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Abstract

We revisit the classic problem of simplex range searching and related problems in computational
geometry. We present a collection of new results which improve previous bounds by multiple logarithmic
factors that were caused by the use of multi-level data structures. Highlights include the following:

• For a set of n points in a constant dimension d, we give data structures with O(nd) (or slightly
better) space that can answer simplex range counting queries in optimalO(log n) time and simplex
range reporting queries in optimal O(log n + k) time, where k denotes the output size. For semi-
group range searching, we obtain O(log n) query time with O(nd polylog n) space. Previous data
structures with similar space bounds by Matoušek from nearly three decades ago had O(logd+1 n)
or O(logd+1 n+ k) query time.

• For a set of n simplices in a constant dimension d, we give data structures with O(n) space that
can answer stabbing counting queries (counting the number of simplices containing a query point)
inO(n1−1/d) time, and stabbing reporting queries inO(n1−1/d+k) time. Previous data structures
had extra logd n factors in space and query time.

• For a set of n (possibly intersecting) line segments in 2D, we give a data structure withO(n) space
that can answer ray shooting queries in O(

√
n) time. This improves Wang’s recent data structure

[SoCG’20] with O(n log n) space and O(
√
n log n) query time.

*Department of Computer Science, University of Illinois at Urbana-Champaign, {tmc,dwzheng2}@illinois.edu. Work sup-
ported by NSF Grant CCF-1814026.
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1 Introduction

Simplex range searching. Simplex range searching is among the most fundamental and central problems
in computational geometry [4, 5, 27]. Its importance cannot be overstated: countless geometric algorithms
make use of simplex range searching data structures as subroutines. Given a set of n points in a constant
dimension d, the goal is to build data structures so that we can quickly find the points inside a query sim-
plex q. Several versions exist: in range counting, we want the number of points inside q; in range reporting,
we want to report all the points inside q, in time proportional to the number k of output points; in group or
semigroup range query (which generalizes range counting), we want the sum of the weights of the points
inside q, assuming that each input point is given a weight from a group or semigroup.1 Simplex ranges are
fundamental because any polyhedral region can be decomposed into simplices.

After years of research, the complexity of simplex range searching is now well-understood, if we do
not care about logarithmic factors. Data structures with O(m polylog n) space and O((n/m1/d) polylog n)
query time are known (with a “+k” term in the query bound for the reporting version) [36, 23, 30, 32], where
m is a trade-off parameter between n and nd. These bounds are generally believed to be close to optimal.2

The trade-off is obtained by interpolating between data structures for the two extreme cases, m = n and
m = nd. In fact, in the linear-space regime with m = n, known results have even eliminated all of the
extra logarithmic factors, i.e., there are data structures with O(n) space and O(n1−1/d) query time [32, 9].
However, in the large-space regime with m = nd, the best query time bound known for O(nd polylog n)
space is O(logd+1 n), by Matoušek [32] from the 1990s. This leads to the following question:

With O(nd polylog n) space, could the query time for simplex range searching be reduced,
ideally to O(log n)?

Surprisingly, no progress has been reported, despite the central importance of the simplex range search-
ing problem. Although the question may appear to be merely about shaving logarithmic factors, it is in-
teresting for the following reasons: Matoušek’s previous solution was a multi-level cutting tree (which we
will say more about later), and there is a general feeling among researchers that the usage of multi-level
data structures necessitates at least one extra logarithmic factor per level, especially when the query time is
subpolynomial. Our new results will call this rule of thumb into question. Secondly, once the large-space
regime is improved, potentially the entire space/query-time trade-off could be improved, by combining with
the known techniques in the linear-space regime.

It is not difficult to obtain O(log n) query time if space is increased to O(nd+ε) for an arbitrarily small
constant ε > 0, but insisting on O(nd polylog n) space is what makes the problem challenging. Goswami,
Das, and Nandy [28] showed that for d = 2, triangle range counting (or group range searching) queries can
indeed be answered inO(log n) time withO(n2) space, but their solution was not as good for range reporting
(they obtained a weaker query time bound of O(log2 n + k)) and did not extend to higher dimensions.
Recently, Chan and Zheng [11] observed that for a certain range of trade-offs when m is between n and
nd−ε, the extra logarithmic factors can be eliminated for some related problems, but this makes the question
for the m = nd case all the more intriguing.

1All groups and semigroups are assumed to be commutative in this paper.
2Notably, Chazelle [13] proved an Ω((n/ logn)/m1/d) lower bound on the query time for any m-space data structure in the

semigroup setting; and Chazelle and Rosenberg [22] proved an Ω(n1−ε/m1/d) lower bound on f(n) for any m-space data structure
with O(f(n) + k) query time for simplex range reporting in the pointer machine model. It is believed that the extra factors logn
and nε are artifacts of the proofs. (Indeed, the logn factor disappears for d = 2 [13], and the nε factor has been slightly improved
by Afshani [1].)
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We present improved data structures for simplex range query problems in any constant dimension d.
With O(nd polylog n) space, we improve the query times to O(log n + k) for simplex range reporting,
and O(log n) for simplex range counting and group or semigroup queries; these query bounds are optimal.
In fact, for the group or reporting version of the problem, we can even reduce space to slightly below nd

(by a small polylogarithmic factor). It is straightforward to use our results to obtain improvements for the
complete space/query-time trade-off as well.

Simplex range stabbing. Another fundamental geometric data structure problem is simplex range stab-
bing: given a set of n simplices in a constant dimension d, build a data structure so that we can quickly
find the simplices that are stabbed by (i.e., contain) a query point. As before, there are different versions of
the problem (counting, reporting, etc.). Range stabbing may be viewed as the “inverse” of range searching,
where the role of input and query objects is reversed.

The complexity of simplex range stabbing is similar to simplex range searching, if we don’t care about
logarithmic factors. This time, in the large-space regime, data structures with O(nd polylog n) space and
O(log n) query time follow from known techniques, but in the near-linear-space regime, known techniques
give data structures with extra logarithmic factors (more precisely, O(n logd n) space and O(n1−1/d logd n)
query time [9]; see also [24] for prior work on 2D triangle stabbing with similar extra logarithmic factors).
This leads to the following question:

In the near-linear space regime, could the extra logarithmic factors in the space and query time
for simplex range stabbing be removed?

Again, there was a general feeling among researchers that these logarithmic factors might be necessary since
the current solutions for simplex range stabbing were also multi-level data structures.

We show that all of the extra logarithmic factors may be eliminated! Specifically, with O(n) space,
we achieve O(n1−1/d) query time for the counting or group version and O(n1−1/d + k) query time for the
reporting version. In fact, for counting or reporting, we can even reduce the query time to slightly below
n1−1/d (by a small polylogarithmic factor) in a computational model that allows for bit packing.

Segment intersection searching and ray shooting. Lastly, we consider another related fundamental class
of geometric data structure problems, this time, about line segments in 2D. Given n (possibly intersecting)
line segments in 2D, we want to build data structures so that we can quickly find the input line segments
intersecting a query line segment (intersection searching), or find the first input line segment intersected by
a query ray (ray shooting). As before, there are different versions of intersection searching (counting, group,
reporting, etc.). This class of problems has historical significance in computational geometry, having been
extensively studied since the 1980s [34, 29, 3, 24, 7, 35].

The complexity of these problems are similar to triangle range searching in 2D, ignoring logarithmic fac-
tors. Recently, in SoCG’20, Wang [35] obtained improvements in the logarithmic factors in the near-linear-
space regime for the ray shooting problem: his data structure achieved O(n log n) space and O(

√
n log n)

query time. There was still an extra logarithmic factor in both space and time.
We obtain a new data structure that eliminates both logarithmic factors. With O(n) space, we achieve

O(
√
n) query time, not just for ray shooting but also for segment intersection counting or searching in the

group setting, or reporting (with a “+k” term for reporting). In contrast, Wang’s method did not extend
to intersection counting. Our results even improve over previous specialized results for nonintersecting
segments. In fact, for counting or reporting, we can even reduce the query time to slightly below

√
n (by a

small polylogarithmic factor).

2



Problem Space Query time Ref.

simplex reporting nd logd+1 n+ k [32]

nd log n+ k new

simplex counting (or group) nd logd+1 n [32]

nd log n new

simplex semigroup nd logd+1 n [32]

Õ(nd) log n new

simplex stabbing reporting n logd n n1−1/d logd n+ k [9]

n n1−1/d + k new

simplex stabbing counting (or group) n logd n n1−1/d logd n [9]

n n1−1/d new

segment intersection reporting in 2D n log2 n
√
n log2 n+ k [24]

n
√
n+ k new

segment intersection counting (or group) in 2D n log2 n
√
n log n [7]

n
√
n new

segment ray shooting in 2D nα(n) log2 n
√
nα(n) log n [7]

n log2 n
√
n log n [24]

n log n
√
n log n [35]

n
√
n new

Table 1: Summary of new results and selected previous results. (In some of the new results, we can even get
slightly below nd space, or slightly below n1−1/d or

√
n query time.)

Our new results are summarized in Table 1. (The Õ notation hides polylogarithmic factors throughout
this paper.)

Techniques. In the 1980s and 1990s, a number of techniques were developed by computational geometers
for solving problems related to simplex range searching—most notably, cutting trees [26, 18, 17, 5, 4] in
the large-space regime, and partition trees [36, 30, 32, 5, 4] in the linear-space regime. Cutting trees work
naturally for halfspace range searching, but to extend the solution to simplex range searching, one needs to
apply a standard multi-level technique [32, 5, 4] which causes extra logarithmic factors. For example, in a 2-
level data structure, we have a “primary” (outer) tree structure, where each node stores a “secondary” (inner)
tree structure solving some intermediate subproblem for a subset of the input called a “canonical subset”.
The classic example of a multi-level data structure is the range tree [5, 27] for d-dimensional orthogonal
range searching, which has about d levels and has logd−O(1) n factors in both space and query time (and
there are known lower bounds suggesting that these factors are necessary for orthogonal range searching
under various computational models [14, 15]).

Similarly, for simplex range stabbing (and also line-segment intersection searching and ray shooting) in
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the near-linear-space regime, one needs a multi-level version of the partition tree, which explains the extra
factors in all the previous results.

Our new data structures will still be based on the same standard techniques of cutting trees, partition
trees, and multi-leveling, but the novelty lies in how to combine them. The following (loosely stated)
principle will be the key:

In a multi-level data structure, if the secondary structures have strictly lower complexity (in
space or time) than the primary structures, then the overall complexity do not increase by
logarithmic factors.

For example, if S0(n) denotes the cost (say, space) of the secondary structure, and if the cost of the primary
structure satisfies a recurrence of the form S(n) = aS(n/b)+S0(n) where S0(n)� nlogb a−ε, then S(n) =
O(nlogb a) without extra logarithmic factors, according to the master theorem. This simple observation
is hardly original, but its power seems to have been overlooked, at least in the context of simplex range
searching. It suggests that it is advantageous to rearrange the levels of a multi-level data structure so that the
innermost-level structures solve intermediate subproblems that have strictly lower complexity.

For simplex range searching, we first decompose the query simplex into subcells where all but two
sides/facets are vertical; in fact, for counting or group range queries, we may assume that only one side is
nonvertical, by the use of subtraction (this trick was used before for triangle range searching in 2D, e.g.,
[2]). Following the above principle, we can let the innermost levels of the data structure handle the vertical
sides, since they project to range searching in d − 1 dimensions, which has strictly lower complexity. This
way, we can easily obtain O(log2 n) query time (already a substantial improvement over O(logd+1 n)). It
turns out that the final extra log n factor can be avoided as well by another standard trick:

Use a tree with a nonconstant branching factor nε at each node with subtree size n.

This idea is also not original, and is well known; for example, some versions of Matoušek’s original partition
trees [30] already used this choice of branching factor. This choice of branching factor not only leads to
a tree with smaller O(log log n) height, but allows the query cost to be bounded by a geometric series: a
recurrence of the form Q(n) = Q(n1−ε) + O(log n) solves to Q(n) = O(log n). The complete solution
(see Section 2.2) is conceptually quite simple—in hindsight, it is surprising that it was missed before.

For reporting or semigroup range queries, subtraction is forbidden, and so we need to deal with two
nonvertical sides. We could add an extra level and obtain O(log2 n) query cost, but we can do better:

• For reporting queries (see Section 2.4), we let the innermost level handle one nonvertical side (defined
by a halfspace), since halfspace range reporting is known to have strictly lower complexity [31]; we
then let the next levels handle all the vertical sides, as the complexity is still strictly lower than general
simplex range searching; we finally let the primary level handle the remaining nonvertical side.

• For semigroup range queries (see Section 2.5), we face more challenges—this is the most techni-
cally intricate part of the paper. We first observe that if we only account for the cost of semigroup
arithmetic operations rather than actual running time, it is possible to achieve constant query cost for
the subproblems at the innermost level, and this eventually leads to logarithmic cost for the original
problem with some careful choice of branching factors. However, the actual running time includes
the cost of point location operations, which is at least logarithmic per subproblem. We show that for
the multiple point location subproblems encountered here, we can solve each in constant time. This is
inspired by recent work of Chan and Zheng [11] on 2D fractional cascading in arrangements of lines,
although in our application, fractional cascading turns out to be unnecessary—instead, it suffices to
set up appropriate pointers between faces in different arrangements.
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Our data structures for simplex stabbing (see Section 3) are based on similar ideas. However, there is an
extra log log n factor in the space bound due to the fact that the outermost level has tree height O(log log n).
We use additional bit-packing tricks to remove this extra factor, which may be of independent interest, as
we have not seen such tricks used before for nonorthogonal range searching, though they are common in the
literature on orthogonal range searching. (Note that there is no cheating here; we just assume log n bits may
be fit in a single word. We do not use bit packing on the group elements. See the beginning of Section 3.4 for
more details on the computation model. Even without these tricks, our weaker O(n log log n) space bound
is still a significant improvement over previous bounds.)

Our data structures for segment intersection and ray shooting (see Section 4) are also based on similar
ideas. Many of the previous methods used multi-level data structures (such as [24, 7, 35]) where the out-
ermost level is a segment tree [27] (essentially a 1D structure) and the inner levels are partition trees. The
subproblems that arise in the inner levels are then special cases of the problems when the input objects or
query objects are rays or lines. Following the abovementioned principle, we creatively rearrange the levels,
like in our simplex range searching or range stabbing data structures. Perhaps the reason that this idea was
missed before is that with the levels rearranged, the subproblems are not as natural to state geometrically.
Still, the idea is quite simple, in hindsight.

We hope that our ideas will find many more applications in improving other multi-level data structures
in computational geometry.

2 Simplex Range Searching

Given a set P of n points in Rd, the goal of simplex range searching is to build (static) data structures so that
we can quickly count the points of P inside a query simplex, or report them, or compute the sum of their
weights from a group or semigroup.

2.1 Preliminaries

We begin by reviewing known techniques used in previous data structures for simplex range searching. Let
H be a collection of n hyperplanes in Rd. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting of H [18, 17] is a
collection Γ of (possibly unbounded) simplices called cells with the following properties:

1. The cells of Γ are interior disjoint and cover all of Rd.

2. At most n/r hyperplanes of H intersect any simplex ∆ ∈ Γ.

The conflict list H∆ is the set of hyperplanes of H that intersect any ∆ ∈ Γ. The size of a cutting
is the number of cells. The following theorem by Chazelle [16] is the best known result for computing
(1/r)-cuttings.

Lemma 2.1 (Cutting Lemma). Let H be a set of n hyperplanes over Rd. For any r ≤ n, it is possible
to compute a (1/r)-cutting of size O(rd) in time O(nrd−1). Furthermore, in the same time bound, we
can compute all the conflict lists, as well as a point location structure so that we can determine the cell
containing any given point in O(log r) time.

The cutting lemma is very useful for doing divide-and-conquer in computational geometry. We can use
the lemma recursively to build a multi-level data structure for semigroup simplex range searching as follows:
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Consider the case when the query range is an intersection of j halfspaces. Call this a “level-j” query.
Simplex range searching corresponds to level-(d + 1) queries. Level-0 queries can trivially be solved in
O(1) time (by just storing the sum of the weights of all input points).

By geometric duality [27], the input point set P becomes a set of hyperplanes H . A hyperplane h
bounding a query halfspace (say it is an lower halfspace) becomes a dual point h∗, and the points of p ∈ P
lying above h correspond to dual hyperplanes in H lying above h∗.

We apply the cutting lemma to the dual hyperplanesH . For each cell ∆ of the cutting, we recurse on the
conflict listH∆. In addition, we let C+

∆ (resp. C−∆) be the subset of the hyperplanes inH that are completely
above (resp. below) ∆; we store this subset (called a canonical subset) in a data structure for level-(j − 1)
queries. This gives the following recurrence for the space (and also preprocessing time) of the data structure:

Sj(n) = O(rd)Sj(n/r) +O(rd)Sj−1(n) +O(nrd).

To answer a level-j query, let h be the hyperplane bounding one of its j halfspaces; w.l.o.g., assume that
this halfspace is an upper halfspace. We find the cell ∆ containing the dual point h∗, recursively answer the
level-j query for H∆, and answer a level-(j − 1) query for C+

∆ (since we already know that h∗ is above all
hyperplanes in C+

∆, one of the j halfspaces can be dropped from this query); we then return the sum. This
gives the following recurrence for the query time:

Qj(n) = Qj(n/r) +Qj−1(n) +O(log r).

Choosing r to be a sufficiently large constant immediately gives a data structure with space Sd+1(n) =
O(nd+ε) and query time Qd+1(n) = O(logd+1 n).

Matoušek [32] used a hierarchical version of the cutting lemma by Chazelle [16], which we will discuss
in Section 2.3, to reduce the space bound to Õ(nd), while keeping query time O(logd+1 n).

Alternatively, we can choose r = N ε whereN is the global input size, to ensure that the recursion depth
is O(1); this gives query time O(logN) and space O(Nd+O(ε)) (which can be rewritten as O(Nd+ε) by
readjusting ε by a constant factor). As we will use this result later, we state it as a lemma (the extra N ε

factor turns out to be tolerable since we will apply this lemma only in d− 1 dimensions):

Lemma 2.2. Simplex range searching on n points in Rd with weights from a semigroup can be performed
with O(log n) query time using a data structure with O(nd+ε) space and preprocessing time for any fixed
ε > 0.

2.2 Group simplex range searching

We now present our new data structure for simplex range searching in the group setting (which in particular
is sufficient for counting). We first introduce the following subproblems:

Definition 2.3. For i ∈ {0, 1, 2} and j ∈ {0, . . . , d}, an (i, j)-sided range refers the intersection of i
arbitrary halfspaces and j vertical halfspaces. Here, “vertical” means “parallel to the d-th axis” (thus
projecting a vertical halfspace along the d-th axis yields a halfspace in d− 1 dimensions). When the query
is an (i, j)-sided range, we refer to it as an (i, j)-sided query.

Observation 2.4. A simplex range query reduces to a constant number of (2, d)-sided queries.

Proof. Just take the vertical decomposition [6] of the query simplex. Since a simplex has O(1) complexity,
the decomposition gives O(1) cells, where each cell has two nonvertical facets. We may assume that the
projection of the cell along the d-th axis is a (d − 1)-dimensional simplex (if not, we can triangulate the
projection). We can answer a range query for each cell and return the sum of the answers.
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Observation 2.5. In the group setting, a (2, d)-sided query reduces to two (1, d)-sided queries.

Proof. This follows by subtraction, since a cell with 2 nonvertical facets can be expressed as the difference
of two cells each with 1 nonvertical facet.

Theorem 2.6. Simplex range searching on n points in Rd with weights from a group can be performed with
O(log n) query time using a data structure with Õ(nd) space and preprocessing time.

Proof. By the above two observations, a simplex range query reduces to a constant number of (1, d)-sided
queries in the group setting. It suffices to describe a solution to (1, d)-sided queries.

Like before, we apply the cutting lemma to the dual hyperplanes H . For each cell ∆ of the cutting, we
recurse on the conflict list H∆. In addition, we let C+

∆ (resp. C−∆) be the subset of the hyperplanes in H that
are completely above (resp. below) ∆; we store this subset (a canonical subset) in a data structure for (0, d)-
sided queries. Note that (0, d)-sided queries are equivalent to range queries on the (d − 1)-dimensional
vertical projection of the input points, and so there is a data structure with S0,d(n) = O(nd−1+ε) space
(and preprocessing time), and Q0,d(n) = O(log n) query time by Lemma 2.2. This gives the following
recurrence for the space (and also preprocessing time) of the data structure:

S1,d(n) = O(rd)S1,d(n/r) +O(rd)S0,d(n) +O(nrd).

To answer a (1, d)-sided query, let h be the hyperplane bounding its nonvertical halfspace; w.l.o.g., assume
that this halfspace is an lower halfspace. We find the cell ∆ containing the dual point h∗, recursively answer
the query for H∆, and answer a (0, d)-sided query for C+

∆ (since we already know that h∗ is above all
hyperplanes in C+

∆, all the remaining sides are vertical); we then return the sum. This gives the following
recurrence for the query time:

Q1,d(n) = Q1,d(n/r) +Q0,d(n) +O(log r).

We choose r = nε for a sufficiently small constant ε, and plug in S0,d(n) = O(nd−1+ε). Then

S1,d(n) = O(nεd)S1,d(n
1−ε) +O(nd−1+O(ε)).

The recursion hasO(log log n) depth. Due to a constant-factor blowup, we get S1,d(n) = O(nd2O(log logn)) =

Õ(nd). On the other hand,

Q1,d(n) ≤ Q1,d(n
1−ε) +O(log n)

≤ O(log n+ (1− ε) log n+ (1− ε)2 log n+ · · · ) ≤ O(log n)

by a geometric series.

2.3 Reducing space from Õ(nd) to O(nd) (or better)

In the proof of Theorem 2.6, we get an extra polylogarithmic factor in space because of the constant-factor
blowup, but this can be avoided by using a known “hierarchical” version of cuttings due to Chazelle [16]:

Lemma 2.7 (Hierarchical Cutting Lemma). Let H be a set of n hyperplanes over Rd. For any sequence
r1 < r2 < · · · < r` ≤ n, we can compute a tree of cells, such that the cell of each node is the disjoint
union of the cells of its children, and the cells at each depth i form a (1/ri)-cutting of H of size O(rdi ). All
the cells and all the conflict lists can be computed in time O(nrd−1

` ), and we can determine the child cell
containing any given point at a node of depth i in time O(log(ri+1/ri)).
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Originally, Chazelle proved the above lemma for the sequence 1, ρ, ρ2, . . . for some constant ρ > 1, but
the above generalization follows immediately by rounding each ri to a power of ρ, and keeping only the
nodes with depths in a subsequence of 1, ρ, ρ2, . . . (thereby compressing the tree).

Theorem 2.8. Simplex range searching on n points in Rd with weights from a group can be performed with
O(log n) query time using a data structure with O(nd) space and preprocessing time.

Proof. To reduce space in our data structure, we just replace all the cuttings in the proof of Theorem 2.6
(the outer level) with the tree of cuttings from the hierarchical cutting lemma, using the sequence ri = n/ni,
n0 = n, ni+1 = n1−ε

i , and ` = O(log log n). The space bound becomes S1,d(n) = O
(∑`−1

i=0 r
d
i+1n

d−1+O(ε)
i

)
=

O
(∑`−1

i=0 n
d/n

1−O(ε)
i

)
, which sums to O(nd).

Remark. In fact, space can be further reduced to slightly below nd as follows: We set ` so that r` =
n/A for a parameter A, and switch to a different data structure for leaf subproblems of size A with
O(m logO(1)A) space and O(A/m1/d) query time [32, 9]; by choosing m = Ad−δ for a sufficiently
small constant δ > 0, we get O(Ad−δ logO(1)A) space and O(Aδ/d) query time. The space summation
now gives O(nd/A1−O(ε)), and the total space of the leaf structures is O((n/A)d · Ad−δ logO(1)A) =
O((nd/Aδ) logO(1)A), which dominates the sum. The query time isO(log n+Aδ/d). SettingA = logd/δ n
yields logarithmic query time and O((nd/ logd n)(log logn)O(1)) space.

Note that this type of O(nd/ logΩ(1) n) space bound is not a complete surprise and has appeared before
for certain problems (e.g., see [19]).

The small extra log log n factors are likely improvable by bootstrapping. (In fact, for counting, we might
even be able to get slightly below nd/ logd n by bit packing tricks; see the remark at the end of Section 3.4.)

2.4 Simplex range reporting

For simplex range reporting, the subtraction trick in Observation 2.5 is no longer applicable. We could add
another level to our multi-level data structure to reduce (2, d)-sided queries to (1, d)-sided queries, but this
would result in an extra logarithmic factor in the query time. We propose a different strategy to solve the
(2, d)-sided problem.

We start with the (1, 0)-sided query problem, which can be solved by known results for halfspace range
reporting [25, 31], as stated in the following lemma. (This data structure was obtained by a recursive
application of a “shallow” variant of cuttings. The extra nε factor in the space bound was later improved by
Matoušek and Schwarzkopf [33], but this weaker result is enough as what’s important is that the exponent
is strictly less than d.)

Lemma 2.9. Halfspace reporting on n points in Rd can be performed with O(log n + k) query time using
a data structure with O(nbd/2c+ε) space and preprocessing time for any fixed ε > 0.

Next we solve the (1, d)-sided query problem:

Lemma 2.10. There is a data structure for (1, d)-sided queries in Rd with O(log n + k) query time and
O(nd−1+ε) space and preprocessing time for any fixed ε > 0.

Proof. Applying the same method as in Section 2.1 using cuttings in d − 1 dimensions to deal with the
vertical sides, we obtain a data structure for (1, j)-sided queries with the following recurrences for space
and query time (ignoring the “+k” reporting cost):

S1,j(n) = O(rd−1)S1,j(n/r) +O(rd−1)S1,j−1(n) +O(nrd−1)
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Q1,j(n) = Q1,j(n/r) +Q1,j−1(n) +O(log r),

with S1,0(n) = O(nbd/2c+ε) ≤ O(nd−1+ε) and Q1,0(n) = O(log n) by Lemma 2.9 for the base case.
We choose r = N ε where N is the global input size (“global” is with respect to this lemma), to ensure

that the recursion depth is O(1). This gives S1,d(N) = O(Nd−1+O(ε)) and Q1,d(N) = O(logN) (as usual,
we can readjust ε by a constant factor).

Finally, we solve the (2, d)-sided query problem:

Theorem 2.11. Simplex reporting on n points in Rd can be performed with O(log n+k) query time (where
k is the output size) using a data structure with O(nd) space and preprocessing time.

Proof. By Observation 2.4, it suffices to solve the (2, d)-sided query problem. As in the proof of Theo-
rem 2.6, we obtain a data structure with the following recurrences for space and query time (ignoring the
“+k” reporting cost):

S2,d(n) = O(rd)S2,d(n/r) +O(rd)S1,d(n) +O(nrd)

Q2,d(n) = Q2,d(n/r) +Q1,d(n) +O(log r),

with S1,d(n) = O(nd−1+ε) and Q1,d(n) = O(log n) by Lemma 2.10.
We choose r = nε for a sufficiently small constant ε. As in the proof of Theorem 2.6, the recurrences

solve to S2,d(n) = Õ(nd) and Q2,d(n) = O(log n).
As in Section 2.3, the space bound in the above data structure can be reduced from Õ(nd) to O(nd), by

using hierarchical cuttings for the outermost level.

To summarize, in the above multi-level data structure, the innermost level tackles one of the nonvertical
sides (solving a (1, 0)-sided problem); the next levels then add all the vertical sides (solving a (1, d)-sided
problem); the outermost level finally adds the second nonvertical side (solving a (2, d)-sided problem). We
emphasize that this unusual order is critical to achieving our result.

As in the remark in Section 2.3, space can be further reduced to O(nd/ logΩ(1) n).

2.5 Semigroup simplex range searching

For simplex range searching in the semigroup model, the subtraction trick in Observation 2.4 is again not
applicable, but we can still obtain logarithmic query time by a more intricate solution.

2.5.1 Bounding the number of semigroup operations

To warm up, we first relax the computational model and measure the query complexity by the number
of semigroup sum operations instead of actual running time. All other operations not involving the input
weights (like point location) are “free”.

We first observe that it is possible to improve the query complexity of Lemma 2.2 to constant in this
setting.

Lemma 2.12. There is a data structure for simplex range searching in Rd in the semigroup setting with
O(nd+ε) space, such that a query can be answered using O(1) semigroup operations.
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Proof. We use the same method as in Section 2.1. Because point location is free, the recurrences now
become

Sj(n) = O(rd)Sj(n/r) +O(rd)Sj−1(n) +O(nrd)

Qj(n) = Qj(n/r) +Qj−1(n) +O(1).

As we have chosen r = N ε so that the recursion depth is O(1), we now have Qd+1(N) = O(1) (and
Sd+1(N) = O(Nd+O(ε)) as before).

We can solve the (0, d)-sided query problem by applying the above lemma in d−1 dimensions. Next, we
can solve the (1, d)-sided query problem as in Theorem 2.6, but now with O(log log n) query complexity:

Lemma 2.13. There is a data structure for (1, d)-sided queries in Rd in the semigroup setting with Õ(nd)
space, such that a query can be answered in O(log log n) semigroup operations.

Proof. We use the same method as in the proof of Theorem 2.6. Because point location is free, the recur-
rences now become

S1,d(n) = O(rd)S1,d(n/r) +O(rd)S0,d(n) +O(nrd)

Q1,d(n) = Q1,d(n/r) +Q0,d(n) +O(1),

with S0,d(n) = O(nd−1+ε) and Q0,d(n) = O(1) by Lemma 2.12. As we have chosen r = nε, the query
recurrence

Q1,d(n) = Q1,d(n
1−ε) +O(1)

now gives Q1,d(n) = O(log log n) (and S1,d(n) = Õ(nd) as before).

Finally, we can solve the (2, d)-sided query problem with O(log n) query complexity by using a poly-
logarithmic branching factor:

Lemma 2.14. There is a data structure for simplex range queries in Rd in the semigroup setting with Õ(nd)
space, such that a query can be answered in O(log n) semigroup operations.

Proof. By Observation 2.4, it suffices to solve the (2, d)-sided query problem. We reduce (2, d)-sided
queries to (1, d)-sided queries as in the proof of Theorem 2.6, which gives the recurrences

S2,d(n) = O(rd)S2,d(n/r) +O(rd)S1,d(n) +O(nrd)

Q2,d(n) = Q2,d(n/r) +Q1,d(n) +O(log r),

where S1,d(n) = Õ(nd) and Q1,d(n) = O(log log n) by Lemma 2.13.
We choose r = logε n. The recursion depth isO(log n/ log logn), and soQ2,d(n) = O((log n/ log logn)·

log logn) = O(log n). Due to the constant-factor blowup, we have S2,d(n) = O(nd2O(logn/ log logn)).
However, the space bound can be reduced by applying the hierarchical cutting lemma, using the sequence
ri = n/ni, n0 = n, ni+1 = ni/ logε n, and ` = O(log n/ log log n). Then S2,d(n) = Õ

(∑`−1
i=0 r

d
i+1n

d
i

)
=

Õ
(∑`−1

i=0 n
d logεd n

)
, which is Õ(nd).

Note the more conventional order of levels in the above multi-level data structure: the innermost level
tackles the vertical sides, and the outer two levels tackle the two nonvertical sides. Note also how fortu-
itously the product of the O(log log n) tree height in Lemma 2.13 and the O(log n/ log log n) tree height in
Lemma 2.14 happens to be O(log n).
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2.5.2 Subarrangement point location

The preceding theorem does not bound the actual query time. When the cost of point location is included, the
query complexity goes up by a logarithmic factor naively. Next we will show how to perform multiple point
location operations more efficiently in constant time per operation, reminiscent of fractional cascading [20,
11]. To this end, we introduce the following subproblem:

Problem 2.15 (Subarrangement Point Location). Given a set H of n hyperplanes in Rd, and a subset
H ′ ⊆ H of hyperplanes, build a data structure that can handle the following types of queries: Given a point
p and the label of the face where p lies in A(H), output the label of the face that p lies in A(H ′).

The fact that H ′ is a subset of H allows for an extremely simple solution to this subproblem, by just
following pointers!

Observation 2.16. The subarrangement point location problem in Rd can be solved using a data structure
with O(nd) space and preprocessing time that has O(1) query time.

Proof. Build the full arrangement A(H) and A(H ′). Since H ′ ⊆ H , any cell ∆ ∈ H is in a unique cell
∆′ ∈ H ′, and we can store a pointer from ∆ to ∆′. As there are O(nd) cells in A(H), it suffices to store
O(nd) pointers. Given a query point p and the label of the face ∆ in A(H), we can follow the pointer to
find the face of ∆′ ∈ A(H ′) that p lies in.

2.5.3 Bounding the actual query time

We now modify Lemmas 2.12–2.14 so as to bound the actual query time. At first, sublogarithmic query time
for Lemmas 2.12–2.13 seems impossible, but we show that it is possible if we are given the faces in the dual
arrangement containing the dual query points.

Lemma 2.17. There is a data structure for simplex range searching in Rd in the semigroup setting with
O(nd+ε) space and preprocessing time and O(1) query time, assuming that we are given the labels of the
faces in A(H) containing h∗1, . . . , h

∗
d+1, where H denotes the dual hyperplanes of the input points, and

h∗1, . . . , h
∗
d+1 denote the dual points of the hyperplanes bounding the query simplex.

Proof. We modify the proof of Lemma 2.12, which is based on the method in Section 2.1. Observe that
from the d+1 labels inA(H), we can determine the labels inA(H∆),A(C+

∆), andA(C−∆) in constant time
by Observation 2.16. Thus, when we recurse in H∆, C+

∆, or C−∆, the assumption remains true. In addition,
for each face f in A(H), we store a pointer from its label to a cell ∆ in the cutting that overlaps with f . If
there is more than one cell in the cutting, pick one arbitrarily.

Recall that in the algorithm to answer a level-j query, we need to find the cell ∆ containing h∗, the dual
point of the hyperplane bounding one of the query’s halfspaces. By assumption, we are given the label of
the face f in A(H) containing h∗. We just follow the pointer from f to identify ∆ in O(1) time.

However, there is one subtlety: the cell ∆ contains a point in f , but does not necessarily contain the
point h∗. But it doesn’t matter! All points in f are equivalent, in the sense that if h∗ were to change to
any point in the same face f , the answer to the query would be the same. (The algorithm does not need the
actual coordinates of h∗ anyway, just the label of f .)

The query time thus satisfies the same recurrence as before. Since Observation 2.16 and the extra
pointers require O(nd) space, the space recurrence has an extra O(nd) term:

Sj(n) = O(rd)Sj(n/r) +O(rd)Sj−1(n) +O(nrd) +O(nd).

As we have chosen r = N ε, we still get Sd+1(N) = O(Nd+O(ε)) (and the query bound is the same).
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Lemma 2.18. There is a data structure for (1, d)-sided queries in Rd in the semigroup setting with Õ(nd)
space and preprocessing time and O(log log n) query time, assuming that we are given the labels of the
faces in A(H) containing h∗, h∗1, . . . , h

∗
d, where H denotes the dual hyperplanes of the input points, h∗

denotes the dual point of the hyperplane bounding the query’s nonvertical halfspace, and h∗1, . . . , h
∗
d denote

the dual points of the hyperplanes bounding the vertical projection of the query’s vertical halfspaces.

Proof. We modify the proof of Lemma 2.13, which is based on the proof of Theorem 2.6, by the same idea
as in the proof of Lemma 2.17. (Note that when we take the vertical projection of the input point set, we are
taking a (d− 1)-dimensional slice of the dual arrangement; we can add a pointer from the label of each face
of the arrangement to the label of a corresponding face of the (d− 1)-dimensional arrangement, if it exists.)
The space recurrence again has an extra O(nd) term:

S1,d(n) = O(rd)S1,d(n/r) +O(rd)S0,d(n) +O(nrd) +O(nd),

with S0,d(n) = O(nd−1+ε) and Q0,d(n) = O(1) by Lemma 2.17. As we have chosen r = nε, we still get
S1,d(n) = O(nd2O(log logn)) = Õ(nd) (and the query bound is the same).

Theorem 2.19. Simplex range searching on n points in Rd with weights from a semigroup can be performed
with O(log n) query time using a data structure with Õ(nd) space and preprocessing time.

Proof. We modify the proof of Lemma 2.14, which is based on the proof of Theorem 2.6, by the same idea
as in the proof of Lemma 2.17. The space recurrence again has an extra O(nd) term:

S2,d(n) = O(rd)S2,d(n/r) +O(rd)S1,d(n) +O(nrd) +O(nd),

with S1,d(n) = O(nd−1+ε) and Q1,d(n) = O(log log n) by Lemma 2.18. The space bound remains Õ(nd)
when using hierarchical cuttings (and the query bound is the same).

At the beginning, we can satisfy the assumption in Lemma 2.18 by performing d+1 initial point location
queries in the global hyperplane arrangement. This requires an additional O(log n) query time and O(nd)
space [16].

We could use hierarchical cuttings to remove the extra logarithmic factors in the space bound of Lemma 2.18,
but there is an extra log1+O(ε) n factor in the proof of Theorem 2.19. Note that unlike in the remark in Sec-
tion 2.3, we do not see any way to improve the space bound of the above data structure to O(nd/ logΩ(1) n),
because it explicitly works with arrangements of O(nd) size.

3 Simplex Range Stabbing

Given a set of n simplices in Rd, the goal of simplex range stabbing is to build data structures so that we can
quickly count the simplices that are stabbed by (i.e., contain) a query point, or report them, or compute the
sum of their weights from a group or semigroup.

3.1 Preliminaries

We begin by reviewing known techniques used in previous data structures. Given a set P of n points in Rd,
a simplicial partition for P is a collection Π = {(P1,∆1), ..., (Pt,∆t)} where P is a disjoint union of the
Pi’s and each ∆i is a simplex containing Pi. We will refer to the ∆i’s as the cells. Matoušek [30] proved
the following key theorem:
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Theorem 3.1 (Partition Theorem). For a set P of n points in Rd, for any parameter t ≤ n, there exists a
simplicial partition Π = {(P1,∆1), ..., (PO(t),∆O(t))} such that each subset contains at most n/t points,
and any hyperplane crosses O(t1−1/d) cells. The partition can be constructed in O(n log t) time if t ≤ nα

for some constant α > 0.

The partition theorem is useful for divide-and-conquer for getting linear-space data structures with
around O(n1−1/d) query time. Analogously to Lemma 2.2, we can use the partition theorem recursively
to create a multi-level data structure for simplex stabbing as follows:

Consider the case when all the input ranges are defined by j halfspaces. Call this a “level-j” problem.
Like before, a level-0 problem can be solved trivially by storing the sum of the weights of all input ranges.
Detecting if a query point p stabs a range γ corresponds to testing if p lies within each of the j halfspaces
defining γ. Dualizing, this corresponds to checking if the dual hyperplane p∗ lies on the correct side of the
dual points of each halfspace defining γ. Apply the partition theorem to the set P of dual points of the j-th
halfspaces of the ranges (we may assume that all of these are lower halfspaces, since afterwards we can
repeat this process for all the upper halfspaces as well). For every cell ∆i of the partition intersecting the
hyperplane p∗, we can recurse on the ranges corresponding to the subset Pi. For every cell ∆i completely
below p∗, we recurse on the subset of ranges corresponding to subset Pi but as a level-(j−1) problem. This
gives the following space and query time bounds:

Sj(n) = max
ni≤n/t,

∑
i ni=n

∑
i

Sj(ni) +O(t)Sj−1(n/t) +O(t)

Qj(n) = O(t1−1/d)Qj(n/t) +O(t)Qj−1(n/t) +O(t).

(For the base case, S0(n) = O(1) and Q0(n) = O(1).) Choosing t = N ε where N is the global input size
ensures that the recursion depth is O(1). Thus, Sd+1(n) = O(N) and Qd+1(N) = O(N1−1/d+O(ε)). (The
preprocessing time analysis is similar.) This gives us the following lemma, which we will use later in d− 1
dimensions.

Lemma 3.2. Simplex range stabbing on n simplices in Rd with weights from a semigroup can be performed
with O(n1−1/d+ε) query time using a data structure with O(n) space and O(n log n) preprocessing time.

3.2 Group simplex range stabbing

We now present our new data structure for simplex range stabbing in the group setting (which in particular
is sufficient for counting). We follow an approach similar to our data structure for group simplex range
searching in Section 2.2.

Recall Definition 2.3 on (i, j)-sided ranges. An (i, j)-sided stabbing problem will now refer to the
case when all input ranges are (i, j)-sided. As in Observation 2.4, the simplex stabbing problem reduces
to a constant number of (2, d)-sided stabbing problems. As in Observation 2.5, in the group setting, the
(2, d)-sided stabbing problem reduces to the (1, d)-sided stabbing problem.

Theorem 3.3. Simplex range stabbing on n simplices in Rd with weights from a group can be performed
with Õ(n1−1/d) query time using a data structure with O(n log logn) space and O(n log n) preprocessing
time.

Proof. By the two observations, it suffices to solve the (1, d)-sided stabbing problem.
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Like before, by applying the partition theorem to the dual points of the nonvertical input halfspaces, we
obtain the following recurrences for the space and query time for the (1, d)-sided stabbing problem:

S1,d(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S1,d(ni) +O(t)S0,d(n/t) +O(t)

Q1,d(n) = O(t1−1/d)Q1,d(n/t) +O(t)Q0,d(n/t) +O(t),

with S0,d(n) = O(n) and Q0,d(n) = O(n1−1/(d−1)+ε) by Lemma 3.2.
We choose t = nε for a sufficiently small constant ε. The recursion depth is O(log log n). Thus,

S1,d(n) = O(n log log n). (The preprocessing time analysis is similar, except that we get a geometric
series.) Note that the O(t)Q0,d(n/t) term is n1−1/(d−1)+O(ε) � n1−1/d. Due to a constant-factor blowup,
we get Q1,d(n) = O(n1−1/d2O(log logn)) = Õ(n1−1/d).

3.3 Reducing query time from Õ(n1−1/d) to O(n1−1/d)

In the proof of Theorem 3.3, we get an extra polylogarithmic factor in the query time because of the constant-
factor blowup, but this can be avoided by using a “hierarchical” variant of the partition theorem, which
follows from Chan’s optimal partition trees [9] (see also [32]).

Theorem 3.4 (Hierarchical Partition Theorem). Let P be a set of n points in Rd. For any sequence t1 <
t2 < · · · < t` ≤ n with t1 ≥ logω(1) n, we can compute a tree of cells, such that the cell of each node
at depth i is the disjoint union of the cells of its O(ti+1/ti) children, and the cells at each depth i form a
simplicial partition of P intoO(ti) cells such that each cell contains at most n/ti points and any hyperplane
crosses O(t

1−1/d
i ) cells. The tree can be constructed by a randomized algorithm in O(n log n) time, where

the crossing number bound holds w.h.p.3

The original version of Chan’s optimal partition tree yields the above theorem for a suffix of the sequence
1, 2, 4, 8, . . . (See [9, proof of Theorem 5.3], where each node has constant degree, and a cell at depth i that
contains fewer than n/2i+1 points need not be subdivided and may be viewed as a degree-1 node.) The
above generalization follows by rounding each ti to a power of 2, and keeping only the nodes with depths
in the resulting subsequence.

To reduce the query time in our data structure, we just replace all the simplicial partitions in the proof
of Theorem 3.3 with the tree of partitions from the hierarchical partition theorem, using the sequence
ti = n/ni, n0 = n, ni+1 = n1−ε

i , and ` = O(log log n). The query time bound becomes Q1,d(n) =

O
(∑`−1

i=0(ti+1/ti) · t1−1/d
i n

1−1/(d−1)+ε
i

)
= O

(∑`−1
i=0 n

1−1/d/n
1/(d−1)−1/d−O(ε)
i

)
= O(n1−1/d).

3.4 Reducing space from O(n log log n) to O(n)

We next show that the extra log logn factor in the space bound of Theorem 3.3 can also be removed.
We assume a real-RAM model of computation where a word can store (i) a real number, (ii) a group

element, or (iii) a w-bit number with w ≥ log n. Words of type (iii) are standard, since indices and point-
ers require logarithmically many bits. Words of type (i) (which are commonly assumed in computational
geometry) actually pose more of a concern, as we could potentially cheat by hiding an unlimited number
of bits inside a real number. Our algorithms will not cheat. One way to prevent cheating in the model is

3With high probability, i.e., probability 1−O(1/nc) for an arbitrarily large constant c.
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to insist that each real number stored must be obtained by one of the standard arithmetic operations on two
other real numbers that are stored in the data structure or are among the input real numbers (in particular,
the floor function is not allowed).

We will use bit packing tricks but only on words of type (iii), which are legal (although our data structure
does not fit in the standard pointer machine model, it fits in what Chazelle called an “arithmetic pointer
machine” [12] where arithmetic operations on addresses are allowed). These tricks are commonly used in
orthogonal range searching and related geometric problems (e.g., see [10]), and also in other areas of data
structures. We will not use any bit packing on words of type (ii), i.e., each group element are treated as
“atomic”; our linear-space data structures will store really only O(n) number of group elements.

Our key observation is that by bit packing, the data structure in Lemma 3.2 actually takes sublinear
words of extra space if n is small, and if space for the input array is excluded.

Lemma 3.5. Simplex range stabbing on n simplices in Rd with weights from a semigroup can be performed
with O(n1−1/d+ε) query time using a data structure with O((n log n)/w + n1−Ω(ε)) words of space and
O(n log n) preprocessing time. The space bound here excludes the input array storing the n simplices and
their weights (we are not allowed to permute the input array).

Proof. We reanalyze the space bound in the recursive method in Section 3.1. Recall that we have chosen
t = N ε where N is the global input size. When n = t, we have reached the base case and can simply store
the input as a plain list of pointers to the input array, which requires O(n logN) bits, i.e., O((n logN)/w)
words. As the recursion depth is O(1) and there are O(N/t) leaves (and O(N/t2) internal nodes), we have
Sd+1(N) = O((N logN)/w +N/t) = O((N logN)/w +N1−ε).

Theorem 3.6. Simplex range stabbing on n simplices in Rd with weights from a group can be performed in
O(n1−1/d) query time w.h.p. using a randomized data structure with O(n) words of space and O(n log n)
preprocessing time.

Proof. We modify the proof of Theorem 3.3. We choose a favorable permutation of the input array: namely,
having computed the simplicial partition {(P1,∆i), . . . , (PO(t),∆O(t))}, we permute the array so that each
Pi occupy a contiguous subarray, before recursing in each Pi; afterwards, the permutation of Pi is fixed, and
we can apply Lemma 3.5.

By the lemma, we can plug in S0,d(n) = O((n log n)/w + n1−Ω(ε)), and the recurrence for the amount
of extra space (excluding the input array) becomes

S1,d(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S1,d(ni) +O((n log n)/w + t(n/t)1−ε).

As we have chosen t = nε, this gives S1,d(n) = O((n log n)/w+n) (since the (n log n)/w term generates a
geometric series, and the t(n/t)1−ε term is sublinear). Sincew ≥ log n, we obtain a linear space bound. The
query time isO(n1−1/d) as already explained in Section 3.3 by using the hierarchical partition theorem.

Note that in the above theorem (and, in fact, all data structures in this paper), the only place where
randomization is used is the construction of the hierarchical partitions (from Theorem 3.4). If we do not
care about preprocessing time, all our data structures are deterministic.

Remark. For counting, it is possible to use bit packing tricks to slightly improve the query time as well.
In modifying the proof of Theorem 3.3, we apply the hierarchical partition theorem with t` = n/B for some
parameter B. We can switch to a different data structure for leaf subproblems of size B, with O(m) space

15



and O(B1+ε/m1/d) query time [32]. By choosing m = B1+δ for a sufficiently small constant δ > 0, the
query time is O(B1−1/d−δ/d+ε) and the space usage is O(B1+δ logB) in bits, or O((B1+δ logB)/w) in
words by bit packing. The total space in words is O(n + (n/B) · (B1+δ logB)/w), and the query time is
O((n1−1/d/B1/(d−1)−1/d−O(ε) + (n/B)1−1/d · B1−1/d−δ/d+ε). Setting B near log1/δ n gives O(n) words
of space and O(n1−1/d/ log1/d−O(ε) n) query time (as w ≥ log n).

We are not aware any previous work mentioning this type of O(n1−1/d/ logΩ(1) n) query time bound.
The same trick works also for simplex range counting or reporting. This trick does not work in the group
setting (since group elements requires one word each and cannot be packed).

3.5 Simplex range stabbing reporting

For the reporting version of simplex range stabbing, we follow an approach similar to our data structure for
simplex range reporting in Section 2.4.

We start with the (1, 0)-sided stabbing problem, which reduces to halfspace range reporting in dual
space. By known results [33], we have:

Lemma 3.7. Halfspace reporting on n points in Rd can be performed with O(n1−1/bd/2c+ε+k) query time
using a data structure with O(n) space and O(n log n) preprocessing time for any fixed ε > 0.

We then solve the (1, d)-sided stabbing problem and finally the (2, d)-sided stabbing problem:

Lemma 3.8. There is a data structure for (1, d)-sided stabbing problem in Rd with O(n1−1/(d−1)+ε + k)
query time, O(n) space, and O(n log n) preprocessing time for any fixed ε > 0.

Proof. Applying the same method as in Section 3.1 using simplicial partitions in d − 1 dimensions, we
obtain a data structure for the (1, j)-sided stabbing problem with the following recurrences of space and
query time (ignoring the “+k” reporting cost):

S1,j(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S1,j(ni) +O(t)S1,j−1(n/t) +O(t)

Q1,j(n) = O(t1−1/(d−1))Q1,j(n/t) +O(t)Q1,j−1(n/t) +O(t),

with S1,0(n) = O(n) and Q1,0(n) = O(n1−1/bd/2c+ε) by Lemma 3.7.
We choose r = N ε where N is the global input size, to ensure that the recursion depth is O(1). This

gives S1,d(N) = O(N) and Q1,d(N) = O(N1−1/(d−1)+O(ε)). (The preprocessing time analysis is similar.)

Theorem 3.9. Simplex stabbing reporting on n simplices in Rd can be performed withO(n1−1/d+k) query
time w.h.p. (where k is the output size) using a randomized data structure with O(n) words of space and
O(n log n) preprocessing time.

Proof. It suffices to solve the (2, d)-sided stabbing problem: As in the proof of Theorem 3.3, we obtain a
data structure with the following recurrences for space and query time (ignoring the “+k” reporting cost):

S2,d(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S2,d(ni) +O(t)S1,d(n/t) +O(t)

Q2,d(n) = O(t1−1/d)Q2,d(n/t) +O(t)Q1,d(n/t) +O(t),
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with S1,d(n) = O(n) and Q1,d(n) = O(n1−1/(d−1)+ε) by Lemma 3.2. (The preprocessing time analysis is
similar.)

We choose r = nε. As in the proof of Theorem 3.3, the recurrences solve to S2,d(n) = O(n log log n)

and Q2,d(n) = Õ(n1−1/d).
As in Section 3.3, the extra polylogarithmic factor in the query time bound can be removed, by using

the hierarchical partition theorem for the outermost level.
As in Section 3.4, the extra log logn factor in space can also be improved, by the same bit-packing tricks

(by observing that the space bounds in Lemmas 3.7 and 3.8 can be reduced to O((n log n)/w + n1−ε′) for
some ε′ > 0).

4 Segment Intersection Searching and Ray Shooting

Given a set S of n line segments in R2, the goal of segment intersection searching is to quickly count the
segments in S intersecting a query line segment, or report them, or compute the sum of their weights from
a group or semigroup. Naively, the condition that an input segment s intersects a query segment q can be
expressed as a conjunction of four 2D halfplane (linear) constraints: namely, that the two endpoints of q lie
on different sides of the line through s and the two endpoints of s lie on different sides of the line through q.
Thus, it is straightforward to obtain a multi-level partition tree for this problem achieving near linear space
and near

√
n query time; however, the four levels cause multiple extra logarithmic factors in space and time.

We will describe better approaches, using expressions involving fewer 2D halfplane constraints.

4.1 Group segment intersection searching

In this subsection, we consider segment intersection searching queries in the group setting (which in partic-
ular is sufficient for counting).

Observation 4.1. In the group setting, a line-segment intersection query for line segments reduces to O(1)
rightward-ray intersection queries for rightward rays.

Proof. By subtraction, a line-segment intersection query for n line segments reduces to a line-segment
intersection query for two sets of n rightward rays. By subtraction again, a line-segment intersection query
reduces to two rightward-ray intersection queries on the same input set.

By the above observation, it suffices to solve the problem in the case where all input segments and all
query segments are rightward rays.

For a rightward ray s, let `(s) denote the line through s, let p(s) denote the initial point of s, let x(s)
denote the x-coordinate of p(s), and let m(s) denote the slope of s.

There are 4 possible ways in which two rightward rays s and q may intersect (ignoring degeneracies):

• TYPE A: x(s) > x(q), m(s) > m(q), and p(s) is below `(q).

• TYPE A′: x(s) > x(q), m(s) < m(q), and p(s) is above `(q).

• TYPE B: x(s) < x(q), m(s) > m(q), and p(q) is above `(s).

• TYPE B′: x(s) < x(q), m(s) < m(q), and p(q) is below `(s).
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See Figure 1. We focus on counting type A intersections, since all the other types of intersections can be
handled in a similar manner (for example, in type B, p(q) is above `(s) iff `(s)∗ is above p(q)∗ by duality).
We follow an approach similar to our data structure for group simplex range stabbing in Section 3.2.

Definition 4.2. Let S be the input set of rightward rays. Define the following types of queries for a given
query rightward ray q:

• level-1 query: compute the sum of the weights of all s ∈ S such that x(s) > x(q) and m(s) > m(q).

• level-2 query: compute the sum of the weights of all s ∈ S such that x(s) > x(q), m(s) > m(q), and
p(s) is below `(q).

Lemma 4.3. There is a data structure for level-1 queries as defined above with O(nε) query time, O(n)
space, and O(n log n) preprocessing time for any fixed ε > 0.

Proof. Level-1 queries reduce to 2D orthogonal range searching (by treating (x(s),m(s)) ∈ R2 as an input
point and (x(q),∞) × (m(q),∞) as a query range). We can use a standard range tree [27] with branching
factor N ε, where N denotes the size of the global point set.

Theorem 4.4. Intersection searching for n line segments in R2 with weights from a group can be per-
formed with O(

√
n) query time w.h.p. using a randomized data structure with O(n) space and O(n log n)

preprocessing time.

Proof. By applying the partition theorem to the point set {p(s) : s ∈ S}, we obtain the following recur-
rences for the space and query time for level-2 queries:

S2(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S2(ni) + tS1(n/t) +O(n)

Q2(n) = O(
√
t)Q2(n/t) +O(t)Q1(n/t) +O(t),

with S1(n) = O(n) and Q1(n) = O(nε) by Lemma 4.3. (The preprocessing time analysis is similar.)
We choose t = nε. The recursion depth is O(log log n). Note that the O(t)Q1(n/t) term is nO(ε) �√

n. This gives S2(n) = O(n log logn) and Q2(n) = Õ(
√
n).

As in Section 3.3, the extra polylogarithmic factor in the query time bound can be removed, by using
the hierarchical partition theorem for the outer level.

As in Section 3.4, the extra log log n factor in space can also be improved, by the same bit-packing
tricks.

We note that Bar-Yehuda and Fogel’s work from the 1990s [7] actually already used the same subtraction
trick and similar ideas with comparisons of x-coordinates and slopes, but their multi-level data structure used
a more conventional order of the levels that resulted in multiple extra logarithmic factors.
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4.2 Segment intersection reporting

For segment intersection reporting, the subtraction trick is no longer applicable. We follow an approach
similar to our data structure for simplex range stabbing reporting in Section 3.5.

For a line segment s, let `(s) denote the line through s, let pL(s) (resp. pR(s)) denote the left (resp.
right) endpoint of s, and let xL(s) (resp. xR(s)) denote the x-coordinate of pL(s) (resp. pR(s)).

There are 8 possible ways in which two line segments s and q may intersect (ignoring degeneracies):

• TYPE A: xL(s) < xL(q) < xR(s) < xR(q), pL(q) is above `(s), and pR(s) is above `(q).

• TYPE A′: xL(s) < xL(q) < xR(s) < xL(q), pL(q) is below `(s), and pR(s) is below `(q).

• TYPE B: xL(q) < xL(s) < xR(q) < xL(s), pL(s) is below `(q), and pR(q) is below `(s).

• TYPE B′: xL(q) < xL(s) < xR(q) < xL(s), pL(s) is above `(q), and pR(q) is above `(s).

• TYPE C: xL(s) < xL(q) < xR(q) < xR(s), pL(q) is above `(s), and pR(q) is below `(s).

• TYPE C′: xL(s) < xL(q) < xR(q) < xR(s), pL(q) is below `(s), and pR(q) is above `(s).

• TYPE D: xL(q) < xL(s) < xR(s) < xR(q), pL(s) is below `(q), and pR(s) is above `(q).

• TYPE D′: xL(q) < xL(s) < xR(s) < xR(q), pL(s) is above `(q), and pR(s) is below `(q).

See Figure 2. We focus on reporting type A intersections, since all the other types of intersections can
be handled in a similar manner (as all of these involve three 1D constraints along with two 2D halfplane
constraints after the appropriate dualizations).

Definition 4.5. Let S be the input set of line segments. Define the following types of queries for a query
segment q:

• level-1 query: report all s ∈ S such that pL(q) is above `(s);

• level-2 query: report all s ∈ S such that pL(q) is above `(s) and xL(s) < xL(q);

• level-3 query: report all s ∈ S such that pL(q) is above `(s) and xL(s) < xL(q) < xR(s);

• level-4 query: report all s ∈ S such that pL(q) is above `(s) and xL(s) < xL(q) < xR(s) < xR(q);

• level-5 query: report all s ∈ S such that pL(q) is above `(s), xL(s) < xL(q) < xR(s) < xR(q), and
pR(s) is above `(q).
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Lemma 4.6. There is a data structure for level-1 queries as defined above with O(log n + k) query time,
O(n) space, and O(n log n) preprocessing time.

Proof. Level-1 queries are just halfplane range reporting queries in two dimensions [21] in the dual.

Lemma 4.7. There is a data structure for level-4 queries as defined above with O(nε+k) query time, O(n)
space, and O(n log n) preprocessing time for any fixed ε > 0.

Proof. To reduce the level-2 query problem to the level-1 query problem, we can just use a one-dimensional
partition: form t intervals each containing n/t values in {xL(s) : s ∈ S}, and recurse on the corresponding
t subsets of size n/t.

Similarly, we can reduce level-3 queries to level-2 queries, and level-4 queries to level-3. (These 3 levels
of the data structure essentially correspond to a range tree [27].)

Thus, for j ∈ {2, 3, 4}, we have following recurrences for the space and query time for level-j queries
(ignoring the “+k” reporting cost):

Sj(n) = tSj(n/t) + tSj−1(n/t) +O(n)

Qj(n) = Qj(n/t) +O(t)Qj−1(n/t) +O(t),

with S1(n) = O(n) and Q1(n) = O(log n) by Lemma 4.6.
We choose t = N ε where N is the global input size, to ensure that the recursion depth is O(1). This

gives S4(N) = O(N) and Q4(N) = O(NO(ε)). (The preprocessing time analysis is similar.)

Theorem 4.8. Segment intersection reporting for n line segments in R2 can be performed with O(
√
n+ k)

query time w.h.p. (where k is the output size) using a randomized data structure with O(n) space and
O(n log n) preprocessing time.

Proof. By applying the partition theorem to the point set {pR(s) : s ∈ S}, we obtain the following recur-
rences for the space and query time for level-5 queries:

S5(n) = max
ni≤n/t,

∑
i ni=n

∑
i

S5(ni) + tS4(n/t) +O(n)

Q5(n) = O(
√
t)Q5(n/t) +O(t)Q4(n/t) +O(t),

with S4(n) = O(n) and Q4(n) = O(nε) by Lemma 4.7.
We choose t = nε. The recursion depth is O(log log n). Note that the O(t)Q4(n/t) term is nO(ε) �√

n. This gives S5(n) = O(n log log n) and Q5(n) = Õ(
√
n). (The preprocessing time analysis is similar.)

As in Section 3.3, the extra polylogarithmic factor in the query time bound can be removed, by using
the hierarchical partition theorem for the outermost level.

As in Section 3.4, the extra log log n factor in space can also be improved, by the same bit-packing
tricks.

Note the unconventional order in the above multi-level data structure (similar to our data structures for
simplex range reporting and range stabbing reporting): the innermost level deals with one 2D halfplane
constraint, the middle levels deal with 1D constraints, and the outermost level deals with the second 2D
halfplane constraint.
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4.3 Ray shooting among line segments

We can apply our new result for segment intersection reporting to solve the ray shooting problem for line
segments, via a simple randomized black-box reduction (e.g., see [8] for a similar reduction for a different
problem):

Corollary 4.9. There exists a randomized data structure for ray shooting among n line segments S in R2

with O(n) space and O(n log n) preprocessing time such that each query takes O(
√
n) time w.h.p.

Proof. Take a random subset R ⊂ S of size n/2, recursively build a ray shooting data structure for R, and
build a segment intersection reporting structure for S. To answer a ray shooting query for a ray q, we first
recursively find the first point p hit by q in R. Let q be the line segment going from the initial point of q
to this point p. Since the interior of q does not intersect any segments of R, a standard ε-net argument [8]
implies that q intersects only k = O(log n) segments of S w.h.p. We can enumerate all of these segments
by the segment intersection reporting structure, and return the first one hit.

Using the segment intersection reporting structure from Theorem 4.8, we get the following recurrences
for the space and query time of the new data structure:

S(n) = S(n/2) +O(n)

Q(n) = Q(n/2) +O(
√
n),

implying that S(n) = O(n) and Q(n) = O(
√
n). (The preprocessing time analysis is similar.)

As in the remark in Section 3.4, the query time can be further reduced to O(
√
n/ logΩ(1) n) for intersec-

tion counting and reporting and ray shooting, by bit-packing tricks.

A Trade-Offs

We can obtain space/query-time trade-off versions of many of our new results. In this appendix, as one
example, we consider simplex range searching in the group setting.

Theorem A.1. For a parameter n ≤ m ≤ nd/ logd n, simplex range searching on n points in Rd with
weights from a group can be performed withO(n/m1/d) query time using a data structure withO(m(log log(m/n))O(1))
space.

Proof. We split into two cases depending on the size of m.
If m ≥ nd/ logc n for an arbitrarily large constant c ≥ d, we use the data structure from the re-

mark in Section 2.3 with O((nd/Aδ) logO(1)A) space and O(log n + Aδ/d) query time. Choosing A =
(nd/m)1/δgives our desired space and query time bounds.

If m < nd/ logω(1) n, then we switch to a partition tree instead of a cutting tree for the primary struc-
ture. Assuming a data structure for leaves of size B with space S(B) and query time Q(B), Chan’s
optimal partition tree (see [9, Theorems 4.2 and Corollary 7.7]) implies a new data structure with space
O((n/B)S(B)) and query time O((n/B)1−1/dQ(B)), assuming B < n/ logω(1) n. We plug in S(B) =
O((Bd/ logdB)(log logB)O(1)) and Q(B) = O(logB) by the data structure from the remark in Sec-
tion 2.3. Choosing B = ((m/n) logd(m/n))1/(d−1) gives our desired space and query time bounds.

In contrast, the previous result by Matoušek [32] hadO(m) space andO((n/m1/d) logd+1(m/n)) query
time for n ≤ m ≤ nd. As mentioned in the remark in Section 2.3, the extra log log n factors can be further
improved by bootstrapping.
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[31] Jirı́ Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992.
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