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Abstract

We establish new hardness results for decision tree optimization problems, adding to a line of
work that dates back to Hyafil and Rivest in 1976. We prove, under the randomized exponential
time hypothesis, superpolynomial runtime lower bounds for two basic problems: given an explicit
representation of a function f and a generator for a distribution D,

◦ construct a small decision tree approximator for f under D, and

◦ decide if there is a small decision tree approximator for f under D.

Our results imply new lower bounds for distribution-free PAC learning and testing of decision
trees, settings in which the algorithm only has restricted access to f and D. Specifically, we get
that:

◦ n-variable size-s decision trees cannot be properly PAC learned in time nÕ(log log s), and

◦ depth-d decision trees cannot be tested in time exp(dO(1)).

For learning, the previous best lower bound only ruled out poly(n)-time algorithms (Alekhnovich,
Braverman, Feldman, Klivans, and Pitassi, 2009). For testing, recent work gives similar though
incomparable lower bounds in the setting where f is random and D is nonexplicit (Blais, Ferreira
Pinto Jr., and Harms, 2021).

Assuming a plausible conjecture on the hardness of Set-Cover, we show that our lower
bound for properly PAC learning decision trees can be improved to nΩ(log s), matching the best
known upper bound of nO(log s) due to Ehrenfeucht and Haussler (1989).

We obtain our results within a unified framework that leverages recent progress in two differ-
ent lines of work: the inapproximability of Set-Cover and XOR lemmas for query complexity.
Our framework is versatile and yields results for related concept classes such as juntas and DNF
formulas.

http://arxiv.org/abs/2210.06375v1


1 Introduction

The algorithmic problem of constructing decision tree representations of functions is one of the
most basic and well-studied problems of computer science. Greedy decision tree learning heuristics
such as ID3, C4.5, and CART, developed in the 1980s, continue to be indispensable to everyday
machine learning and enjoy empirical success. The data mining textbook [WFHP16] describes
C4.5 as “a landmark decision tree program that is probably the machine learning workhorse most
widely used in practice to date”. In addition to being extremely fast to evaluate, a key advantage
of decision trees is their simple and easy-to-understand structure, making them the most canonical
example of an interpretable model. The recent survey [RCC+22] lists decision tree learning as the
very first of “10 grand challenges” in the emerging field of interpretable machine learning.

In terms of algorithms with theoretical guarantees, a classic result of Ehrenfeucht and Haus-
sler [EH89] gives a quasipolynomial time algorithm for properly PAC learning decision trees: Given
labeled examples (x, f(x)) where f : {0, 1}n → {0, 1} can be computed by a size-s decision tree
and x is drawn from a distribution D over {0, 1}n, their algorithm runs in nO(log s) time and re-
turns a decision tree hypothesis that is close to f under D. Numerous alternative algorithms have
since been designed within restricted variants of the PAC model (e.g. where D is assumed to be
uniform) and by relaxing the problem (e.g. allowing hypotheses that are not themselves decision
trees1) [Riv87, Blu92, Han93, KM93, KM96, Bsh93, GLR99, BM02, MR02, JS05, KS06, OS07,
GKK08, KST09, HKY18, CM19, BLQT21], but Ehrenfeucht and Haussler’s algorithm remains
state of the art in the standard PAC model.

Another interesting setting is when an explicit representation of the function f , and possibly
also the distribution D, are given to the algorithm. This easier setting, where the algorithm
can “inspect” f , models a popular approach in explainable machine learning known as post-hoc
explanations. The goal here is not to train a decision tree model for an unknown function f , but
instead to turn a complicated trained model f (e.g. a neural net) into its decision tree representation.
While numerous algorithms for this task have been proposed in the empirical literature [CS95, BS96,
VAB07, ZH16, BKB17, VLJ+17, FH17, VS20], among those with theoretical guarantees, the fastest
one remains that of Ehrenfeucht and Haussler.

In parallel with these lines of algorithmic work, there has also been a similarly large body of
work on the hardness of decision tree learning [HR76, GJ79, BFJ+94, HJLT96, KPB99, ZB00,
LN04, CPR+07, RRV07, Sie08, ABF+09, AH12, Rav13, BLT20]. It is interesting to note that the
earliest paper here, by Hyafil and Rivest in 1976, predates Ehrenfeucht and Haussler’s algorithm by
more than a decade; indeed, it even predates the PAC model. Their paper, which established the
NP-completeness of a certain formulation of decision tree learning with perfect accuracy, reveals
that the problem was already intensively studied and recognized as central in the 1970s. Quoting
the authors, “the importance of this result can be measured in terms of the large amount of effort
that has been put into finding efficient algorithms for constructing optimal binary decision trees”.

A closely related problem is that of testing decision trees: while in learning one is interested
in constructing small decision trees, here the goal is simply to decide if one such tree exists. The
distribution-free model of property testing, introduced by Goldreich, Goldwasser, and Ron [GGR98]

1Such improper decision tree learning algorithms do not apply to the problem of “decision tree learning” as is meant
in the context of machine learning, where it always refers to the problem of constructing decision tree hypotheses.
See e.g. the textbooks [Mit97, Bis06, SSBD14] or the Wikipedia page for “Decision tree learning”. From a practical
perspective, properness of decision tree algorithms is not just a feature but the entire point—to produce a decision
tree representation of the data. The focus of this paper will be on proper decision tree learning algorithms.
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to parallel distribution-free PAC learning, has received increasing attention in recent years [CX16,
LCS+18, Bsh19, Bel19, Har19, FY20, RR20, BFPJH21, Bsh22, BHZ22, ABF+22, CP22, HY22].

2 Our results

We establish new hardness results for distribution-free learning and testing of decision trees. For
both problems, our lower bounds hold even when explicit representations of both the function f
and distribution D are given to the algorithm; lower bounds in this setting imply lower bounds for
learning and testing.

We obtain our results within a unified framework that brings together two active lines of re-
search: the inapproximability of Set-Cover [LY94, Fei98, CHKX06, DS14, Mos15, KLM18, CL19,
Lin19, CHK20, KI21] and XOR lemmas for query complexity [Dru12, BB19, BFPJH21]. Connec-
tions between Set-Cover and decision tree optimization problems, both in terms of algorithms
and hardness, date back to [HR76] and are present in numerous prior works; we leverage recent
progress in both the parameterized and nonparameterized settings. The connection to XOR lem-
mas, on the other hand, is new to this work. All our lower bounds, being computational in nature,
are conditioned on the randomized Exponential Time Hypothesis (ETH). As a byproduct, our lower
bounds hold even against randomized algorithms.

We now give a detailed overview of our results, in tandem with a discussion of how they compare
with prior work.

2.1 Lower bounds for DT-Construction

The DT-Construction problem is the variant of decision tree learning where f and D are both
given to the algorithm:

DT-Construction(s, ε): Given as input a circuit representation of a function f : {0, 1}n →
{0, 1}, a generator for a distribution D over {0, 1}n, parameters s ∈ N and ε ∈ (0, 1), and the
promise that f is a size-s decision tree under D, construct a decision tree T that is ε-close
to f under D.

Our first result is a superpolynomial runtime lower bound for DT Construction:

Theorem 1. Under randomized ETH, for s = n and ε = 1
n any algorithm for DT-Construction(s, ε)

must take nΩ̃(log log s) time.

Prior works also focused on the parameter settings s = n and ε = 1
n , corresponding to strong

learning of linear-size decision trees. Most recently, Alekhnovich, Braverman, Feldman, Klivans,
and Pitassi [ABF+09] ruled out poly(n) time algorithms under the assumption that Sat cannot be
solved in randomized subexponential time. Before that, Hancock, Jiang, Li, and Tromp [HJLT96]
ruled out poly(n) time algorithms that return a decision tree hypothesis of size n1+o(1), under the
assumption that Sat cannot be solved in randomized quasipolynomial time.

Our proof of Theorem 1 opens up a concrete route towards obtaining the optimal nΩ(log s) lower
bound. We can also show an nΩ(log s) lower bound for the stricter version of DT-Construction

where the algorithm has to return a decision tree of size s (instead of one of any size). We elaborate
on both of these in Section 2.3.
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Hardness of learning juntas with DNF hypotheses. We obtain Theorem 1 as a corollary
of our first main result, which simultaneously allows for a stronger promise on the simplicity of the
target function f and for the algorithm to return a more expressive hypothesis:

Theorem 2. Under randomized ETH, for s = n and ε = 1
n any algorithm for DT-Construction(s, ε)

must take nΩ̃(log log s) time, even if f is further promised to be a (log s)-junta under D and the al-
gorithm is allowed to return a DNF hypothesis.

We recall the strict inclusions

{(log s)-juntas} ⊂ {size-s decision trees} ⊂ {size-s DNFs}.

Each class is exponentially more expressive than the previous one: a size-s decision tree can depend
on as many as s variables, and a size-s DNF can require a decision tree of size 2Ω(s).

The results of [ABF+09, HJLT96] are not known to be amenable to such a strengthening.
[ABF+09] did give lower bounds for DNF-Construction, the analogue of DT-Construction

where the target f is promised to be a DNF under D and the algorithm is expected to construct
a DNF hypothesis. They ruled out poly(n) time algorithms for s = n and ε = 1

n . [ABF+09] gave
two separate proofs of hardness for DT-Construction and DNF-Construction, reducing from
Set-Cover for the former and from Chromatic-Number for the latter. Theorem 2, on the other
hand, yields new lower bounds for both problems via a single proof.

Hardness of properly learning juntas. Implicit in the proofs of Theorems 1 and 2 is a tight
connection between algorithms for Set-Cover and algorithms for properly learning juntas. By
making this connection explicit, we obtain strong lower bounds for the latter problem that hold
even under the promise that the target is a monotone disjunction:

Theorem 3. Under randomized ETH, for any k ≤ nc where c < 1 is any constant and ε = O( 1
n),

there is no algorithm that, given as input a circuit representation of a function f : {0, 1}n → {0, 1},
a generator for a distribution D and the promise that f is a monotone k-disjunction under D, runs
in no(k) time and constructs a k-junta that is ε-close to f under D. Under randomized SETH, we
get a lower bound of O(nk−λ) for any constant λ > 0.

These lower bounds nearly match the O(nk/ε) runtime algorithm of the trivial algorithm that
iterates over all possible k-junta hypotheses. Previously, [ABF+09] ruled out poly(n)-time algo-
rithms for k ≤ O(log n).

2.2 Lower bounds for DT-Estimation

The second problem that we consider, DT-Estimation, is a variant of distribution-free decision
tree testing where f and D are both given to the algorithm:2

2It will be more convenient for us to measure the complexity of decision trees by their depth in this section, though
there are direct analogues of our results for size instead of depth.
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DT-Estimation(d, ε): Given as input a circuit representation of a function f : {0, 1}n →
{0, 1}, a generator for a distribution D over {0, 1}n, and parameters d ∈ N, ε ∈ (0, 1),
distinguish between the following cases:

◦ Yes: f is a depth-d decision tree under D.

◦ No: f is ε-far from every depth-d decision tree under D.

Our second main result is an exponential lower bound for DT-Estimation:

Theorem 4. Under randomized ETH, any algorithm for DT-Estimation(d, ε) must take exp(dΩ(1))
time. This holds even if ε = 1

2 − exp(−dΩ(1)) and the No case satisfies the stronger promise that
f is ε-far from every decision tree of depth Ω(d log d) under D.

Recent work of Blais, Ferreira Pinto Jr., and Harms [BFPJH21] gives an Ω̃(2d) lower bound on
the query complexity testing of depth-d decision trees. This lower bound, however, only applies
in the setting where both f and D are unknown to the algorithm, since it is based on a random
function f and a nonexplicit distribution D.3 In contrast, our proof of Theorem 4 is constructive:
it is based on an f that is a depth-3 circuit (with {⊕,∨} gates) and a similarly simple generator
for D. Furthermore, [BFPJH21]’s lower bound only holds when ε is a sufficiently small constant,
whereas ours holds for ε being exponentially close to 1

2 , and with a gap between the decision tree
depths of the Yes and No cases.

As for upper bounds, Bshouty and Haddad-Zaknoon [BHZ22] give a distribution-free tester
that runs in 2O(d)n time and distinguishes depth-d decision trees from those that are ε-far from
decision trees of depth d2. Under the uniform distribution, Blanc, Lange, and Tan [BLT22] give
an algorithm that runs in poly(d, 1/ε) · n log n time and distinguishes depth-d decision trees from
those that are ε-far from decision trees of depth O(d3/ε3).

2.3 Towards stronger lower bounds for DT-Construction

We show two ways in which the lower bounds of Theorems 1 and 2 can be further improved to
nΩ(log s). First, we consider the stricter version of DT-Construction where the algorithm has to
return a size-s decision tree:

Theorem 5. Under randomized ETH, for s = exp(Õ(log log n)) and ε = 1
n any algorithm for

DT-Construction(s, ε) must take nΩ(log s) time if the algorithm has to return a size-s decision
tree. As in Theorem 2, this holds even if f is further promised to be a (log s)-junta under D and
the algorithm is allowed to return a size-s DNF hypothesis.

This more stringent version of DT-Construction corresponds to the notion of strictly proper

learning of size-s decision trees, where the algorithm has to return a hypothesis that falls within
the concept class. Ehrenfeucht and Haussler’s algorithm is not strictly proper. On the other hand,
for size-s decision trees of depth O(log s), there is a simple dynamic programming algorithm that
runs in nO(log s) time and is strictly proper [GLR99, MR02]. Since every (log s)-junta is a decision
tree of depth log s, this matches the lower bound of Theorem 5.

3This nonexplicit distribution is derived from lower bounds on the sample complexity of estimating distribution
support size [WY19].
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Finally, we show how an optimal lower bound of nΩ(log s) for the original version of DT-

Construction, matching the runtime of Ehrenfeucht and Haussler’s algorithm, would follow from
a natural and well-studied conjecture about Set-Cover:

Conjecture 1 (Optimal inapproximability of parameterized Set-Cover). There exists constants
α, β < 1 such that for k ≤ Nα, there is no No(k) time algorithm that, given a size-N set cover
instance, distinguishes between:

◦ Yes: There is a set cover of size k.

◦ No: Every set cover has size at least k · (1 − β) lnN .

There is a simple and efficient lnN -approximation algorithm for Set-Cover, and various hard-
ness results are known for the problem of achieving a better approximation ratio [LY94, Fei98, DS14,
Mos15, CHK20]. Conjecture 1 states that this hardness carries over to the parameterized setting.
Existing ETH-based lower bounds for parameterized Set-Cover [CHKX06, KLM18, CL19, Lin19,
KI21] are evidence in favor of it, and it is plausible that Conjecture 1 can be shown to hold under
ETH.4 We show:

Theorem 6. Under Conjecture 1, for s = n and ε = 1
n any algorithm for DT-Construction(s, ε)

must take nΩ(log s) time. As in Theorem 2, this holds even if f is further promised to be a (log s)-
junta under D and the algorithm is allowed to return a DNF hypothesis.

Table 1 summarizes our results for DT-Construction and shows how they compare with the
prior state of the art.

Table 1: Algorithms and lower bounds for DT-Construction. All our results are conditioned on
randomized ETH, the lower bounds of Theorems 5 and 6 are optimal.

Reference Target Hypothesis Time complexity

[ABF+09] size-s DT DT nω(1) lower bound

[ABF+09] size-s DNF DNF nω(1) lower bound

[EH89] size-s DT DT nO(log s) upper bound

Theorem 2 (log s)-junta DNF nΩ̃(log log s) lower bound

Theorem 5 (log s)-junta size-s DNF nΩ(log s) lower bound

Theorem 6 (log s)-junta DNF nΩ(log s) lower bound

under Conjecture 1

4See [MPW19, GKMP20] for further discussions of this conjecture and its implications for proof complexity.
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3 Our techniques

The starting point of all our reductions is the parameterized version of Set-Cover. For a set cover
instance S, we write opt(S) to denote the size of the smallest set cover.

Definition 1. The (k, k′)-Set-Cover problem is the following. Given as input a set cover instance
S and parameters k, k′ ∈ N, output Yes if opt(S) ≤ k and No if opt(S) > k′.

Reducing from Set-Cover to juntas vs. DNFs. Our key lemma, which is the crux of our
lower bounds for both DT-Construction and DT-Estimation, is a reduction from (k, k′)-Set-
Cover to the problem of distinguishing small juntas from large DNF formulas, where “small” and
“large” are functions of k and k′ respectively:

Lemma 3.1. There is an algorithm that, given a size-N instance S of (k, k′)-Set-Cover with
n sets and a parameter ℓ ≤ N , runs in poly(N) time and outputs a circuit representation of a
function f : ({0, 1}ℓ)n → {0, 1} and a generator for a distribution D over ({0, 1}ℓ)n satisfying:

◦ If opt(S) ≤ k, then f is a kℓ-junta under D.

◦ If opt(S) > k′, then any DNF of size ≤ exp(O(k′ℓ)) is Ω( 1
N )-far from f under D.

We obtain Theorems 1, 2 and 5 by combining Lemma 3.1 with a recent result on the ETH-

hardness of (k, k′)-Set-Cover for k′ = 1
2

(

logN
log logN

)1/k
, where N is the size of the instance [Lin19].

Similarly, we obtain Theorem 6 by combining Lemma 3.1 with Conjecture 1. For Theorem 3, we
only need a simpler special case of Lemma 3.1, which we combine with the ETH- and SETH-
hardness of (k, k + 1)-Set-Cover (i.e. the hardness of solving parameterized Set-Cover ex-

actly) [CHKX06, PW10].

Gap amplification. We view Lemma 3.1 as a gap amplification procedure. Specifically, given a
(k, k′)-Set-Cover instance it is straightforward to construct an instance of DT-Construction,
a target function f and distribution D, where the decision tree complexity of f under D exactly
reflects the gap (k, k′): if opt(S) ≤ k then f is a size-k decision tree under D, and otherwise f
requires decision trees of size ≥ k′. To obtain stronger lower bounds we amplify this gap into a
much larger gap in the complexity of f under D: if opt(S) ≤ k then f is a small junta under D,
and if opt(S) > k′ then f is a large-size DNF under D. This reduction enables us to translate lower
bounds for (k, k′)-Set-Cover into strong lower bounds for DT-Construction. See Figure 1 for
an illustration of this gap amplification.

Building hard instances of DT-Construction. Our construction of f and D in Lemma 3.1 is
based on the one in [ABF+09], which in turn builds on [Hau88, HJLT96]. [ABF+09] also gave a gap
amplifying reduction from (k, k′)-Set-Cover to the problem of distinguishing whether f has small
or large decision tree complexity under D. Lemma 3.1 is a strengthening of their reduction where
the same gap in set cover sizes leads to a more dramatic gap in f ’s complexity under D. While
the construction of f and D is similar to the one in [ABF+09], our analysis is entirely different and
is, in our opinion, simpler. Notably, our analysis enables us to obtain lower bounds even against
DNF hypotheses whereas previous works relied crucially on the hypothesis being a decision tree. In
addition to yielding our stronger conclusion, our analysis overcomes technical challenges that arise
when we have to modify Lemma 3.1 in the context of DT-Estimation, which we now discuss.
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0

n

0

2n

0

2n

opt ≤ k

opt > k′ size-k′ DT

size-k DT

size-2Ω(k′ℓ) DNF

kℓ-junta

(Gap amplification)(Easy reduction)

Set cover size Complexity of f under D

(k, k′)-Set-Cover on n
vertices requires time t(n, k)

Learning juntas with
DNF hypotheses requires
time min{t(n, k), 2Ω(k′ℓ)}

⇒

Figure 1: An illustration of Lemma 3.1 as a gap amplification technique. We take an instance
of (k, k′)-Set-Cover where the gap between k and k′ is small and first construct a distribution
and a function whose decision tree complexity under the distribution exactly reflects the set cover
gap. Then we amplify the distribution and the function to obtain an even more drastic gap in the
complexity of the function under the distribution. Lemma 3.1 is quite versatile and underlies the
proofs of Theorems 1, 2 and 4 to 6.

Hardness amplification using XOR lemmas for query complexity. For our lower bounds
for DT-Estimation, we begin by observing that Lemma 3.1, when combined with existing results
on the inapproximability of nonparameterized Set-Cover [DS14, Mos15], already implies a mild
form of hardness of DT-Estimation:

Corollary 3.2 (Mild hardness for DT-Estimation). Under ETH, there is no exp(dΩ(1)) time
algorithm that, given as input the circuit representation of a function f : {0, 1}n → {0, 1}, a
generator for a distribution D over {0, 1}n, a parameter d ∈ N, distinguishes between:

◦ Yes: f is a depth-d decision tree under D.

◦ No: f is Ω( 1
n)-far from every decision tree of depth Ω(d log d) under D.

We amplify this mild hardness (ε = O( 1
n)) to very strong hardness (ε = exponentially close to

1
2) by considering f⊕m : ({0, 1}n)m → {0, 1}, the m-fold XOR composition of f :

f⊕m(x(1), . . . , x(m)) := f(x(1)) ⊕ · · · ⊕ f(x(m))

and the corresponding distribution Dm over ({0, 1}n)m. In the Yes case of Corollary 3.2, it is easy
to see that f⊕m is a decision tree of depth ≤ dm under Dm. To analyze the No case, we prove the
following lemma:

7



Lemma 3.3 (Hardness amplification for DT Estimation). Let f : {0, 1}n → {0, 1} and D be
such that f is ε-far from every depth-d decision tree under D. For any γ > 0, by taking m =
Θ(log(1/γ)/ε), we get that f⊕m is (12 − γ)-far from every decision tree of depth Ω(dm) under Dm.

Our proof of Lemma 3.3 combines existing XOR lemmas for distributional query complex-
ity [Dru12, BB19, BKLS20]. Specifically, we first use one due to Brody, Kim, Lerdputtipongporn,
and Srinivasulu [BKLS20] to amplify from ε = O( 1

n) to Θ(1), and then one due to Drucker [Dru12]
to amplify from Θ(1) to exponentially close to 1

2 . The quantitative parameters of these lemmas are
incomparable, and we show how they can be applied in tandem in our setting.

Handling aborts. Lemma 3.3 as stated is actually not quite what we prove; see Lemma 7.4 for
the actual version. For technical reasons, the XOR lemma of [BKLS20] (and hence Lemma 3.3)
requires a stronger assumption, that f is ε-far from every depth-d decision tree that is allowed to
abort with probability δ, and distance is measured with respect to non-aborts. [BKLS20]’s lemma
requires δ = Θ(1) whereas ε = O( 1

n) in our setting, so this is a significantly stronger assumption.
To satisfy this stronger assumption, we have to prove a strengthening of Corollary 3.2 where the
No case maps to an f that is Ω( 1

n)-far from decision trees that are allowed to abort with constant
probability; this in turn necessitates a corresponding strengthening of Lemma 3.1. With these in
hand, Theorem 4 then follows fairly easily.

4 Discussion and future work

Our work makes new progress on the longstanding open problem of determining the complexity of
properly PAC learning decision trees. A natural avenue for future work is to close the remaining
gap between our lower bound of nΩ̃(log log s) and the nO(log s) runtime of Ehrenfeucht and Haussler’s
algorithm. Our techniques point to an approach towards an nΩ(log s) lower bound via Conjecture 1,
which adds further motivation to the study of parameterized Set-Cover.

As for our testing lower bounds, a notable feature is that they hold in the regime where ε =
1
2 − o(1), which we obtain from an initial hardness for ε = Ω( 1

n) via XOR lemmas for query
complexity. It would be interesting to further develop such hardness amplification techniques in
property testing. For example, can the communication-complexity-based lower bound technique of
Blais, Brody, and Matulef [BBM12] be fruitfully combined with the large body of work on XOR
lemmas, and direct-product-type results more generally, for communication complexity?

More broadly, there is a growing and concerted effort within the machine learning community to
design algorithms that produce simple hypotheses, such as decision trees, especially in the context
of high-stakes applications where interpretability is paramount; see e.g. the position paper [Rud19].
Our lower bounds show that interpretability can come at the price of computational intractability,
even under strong assumptions on the target function. There is substantial practical motivation for
the development of a theoretical understanding of such tradeoffs and how they can be mitigated.
For example, a concrete next step from our work is to identify reasonable assumptions under which
our lower bounds can be circumvented; one could consider monotone target functions, a common
assumption in both theory and practice.
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5 Preliminaries

Set Cover. Given a bipartite graph S = (S,U,E) on N -vertices, the Set-Cover problem is to
find a minimum size subset C ⊆ S such that every vertex in U is adjacent to some vertex in C.5

We write opt(S) ∈ N to denote the size of the smallest set cover for S. We will often write n to
denote the size of |S| ≤ N . The set of neighbors of a vertex u ∈ U is NS(u) = {s ∈ S : (s, u) ∈ E}.
We identify a vertex u ∈ U with its neighborhood set NS(u). Each set NS(u) can be viewed as a
string in {0, 1}|S| where a 1 in the string indicates an edge between u and the corresponding vertex
s ∈ S. Hence, each vertex u ∈ U can likewise be encoded as a string in {0, 1}|S|.6

Hitting Set. Given a bipartite graph H = (S,U,E), the Hitting-Set problem is to find a
minimum size subset I ⊆ U which “hits” every vertex s ∈ S: NS(s) ∩ I 6= ∅ for all s ∈ S. We
write opt(H) for the size of the smallest hitting set.

An instance H = (S,U,E) of Hitting-Set can equivalently be viewed as an instance H =
(U,S,E) of Set-Cover.

Fact 5.1 (Set-Cover and Hitting-Set are equivalent). Set-Cover and Hitting-Set are
equivalent to each other under approximation-preserving reductions. In particular, any instance
S of Set-Cover can be transformed in linear-time into an instance H of hitting set such that
opt(S) = opt(H) and vice versa.

The results of [ABF+09] are formulated in terms of hitting set. Though for consistency, in this
work we will only refer to Set-Cover. See Figure 2 for an illustration of a set cover instance and
a hitting set instance on a single bipartite graph.

S

U

(a) A set cover of size 3 for G highlighted in teal

S

U

(b) A hitting set of size 2 for G highlighted in purple

Figure 2: A bipartite graph G = (S,U,E) viewed on the left as a set cover instance and on the
right as a hitting set instance.

5Typically, the set cover problem is cast as a combinatorial problem: given subsets S1, . . . , Sm ⊆ [n] of some
universe [n], find the minimum size subcollection Si1 , . . . , Sik whose union is [n]. We consider the graph theoretic
formulation because it makes the connection to the hitting set problem more transparent.

6We assume without loss of generality that each NS(u) is unique so that a vertex u can be identified by its
neighborhood set NS(u) (if NS(u) = NS(u

′) for u 6= u′ we can simply delete u′ without affecting the set cover
complexity)
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Decision trees. For a decision tree T : {0, 1}n → {0, 1}, we write L ∈ T to denote that L is
a leaf of T . The size of T is its number of leaves and is denoted |T |. For an input x ∈ {0, 1}n,
we write depthT (x) ∈ N to denote the depth of x in T , the number of variables queried on the
root-to-leaf path consistent with x.

DNF formulas. A literal is a variable or its negation. A term is a conjunction (∧) of literals.
A DNF formula F : {0, 1}n → {0, 1} is a disjunction (∨) of terms, denoted F = t1 ∨ · · · ∨ ts. The
size of the DNF formula is |F | = s, the number of terms. The width of a term |ti| is the number of
literals in it. The width of an input x ∈ {0, 1}n is defined as the width of the smallest width term
accepting x and 0 if no term accepts x:

widthF (x) :=







min
ti(x)=1

|ti| F (x) = 1

0 F (x) = 0.

Circuits. We consider Boolean circuits C : {0, 1}n → {0, 1} with AND, OR, NOT, and PARITY
gates: {∧,∨,¬,⊕}. The size of a circuit |C| is the number of gates in it. The depth of a circuit is
the longest directed path from an input node to an output node.

k-juntas. A function f : {0, 1}n → {0, 1} is a k-junta if its output depends on ≤ k bits. Hence,
if f is a k-junta it can be completely specified by a table of size 2k corresponding to all possible
assignments to the k relevant variables. In particular, every k-junta is a size-2k decision tree and
every size-s decision tree is an s-junta.

Distributions. We use boldface letters e.g. x,y to denote random variables. For a distribution
D, we write distD(f, g) = Prx∼D[f(x) 6= g(x)]. A function f is ε-close to g if distD(f, g) ≤ ε.
When ε = 0, we drop the ε and simply say f computes g over D. Often f is viewed as one of the
combinatorial objects above and g is a generic function, e.g. a decision tree T : {0, 1}n → {0, 1}
computes g over D if distD(T, g) = 0. Similarly, f is ε-far from g if distD(f, g) > ε. We write Ub

for the uniform distribution on b bits. A generator for a distribution D over {0, 1}n is an algorithm
G : {0, 1}n → {0, 1}n which takes n uniform random bits as input and outputs n bits distributed
according to D: Prx∼Un [G(x) = x] = Prx∼D[x = x] for all x ∈ {0, 1}n.

Learning. See Appendix C for the definitions of learning that we use. All learning algorithms
we consider are proper learning algorithms. When referring to “learning decision trees” we mean
properly learning the concept class T = {T : {0, 1}n → {0, 1} | T is a decision tree}. Likewise,
when referring to “learning size-s decision trees”, we mean properly learning the concept class
Ts = {T : {0, 1}n → {0, 1} | T is a size-s decision tree}. When discussing algorithms for learning
k-juntas, we assume the output of the learning algorithm is a table of size 2k (as in e.g. [MOS04]).

Complexity-theoretic assumptions. Many results on the hardness of Set-Cover are condi-
tioned on the exponential time hypothesis.

Hypothesis 1 (Exponential time hypothesis (ETH) [Tov84, IP01, IPZ01]). There exists a constant
δ > 0 such that 3-SAT on n variables cannot be solved in O(2δn) time.
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Since we are proving hardness against randomized algorithms, we will use a randomized variant
of ETH.

Hypothesis 2 (Randomized ETH, see [CIKP08, DHM+14]). There exists a constant δ > 0 such
that 3-SAT on n variables cannot be solved by a randomized algorithm in O(2δn) time with error
probability at most 1/3.

We will also use two additional hypotheses.

Hypothesis 3 (Strong exponential time hypothesis (SETH) [IP01, IPZ01]). For every δ > 0, there
exists a k ∈ N such that k-CNF-SAT on n variables cannot be solved in time O(2n(1−δ)).

Hypothesis 4 (W [1] 6= FPT, see [DF13, CFK+15]). For any computable function f : N → N, no
algorithm can decide if a graph G = (V,E) contains a k-clique in f(k) · poly(|V |) time.

As with randomized ETH, randomized SETH and randomized W [1] 6= FPT are the respective
versions of these hypotheses against randomized algorithms. Also, we remark that W [1] 6= FPT is
a weaker assumption than ETH which itself is weaker than SETH. If W [1] = FPT, then SAT is
solvable in subexponential time.

5.1 Existing results on the hardness of Set-Cover

Throughout, we use several different hardness results for Set-Cover and approximating Set-

Cover. We start with the following theorem due to [Lin19] about the hardness of approximating
set cover. We have slightly modified the theorem from its original form to fit our setting. We
discuss Lin’s original theorem and our modifications in Appendix A.

Theorem 7 ([Lin19]). Assuming randomized ETH, there is a constant c ∈ (0, 1) such that for
any k ∈ N with k ≤ 1

2 · log logN
log log logN , there is no randomized N ck time algorithm that can solve

(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover on N vertices with high probability.

We will also use results on the inapproximability of unparameterized Set-Cover:

Theorem 8 ([DS14, Mos15]). Under randomized ETH, for every 0 < β < 1, any algorithm that

approximates size-N instances of Set-Cover to within (1 − β) lnN w.h.p. requires 2N
Ω(β)

time.

By a standard search-to-decision reduction, Theorem 8 implies the following lower bound for
(k, k′)-Set-Cover where, unlike in the parameterized setting, k is no longer guaranteed to be
“small”:

Theorem 9. Under randomized ETH, for every 0 < β < 1, there exists k ≤ N such that any
algorithm that solves size-N instances of (k, k′)-Set-Cover where k′ = k(1−β) lnN w.h.p. requires

2N
Ω(β)

time.

Finally, we will also use existing lower bounds in the ungapped setting:

Theorem 10 (Ungapped hardness of Set-Cover from W [1] 6= FPT [CHKX06, Theorem 5.6]).
Assuming W [1] 6= FPT, for all constants c ∈ (0, 1) and for all k ≤ nc, any (k, k + 1)-Set-Cover

instance S = (S,U,E) cannot be solved in time |S|o(k).

11



Furthermore, there are even stronger set cover lower bounds assuming SETH.

Theorem 11 (Ungapped hardness of Set-Cover from SETH [PW10, Theorem 2.3]). Assuming
SETH, for all constants c, δ ∈ (0, 1) and for all k ≤ nc, any (k, k + 1)-Set-Cover instance
S = (S,U,E) cannot be solved in time O(|S|k−δ).

6 Lower bounds for DT-Construction

In this section we prove Lemma 3.1 and use it to derive Theorems 2 and 3. The high-level idea
behind Lemma 3.1 is to show how, given a set cover instance S, we can construct a function f and
a distribution D such that the optimal set cover size for S is reflected in the the complexity of f
under D.

Definition 2 (ΓS and DS). Let S = (S,U,E) be a set cover instance with |S| = n. We identify
each universe element u ∈ U with a vector {0, 1}n, the indicator vector of its neighborhood set
NS(u) (i.e. the indicator vector of the sets that contain u). We define the partial function ΓS :
{0, 1}n → {0, 1} as follows:

ΓS(x) =

{

0 x = 0n

1 x = u, u ∈ U.

The distribution DS over the support of ΓS is given by the pmf

DS(x) =

{

1
2 x = 0n

1
2|U | x = u, u ∈ U.

When S is clear from context we will drop the subscript and simply write Γ and D. We observe
that given any set cover C ⊆ S, the monotone disjunction of the variables in C computes Γ over D.
In particular, we have:

Fact 6.1. If opt(S) ≤ k then Γ is a monotone disjunction of k variables under D.

We now define a “parity-amplified” version of Γ. While Γ is a function over the domain {0, 1}n,
this new function will be over the domain ({0, 1}ℓ)n for some parameter ℓ ∈ N.

Notation. For a string y ∈ ({0, 1}ℓ)n, we write yi ∈ {0, 1}ℓ to denote the ith block of y, and (yi)j
to denote the jth entry of the ith block. We define the function BlockwisePar : ({0, 1}ℓ)n → {0, 1}n:

BlockwisePar(y) := (⊕y1, . . . ,⊕yn),

where ⊕yi denotes the parity of the bits in yi.

Definition 3 (Γ⊕ℓ and D⊕ℓ). For Γ and D as defined in Definition 2 and an integer ℓ ∈ N, we
define the partial function Γ⊕ℓ : ({0, 1}ℓ)n → {0, 1},

Γ⊕ℓ(y) = Γ(BlockwisePar(y)).

The distribution D⊕ℓ over the support of Γ⊕ℓ is defined as follows: to sample from D⊕ℓ,

1. First sample x ∼ D.

12



2. For each i ∈ [n], sample yi ∼ {0, 1}ℓ u.a.r. among all strings satisfying ⊕yi = xi. Equiva-
lently, sample y ∼ ({0, 1}ℓ)n u.a.r. among all strings satisfying BlockwisePar(y) = x.

Fact 6.2 (Blockwise parity of D⊕ℓ induces D). For y ∼ D⊕ℓ, we have that BlockwisePar(y) is
distributed according to D.

We have the following analogue of Fact 6.1:

Fact 6.3. If opt(S) ≤ k then Γ⊕ℓ is a kℓ-junta (a disjunction of k many parities, each over ℓ
variables) under D⊕ℓ.

An equivalent way of sampling from D⊕ℓ. For our proof of Lemma 3.1, it will be useful for
us consider a different, but equivalent, way of sampling from D⊕ℓ. For z ∈ ({0, 1}ℓ−1)n, x ∈ {0, 1}n,
and j ∈ [ℓ], we write ParCompletej(z, x) to denote the string y ∈ ({0, 1}ℓ)n where for each block
i ∈ [n],

◦ All except the jth coordinate of yi ∈ {0, 1}ℓ are filled in according to zi ∈ {0, 1}ℓ−1.

((yi)1, . . . , (yi)j−1, (yi)j+1, . . . , (yi)ℓ) = ((zi)1, . . . , (zi)ℓ−1).

◦ The jth coordinate of yi is filled in with the unique bit so that ⊕yi = xi.

Example. Consider n = 4 and ℓ = 3 and j = 2. Then, we can view z = (z1, . . . , z4) ∈ ({0, 1}2)4

as a 4 × 2 matrix where the ith row is zi. In this case, we may have for example:

z =









1 0
0 0
1 1
1 0









x =









1
1
0
1









−→ ParCompletej(z, x) =









1 0 0
0 1 0
1 0 1
1 0 0









.

Note that the first and third columns of ParCompletej(z, x), colored teal, are exactly the first
and second columns of z respectively, and that the second column of ParCompletej(z, x), colored
purple, is filled in so that parity of each row of matches the corresponding row of x.

Definition 4 (The distribution Dj
⊕ℓ). For j ∈ [ℓ], the distribution Dj

⊕ℓ is obtained via the following

sampling procedure: sample x ∼ D, z ∼ ({0, 1}ℓ−1)n u.a.r., and output ParCompletej(z,x).

The following proposition on the equivalence between D⊕ℓ and Dj
⊕ℓ can be easily verified. We

defer the calculation to Appendix B.

Proposition 6.4 (Dj
⊕ℓ is equivalent to D⊕ℓ). For all j ∈ [ℓ] and y ∈ ({0, 1}ℓ)n,

Pr
y∼D⊕ℓ

[y = y] = Pr
y∼Dj

⊕ℓ

[y = y] .
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∨

(y1)1 . . . (y1)ℓ

. . .

(yn)1
. . . (yn)ℓ

fan-in n

fan-in ℓ

Figure 3: A depth-2 circuit for Γ⊕ℓ consisting of one top gate that is an OR connected to n PARITY
gates, each of which is connected to a disjoint block of ℓ input variables.

Constructiveness of Γ⊕ℓ and D⊕ℓ

We can efficiently compute both a circuit representation of Γ⊕ℓ and a generator for the distribution
D⊕ℓ from a given set cover instance.

Lemma 6.5 (Constructiveness of Γ⊕ℓ and D⊕ℓ). Let S = (S,U,E) be an N -vertex set cover instance
with |S| = n and let ℓ ≤ N be a parameter. Then there is an algorithm that runs in poly(N) time
and outputs a circuit representation of Γ⊕ℓ over D⊕ℓ and a generator for the distribution D⊕ℓ.

Proof. We separate the proof into two parts. First, we give a circuit representation of Γ⊕ℓ, then
we give a generator for D⊕ℓ.

A circuit for Γ⊕ℓ. Recall that a circuit C : ({0, 1}ℓ)n → {0, 1} represents Γ⊕ℓ : ({0, 1}ℓ)n → {0, 1}
over D⊕ℓ if distD⊕ℓ

(C,Γ⊕ℓ) = 0. The function Γ : {0, 1}n → {0, 1} is computed over D by the
disjunction of all n variables. That is, distD(Γ, x1∨· · · ∨xn) = 0.7 Therefore, for y = (y1, . . . , yn) ∈
supp(D⊕ℓ),

Γ⊕ℓ(y) = Γ(⊕y1, . . . ,⊕yn) (Definition of Γ⊕ℓ)

= (⊕y1) ∨ . . . ∨ (⊕yn) (BlockwisePar(y) ∈ supp(D))

It follows that the circuit given by

C(y) :=
∨

i∈[n]

⊕

j∈[ℓ]

(yi)j

computes Γ⊕ℓ over D⊕ℓ. See Figure 3 for an illustration of C. Since this circuit has size n · ℓ and
depth 3, the first part of the lemma statement follows.

7This observation can equivalently be viewed as an application of Fact 6.1 plus the fact that opt(S) ≤ |S| = n

holds for all S .
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A generator for D⊕ℓ. Recall that a generator for a distribution takes uniform random bits as
input and outputs bits distributed according to the desired distribution. First, we observe that
there is an efficient generator for D using 1+log |U | uniform random bits. Specifically, use 1 uniform
random bit to decide between the two cases:

(1) output 0n

(2) output u ∈ U uniformly at random.

The second case can be accomplished with log |U | uniform random bits. Then the following proce-
dure generates the distribution D1

⊕ℓ:

(1) use n(ℓ− 1) uniform random bits to select z ∈ ({0, 1}ℓ−1)n

(2) use 1 + log |U | bits to sample x ∼ D

(3) output ParComplete1(z,x).

By Proposition 6.4, this procedure equivalently generates the distribution D⊕ℓ. The procedure uses
n(ℓ − 1) + 1 + log |U | bits. We can assume without loss of generality that 1 + log |U | ≤ |S| = n8

so that n(ℓ− 1) + 1 + log |U | ≤ nℓ. It follows that this procedure efficiently generates D⊕ℓ from nℓ
uniform random bits.

6.1 Warmup for Lemma 3.1: Lower bounds against decision tree hypotheses

We will prove Lemma 3.1 with the function being Γ⊕ℓ and the distribution being D⊕ℓ. The first
bullet of the lemma statement is given by Fact 6.3, and so the bulk of the remaining work goes
into establishing the second bullet of the lemma statement.

We begin with a warmup, showing the weaker statement that Γ⊕ℓ is far from any small decision
tree under D⊕ℓ. This proof will illustrate many of the key ideas in the actual proof for DNFs,
which we give in the next subsection. Furthermore, this lower bound is already sufficient to estab-
lish Theorem 1, and will be the starting point of our lower bounds for DT-Estimation that we
prove in the next section.

Lemma 6.6. Let S = (S,U,E) be an N -vertex set cover instance and let ℓ ≥ 2. If T : ({0, 1}ℓ)n →
{0, 1} is a decision tree of size |T | < 2opt(S)ℓ/8, then distD⊕ℓ

(T,Γ⊕ℓ) ≥ 1/(4N).

High level idea. There are three main steps:

1. No decision tree with small average depth can approximate Γ under D (Claim 6.7).

2. Any decision tree with small average depth that approximates Γ⊕ℓ under D⊕ℓ can be used
to construct decision tree of much smaller average depth that approximates Γ under D
(Claim 6.8). This is the key claim.

3. Any small size decision tree must have small average depth with respect to D⊕ℓ (Claim 6.10).

Together, these three claims imply that no small size decision tree can approximate Γ⊕ℓ under D⊕ℓ,
thereby yielding Lemma 6.6.

8If |S| < 1 + log |U |, we just replicate sets until |U | ≤ |S|. This change at most doubles N and does not affect
opt(S).
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Set cover C

Decision tree T

x8

x3
...

x17
...

0
...

Figure 4: Any decision tree for Γ implicitly defines a set cover of S consisting of the variables
highlighted in red.

Claim 6.7 (Good approximators for Γ require large depth). Let T : {0, 1}n → {0, 1} be a decision
tree and S = (S,U,E) be an N -vertex set cover instance with |S| = n. If E

x∼D
[depthT (x)] <

opt(S)/2 then distD(T,Γ) ≥ 1/(2N).

Proof. Let T be a decision tree satisfying E
x∼D

[depthT (x)] < opt(S)/2. We actually prove the

stronger claim that distD(T,Γ) ≥ 1/(2|U |). Suppose for contradiction that distD(T,Γ) < 1/(2|U |).
Each x ∈ supp(D) has mass ≥ 1/(2|U |) under D and so we must have distD(T,Γ) = 0. Let
C ⊆ [n] = S be the set of vertices that T queries in the computation of 0n (equivalently, C is the
leftmost root-to-leaf path in T ). See Figure 4 for an illustration of C. Since distD(T,Γ) = 0, we
have that T (0n) = Γ(0n) = 0.

We claim C is a valid set cover for S. Indeed, if some u ∈ U is not covered by C, then
NS(u) ∩ C = ∅, and u would follow this same path C as 0n in T . This would imply that 0 =
T (u) 6= Γ(u) = 1, contradicting the fact that distD(T,Γ) = 0.

Since C is a valid set cover, it follows that |C| ≥ opt(S) and so:

E
x∼D

[depthT (x)] ≥ Pr
x∼D

[x = 0n] · |C| (depthT (0n) = |C|)

=
|C|

2
(D places weight 1

2 on 0n)

≥
opt(S)

2

which contradicts our original assumption on the average depth of T .

Our high-level proof strategy for the next claim is loosely inspired by [BKLS20] (which itself
built on [BB19]). This proof also crucially relies on Proposition 6.4.
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Claim 6.8 (Good approximators for Γ⊕ℓ yield good approximators for Γ). Let T : ({0, 1}ℓ)n →
{0, 1} be a decision tree such that

distD⊕ℓ
(T,Γ⊕ℓ) ≤ ε and E

y∼D⊕ℓ

[depthT (y)] ≤ d.

Then there is a restriction T ∗ : {0, 1}n → {0, 1} of T satisfying

distD(T ∗,Γ) ≤ 2ε and E
x∼D

[depthT ∗(x)] ≤
2d

ℓ
.

Proof. Recalling the notation from Definition 4, when z ∈ ({0, 1}ℓ−1)n and j ∈ [ℓ] are fixed, the

function x 7→ ParCompletej(z, x) is a function from {0, 1}n to ({0, 1}ℓ)n. Our proof proceeds by

finding a suitable z and j so that x 7→ T (ParCompletej(z, x)) is a tree of much smaller average
depth and computes Γ accurately over D. Restricting T according to the values specified by z and
j yields the desired decision tree.

For j ∈ [ℓ] and y ∈ ({0, 1}ℓ)n, write qj(y) for the number of times that T , on the input y, queries
(yi)j for some i ∈ [n]. Thus, depthT (y) =

∑

j∈[ℓ] qj(y) and likewise

∑

j∈[ℓ]

E
y∼D⊕ℓ

[qj(y)] = E
y∼D⊕ℓ

[depthT (y)] ≤ d.

Let j ∈ [ℓ] be the index that minimizes E
y∼D⊕ℓ

[qj(y)]. By averaging, this j must satisfy E
y∼D⊕ℓ

[qj(y)] ≤

d/ℓ. By Proposition 6.4, we can write

d

ℓ
≥ E

y∼D⊕ℓ

[qj(y)]

= E

y∼D
j

⊕ℓ

[qj(y)] (Proposition 6.4)

= E
z∼Un(ℓ−1)

[

E
x∼D

[

qj(ParCompletej(z,x))
]

]

. (Definition of Dj
⊕ℓ)

Similarly, we also have:

ε ≥ Pr
y∼D⊕ℓ

[T (y) 6= Γ⊕ℓ(y)]

= Pr
y∼D

j

⊕ℓ

[T (y) 6= Γ⊕ℓ(y)] (Proposition 6.4)

= E
z∼Un(ℓ−1)

[

Pr
x∼D

[

T (ParCompletej(z,x)) 6= Γ(x)
]

]

. (Definition of Dj
⊕ℓ)

Applying Markov’s inequality twice, we have

Pr
z∼Un(ℓ−1)

[

Pr
x∼D

[

T (ParCompletej(z,x)) 6= Γ(x)
]

> 2ε

]

<
1

2

and Pr
z∼Un(ℓ−1)

[

E
x∼D

[

qj(ParCompletej(z,x))
]

>
2d

ℓ

]

<
1

2
.
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And thus by a union bound, there is some fixed z ∈ {0, 1}n(ℓ−1) satisfying

Pr
x∼D

[

T (ParCompletej(z,x)) 6= Γ(x)
]

≤ 2ε and E
x∼D

[

qj(ParCompletej(z,x))
]

≤
2d

ℓ
.

The tree T ∗ is formed by restricting T according to z and j. Also, this tree T ∗ satisfies depthT ∗(x) =
qj(ParCompletej(z, x)) by construction. The claim then follows.

To prove Claim 6.10, we first need a simple proposition stating that the probability a string
y ∼ D⊕ℓ matches some fixed substring decays exponentially with the length of the substring.

Proposition 6.9 (D⊕ℓ is uniform-like). Let ℓ ≥ 2. For all R ⊆ [ℓ], r ∈ {0, 1}|R|, i ∈ [n], and
b ∈ {0, 1}, we have

Pr
y∼D⊕ℓ

[(yi)R = r | ⊕yi = b] ≤ 2−|R|/2

where (yi)R ∈ {0, 1}|R| is the substring of yi ∈ {0, 1}ℓ consisting of the coordinates specified by R.

Proof. We first consider the case when |R| < ℓ. By the definition of D⊕ℓ, the conditional distribution
in question is the uniform distribution over all strings in {0, 1}ℓ whose parity is b. The marginal
distribution of this distribution over any set of |R| < ℓ coordinates is uniform, and therefore:

Pr
y∼D⊕ℓ

[(yi)R = r | ⊕yi = b] = 2−|R|.

If |R| = ℓ, then depending on whether the parity of the bits in r match b, we have:

Pr
y∼D⊕ℓ

[yi = r | ⊕yi = b] =

{

0 if ⊕r 6= b

2−|R|+1 if ⊕r = b.

In either case, we have the desired probability bound.

Claim 6.10 (Small trees have small average depth). Let T be a size-s decision tree, then

E
y∼D⊕ℓ

[depthT (y)] ≤ 2 log s.

Proof. We start by upper bounding Pr[y reaches L] for any fixed leaf L of T . For each block
i ∈ [n], we write Ri(L) to denote the variables from the ith block queried on the root-to-L path,
and ri(L) ∈ {0, 1}Ri(L) to denote the values that the path assigns to these variables. Note that
∑

i∈[n] |Ri(L)| = |L|, the depth of L in T . With this notation in hand, for any fixed x ∈ {0, 1}n, we
have

Pr
y∼D⊕ℓ

[y reaches L | BlockwisePar(y) = x]

=
∏

i∈[n]

Pr
y∼D⊕ℓ

[(yi)Ri(L) = ri(L) | BlockwisePar(y) = x] (Independence of the yi’s for fixed x)

=
∏

i∈[n]

Pr
y∼D⊕ℓ

[(yi)Ri(L) = ri(L) | ⊕yi = xi]

≤
∏

i∈[n]

2−|Ri(L)|/2 (Proposition 6.9)

= 2−|L|/2.
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Since this holds for every x, it follows that

Pr
y∼D⊕ℓ

[y reaches L] ≤ 2−|L|/2. (1)

We therefore conclude that

1
2 · E

y∼D⊕ℓ

[depthT (y)] = E
y∼D⊕ℓ

[

log
(

2depthT (y)/2
)

]

≤ log

(

E
y∼D⊕ℓ

[2depthT (y)/2]

)

(Concavity of log(·))

= log

(

∑

L∈T

Pr
y∼D⊕ℓ

[y reaches L] · 2|L|/2

)

≤ log

(

∑

L∈T

2−|L|/2 · 2|L|/2

)

(Equation (1))

= log s.

Rearranging completes the proof.

Putting things together: Proof of Lemma 6.6. Suppose there is some tree T computing
Γ⊕ℓ with |T | ≤ 2opt(S)ℓ/8. We show that dist(T,Γ⊕ℓ) ≥ 1/(4N). Suppose for contradiction that
dist(T,Γ⊕ℓ) < 1/(4N). By Claim 6.10, we have E

y∼D⊕ℓ

[depthT (y)] < 2·log
(

2opt(S)ℓ/8
)

= opt(S)ℓ/4.

Then by Claim 6.8 there is a decision tree T ∗ satisfying

distD(T ∗,Γ) <
1

2N
E

x∼D
[depthT ∗(x)] <

opt(S)

2
.

But this contradicts Claim 6.7. �

6.2 Proof of Lemma 3.1: Lower bounds against DNF hypotheses

We extend Lemma 6.6 to show that Γ⊕ℓ cannot even be approximated by small DNFs. This
extension will allow us to complete the proof of Lemma 3.1. For this section, we use the negation
of Γ:

Γ(x) =

{

1 x = 0n

0 x = u, u ∈ U
.

Analogous to Fact 6.1, any set cover C ⊆ S yields a conjunction of k literals which computes Γ
under D.

Fact 6.11. If opt(S) ≤ k, then Γ is a conjunction of k literals under D.

The literals in this case are the negation of the variables in the set cover C ⊆ S. We will likewise
use the negation of Γ⊕ℓ:

Γ⊕ℓ(y) = Γ(BlockwisePar(y)).

The analogue of Fact 6.3 becomes:
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Fact 6.12. If opt(S) ≤ k then Γ⊕ℓ is a kℓ-junta (a conjunction of k many parities, each over ℓ
variables) under D⊕ℓ.

Ultimately, this change allows us to prove that Γ⊕ℓ cannot be approximated by small-size DNF
formulas. If instead, one were interested in proving hardness against CNF formulas, one could work
directly with the unnegated Γ⊕ℓ. We find that working with DNFs is slightly less cumbersome than
with CNFs which is why we focus on the negated function in this section. Specifically, we prove
the following extension of Lemma 6.6.9

Lemma 6.13. Let S = (S,U,E) be an N -vertex set cover instance and let ℓ ≥ 2. If F : ({0, 1}ℓ)n →
{0, 1} is a DNF of size |F | < 2opt(S)ℓ/16, then distD⊕ℓ

(Γ⊕ℓ, F ) ≥ 1/(4N).

The high level proof strategy follows that of Lemma 6.6 and can be divided into the same three
steps outlined in Section 6.1. The only difference is that “average depth” is no longer a well-defined
quantity with DNF formulas. Instead, we consider “average width” which is a generalization of
average depth suited to our purposes.

Claim 6.14 (Good approximators for Γ require large width). Let F : {0, 1}n → {0, 1} be a DNF
formula and S = (S,U,E) be an N -vertex set cover instance with |S| = n. If E

x∼D
[widthF (x)] <

opt(S)/2, then distD(F,Γ) ≥ 1/(2N).

Proof. Let F = t1∨· · ·∨ts be a DNF formula. If F (0n) = 0, then distD(F,Γ) ≥ 1/2 since Γ(0n) = 1.
Otherwise, let ti be the smallest width term such that ti(0

n) = 1 so that |ti| = widthF (0n). Since
ti accepts the all 0s input, it is a conjunction of |ti| negated variables. Let C ⊆ S be the set of
variables in ti. Since

|ti|

2
= Pr

x∼D
[x = 0n] · widthF (0n) ≤ E

x∼D
[widthF (x)] <

opt(S)

2
,

C is not a set cover. Let u ∈ U be some vertex not covered by C: NS(u) ∩ C = ∅. Then, u
is encoded with 0s for all variables in C. It follows that ti(u) = 1 and F (u) = 1 6= 0 = Γ(u).
Therefore:

distD(F,Γ) ≥ Pr
x∼D

[x = u] =
1

2|U |
≥

1

2N
.

Claim 6.15 (Good approximators for Γ⊕ℓ yield good approximators for Γ). Let F : ({0, 1}ℓ)n →
{0, 1} be a DNF formula such that

distD⊕ℓ
(F,Γ⊕ℓ) ≤ ε and E

y∼D⊕ℓ

[widthF (y)] ≤ w.

Then there is a restriction F ∗ : {0, 1}n → {0, 1} of F satisfying

distD(F ∗,Γ) ≤ 2ε and E
x∼D

[widthF ∗(x)] ≤
2w

ℓ
.

9The lemma is indeed an “extension” because any size-s decision tree computing Γ⊕ℓ yields a size-s decision tree
computing Γ⊕ℓ simply by flipping leaf labels, and so Lemma 6.6 can equivalently be viewed as a statement about
Γ⊕ℓ.
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Proof. The proof is similar to that of Claim 6.8. First, let qj(y) denote the number of variables
of the form (yi)j for some i ∈ [n] appearing in the smallest width term that accepts y and 0 if no
term accepts y. Then, widthF (y) =

∑

j∈[ℓ] qj(y) for all y ∈ supp(D⊕ℓ). Therefore:

∑

j∈[ℓ]

E
y∼D⊕ℓ

[qj(y)] ≤ w.

Let j ∈ [ℓ] be the index that minimizes E
y∼D⊕ℓ

[qj(y)]. By averaging, j satisfies E
y∼D⊕ℓ

[

qj(y)
]

≤ w/ℓ.

Using Proposition 6.4:

w

ℓ
≥ E

y∼D⊕ℓ

[

qj(y)
]

= E

y∼D
j

⊕ℓ

[

qj(y)
]

(Proposition 6.4)

= E
z∼Un(ℓ−1)

[

E
x∼D

[

qj(ParCompletej(z,x))
]

]

. (Definition of D
j

⊕ℓ)

Similarly:

ε ≥ Pr
y∼D⊕ℓ

[F (y) 6= Γ⊕ℓ(y)]

= Pr
y∼D

j

⊕ℓ

[F (y) 6= Γ⊕ℓ(y)] (Proposition 6.4)

= E
z∼Un(ℓ−1)

[

Pr
x∼D

[

F (ParCompletej(z,x)) 6= Γ(x)
]

]

. (Definition of Dj
⊕ℓ)

Applying Markov’s inequality twice, we have

Pr
z∼Un(ℓ−1)

[

Pr
x∼D

[

F (ParCompletej(z,x)) 6= Γ(x)
]

> 2ε

]

<
1

2

and Pr
z∼Un(ℓ−1)

[

E
x∼D

[

qj(ParCompletej(z,x))
]

>
2w

ℓ

]

<
1

2
.

And thus by a union bound, there is some fixed z ∈ {0, 1}n(ℓ−1) satisfying

Pr
x∼D

[

F (ParCompletej(z,x)) 6= Γ(x)
]

≤ 2ε and E
x∼D

[

qj(ParCompletej(z,x))
]

≤
2w

ℓ
.

The DNF formula F ∗ is formed by restricting F according to the string z. Also, this F ∗ satisfies
widthF ∗(x) = qj(ParCompletej(z, x)) by construction. The claim then follows.

Claim 6.16 (Small DNFs have small average width). Let F be a size-s DNF formula for s ≥ 4
such that distD⊕ℓ

(F,Γ⊕ℓ) ≤ 1/4, then

E
y∼D⊕ℓ

[widthF (y)] ≤ 4 log(s).

Proof. Let F = t1 ∨ · · · ∨ ts be a DNF formula with s terms satisfying distD⊕ℓ
(F,Γ⊕ℓ) ≤ 1/4. We

start by upper bounding the conditional probability Pr[t(y) = 1 | F (y) = 1] for any fixed term
t ∈ {t1, . . . , ts}. We bound the probabilities Pr[t(y) = 1] and Pr[F (y) = 1] separately.
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(1) Pr[F (y) = 1] ≥ 1/4. We write

1

4
≥ distD⊕ℓ

(F,Γ⊕ℓ)

≥

∣

∣

∣

∣

Pr
y∼D⊕ℓ

[F (y) = 1] − Pr
y∼D⊕ℓ

[

Γ⊕ℓ(y) = 1
]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
y∼D⊕ℓ

[F (y) = 1] −
1

2

∣

∣

∣

∣

which implies Pr[F (y) = 1] ≥ 1/4.

(2) Pr[t(y) = 1] ≤ 2−|t|/2. For each i ∈ [n], let Ri(t) denote the variables from the ith block
which appear in the term t and let ri(t) ∈ {0, 1}Ri(t) denote the values assigned by those
variables (i.e. 1 if the variable is unnegated in t and 0 if the variable is negated in t). Then
∑

i∈[n] |Ri(t)| = |t|, the width of t. Using this notation, for any fixed x ∈ supp(D):

Pr
y∼D⊕ℓ

[t(y) = 1 | BlockwisePar(y) = x]

=
∏

i∈[n]

Pr
y∼D⊕ℓ

[

(yi)Ri(t) = ri(t) | BlockwisePar(y) = x
]

(Independence of the yi’s for fixed x)

=
∏

i∈[n]

Pr
y∼D⊕ℓ

[

(yi)Ri(t) = ri(t) | ⊕yi = xi
]

≤
∏

i∈[n]

2−|Ri(t)|/2 (Proposition 6.9)

= 2−|t|/2.

Since this holds for any fixed x, it follows that

Pr
y∼D⊕ℓ

[t(y) = 1] ≤ 2−|t|/2.

Together, these two points imply

Pr
y∼D⊕ℓ

[t(y) = 1 | F (y) = 1] =
Pr[t(y) = 1]

Pr[F (y) = 1]
≤ 2−|t|/2+2. (2)
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Lastly:

1

2
· E
y∼D⊕ℓ

[widthF (y)] − 2 = E
y∼D⊕ℓ

[

log
(

2widthF (y)/2−2
)]

≤ log

(

E
y∼D⊕ℓ

[

2widthF (y)/2−2
]

)

(Concavity of log)

= log





∑

b∈{0,1}

Pr
y∼D⊕ℓ

[F (y) = b] · E
y∼D⊕ℓ

[

2widthF (y)/2−2 | F (y) = b
]





≤ log

(

E
y∼D⊕ℓ

[

2widthF (y)/2−2 | F (y) = 1
]

)

(widthF (y) = 0 if F (y) = 0 and Pr[F (y) = b] ≤ 1)

≤ log





∑

i∈[s]

2|ti|/2 · Pr
y∼D⊕ℓ

[ti(y) = 1 | F (y) = 1]





= log





∑

i∈[s]

2|ti|/2−2 · 2−|ti|/2+2



 (Equation (2))

= log s.

Rearranging and applying the assumption that 2 ≤ log(s) completes the proof.

Putting things together: Proof of Lemma 6.13 Suppose there is some DNF formula F
computing Γ⊕ℓ with |F | ≤ 2opt(S)ℓ/16. We show that dist(F,Γ⊕ℓ) ≥ 1/(4N). Suppose for contra-
diction that dist(T,Γ⊕ℓ) < 1/(4N) ≤ 1/4. If |F | < 4, we add dummy terms (e.g. by replicating
the terms already in F ) so that |F | ≥ 4. We can then apply Claim 6.16: E

y∼D⊕ℓ

[widthF (y)] <

4 · log
(

2opt(S)ℓ/16
)

= opt(S)ℓ/4. Then by Claim 6.15, there is a DNF formula F ∗ satisfying

distD(F ∗,Γ) <
1

2N
E

x∼D
[depthF ∗(x)] <

opt(S)

2
.

But such an F ∗ contradicts Claim 6.14. �

The last steps: finishing the proof of Lemma 3.1. We prove the following lemma which
immediately implies Lemma 3.1.

Lemma 6.17 (Γ⊕ℓ proves Lemma 3.1). Let S = (S,U,E) be an N -vertex instance of (k, k′)-Set-
Cover and ℓ ≤ N . Then there is an algorithm that runs in poly(N) time and outputs a circuit
representation of Γ⊕ℓ under D⊕ℓ and a generator for D⊕ℓ which satisfies:

◦ If opt(S) ≤ k, then Γ⊕ℓ is a kℓ-junta under D⊕ℓ.

◦ If opt(S) > k′, then any DNF of size ≤ 2k
′ℓ/16 is 1

4N -far from Γ⊕ℓ under D⊕ℓ.

Proof. By Lemma 6.5, there is an algorithm that runs in poly(N) time and outputs a circuit
representation of Γ⊕ℓ and a generator for D⊕ℓ. Augmenting the circuit for Γ⊕ℓ with a single NOT
gate yields a circuit for Γ⊕ℓ. Moreover, we have shown:
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◦ if opt(S) ≤ k, then Γ⊕ℓ is a kℓ-junta under D⊕ℓ; (Fact 6.12)

◦ if opt(S) > k′, then any DNF of size ≤ 2k
′ℓ/16 is 1

4N -far from Γ⊕ℓ under D⊕ℓ; (Lemma 6.13)

which completes the proof of the lemma.

6.3 Implications of Lemma 3.1

6.3.1 Proofs of Theorem 1 and Theorem 2

In this section, we prove the following theorem.

Theorem 12. Let µ : N → N be any computable, non-decreasing function satisfying µ(n) =

o
(

log logn
log log logn

)

. Assuming randomized ETH, there is some constant λ ∈ (0, 1), a function f :

{0, 1}n → {0, 1}, and distribution D over {0, 1}n such that DT-Construction(s, 1/n) cannot be
solved in time

s
λ·
(

log log s
µ(n) log log log s

)

for f and for any s ≤ nµ(n), even if f is promised to be a (log n)-junta over D and the algorithm
returns a DNF hypothesis.

Theorems 1 and 2 immediately follow as a consequence of this theorem by choosing µ(n) = 1.

Proof of Theorem 12. We give a reduction from gapped set cover. Let S = (S,U,E) be an N -vertex
(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover instance where k is taken to be

k =
1

2
·

log logN

log log logN
.

Using Lemma 6.17 with ℓ = log(N)/k, we obtain the target function Γ⊕ℓ : {0, 1}Nℓ → {0, 1} and
the distribution D⊕ℓ.

10

Let µ : N → N be as in the theorem statement. Set s := (Nℓ)µ(Nℓ). We show that any algorithm

for DT-Construction(s, 1/(4N)) running in time s
λ·
(

log log s
µ(Nℓ) log log log s

)

for 0 < λ ≤ 1/128 can be
used to solve S in time N8λ·k even if the output of the algorithm is a DNF formula.

We run the algorithm for DT-Construction(s, 1/(4N)) on Γ⊕ℓ and D⊕ℓ and terminate it
after

N
4λ·

(

log logN
log log logN

)

= N8λk

times steps. The algorithm outputs some DNF formula F . We estimate the error of F and Γ⊕ℓ

over the distribution D⊕ℓ and output “Yes” if the error is ≤ 1/(4N) and “No” otherwise.

Runtime. Constructing the circuit for Γ⊕ℓ and the generator for D⊕ℓ requires poly(N) time by
Lemma 6.17. We can efficiently sample from the distribution D⊕ℓ to efficiently estimate the error
of the output decision tree via random samples. So the overall runtime of our algorithm is ≤ N8λk.

10Technically, Γ⊕ℓ is a function defined on |S|ℓ bits, but as |S| ≤ N we can pad the inputs to be Nℓ bits long.
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Correctness. To prove the reduction is correct, we show that if there is a size k set cover for S
then we output Yes with high probability and otherwise if S requires a set cover of size at least

1

2

(

logN

log logN

)1/k

then we output No with high probability.

Yes case: opt(S) ≤ k. In this case, by Lemma 6.17, Γ⊕ℓ is computed exactly by a opt(S)ℓ ≤
kℓ = logN -junta over D⊕ℓ. Hence, it is computed by a DNF of width kℓ. The size of this DNF is
at most 2k·ℓ = N ≤ (Nℓ)µ(Nℓ) = s. To upper bound the runtime, we start by calculating

log log s

log log log s
≤

log
(

2µ(N2) logN
)

log log logN
(N ≤ s ≤ N2µ(N2))

≤
log
(

(logN)2
)

log log logN
(Assumption on µ: 2µ(N2) ≤ logN)

= 4k. (3)

By our assumption on DT-Construction(s, 1/(4N)), in the yes case, the algorithm runs for

s
λ·
(

log log s
µ(Nℓ) log log log s

)

≤ s4λk/µ(Nℓ) (Equation (3))

= (Nℓ)4λk (s = (Nℓ)µ(Nℓ))

≤ N8λk (Nℓ ≤ N2)

time steps and outputs a size-s DNF formula with error ≤ 1/(4N). Therefore, our algorithm outputs
Yes with high probability (where the probability is taken over the random sampling procedure).

No case: opt(S) > 1
2

(

logN
log logN

)1/k
. By Lemma 6.17 any DNF for Γ⊕ℓ with size at most

2opt(S)ℓ/16 has error at least 1/(4N). The runtime bound on our algorithm serves as an upper bound
on the size of the DNF built by the DT-Construction algorithm. Therefore, it is sufficient to
show that

N8λ·k < 2opt(S)ℓ/16 (4)

because this bound shows that our DNF must have error at least 1/(4N). Recalling that k =
1
2 ·

log logN
log log logN , we have (2k2)k < logN

log logN . We observe

opt(S) >
1

2

(

logN

log logN

)1/k

> k2

≥ 128λk2 (128λ ≤ 1)

which shows kℓ(8λk) < opt(S)ℓ/16. Exponentiating both sides and using the fact that N = 2kℓ

completes the calculation and establishes Equation (4). It follows that our algorithm finds the error
to be > 1/(4N) and outputs No with high probability.
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Refuting randomized ETH. We now have an algorithm for solving

(

k, 12

(

logN
log logN

)1/k
)

-Set-

Cover in time N8λk with high probability. By Theorem 7, there is a constant c ∈ (0, 1) such that
(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover cannot be solved with high probability in time N ck. Therefore,

we derive a contradiction for any λ ≤ min{c/8, 1/128}.

6.3.2 PAC learning hardness

In this section, we discuss corollaries of Theorem 12. For a brief background on PAC learning and
the definitions that we use, see Appendix C.

Corollary 6.18 (Hardness of learning decision trees, DNFs, and CNFs). Assuming randomized
ETH, there is a constant λ ∈ (0, 1) such that decision trees cannot be distribution-free, properly

PAC learned to accuracy ε = 1/n in time sλ
log log s

log log log s where s is the size of the target. The same
result also holds for properly learning DNFs and CNFs with size-s targets.

Proof. Let L be a distribution-free, proper learning algorithm for the class T of decision trees. We
claim L can be used to solve DT-Construction. In particular, let f : {0, 1}n → {0, 1} and D
be an instance of DT-Construction(s, 1/n). We run the learning algorithm on f and D and
ε = 1/n. If L requests a random sample, we generate x ∼ D using the generator for D and evaluate
f(x) using the circuit for f and return (x, f(x)) to L. Since generating a sample from D and
evaluating the circuit for f are both poly(n)-time operations the overall runtime is dominated by
the runtime of L. Theorem 12 then implies the desired time bound by setting µ(n) = 1.

If L is a learning algorithm for DNFs, we obtain the same hardness as in the decision tree case
since any size-s decision tree target is equivalently a size-s DNF target. Moreover, Theorem 12 also
applies when the output of the DT-Construction algorithm is a DNF formula. A symmetric
argument works similarly for CNFs.

6.3.3 Proof of Theorem 3

In this section, we observe that the number of relevant inputs to ΓS exactly characterizes the set
cover complexity of S. As a result, hardness of approximating set cover can be directly translated
into hardness of distribution-free, proper PAC learning k-juntas. The next theorem formalizes this
observation and was already implicit in [ABF+09].

Theorem 13 (Learning k-juntas is as hard as Set-Cover). Suppose there is a distribution-free
PAC learning algorithm that runs in time t(n, k) and learns the class of k-juntas over {0, 1}n to
accuracy ε = O(1/n) by hypotheses which are g(k, n)-juntas for some function g : N2 → N satisfying
k ≤ g(k, n). Then (k, g(k, n))-Set-Cover can be solved with high probability in time t(n, k).

Proof. Let S = (S,U,E) be an instance of (k, g(k, n))-Set-Cover. We construct the function
Γ : {0, 1}|S| → {0, 1} and the distribution D over {0, 1}|S|. Run the learning algorithm on Γ and D
with ε = 1/(4|S|) for t(k, |S|) time steps. It outputs some truth table representation of a junta. We
output Yes if and only if this truth table has size at most g(k, n) and has error at most 1/(4|S|).
The correctness of the reduction follows from Fact 6.1.

Corollary 6.19. There is no distribution-free PAC learning algorithm for properly learning k-
juntas to accuracy ε = O(1/n) over {0, 1}n that runs in time:
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◦ no(k), assuming randomized W [1] 6= FPT;

◦ O(nk−λ), for all λ > 0, assuming randomized SETH.

These results hold in the regime where k ≤ nc for some absolute constant c < 1.

Proof. By Theorem 13, distribution-free properly PAC learning k-juntas is equivalent to (k, k + 1)-
Set-Cover. The first bullet follows by combining Theorems 10 and 13. The second bullet follows
by combining Theorems 11 and 13.

7 Lower bounds for DT-Estimation

For our lower bounds for DT-Estimation, we have to consider decision trees that are allowed to
abort:

Definition 5. A δ-abort decision tree T under a distribution D is a decision tree with leaves labeled
{0, 1,⊥} satisfying Prx∼D[T (x) = ⊥] ≤ δ. The distance between such a tree T : {0, 1}n → {0, 1,⊥}
and a function f : {0, 1}n → {0, 1} under D is

distD(T, f) := Pr
x∼D

[T (x) 6= f(x) and T (x) 6= ⊥].

7.1 Lemma 6.6 for decision trees that abort

In this section we generalize Lemma 6.6 to δ-abort decision trees:

Lemma 7.1 (Lemma 6.6 with aborts). Let S = (S,U,E) be an N -vertex set cover instance and
let ℓ ∈ N. If T : ({0, 1}ℓ)n → {0, 1} is a decision tree of size |T | < 2opt(S)ℓ/40 that can abort with
probability δ < 0.4, then distD⊕ℓ

(T,Γ⊕ℓ) ≥ 1/(20N).

Since every depth-d tree is a tree of size 2d, Lemma 7.1 also holds for decision trees T of depth
< opt(S)ℓ/40.

Outline of Proof. As in the non-abort case, there are three main components to the proof of
the above lemma:

1. No δ-abort decision tree with small average depth can approximate Γ under D where δ < 1/2
(Claim 7.2).

2. Any δ-abort decision tree with small average depth that approximates Γ⊕ℓ under D⊕ℓ can be
used to construct a δ-abort decision tree of much smaller average depth that approximates Γ
under D at the cost of a modest blowup in the size of δ (Claim 7.3). This is the key claim.

3. Any small size decision tree must have small average depth with respect to D⊕ℓ. This claim
is unchanged from the non-abort version.

Analogous to the non-abort case, these claims together imply that no δ-abort decision tree with
small average depth can approximate Γ⊕ℓ under D⊕ℓ. We need to provide slightly different claims
and proofs for the first two items, but the last claim is completely independent of aborts, so we
need not reprove it.
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Claim 7.2 (Abort version of Claim 6.7). Let T : {0, 1}n → {0, 1} be a δ-abort decision tree with
δ < 1/2 and S = (S,U,E) be an N -vertex set cover instance with |S| = n. If E

x∼D
[depthT (x)] <

opt(S)/2 then distD(T,Γ) ≥ 1/(2N).

Proof. This proof is almost identical to that of Claim 6.7. We provide the start of the proof and
then refer the reader back to Claim 6.7 for the rest.

Suppose that distD(T,Γ) < 1/(2N) ≤ 1/(2|U |). We note as before that each x ∈ supp(D) has
mass ≥ 1/(2|U |) under D, so it must be that distD(T,Γ) = 0. Since 0n has weight 1/2 under D,
T (0n) 6=⊥ because T can only abort with probability < 1/2. It follows that T (0n) = Γ(0n) = 0.

The rest of the proof is identical to that of Claim 6.7

For the next claim, we reuse the portions of Claim 6.8 that tell us that the restriction T ∗ of T is
distance preserving and has small depth. We must show that T ∗ also has a small abort probability.

Claim 7.3 (Abort version of Claim 6.8). Let T : ({0, 1}ℓ)n → {0, 1} be a decision tree such that

distD⊕ℓ
(T,Γ⊕ℓ) ≤ ε and E

y∼D⊕ℓ

[depthT (y)] ≤ d and Pr
y∼D⊕ℓ

[T (y) = ⊥] ≤ δ.

Then there is a restriction T ∗ : {0, 1}n → {0, 1} of T satisfying

distD(T ∗,Γ) ≤ 10ε and E
x∼D

[depthT ∗(x)] ≤
10d

ℓ
and Pr

x∼D
[T ∗(x) = ⊥] ≤

5

4
δ.

Proof. Recall the definition of qj(y) in the proof of Claim 6.8. For j ∈ [ℓ], qj(y) is the number of
times that T , on input y, queries (yi)j for some i ∈ [n]. Refer to Definition 4 for the definitions of

Dj
⊕ℓ and ParCompletej(z, x). The proof of Claim 6.8 bounds the probabilities that distD(T ∗,Γ) or
E

x∼D
[depthT ∗(x)] are too large using Markov’s inequality. More concretely, we already know that

for a particular j ∈ [ℓ],

Pr
z∼Un(ℓ−1)

[

Pr
x∼D

[

T (ParCompletej(z,x)) 6= Γ(x) and T (ParCompletej(z,x)) 6=⊥
]

> 10ε

]

<
1

10

and Pr
z∼Un(ℓ−1)

[

E
x∼D

[

qj(ParCompletej(z,x))
]

>
10d

ℓ

]

<
1

10

where all we have done is change the constant used in the application of Markov’s inequality.
It remains for us to bound the probability that the tree aborts. We compute

δ ≥ Pr
y∼D⊕ℓ

[T (y) =⊥]

= Pr
y∼D

j

⊕ℓ

[T (y) =⊥] (Proposition 6.4)

= E
z∼Un(ℓ−1)

[

Pr
x∼D

[

T (ParCompletej(z,x)) =⊥
]

]

. (Definition of Dj
⊕ℓ)

Again, we can apply Markov’s inequality to deduce

Pr
z∼Un(ℓ−1)

[

Pr
x∼D

[

T (ParCompletej(z,x)) =⊥
]

>
10

8
δ

]

<
8

10
.
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Thus, applying a union bound to all three of our Markov inequalities, we conclude that there exists
a fixed z ∈ {0, 1}n(ℓ−1) such that

Pr
x∼D

[

T (ParCompletej(z,x)) 6= Γ(x) and T (ParCompletej(z,x)) 6=⊥
]

≤ 10ε

and E
x∼D

[

qj(ParCompletej(z,x))
]

≤
10d

ℓ

and Pr
x∼D

[

T (ParCompletej(z,x)) =⊥
]

≤
10

8
δ

The tree T ∗ is formed by restricting T according to z and j. As before, the depth of an input x is
depthT ∗(x) = qj(ParCompletej(z, x)). Thus, the claim follows.

Finally, we can directly apply Claim 6.10 without needing a special version for aborts. These
three claims together allow us to complete the proof.

Putting things together: Proof of Lemma 7.1. Suppose there is some δ-abort tree T com-
puting Γ⊕ℓ with |T | ≤ 2opt(S)ℓ/40 and with δ < 0.4. We show that dist(T,Γ⊕ℓ) ≥ 1/(20N). Sup-
pose for contradiction that dist(T,Γ⊕ℓ) < 1/(20N). By Claim 6.10, we have E

y∼D⊕ℓ

[depthT (y)] <

2 · log
(

2opt(S)ℓ/40
)

= opt(S)ℓ/20. Then by Claim 7.3 there is a decision tree T ∗ satisfying

distD(T ∗,Γ) <
1

2N
E

x∼D
[depthT ∗(x)] <

opt(S)

2
Pr
x∼D

[

T (ParCompletej(z,x)) =⊥
]

≤
5δ

4
<

1

2
.

But this contradicts Claim 7.2. �

7.2 Hardness amplification for DT-Estimation

Next, we amplify the distance given by Lemma 7.1 using the following harndess amplification
lemma:

Lemma 7.4 (Precise restatement of Lemma 3.3). Let f : {0, 1}n → {0, 1} and D be such that f is
ε-far from every depth-d δ-abort decision tree where δ ≥ 0.34 under D. Consider

f⊕m(x(1), . . . , x(m)) := f(x(1)) ⊕ · · · ⊕ f(x(m)),

the m-fold XOR composition of f and Dm be the corresponding distribution over ({0, 1}n)m. For
any γ > 0, by taking m = Θ(log(1/γ)/ε), we get that f⊕m is (12 − γ)-far from every decision tree
of depth Ω(dm) under Dm.

Note that the probability of error ε is taken over inputs that do not abort. Thus, this statement
is weaker than that of Lemma 3.3. We need to allow the possibility of aborting in order to apply
[BKLS20]’s lemma. The proof of Lemma 7.4 consists of two parts, each of which introduces another
layer of XOR composition in order to amplify the error. First, we amplify the error from ε to a
constant O(1) and then from O(1) to exponentially close to 1

2 . Each of these two steps uses an XOR
lemma from [BKLS20] and [Dru12] respectively. We now state these lemmas and then proceed with
the proof of Lemma 7.4.
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Lemma 7.5 (Lemma 1 of [BKLS20]). Let f : {0, 1}n → {0, 1} and D be such that f is ε-far from
every depth-d δ-abort tree where δ ≥ 0.34 under D. By taking m = Θ(1/ε), we get that f⊕m is
1

800 -far from every decision tree of depth Ω(dm) under Dm.

Lemma 7.6 (Theorem 1.3 of [Dru12]). Let f : {0, 1}n → {0, 1} and D be such that f is ε-far from
every depth-d decision tree under D. For every m ∈ N and α ∈ [0, 1], we get that f⊕m is

1

2

(

1 − (1 − 2ε + 6α ln(2/α)ε)m
)

far from every decision tree of depth αεdm under Dm.

Note that the original version of Lemma 7.6 in [Dru12] holds for randomized decision trees rather
than deterministic ones; however, the above version is equivalent. If f is ε-far from all depth-d
randomized decision trees, then clearly it is ε-far from all deterministic ones since randomness can
only add power. On the other hand, suppose f is ε-far from all depth-d deterministic decision
trees. Consider a depth-d randomized decision tree T (x, r) that in addition to x takes in a random
string r. The distance between T and f is given by

E
r

[Pr
x

[T (x, r) 6= f(x)]].

For each fixed r, we have that Pr[T (x, r) 6= f(x)] must be at least an ε fraction of total inputs.
Thus, by linearity of expectation, the randomized decision tree must also be ε-far from f .

Proof of Lemma 7.4. Consider f and D as in the statement of Lemma 7.4, and simply apply Lemma 7.5
with m1 = Θ(1/ε). What results is a function f⊕m1 that is 1

800 -far from every decision tree of depth
Ω(dm1) under Dm1 . Next, apply Lemma 7.6 to f⊕m1 with m2 = Θ(log(1/γ)), ε = 1

800 , and by
choosing α such that 6α ln(2/α) = 1. Then, simplifying the expression in Lemma 7.6, we get that
(f⊕m1)⊕m2 is

1

2

(

1 −
(

1 − 1
800

)m2
)

=
1

2
−

1

2

(

799

800

)Θ(log(1/γ))

≥
1

2
− 2− log(1/γ)

=
1

2
− γ

far from every decision tree of depth Ω(dm1m2) under (Dm1)m2 .
Globally, we define m = m1 · m2 = Θ(log(1/γ)/ε) so that (f⊕m1)⊕m2 = f⊕m. Then, f⊕m is

1
2 − γ far from decision trees of depth Ω(dm) = Ω(d log(1/γ)/ε) under Dm as desired.

7.3 Proof of Theorem 4

With Lemmas 7.1 and 7.4 in hand, we are now ready to prove Theorem 4. Given a size-N instance
S of (k, k′)-Set-Cover with n sets, we apply Lemmas 3.1 and 7.1 with ℓ = 2 to obtain a poly(N)-
time reduction that produces a function Γ⊕2 : {0, 1}2n → {0, 1} and the generator for a distribution
D⊕2 over {0, 1}2n satisfying:

◦ If opt(S) ≤ k, then Γ⊕2 is a 2k-junta under D⊕2.
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Figure 5: A depth-3 circuit for (Γ⊕2)
⊕m consisting of one top gate that is a PARITY connected to

m independent copies of the circuit for Γ⊕2.

◦ If opt(S) > k′, then for any δ < 0.4, any δ-abort decision tree of depth k′/20 is Ω( 1
N )-far

from Γ⊕2 under D⊕2.

Next, we consider (Γ⊕2)
⊕m and (D⊕2)m where m = Θ(N2):

◦ If opt(S) ≤ k, then (Γ⊕2)⊕m is a 2km-junta under (D⊕2)m. Such a junta can be computed
by a decision tree of depth d := 2km.

◦ If opt(S) > k′, then by Lemma 7.4, (Γ⊕2)
⊕m is (12 − 2−N )-far from decision trees of depth

d′ := Ω(k′m) under (D⊕2)m.

Note that the circuit representation for (Γ⊕2)⊕m and generator for (D⊕2)m can be constructed
in poly(N) time from those for Γ⊕2 and D⊕2 by simply feeding m copies of f into an XOR gate
and by using m copies of D. See Figure 5 for an illustration of this circuit. Since (Γ⊕2)⊕m is a
function over 2nm ≤ O(N3) variables and d′ ≥ Ω(d logN) ≥ Ω(d log d), Theorem 4 now follows by
applying Theorem 9 with β ∈ (0, 1) being any constant.

8 Proof of Theorem 5

The PAC learning lower bound from Section 6.3.2 applies to properly learning decision trees. In
this setting, the concept class is T = {T : {0, 1}n → {0, 1} | T is a decision tree}. So the learner
is allowed to output a decision tree hypothesis that may be much larger than the target. One
could instead consider the problem of properly learning the class of size-s decision trees: Ts =
{T : {0, 1}n → {0, 1} | T is a size-s decision tree}. This problem is strictly harder than learning
decision trees since the output must satisfy a size constraint. Indeed, against this class, we are able
to adapt the proof of Theorem 12 to obtain a stronger lower bound.

Theorem 14. Assuming randomized ETH, there is a constant λ ∈ (0, 1) such that DT-

Construction(s, 1n) cannot be solved in time nλ log s if the algorithm has to return a size-s DNF
hypothesis, even when the function is promised to be a log s-junta.
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Proof. This proof is a combination of the proofs of Theorems 12 and 15. The analysis is sim-
ilar so we only outline the important details here. In particular, let S = (S,U,E) be an N -

vertex

(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover instance where k is taken to be k = 1
2 · log logN

log log logN for

N large enough so that 32k < 1
2

(

logN
log logN

)1/k
. Using Theorem 7, there is a constant c ∈ (0, 1)

such that S cannot be solved in time N ck. We derive a contradiction for any algorithm for DT-

Construction(s, 1n) that returns a size-s DNF and runs in time nλ log s for λ ≤ c/5.
Use Lemma 6.13 with ℓ = 4 (as in Theorem 15) to obtain the target function Γ⊕4 : {0, 1}4N →

{0, 1} and the distribution D⊕4. Run DT-Construction(s, 1
4N ) with s := 24k on Γ⊕4 : {0, 1}4N

and D⊕4 for N5λk time steps where λ ≤ c/5. Output yes if and only if the DNF formula returned
by the algorithm as size at most 24k and error less than 1/(4N). The correctness of the no case

follows from the fact that 32k < 1
2

(

logN
log logN

)1/k
and so the DNF lower bound from Lemma 6.13

ensures 2opt(S)ℓ/16 > 24k. Since the algorithm returns a size-24k DNF formula if one exists, this
separation between the DNF sizes is sufficient to establish correctness.

As in the case of Corollary 6.18, this theorem yields hardness of properly PAC learning the class
of size-s decision trees.

Corollary 8.1. Assuming randomized ETH, there is a constant λ ∈ (0, 1) such that the class Ts of
size-s decision trees cannot be distribution-free, properly PAC learned to accuracy ε = 1/n in time
nλ log s. The same result also holds for properly learning size-s DNFs and CNFs.

9 Proof of Theorem 6

In this section, we outline a concrete path towards proving optimal lower bounds for DT-

Construction. In particular, we show that better lower bounds for gapped set cover yields
better lower bounds for DT-Construction. Specifically, the main theorem assumes Conjecture 1
and proves an nΩ(log s) lower bound for DT-Construction(s, 1

n).

Theorem 15. Assume Conjecture 1, then there is a constant λ ∈ (0, 1) such that DT-

Construction(s, 1n) cannot be solved in time nλ log s, even when the target is a log s-junta and
the algorithm is allowed to return a DNF hypothesis.

Proof. Let β ∈ (0, 1) be as in the statement of the Conjecture 1. Assume there is an algorithm for
DT-Construction(s, 1

n) running in time nλ·log s for any λ ≤ (1−β)/(40 log e). Then, following the
proof strategy of Theorem 12, we derive a contradiction by solving (k, k · (1−β) lnN)-Set-Cover

over N vertices in time N5λk. Let S = (S,U,E) be an N -vertex (k, k · (1 − β) lnN)-Set-Cover

instance for k ∈ N. Using Lemma 6.17 with ℓ = 4, we obtain the target function Γ⊕4 : {0, 1}4N →
{0, 1} and the distribution D⊕4. We run the algorithm for DT-Construction(s, 1

4N ) on Γ⊕4 and
D⊕4 with s := 24k and terminate it after N5λk time steps. The output is some DNF formula F .
We estimate the error of F over D⊕4 and output Yes if it’s less than 1/(4N) and No otherwise.

Runtime. By Lemma 6.17, we can construct the circuit for Γ⊕4 : {0, 1}4N → {0, 1} and generator
for D⊕4 in poly(N)-time. Moreover, we can use random sampling to efficiently estimate the error
of F over D⊕4. Therefore, the runtime of the reduction is dominated by N5λk.
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Correctness. We handle the yes case and the no case separately.

Yes case: opt(S) ≤ k. By Lemma 6.17, Γ⊕4 is a 4k-junta over D⊕4. Therefore, it is a decision
tree of size s = 24k and DT-Construction(s, 1

4N ) runs in time

(4N)λ·log s = (2N)4λk ≤ N5λk.

The output is DNF formula with error at most 1/(4N). It follows that our algorithm outputs Yes

with high probability.

No case: opt(S) > k · (1 − β) lnN . By Lemma 6.17, any DNF for Γ⊕4 with size at most
2opt(S)/8 has error at least 1/(4N). Using the assumption on opt(S):

2opt(S)/8 > Nk(1−β)/(8 log e)

≥ N5λk ((1 − β)/(40 log e) ≥ λ)

which shows that the DNF output by the algorithm must have error at least 1/(4N). It follows
that our algorithm outputs No with high probability.

As discussed in Section 6.3.2, this lower bound for DT-Construction implies a lower bound
for PAC learning decision trees.

Corollary 9.1. Assume Conjecture 1, then there is a constant λ ∈ (0, 1) such that decision trees
cannot be distribution-free, properly PAC learned to accuracy ε = 1/n in time nλ log s where s is the
size of the decision tree target. The same result also holds for properly learning DNFs and CNFs.

The proof of this corollary is identical to that of Corollary 6.18.
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A Hardness of Approximating Set Cover

We first state a lemma due to [Lin19], translated into our notation.

Lemma A.1 (Lin’s lemma [Lin19, Lemma 3.6]). There is an algorithm which given k ∈ N, δ > 0
with (1 + 1/k3)1/k ≤ (1 + δ)/(1 + δ/2) and (1 + δ/2)k ≥ 2k4 and a SAT instance φ with n variables
and Cn clauses, where n is much larger than k and C, outputs an integer N ≤ 2n/k + n/k3 and a
set cover instance S = (S,U,E) satisfying

• |S| + |U | ≤ N ;

• if φ is satisfiable, then opt(S) ≤ k;

• if φ is unsatisfiable, then opt(S) > 1
1+δ

(

logN
log logN

)1/k

The exact version of this lemma we use is the following.

Lemma A.2 (Reducing SAT to Set-Cover). There is an algorithm that takes an n-variate SAT
instance ϕ of size |ϕ| and an integer k ≥ 100 with k2 ≤ n/ log n and produces a set cover instance
S of size N ≤ 22|ϕ|/k in time ≤ 25|ϕ|/k such that

1. if ϕ is satisfiable then opt(S) ≤ k;

2. if ϕ is unsatisfiable then opt(S) > 1
2

(

lgN
lg lgN

)1/k
.

Proof. We use Lemma A.1 with δ = 1/2. For this value of δ, if k ≥ 100, then both conditions
(1 + 1/k3)1/k ≤ (1 + δ)/(1 + δ/2) and (1 + δ/2)k ≥ 2k4 of Lemma A.1 are satisfied. Moreover, an
inspection of the proof of Lemma A.1 shows that the condition “n is much larger than k” in the
lemma statement means k2 ≤ n/ log n.

Therefore, Lemma A.1 returns a set cover instance S satisfying

1. if ϕ is satisfiable then opt(S) ≤ k;

2. if ϕ is unsatisfiable then opt(S) > 1
1+δ

(

lgN
lg lgN

)1/k
.

By our choice of δ, 1/(1 + δ) = 2/3 > 1/2 as desired. Since n ≤ |ϕ|, the size of the set cover
instance is N ≤ 2|ϕ|/k+|ϕ|/k3 ≤ 22|ϕ|/k. The runtime of the reduction is ≤ 25|ϕ|/k.
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We can now prove the main theorem from Section 5.1.

Proof of Theorem 7. Suppose there exists an algorithm that can solve

(

k, 12

(

logN
log logN

)1/k
)

-Set-

Cover on N vertices with high probability in time N ck. Then we show how to solve SAT with
high probability for SAT formulas with n variables in time 23cn.

Let ϕ be a SAT instance with n variables. Choose k ∈ N so that

k =
1

2
·

log log(22n/k)

log log log(22n/k)
=

1

2
·

log(2n/k)

log log(2n/k)
.

Given n this equation can be numerically solved efficiently, and k will be some value between
log log n and log n. We then apply Lemma A.2 with this value of k to obtain a set cover instance
S of size N ≤ 22n/k in time ≤ 25n/k. If N < 22n/k then we add dummy items/dummy sets to the
universe so that N = 22n/k. Note this padding will not affect the optimal set cover for the optimal

set cover size. Hence, by construction, we have an instance of

(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover of

size N where

k =
1

2
·

log log(N)

log log log(N)
.

We can therefore run our algorithm for set cover on this instance S and output “Yes” if the
algorithm outputs Yes and “No” if the algorithm outputs No.

Runtime. Our reduction runs in time

25n/k + N ck ≤ 25n/k + (22n/k)ck

= 25n/k + 22cn

≤ 23cn.

Correctness. By assumption, the set cover algorithm solves

(

k, 12

(

logN
log logN

)1/k
)

-Set-

Cover with high probability and therefore by Lemma A.2 our algorithm solves SAT with high

probability. We also note that 2kk < logN
log logN and so k < 1

2

(

logN
log logN

)1/k
for our choice of k. If

instead, one were to choose e.g. k = log log n, then 2kk > logN
log logN and so the set cover instance

would fail to determine the satisfiability of ϕ.
It follows that if SAT cannot be solved in randomized time O(2δn) for some δ ∈ (0, 1) then

(

k, 12

(

logN
log logN

)1/k
)

-Set-Cover cannot be solved in randomized time N δ/3·k.
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B Proof of Proposition 6.4

We first compute:

Pr
y∼D⊕ℓ

[y = y] = Pr
y∼D⊕ℓ

[BlockwisePar(y) = BlockwisePar(y)]

· Pr
y∼D⊕ℓ

[y = y | BlockwisePar(y) = BlockwisePar(y)] (Law of total probability)

= Pr
x∼D

[x = BlockwisePar(y)] · Pr
y∼Un·ℓ

[y = y | BlockwisePar(y) = BlockwisePar(y)]

(Definition of D⊕ℓ)

= Pr
x∼D

[x = BlockwisePar(y)] ·
∏

i∈[n]

Pr
yi∼Uℓ

[yi = yi | ⊕yi = ⊕yi]

(Independence of yi’s)

= Pr
x∼D

[x = BlockwisePar(y)] ·
∏

i∈[n]

2−(ℓ−1)

where the last step follows from the fact that conditioning on the parity of yi being a specific bit
removes 1 out of ℓ degrees of freedom. With an analogous calculation for Dj

⊕ℓ, we obtain

Pr
y∼Dj

⊕ℓ

[y = y] = Pr
y∼Dj

⊕ℓ

[BlockwisePar(y) = BlockwisePar(y)]

· Pr
y∼Dj

⊕ℓ

[y = y | BlockwisePar(y) = BlockwisePar(y)] (Law of total probability)

= Pr
x∼D

[x = BlockwisePar(y)] ·
∏

i∈[n]

Pr
yi∼Uℓ−1

[

yi = y−j
i

]

(Definition of Dj
⊕ℓ)

= Pr
x∼D

[x = BlockwisePar(y)] ·
∏

i∈[n]

2−(ℓ−1)

where y−j
i ∈ {0, 1}ℓ−1 is the string yi with its jth bit removed.

C PAC learning

In the realizable PAC learning model [Val84], there is an unknown distribution D and some unknown
target function f ∈ H from a fixed concept class H of functions over a fixed domain. An algorithm
for learning H over D takes as input ε ∈ (0, 1) and has oracle access to an example oracle EX(f,D).
The algorithm can query the example oracle to receive a pair (x, f(x)) where x ∼ D is drawn
independently at random. The goal is to output a hypothesis h such that distD(f, h) ≤ ε. Since the
example oracle is inherently randomized, any learning algorithm is necessarily randomized. So we
require the algorithm succeed with some fixed probability e.g. 2/3. A learning algorithm is proper
if it always outputs a hypothesis h ∈ H.

Formally, we use the following definition for PAC learning decision trees.

Definition 6 (PAC learning decision trees). Let T = {T : {0, 1}n → {0, 1} | T is a decision tree}
be the class of decision trees over a fixed domain {0, 1}n. A distribution-free learning algorithm
L learns T in time t(n, s, ε) if for all distributions D and for all T ∈ T , ε ∈ (0, 1), L with oracle
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access to EX(T,D) runs in time t(n, |T |, ε) and with probability 2/3 outputs h : {0, 1}n → {0, 1}
such that distD(T, h) ≤ ε. Furthermore, L is proper if h ∈ T .
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