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Abstract

The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-
off between the girth — the number of hyperedges in the smallest cycle or even cover (a subhy-
pergraph with all degrees even) and size — the number of hyperedges in a hypergraph. For
graphs (i.e., 2-uniform hypergraphs), a bound tight up to the leading constant was proven in
a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity k > 2,
an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled
up to an additional log4k+1 n factor in the size in a recent work of Guruswami, Kothari and
Manohar [GKM21]. Their argument relies on a connection between the existence of short even
covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially
for the case of odd k, is significantly complicated.

In this work, we present a substantially simpler and shorter proof of the hypergraph Moore
bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that
allows us to drop several involved steps in [GKM21]’s analysis such as combinatorial bucketing
of rows of the Kikuchi matrix and the use of the Schudy–Sviridenko polynomial concentration.
Our simpler proof also obtains tighter parameters: in particular, the argument gives a new
proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a
log3 n factor), and loses only a single logarithmic factor for all k > 2-uniform hypergraphs.

As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off
for strongly refuting smoothed instances of constraint satisfaction problems with similarly im-
proved parameters.
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1 Introduction

What is the maximum girth of a graph on n vertices and average degree d? For d-regular graphs,
a simple “ball growing” argument shows that the graph must have a cycle of length at most
2 logd−1 n + 2. This threshold is called the Moore bound [Wik22] (see Page 180 of [Big93]) and
graphs achieving it are called Moore graphs. In a classical paper that resolved a question of Bol-
lobás [Bol78], Alon, Hoory and Linial [AHL02] proved that the same upper bound holds even for
irregular graphs. Later on, Hoory [Hoo02] obtained a better bound for bipartite graphs and Babu
and Radhakrishnan [BR14] found an elegant proof based on the entropy of random walks.

Girth-density trade-offs for hypergraphs. This work is about a natural and well-studied gen-
eralization of the Moore bound to k > 2-uniform hypergraphs. A cycle1 in a hypergraph, more
descriptively called an even cover, is a collection of hyperedges such that every vertex participates
in an even number of them. The girth of a hypergraph is the smallest size of an even cover in it.
When specialized to graphs, an even cover is simply a union of cycles and thus, this formulation
naturally generalizes the standard notion of girth in graphs.

Analogously to the Moore bound, understanding the maximum number of hyperedges that
one can pack in a hypergraph while avoiding an even cover of a given length is a basic hypergraph
Turán problem. Hypergraph Turán problems are typically significantly more difficult than their
counterparts in graphs. Indeed, even the original hypergraph Turán conjecture from the 1940s
that studies an appropriate analog of triangle free hypergraphs is still open. We direct the reader
to the recent survey of Keevash [Kee11] for an overview of hypergraph Turán theory.

Applications of girth-density trade-offs. Like the graph Moore bound, girth-density trade-offs
for hypergraphs have foundational connections to several research directions in theoretical com-
puter science. One source of such applications is the observation that for a collection of linear
equations in F2 on n variables, if we associate each equation to the set indicated by its coefficient
vector, then the girth of the resulting hypergraph on [n] is the same as the size of the smallest
linearly dependent subset of equations. As a consequence, rate vs distance trade-offs for low
density parity check (LDPC) codes are equivalent to the girth vs size trade-offs for k-uniform hy-
pergraphs with hyperedges corresponding to the columns of the parity check matrix. As a result,
there is an extensive line of work that studies the girth-density trade-offs for hypergraphs (see
e.g. [BKHL99, BMS08, AF09]).

Naor and Verstraëte [NV08] started a systematic study of hypergraph girth density trade-offs.
They were explicitly motivated by mapping the rate-distance trade-offs for LDPC codes and com-
puting product representations of square integers arises as a step in sub-exponential time algo-
rithms for integer factoring. In particular, they showed that every k-uniform hypergraph on n
vertices and O(nk/2 log n) hyperedges must have an even cover of size O(log n). Improving the
bounds of [NV08] for k = 3, Feige [Fei08] proved that every 3-uniform hypergraph on n vertices
and O(n3/2) log log n hyperedges has an even cover of length O(log n). Feige’s motivation was a
connection, via the connection to linear equations modulo 2 discussed above, to refuting random
3SAT formulas and generalizations. In particular, by exploiting this improved bound, Feige de-
rived a weak refutation algorithm for smoothed 3SAT formulas with O(n1.5 log log n) constraints.

1There are several well-studied combinatorial notions of cycles in contrast to the more linear algebraic notion of
even covers.
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Hypergraph Moore bound. Feige’s result leaves open the uncharted territory of hypergraph sizes
between m ∼ n and m ∼ nk/2 — a polynomially large multiplicative interval when k > 2. The
work of Feige, Kim and Ofek [FKO06] found an intriguing connection between the girth bounds
in this interesting regime and the foundational average-case problem of refuting random 3SAT
formulas [Fei02]. They observed that random hypergraphs with m & n1.4 hyperedges2 must have
an even cover of length O(n0.2) and used a tour de force argument based on the second moment
method to establish that at the same density, random hypergraphs should contain n1.4 different
almost disjoint even covers of size n0.2. As a consequence, they obtained their celebrated re-
sult on the existence of polynomial size witnesses of unsatisfiability for random 3SAT formulas
with O(n1.4) constraints — a threshold that is n0.1 factor smaller than the m & n1.5 bound for the
best known efficient refutation algorithms. Motivated both by whether FKO witnesses could be
efficiently constructed (and potentially refute a strong form of Feige’s Random 3SAT hypothe-
sis [Fei02]) and investigating whether such certificates exist in semirandom and smoothed 3SAT
formulas, Feige [Fei08] conjectured the following hypergraph Moore bound.

Conjecture 1.1 (Hypergraph Moore Bound (Feige’s conjecture), Conjecture 1.2 of [Fei08]). For ev-
ery k ∈ N and 1 6 r 6 n, every hypergraph with n vertices and m & n( n

r )
k
2−1 hyperedges has an even

cover of size O(r log n).

In addition to a complete rate-distance profile for LDPC codes, Feige’s conjecture implies (see
Section 9 in [GKM21] for an exposition) a significantly simpler and 2nd-moment-method-free
proof of the existence of the FKO [FKO06] refutation witnesses below the spectral threshold for
random 3SAT (and other CSPs) that also generalizes to semirandom and smoothed instances3.

Feige’s conjecture was recently settled by Guruswami, Kothari and Manohar [GKM21] up to an
additional log4k+1 n multiplicative factor in the density m. Their proof goes via a new connection
between the existence of small even covers in k-uniform hypergraphs and sub-exponential size
spectral refutations of semirandom k-XOR formulas via a certain Kikuchi matrix.

While [GKM21] begins with an elegant and simple observation, their technical analysis espe-
cially for odd k (the “hard” case in all algorithms and certificates for refutation) is quite compli-
cated and involves manipulating the Kikuchi matrix via “row bucketing” and “row pruning” in
various steps and invoking the Schudy–Sviridenko concentration inequality [SS12] (that extends
the breakthrough work of Kim and Vu [KV00]) for polynomials with combinatorial structure in
the monomials. As a consequence, even for the simplest case of k = 2 (i.e., recovering the classical
Moore bound), their proof incurs an additional log3 n factor.

1.1 Our results

The main result of this work is a simple and short proof of the hypergraph Moore bound that is
almost tight up to a single logarithmic factor.

Theorem 1.2. For every k ∈N and 1 6 r 6 n, every hypergraph on n vertices and m & n log n · ( n
r )

k
2−1

hyperedges has an even cover of size O(r log n).
2Throughout this work, we will use the notation f & g to stand for “there exists a constant C > 0 such that f > Cg”.
3A smoothed Boolean CSP instance is obtained by starting from a worst-case instance and perturbing the literal

patterns by independently flipping each with some small constant probability (with probability 1/2 in the special case
of the semirandom model). In particular, in contrast to random CSPs where the variables in every clause are generated
uniformly at random, smoothed and semirandom CSP instances have a worst-case clause structure.
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In Section 2.1 and Appendix A, as evidence of the power of our proof strategy, we obtain yet
another proof of the classical Moore bound [AHL02] with the same leading constant. Indepen-
dently of our work, David Munhá Correia and Benny Sudakov [CS22] informed us that they have
found a simple, combinatorial argument for analyzing the Kikuchi matrix to prove a hypergraph
Moore bound for even arity k that also loses only a single logarithmic factor.

Our techniques extend to give a simple and tighter proof of a sub-exponential time strong
refutation algorithm for semirandom k-XOR formulas when the number of constraints is below
the “spectral threshold” nk/2, which is spelled out in Section 4. Via the standard XOR trick (see,
for example, [AOW15]), this recovers a tighter trade-off for refuting smoothed Boolean constraint
satisfaction problems as in [GKM21]. Prior to our work, a bound tight up to log n factors was
not known even for the (significantly) easier setting of fully random k-XOR refutation for odd k
(the argument of [WAM19] obtains such a result for even k) where the best known bound due
to [RRS17] loses a log2k n factor.

Theorem 1.3 (Informal). Fix k ∈ N and r 6 n, there is an nO(r)-time algorithm such that given a
semirandom k-XOR instance ψ with n variables and m & n log n · ( n

r )
k
2−1 constraints, it certifies that ψ is

not (1/2 + 0.01)-satisfiable.

We believe that the last remaining logarithmic factor in the theorems above is also unneces-
sary. However, removing it seems related to certain technical difficulties that arise in beating the
logarithmic factor incurred in spectral norm bounds for the matrix Rademacher series [Tro15].
In particular, the tightest known proof for the closely related problem of refuting fully random
k-XOR formulas below the spectral threshold also loses a log n factor for even k [WAM19] and
a log2k n-factor for odd k [RRS17]. For some easier settings such as refutation in the polyno-
mial time regime [dT22] and understanding the SDP value of random NAE-3SAT and generaliza-
tions [FM17, DMO+19, MOP20], recent works manage to circumvent this difficulty by application
of powerful tools such as the Ihara–Bass formula and the largest eigenvalue of non-backtracking
walk matrices. Our proof suggests a natural and more elementary route to removing this final
logarithmic factor but requires resolving the count of certain “walks” that arise in our analysis.

Key ideas. The abstract strategy employed by [GKM21] is to construct a so called Kikuchi ma-
trix AH (first introduced in the work of [WAM19] on Gaussian tensor PCA) associated with our
hypergraphH where:

(i) 1>AH1 is a surrogate for the number of hyperedges inH.

(ii) The lack of short even covers inH can be turned into a certificate that 1>AH1 is small, which
then translates to a bound on |H|.

The certificate used by [GKM21] is ‖AH‖∞→1, which they control by bucketing the rows by
weight, bounding the spectral norm of each submatrix, and stitching these norms together.

Our key insight is in the style of certificate we provide — we give a matrix Q such that Q �
AH. Such a certificate implies a bound of tr(Q) on our surrogate for |H|. The inequality Q �
AH is equivalent to proving

∥∥Q−1/2AHQ−1/2
∥∥

2 6 1, which can be done via the trace moment
method with relative ease. Our reweighting strategy is akin to constructing a “diagonal weighted”
dual solution for certifying upper bounds on the value of the basic SDP relaxation for quadratic
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optimization problems on the hypercube such as Max-Cut and the Grothendieck problems. Our
reweighting strategy simplifies the analysis, removes the need for the “row bucketing” step in
[GKM21], and lets us obtain a sharper result.

Our proof for odd k requires combining our reweighted Kikuchi matrix with a new “edge dele-
tion” operation that controls the “heavy rows” in the Kikuchi matrix. At a high level, our strategy
involves deleting an appropriately chosen set of entries of the Kikuchi matrix in comparison to the
“row pruning” strategy of [GKM21] which involves deleting entire rows (vertices in the Kikuchi
graph). This seemingly technical change leads to a great deal of simplification and in particular
allows replacing the use of the Schudy–Sviridenko inequality [SS12] and the carefully introduced
logarithmic factors in the hypergraph regularity decomposition in [GKM21].

Organization. The rest of this paper is organized as follows. In Section 2, we give a complete
(and sharper) proof of the hypergraph Moore bound for the even arity case, starting with a proof
of a weak version (that loses additional constant factors) of the classical Moore bound using our
ideas. We will include detailed commentary for the sake of exposition and a short overview of the
additional ideas (including our new edge deletion trick) to handle the odd arity case. In Section 3,
we will give a proof of the hypergraph Moore bound for odd arity. Finally, in Section 4, we
will extend our techniques to obtain strong refutation algorithms for semirandom and smoothed
Boolean CSPs.

2 Warm-up: hypergraph Moore bound in the even arity case

In this section, we will give a proof of the Moore bound for hypergraphs of even arity with the goal
of providing an exposition of our main ideas. As an illustration of the power of our reweighting
idea, in Section 2.1 we will give a simple proof of the classical Moore bound [AHL02] that is
tight up to an absolute constant factor (as opposed to the log3 n loss incurred by the strategy
of [GKM21]).4 In Section 2.2, we will generalize the reweighting idea to prove hypergraph Moore
bound for all even arities. Finally in Section 2.3, we will discuss the key new idea of edge deletions
that is crucial for our simpler and tighter proof for the case of odd k.

2.1 Weak Moore bound for graphs

In this section, we prove a weak Moore bound for graphs to illustrate our reweighting strategy
in a simple setting. The resulting bound is weak in the sense that it incurs a constant factor loss
when compared to [AHL02]. In Appendix A, we implement this strategy (in a way that is less
generalizable to hypergraphs) to recover the tight 2 logd−1 n bound.

We note that [GKM21] also proved a weaker Moore bound (Proposition 2.3 of [GKM21]) to
illustrate their “row bucketing” strategy that partitions the vertices into O(log n) buckets, each
of which has vertices with degrees within a multiplicative constant factor of each other. This
strategy splits the adjacency matrix A into O(log2 n) pieces and ends up requiring an average
degree d & log3 n in order to contain a cycle of length O(log n).

4In Appendix A, we present a proof that uses one additional tool to recover the classical Moore bound for irregular
graphs with the same leading constant.
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This simple exercise will show how our reweighting handles different degrees automatically,
avoiding the lossy row bucketing step completely.

Proposition 2.1 (Weak Moore bound for irregular graphs). Every graph with n vertices and average
degree d > 16 has a cycle of length at most 2dlog(d/16) ne.

The core of the proof of Proposition 2.1 is the following spectral norm bound on the reweighted
adjacency matrix.

Claim 2.2. Let G be a graph with n vertices and average degree d > 1 that has no cycle of length 6 ` for
some even ` ∈ N. Let A be the {0, 1} adjacency matrix of G, and let Γ = D + dI be the diagonal matrix
such that Duu = du where du is the degree of vertex u. Then,

∥∥Γ−1/2AΓ−1/2
∥∥

2 < 2n1/`
√

d
.

We now complete the proof of Proposition 2.1.

Proof of Proposition 2.1 by Claim 2.2. Suppose G has no cycle of length 6 `, then Claim 2.2 implies
that A ≺ 2n1/`

√
d

Γ. Then, the quadratic form 1>A1 < 2n1/`
√

d
tr(Γ) since 1>Γ1 = tr(Γ). By definition,

1>A1 = nd and tr(Γ) = ∑n
u=1(du + d) = 2nd. Thus, n1/` >

√
d/4, and taking logs, we get

1
`

log n >
1
2

log(d/16)⇒ `

2
< logd/16 n .

` is even, so we have ` < 2dlogd/16 ne. Thus, by the contrapositive, G must contain a cycle of
length 2dlogd/16 ne. This completes the proof.

We now prove Claim 2.2 using the well-known trace moment method, which reduces to count-
ing weighted closed walks in the graph. In the analysis, we will see exactly how the choice of the
reweighting matrix Γ accounts for different vertex degrees.

Proof of Claim 2.2. Let Ã = Γ−1/2AΓ−1/2. For even ` ∈ N, the trace moment method states that
‖Ã‖`2 6 tr(Ã`) = tr((Γ−1A)`), which is a summation of all (weighted) closed walks of length `

in G. Since there is no cycle of length 6 `, the only closed walks are the ones that backtrack to the
original vertex, meaning that there can be at most `/2 “new” edges and at least `/2 “old” edges
in the walk. We encode each closed walk u1 → u2 → · · · → u` → u1 as follows,

• Choose a starting vertex u1 ∈ [n].

• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new edge or an old one.

– If bi = 0 (new edge), select one of ui’s neighbors as ui+1.

– If bi = 1 (old edge), we must backtrack to the previous vertex ui−1.

For b ∈ {0, 1} and u ∈ [n], let Nb(u) ⊆ [n] be the possible next steps in the walk from u. Then,
simply expanding tr((Γ−1A)`), we get

tr((Γ−1 A)`) = ∑
b∈{0,1}`

∑
u1∈[n]

∑
u2∈Nb1

(u1)

Γ−1
u1u1 ∑

u3∈Nb2 (u2)

Γ−1
u2u2
· · · ∑

u`+1∈Nb`
(u`)

Γ−1
u`u`
· 1(u`+1 = u1) .

5



As we can see, each step ui → ui+1 gets a factor Γ−1
uiui

= 1
dui+d . We can now bound the above by

observing that if bi = 0 (new edge), then |N0(ui)| 6 dui and

∑
ui+1∈N0(ui)

Γ−1
uiui

6
dui

dui + d
< 1 ,

and if bi = 0 (old edge), then |N1(ui)| = 1 (the previous step) and

∑
ui+1∈N1(ui)

Γ−1
uiui

6
1

dui + d
<

1
d

.

Finally, considering b ∈ {0, 1}`, u1 ∈ [n], and there are at least `/2 old edges, we have

tr((Γ−1A)`) < 2`n
(

1
d

)`/2

,

and taking the `-th root completes the proof.

2.2 The case of even arity hypergraphs

In this section, we prove the existence of small even covers in even arity hypergraphs.

Theorem 2.3 (Theorem 1.2, even k). For even k ∈N and any r ∈N with k 6 r 6 n/8, any k-uniform
hypergraph H with n vertices and m > 128n log n · ( n

r )
k/2−1 hyperedges has an even cover of size at most

dr log2 ne+ 1.

The proof is simple and almost identical to the proof of the weak Moore bound (Proposi-
tion 2.1) but with A being the adjacency matrix of the Kikuchi graph which we define below.

Definition 2.4 (Kikuchi graph). LetH be a k-uniform hypergraph on vertex set [n] for even k. For
an integer parameter r, define the Kikuchi graph Kr associated to H is a graph on vertex set ([n]r )

such that a pair of vertices S, T ∈ ([n]r ) have an edge between them if the symmetric difference

S⊕ T ∈ H. For such an edge, we write S C←→ T and think of the edge as “colored” by C ∈ Hwhere
C = S⊕ T. We call the adjacency matrix A of Kr the Kikuchi matrix.

The key insight of [GKM21] (and also our starting point) is relating even covers inH to cycles
in the associated Kikuchi graph. For sets R1, R2, . . . , R` ⊆ [n] let ⊕i6`Ri denote the set of elements
of [n] that appear in an odd number of Ris (i.e., the sum modulo 2 of the indicator vectors of Ris).

Observation 2.5 (Closed walks in the Kikuchi graph). Let H be a k-uniform hypergraph on [n]
for even k and let S1 → S2 → · · · S` → S1 be a closed walk on vertices in Kr such that for every

i 6 `, Si
Ci←→ Si+1 for C1, C2, . . . , C` ∈ H (denoting S`+1 = S1). Then, ⊕i6`Ci = 0. Further, if H

has no even cover of length `, then every hyperedge inH appears an even number of times in the
multiset {C1, C2, . . . , C`}. We will call such walks in Kr trivial.

Proof. Note that Si ⊕ Si+1 = Ci for every i 6 `. If we add both sides of all ` such equalities then
each Si occurs in exactly two of the equations so the LHS must be 0. Thus, ⊕i6`Ci = 0.

Next, we repeatedly remove hyperedges that occur an even number of times in the multiset
{C1, C2, . . . , C`} to obtain a collection of `′ 6 ` distinct hyperedges of H. The sum (modulo 2) of
the remaining hyperedge should still be 0 as we removed hyperedges in pairs. The resulting `′

must be 0 as otherwise the remaining hyperedges form an even cover of length `′ 6 `.
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Consider a hypergraphH with n vertices and m hyperedges, and its associated Kikuchi graph
(V, E) with parameter r. Each C ∈ H introduces 1

2 (
k

k/2)(
n−k

r−k/2) edges in the Kikuchi graph (select
k/2 vertices from C and select r − k/2 vertices from [n] \ C to complete S), thus the total edges
|E| = 1

2 (
k

k/2)(
n−k

r−k/2) · m. Let dS be the degree of S ∈ V, and let d denote the average degree, then
simple calculations show that

d =
( k

k/2)(
n−k

r−k/2)m
(n

r)
>
( r

n

)k/2
m ·
(

k
k/2

)(
1− 2r

n

)k/2 (
1− k

2r

)k/2

>
1
2

( r
n

)k/2
m (1)

when k 6 r 6 n/8.
We will follow the reweighting strategy with Γ = D + dI to bound the spectral norm of the

reweighted Kikuchi matrix. The following lemma is analogous to Claim 2.2.

Lemma 2.6. Let k, r, n ∈N such that k 6 r 6 n, and let ` ∈N be even. Let A be the Kikuchi matrix with
parameter r of a k-uniform hypergraph H on n vertices, and let Γ = D + dI where D is the degree matrix
and d is the average degree of the Kikuchi graph. Suppose there is no even cover of size at most ` inH, then∥∥∥Γ−1/2 AΓ−1/2

∥∥∥
2
< 2nr/`

√
`

d
.

We can immediately complete the proof of Theorem 2.3.

Proof of Theorem 2.3 by Lemma 2.6. Suppose that there is no even cover of size 6 ` := dr log2 ne
(assume this is even, otherwise add 1). Then, nr/` 6 2 and Lemma 2.6 states that the Kikuchi
graph (V, E) satisfies A ≺ 4

√
`/d · Γ where Γ = D + dI. Then,

1>A1 < 4

√
`

d
· tr(Γ) = 4

√
`

d
· ∑

S∈V
(dS + d) = 8

√
`

d
· |V|d .

On the other hand, 1>A1 = 2|E| = |V|d. Thus, we have d < 64`. By Eq. (1) we have d > 1
2 (

r
n )

k/2m
when k 6 r 6 n/8. Thus, if there is no even cover of size 6 `, then m < 128n log n · ( n

r )
k/2−1,

completing the proof.

Now, we prove Lemma 2.6 by counting weighted closed walks in the Kikuchi graph, essen-
tially the same way we prove Claim 2.2.

Proof of Lemma 2.6. Let Ã = Γ−1/2AΓ−1/2. We use the trace power method:

‖Ã‖`2 6 tr(Ã`) = tr((Γ−1A)`) .

We upper bound tr((Γ−1A)`) by counting (weighted) closed walks of length ` in the Kikuchi
graph. Note that each edge (S, T) of the Kikuchi graph corresponds to a hyperedge S⊕ T ∈ H.
Since there is no even covers of size at most `, any closed walk must contain an even number of
each hyperedge inH.

We can encode a closed walk S1 → S2 → · · · → S` → S1 as follows:

• Choose a starting vertex S1 ∈ V.

• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new hyperedge or an old
one.

7



– If bi = 0 (new hyperedge), select one of Si’s neighbors as Si+1.

– If bi = 1 (old hyperedge), select an old hyperedge C from the previous steps, and set
Si+1 = Si ⊕ C.

Note that there are at most `/2 new hyperedges and at least `/2 old hyperedges since each hy-
peredge must occur an even number of times. For b ∈ {0, 1} and S ∈ V, let Nb(S) ⊆ V be
the possible next steps in the walk from S (according to b). Each step Si → Si+1 gets a factor
(Γ−1 A)Si ,Si+1 = Γ−1

Si ,Si
= 1

dSi+d . Thus,

tr((Γ−1A)`) = ∑
b∈{0,1}`

∑
S1∈V

∑
S2∈Nb1

(S1)

1
dS1 + d ∑

S3∈Nb2 (S2)

1
dS2 + d

· · · ∑
S`+1∈Nb`

(S`)

1(S`+1 = S1)

dS`
+ d

.

We can upper bound the above as follows. If b = 0, then |N0(Si)| 6 dSi and ∑Si+1∈N0(Si) Γ−1
SiSi

6
dSi

dSi+d < 1. If b = 1, then |N1(Si)| 6 ` as there are only ` options to choose one of the previous

steps, and ∑Si+1∈N1(Si) Γ−1
SiSi

6 `
dSi+d < `

d . Furthermore, we can assume that ` 6 d, otherwise we
can simply treat all steps as new hyperedges.

Finally, b ∈ {0, 1}`, there are |V| = (n
r) choices for the starting vertex S1, and there are at least

`/2 old hyperedges. Thus, we have

tr((Γ−1A)`) < 2`
(

n
r

)(
`

d

)`/2

6 2`nr
(
`

d

)`/2

.

Taking the `-th root completes the proof.

Summary. As the above short and simple arguments illustrate, reweighted Kikuchi matrix ap-
pears to be a clean and simple way to handle irregularities in the degree of graphs (Kikuchi or
otherwise) in spectral double counting. For k > 2, we suspect that the extra log n factor incurred
in our analysis can likely be removed by a better counting of the weighted closed walks.

2.3 Overview of the odd arity case

As in many previous works on refuting constraint satisfaction problems, the odd arity case re-
quires significantly more work. Indeed, even the definition of the Kikuchi graph (Definition 2.4)
only makes sense when k is even. We present the proof of the odd arity case in Section 3, and here
we outline some of our key ideas.

Bipartite hypergraph. The main insight is to transform the hypergraphH to a “bipartite” hyper-
graph (this abstraction is closely related to the Cauchy-Schwarz trick in the context of odd-arity
CSP refutation). First, we partition the hyperedges of H into H1, . . . ,Hp such that for each Hi, all
hyperedges in Hi contains a “center” vertex ui ∈ [n]. We denote H̃i to be {C \ {ui} : C ∈ Hi},
i.e. removing the center vertex, and denote C̃ := C \ {ui}. Then, we construct a 2(k− 1)-uniform
hypergraph as follows: for each i ∈ [p] and each distinct pair C, C′ ∈ Hi, we add a hyperedge
C̃⊕ C̃′ (let’s assume C̃, C̃′ are disjoint for now).
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Let’s make some quick calculations. Suppose thatH has m hyperedges, and suppose that there
are roughly p ≈ n partitions and each partition size is ≈ m/n. Then, the new 2(k − 1)-uniform
hypergraphs will contain roughly n · (m/n)2 = m2

n hyperedges. Now, since 2(k− 1) is even, we can
apply our bound for the even case: there is an even cover of size r log n when m2

n > Õ(n)( n
r )

(k−1)−1,
meaning m > Õ(n)( n

r )
k
2−1, the correct bound!

The issue is that this new hypergraph has small even covers for trivial reasons: any 3 pairs
(C1, C2), (C2, C3) and (C3, C1) fromHi form an even cover of size 3. Nevertheless, we can proceed
to analyze the Kikuchi matrix of the new hypergraph (Definition 3.5), assuming that there is no
small even cover in the original hypergraph. Note that now an edge (S, T) is associated with 2

hyperedges C, C′ from the sameHi, which we denote as S C,C′←−→ T. Assuming that there is no even
cover of size 6 2`, we bound the number of “trivial” closed walks where each hyperedge is used
an even number of times.

Encoding a closed walk. The standard technique of bounding counts of closed walks in the trace
moment method is to give a small encoding of a walk. In our case, in a length-` closed walk of the
Kikuchi graph, each step is associated with two hyperedges, and we have two types of steps:

1. a step using 2 new hyperedges, and

2. a step using at least 1 old hyperedge.

The first type is bounded exactly the same way as the even arity case by our weight matrix Γ, the
trouble is the second type: while we can easily encode one edge in the step, we need too many
bits to encode the other edge.

Deleting bad edges of the Kikuchi graph. The main insight is that in the end, we only care
about bounding 1>A1. Again, let d be the average degree of the Kikuchi graph, A ∈ RN×N be the
Kikuchi matrix, and Γ = D + dI be our diagonal weight matrix. If we delete (say) half of the edges
of the Kikuchi graph such that we have ‖Γ−1/2A′Γ−1/2‖2 6 λ(d), where A′ is the modified Kikuchi
matrix, for some “good enough” λ(d), then we will have Nd

2 6 1>A′1 6 λ tr(Γ) = λ · 2Nd,
essentially only losing a constant factor in the density.

We define an appropriate edge deletion process, prove that the fraction of edges removed is
small (Claim 3.9), and show that the resulting subgraph has combinatorial properties that let us
encode steps of the second type efficiently (Lemma 3.8).

Improving the row pruning step of [GKM21]. The analysis of [GKM21] also requires reducing
the Kikuchi graph to obtain certain combinatorial properties. However, instead of deleting “bad”
edges, they delete “bad” vertices, which they defined as vertices that are bad for some i in the bi-
partite hypergraph (they call this row pruning as each row of the Kikuchi matrix corresponds to
a vertex). Crucially, doing so requires a union bound over i, hence they need a strong bound on
fraction of bad vertices for each i. Furthermore, they proved their bound using tail inequalities for
low-degree polynomials by Schudy and Sviridenko [SS12], which is a powerful black-box concen-
tration inequality but loses log factors and requires involved analysis. All this combined with the
row bucketing step introduces several log factors.
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Hyperedges with large intersections. It turns out that the fraction of bad edges highly depends
on large intersections of hyperedges in H. To bound the fraction of edges deleted, we require our
hypergraph to be somewhat “regular” – that is, no small subset appears in more than an appro-
priately chosen threshold of hyperedges in H. To this end, we invoke the hypergraph regularity
decomposition of [GKM21] (with more transparently chosen thresholds that do not involve care-
fully chosen logarithmic factors) to decompose the hypergraph into at most k subhypergraphs
such that each piece satisfies the required regularity conditions (see Algorithm 1 and Observa-
tion 3.3 & 3.2). Then, there must be one subhypergraph H(i) with at least m/k hyperedges, and
we will show that there exists an even cover withinH(i).

3 Hypergraph Moore bound for odd arity hypergraphs

In this section we prove the hypergraph Moore bound for k-uniform hypergraphs when k is odd.

Theorem 3.1 (Theorem 1.2, odd k). There is a universal constant B such that for any odd k ∈N, and any
r ∈N satisfying 2k 6 r 6 n

Bk , any k-uniform hypergraphH with n vertices and m > Bkn log n ·
( n

r

)k/2−1

hyperedges has an even cover of size at most r log2 n.

Our proof strategy broadly involves the following steps.

• Hypergraph decomposition. We partition H into subhypergraphs H(0),H(1), . . . ,H(k−1)

with the property that every size-(i + 1) set in H(i) is contained in only a small number
of clauses, and every clause in H(i) intersects many other clauses at a size-i set. One of the
H(i) must contain at least m/k clauses, and we find an even cover in thatH(i).

• Large i. When i > k+1
2 , we give a direct reduction to the hypergraph Moore bound for even

arity hypergraphs and apply Theorem 2.3.

• Kikuchi graph. To handle the remaining values of i, we show the existence of an even cover
by proving the contrapositive — a hypergraph with no small even covers has a bounded
number of hyperedges. To achieve this, we appropriately define the Kikuchi graph for odd
arity hypergraphs, and show that the adjacency matrix Â of some suitably chosen subgraph
(via the “edge deletion process” described below) satisfies Â � Q for some diagonal matrix
Q. Then the resulting inequality 1> Â1 6 tr(Q) can be rearranged to bound the number of
hyperedges.

• Trace method. The way we prove Â � Q is by using the trace moment method to show∥∥∥Q−1/2ÂQ−1/2
∥∥∥

2
6 1. Bounding a high trace power of Q−1/2ÂQ−1/2 corresponds to bound-

ing the total weight of closed walks that use every hyperedge an even number of times in
the Kikuchi graph.

• Edge deletion process. We delete a small fraction of the edges in Kr with the guarantee that
in the resulting subgraph any clause participates in only a small number of incident edges
to every vertex.
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Hypergraph decomposition. We describe our algorithm to partition our hypergraph.

Algorithm 1. We partitionH into hypergraphsH(0), . . . ,H(k−1) via the following algorithm.

1. Set t = k− 1 andHcurrent := H.

2. Set counter s = 1. While there is U ⊆ [n] such that |U| = t and |{C ∈ Hcurrent : U ⊆ C}| >

max
{

2,
( n

r

) k
2−t
}

:

(a) Choose U satisfying the condition and let H(t)
s be a subset of {C ∈ Hcurrent : U ⊆ C} of

size max
{

2,
( n

r

) k
2−t
}

.

(b) Add all clauses inH(t)
s toH(t).

(c) Delete all clauses inH(t)
s toHcurrent.

(d) Increment s by 1.

3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining clauses inHcurrent

and add them toH(0).

First, observe that the largest subhypergraph H(i) in the partition produced by our algorithm
must have at least m

k hyperedges. Next, observe that i 6= 0 because if |H(0)| > m/k, then there

must be a j ∈ [n] such that
∣∣∣{C ∈ H(0) : j ∈ C}

∣∣∣ > m
nk � ( n

r )
k/2−1, which would have been added

to H(1). Our goal in the rest of the proof is to find a small even cover in H(i). The following
observations articulate the properties ofH(i) we need that are guaranteed by the algorithm.

Observation 3.2. H(i) can be partitioned intoH(i)
1 , . . . ,H(i)

p where for each j ∈ [p], there is a set Uj

of size i such that every C ∈ H(i)
j contains Uj, and |H(i)

j | >
( n

r

) k
2−i and p 6 m ·

( r
n

) k
2−i.

Observation 3.3. For s > 1 and any U ⊆ [n] such that |U| = i + s, the number of hyperedges in

H(i) containing U is at most max
{

1,
( n

r

) k
2−s−i

}
, otherwise they would have been added toH(i+s).

Reduction to even arity case when i > k+1
2 . In this case, by Observation 3.3, each pair C 6= C′ in

any H(i)
j must satisfy C ∩ C′ = Uj. The following makes the reduction from finding even covers

inH(i) if i > k+1
2 to the even arity case concrete.

Lemma 3.4. Let H be a k-uniform hypergraph on n vertices with no even cover of size r log2 n. Fix
1 6 i 6 k− 1. Suppose H1, . . . ,Hp are disjoint subsets of H such that for each j ∈ [p], |Hj| > 2 and all
pairs of hyperedges C 6= C′ ∈ Hj satisfy C ∩ C′ = Uj for some Uj ⊆ [n] of size i. Then,

p

∑
j=1
|Hj| 6 O(n log n)

(
2n
r

)k−i−1

.

In particular, when i > k+1
2 the above is at most O(n log n) ·

( n
r

)k/2−1.
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Proof. Given such disjoint subsetsH1, . . . ,Hp, we can construct a 2(k− i)-uniform hypergraph Ĥ
by the following: for each j ∈ [p], arbitrarily order the edges: Hj = (C1, . . . , C|Hj|). Then, add

the hyperedge Cs ⊕ Cs+1 to Ĥ for s = 1, . . . , |Hj| − 1. By assumption |Cs ∩ Cs+1| = |Uj| = i, thus
|Cs ⊕ Cs+1| = 2(k− i). The resulting Ĥ has

|Ĥ| =
p

∑
j=1
|Hj| − 1 >

1
2

p

∑
j=1
|Hj|

hyperedges, since |Hj| > 2 for all j ∈ [p].
We claim that Ĥ cannot have an even cover of size at most r

2 log2 n. First, if Ĥ has repeated
hyperedges, then there must exist j 6= j′ ∈ [p] and C1, C2 ∈ Hj, C′1, C′2 ∈ Hj′ such that C1 ⊕ C2 =

C′1 ⊕ C′2, but then {C1, C2, C′1, C′2} would be an even cover of size 4 in H. Now, suppose Ĥ has no
repeated edges but has an even cover of size `. Then, for any Ĉ in the even cover, we can uniquely
identify j ∈ [p] and s 6 |Hj| − 1 such that Cs, Cs+1 ∈ Hj and Ĉ = Cs ⊕ Cs+1. Furthermore, by
construction there must be at least two Cs, Cs′ ∈ Hj that each occurs only once. Therefore, these
edges must form an even cover of size at most 2` inH.

Since 2(k − i) is even and Ĥ has no even cover of size r
2 log2 n, we can apply Theorem 2.3 to

show that

|Ĥ| 6 O(n log n)
(

2n
r

)k−i−1

.

This completes the proof.

Henceforth, we assume i 6 k−1
2 , which is the case we need an appropriate Kikuchi graph for

odd arity hypergraphs.

Kikuchi matrix for odd arity hypergraphs. The following is the same Kikuchi graph defined in
[GKM21, Definition 6.2].

Definition 3.5 (Colored Kikuchi graphs and subgraphs). Fix r ∈ N and t ∈ {1, . . . , k − 1} such
that 2k 6 r 6 n. Let H1, . . . ,Hp be p disjoint sets of hyperedges such that for each i ∈ [p],
all hyperedges in Hi have a common subset Ui ⊂ [n] where |Ui| = t. For each C ∈ Hi, denote
C̃ := C \Ui, and denote H̃i := {C̃ : C ∈ Hi}which can be viewed as a (k− t)-uniform hypergraph.
We define the colored Kikuchi graph Kr as follows.

The vertex set V(Kr) consists of subsets of [n] × [2] of size r, where S ∈ V is viewed as
(S(1), S(2)) where S(1), S(2) ⊆ [n] are colored green and blue respectively. For each i ∈ [p] and
each C 6= C′ ∈ Hi, let C̃(1) be C̃ colored green and C̃′(2) be C̃′ colored blue, and we add an edge

between S, T ∈ V, denoted S C,C′←−→ T, if S⊕ T = C̃(1) ⊕ C̃′(2) and if one of the following holds,

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌈

k−t
2

⌉
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌊
k−t

2

⌋
, or

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌊

k−t
2

⌋
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌈
k−t

2

⌉
, or

Figure 1 shows an example of two edges C, C′ ∈ Hi forming an edge (S, T) in the Kikuchi graph.
We say that the edge (S, T) is type-i, and for S ∈ V, we define the type-i degree as

dS,i :=
∣∣∣∣{C ∈ Hi : |C̃ ∩ S(1)| or |C̃ ∩ S(2)| ∈

{⌈
k− t

2

⌉
,
⌊

k− t
2

⌋}}∣∣∣∣ .
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We call any subgraph of the colored Kikuchi graph as a colored Kikuchi subgraph.

1 2

3
4

5

6
7

8

C

C’

3

4

6

6

9

S

C, C’

5

6

7

8

9

T

Figure 1: An example of Definition 3.5 with k = 5 and t = 2. On the left are two 5-uniform
hyperedges in Hi with common intersection Ui = {1, 2} and C̃ = {3, 4, 5}, C̃′ = {6, 7, 8}. On the
right, S and T are vertices in the Kikuchi graph where S(1) = {3, 4, 6}, T(1) = {5, 6} are colored
green, and S(2) = {6, 9}, T(2) = {7, 8, 9} are colored blue. C and C′ form an edge between S, T
because |C̃ ∩ S(1)| = 2, |C̃ ∩ T(1)| = 1, |C̃′ ∩ S(2)| = 1, and |C̃′ ∩ T(2)| = 2.

Remark 3.6 (Purpose of coloring). The coloring in Definition 3.5 is needed because C 6= C′ ∈
Hi may have intersection larger than t, meaning |C ⊕ C′| = |C̃ ⊕ C̃′| < 2(k − t), making the
analysis complicated. Coloring C̃, C̃′ with different colors automatically makes C̃(1), C̃′(2) disjoint,
i.e. |S⊕ T| = |C̃(1)⊕ C̃′(2)| = 2(k− t). Note also that a vertex S ⊆ [n]× [2] may contain two copies
of some element in [n] with different colors, as shown in Figure 1.

Observation 3.7 (Parameters of the Kikuchi graph). The Kikuchi graph (V, E) defined in Defini-
tion 3.5 has |V| = (2n

r ), and each distinct pair C, C′ ∈ Hi contributes a collection of edges EC,C′ in
E, where

|EC,C′ | = αt :=
(

k− t
b k−t

2 c

)(
k− t
d k−t

2 e

)(
2n− 2(k− t)

r− (k− t)

)
· 21(k− t is odd)

by first choosing C̃ ∩ S(1), C̃′ ∩ S(2) (or C̃ ∩ S(2), C̃′ ∩ S(1)) and completing S’s remaining r− (k− t)
elements. Thus, |E| = ∑

p
i=1 (

|Hi |
2 ) · αt, and standard calculations show that when 2k 6 r 6 n/8, the

average degree d = 2|E|
|V| satisfies

( r
2n

)k−t p

∑
i=1

(
|Hi|

2

)
6 d 6 22k

( r
2n

)k−t p

∑
i=1

(
|Hi|

2

)
.

Our ideal hope is that the adjacency matrix A of the Kikuchi graph, constructed from H(i) =

(H(i)
1 , . . . ,H(i)

p ), is bounded in the PSD order by some low-trace diagonal matrix Q. To achieve this,
we prove the following lemma analogous to Lemma 2.6, but with the additional requirement that
dS,i is small for all S ∈ V(Kr) and i ∈ [p]. The proof is almost identical to the proof of Lemma 2.6
but the encoding for an “old hyperedge” step is different.

Lemma 3.8. Let r > 2k. Given disjoint hyperedges H1, . . . ,Hp, let Â be the adjacency matrix of any
colored Kikuchi subgraph K̂r as defined in Definition 3.5, and let Γ = D + dI where D is the degree matrix
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and d is the average degree of G. Fix η ∈ R and let ` ∈ N be even. Suppose there is no even cover of size
at most `, and suppose dS,i 6 η for all S ∈ V and i ∈ [p]. Then,∥∥∥Γ−1/2ÂΓ−1/2

∥∥∥
2
6 2nr/`

√
2η`

d
.

Proof. Let Ã = Γ−1/2ÂΓ−1/2. We again use the trace power method:∥∥Ã
∥∥`

2 6 tr(Ã`) = tr((Γ−1A)`) .

Note that each edge (S, T) in Â corresponds to two hyperedges of the same type (both from some
Hi), one green and one blue, and since there is no even covers of size at most `, any closed walk
must contain an even number of each hyperedge.

We encode a closed walk S1 → S2 → · · · → S` → S1 as follows:

• Starting vertex S1 ∈ V.

• One bit bi ∈ {0, 1} at step i to encode whether this step uses two new hyperedges or one (or
more) old hyperedge.

– If bi = 0 (two new hyperedges), select one of Si’s neighbors as Si+1.

– If bi = 1 (old hyperedge), select an old green (or blue) hyperedge C from the previous
steps, and select a blue (or green) hyperedge C′ incident to Si.

Recall that for b ∈ {0, 1}, we write Nb(S) as the possible next steps in the walk from S. Using the
same analysis as the proof of Lemma 2.6, for b = 0,

∑
Si+1∈N0(Si)

1
dSi + d

6 1 ,

and for b = 1, suppose the old edge is of type j ∈ [p], then |N1(Si)| 6 2`dSi ,j (one previous step, 2
colors), thus

∑
Si+1∈Nb(Si)

1
dSi + d

6
2`dSi ,j

dSi + d
6

2η`

d
.

We can assume that 2η` 6 d, otherwise we can simply treat all steps as new hyperedges.
There are (2n

r ) 6 ( 2en
r )r 6 nr (since r > 2k and k > 3) choices to pick the starting vertex S1.

Furthermore, there can be at most `/2 steps that use two new hyperedges, i.e. |b| > `/2, thus

tr((Γ−1 Â)`) 6 nr ∑
b∈{0,1}`

(
2η`

d

)|b|
6 2`nr

(
2η`

d

)`/2

.

Taking the `-th root completes the proof.

Construction of colored Kikuchi subgraph. Unfortunately, the requirement for all dS,i to be
bounded by a small η prohibits us from obtaining a good bound on the adjacency matrix of the
full colored Kikuchi graph Kr using Lemma 3.8. This motivates dropping a small number of edges
from Kr, and bounding the adjacency matrix Â of the resulting subgraph K̂r instead. Thus, we
proceed with identifying a suitable colored Kikuchi subgraph K̂r of H(i) with adjacency matrix Â
via the following edge deletion process:
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Start with the colored Kikuchi graph Kr, and delete every edge {S, T} caused by a pair
of clauses C, C′ such that S or T has strictly more than 1 edge that C or C′ participates
in.

To obtain a handle on the average degree of K̂r, we first show that the number of edges of Kr we
delete to obtain K̂r is only a small fraction of the total number of edges, and then the desired lower
bound follows from a lower bound on |E(Kr)|.

Analyzing the edge deletion process. We find it convenient to think of the fraction of deleted
edges as the probability that a uniformly random edge in Kr is absent in K̂r. With this probabilistic
interpretation in hand, observe that a uniformly random edge in Kr is the same as choosing a
uniformly random pair of clauses (C, C′) such that C and C′ both belong to the same H(i)

j and
then choosing a random edge {S, T} in EC,C′ , the collection of edges adorned by (C, C′). We will
use the notation C′′ →C S to mean |C̃′′ ∩ S| = |C̃ ∩ S|, where we recall from Definition 3.5 that
C̃ := C \Uj with Uj being the size-i common intersection ofH(i)

j . We then show the following.

Claim 3.9 (Deletion probability). For every pair of clauses (C, C′) such that C and C′ belong to the same
H(i)

j for some j ∈ [p],

Pr
{S,T}∼EC,C′

[{S, T} deleted] 6 k · 4k+1
√

r
n

.

Proof. Recall that we defined C̃ = C \Uj and C̃′ = C′ \Uj. The distribution of S = (S(1), S(2)) (the
green and blue vertices) is uniform on all sets such that:

• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
, or

• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
.

Then, by union bound,

Pr
{S,T}∼EC,C′

[{S, T} deleted] 6 Pr
{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ 6= C
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C′ S(2) : C′′ ∈ H(i)

j , C′′ 6= C′
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C T(1) : C′′ ∈ H(i)

j , C′′ 6= C
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C′ T(2) : C′′ ∈ H(i)

j , C′′ 6= C′
]

= 4 Pr
{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ 6= C
]

then by Markov’s inequality,

6 4 E
{S,T}∼EC,C′

∣∣∣C′′ : C′′ →C S(1), C′′ ∈ H(i)
j , C′′ 6= C

∣∣∣
= 4 ∑

C′′ :C′′∈H(i)
j

C′′ 6=C

Pr
{S,T}∼EC,C′

[
C′′ →C S(1)

]
(2)
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Once the intersection of S with C̃ and C̃′ is chosen, the remaining elements are selected uniformly
at random without replacement. For fixed C′′ 6= C ∈ H(i)

j , since they contain Uj of size i, |C̃′′ ∩
C̃| = |C′′ ∩ C| − i, and S must include b k−i

2 c − (|C′′ ∩ C| − i) additional elements from C̃′′ \ C̃ for
C′′ →C S(1) to hold. Thus,

Pr
{S,T}∼EC,C′

[
C′′ →C S(1)

]
6 2k

( r
n

)b k−i
2 c−|C′′∩C|+i

.

Thus, we can prove:

(2) 6 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

∑
C′′ :C′′∈H(i)

j
C′′ 6=C

C′′∩C=U

( r
n

)b k−i
2 c−s+i

(3)

By Observation 3.3, we can bound the above as

6 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

(n
r

) k
2−s( r

n

) k−i
2 −

1[k−i odd]
2 −s+i

6 k · 4k+1
√

r
n

,

as i
2 −

1[k−i odd]
2 > 1

2 for all i > 1 when k is odd.

Lower bound on average degree in A. By choosing B large enough, the upper bound on r, and
Claim 3.9, the fraction of edges we delete from the original colored Kikuchi graph Kr to obtain K̂r

is at most .5 and hence d(K̂r) > .5d(Kr) where d(Kr) and d(K̂r) are the average degrees in Kr and
K̂r respectively. Thus, we know:

d(Kr) >
( r

2n

)k−i p

∑
j=1

(|H(i)
j |

2

)
>
( r

2n

)k−i
· p ·

(
m/kp

2

)
>
( r

2n

)k−i
· m2

4k2 p

where the first inequality uses Observation 3.7, and the second inequality is due to Jensen’s in-
equality.

By the upper bound p 6 m ·
( r

n

) k
2−i as noted in Observation 3.2:

d(Kr) >
1

4k22k ·
( r

n

)k−i
·
(n

r

) k
2−i
·m =

1
4k22k ·

( r
n

) k
2 ·m.

As an upshot, we know:

Claim 3.10. d(K̂r) >
1

8k22k ·
( r

n

)k/2
·m.

16



Spectral double counting. With a lower bound on d(K̂r) in hand, we are now ready to perform
our weighted spectral double counting argument to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Recall that our goal is to prove that there is a small even cover in H(i), the
largest piece obtained from the decomposition, and also recall that if i > k+1

2 , then we are done by
Lemma 3.4. Hence, we assume i 6 k−1

2 for the rest of the proof.
Suppose there are no even covers inH of size ` = r log n, then there are also none inH(i) from

Lemma 3.8 we get: ∥∥∥Γ−1/2 ÂΓ−1/2
∥∥∥

2
6 4

√
2`

d(K̂r)
.

Thus, Â � 4
√

2`
d(K̂r)

Γ, and by taking the quadratic form with the all-ones vector, we get:

2|E(K̂r)| = 1> Â1 6 4

√
2`

d(K̂r)
· tr(Γ) = 16

√
2`

d(K̂r)
· |E(K̂r)|,

which implies
d(K̂r) 6 128`,

and by our lower bound on d(K̂r) from Claim 3.10, we get

1
8k22k ·

( r
n

) k
2 ·m 6 128r log n,

which we can rearrange as

m 6 Bkn log n ·
(n

r

)k/2−1
.

for some large enough constant B. Thus, if m is lower bounded as in the theorem statement, there
must be an even cover of size ` log n.

4 Strong refutation of semirandom k-XOR

In this section, we show that our reweighted Kikuchi matrix and edge deletion process yield a
significantly simpler analysis of strong refutation algorithms for semirandom k-XOR formulas
and lose only a single log n factor in the density. Combined with Feige’s “XOR principle” [Fei02,
AOW15], we also obtain refutation algorithms for all smoothed Boolean CSPs. We will omit such
reduction in this work and direct the reader to [GKM21] for a detailed exposition.

Theorem 4.1 (Semirandom k-XOR refutation). Fix k ∈ N. There is an algorithm with parameter
r ∈N, 2k 6 r 6 n/8 that takes as input a semirandom k-XOR instance

ψ(x) =
1
m ∑

C∈H
bCxC

where H is a k-uniform hypergraph with n vertices and m hyperedges, and each bC ∈ {±1} is chosen
uniformly at random. The algorithm has the following guarantee: there is a universal constant C such that
if m > Ckn log n · ( n

r )
k
2−1ε−4 for ε ∈ (0, 1/2), then with probability over 1− 1

poly(n) over {bC}C∈H, the

algorithm runs in time nO(r) and certifies that ψ(x) 6 ε.
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Remark 4.2 (Refutation strength: dependence on ε). For the even arity case, we actually obtain
a stronger guarantee (weaker requirement) of m > O(n log n) · ( n

r )
k
2−1ε−2. For the odd arity case

however, our analysis incurs a (likely suboptimal) dependence of 1/ε4 on the refutation strength
(i.e., the upper bound on the value of the input k-XOR instance), though improving the 1/ε5 de-
pendence of [GKM21, Theorem 5.1]. In contrast, a 1/ε2 dependence is known to hold for fully
random k-XOR instances [RRS17]. Apart from a somewhat unsatisfying deficiency, this subop-
timality turns out to be consequential – in particular, it changes the threshold at which efficient
FKO refutation witnesses exist for semirandom k-SAT (and other CSPs) by a polynomial factor in
n. Finding the “right” dependence of 1/ε2 (for the odd case) is an interesting open problem.

Our refutation algorithm will utilize the same Kikuchi graphs from Definition 2.4 and Defini-
tion 3.5 but with signs added to the edges in the natural way.

Definition 4.3 (Signed Kikuchi graph). Let H be a k-uniform hypergraph associated with {±1}
signs {bC}C∈H. For the even arity case, let Ab be the signed adjacency matrix of the Kikuchi graph

from Definition 2.4 where each edge S C←→ T has a sign bC. For the odd arity case, let Ab be the

signed adjacency matrix of the Kikuchi graph from Definition 3.5 where each edge S C,C′←−→ T has a
sign bCbC′ .

4.1 Refuting semirandom even arity XOR

In this section, we prove Theorem 4.1 when k is even. As we will see in the short proof, our idea
of the reweighted Kikuchi matrix from the hypergraph Moore bound naturally applies here, and
in fact, we obtain the “right” 1/ε2 dependence in this case, i.e., we can certify that ψ(x) 6 ε when
m > O(n log n) · ( n

r )
k
2−1ε−2.

Recall that in the Kikuchi graph (V, E), each C ∈ H contributes α := 1
2 (

k
k/2)(

n−k
r−k/2) edges in E,

hence |E| = 1
2 |V|d = mα. Thus, it is clear that

ψ(x) =
1
m
· 1

α ∑
(S,T)∈E

bS⊕TxS⊕T =
1

(n
r)d

(x�r)>Abx�r (4)

where x�r ∈ {±1}(n
r) and the S-entry of x�r is xS for S ⊆ [n], |S| = r.

We now follow the same reweighting strategy: with Γ = D + dI, we bound the spectral norm
of the reweighted Kikuchi matrix

∥∥Γ−1/2AbΓ−1/2
∥∥

2 with an almost identical proof as Lemma 2.6.

Lemma 4.4. Let k be even and r ∈N. Let Ab be the signed Kikuchi graph with random {±1} coefficients
{bC}C∈H, and let Γ = D + dI where D is the degree matrix and d is the average degree of the Kikuchi
graph. Then, with probability at least 1− 1

poly(n) over the randomness of {bC}C∈H,

∥∥∥Γ−1/2AbΓ−1/2
∥∥∥

2
6 O

(√
r log n

d

)
.

Proof. Let Ãb = Γ−1/2AbΓ−1/2. We again use the trace power method ‖Ãb‖`2 6 tr((Γ−1Ab)
`) where

we choose an even ` = 2dr log2 ne. Observe that in expectation, Eb tr((Γ−1Ab)
`) counts the closed

walks that use each hyperedge an even number of times. This is exactly the same as Lemma 2.6
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where we count closed walks in an unsigned Kikuchi graph assuming there is no even cover of
size 6 `. Thus, Lemma 2.6 shows that

Eb tr((Γ−1Ab)
`) 6 2`nr

(
`

d

)`/2

6 O
(
`

d

)`/2

when ` > r log2 n. Then, by Markov’s inequality, for any λ > 0,

Pr
b

[
‖Ãb‖2 > λ

]
= Pr

b

[
‖Ãb‖`2 > λ`

]
6 λ−` ·Eb tr((Γ−1Ab)

`) 6 O
(

`

λ2d

)`/2

Choosing λ = O(
√
`/d) completes the proof.

We can complete the proof of Theorem 4.1 for even k.

Proof of Theorem 4.1 for even k. Let Ab be the signed Kikuchi graph with signs {bC}C∈H, let Γ =

D + dI where D is the degree matrix and d is the average degree of the Kikuchi graph, and let
Ãb = Γ−1/2AbΓ−1/2. The certification algorithm is simply to compute ‖Ãb‖2. Since Ab � ‖Ãb‖2 · Γ,
and tr(Γ) = 2(n

r)d, by Lemma 4.4,

ψ(x) = (4) 6
1

(n
r)d
‖Ãb‖2 · tr(Γ) 6 O

(√
r log n

d

)

using the fact that x�r ∈ {±1}(n
r) and (x�r)>Γx�r = tr(Γ). There is some constant C such that

when m > Cn log n · ( n
r )

k
2−1ε−2, by Eq. (1) the average degree d > 1

2 (
r
n )

k/2m = C
2 r log n · ε−2, thus

giving us ψ(x) 6 ε. This completes the proof.

4.2 Refuting semirandom odd arity XOR

Our proof of Theorem 4.1 for the odd arity case closely mimics the steps taken in proving the
hypergraph Moore bound for odd arity hypergraphs (Theorem 3.1). Given a semirandom k-XOR
instance ψ on hypergraphHwith random signs {bC}C∈H, we first apply the following hypergraph
decomposition algorithm (a variant of Algorithm 1) to decompose the hypergraph into subhyper-
graphsH(1), . . . ,H(k−1). The main difference compared to Algorithm 1 is that in the final step, we
add the “leftover” hyperedges toH(1) instead of an extraH(0).

Algorithm 2 (Hypergraph decomposition). Given a k-uniform hypergraphH on n vertices and m
hyperedges, and thresholds τ1, . . . , τk−1 > 2, we partitionH into hypergraphsH(1), . . . ,H(k−1) via
the following algorithm.

1. Set t = k− 1 andHcurrent := H.

2. Set counter s = 1. While there is T ⊆ [n] such that |T| = t and |{C ∈ Hcurrent : T ⊆ C}| > τt:

(a) Choose T satisfying the condition and let H(t)
s be a subset of {C ∈ Hcurrent : T ⊆ C} of

size τt.

(b) Add all clauses inH(t)
s toH(t).
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(c) Delete all clauses inH(t)
s toHcurrent.

(d) Increment s by 1.

3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining clauses inHcurrent

and partition them into n parts F1, . . . , Fn where each clause C goes to some Fi such that i ∈ C.
Add F1, . . . , Fn toH(1) and terminate.

Notations and parameters. Throughout this section we will use the following notations.

• In Algorithm 2, we set thresholds τt = max
{

1,
( n

r

) k
2−t
}
· 4kε−2.

• In the decomposition, each H(t) contains pt groups H(t)
1 , . . . ,H(t)

pt where group H(t)
i has a

center T(t)
i of size t, and for each C ∈ H(t)

i , we write C̃ = C \ T(t)
i .

• Each |H(t)
i | = τt, with the exception that |H(1)

i | 6 τ1 may have different sizes (the leftover

hyperedges in Algorithm 2). Let mt := ∑
pt
i=1 |H

(t)
i | be the total number of hyperedges inH(t).

• When t = 1 and m > Ckn log n · ( n
r )

k
2−1ε−4 for a large enough constant C, we have m > nτ1,

hence p1 6 m
τ1
+ n 6 2m

τ1
. Thus, we will use ptτt 6 2m for all t ∈ [k− 1].

• For each t ∈ [k− 1], the colored Kikuchi graph (V, E) obtained from H(t) = (H(t)
1 , . . . ,H(t)

pt )

(from Definition 3.5) has edges |E| = αt ∑
pt
i=1 (

|H(t)
i |
2 ) 6 1

2 αtmtτt, where αt ≈ ( 2n
r )

r−(k−t) is the
number of edges contributed by each distinct pair C, C′ ∈ Hi (see Observation 3.7).

With these notations and parameters in mind, we can write ψ(x) as

ψ(x) =
1
m

k−1

∑
t=1

∑
C∈H(t)

bCxC =
1
k

k−1

∑
t=1

ψt(x)

where ψt(x) :=
k
m

pt

∑
i=1

∑
C∈H(t)

i

bCxC =
k
m

pt

∑
i=1

xTi ∑
C∈H(t)

i

bCxC̃ . (5)

Essentially, each ψt is the sub-instance of ψ restricted to the partition H(t). Recall that for the
purpose of showing existence of even covers, we only need to focus on one H(t). For refutation
however, we need to certify a bound on ψt(x) for all t ∈ [k− 1].

Lemma 4.5 (Refuting each ψt). Fix an odd k ∈N, t ∈ [k− 1], and let 2k 6 r 6 n/8. There is a constant
C such that given a semirandom k-XOR instance ψ with n variables and m > Ckn log n( n

r )
k
2−1ε−4 clauses

for ε ∈ (0, 1/2), and suppose ψt is the subinstance from Eq. (5) obtained by the hypergraph decomposition
algorithm (Algorithm 2), then with probability 1 − 1

poly(n) over the random signs, we can certify that

ψt(x) 6 ε in nO(r) time.

Lemma 4.5 immediately completes the proof of Theorem 4.1 for odd k.
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Proof of Theorem 4.1 by Lemma 4.5. Given the hypergraphH, we apply the hypergraph decomposi-
tion algorithm (Algorithm 2) with thresholds τ1, . . . , τk−1 and obtain subinstances ψ1, . . . , ψk−1 as
in Eq. (5). For each t ∈ [k− 1], we can certify that ψt(x) 6 ε by Lemma 4.5 with high probability,
which immediately implies the desired bound ψ(x) 6 ε.

Edge deletion process. The proof of Lemma 4.5 requires deleting the “bad” edges from the
signed Kikuchi matrix A(t)

b via a similar deletion process as the one used in the proof of Theo-
rem 3.1, but with some parameter η > 1 instead of 1 and an additional equalizing step:

Start with the colored Kikuchi graph, and delete every edge {S, T} caused by a pair of
clauses C, C′ ∈ H(t)

i such that S or T has more than η edges that C or C′ participates in.

Suppose ρ < 1 is the maximum fraction of edges deleted among all pairs of clauses.
Then, for every i ∈ [pt] and every distinct pair C, C′ ∈ H(t)

i , we delete (additional)
edges caused by C, C′ arbitrarily such that exactly ρ fraction of edges are deleted.

Observation 4.6 (Uniform deletion). The final step in the above edge deletion process ensures that
every pair C, C′ contributes the same number of edges ((1− ρ)αt to be exact) in the Kikuchi graph.

Mirroring the proof of Claim 3.9 yields the following generalization.

Lemma 4.7 (Deletion rate). Suppose a subhypergraph H(i) satisfies that for any s > i and any T ⊆ [n]
with |T| = s, the number of hyperedges in H(i) containing T is at most τs, then the deletion process with
parameter η > 1 satisfies

Pr
{S,T}∼EC,C′

[{S, T} deleted] 6
4k

η
·
b k+i

2 c

∑
s=i

τs

( r
n

)b k+i
2 c−s

.

Proof. The proof is identical to the proof of Claim 3.9. Eq. (2) holds with an additional 1/η factor
due to Markov’s inequality. The lemma statement then follows immediately from Eq. (3).

Proof of Lemma 4.5 via the Cauchy-Schwarz trick and the deletion process.

Proof of Lemma 4.5. We apply the Cauchy-Schwarz trick to ψt from Eq. (5):

ψt(x)2 6
k

m2

pt

∑
i=1

x2
Ti
·

pt

∑
i=1

 ∑
C∈H(t)

i

bCxC̃

2

6
kpt

m2

pt

∑
i=1

∑
C,C′∈H(t)

i

bCbC′xC̃xC̃′

6
kptmt

m2 +
kpt

m2

pt

∑
i=1

∑
C 6=C′∈H(t)

i

bCbC′xC⊕C′ (6)

since x ∈ {±1}n, bC ∈ {±1} and ∑
pt
i=1 |H

(t)
i | = mt. For the first term, since for all t ∈ [k− 1], we

set τt > 4kε−2 and pt 6 2m/τt 6 mε2

2k , thus

kptmt

m2 6
ε2

2
. (7)

We can now focus our attention on the second term in Eq. (6).
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GivenH(t) and its partitionsH(t)
1 , . . . ,H(t)

pt of size τt, and signs {bC}C∈H(t) , let A(t)
b be the signed

Kikuchi matrix defined in Definition 4.3, which is the signed version of the colored Kikuchi graph
(V, E) from Definition 3.5. Recall from Observation 3.7 that each distinct pair C, C′ ∈ H(t)

i con-
tributes αt ≈ ( 2n

r )
r−(k−t) edges in the graph. Thus, similar to (4) in the even case, we can write the

second term of Eq. (6) as a quadratic form:

ft(x) :=
kpt

m2

pt

∑
i=1

∑
C 6=C′∈H(t)

i

bCbC′xC⊕C′ =
kpt

2αtm2 (x�r)>A(t)
b x�r (8)

where x�r ∈ {±1}(2n
r ) such that for S ∈ [n]× [2] with S = (S(1), S(2)) (green and blue elements),

the S-entry of x�r is xS(1)⊕S(2) .

We proceed to certify an upper bound on ft(x). Given the signed Kikuchi matrix A(t)
b , we first

apply the deletion process with parameter η = Bkε−2 for some large enough constant B. With the
chosen thresholds τs, Lemma 4.7 states that the deletion probability ρ is at most

ρ 6
4k

η
·
b k+t

2 c

∑
s=t

4kε−2 ·max
{

1,
(n

r

) k
2−s
}
·
( r

n

)b k+t
2 c−s

6
1
2

,

since s 6 b k+t
2 c in the summation and b k+t

2 c >
k+1

2 for all t > 1.

Let Â(t)
b be the Kikuchi matrix after the deletion process. By Observation 4.6, each distinct pair

C, C′ ∈ H(t)
i contributes exactly (1− ρ) fraction of the original edges. Thus, we have

(x�r)> Â(t)
b x�r = (1− ρ) · (x�r)>A(t)

b x�r . (9)

Next, we follow the same argument as the proof of Lemma 4.4 to analyze Â(t)
b , using the norm

bound of Lemma 3.8. Let Γ = D + dI where D is the degree matrix and d is the average de-
gree, and let Ãb = Γ−1/2Â(t)

b Γ−1/2. To bound ‖Ãb‖2, we again use the trace power method

‖Ãb‖`2 6 tr((Γ−1 Â(t)
b )`) where we choose an even ` = 2dr log2 ne. Observe that in expectation,

Eb tr((Γ−1 Ab)
`) counts the closed walks that use each hyperedge an even number of times. This

is exactly the same as Lemma 3.8 where we count closed walks in an unsigned Kikuchi graph
assuming there is no even cover of size 6 `. Furthermore, dS,i 6 η is automatically satisfied after
the deletion process. Thus, we can directly apply Lemma 3.8 and show that

Eb tr
(
(Γ−1 Â(t)

b )`
)
6 2`nr

(
2η`

d

)`/2

6 O
(

η`

d

)`/2

when ` > r log2 n. Then, by Markov’s inequality, we have that Prb

[
‖Ãb‖2 > O

(√
η`
d

)]
6 1

poly(n) .

Thus, with high probability we have Â(t)
b � O

(√
η`
d

)
· Γ, then since tr(Γ) = 4|E|,

(x�r)> Â(t)
b x�r 6 O

(√
η`

d

)
· tr(Γ) = O

(√
η`

d

)
· |E| .
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Next, let f̂t(x) = kpt
2αtm2 (x�r)> Â(t)

b x�r. By Observation 3.7, we have d > ( r
2n )

k−t ∑
pt
i=1 (

|H(t)
i |
2 )

when 2k 6 r 6 n/8. Plugging in parameters |E| = αt ∑
pt
i=1 (

|H(t)
i |
2 ), ptτt 6 2m, η = Bkε−2, and

` = 2dr log2 ne, standard calculations show that

f̂t(x) 6 O(1)
kpt

αtm2

√
η`

d
|E| 6 O(1)

kpt

m2

√√√√η`

(
2n
r

)k−t pt

∑
i=1

(
|H(t)

i
2

)
6 O(1)

√
ηr log n

mτt

(
2n
r

)k−t

.

Suppose m > Ckn log n · ( n
r )

k
2−1ε−4 for some large enough constant C. We split into cases:

1. For t 6 k−1
2 , we set τt = ( n

r )
k
2−t · 4kε−2, thus f̂t(x) 6 ε2

4 .

2. For t > k+1
2 , we set τt = 4kε−2, thus f̂t(x) 6 ε2

4 (
n
r )

k
4−

t
2 < ε2

4 .

Therefore, by calculating ‖Ãb‖2, which can be done in nO(r) time, we can certify that f̂t(x) 6 ε2

4 .
Combined with Eq. (9) and the bound of ρ 6 1/2, we can certify that

ft(x) 6
1

1− ρ
· f̂t(x) 6

ε2

2
,

and with Eq. (7), we can certify an upper bound on Eq. (6):

ψt(x)2 6 (7) + (8) 6
ε2

2
+ ft(x) 6 ε2 ,

completing the proof.
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A Alternative proof of the Moore bound for irregular graphs

We proved the weak Moore bound (Proposition 2.1) by showing that if there is no cycle of length
6 `, then A ≺ 2n1/`

√
d
(D + dI) (Claim 2.2) where D is the diagonal degree matrix and d is the

average degree, which then gives us a bound of 2dlogd/16 ne. In this section, we prove that using
a more carefully chosen diagonal matrix Γ′, such a strategy can recover the exact Moore bound
2 logd−1 n. This provides an alternative proof of the Moore bound in addition to the existing proofs
by [AHL02] and [BR14]5.

Theorem A.1 (Moore bound for irregular graphs). Suppose G is a graph on n vertices with average
degree d > 2. Then G has a cycle of length 2(blogd−1 nc+ 1).

5[AHL02] and [BR14] actually obtained a slightly more precise bound depending on whether the girth of the graph
is odd or even.
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The following lemma shows what the “correct” diagonal matrix should be to recover the exact
Moore bound.

Lemma A.2. Let G be a graph with n vertices and degree matrix D that has no cycle of length 6 ` for some
even ` ∈N. Then, the adjacency matrix A satisfies

A � n2/`I + n−2/`(D− I) .

Proof of Theorem A.1 by Lemma A.2. Assuming there is no cycle of length 6 `, Lemma A.2 implies
that

~1>A~1 = nd 6 n · (n2/` + n−2/`(d− 1)) .

Let x = n2/`, then we have x2 − dx + (d− 1) > 0, which implies that x > d− 1 (as x 6 1 is not
valid). Taking logs, we get

2
`

log n > log(d− 1) =⇒ ` 6 2 logd−1 n .

` is even, so ` < 2(blogd−1 nc+ 1). This completes the proof.

The proof of Lemma A.2 is based on non-backtracking walks, which are walks such that no edge
is the inverse of its preceding edge. We note that both proofs of [AHL02] and [BR14] also analyze
non-backtracking walks. For a graph G on n vertices with adjacency matrix A, we define A(s)

to be the n× n matrix whose (u, v) entry counts the number of length-s non-backtracking walks
between vertices u and v in G. The following is a standard fact.

Fact A.3 (Recurrence and generating function of A(s)). The non-backtracking matrices A(s) satisfy the
following recurrence:

A(0) = I ,

A(1) = A ,

A(2) = A2 − D ,

A(s) = A(s−1)A− A(s−2)(D− I) , s > 2 .

The recurrences imply that these matrices have a generating function:

J(t) :=
∞

∑
s=0

A(s)ts = (1− t2) · H(t)−1 , where H(t) := I− At + (D− I)t2

for t ∈ [0, 1) whenever the series converges.

We first prove the following lemma,

Lemma A.4. Let s, k ∈ N, s > k, and let q, r be the quotient and remainder of s divided by k, i.e.
s = qk + r. Then,

tr(A(s)) 6
√

n · ‖A(k)‖q
2 · ‖A(r)‖F.

Proof. tr(A(s)) counts the number of closed non-backtracking walks of length s in the graph. Now,
consider the set of closed walks of length s = qk+ r such that after every k non-backtracking steps,
we can “forget the previous step”, i.e. we are allowed to backtrack at step ik for every i = 0, . . . , q.
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The number of such walks is tr((A(k))q A(r)). The set of closed non-backtracking walk is clearly a
subset of such walks, thus we have

tr(A(s)) 6 tr((A(k))q A(r)) 6
∥∥∥(A(k))q

∥∥∥
F
·
∥∥∥A(r)

∥∥∥
F

.

Let λ1, . . . , λn be the eigenvalues of A(k) and λmax = ‖A(k)‖2. Then,

∥∥∥(A(k))q
∥∥∥

F
=

√
n

∑
i=1

λ
2q
i 6

√
n(λmax)

q.

This completes the proof.

With Fact A.3 and Lemma A.4, we now prove Lemma A.2 by analyzing the convergence of
J(t) as t increases from 0.

Proof of Lemma A.2. Let A be the adjacency matrix of G with average degree d > 2, and let D be the
diagonal degree matrix G. Recall the definitions J(t) = ∑∞

s=0 A(s)ts and H(t) = I− At + (D− I)t2

from Fact A.3. We will analyze the convergence of tr(J(t)) as t increase from 0.
Observe that J(0) = H(0) = I, and since J(t) and H(t) are both symmetric matrices, their

eigenvalues move continuously on the real line as t increases from 0. Thus, suppose there is some
t∗ ∈ (0, 1) such that tr(J(t)) < ∞ for all t ∈ [0, t∗), then H(t) � 0 for all t ∈ [0, t∗). This is
easy to see because if not, then there must be some t′ ∈ [0, t∗) such that H(t′) � 0 but has a zero
eigenvalue, and tr(J(t′)) will not converge.

We next show that we can take t∗ = n−2/` assuming that G has no cycle of length 6 ` = 2k.
First, observe that every entry of A(k) must be either 0 or 1, otherwise if A(k)[i, j] > 1 then there
are two distinct length-k paths from i to j, meaning there is a cycle of length at most 2k = `, a
contradiction. Therefore, the L1 norm of each row of A(k) is at most n, hence ‖A(k)‖2 6 n. Next,
observe that for each s ∈N we can write s = qk + r, and

J(t) =
∞

∑
s=0

A(s)ts 6
k−1

∑
r=0

∞

∑
q=0

A(qk+r)tqk+r.

By Lemma A.4, we have

tr(J(t)) 6
k−1

∑
r=0

tr√n‖A(r)‖F

∞

∑
q=0
‖A(k)‖q

2 · t
qk 6

k−1

∑
r=0

tr√n‖A(r)‖F

∞

∑
q=0

(ntk)q.

Thus, if t < n−1/k < 1, then tr(J(t)) < ∞. Therefore, we have H(t) � 0 for all t ∈ [0, n−1/k), and
by continuity H(n−1/k) � 0, which means that

I− n−1/k A + n−2/k(D− I) � 0 =⇒ A � n2/`I + n−2/`(D− I)

as ` = 2k. This completes the proof.
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