first inequality above, we used the fact that rj , rj+2h ≥ ε/3 and rj + ε/(16m) ≥ rj+2h . The middle
inequality follows from sj,h ≤ rj + rj+2h ≤ 2rj + ε/(16m) ≤ 3rj . Hence the gradient’s `1-norm is upper-bounded
by 8, implying that our estimate for aj+2h is ε/(2m)-close. Repeating this argument using tj,h shows how to
obtain an ε/(2m)-estimate of bj+2h , resulting in an ε/m-estimate of αj+2h . Recall that so far we assumed that
αj ∈ R≥0; this implies that we learned αj+2h only up to the phase of αj

4, and we have to reconcile the different
relative phases for pairs of amplitudes computed with this procedure.

Thus, we now combine our estimates for the different values of h, to learn the entire state up to a global
phase. We arbitrarily assume that one amplitude is real, say α0 ∈ R≥0. Consider some index j with Hamming
weight w, i.e., there are w positions in the binary representation of j that are 1. We start at the all-zero string,
and, proceeding from the most significant bit, flip bits to obtain j. This yields a path of length w over indices
j′, with w ≤ m. For all j′ we have r̃j′ ≥ ε/2, hence we know all amplitudes αj′ up to the phase of the previous
amplitude in the path, with precision ε/m each. By the triangle inequality and the union bound we can therefore
estimate αj up to the phase of α0, with precision ε for all j < k. Since k ≤ d and hence m ≤ log(d), we get the
stated complexity.

We can also use the above result to derive algorithms that estimate the vector α up to different norms, just
like in the previous subsections. This results in the following theorem.

Theorem 4.3. Let 0 < δ < 1, ε > 0, d ∈ N, q ∈ [2,∞], and let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with

αj ∈ C. Then,

O

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

2
q

ε2

}
· log d log

d

δ

)
copies of |ψ〉, with the ability to perform unitary operations on each copy, suffice to find an ε-`q-norm estimate α̃
of α, up to global phase, with success probability at least 1− δ.

Proof. The result follows immediately from combining Corollary 3.1 and Proposition 4.3, in exactly the same way
as in the proof of Theorem 4.1.

4It is possible to fully restate our argument without this assumption in the first place, but the resulting derivation is considerably
longer and less elegant.
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5 Pure-state tomography using phase estimation

In this section we turn to the strongest input model of this paper, where we have access to a state-preparation
unitary and its inverse. This allows us to reduce the dependence on the error parameter ε from 1/ε2 to 1/ε. We
rely on the framework introduced in Section 2.3.

5.1 State preparation for amplitude encoding Let x ∈ [−1, 1]d, so ‖x‖2 ≤
√
d. Define

|amp(x)〉 :=
1√
d

∑
j∈[d]

xj |j〉|0〉+
1√
d

∑
j∈[d]

√
1− x2j |j〉|1〉.

In this section we give a simple subroutine that as input takes a binary description of x and constructs the state
|amp(x)〉.

Lemma 5.1. Let |x〉 be a binary encoding of an x ∈ [−1, 1]d where each xj can be written exactly with b bits of
precision. There is a quantum algorithm Uamp that acts as

Uamp|x〉|0〉 = |x〉|amp(x̃)〉

where ‖x̃− x‖∞ ≤ ε. Uamp uses O
(
log(d) + log(1/ε) log2 log(1/ε)

)
gates, and 2 min{b, log(2/ε)} indexed-SWAP

gates acting on d bits.

Proof. The algorithm is as follows, starting from |x〉|0〉|0〉|0〉|0〉 = |x1〉 . . . |xd〉|0〉|0〉|0〉|0〉

• Use O(log(d)) gates to setup a uniform superposition over [d]:

|x〉 1√
d

d∑
i=1

|i〉|0〉|0〉|0〉

• Swap in the first min{b, log(1/ε)} bits of xi, conditioned on the 3th to last register, using min{b, log(2/ε)}
indexed-SWAP gates on d bits each:

1√
d

d∑
i=1

|x(i)〉|i〉|x̄i〉|0〉|0〉

where x̄i is the cut-off version of xi, so |xi − x̄i| ≤ ε/2 and x(i) is the remaining part of x.

• Approximate ãi = arcsin(x̄i) up to ε/2 precision using O
(
log(1/ε) log2 log(1/ε)

)
gates (see [47] for the

complexity):

1√
d

d∑
i=1

|x(i)〉|i〉|x̄i〉|ãi〉|0〉

• Use O(log(1/ε)) rotations with exponentially decreasing angle, controlled on the bits of ãi to rotate the last
qubit:

1√
d

d∑
i=1

|x(i)〉|i〉|x̄i〉|ãi〉
(
ãi|0〉+

√
1− ã2i |1〉

)
• Uncompute ãi and swap back x̄j :

|x〉 1√
d

d∑
i=1

|i〉
(

sin(ãi)|0〉+
√

1− sin(ãi)2|1〉
)

As |ãi − arcsin(x̄j)| ≤ ε/2, and the sin function is 1-Lipschitz, we get that |x̄j − sin(ãj)| ≤ ε/2. Combining this
with |xj − x̄j | ≤ ε/2 gives the desired precision.
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5.2 Pure-state tomography With the quantum circuit of Lemma 5.1 for preparing |amp(x̃)〉 we have all the
ingredients for our pure-state tomography algorithm. We only state it for the estimation of the real part of |ψ〉,
but one can also extract the imaginary part with the same running time simply by applying the algorithm to the
quantum state i|ψ〉.

Proposition 5.1. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state, and U |0〉 = |ψ〉. There is a quantum algorithm

that, with probability at least 1− δ, outputs α̃ ∈ Rd such that ‖<(α)− α̃‖∞ ≤ ε, using

O

(√
d

ε
log(

d

δ
)

)

applications of (controlled) U and U†, O
(√

d
ε log(dδ ) log(dε )

)
indexed-SWAP gates acting on d bits, and Õ

(
d+

√
d
ε

)
additional gates. If ε ≥ 1√

d
, the number of applications of U can be reduced to Õ

(
1
ε2

)
(while potentially increasing

the gate complexity to Õ
(

1
ε4

)
).

Proof. We first describe the algorithm that calls U Õ
(√

d
ε

)
times. Let f(x) = 〈<(α), x〉. Taking U ′ := (I ⊗ U)

and V := Uamp, Lemma 2.5 gives us an approximate block-encoding W of the diagonal matrix 〈x, α〉/
√
d, and

from this we get an approximate block-encoding of f(x)/
√
d averaging W and W † via Lemma 2.2 so we can

apply Corollary 2.1. Then we get an ε-`∞-norm estimate of <(α)/
√
d (where the denominator

√
d comes from

the normalization in |amp(x)〉) with O
(
1
ε log(dδ )

)
uses of the block-encoding of (W +W †)/2, the construction of

which requires a constant number of calls to U and Uamp. To obtain the desired estimate of <(α) we elevate the

precision to ε/
√
d, which brings the total number of uses of U and Uamp to O

(√
d
ε log(dδ )

)
. The gate complexity

is O
(√

d
ε log(dδ ) log(dε )

)
indexed-SWAP gates acting on d bits, and

O

((
d log(

1

ε
) log log(

1

ε
) +

√
d

ε
log

d

ε
log d

)
log

d

δ

)

additional gates, where the first term in the summation comes from the additional gates of Corollary 2.1, whereas
the second term comes from the cost of Uamp.

Next, we show how to improve the algorithm when ε ≥ 1√
d
. Any j such that |αj | ≤ ε can be ignored because

of the `∞-norm objective, so we can simply set α̃j = 0. Since we are only interested in j such that |αj | > ε,

we note that there are at most 1/ε2 such j because
∑
j |αj |2 = 1. After taking O

(
log(n/δ)

ε2

)
measurements of

|ψ〉 in the computational basis, the probability that all such j are observed is at least 1− δ. We can then apply
the algorithm described above to obtain αj only for those j. As this set has cardinality O

(
1/ε2

)
, the quantum

algorithm requires Õ
(

1
ε2

)
applications of U . This concludes the proof.

Note that the algorithm in Proposition 5.1 with complexity Õ
(√

d
ε

)
can be made essentially unbiased by using

Corollary 6.1 instead of Corollary 2.1.

Theorem 5.1. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state, α ∈ Cd the vector with elements αj, and U |0〉 = |ψ〉.

Then, for q ≥ 2

O

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

1
2+

1
q

ε

}
log

d

δ

)
(controlled) applications of U and its inverse suffice to compute an ε-`q-norm estimate α̃ of α, with success
probability at least 1− δ.

Proof. The first term follows from Proposition 5.1 and Corollary 3.1. The second term follows from Theorem 4.2.
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5.3 Tomography for sparse vectors To conclude this section, we show that the tomography algorithm
based on phase estimation can be improved if we know that the quantum state contains at most s < d large
amplitudes. We proceed by finding the large elements first, then applying the tomography algorithm only to
extract a description of only the corresponding part of the quantum state.

Proposition 5.2. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state, and U |0〉 = |ψ〉. Let 0 < δ < 1, and let R

be such that {j ∈ [d] : |αj | ≥ ε} ⊆ R ⊆ [d] be a subset of the indices that contains all large elements. Let
P :=

∑
i 6∈R |αi|2 and s = |R|. There is a quantum algorithm that, with probability at least 1 − δ, outputs an

O
(
(s+ P/ε2) log(s) log(1/δ)

)
-sparse α̃ ∈ Rd such that ‖α− α̃‖∞ ≤ ε using

O

(((√
s

ε
+

√
P

ε2

)
+ log

log(s+ P/ε)

δ

)
log(s) log

(
s+ P/ε

δ

))

applications of (controlled) U and its inverse, O
(((√

s
ε +

√
P
ε2

)
+ log

log( s+Pε )

δ

)
log(s) log

(
s+P/ε
δ

)
log
(
s+P
ε

))
indexed-SWAP gates acting on O

((
s+ P

ε2

)
log(s) ln(1/δ)

)
bits, and Õ

(
s+

√
s
ε + P

ε2

)
additional gates.

Proof. We start by finding all (at most s) elements in R that are at least ε in size using amplitude amplification.
We can then ignore all other elements and apply our state tomography algorithm on the relevant elements.

Let k = |{j ∈ [d] : |αj | ≥ ε}| be the number of large elements. So there are s − k elements in R that are
smaller than ε. We start by simply measuring the state and observing an index j. Note that with probability at
least kε2 this is one of the relevant entries, although this is unknown to us. After observing a single entry, we
mark all other entries as “good” and amplify the “good” part of the state before measuring again, to avoid seeing
an element twice. We repeat this until we have seen T different elements, for some T to be determined later.

If at some point we have seen j large elements (which we do not know), then the probability on the “good”
elements is at most (s − j)ε2 + P . Hence, this part can be amplified to find a new element with probability

≥ 2/3 using O
(

1√
(s−j)ε2+P

)
queries. The probability that this new element is one of the large ones is at least

2(k−j)ε2
3(s−j)ε2+P . Thus, the expected number of samples before seeing a new large element is at most 3(s−j)ε2+P

2(k−j)ε2 . For

the expected number of queries needed before seeing all large elements we then get

O

k−1∑
j=0

1√
(s− j)ε2 + P

(s− j)ε2 + P

(k − j)ε2

 = O

 k∑
j=1

(√
(s− k + j)ε2

jε2
+

√
P

jε2

)
= O

((√
s

ε
+

√
P

ε2

)
log(s)

)
.

By Markov’s equality we can stop the algorithm after 6 times the expected number of queries and still be successful
with probability ≥ 5/6.

We also need to ensure that we do not return too many elements. The expected number of elements found is
equal to the expected number of samples, hence it is

k−1∑
j=0

(s− j)ε2 + P

(k − j)ε2
≤
(
s+

P

ε2

)
log(s).

Again, by Markov’s inequality we can stop the algorithm if we see more then 6 times this number of samples,
and still succeed with probability at least 5/6. By the union bound both conditions are met with probability at
least 2/3. Repeating O(ln(1/δ)) times and taking all elements seen in runs with not too many samples gives us
as success probability at least 1− δ/2. The query complexity then becomes

O

((√
s

ε
+

√
P

ε2

)
log(s) log(1/δ)

)
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for this entire procedure.
We now assume the last step was successful, so we have a set I of indices such that I contains all large

elements and |I| = O
((
s+ P

ε2

)
log(s) ln(1/δ)

)
. Applying Theorem 5.1 on just these indices gives the query and

gate complexity from the lemma.

The above proposition gives an improvement if the state is close to a sparse state in `2-norm. We can directly
get a bound on this closeness if almost all elements are small.

Corollary 5.1. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state, and U |0〉 = |ψ〉. Let 0 < δ < 1, and let s be such

that |{j ∈ [d] : |αj | ≥ ε
√

s
d}| ≤ s. There is a quantum algorithm that, with probability at least 1 − δ, outputs an

O(s log(s) log(1/δ))-sparse α̃ ∈ Rd such that ‖α− α̃‖∞ ≤ ε using

O
((√

s

ε
+ log

log s

δ

)
log(s) log

(s
δ

))
applications of U and its inverse, and ... additional gates.

Proof. Let R = {j ∈ [d] : |αj | ≥ ε
√

s
d}. Then, P =

∑
i6∈R |αi|2 ≤ dε2

s
d ≤ ε

2s. Applying Proposition 5.2 with this
choice of R and the above bound on P gives the desired result.

As usual, we now convert the above bound for the `∞-norm to other norms.

Theorem 5.2. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state, α ∈ Cd the vector with elements αj, and U |0〉 = |ψ〉.

Let 0 < δ < 1, let q ≥ 2 and let s be such that |{j ∈ [d] : |αj | ≥ ε
√

s
d}| ≤ s. Then we can compute an ε-`q-norm

estimate α̃ of α using

O

((
min

{(
3

ε

) 1
1
2
− 1
q
,
s

1
2+

1
q

ε

}
+ log

log s

δ

)
log s log

s

δ

)
conditional applications of U and its inverse, with success probability at least 1− δ.

Proof. Follows from Proposition 5.2 and Corollary 5.1.

6 First intermezzo: unbiased phase estimation

We now describe a method for phase estimation that is unbiased, more precisely symmetric in the sense that for
a phase φ it provides an estimate ϕ such that the probability of getting estimate φ + ε is the same as getting
estimate φ − ε (modulo 2π) for all ε. Note that this is not satisfied by ordinary phase estimation, but this
property is highly desirable, as we showcase in our applications. In particular, we need unbiased phase estimation
to recover unbiased estimates of the entries of a density matrix, allowing us to give tighter error bounds with high
probability.

Our method is based on adding and later subtracting a random phase shift; this idea is not new, see, e.g., [36,
Section 3.2]. The first step in our analysis is to show that the resulting estimator is symmetric. We subsequently
show how to boost the precision of this symmetric estimator in a symmetric way. Since the problem is invariant
under shifting by 2π we can always interpret phases φ, ϕ modulo 2π; in particular for phases we define the distance
modulo 2π introducing the notation |φ−ϕ|2π := min{|φ−ϕ− 2π`| : ` ∈ Z}. In this section, “digit” always refers
to “binary digit”, i.e., all numbers are expressed in fixed-point binary encoding; for example, 0.b1b2 . . . bn where
bi ∈ {0, 1} for i ∈ [n] is the n-digit encoding of b. Recall that the function sinc(x) is a complex entire function
defined as sin(x)/x for x 6= 0 and sinc(0) = 1.

Theorem 6.1. (Unbiased Phase Estimation) If we run Algorithm 1 with n = ∞ in Line 1, then it returns
a random phase ϕ ∈ [0, 2π) with probability density function

(6.2) f(ϕ) :=
M

2π

sinc2(M2 |φ− ϕ|2π)

sinc2( 1
2 |φ− ϕ|2π)

.
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Algorithm 1 Suppressed-Bias Phase Estimation

Input: |ψ(φ)〉 = 1√
M

∑M−1
k=0 eiφk|k〉 (for unknown φ), and a parameter n ∈ N

1: Sample a uniformly random n-digit binary number u ∈ [0, 1) and define ξ := 2πu
M

2: Apply multi-phase gate
∑M−1
k=0 e−iξk|k〉〈k| to |ψ(φ)〉

3: Perform inverse Fourier transform over ZM and measure the state, yielding outcome j
4: Return ϕ := 2πj

M + ξ = 2π
M (j + u)

−π −π2
π
2

π

1

2

x

Figure 2: Plot of Eq. (6.2) for x = φ− ϕ and M = 16.

This probability density function is normalized so that
∫ 2π

0
f(ϕ)dϕ = 1, moreover it only depends on |φ − ϕ|2π

showing that this procedure satisfies our criterion for unbiasedness, see Figure 2.

Proof. Suppose we have a quantum state 1√
M

∑M−1
k=0 eiφk|k〉 and we wish to estimate the phase φ. Then by

applying the inverse quantum Fourier transform over ZM and measuring we get outcome j, giving rise to estimate
ϕ = ωj = 2πj

M with probability (using [9, Lemma 10]):

∣∣∣∣∣ 1

M

M−1∑
k=0

e−iωjkeiφk

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

M

M−1∑
k=0

ei(φ−ωj)k

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

M

M−1∑
k=0

ei|φ−ωj |k

∣∣∣∣∣
2

=
sinc2(M2 |φ− ωj |2π)

sinc2( 1
2 |φ− ωj |2π)

.(6.3)

Now let us modify this procedure by first choosing a uniformly random phase ξ ∈ [0, 2πM ) and applying phase

estimation to the state 1√
M

∑M−1
k=0 ei(φk−ξk)|k〉 then outputting ϕ = ωj + ξ for the resulting j. Then, for a fixed

ξ the probability of outputting ϕ = ωj + ξ is

(6.4)
sinc2(M2 |φ− ξ − ωj |2π)

sinc2( 1
2 |φ− ξ − ωj |2π)

=
sinc2(M2 |φ− ϕ|2π)

sinc2( 1
2 |φ− ϕ|2π)

.

Since the choice of ξ is uniformly random over [0, 2πM ) this implies that the probability density function of getting
estimate ϕ ∈ [0, 2π) is given by Eq. (6.2).
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According to Eq. (6.2) the probability of getting an outcome ϕ with error at most c
M for some c ≤ πM is

Pr[|φ− ϕ|2π ≤
c

M
] =

∫ c
M

− c
M

M

2π

sinc2(Mx/2)

sinc2(x/2)
dxsubstitute y = M

2 x⇒

=
1

π

∫ c
2

− c2

sinc2(y)

sinc2(y/M)
dyuse | sinc(z)| ≤ 1⇒

≥ 1

π

∫ c
2

− c2
sinc2(y)dy.(6.5)

In particular one can compute the value of this bound for c = 1, 2, 3 resulting in:

Pr[|φ− ϕ|2π ≤
1

M
] ≥ 0.30 . . . Pr[|φ− ϕ|2π ≤

2

M
] ≥ 0.57 . . . Pr[|φ− ϕ|2π ≤

3

M
] ≥ 0.75 . . .(6.6)

Note the increased accuracy compared to ordinary phase estimation: the difference between two distinct phase
estimates is at least 2π

M , so in case the true phase we try to estimate is, say, π
M , then ordinary phase estimation

always has an error at least π
M > 3

M . On the other hand, here we get 3
M -accuracy with probability greater than

3
4 .

6.1 Unbiased boosting Now we show how to boost this procedure so that it gives an unbiased estimate that
is also 6

M -accurate with exponentially high probability. We achieve this essentially by the usual median trick,
except some care is needed because the median is ill-defined modulo 2π.

Algorithm 2 Boosted Unbiased Phase Estimation

Input: 2m copies of |ψ(φ)〉 = 1√
M

∑M−1
k=0 eiφk|k〉 (for unknown φ)

1: For j = 1 to 2m
2: Run Algorithm 1 setting n =∞ on the j-th copy of |ψ(φ)〉 and record the estimate ϕj
3: Find the shortest interval I = [a, b] ⊆ [−2π, 2π] such that I ∪ (I + 2π) contains at least m+ 1 of the estimates
ϕj

4: If a+ b ≥ 0 then return ϕ := a+b
2 else return ϕ := a+b

2 + 2π

Theorem 6.2. Algorithm 2 returns an unbiased ϕ ∈ [0, 2π] s.t. Pr[|φ− ϕ|2π ≤ 6
M ] ≥ 1− exp(−m4 ).

Proof. In Line 3 almost surely there is a unique shortest interval (modulo 2π), since the endpoints a, b of the
shortest interval must come from the 2m estimates (modulo 2π), which themselves come from the continuous
distribution of Eq. (6.2). Alternatively, if there are multiple shortest intervals (modulo 2π) we can just choose one
uniformly at random. This algorithm is naturally unbiased as the distribution of the shortest intervals (modulo
2π) is symmetric with respect to φ.

Moreover, the probability that there are at least m + 1 estimates ϕj such that |φ − ϕj |2π ≤ 3
M is at least

1− exp(−m4 ) due to the Chernoff bound. Indeed, the probability that |φ− ϕ|2π > 3
M is at most 1

4 by Eq. (6.6).
So by the Chernoff-Hoeffding Theorem 2.1 the probability that |φ − ϕ|2π > 3

M holds for at least m out of 2m
estimates is at most exp(−D( 1

2‖
1
4 )2m) ≤ exp(−m4 ). This implies that the shortest interval has length at most 6

M
and it also must overlap with the interval [φ− 3

M , φ+ 3
M ] (modulo 2π), so in particular |φ− ϕ|2π ≤ 6

M .

6.2 Unbiased estimators of eiφ Our unbiased phase estimators can be used for constructing unbiased
estimators of the complex number eiφ. The unbiased nature of our phase estimates ϕ means that E[eiϕ] = λeiφ,
for some λ ∈ [−1, 1]. Moreover, due to the shift invariance of f(ϕ), i.e., the fact that f(ϕ) depends only on
|φ − ϕ|2π, we have that λ only depends on M (and m in the boosted case). Therefore eiϕ/λ is an unbiased
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estimator of eiφ. One can also compute the value

λ(M) =

∫ π

−π
cos(x) · M

2π

sinc2(Mx/2)

sinc2(x/2)
dx =

∫ π

−π
(1− 2 sin2(x/2)) · 1

2Mπ

sin2(Mx/2)

sin2(x/2)
dx

= 1− 1

Mπ

∫ π

−π
sin2(Mx/2)dx

= 1− 1

M
.

To compute the variance it is useful to note that for M ≥ 2∫ π

−π
sin2(x) · M

2π

sinc2(Mx/2)

sinc2(x/2)
dx =

∫ π

−π
4 sin2(x/2) cos2(x/2) · 1

2Mπ

sin2(Mx/2)

sin2(x/2)
dx

=
2

Mπ

∫ π

−π
cos2(x/2) sin2(Mx/2)dx

=
1

M
.

Thus we have that (1 + 1
M−1 )eiϕ is an unbiased estimator of eiφ with variance Θ( 1

M ).
For the boosted version it is harder to compute the value of λ(M,m), but due to the concentration proven in

Theorem 6.2 we know that its value must be λ(M,m) = 1−O
(

1
M2 + exp(−m4 )

)
. So eiϕ/λ(M,m) is an unbiased

estimator of eiφ with variance O
(

1
M2 + exp(−m4 )

)
.

6.3 Unbiased probability estimation Unbiased estimators for λeiφ give us the possibility of modifying the
standard amplitude estimation algorithm [9], so that we estimate the squared amplitude without bias. To that
end, suppose that we have access to a state-preparation unitary that prepares the state

√
1− p|ψ0〉|0〉+

√
p|ψ1〉|1〉,

and our goal is to estimate p. Recall that the amplitude estimation algorithm runs phase estimation on the Grover
iterate, which is a 2-dimensional rotation with eigenvalues e±2iθ, where θ = arcsin

√
p. Consequently, it obtains

an estimate for 2θ or −2θ, both with probability 1/2.
If we now substitute our unbiased phase estimation algorithm into this procedure, we obtain an unbiased

estimate of either λe2iθ or λe−2iθ, both with probability 1/2. In either case, taking the real part of our estimate
now estimates λ cos(2θ) = λ cos(2 arcsin

√
p) = λ(1 − 2p) without bias. Thus, if we denote the outcome of the

unbiased phase estimation algorithm by Z = e2πiϕ, then

E
[

1

2
− Re[Z]

2λ

]
=

1

2
− λ(1− 2p)

2λ
= p.

We can crudely bound the variance of this estimator to be Var[Re[Z]]/(2λ)2 ≤ Var[Z]/(2λ)2 = O(1/M2 +
exp(−m/4)). However, if p is very close to 0 or 1, then the probability distribution of Z will be very tightly
concentrated around 1 or −1 on the unit circle in the complex plane, where the unit circle runs perpendicular to
the real axis. Thus, in this regime taking the real part of Z intuitively squashes samples much closer together,
and as a result the variance of Re[Z] can be much smaller than that of Z.

Quantitatively, if θ ≤ 3/(2M), then the endpoints of the interval of concentration for Re[Z], as derived in
Theorem 6.2, are cos(2θ + 3/M) and 1, which means that the length of the interval is 1 − cos(2θ + 3/M) =
O((θ + 1/M)2) = O(1/M2). Thus, the variance in this case is O(1/M4 + exp(−m/4)). A similar analysis holds
true in the case where θ ≥ π/2− 3/(2M).

On the other hand, if 3/(2M) < θ < π/2 − 3/(2M), then the endpoints of the interval of concentration
for Re[Z] are cos(2θ + 3/M) and cos(2θ − 3/M). This implies that the length of the concentration interval is
cos(2θ−3/M)−cos(2θ+3/M) = 2 sin(3/M) sin(2θ) ≤ 12 sin(θ) cos(θ)/M = O(

√
p(1− p)/M). Thus, the variance

becomes O(p(1− p)/M2 + exp(−m/4)).
Putting both cases together, we obtain that the variance for unbiased probability estimation using boosted

unbiased phase estimation is O(p(1 − p)/M2 + 1/M4 + exp(−m/4)). Note that from this variance bound, one
can essentially recover the precision that is obtained by Brassard et al. [9], up to constant factors. Thus, this
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way of estimating the probability gives one an unbiased estimator, while maintaining the precision attained by
traditional techniques.

Notice that this estimation procedure for the probability might output estimates that are outside the interval
[0, 1]. Indeed, for example if p = 1 any non-trivial unbiased estimator must eventually produce estimates that are
larger than 1.

Finally, note that computing the value of λ(M,m) to high precision might be computationally difficult for
larger m values. However, we can compute the value approximately by Monte Carlo simulation. One can generate
2m samples corresponding to φ = 0 using the density function Eq. (6.2), and run Algorithm 2 finally outputting
<(eiϕ). Clearly E[<(eiϕ)] = E[eiϕ] = λ(M,m). On the other hand as we have shown above the variance of <(eiϕ)
is O(1/M4 + exp(−m/4)). Intuitively speaking this means that the computation of λ(M,m) should not prohibit
applications of this result, especially considering that λ(M,m) can be pre-computed ahead of time.

6.4 Implementation with finite precision

Theorem 6.3. (Suppressed-Biased Phase Estimation) If we run Algorithm 1 with some finite n in Line 1,
then it returns a random phase ϕ ∈ [0, 2π) of the form 2π

M

(
j + `

2n

)
for some j ∈ {0, 1, . . . ,M − 1} and

` ∈ {0, 1, 2, 3, . . . , 2n − 1} such that the distribution of the outcome is 2π
2n -close in total variation distance to

the distribution

(6.7) Pr

[
ϕ =

2π

M

(
j +

`

2n

)]
=

∫ 2π
M (j+ `+1

2n )

2π
M (j+ `

2n )
f(x)dx,

where f(x) is defined in Eq. (6.2).

Proof. First let us consider running Algorithm 1 with n =∞, except in Line 4 truncating u to have only n binary
digits. Then it follows from Theorem 6.1 that the output distribution is given by Eq. (6.7).

Next consider further modifying this algorithm by truncating u to n binary digits in Line 2 as well, bringing
us to the finite-n version of Algorithm 1. This introduces a change in the applied unitary with magnitude (in
terms of operator norm) no greater than 2π

2n . Thus a perturbation is induced on the state in the algorithm of
magnitude (in the `2-norm) no greater than 2π

2n , ultimately changing the measurement statistics by no more than
2π
2n in total variation distance, cf. [48, Exercise 4.3].

Overall we can conclude that the output distribution of the discretized Algorithm 1 gets a perturbation that
is at most O(2−n) in the Wasserstein-1 distance compared to the infinite-precision version of Algorithm 1.

Similarly, we believe that using the discretized version of Algorithm 1 within Algorithm 2 would exponentially
suppresses the bias, and the conclusion about boosting should not be affected. However, discretizing the proof
appears to be difficult, because it heavily relies on a symmetry argument – ultimately breaking due to the non-
symmetric discretization errors. The main difficulty is that even small perturbations to the ϕj values can induce
some large jumps in the shortest interval in some edge cases. For this reason below we introduce a slightly more
complicated version of Algorithm 2 that avoids such large jumps, and so we can formally analyze its discretized
version.

Algorithm 3 Boosted Suppressed-Bias Phase Estimation

Input: 2m copies of |ψ(φ)〉 = 1√
M

∑M−1
k=0 eiφk|k〉 (for unknown φ)

1: For each j ∈ [2m]
2: Run Algorithm 1 with a fixed n on the j-th copy of |ψ(φ)〉 and record the estimate ϕj
3: For each j ∈ [2m]
4: Compute dj, the m-th smallest distance in the (multi)set

{
|ϕj−ϕk|2π : k ∈ [2m] \ {j}

}
5: Define wj := exp(−mMπ dj)
6: Return ϕ := ϕj with probability

wj
W where W =

∑
j∈[2m] wj

Theorem 6.4. (Boosted Suppressed-Biased Phase Estimation) Let β ∈ (0, 1
32 ] and b,m ∈ N. We can

implement an approximate version of Algorithm 3 using a (classically controlled) quantum circuit of depth
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O(log(b) + log log(1/β)) containing O(mb log(b/β)) two-qubit gates such that if the circuit is run on 2m copies of
an input state ρ such that 1

2‖ρ− |ψ(φ)〉〈ψ(φ)|‖1 ≤ β, then we get an outcome ϕ ∈ [0, 2π] satisfying

(6.8) Pr[|φ− ϕ|2π ≤
4π

2b
] ≥ 1− 2e−

m
4 ,

and

(6.9) |E[φ− ϕ]| ≤ 2πmin
{

6mβ, e−
m
4 + 2−b+1

}
,

where we interpret φ−ϕ as a number in [−π, π). Moreover, the required classical computations can be performed

in time O
(
mpoly

(
b log

(
m
β

)))
.

Proof. Our circuit runs Algorithm 3 setting n = max{dlog(10/β)e, dlog(4m)e}, M = 2b and implementing the
quantum Fourier transform in Algorithm 1 by a β-approximate version given by Theorem 2.2.

To analyze our finite-precision version of Algorithm 3, we proceed similarly to the proof of Theorem 6.3: we
gradually degrade the “ideal” algorithm that uses infinite precision n = ∞, has the “ideal” input state |ψ(φ)〉,
and uses the exact quantum Fourier transform. We do the degradation in several steps until we get to our actual
algorithm.

First we prove Eq. (6.8). We start by analysing Algorithm 1. Let η := 5π
4 , then its “ideal” version satisfies

Pr[|φ − ϕ|2π ≤ η−2−8

2b
] ≥ 0.85 . . . according to Eq. (6.5). So even if we truncate u to n binary digits in Line 4 of

Algorithm 1, then we have that Pr[|φ− ϕ|2π ≤ η
2b

] ≥ 0.85. If we already truncate u to n binary digits in Line 2
of Algorithm 1, then this introduces a change in the applied unitary with magnitude (in terms of operator norm)
no greater than 2π

2n . Similarly, using a β-approximate implementation of the quantum Fourier transform changes
the applied unitary by at most β. Thus a perturbation is induced on the state in the algorithm of magnitude (in
the `2-norm) no greater than 2π

2n + β, ultimately changing the measurement statistics by no more than 2π
2n + β

in total variation distance, cf. [48, Exercise 4.3]. Similarly, if we replace the ideal input state |ψ(φ)〉 by ρ, that
induces an additional change in total variation distance no more than β. So the overall change can be bounded
by 2π

2n + 2β ≤ 2π
28 + 1

16 < 0.088. We can conclude that if we run Algorithm 1 with n ≥ 8 on the input state ρ with
a β-approximate quantum Fourier transform, then its output ϕ satisfies Pr[|φ− ϕ|2π ≤ η

2b
] ≥ 3

4 .
Therefore, as in the proof of Theorem 6.2, the probability that there are at least m+1 estimates ϕj such that

|φ − ϕj |2π ≤ η
2b

is at least 1 − exp(−m4 ) due to the Chernoff bound. In that case for each ϕj ∈ [φ − η
2b
, φ + η

2b
]

(modulo 2π) we have that dj ≤ 2η
2b

so wj ≥ exp(− 2ηm
π ) and thus W ≥ (m+ 1) exp(− 2ηm

π ). Further, there are at
most m− 1 remaining ϕi /∈ [φ− η

2b
, φ+ η

2b
], and for any such i the m shortest distances |ϕi −ϕk|2π must include

some ϕk ∈ [φ− η
2b
, φ+ η

2b
]. Thus, if |ϕi−φ|2π > 4π

2b
then di >

4π−η
2b

and wi ≤ exp(−(4π− η)mπ ). We can conclude
the proof of Eq. (6.8) by using the union bound, observing that

Pr

[
|φ− ϕ|2π >

4π

2b

]
≤ exp

(
−m

4

)
+ (m− 1)

exp(−(4π − η)mπ )

W
≤ 2 exp

(
−m

4

)
.(6.10)

The above equation implies the trivial bound on the bias. The total bias coming from estimates ϕ such that
|φ − ϕ|2π ≤ 4π

2b
is at most 4π

2b
. The total contribution from the other estimates is at most π · 2 exp

(
−m4

)
due to

Eq. (6.10). So, indeed |E[φ− ϕ]| ≤ 4π2−b + 2πe−
m
4 .

Now we finish proving Eq. (6.9). Due to symmetry, the estimate ϕ outputted by the “ideal” algorithm is
unbiased; interpreting φ − ϕ as a number in [−π, π) (rather than, say (−π, π]) does not introduce bias either,
since the probability density of the estimate ϕ is continuous in the case n =∞, and so Pr[ϕ = φ± π] = 0. Thus,
Eq. (6.9) trivially holds for the “ideal” algorithm.

We gradually transform the “ideal” algorithm to our approximate version. For this let us introduce the
notation ϕ(`) for denoting the output state when Algorithm 3 is only performed “ideally” until just before
executing Line `, from which point our approximate version is executed. First, let us consider truncating u
to n binary digits in Line 6, thus returning ϕ(6), i.e., the sampled ϕj represented with only finite precision. This
introduces a change in the output |ϕ(6)−ϕ|2π that is at most 2π

M 2−n. Also, the value of φ−ϕ(6) ∈ [−π, π) changes
by at most 2π

M 2−n compared to φ− ϕ ∈ [−π, π), unless ϕ ∈ [φ+ π, φ+ π + 2π
M 2−n] modulo 2π (when the change
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might be as large as 2π). The probability of the latter happening can be bounded by

Pr[ϕ ∈ [φ+ π, φ+ π +
2π

M
2−n]] ≤ Pr[∃j : ϕj ∈ [φ+ π, φ+ π +

2π

M
2−n]]

≤ 2mPr[ϕ ∈ [φ+ π, φ+ π +
2π

M
2−n]]

≤ 2m
2π

M
2−n sup

ϕ
f(ϕ)

≤ 2m2−n,(by Eq. (6.2) & (6.4))

thus we get

(6.11) |E[φ− ϕ(6)]| ≤ 2π

M
2−n + 2πPr[ϕ ∈ [φ+ π, φ+ π +

2π

M
2−n]] ≤ 2π(2m+ 1)2−n.

Second, let us consider truncating u in Line 3. This will change the distances dj by at most
2π
M 2−n since every pair of distances |ϕj − ϕk|2π is changed by no more than 2π

M 2−n. Thus ev-

ery weight wj is perturbed by a multiplicative factor exp(±mMπ
2π
M 2−n) = exp(±2m2−n) and conse-

quently W gets a multiplicative perturbation up to exp(±2m2−n). This induces a perturbation of
the probabilities pj := wj/W by a multiplicative factor up to exp(±4m2−n), resulting in an up
to (exp(4m2−n) − 1)/2-perturbation in total variation distance to the sampling distribution in Line 6.
As n ≥ log2(4m) this can be upper bounded by 4m2−n. Since the only change between the outputs ϕ(6) and ϕ(3)

is due to the change in the sampling distribution in Line 6 we get by Eq. (6.11)

(6.12) |E[φ− ϕ(3)]| ≤ |E[φ− ϕ(6)]|+ 2π · 4m2−n ≤ 2π(6m+ 1)2−n = 4πm(3 +
1

2m
)2−n.

Finally, let us switch completely to our approximate algorithm. This affects the unitary applied in Line 2 of
Algorithm 1, switches to the approximate Fourier transform, and replaces the “ideal” input state by ρ. As we
already showed this introduces an up to 2π

2n + 2β change in the measurement statistics of Algorithm 1 in total
variation distance. Since Algorithm 1 is repeated 2m times, the overall perturbation in total variation distance
can be bounded by 2m( 2π

2n + 2β). Thus we get by Eq. (6.12)

|E[φ− ϕ]| ≤ |E[φ− ϕ(3)]|+ 2π · 2m
(

2π

2n
+ 2β

)
≤ 4πm

(
2π + 3 + 1

2m

2n
+ 2β

)
≤ 12πmβ.

The gate complexity and depth directly follows from Theorem 2.2. The classical computation cost is
dominated by Lines 4-6 of Algorithm 3. We can treat all ϕj values as numbers in [0, 2π) and define ϕ′j ∈ [0, 2)

as ϕ′j :=
ϕj
π . Then we sort them in time O(mpoly(b log(mβ ))). This enables computing each d′j := dj/π value

in time O(poly(b log(mβ ))) using for example binary search. For a numerically stable way of computing wj we

first compute d′′j := d′j − mini∈[2m] d
′
i and define w′j := exp(−mMd′′j ) as well as W ′ :=

∑
j∈[2m] w

′
j . It is easy

to see that
wj
W =

w′j
W ′ . Then we compute approximations w̃j for each j such that |w̃j − w′j | ≤ O(2−n/m) and if

d′j > 21−b, then w̃j ≤ w′j and else w̃j ≥ w′j . Sampling according to
w̃j

W̃
ensures that Eq. (6.10) remains valid, as

the inaccuracies induce bias towards values j such that |ϕj − φ| ≤ 2π
2b

, moreover it also ensures that the total

variation distance between the distributions
w̃j

W̃
and w

W is of the order 2−n. Tuning the constants and exploiting

the fact that the 4m2−n total variation distance bound above Eq. (6.12) has some slack ensures that Eq. (6.12)
also remains valid and so the entire analysis remains valid even when the approximate w̃j are used. Computing all

values d′j , d
′′
j , w̃j , W̃ and (approximately) sampling according to

w̃j

W̃
can be performed in time O(poly(b log(mβ ))),

cf. [47].

We remark that one can similarly show that our suppressed-bias phase estimators give rise to suppressed-bias
estimators of eiφ by using the constructions of Section 6.2, and consequently also allows for the implementation
of suppressed-bias probability estimators.
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6.5 Unbiased gradient estimation Now we show that our suppressed-bias phase estimation techniques lead
to suppressed-bias gradient estimation further improving over Jordan’s gradient estimation algorithm, and its
variants [18, Lemma 5.1]. Note that if we would use perfect input states and the exact unbiased phase-estimation
then we would get a symmetric error distribution. Unfortunately, this no longer holds due to the approximation
errors in the input state and the finite bit precision.

To simplify the exposition, let us introduce the notation B∞(g, ε) to denote the (closed) ε-ball around g
containing all points x such that ‖x− g‖∞ ≤ ε.

Theorem 6.5. (Suppressed-bias gradient estimation) Let ε, δ ∈(0, 16 ] and g∈Rd such that ‖g‖∞≤
1
3 . Let

b := dlog2( 2
ε )e, B := 2b and m := d8 ln(2d/δ)e. If

∥∥∥|ψ〉 − 1√
Bd

∑
x∈Gdb

e2πiB〈g,x〉|x〉
∥∥∥ ≤ δ

12πm and we are given 2m

copies of |ψ〉, then we can compute a vector k ∈ [− 1
2 ,

1
2 ]d such that

(6.13) Pr[‖k − g‖∞ > ε] ≤ δ

and

(6.14) ‖E[k]− g‖∞ ≤ δ.

Furthermore, the gate complexity of the procedure is O
(
d log(dδ ) log( 1

ε ) log
(
d
δ log( 1

ε )
))

, and the circuit depth is

O
(
log( 1

ε ) log
(
d
δ log( 1

ε )
))

. Finally, there is a random variable k′ ∈ B∞(g, ε) with independent coordinates that is
δ-close in total variation distance to k and satisfies E[k′] ∈ B∞(g, δ).

Proof. We apply Theorem 6.4 with M = B, m = d8 ln(2d/δ)e and β = δ
12πm .

Finally, we prove a corollary analogous to Corollary 2.1 which will be the main technical tool in the following
Section 7-8.

Corollary 6.1. (Almost linear block-Hamiltonian to gradient) Let ε, δ ∈ (0, 16 ], b := dlog2( 16
ε )e,

B = 2b and β := δ
96dln(6d/δ)e+12 . Suppose that we have an a-block-encoding W of a diagonal ma-

trix with diagonal entries f(x) ∈ R for x ∈ Gdb satisfying |f(x) − 〈x, g〉| ≤ εβ
4π for at least a

(1 − β2) fraction of the points in Gdb . Then with O
((

1
ε + log( log(d)

δ )
)

log(dδ )
)

(controlled) uses of W

(and its inverse) and O
((
d log( 1

ε ) log
(
d
δ log( 1

ε )
)

+ a
(

1
ε + log( log(d)

δ )
))

log(dδ )
)

other gates with circuit depth

O
(

log( 1
ε ) log

(
d
δ log( 1

ε )
)

+ log(a)
(

1
ε + log( log(d)

δ )
))

we can compute a vector k ∈ [−4, 4]d such that

(6.15) Pr[‖k − g‖∞ > ε] ≤ δ,

and

(6.16) ‖E[k]− g‖∞ ≤ 8δ.

Moreover, there is a random variable k′ ∈ B∞(g, ε) with independent coordinates that is δ-close in total variation
distance to k and satisfies E[k′] ∈ B∞(g, 8δ).

Proof. We proceed similarly to the proof of Corollary 2.1. The main idea is to apply Theorem 6.5 with preparing
the (approximate) initial state via block-Hamiltonian simulation Lemma 2.4. In the proof of Corollary 2.1 it is
shown that the assumptions in the statement imply ‖g‖∞ ≤

8
3 . Therefore, we will apply Theorem 6.5 to the

gradient g
8 with precision ε

8 . The first step is to prepare a uniform superposition over the grid Gdb by applying a
Hadamard gate to all d · b qubits, that are initially in the |0〉 state.

First let us assume that we have access to a perfect phase oracle P :=
∑
x∈Gdb

|x〉〈x|e2πiB8 f(x) so that we can

prepare the sate |ψ〉 = 1√
Bd

∑
x∈Gdb

|x〉e2πiB8 f(x). We bound the difference from the ideal state |φ〉 analogously to
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the proof of [18, Lemma 5.1]. Let S ⊆ Gdb be the set of points for which |f(x)− 〈x, g〉| ≤ εβ
4π holds, then

‖|ψ〉−|φ〉‖2 =
1

Bd

∑
x∈Gdb

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2
=

1

Bd

∑
x∈S

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2+ 1

Bd

∑
x∈Gdb\S

∣∣∣e2πiB8 f(x) − e2πiB8 〈x,g〉∣∣∣2
≤ 1

Bd

∑
x∈S

∣∣∣∣2πB8 f(x)− 2π
B

8
〈x, g〉

∣∣∣∣2+ 1

Bd

∑
x∈Gdb\S

4(|eiz − eiy| ≤ |z − y|)

=
1

Bd

∑
x∈S

(2π
B

8
)2|f(x)− 〈x, g〉|2+ 4

|Gdb \ S|
Bd

≤ 1

Bd

∑
x∈S

4β2 + 4β2(by the assumptions of the corollary)

≤ 8β2.

Finally, we can implement a (4 − 2
√

2)β-approximation P̃ of the perfect phase oracle P by applying block-

Hamiltonian simulation Lemma 2.4 toW .3 This lets us preparing an approximate state |ψ̃〉 such that
∥∥∥|ψ̃〉 − |ψ〉∥∥∥ ≤

(4− 2
√

2)β and so
∥∥∥|ψ̃〉−|φ〉∥∥∥ ≤ 4β, enabling us to apply Theorem 6.5.

The query complexity follows from the fact that we prepare the state |ψ̃〉 a total of O
(
log(dδ )

)
times, each

time making O
(

1
ε + log( 1

β )
)

= O
(

1
ε + log( log(d)

δ )
)

(controlled) queries to W . The additional gate complexity

of preparing |ψ̃〉 is O(a) times the query complexity plus d · b for the Hadamard gates. We get the overall gate
complexity by adding the gate cost in Theorem 6.5.

6.6 Application to low depth probability estimation In this section, we sketch a quick application of our
results. If we have access to the operation

U : |0〉 7→
√

1− p|ψ0〉|0〉+
√
p|ψ1〉|1〉,

then we can estimate p with a depth-t algorithm, by running our version of unbiased probability estimation with
1/M = O(log(t)/t) and m = O(log(t)), to obtain an estimate with variance Õ

(
p(1− p)/t2 + 1/t4

)
. Moreover, we

can run this procedure K times in parallel, and take the average of the outcomes. This gives an estimator of p
that is still unbiased, and whose variance is

Õ
(
p(1− p)
Kt2

+
1

Kt4

)
.

Thus, we obtain a way to estimate p, when we are constrained to using depth-t quantum algorithms, and we can
obtain precision ε with high probability if we set K = Θ(max{p(1− p)/(εt)2, 1/(ε2t4)}).

Now, let β ∈ (0, 1], and suppose the depth that we can use is t = Θ(1/ε1−β). Then, in order to achieve

precision ε, we can set K = Õ
(
max{p(1− p)/ε2β , 1/ε4β−2}

)
, from which we find that the total number of calls to

U becomes Kt = Õ
(
max{p(1− p)/ε1+β , 1/ε3β−1}

)
. If we use the crude upper bound p(1 − p) ≤ 1, this reduces

to Kt = Õ
(
1/ε1+β

)
, and hence we recover the result obtained in [22]. Moreover, we get a slight improvement if

we know some small upper bound q ≥ p a priori.

7 Second intermezzo: estimating multiple expectation values with a state-preparation oracle

To perform efficient mixed-state tomography we rely on an algorithm to estimate m expectations with few copies
of the state. The algorithm is based on constructing the phase oracle for a function whose gradient is the
vector of the desired expectation values, similarly to what we did for pure states. The task here is however
more complicated, because to ensure that the function is properly normalized we need to bound the weighted
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combination of expectation values, where the weights are taken from a hypergrid in [− 1
2 ,

1
2 ]m (as these are the

points used by the gradient algorithm of [18]). This requires some results on random matrices, which we use by
translating properties that hold for uniformly random matrices into properties that hold for all but a constant
fraction of the points in the hypergrid.

Formally, we assume access to a unitary that prepares a purification of a state ρ ∈ Cd×d, and its inverse
(without requiring them to be controlled). Our goal is to estimate the expectation values Tr(Ejρ) of measurement
operators Ej for j = 1, . . . ,m up to corresponding errors εj , with as few applications of the state-preparation
unitary for ρ as possible. We do not apply any gates to the purifying register, other than the state-preparation
oracle and its inverse; thus, we do not need to impose any restrictions on how the purification of ρ is constructed.
We assume that ‖Ej‖ ≤ 1 for all j = 1, . . . ,m, which is w.l.o.g. as we can always scale Ej and εj down by ‖Ej‖
to achieve this. Finally, we assume that we are given access to each Ej via a (controlled) block-encoding. Note
that this access model is rather generic; for example, if we have an implementation of a POVM for Ej , I − Ej ,
then we can convert this to a block-encoding for Ej via Lemma 2.1.

This task was recently studied in [31], yielding an algorithm that solves the problem using

O
(√∑m

j=1 ‖Ej‖2/ε
)

applications of the state-preparation unitary and its inverse, in the case where all εj are

equal to ε. This is O(
√
m/ε) under the assumption ‖Ej‖ ≤ 1. The algorithm of [31] is however not optimal in our

setting: we want to give an algorithm with a sample complexity that depends on
√
‖
∑m
j=1E

2
j /ε

2
j‖, because this

leads to a saving of a factor d when applied to mixed-state tomography compared to the algorithm of [31], see
the details in the next section. For a discussion of other existing approaches to solve the problem of computing
expectation values, we refer to the excellent introduction in [31].

7.1 Bounds on uniform matrix series As mentioned above, we first need to prove some properties of uniform
random matrices. We do this by adapting a result on Gaussian / Rademacher random matrices given below. Here
and in the remainder, for a random matrix Y we define v(Y ) :=

∥∥E[Y 2]− (E[Y ])2
∥∥ as its variance.

Theorem 7.1. (Gaussian & Rademacher matrix series inequality [46, Theorem 4.6.1]) Let
E1, . . . , Em be d × d Hermitian matrices. Let λ1, . . . , λm be drawn from iid standard normal distributions

and let Y =
∑m
j=1 λjEj. Then E[Y ] = 0, v(Y ) =

∥∥∥∑j E
2
j

∥∥∥ and

P[‖Y ‖ ≥ t] ≤ 2de−
t2

2v(Y ) .

The same bounds hold when {λj} is iid uniformly random over {−1, 1}.

In order to adapt the above result to our setting we invoke a technical statement from [46]:

Proposition 7.1. (Master Bound for a Sum of Independent Random Matrices, [46, Theorem 3.6.1])
Consider a finite sequence {Ej} of independent, random, Hermitian matrices of the same size. Then for all
t ∈ R we have

P[λmax(
∑
j

Ej) ≥ t] ≤ inf
θ>0

e−θtTr

exp

∑
j

logE[eθEj ]

.
With the help of this result we prove the following variant of Theorem 7.1 for bounded random variables:

Theorem 7.2. (Bounded Matrix series inequality) Let E1, . . . , Em be d × d Hermitian matrices. Let
λ1, . . . , λm be independent symmetrically distributed random variables supported on [−1, 1] and let Y =∑m
j=1 λjEj. Then E[Y ] = 0, v(Y ) ≤

∥∥∥∑j E
2
j

∥∥∥ and

P[‖Y ‖ ≥ t] ≤ 2de−
t2

2v(Y ) .
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Proof. We follow the proof of [46, Theorem 4.6.1] and modify it where necessary. First we note that

E[eλjEj ] = E

[ ∞∑
k=0

λkj
k!
Ekj

]

=

∞∑
k=0

E[λkj ]

k!
Ekj(linearity of expectation)

=

∞∑
q=0

E[λ2qj ]

(2q)!
E2q
j(λj is symmetrically distributed)

�
∞∑
q=0

1

(2q)!
E2q
j(λj is bounded)

�
∞∑
q=0

1

q!
(E2

j /2)q((2q)! ≥ 2qq!)

= eE
2
j /2.(7.17)

Now we show that the above inequality implies that

(7.18) Tr

exp

∑
j

log(E[eλjEj ])

 ≤ Tr

exp

1

2

∑
j

E2
j

.
Indeed, we know that [27, Chapter 4.1] the logarithm is operator monotone for positive matrices. Therefore

Eq. (7.17) implies that log(E[eλjEj ]) � log(eE
2
j /2), and consequently

∑
j log(E[eλjEj ]) �

∑
j log(eE

2
j /2) =∑

j E
2
j /2. We conclude by using the fact that the trace of a monotone function is operator monotone [27,

Example 3.24], i.e., A � B implies Tr(exp(A)) ≤ Tr(exp(A)). We now use this (by absorbing θ into the Ej-s) to
get

P[λmax(Y ) ≥ t] ≤ inf
θ>0

e−θtTr

exp

∑
j

logE[eθλjEj ]

(by Proposition 7.1)

≤ inf
θ>0

e−θtTr

exp

θ2
2

∑
j

E2
j

(by Eq. (7.18))

≤ inf
θ>0

e−θtd ·

∥∥∥∥∥∥exp

θ2
2

∑
j

E2
j

∥∥∥∥∥∥
= inf
θ>0

e−θtd · exp

θ2
2

∥∥∥∥∥∥
∑
j

E2
j

∥∥∥∥∥∥


= d inf
θ>0

exp

(
−θt+

θ2

2
v(Y )

)
.

As the exponential function is monotone increasing, the minimum is attained at the minimum of −θt+ v(Y )
2 θ2.

By differentiating and setting equal to zero we find

−t+ v(Y )θ = 0

and hence θ = t
v(Y ) . Substituting this back we find

P[λmax(Y ) ≥ t] ≤ de−
t2

2v(t) .

By symmetry we get the same bound for the smallest eigenvalue and the theorem follows.
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7.2 Application to the estimation of multiple expectation values With the tools from the previous
section we can tighten the analysis of [31] for the estimation of multiple expectation values. Our running time
generalizes the results of [31], and it leads to faster algorithms in some cases that are relevant for tomography.

Lemma 7.1. Let E1, . . . , Em be Hermitian matrices with ‖Ej‖ ≤ 1, and let UE =
∑
j∈[m]|j〉〈j|⊗UEj , where UEj is

a a-block-encoding of Ej. Let δ > 0, γ ∈ Rm, ν = ‖γ‖1, σ ≥
√

2
∥∥∥∑j γ

2
jE

2
j

∥∥∥ ln
(
2d
δ

)
, and σ′ := min{ν, σ}. For any

positive integer b = O
(
1
ε

)
we can implement a unitary V =

∑
x∈Gmb

|x〉〈x|⊗Vx such that Vx is an (a+dlog2(m)e+2)-

block-encoding of a matrix Ax that is ε-close in operator norm to 1
σ′

∑
xjγjEj for at least a 1−δ fraction of points

x ∈ Gmb . This implementation of V uses O
(
ν
σ′ log( ν

σ′ε )
)

calls to UE, and O
(
(a+m) νσ′ polylog(ν+mσ′ε )

)
additional

two-qubit gates having depth O
(
ν
σ′ polylog(ν+mσ′ε )

)
.

Proof. Our goal is to construct a block-encoding of 1
σ

∑
xjγjEj . First, we note that this is a valid block-encoding

(more precisely, its spectral norm is upper bounded by 1
2 ) for at least 1− δ fraction of points x ∈ Gmb . To see this,

we apply Lemma 7.2 to the matrices γ1E1, γ2E2, . . . , γmEm setting t =

√
2
∥∥∥∑j γ

2
jE

2
j

∥∥∥ ln
(
2d
δ

)
≤ σ and sampling

x ∈ Gmb uniformly at random to obtain

Px∈Gmb [‖
∑
j

2xjγjEj‖ ≥ σ] ≤ Px∈Gmb [‖
∑
j

2xjγjEj‖ ≥ t] ≤ 2de
− t2

2‖∑j γ2j E2
j‖ = δ.

Using Lemma 2.2, we first prepare a (a+dlog2(m)e+1)-block-encoding of
∑m
j=1(xjγj/‖γ‖1)Ej . This requires

a single application of UEj , and one applications of a state-preparation oracle for 1√
‖γ‖1

∑
j

√
xjγj |j〉|0〉+ |ψ〉|1〉

(and its inverse), which is trivial to construct with controlled rotations given the binary encoding of |x〉. We then
amplify the block-encoding by a factor ν/σ = ‖γ‖1/σ using Lemma 2.3: this introduces an overhead equal to the
amplification factor. Overall, this requires O

(⌈
ν
σ log( νσε )

⌉)
calls to UE .

The gate complexity of implementing the state-preparation operation to precision O
(
ε
νm

)
can be bounded

by O
(
mpolylog(ν+mε )

)
, while Lemma 2.3 multiplies this by O

(⌈
ν
σ log( νσε )

⌉)
and additionally introduces

O
(
(a+ log(m) + 1)

⌈
ν
σ log( νσε )

⌉)
gates proving the gate complexity bound.

Theorem 7.3. Let E1, . . . , Em ∈ Cd×d be Hermitian matrices with ‖Ej‖ ≤ 1, and let UE =
∑
j∈[m]|j〉〈j| ⊗ UEj ,

where UEj is a (controlled) aE-block-encoding of Ej. Let δ ∈ (0, 16 ], ε1, . . . , εm ∈ (0, 2]m be error bounds,

ν =
∑
j

1
εj

, σ ≥ max

{√
2
∥∥∥∑j E

2
j /ε

2
j

∥∥∥ ln
(
2d
δ

)
, 1

}
, and σ′ := min{ν, σ}. Let Uρ be an aρ-qubit state-preparation

unitary for a purification of ρ ∈ Cd×d. There is a quantum algorithm that makes O
((
σ′ + log( log(m)

δ )
)

log(mδ )
)

queries to Uρ and U†ρ , and produces estimates z ∈ [−1, 1]
m

such that, with probability at least 1− δ,

(7.19) ∀j ∈ [m] : |Tr(ρEj)− zj | ≤ εj ,

moreover

(7.20) ∀j ∈ [m] : |Tr(ρEj)− E[zj ]| ≤ 16σ′εjδ.

Furthermore, the quantum algorithm can be implemented by a number of calls to UE bounded by

O
(
ν log(ν log(m)

δ ) log(mδ ) + ν
σ′ log(ν log(m)

δ ) log(mδ ) log( log(m)
δ )

)
, and additional number of two-qubit gates bounded

by O
(
(σ′aρ + νaE + νm)polylog(νmδ )

)
and having depth O

(
νpolylog(νmδ )

)
.

Finally, there is a random variable z′ ∈×j∈[m]
[Tr(ρEj)− εj ,Tr(ρEj) + εj ] with independent coordinates that

is δ-close in total variation distance to z and also satisfies Eq. (7.20).

Proof. The main idea is to apply Jordan’s gradient estimation algorithm to a linear function with derivative

vector g such that gj = 1
σ′Tr

(
ρ
Ej
εj

)
with accuracy ε′ := min{ 1

σ′ ,
1
6}.
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Let b := dlog2(16/ε′)e and let β := δ
96dln(6m/δ)e+12 . If σ′ < ν, then we use Lemma 7.1 in order to construct a

unitary V =
∑
x∈Gmb

Vx⊗ |x〉〈x| such that Vx is a c := (aE + dlog2(m)e+ 2)-block-encoding of a matrix Ax that is
β

4σ′π -close in operator norm to 1
σ′

∑ xjEj
εj

for at least a 1−β2 fraction of points x ∈ Gmb . Otherwise, when σ′ = ν

then we simply apply the first step in the algorithm of Lemma 7.1, namely Lemma 2.2.
We then define V` := Ic ⊗ Uρ ⊗ IGdb and Vr := (V ⊗ IP ) · V`, where IP acts on the purifying register of Uρ.

Let use the notation |ρ〉PS := Uρ|0〉. Since by definition TrP (|ρ〉〈ρ|PS) = ρ, we have

〈00x|V †` Vr|00y〉 = 〈0|〈ρ|PS〈x|(V ⊗ IP )|0〉|ρ〉PS |y〉
= δxy〈0|〈ρ|PS(Vx ⊗ IP )|0〉|ρ〉PS
= δxy〈ρ|PS(Ax ⊗ IP )|ρ〉PS
= δxyTr(〈ρ|PS(Ax ⊗ IP )|ρ〉PS)

= δxyTr((Ax ⊗ IP )|ρ〉〈ρ|PS)

= δxyTr(Axρ).

Since
∥∥∥Ax − 1

σ′

∑ xjEj
εj

∥∥∥ ≤ β
4σ′π for at least a 1 − β2 fraction of points x ∈ Gmb we get that∣∣∣TrP (ρAx)− TrP

(
ρ
σ′

∑ xjEj
εj

)∣∣∣ ≤ β
4σ′π also holds for these points. Thus W := V †` (V ⊗ IP ) · V` is an (aρ + c+ 1)-

block-encoding of f(x) that is β
4σ′π -close to

∑
j∈[m]

1
σ′Tr

(
ρ
xjEj
εj

)
for at least a 1− β2 fraction of points x ∈ Gmb .

Moreover, we can get a controlled version of W just by using a controlled implementation of V . Then Eq. (7.19)
follows from Corollary 6.1 after multiplying its output coordinate-wise by σ′εj and truncating to [−1, 1]. Similarly,
Eq. (7.20) follows from Corollary 6.1 after incrementing the bias by 8σ′εj taking into account the truncation error.

The query complexity O
((
σ′ + log( log(m)

δ )
)

log(mδ )
)

for Uρ directly follows from Corollary 6.1.

The gate complexity of Corollary 6.1 is O
(

(m+ σ′(aρ + aE + 1))polylog(σ
′m
δ )
)

, which is supplemented

by the complexity of implementing V times the above query complexity. The implementation

of V uses O
(⌈

ν
σ′ log( νβ )

⌉)
= O

(
ν
σ′ log(ν log(m)

δ )
)

calls to UE , and O
(
(aE+m)

⌈
ν
σ′

⌉
polylog(ν+mσ′ε )

)
=

O
(
(aE+m) νσ′ polylog(νmδ )

)
additional two-qubit gates having depth O

(
ν
σ′ polylog(νmδ )

)
. This amounts to a total

of O
(
ν log(ν log(m)

δ ) log(mδ ) + ν
σ′ log(ν log(m)

δ ) log( log(m)
δ ) log(mδ )

)
calls to UE .

Note that the assumption ‖Ej‖ ≤ 1 is not particularly restrictive, because if ‖Ej‖ > 1 the corresponding
block-encoding is subnormalized and we simply need to increase the precision by an amount equal to the
subnormalization factor. If all εj are equal and we use the assumption ‖Ej‖ ≤ 1, we recover the sample complexity

Õ(
√
m/ε) of the algorithm in [31]. The number of calls to UE is not directly comparable because we use a

different input model: in [31] the algorithm assumes access to to e−iθEj and requires Õ(
√
m/ε) calls to each of

these operators for j = 1, . . . ,m, while we give a version that uses Õ(m/ε) calls in total to controlled unitaries
UEj block-encoding Ej .

Furthermore, Theorem 7.3 also recovers the query complexity results of the probability distribution estimation
problem from [4], by taking Ej = |j〉〈j|, for j ∈ [d], and observing that

∑d
j=1E

2
j = I. Thus, even though [4] and

[31] seem to be of different flavor, this result unifies both into a single construction.
For convenience, we state a version of our result only in terms of the number of observables rather than the

more involved quantity
∥∥∥∑d

j=1E
2
j

∥∥∥.

Corollary 7.1. Let E1, . . . , Em ∈ Cd×d be Hermitian matrices with ‖Ej‖ ≤ 1, and let UE =
∑
j∈[m]|j〉〈j|⊗UEj ,

where UEj is an aE-block-encoding of Ej, and let δ, ε ∈ (0, 16 ]. Let Uρ be an aρ-qubit state-preparation unitary

for a purification of ρ ∈ Cd×d. There is a quantum algorithm that makes O

((√
m log( dδ )
ε + log( log(m)

δ )

)
log(mδ )

)
queries to Uρ and U†ρ , and produces estimates z ∈ [−1, 1]

m
such that, with probability at least 1− δ,

(7.21) ∀j ∈ [m] : |Tr(ρEj)− zj | ≤ ε,
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moreover

(7.22) ∀j ∈ [m] : |Tr(ρEj)− E[zj ]| ≤ 16

√
2m log

(
2d

δ

)
δ.

Furthermore, the quantum algorithm can be implemented by a number of calls to UE bounded by

O
(
m
ε log(mεδ ) log(mδ ) +

√
m log(mεδ ) log(mδ ) log( 1

δ )
)

and O

((√
m log( dδ )
ε aρ + m

ε aE + m2

ε

)
polylog(mεδ )

)
additional

two-qubit gates while having circuit depth O
(
m
ε polylog(mεδ )

)
.

Finally, there is a random variable z′ ∈×j∈[m]
[Tr(ρEj)− ε,Tr(ρEj) + ε] with independent coordinates that

is δ-close in total variation distance to z and also satisfies Eq. (7.22).

8 Mixed-state tomography

In this section we generalize our pure-state results to mixed states. Throughout this section we use r to denote the
rank of the mixed state. As discussed in the introduction, results from the literature on mixed-state tomography
consider the case where only copies of the mixed state are available. Gross et al. [23] give an algorithm that uses
O
(
d2r2/ε2

)
samples; a tighter analysis of their algorithm shows that O

(
dr2/ε2

)
suffice to get an ε-trace-norm

estimate, when measurements are performed on single (i.e., unentangled) copies of the state [25], and [11] shows
that this is optimal even for adaptive (but still unentangled) measurements. O’Donnell and Wright [42] and Haah

et al. [25] further improve the sample complexity to Õ
(
dr/ε2

)
, at the cost of requiring joint measurements on

many states at once, and with an algorithm that has super-polynomial time complexity. [25] also shows matching
lower bounds for both settings, up to polylogarithmic factors, so these complexities are essentially optimal.

We consider a stronger input model where we are given access to a purification of a mixed state. So we
assume access to a unitary Uρ : |00〉PS 7→ |ρ〉PS such that ρ = TrP (|ρ〉〈ρ|PS). Note that there are many possible
purifications for the same mixed state.

The simplest idea to use a purification for tomography is to apply our pure-state algorithms directly to the
purification, and then post-process by tracing out the unwanted part. The following lemma relates the error in a
pure-state estimate to that in the resulting mixed-state estimate.

Lemma 8.1. If |ρ〉, |ρ̃〉 ∈ HP ⊗HS ' Ca·d, then 1
2‖TrP (|ρ〉〈ρ|)− TrP (|ρ̃〉〈ρ̃|)‖1 ≤

√
a · d‖|ρ〉 − |ρ̃〉‖∞.

Proof. For any matrix M , the relationship ‖TrP (M)‖1 ≤ ‖M‖1 holds, see, e.g., [43] for a proof. Applying this to
our pure state, and using the linearity of (partial) trace, we find:

1

2
‖TrP (|ρ〉〈ρ|)− TrP (|ρ̃〉〈ρ̃|)‖1 =

1

2
‖TrP (|ρ〉〈ρ| − |ρ̃〉〈ρ̃|)‖1 ≤

1

2
‖|ρ〉〈ρ| − |ρ̃〉〈ρ̃|‖1.

Using the well-known fact that for pure states 1
2‖|ρ〉〈ρ| − |φ〉〈φ|‖1 =

√
1− |〈ρ|φ〉|2, we can conclude

1

2
‖|ρ〉〈ρ| − |ρ̃〉〈ρ̃|‖1 =

√
1− |〈ρ|ρ̃〉|2

=
√

1 + |〈ρ|ρ̃〉|
√

1− |〈ρ|ρ̃〉|

≤
√

2
√

1−<〈ρ|ρ̃〉
= ‖|ρ〉 − |ρ̃〉‖2
≤
√
a · d‖|ρ〉 − |ρ̃〉‖∞.

If the purifying register has dimension a then our sampling and phase estimation algorithms would get a
sample complexity of Õ

(
da
ε2

)
and query complexity of Õ

(
da
ε

)
respectively to obtain an ε trace-norm estimate. As

a can be as small as r, in certain settings this might lead to interesting results, but in general a can be arbitrarily
large.

In the rest of this section we describe a tomography algorithm with sample complexity Õ
(
dr
ε

)
, for trace norm

error ε, when a unitary (and its inverse) preparing a purification of ρ is available. Note that here we do not even
require access to controlled versions of the input unitaries.
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8.1 Coordinate-wise unbiased tomography Applying Theorem 7.3 to the set of observables E
(0)
ij :=

|i〉〈j|+|j〉〈i|
2 and E

(1)
ij := |i〉〈j|−|j〉〈i|

2i we get the next result.

Theorem 8.1. Let ε, δ ∈ (0, 16 ], and let Uρ be an a-qubit state-preparation unitary for a purification of ρ ∈ Cd×d.

There is a quantum algorithm that makes O

((√
d log( dδ )
ε + log( log(d)

δ )

)
log(dδ )

)
queries to Uρ and U†ρ , and

produces estimates z ∈ ([−1, 1]× [−i, i])
d2

such that, with probability at least 1− δ,

(8.23) ∀i, j ∈ [d] : |ρij − zij | ≤
√

2ε,

moreover

(8.24) ∀i, j ∈ [d] : |ρij − E[zij ]| ≤ 16
√

2

√
2d ln

(
2d

δ

)
δ ≤ 32

√
d ln(2d)δ.

Furthermore, the quantum algorithm can be implemented by O
(√

da+d3

ε polylog(dδ )
)

additional two-qubit gates

having depth O
(
d
εpolylog(dδ )

)
.

Finally, there is a random variable z′ ∈ ×i,j∈[d]([ρij − ε, ρij + ε]× [ρij − iε, ρij + iε]) with independent

coordinates that is δ-close in total variation distance to z and also satisfies Eq. (8.24).

Proof. The result follows from Theorem 7.3 by observing that
∑
p∈{0,1};i,j∈[d](E

(p)
ij )2 = dI, and a block-encoding

of
∑
p∈{0,1};i,j∈[d]|pij〉〈pij| ⊗E

(p)
ij can be implemented by O(polylog(d)) two-qubit gates. We define our estimate

as zi,j := z
(0)
i,j + iz

(1)
i,j .

The second inequality in Eq. (8.24) follows from the following short computation:√
ln

(
2d

δ

)
δ ≤

√
ln(2d)δ

m

ln

(
2d

δ

)
δ ≤ ln(2d)

⇑ (δ ≤ 1

6
)

ln

(
1

δ

)
δ ≤ 5

6
ln(2d)

⇑ (d ≥ 1)

ln

(
1

δ

)
δ ≤ 1

2
.

The gate complexities follow by replacing Lemma 7.1 in the proof or Theorem 7.3 by “sparse block-encoding”
[19, Lemma 47-48]. This results in reducing the Θ(d2) subnormalization factor coming from the generic result
of Lemma 7.1 by a factor of d coming from [19, Lemma 47-48]. This improves the gate complexities by about a
factor d.5

8.2 Matrix norm conversions We now consider the relation between the element-wise max-norm, and the
operator norm. To do so we use the following definition and lemma due to [44]:

5There is a possibility that using the block-encoding of [38] even an improvement factor by about d1.5 is possible, but one needs
to be careful with the error bounds, since they are not polylogarithmic in [38].
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Definition 8.1. (Subgaussian random variable [44, Definition 2.2]) A random variable X is subgaus-
sian if there exists a K > 0, called the subgaussian moment of X, such that

P(|X| > t) ≤ 2e−t
2/K2

for all t > 0.

Note that a bounded random variable X ∈ [−B,B] has subgaussian moment ≤
√

ln(2)B.

Lemma 8.2. (Operator norm of subgaussian matrices [44, Proposition 2.4]) Let X be an N × n ran-
dom matrix whose entries are independent mean zero subgaussian random variables whose subgaussian moments
are bounded by K. Then

P
(
‖X‖
K

> C(
√
N +

√
n) + t

)
≤ 2e−ct

2

, t ≥ 0,

where C and c denote positive absolute constants.

The above lemma shows that if we can estimate all entries of a state ρ independently and in an unbiased way,
then in the conversion to the operator norm error we save an essentially

√
d factor compared to the worst case:

this was one of the main motivation for us to develop unbiased phase estimation in Section 6. We formalize this
in the following lemma:

Lemma 8.3. Let X ∈ Cd×d be a matrix, and let X̃ be an ε-approximation of X in the entry-wise max-norm,

i.e., |Xij − X̃ij | ≤ ε for each i, j ∈ [d]. Then for the operator norm error we have
∥∥∥X − X̃∥∥∥ ≤ εd. Also, there

are absolute constants C ′, c′ > 0 such that, if all entries of X̃ are drawn from independent distributions and

E[X̃] = X, then for every τ ≥ 1 we have that
∥∥∥X − X̃∥∥∥ ≤ C ′√dτε with probability at least 1− 2e−c

′dτ2

.

Proof. Let E = X̃ −X be the matrix of errors. For the first statement we note that

‖E‖ ≤ ‖E‖2 ≤ d‖E‖max ≤ εd,

where the first inequality follows from the relation between the operator and the Frobenius norms, and the second
follows from a standard norm conversion on the d2-dimensional vector of entries (we use ‖·‖max for the entry-wise
max-norm).

For the second statement we apply Lemma 8.2 to E, noting that each matrix element has subgaussian moment
≤
√

ln(2)ε, thus implying that for every t ≥ 0 we have

P
(
‖E‖ >

√
ln(2)ε

(
2C
√
d+ t

))
≤ 2e−ct

2

.

We conclude by setting t := 2C
√
dτ showing that

P
(
‖E‖ > (2 + 2τ)

√
ln(2)C

√
dε
)
≤ P

(
‖E‖ > 4

√
ln(2)C

√
dτε
)
≤ 2e−4cC

2dτ2

,

so that we can choose C ′ := 4
√

ln(2)C and c′ := 4cC2.

When considering estimates of mixed quantum states we mostly consider Schatten q-norms for error bounds
(that is, the q-norm of the vector of singular values of the difference between the actual state and our estimate).
The most common values for q are q = ∞ (operator norm), q = 2 (Frobenius norm), and q = 1 (trace norm).
Using a tiny modification of our norm conversion result, Corollary 3.1, we can obtain the following as a corollary.

Corollary 8.1. Let ε ∈ (0, 1], 1 ≤ q, and let ρ ∈ Cd×d be a rank-r quantum state. In order to obtain an
ε-Schatten-q-norm estimate of ρ, an η-operator norm estimate suffices, with

η = max

{( ε
10

) 1

1− 1
q ,

ε

2(2r)
1
q

}
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited1300

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

93
.2

24
.7

9.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Proof. Let ρ̃ be an η-operator norm estimate of ρ. We can assume without loss of generality that ρ̃ is Hermitian

(otherwise take ρ̃+ρ̃†

2 ). First, since ‖ρ̃− ρ‖ ≤ η, there must exist a density matrix σ such that σ � 0, ‖σ‖1 ≤ 1,
σ is of rank at most r, and ‖ρ̃− σ‖ ≤ η, because after all ρ is an example of such a density matrix σ. Let ρ̃′ be
any such σ.6 Then, by the triangle inequality we obtain that ‖ρ̃′ − ρ‖ ≤ ‖ρ̃′ − ρ̃‖+ ‖ρ̃− ρ‖ ≤ η + η = 2η.

Thus, we find that ρ and ρ̃′ are both of rank at most r, and therefore by the subadditivity of rank, ρ− ρ̃′ is

of rank at most 2r. This implies by Hölder’s inequality that ‖ρ− ρ̃′‖q ≤ (2r)
1
q · 2η.

On the other hand, from the norm conversion lemma, Lemma 3.2, there exist operators ρ̃′≥2η and ρ≥2η such

that they are both min{4η(q−s)/q, 3r1/qη}-close to their originals in Schatten-q-norm and both have rank at most
1/(2η). Then, we obtain by the triangle inequality that

‖ρ̃′ − ρ‖q ≤
∥∥ρ̃′ − ρ̃′≥2η∥∥q +

∥∥ρ̃′≥2η − ρ≥2η∥∥q + ‖ρ≥2η − ρ‖q ≤ 2 · 4η
q−1
q +

(
1

η

) 1
q

2η = 10η
q−1
q .

Combining both results yields ‖ρ̃′ − ρ‖q ≤ min{10η(q−1)/q, (2r)
1
q 2η} = ε.

8.3 Generic mixed-state tomography We now have all the necessary tools to construct a tomography
algorithm with Õ(dr/ε) sample complexity.

Theorem 8.2. Let ε, δ ∈ (0, 13 ], q ∈ [1,∞], and let Uρ be an a-qubit state-preparation unitary for a purification

of ρ ∈ Cd×d. There is a quantum algorithm that makes O
(
d
ε r

1
q log

3
2
(
d
δε

)√⌈ log(1/δ)
d

⌉)
queries to Uρ and U†ρ ,

and outputs a positive semidefinite ρ̃′ such that with probability at least 1 − δ we have ‖ρ− ρ̃′‖q ≤ ε. The

quantum algorithm can be implemented by O
(
da+d3.5

ε r
1
q polylog( dδε )

)
additional two-qubit gates having depth

O
(
d1.5

ε r
1
q polylog( dδε )

)
.

Proof. First we prove the statement for operator norm by combining Theorem 8.1 and Lemma 8.3. We

set δ′ := min{ δ2 ,
ε2

211d3 ln(2d)}, τ :=
√

1 + ln(4/δ)
dc′ , and ε′ := min

{
ε

4C′
√
dτ
, 16

}
and invoke Theorem 8.1

providing us an estimate ρ̃ ∈ Cd2 that is δ
2 -close in total variation distance to a random variable ρ′ ∈

×i,j∈[d]([ρij − ε, ρij + ε]× [ρij − iε, ρij + iε]). Due to (8.24) we have that E[ρ′ij ]− ρij ≤ ε
2d and so by Lemma 8.3

we have ‖E[ρ′]− ρ‖ ≤ ε
2 . Using our choice of τ Lemma 8.3 also implies that ‖E[ρ′]− ρ′‖ ≤ ε

2 with probability at

least 1− δ
2 . By the triangle inequality we get that ‖ρ− ρ′‖ ≤ ε with probability at least 1− δ

2 . Since ρ′ and ρ̃ are
δ
2 -close in total variation distance this also implies that ‖ρ− ρ̃‖ ≤ ε with probability at least 1− δ.

As per Theorem 8.1 the algorithm makesO

((
d
√

log( d
δε )(1+

log(1/δ)
d )

ε + log
(
d
δε

))
log
(
d
δε

))
queries to Uρ and U†ρ ,

and can be implemented by O
(
da+d3.5

ε polylog( dδε )
)

additional two-qubit gates having depth O
(
d1.5

ε polylog( dδε )
)

.

In order to get a positive semidefinite ρ̃′ and to get the results for all Schatten-norms we apply Lemma 8.1

to ρ̃+ρ̃†

2 and adjust the value of ε accordingly.

9 Lower bounds

In this section we prove lower bounds for state tomography in several different access models. The first model we
consider, in Section 9.1, is the case in which we have access to conditional copies of the state, i.e., we receive states
of the form (|0〉|ψ〉+ |1〉|0〉)/

√
2. From here, we derive matching lower bounds for all the algorithms constructed

in Section 4. In the second model, considered in Section 9.2, we assume to have access to a state-preparation
unitary and its inverse. The lower bounds derived in this subsection match the complexities of the algorithm
constructed in Section 5, up to logarithmic factors. Finally, in Section 9.3, we consider the setting where we access

6Removing all negative eigenvalues of ρ̃− ηI produces such a matrix ρ̃′. Clearly, ρ̃− ρ � ηI and so ρ̃− ηI � ρ, implying that the

n-th largest eigenvalue of ρ majorates that of ρ̃− ηI and consequently also that of ρ̃′. This then implies that the rank of ρ̃′ is at most
r and that ‖ρ̃′‖1 ≤ ‖ρ‖1 = 1; ‖ρ̃′ − ρ̃‖ ≤ η can be shown similarly.
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to a unitary constructing a purification of a density matrix that we wish to estimate. We derive lower bounds
that match the complexities of the algorithms constructed in Section 8.

Note that van Apeldoorn [4] gives a very similar lower bound result in the pure-state setting where we have
access to a state-preparing unitary. However, in the setting of van Apeldoorn the unitary prepares a state of the
form

∑
j

√
pj |j〉|φj〉, whereas in this paper the state is of the form

∑
j

√
pj |j〉, i.e., without the additional states

entangled with |j〉. Hence our input model is stricter and requires its own lower bound.
The general proof strategy in Section 9.1 and Section 9.2 is very similar – we start by proving a lower bound

on estimating probability distributions in the `1-norm, then use a sequence of reductions to obtain lower bounds
on quantum pure-state tomography in any `q-norm with q ≥ 2. Since the reductions we use are identical in both
cases, we start by presenting it here, and then focus in Section 9.1 and Section 9.2 on proving the lower bound
for probability distribution reconstruction in `1-norm separately for both input models afterwards.

Lemma 9.1. Let 0 < ε ≤ 1, s > 0, q ∈ [1,∞], and suppose that in order to produce an ε-`1-estimate of any
probability distribution p ∈ ∆d with high probability, one needs to perform at least Ω(d/εs) queries. Then

Ω

(
min

{
1

ε
1

1− 1
q

,
d1−s+

s
q

εs

})

queries are necessary to find a ε-`q-estimate of p with high probability.

Proof. Suppose that q > 1 and ε ≤ 1/d1−
1
q . Then, by Hölder’s inequality,

‖p̃− p‖1 ≤ d
1− 1

q ‖p̃− p‖q ≤ d
1− 1

q ε ≤ 1,

and the number of queries that is required scales as

Ω

 d(
d1−

1
q ε
)s
 = Ω

(
d1−s+

s
q

εs

)
.

This leaves the case where q > 1 and 1/d1−
1
q < ε ≤ 1. This immediately implies that

1 ≤ 1

ε
1

1− 1
q

< d

1− 1
q

1− 1
q = d.

Thus, we can choose

d′ =

⌊
1

ε
1

1− 1
q

⌋
,

and observe that it is an integer between 1 and d. It follows that

(d′)1−
1
q ε ≤

(
1

ε
1

1− 1
q

)1− 1
q

· ε = 1.

Note that we can embed any d′-dimensional probability distribution p′ ∈ ∆d′ into the first d′ coordinates of
p ∈ ∆d. Moreover, any ε-`q-estimate p̃ of p naturally leads to an approximation p̃′ to p′ by only considering the
first d′ entries of p̃. Using Hölder’s inequality, we find that

‖p̃′ − p′‖1 ≤ (d′)1−
1
q ‖p̃′ − p′‖q ≤ (d′)1−

1
q ‖p̃− p‖q ≤ (d′)1−

1
q ε ≤ 1,

and hence the number of queries in order to find an ε-`q-estimate of p scales at least as

Ω

 d′(
(d′)1−

1
q ε
)s
 = Ω

(
(d′)1−s+

s
q

εs

)
= Ω

(
1

ε
1

1− 1
q

)
.
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Since this expression is indeed smaller than d1/q/ε precisely when ε > 1/d1−1/q, we find that the lower bound
becomes

Ω

(
min

{
1

ε
1

1− 1
q

,
d1−s+

s
q

εs

})
,

as claimed.

We know from the first norm-conversion lemma, i.e., Lemma 3.1, that obtaining an estimate of the amplitudes
of a quantum state also gives one an estimate of the probability distribution arising from their absolute values
squared. Therefore, our reduction from the previous lemma can be extended to give lower bounds on the problem
of estimating a quantum state as well.

Lemma 9.2. Let 0 < ε ≤ 1, q, s ∈ [1,∞], and suppose that in order to produce an ε-`1-estimate of any probability
distribution p ∈ ∆d, defined as pj = |αj |2 with α ∈ Cd, with high probability, one needs to perform at least Ω(d/εs)
queries. Then

Ω

(
min

{
1

ε
1

1
2
− 1
q

,
d1−

s
2+

s
q

εs

})
queries are necessary to find a ε-`q-estimate of α with high probability.

Proof. By Lemma 3.1, we know that an ε-`q-norm estimate of α immediately gives an 4ε-`r-estimate of p, with
r = 1/(1/q + 1/2). Therefore, the result simply follows by substituting r for q into the bounds displayed in
Lemma 9.1.

9.1 Lower bound on conditional samples To lower bound the use of conditional samples we will use a prove
based on communication complexity. In particular, we give an ensemble of states corresponding to conditional
samples, such that an `1-norm estimate of any of the states would give Ω(d) bits of information about which state

was given, but a copy of the state can only communicate Õ
(
ε2
)

bits of information.

Lemma 9.3. Let ε > 0, d ≥ 12 with d ∈ N. There exists a set of 2d/2 probability distributions {p(b)}b∈{0,1}d/2 ∈ ∆d

indexed by length d/2 bit strings, such that for all b and b′ where
∥∥∥p(b) − p(b′)∥∥∥

1
< 2ε we have that b and b′ differ

on at most d/6 bits. Furthermore, let |ψj〉 =
∑
i

√
p
(j)
i |i〉 and |φj〉 =

|0〉|ψj〉+|1〉|0〉√
2

; then, denoting the entropy by

S, we have:

S

 1

2d/2

∑
j

|φj〉〈φj |

 ≤ 27ε2(1 + log(d/ε2)).

Proof. We index the family of probability distributions with bit strings b ∈ {0, 1}d/2, writing p(b) for the
distribution corresponding to string b. Each distribution is over [d/2]× {0, 1} and is defined as

p
(b)
i,c =

1 + (−1)bi⊕c6ε

d
.

In other words, it consists of d/2 pairs of entries that correspond to the bits of b, where the bit determines which
of the entries in the pair is increased by 6ε/d and which is decreased.

For two bit strings b and b′ with Hamming distance |b⊕ b′|, the corresponding distributions will be |b⊕ b′| 12εd
apart in `1-norm. Hence, if two distributions are less than 2ε apart, then for their bit strings we get |b⊕ b′| < d/6,
i.e., less than a 1/3 fraction of the positions differ.

It remains to upper bound the entropy of a uniform mixture of conditional samples. For ease of notation we
will write

c± =
√

1± 6ε

and note that (c+ + c−)2 = 2 + 2c+c−. In our notation, we have:

|φb〉〈φb| =
1

2

(
|ψb〉〈ψb| |ψb〉
〈ψb| 1

)
,
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where for simplicity and without impacting subsequent calculations we have dropped the the d−1 all-zero columns
on the right and the d− 1 all-zero rows at the bottom. Let

σ =
1

2d/2

∑
b

|φb〉〈φb| =
1

2d/2+1

(∑
b |ψb〉〈ψb|

∑
b |ψb〉∑

b〈ψb| 1

)
Considering a single entry of

∑
b |ψb〉, exactly half of the terms will be c+√

d
and half will be c−√

d
. So 1

2d/2+1

∑
b |ψb〉 =

c++c−
4
√
d
~1 and similar for the row vectors.

We now analyze the term |ψb〉〈ψb|. Consider the 2 × 2 block of the matrix corresponding to bi for the rows
and bk for the columns. Depending on the values of those two bits, this block can take four different forms:

1. If bi = bk = 0 then the block is

1

d

(
c2+ c+c−
c+c− c2−

)
2. If bi = bk = 1 then the block is

1

d

(
c2− c+c−
c−c+ c2+

)

3. If bi = 0, bk = 1 then the block is

1

d

(
c−c+ c2+
c2− c+c−

)
4. If bi = 1, bk = 0 then the block is

1

d

(
c−c+ c2−
c2+ c+c−

)
If i = k, i.e., on the diagonal, only (1) and (2) can happen, and by averaging over all possible b (and putting

back in the extra factor 1/2 that appears in the denominator 1/(2d/2+1) in σ), we get:

1

2d

(
1 c+c−

c+c− 1

)
.

Off-diagonally we average over all 4 possibilities, and get:

1 + c+c−
4d

(
1 1
1 1

)
.

Denoting by J the all-ones matrix and by D :=
⊕

i∈[d/2]

(
1 −1
−1 1

)
, the top left block of σ can be written as

1 + c+c−
4d

J +
1− c+c−

4d
D.

So

σ =

(
1+c+c−

4d J c++c−
4
√
d
~1

c++c−
4
√
d
~1> 1/2

)
+

(
1−c+c−

4d D 0
0 0

)
.

The first term in the above equation is a rank-1 matrix, as it is equal to the outer product of the column vector
( c++c−

2
√
2d
~1, 1/

√
2) with itself (recall that (c+ + c−)2/2 = 1 + c+c−). The corresponding eigenvalue is just the norm

of this vector, and it is equal to 3+c+c−
4 . The second term has d/2 nonzero eigenvalues, all equal to 1−c+c−

2d . As

( c++c−
2
√
2d
~1, 1/

√
2) is in the kernel of the second term, the d/2 + 1 eigenvalues listed above are in fact the eigenvalues

of σ. So:

S(σ) = −3 + c+c−
4

log

(
3 + c+c−

4

)
− d

2

1− c+c−
2d

log

(
1− c+c−

2d

)
≤ log

(
4

3 + c+c−

)
+

36ε2

4
log

(
2d

1− c+c−

)
≤ log

(
1

1− 9ε2

)
+ 9ε2

(
1 + log(d/18ε2)

)
≤ 18ε2 + 9ε2

(
1 + log(d/ε2)

)
≤ 27ε2(1 + log(d/ε2)).
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In the chain of inequalities above, we used the fact that

1− 36ε2 ≤
√

1− 36ε2 = c+c− ≤ 1− 18ε2

and hence

18ε2 ≤ 1− c+c− ≤ 36ε2,

together with the fact that the logarithm is monotonically increasing.

With this entropy bound we are now ready to prove our sample complexity lower bound.

Proposition 9.1. Let p ∈ ∆d be a probability distribution, and let |ψ〉 =
∑
j

√
pj |j〉. Then Ω̃(d/ε2) copies of

|0〉|ψ〉+ |1〉|0〉√
2

are required to learn p up to `1-norm error ε.

Proof. We consider a communication scenario where Alice picks a b ∈ {0, 1}d/2 and encodes this in k copies of
|φb〉 from Lemma 9.3. She sends these copies to Bob. If Bob can estimate pb up to ε-`1-norm using k copies then,
by rounding to the closest distribution pb̃, he can learn a b̃ that agrees with b on at least a 2/3 fraction of the
bits, and hence he has learned Ω(d) bits of information about Alice’s string. By Holevo’s Theorem we know that
the maximum amount of information that can be communicated by an ensemble of pure states is upper bounded
by its entropy. As the entropy of k copies of a state is equal to k times the entropy of a single state, we have

Ω(d) ≤ kS

 1

2d/2

∑
j

|φj〉〈φj |

 ≤ k36ε2(1 + log(d/ε2))

and hence k = Ω( d
ε2 log(d/ε2) ) copies are needed for an `1-norm estimate.

We can now apply our norm conversion lemmas to obtain the following theorem.

Theorem 9.1. Let |ψ〉 =
∑
j αj |j〉. Then

Ω̃

(
min

{(
3

ε

) 1
1
2
− 1
q
,
d

2
q

ε

})

copies of
|0〉|ψ〉+ |1〉|0〉√

2

are required to learn α up to `q-norm error ε.

Proof. We combine the `1-reduction Lemma 9.2 with s = 2, with Proposition 9.1.

9.2 Lower bound with inverse state preparation We start with showing that if we want to obtain an
`1-estimate of a probability distribution p ∈ ∆d, we need at least Ω(d/ε) queries to the operation that prepares

it U : |0〉 7→
∑d
j=1

√
pj |j〉. We do this by reducing the problem to the problem of recovering a constant fraction

of the bits in a bit string, which is known to have a lower bound on of Ω(d/ε).

Lemma 9.4. Let 0 < ε < 1/16, d ∈ N, p ∈ ∆d a probability distribution, and let U be a unitary that prepares∑
j

√
pj |j〉. Then Ω

(
d
ε

)
applications of U and its inverse are necessary to find a ε-`1-estimate of p with high

probability.
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Proof. Let x ∈ {0, 1}d be a bit string, and suppose that we have controlled access to x by means of a fractional
phase oracle, i.e., we can access a controlled oracle that acts on Cd as

Ox : |j〉 7→ e4πiεxj |j〉.

Recovering more than three quarters of the bits of x with high probability is known to require Ω(d/ε) queries to
Ox.7

Now, we construct a specific probability distribution p, dependent on x, whose corresponding quantum state
can be constructed using only one call to Ox, and that allows for recovering at least 3/4 of the bit string if it is
estimated up to ε in `1-norm. To that end, suppose that we start in the state

1√
2d

d∑
j=1

|j〉
(
e−

πi
4 |0〉+ e

πi
4 |1〉

)
.

Now, we can apply O†x to the first register if the last qubit is in state |0〉, and Ox if the last qubit is in state |1〉.
This results in the state

1√
2d

d∑
j=1

|j〉
(
e−

πi
4 −4πiεxj |0〉+ e

πi
4 +4πiεxj |1〉

)
.

Next, after applying a Hadamard gate to the final qubit, we obtain the state

1√
d

d∑
j=1

|j〉
(

cos
(π

4
+ 4πεxj

)
|0〉 − i sin

(π
4

+ 4πεxj

)
|1〉
)
,

which after applying an S-gate to the final qubit is turned into the state

|ψ〉 =
∑
j∈[d]

∑
b∈{0,1}

√
pj,b|j〉|b〉, where pj,b =


cos2(π4 +4πεxj)

d , if b = 0,
sin2(π4 +4πεxj)

d , if b = 1.

Since ε < 1/16, we have∣∣∣cos2
(π

4

)
− cos2

(π
4

+ 4πε
)∣∣∣ =

∣∣∣sin2
(π

4

)
− sin2

(π
4

+ 4πε
)∣∣∣ =

1

2
sin(8πε) > 8ε.

Now suppose that we can find some estimate p̃ such that ‖p̃− p‖1 ≤ ε. Then, define the bit string x̃ ∈ {0, 1}d as:

x̃j =

{
1, if p̃j,0 <

1
d

(
1
2 − 4ε

)
,

0, otherwise.

It follows that 4ε|x̃j − xj |/d ≤ |p̃j,0 − pj,0|, and so the number of bits of x̃ that differ from those in x is at most
d/4. Hence, finding an ε-`1-norm estimate of a 2d-dimensional probability distribution must take at least Ω(d/ε)
calls to a state-preparation oracle as well.

It now remains to apply our `1-reduction to complete the lower bound for general `q-norms.

Theorem 9.2. Let |ψ〉 =
∑
j∈[d] αj |j〉 be a quantum state with and let U be a unitary that prepares |ψ〉. Then

Ω

(
min

{
1

ε
1

1
2
− 1
q

,
d

1
q+

1
2

ε

})
applications of U and its inverse are necessary to find an ε-`q-estimate of |α| for q ∈ [2,∞].

Proof. This follows from combining the `1-reduction Lemma 9.2 with s = 1, and Lemma 9.1.

7Proving this is done in two steps – first one proves that this takes at least Ω(d) calls to a regular phase oracle to x, which can be
easily shown using an information theoretic argument stemming from [14]. Next, this can be combined with Appendix B from [35]

and the general adversary bound for relations from [7], to get to the desired bound of Ω(d/ε). We can also reduce the problem to
recovering the bit string exactly, and then directly apply the phase adversary bound from [3, Ch. 6].
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9.3 Lower bounds on mixed-state tomography In this section, we prove tight lower bounds on the problem
of mixed state tomography. More specifically, we prove that the algorithm outlined in Section 8 is essentially
optimal in all Schatten-q-norms. The optimality in all other Schatten norms follows directly from it. The results
obtained in this section are summarized in Corollary 9.1.

The core idea is to take a bit string b ∈ {0, 1}dr, and hide it in a density matrix ρb ∈ Cd×d, with rank at
most r, such that its purification can be constructed with exactly one fractional phase query Oεb . Next, we show
that if we learn a classical description ρ̃ of ρb such that ‖ρ̃− ρb‖1 ≤ ε, we narrow down the size of the set of bit
strings b′ ∈ {0, 1}dr that satisfy ‖ρ̃− ρb′‖1 ≤ ε to O(2−cdr), for some constant c > 0. Finally, we show that this
must require Ω(dr/ε) queries to Oεb , and hence the state tomography algorithm must make at least this number
of queries to the state preparation unitary too.

We start by defining the density matrices ρb ∈ Cd×d, in which we hide the bit string b ∈ {0, 1}dr, in the
following definition.

Definition 9.1. Let ε ∈ [0, 1], d ∈ N, r ∈ [d], and U (0), . . . , U (r−1) ∈ Cd×d unitaries to be fixed later. Let
b ∈ {0, 1}dr a bit string of length dr. We write b = (b(0), . . . , b(r−1)), where b(j) is the jth block of size d. Let

|ψb〉 =
1√
dr

r−1∑
j=0

d−1∑
k=0

∑
c∈{−1,1}

√
1

2
+

1

2
cε(−1)b

(j)
k |c〉U (j)|k〉|j〉,

and let ρb be the density matrix found by tracing out the last register of |ψb〉〈ψb|.

We can already derive some interesting properties of the density matrices ρb defined above, without fixing
the unitaries U (j), as we discuss in Lemma 9.5 (We choose the unitaries in Definition 9.2.)

Lemma 9.5. Let ε, d, r and U (0), . . . , U (r−1) as in Definition 9.1. Let b, b ∈ {0, 1}dr. Let δ = (−1)b − (−1)b ∈
{−2, 0, 2}dr. Let

X =
[
U (0)δ(0) · · · U (r−1)δ(r−1)

]
, and Y =

[
U (0)

1 · · · U (r−1)
1
]
,

Then ∥∥ρb − ρb∥∥1 ≥ ε

rd

∥∥XY †∥∥
1
− 4ε2.

Proof. By taking the partial trace, we obtain that

ρb =
1

dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

√
1

2
+

1

2
cε(−1)b

(j)
k ·

√
1

2
+

1

2
c′ε(−1)b

(j)

k′ |c〉〈c′| ⊗ U (j)|k〉〈k′|
(
U (j)

)†
.

Next, we approximate both the square roots by their tangents around 1/2, i.e., we write
√

1/2 + x ≈ (1+x/2)/
√

2.
We denote the resulting matrix by ρb, and we can express it directly as

ρb =
1

2dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

(
1 +

1

2
cε(−1)b

(j)
k +

1

2
c′ε(−1)b

(j)

k′

)
|c〉〈c′| ⊗ U (j)|k〉〈k′|

(
U (j)

)†
.

Next, we characterize the error introduced by this linearization step. To that end, observe that if c(−1)b
(j)
k and

c′(−1)b
(j)

k′ are equal, then both expressions under the square root are equal, and hence their product becomes
exactly the product of the linearizations. Thus, the only entries in which the matrices ρb and ρb differ are those

for which c(−1)b
(j)
k and c′(−1)b

(j)

k′ differ. This allows us to write the difference between ρb and ρb succinctly, as

ρb − ρb =
1−
√

1− ε2
2dr

r−1∑
j=0

∑
c,c′∈{−1,1}

d−1∑
k,k′=0

c(−1)
b
(j)
k 6=c′(−1)

b
(j)

k′

|c〉〈c′| ⊗ U (j)|k〉〈k′|
(
U (j)

)†
.
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Thus, by taking the trace norm, applying the triangle inequality, removing the unitary transformations on the
last register, and using 1−

√
1− ε2 ≤ ε2, we obtain that

‖ρb − ρb‖1 ≤
ε2

2dr

r−1∑
j=0


∥∥∥∥∥∥∥∥∥∥
[
1 0
0 1

]
⊗

d−1∑
k,k′=0

(−1)
b
(j)
k 6=(−1)

b
(j)

k′

|k〉〈k′|

∥∥∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥∥∥
[
0 1
1 0

]
⊗

d−1∑
k,k′=0

(−1)
b
(j)
k =(−1)

b
(j)

k′

|k〉〈k′|

∥∥∥∥∥∥∥∥∥∥
1

.

Since the 2×2 matrices both have 2 eigenvalues that are both of modulus 1, we can factor them out at the expense

of a factor of 2. Then, after reordering rows and columns such that all k’s with b
(j)
k = 1 are at the upper-left

corner, we obtain that

‖ρb − ρb‖1 ≤
ε2

dr

r−1∑
j=0


∥∥∥∥∥∥∥∥∥

b
(j)
k = 1 b

(j)
k = 0[ ]

b
(j)
k′ = 1 1 0

b
(j)
k′ = 0 0 1

∥∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥∥
b
(j)
k = 1 b

(j)
k = 0[ ]

b
(j)
k′ = 1 0 1

b
(j)
k′ = 0 1 0

∥∥∥∥∥∥∥∥∥
1

.
The trace norm of the left term is d, since the two diagonal blocks have the single eigenvalues |b(j)| and

d − |b(j)|. On the right-hand side, the two eigenvalues are ±
√
|b(j)|(d− |b(j)|), and so the trace norm is

2
√
|b(j)|(d− |b(j)|) ≤ 2

√
d2/4 = d. Plugging these bounds into the above equation yields ‖ρb − ρb‖1 ≤ 2ε2.

Thus, we have ∥∥ρb − ρb∥∥1 ≤ ‖ρb − ρb‖1 +
∥∥ρb − ρb∥∥1 +

∥∥ρb − ρb∥∥1 ≤ ∥∥ρb − ρb∥∥1 + 4ε2,

and hence it suffices to prove that
∥∥ρb − ρb∥∥1 = ε

∥∥XY †∥∥
1
/(dr). To that end, observe that we can write the

difference as

ρb − ρb =
ε

4dr

r−1∑
j=0

d−1∑
k,k′=0

∑
c,c′∈{−1,1}

(
cδ

(j)
k + c′δ

(j)
k′

)
|c〉〈c′| ⊗ U (j)|k〉〈k′|

(
U (j)

)†
.

Next, some of the indices can be decoupled from one another, which results in

ρb − ρb =
ε

4dr

r−1∑
j=0

∑
c∈{−1,1}

c|c〉
∑

c′∈{−1,1}

〈c′| ⊗ U (j)
d−1∑
k=0

δ
(j)
k |k〉

d−1∑
k′=0

〈k′|
(
U (j)

)†

+

r−1∑
j=0

∑
c∈{−1,1}

|c〉
∑

c′∈{−1,1}

c′|c′〉 ⊗ U (j)
d−1∑
k=0

|k〉
d−1∑
k′=0

δ
(j)
k′ 〈k

′|
(
U (j)

)†,
Now, we can let

V =

[
X
−X

]
, and W =

[
Y
Y

]
,

from which we can directly observe that the expression for ρb − ρb simplifies to

ρb − ρb =
ε

4rd

[
VW † +WV †

]
.

To evaluate the trace norm, we observe that

∥∥ρb − ρb∥∥1 = Tr

[√(
ρb − ρb

)2]
=

ε

4dr
Tr

[√
(VW † +WV †)

2

]
.

By direct calculation, we find that V †W = W †V = 0, and so when we expand the square, two of the terms cancel,
and we end up with ∥∥ρb − ρb∥∥1 =

ε

4rd
Tr
[√

VW †WV † +WV †VW †
]
.
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Again, since V †W = W †V = 0, we find that the two terms underneath the square root are only acting non-
trivially on mutually orthogonal subspaces. Therefore, the square root of the sum is the sum of the square roots,
and we end up with ∥∥ρb − ρb∥∥1 =

ε

4rd

[
Tr
[√

VW †WV †
]

+ Tr
[√

WV †VW †
]]
.

We rewrite the term on the left within parentheses as

Tr
[√

VW †WV †
]

= Tr

[√[
2XY †Y X† −2XY †Y X†

−2XY †Y X† 2XY †Y X†

]]
= Tr

[√[
2 −2
−2 2

]
⊗XY †Y X†

]
.

The (non-zero) spectrum of the expression inside the square root is 4σ(XY †Y X†), and hence the trace becomes

2Tr[
√
XY †Y X†] = 2

∥∥XY †∥∥
1
. Analogously, the term on the right yields 2

∥∥Y X†∥∥, and since
∥∥A†∥∥

1
= ‖A‖1, for

any matrix A, we obtain the expression from the statement of the lemma.

It is worth noting that the matrix XY † from the previous lemma statement is in general not Hermitian.
Therefore, it is important to stress that the trace norm has to be interpreted as the sum of the singular values,
rather than the sum of eigenvalues.

Next, we fix the unitary matrices U (j), for j ∈ [r].

Definition 9.2. Let d, r ∈ N, and let j ∈ [r]. Define U (j) ∈ Cd×d as

U
(j)
k` =

1√
d
ω
(j−k)`
d .

The benefit of this particular choice of unitaries U (j) is that they further simplify the expressions that appear
in Lemma 9.5. The details are presented in the lemma below.

Lemma 9.6. Let ε, d and r as in Definition 9.1. Then, for all j ∈ [r], U (j) is unitary,

Y =
√
d

[
Ir
0

]
,

and we have ∆ ∈ Cd×r such that∥∥ρb − ρb∥∥1 ≥ ε

r
√
d
‖∆‖1 − 2ε2, with ∆kj = ωjkd δ

(j)
k .

Proof. Let j ∈ [r], and `, `′ ∈ [d]. Then,[(
U (j)

)†
U (j)

]
`,`′

=

d−1∑
k=0

U
(j)

k` U
(j)
k`′ =

1

d

d−1∑
k=0

ω
−(j−k)`
d ω

(j−k)`′
d =

1

d

d−1∑
k=0

ω
(`′−`)k
d = 1`=`′ ,

and thus indeed
(
U (j)

)†
U (j) = I. Next, let j ∈ [r] and k ∈ [d]. We observe that

Yjk =
(
U (j)

1

)
k

=

d−1∑
`=0

U
(j)
k` =

1√
d

d−1∑
`=0

ω
(j−k)`
d =

√
d1j=k,

as claimed. Finally, for the trace norm, observe that it suffices to show that ‖X‖1 = ‖∆‖1. To that end, for all
j ∈ [r] and k ∈ [d],[(

U (0)
)†
X

]
kj

=

[(
U (0)

)†
U (j)δ(j)

]
k

=
1

d

d−1∑
`,`′=0

ωk`d ω
(j−`)`′
d δ

(j)
`′ =

1

d

d−1∑
`′=0

[
d−1∑
`=0

ω
(k−`′)`
d

]
ωj`

′

d δ
(j)
`′ .

The inner summation vanishes if k 6= `′, and evaluates to d when k = `′. Therefore, the whole expression simplifies

to ωjkd δ
(j)
k = ∆kj . Thus, ∆ =

(
U (0)

)†
X, and since U (0) is unitary, X and ∆ have the same singular values, and

hence the same trace norm as well. This completes the proof.
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Next, we choose two bit strings b, b ∈ {0, 1}dr uniformly at random, and we analyze the probability of the
trace norm of the difference ρb− ρb being small. On a high level, the smaller this probability is, the fewer ρbs are
close to ρb chosen uniformly at random.

Lemma 9.7. Let ε ∈ [0, 1/128], d ∈ N and r ∈ [d]. Let b, b ∈ {0, 1}dr uniformly at random. Then, there exist
constants c, d0 > 0 such that for all d > d0,

P
[∥∥ρb − ρb∥∥1 ≤ ε

64

]
≤ e−crd.

Proof. By the previous lemma, we know that if ‖∆‖1 ≥ r
√
d/32, then

∥∥ρb − ρb∥∥1 ≥ ε/32− 2ε2 ≥ ε/32− ε/64 =
ε/64. Thus, it suffices to prove that there exist constants c, d0 > 0 such that for all d > d0,

P

[
‖∆‖1 ≤

r
√
d

32

]
≤ e−crd.

Next, let A ∈ Cd×d be such that ‖A‖ ≤ 1, and let ∆ = UΣV be the singular value decomposition of ∆, with the
singular values σ1, . . . , σr (where we allow the σs to be 0 if the rank turns out to be strictly smaller than r). For
technical reasons, we pad the matrices Σ and V with zeros, such that we have U,Σ, V ∈ Cd×d. Let uj and vj
denote the jth columns of U and V , respectively. Then,

|Tr[A∆]| = |Tr[AUΣV ]| = |Tr[V AUΣ]| ≤
r∑
j=1

∣∣∣[V AU ]jj

∣∣∣σj =

r∑
j=1

∣∣∣v†jAuj

∣∣∣σj ≤ r∑
j=1

σj = ‖∆‖1,

where we used that |v†jAuj | ≤ ‖vj‖ · ‖A‖ · ‖uj‖ ≤ 1. Thus, it is sufficient to find some matrix A ∈ Cd×d such
that ‖A‖ ≤ 1, which is allowed to depend on ∆, and prove that there exists a constant c > 0 such that

P

[
|Tr[A∆]| ≤ r

√
d

32

]
≤ e−crd.

To that end, for any vector v, we let the matrix Av be the operation that reflects through the subspace Span{v}⊥,
i.e.,

Av = I − 2
vv†

‖v‖2
.

Since Av is a reflection, Av is a unitary matrix and in particular we have ‖Av‖ ≤ 1. Additionally, suppose if we

have v and w with ‖v‖ = ‖w‖ = 1 and Im(v†w) = 0, then since (v−w)†(v + w) = ‖v‖2 −‖w‖2 = 0, we obtain

Av−wv = Av−w ·
1

2
[v −w + v + w] =

1

2
[−v + w + v + w] = w.

Now, we let y1 = x1, and for all j ∈ [r] recursively define

zj =


yj
‖yj‖ ·

(yj)1
|(yj)1| , if (yj)1 6= 0,

yj
‖yj‖ , if yj 6= 0,

e1, if yj = 0,

ϕj =

{
(yj)1
|(yj)1| if (yj)1 6= 0,

1, if (yj)1 = 0,
Aj =

[
Ij−1 0

0 ϕjAzj−e1

]
,

and furthermore

Aj · · ·A1xj+1 =

[
wj+1 ∈ Cj

yj+1 ∈ Cd−j
]
, and A = Ar · · ·A1.

From the construction, it is clear that all Ajs are unitary, and so ‖A‖ ≤ 1. Additionally,

Axj = Ar · · ·A1xj = Ar · · ·Aj
[

wj

yj

]
= Ar · · ·Aj+1

[
wj

ϕjAzj−e1
yj

]
.
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We can directly observe that Im(e†1zj) = 0, for all j ∈ [r]. If (yj)1 6= 0, then we find ϕjAz1−e1
yj =

|(yj)1|‖yj‖ϕjAz1−e1
z1/(yj)1 = ‖y1‖e1. Similarly, if (yj)1 = 0 but yj 6= 0, then ϕjAz1−e1

yj = ‖y1‖Az1−e1
z1 =

‖y1‖e1. Finally, if yj = 0, then ϕjAz1−e1
yj = 0 = ‖yj‖e1. Thus, in all cases we find

Axj = Ar · · ·Aj+1

[
wj

‖yj‖e1

]
=

[
wj

‖yj‖e1

]
.

Moreover, observe that Aj · · ·A1 is unitary and it only depends on the vectors x1, . . . ,xj . Therefore, yj+1 is a
projection of xj+1 onto an (d − j)-dimensional subspace, which we denote by Sj+1, and we observe that Sj+1

does not depend on the vector xj+1 itself. Finally, we have

‖∆‖1 ≥ |Tr[A∆]| =
r∑
j=1

‖yj‖ ≥
min{r,bd/2c}∑

j=1

‖yj‖.

Now, if there are at least r/4 js in 1, . . . ,min{r, bd/2c} for which ‖yj‖ >
√
d/8, then this would imply that ‖∆‖1 >

r
√
d/32. Thus, by the contrapositive, if ‖∆‖1 ≤ r

√
d/32, then there must be at least min{r, bd/2c}−r/4+1 ≥ r/4

js for which ‖yj‖ ≤
√
d/8. Let us label all these js j1 < · · · jk ≤ d/2, where we now know that k ≥ r/4. Then,

P

[
k∧
`=1

‖yj`‖ ≤
√
d

8

]
=

k∏
`=1

P

[
‖yj`‖ ≤

√
d

8

∣∣∣∣∣
`−1∧
m=1

‖yjm‖ ≤
√
d

8

]
.

Now, recall that yj` = ΠSj`
xj` . Since the entries of xj` are independent and sub-Gaussian with constant K = 2,

we know from [45], Corollary 3.1, combined with the complexification techniques outlined in the last paragraph
of said document, that there exists a constant c′ > 0 such that

P

[∥∥∥ΠSj`
xj`

∥∥∥ ≤ √d
8

]
≤ P

[∣∣∣∥∥∥ΠSj`
xj`

∥∥∥−√d− j`∣∣∣ ≤
∣∣∣∣∣√d− j` −

√
d

8

∣∣∣∣∣
]
≤ 2e−c

′d.

Moreover, since this bound holds for all subspaces Sj` of dimension d− j`, we obtain

P

[
‖∆‖1 ≤

r
√
d

32

]
≤

k∏
`=1

P

[∥∥∥ΠSj`
xj`

∥∥∥ ≤ √d
8

∣∣∣∣∣
`−1∧
m=1

‖yjm‖ ≤
√
d

8

]
≤
(

2e−c
′d
)k
.

Thus, whenever d ≥ ln(2)/c′ =: d0, we can choose c = (c′ − ln(2)/d)/4. Then, c > 0, and

P

[
‖∆‖1 ≤

r
√
d

32

]
≤
(

2e−c
′d
)k

=
(

2e−(4c+ ln(2)
d )d

)k
≤ e−4cdk ≤ e−cdr,

where in the last step, we used that k ≥ r/4. This completes the proof.

Now, we are able to finish the proof. The proof strategy followed from here onward is very similar to those
presented in [13], Section 5.

Theorem 9.3. Let ε ∈ [0, 1/128], d ∈ N, and r ∈ [d]. Suppose that we have a Q-query quantum algorithm that
given access to an (inverse) state-preparation unitary for a purification of a d×d density matrix ρ of rank at most
r, outputs an approximation ρ̃ such that ‖ρ̃− ρ‖1 ≤ ε/128, with probability at least 2/3. Then Q = Ω(dr/ε).

Proof. Let G be a bipartite graph with 2 · 2rd nodes, labeled by the bit strings b ∈ {0, 1}rd on one side, and
b ∈ {0, 1}rd on the other. Let there be an edge between b and b, if

∥∥ρb − ρb∥∥1 ≤ ε/64. From the previous lemma,
we obtain that there exists a constants c, d0 > 0 such that whenever d ≥ d0, the number of edges of m in G
satisfies

m ≤ 22rd · e−crd.
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We abbreviate f = e−crd, and observe that∑
b∈{0,1}rd

deg(b) = m ≤ f · 22rd,

where deg(b) denotes the degree of b in G. Next, let B = {b ∈ {0, 1}rd : deg(b) ≥ 2rd
√
f}, i.e., the set of nodes on

the left side that have high degree. Then, by an argument that is usually referred to as the pigeonhole principle,
we obtain that |B| ≤ 2rd

√
f .

Let b ∈ {0, 1}rd \B, and suppose that we have access to b through the phase oracle

Ob,ε′ : |j〉 7→ eiεbj |j〉.

We now use our Q-query mixed-state tomography algorithm to construct a new algorithm that recovers b with
some very low probability.

The first step is to implement the unitary Ub that maps

Ub : |0〉 7→ 1√
r

r−1∑
j=0

|ψ(j)
b 〉|j〉.

Using the same construction as in Lemma 9.4, we can construct a circuit implementing this unitary Ub with K
calls to Ob,ε, where K = Θ(1). Next, since this unitary Ub prepares a purification of ρb, we can use Q queries to
it to obtain an estimate ρ̃, such that ‖ρ̃− ρb‖1 ≤ ε/128, with probability at least 2/3.

Next, suppose that b ∈ {0, 1}rd satisfies
∥∥ρ̃− ρb∥∥1 ≤ ε/128. Then, by the triangle inequality, we have that∥∥ρb − ρb∥∥1 ≤ ‖ρb − ρ̃‖1 +

∥∥ρ̃− ρb∥∥1 ≤ ε/64, and hence we find that b and b are neighbors in G. Since we chose b

to be in {0, 1}rd \B, we know that deg(b) ≤ 2rd
√
f , and hence there are at most 2rd

√
f choices for b, among which

is b itself. Thus, if we uniformly choose one such b, it will be equal to b with probability at least 2/3 · 2−rdf−1/2.
The procedure above uses KQ queries to Ob,ε′ , and recovers b with probability at least 2/3 · 2−rdf−1/2. It is

known that if we can solve this problem with KQ queries to the fractional phase oracle Ob,ε′ , we can also solve
it with at most K ′KQ queries to the regular phase oracle Ob, with K ′ = Θ(ε).8 According to [14], Equation 4,
this implies that

2rd − |B| ≤ 3

2
· 2rd

√
f ·

K′KQ∑
k=0

(
rd

k

)
≤ 3

2
· 2rd

√
f · 2rdH

(
K′KQ
rd

)
,

where H(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function, and the rightmost inequality can be
found in several text books, e.g., [16], Lemma 16.19.

We can now plug everything into the above equation. Since |B| ≤ 2rd
√
f ≤ 2rde−1/2 ≤ 2rd/

√
2, and hence

we write

2
rd+log

(
1− 1√

2

)
≤ 2

log(3)−1+rd−crd log(e)+rdH
(
K′KQ
dr

)
.

Comparing the exponents we obtain

log(3)− 1− log

(
1− 1√

2

)
+ rd

(
−c log(e) +H

(
K ′KQ

dr

))
≥ 0,

and thus H(K
′KQ
dr ) = Ω(1). Since the binary entropy function is monotonously increasing from 0 to 1 in the

interval [0, 1/2], we find that K ′KQ = Ω(dr), and hence Q = Ω(rd/ε).

We can now derive the lower bounds for all other Schatten norms too.

Corollary 9.1. Let ε ∈ [0, 1/128], d ∈ N, r ∈ [d] and q ∈ [1,∞]. Suppose that we have a quantum algorithm
that estimates a density matrix ρ up to precision ε in Schatten-q-norm, using Q (inverse) queries to a unitary
preparing its purification. Then,

Q = Ω

(
min

{
dr

1
q

ε
,

d

ε
1

1− 1
q

})
.

8See the footnote in Lemma 9.4 for more details.
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Proof. First, suppose that ε ≤ 1/(256r1−1/q). Then, using standard norm conversion, we can obtain a r1−1/qε-
precise approximation of ρ in trace norm in Q queries. Since r1−1/qε ≤ 1/128, using Theorem 9.3 we find that

Q = Ω

(
dr

r1−1/qε

)
= Ω

(
dr

1
q

ε

)
.

On the other hand, if 1/(128r1−1/q) < ε ≤ 1/128, then we can choose an integer 1 ≤ r′ < r, such that
1/(256(r′)1−1/q) < ε ≤ 1/(128(r′)1−1/q). By the previous argument for the case ε ≤ 1/(256r1−1/q), we can now
use Q queries to obtain a 2ε-precise Schatten-q-approximation of any density matrix of rank at most r′, using
our algorithm for density matrices of rank r. We already know that this takes Ω(d(r′)1/q/ε) queries, and since
r′ = Θ(1/ε1/(1−1/q)), we obtain that

Q = Ω

(
d(r′)

1
q

ε

)
= Ω

(
d

ε1+
1/q

1−1/q

)
= Ω

(
d

ε
1

1− 1
q

)
.

Finally, observe that d/ε1/(1−1/q) < dr1/q/ε is equivalent to ε1/(q−1) > 1/r1/q, and hence to ε > 1/r1−1/q, so
indeed the minimum picks out the right branch of the lower bound. This completes the proof.

Note that this exactly matches the complexity that we obtained in Lemma 8.1. Thus, up to polylogarithmic
factors, we have completely characterized the query complexity of state tomography in this model.

10 Open problems

We end the paper with a discussion on some open questions.
State preparation without an inverse. In Section 4.2 we consider tomography using conditional samples,

and in Section 9.1 we show that our upper bounds are optimal up to log factors. Conditional samples are directly
inspired by controlled usage of a state-preparation unitary, without access to the inverse of this unitary. Such
a state-preparation unitary is at least as powerful as conditional samples, and at most as powerful as state
preparation with the inverse as well.

Even in the two dimensional case of standard amplitude estimation, the best upper bound of Õ
(
1/ε2

)
comes

from conditional samples, while the best lower bound of Ω(1/ε) also holds when the inverse is allowed. Hence
the question of finding a quantum algorithm that requires o(1/ε2) applications of a controlled state-preparation
unitary to perform amplitude estimation, and that does not require access to the inverse of this unitary. We
conjecture that the answer is negative, but we are not aware of any lower bound techniques that differentiate
between normal and inverse usage of an input oracle.

Vector estimate conversions. The two lemmas in Section 3 still leave some open questions. While
Lemma 3.1 gives the relation between amplitude and probability estimates in general, it is unclear whether a
similar relation holds for amplitudes of a purification and the associated density matrix. Lemma 8.1 gives a
relation between the `2-norm for amplitudes and the Schatten-1-norm (tracer norm) for the density matrix, does
a similar relation hold for the `q-norm and Schatten- 1

1/2+1/q -norm?

Similarly, Lemma 3.2 shows how to obtain a `q-norm estimate of a `s-normalized vector using an `∞-norm
estimate. It is still unclear whether an `p norm estimate can be used in a similar manner to obtain an `q-norm
estimate, when p > q > s.

Simple sample-based estimates for mixed states in other norms. All single-copy sampling methods
for pure-state tomography that we are aware of estimate the state directly in a Schatten q-norm, and then
convert to the trace norm. In order to find the initial estimate, a set of random measurements is performed,
and an optimization problem is solved to find a ρ̃ that matches best with the measurement statistics. Could a
very efficient estimate in the max-norm possibly lead to a simpler algorithm? In Appendix A we show how a
probability distribution can be constructed that is proportional to the d2 elements in the density operator, so an
`2-norm approximation of this distribution gives a Frobenius norm estimate of ρ.

An alternative approach could be to use a procedure inspired by shadow tomography to estimate all the
Eij and obtain a max-norm estimate with Õ

(
1/ε2

)
samples. If these estimates can be made symmetric and

unbiased, then this would imply an operator norm estimate with Õ
(
d/ε2

)
samples, a Frobenius norm estimate

with Õ
(
dr/ε2

)
samples, and a trace norm estimate with Õ

(
dr2/ε2

)
samples. This would matching the optimal
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bound by [23, 25] for single copy measurements. There is some hope for this, as recent shadow tomography

results [30] require only Õ
(
1/ε2

)
copies when the Frobenius norm of the measurements is constant. Furthermore,

these methods are rather simple, and there is no post processing needed, unlike the result by [23, 25] that requires
the solution of a convex optimization problem. The main problem to overcome is that the outputs from shadow
tomography might not be independent.

Time complexity of expectation value estimation. When we apply expectation value estimation to
mixed-state tomography, we give a tailored implementation of the block-encoding of

∑
i λiEi in order to avoid a

large subnormalization. In general however the block-encoding is sub-normalized by
∑
i |λi|‖Ei‖ due to the usage

of the LCU-lemma. The pre-amplification of this block encoding then requires a number of iterations which scales
with N =

∑
i‖Ei‖.

On the other hand, the set of operators of the form Ei/
∥∥∥∑j Ej

∥∥∥ could be turned into a POVM measurement,

as their sum has operator norm at most 1. Hence, by estimating all expectation values of this POVM with

precision ε/
∥∥∥∑j Ej

∥∥∥ by simply measuring, we would be able to learn all original expectation values with precision

ε, and a sample complexity dependent on
∥∥∥∑j Ej

∥∥∥ (as opposed to
∑
j‖Ej‖. Can our techniques be improved

to also depend on
∥∥∥∑j Ej

∥∥∥? Or, more generally, is there a version of the LCU-lemma and pre-amplification

that achieves this time complexity? Low [38] uses a technique that might be related to this in order to improve
sparse block-encodings for matrices with bounded norm, and a general answer might improve the method by Low
slightly.
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A Direct mixed-state tomography using copies

We show how to perform mixed-state tomography with Õ
(
rd2/ε

)
copies of the state and a small amount of

quantum power. Note that the well-known algorithm consisting of performing measurements in random bases
already achieves this sample complexity, see the discussion in [23, 15, 34]; this is optimal for unentangled, non-
adaptive algorithms [25]. Thus, the algorithm presented here does not improve over the known upper bounds.
We discuss it anyway for the following reasons: first, the algorithm is easy to analyze (in our opinion, at least as
simple, if not simpler, than [24]); second, the algorithm uses very similar techniques to Section 4 for pure states;
third, it is fast to implement, because it only requires a few quantum gates and simple classical postprocessing.

Proposition A.1. Let ρ =
∑r
k=1 pk|ψk〉〈ψk| for some orthonormal |ψk〉 =

∑
j∈[d] α

(k)
j |j〉. There is a quantum

algorithm that, given Õ
(
rd2/ε2

)
copies of ρ and the ability to perform unitary operations on them, outputs ρ̃ such

that ‖ρ− ρ̃‖1 ≤ ε with probability at least 2/3. The algorithm is non-adaptive and does not require entangled
measurements between copies of ρ.

Proof. Recall that ρ is a d× d matrix with entries:

ρu,v =

r∑
k=1

pkα
(k)
u (α(k)

v )†.

To avoid cumbersome equations, it is easier to analyze the algorithm by working with a purification |ρ〉 =∑r
k=1

√
pk|ψk〉A|φk〉B of ρ, where |φk〉 are orthonormal; note that we never act on the purifying register, and the

purification is solely for convenience. Add one fresh qubit in state |0〉 to the system; suppose it is the first. For
h ∈ [d], apply a Hadamard on the first qubit, followed by the unitary |0〉〈0| ⊗ IA ⊗ IB + |1〉〈1| ⊗

∑
j∈[d] |(j − h)

mod d〉〈j| ⊗ IB , and finally another Hadamard on the first qubit. In the following, for brevity we write j + h
instead of (j + h) mod d: we use this notation only to index basis elements, so the context should avoid any
ambiguity. The larger system is now described by the following pure state:

1

2
|0〉

r∑
k=1

√
pk

∑
j∈[d]

(α
(k)
j + α

(k)
j+h)|j〉|φk〉

+
1

2
|1〉

r∑
k=1

√
pk

∑
j∈[d]

(α
(k)
j − α

(k)
j+h)|j〉|φk〉

.
Next, we trace out the purifying register B, and compute the probability of finding the first qubit in state |0〉 and
system A in state |j〉:

1

4

r∑
k=1

pk(α
(k)
j + α

(k)
j+h)(α

(k)
j + α

(k)
j+h)† =

1

4

r∑
k=1

pk

(
|α(k)
j |

2 + 2<(α
(k)
j (α

(k)
j+h)†) + |α(k)

j+h|
2
)

=
1

4
(ρj,j + 2<(ρj,j+h) + ρj+h,j+h) = q

(h)
0j .

Similarly, the probability of finding the first qubit in state |1〉 and system A in state |j〉 is:

1

4
(ρj,j − 2<(ρj,j+h) + ρj+h,j+h) = q

(h)
1j .

By definition the vector q(h) represents a discrete probability distribution. We can obtain an `2-norm estimate
q̃(h) of q(h) with error ε̄ and with high probability taking Õ

(
1/ε̄2

)
samples, see e.g., [10]. Note that for h = 0,
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this immediately yields an estimate (ρ̃0,0, . . . , ρ̃d−1,d−1) of the diagonal of ρ with `2-norm error at most ε̄. For

h ∈ [d] \ {0}, we can then compute an estimate ρ̃j,j+h for the real part of ρj,j+h as 2(q̃
(h)
0j − 1

2 ρ̃j,j −
1
2 ρ̃j+h,j+h).

For convenience, let us call v the vector with entries ρj,j for j ∈ [d], v(h) the vector with entries ρj+h,j+h, and
similarly for ṽ and ṽ(h). The total `2-norm squared error for a set of d of these off-diagonal elements can be
bounded as follows:∑

j∈[d]

(ρ̃j,j+h −<(ρj,j+h))2 = 2
∑
j∈[d]

(
(q̃

(h)
0j −

1

2
ρ̃j,j −

1

2
ρ̃j+h,j+h)− (q

(h)
0j −

1

2
ρj,j −

1

2
ρj+h,j+h)

)2

=

2

∥∥∥∥(q̃
(h)
0 − 1

2
ṽ − 1

2
ṽ(h))− (q

(h)
0 − 1

2
v − 1

2
v(h))

∥∥∥∥2 ≤ 2
(∥∥∥q̃(h)0 − q(h)0

∥∥∥2 +
1

4
‖ṽ − v‖2 +

1

4

∥∥∥ṽ(h) − v(h)∥∥∥2+

1

2

∥∥∥q̃(h)0 − q(h)0

∥∥∥‖ṽ − v‖+
1

2

∥∥∥q̃(h)0 − q(h)0

∥∥∥∥∥∥ṽ(h) − v(h)∥∥∥+
1

4
‖ṽ − v‖

∥∥∥ṽ(h) − v(h)∥∥∥) ≤ 6ε̄2,

where we use Cauchy-Schwarz plus the fact that
∥∥∥q̃(h)0 − q(h)0

∥∥∥, ‖ṽ − v‖ and
∥∥ṽ(h) − v(h)∥∥ are all ≤ ε̄. This implies

that we can get an O(ε̄)-`2-estimate of the real part of d elements of ρ with Õ
(
1/ε̄2

)
samples. A similar approach,

with the addition of a phase gate to multiply all coefficients by i, allows us to retrieve the imaginary part with
the same complexity.

The above algorithm is repeated d times, for h ∈ [d]. Combining these d estimates of d coefficients each,
setting ε̄ = ε/

√
d and using a union bound for the probability of success, we obtain ρ̃ such that ‖ρ̃− ρ‖F ≤ ε

taking Õ
(
d2/ε2

)
samples. To convert from Frobenius norm to trace norm, using the fact that there are at most

r nonzero eigenvalues by assumption, we need to decrease the error ε̄ by a further factor
√
r. Then, this yields a

trace-norm estimate of ρ with Õ
(
rd2/ε̄2

)
samples.

B Implementing a QRAM

In this appendix we prove our claim that a d-qubit QRAM can be implemented with O(d) gates in O(log(d))
depth. Although QRAM implementations have been discussed at length in the literature, e.g. [21] and follow-up
works, these discussions focus on the number of “activated” gates. While physically relevant in order to argue
about error rates, from a complexity point of view there is no difference between an activated or non-activated
gate.

We expect that the results below appear in the literature, but we were unable to locate them and hence proof
them for completeness. If the reader is aware of earlier works with the same results, we would be grateful if the
could inform us so that we can update this section to give proper attribution.

Lemma B.1. Let d be a power of 2. There is a unitary, called indexed-CNOT-out (stylized iCNOTo), acting on
log(d) + 1 + d qubits plus 2d− 3 ancillary qubits that can be implemented using 2d− 2− 2 log(d) CNOT gates and
4d− 4 Toffoli and X gates in 10 log(d) depth, and acts as follows on computational basis states

iCNOTo|i〉|b〉|q1〉 . . . |qd〉 = |i〉|b⊕ qi〉|q1〉 . . . |qd〉.

There is also a unitary, called indexed-CNOT-in (stylized iCNOTi), acting on the same amount of qubits,
that can be implemented in the same depth and number of gates, acting as

iCNOTi|i〉|b〉|q1〉 . . . |qd〉 = |i〉|b〉|q1〉 . . . |qi−1〉|qi ⊕ b〉|qi+1〉 . . . |qd〉.

Proof. We first note that a FANOUT gate acting (for a ∈ {0, 1}) as

FANOUT|a〉|0k〉 = |ak〉

can be build using k − 1 CNOT gates in depth log(k).
We will implement the ICNOTo gate as a tournament bracket. In the first step, if i is even then we first copy

over all qj for even j to a fresh layer of d/2 qubits. If i is odd then we do this for the odd j. The information
whether i is even or odd is contained in its least significant bit, which, using a FANOUT to d/2 can be distributed
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to d/2 fresh qubits in depth log(d)− 1. Now, conditioned on the kth of these parity qubits either q2k or q2k+1 is
put in a fresh qubits, using 2 Toffoli gates and 2 X gates in depth 4.

We then do exactly the same circuit for the next layer, as if we were implementing a iCNOTo on d/2 qubits.
After log(d) levels we end up with a (fixed) register in the state |qi〉, and we can CNOT this value with |b〉. In
fact, we can use |b〉 as the target for the final level, instead of a fresh qubit. After this we can uncompute all
intermediate values using the same depth and gate count.

For the depth, note that all FANOUT gates can be performed in parallel. The deepest has depth log(d).
The tournament bracket has depth 4 per layer, and log(d) layers. Including the uncompute the total depth is
10 log(d).

As for the ancillary qubits, there are d− 1 parity bits used, one for each decision in the tournament bracket.
There are d− 2 intermediate bits used in the tournament, as we use b for the final result. Hence the circuit uses
2d− 3 ancillary qubits.

The CNOT count of all the fan outs is
∑log(d)
i=1

(
d
2i − 1

)
= d − 1 − log(d). The tournament requires 2 Toffoli

gates per decision, of which there are d − 1, so the Toffoli count of this part is 2d − 2 (and the X count is the
same). The total, including uncomputation becomes 2d − 2 − 2 log(d) CNOT gates, and 4d − 4 Toffoli and X
gates.

The iCNOTi gate is implemented in almost the same way, but now b is distributed from the top of the
tournament to the leave corresponding to qi.

There are two types of indexed SWAP that we may build. The first type has a fixed qubit that can be swaped
with the ith qubit controlled on i. The second, most general indexed SWAP is controlled by both an i and j
register and swaps the two. In the body of the paper we do not make this disintion, as there complexities are of
the same order, but as the constant differ we will do so here.

Lemma B.2. Let d be a power of 2. There is a unitary, called single-indexed-SWAP (stylized iSWAP9), acting
on log(d) + 1 + d qubits plus 2d− 3 ancillary qubits that can be implemented using 2d− 2− 2 log(d) CNOT gates
and 12d− 12 Toffoli and X gates in 26 log(d) depth, and acts as follows on computational basis states

iSWAP|i〉|b〉|q1〉 . . . |qd〉 = |i〉|qi〉|q1〉 . . . |qi−1〉|b〉|qi+1〉 . . . |qd〉.

There is also a unitary, called double-indexed-SWAP (stylized iiSWAP), acting on 2 log(d) + d qubits plus
4d− 5 ancillary qubits, that can be implemented using 4d− 4− 4 log(d) CNOT gates and 36d− 36 Toffoli and X
gates in 74 log(d) depth, and acts as follows on computational basis states

iiSWAP|i〉|j〉|q1〉 . . . |qd〉 = |i〉|j〉|q1〉 . . . |qi−1〉|qj〉|qi+1〉 . . . |qj−1〉|qi〉|qj+1〉 . . . |qd〉.

Proof. For the iSWAP implementation we note that the SWAP gate can be implemented using 3 CNOT gates.
In particular we can use two calls to iCNOTo and a single call to iCNOTi. Note that we can reuse the parity
information bits and do not need to repeat the FANOUT.

For the iiSWAP, we note that we can perform a doubly indexed CNOT, i.e., a CNOT from qubit i to qubit
j, by first retrieving the bit in the ith position with a iCNOTo, then running iCNOTi with index j, and then
erasing the recovered bit with another call to iCNOTo. We can reuse the b bit for this. Again, 3 of these doubly
indexed CNOTs are sufficient to implement a iiSWAP. We can again reuse the parity bits without redoing the
FANOUT, but we have to implement these bits for both i and j. The stated counts follow.

9Note that this is not related to the iSWAP gate that applies the phase i if qubits are swapped, sometimes discussed in the
literature.
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