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Abstract
We introduce PaCHash, a hash table that stores its objects contiguously in an array without
intervening space, even if the objects have variable size. In particular, each object can be compressed
using standard compression techniques. A small search data structure allows locating the objects
in constant expected time. PaCHash is most naturally described as a static external hash table
where it needs a constant number of bits of internal memory per block of external memory. Here,
in some sense, PaCHash beats a lower bound on the space consumption of k-perfect hashing. An
implementation for fast SSDs needs about 5 bits of internal memory per block of external memory,
requires only one disk access (of variable length) per search operation, and has small internal
search overhead compared to the disk access cost. Our experiments show that it has lower space
consumption than all previous approaches even when considering objects of identical size.

2012 ACM Subject Classification Theory of computation→ Data compression; Information systems
→ Point lookups
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Supplementary Material All implementations presented in this paper and scripts to reproduce our
experimental evaluation are available under the GPLv3 license.
PaCHash and Separator implementation: https://github.com/ByteHamster/PaCHash
Scripts for reproduction of results: https://github.com/ByteHamster/PaCHash-Experiments

1 Introduction

Hash tables support constant time key-based retrieval of objects and are one of the most
widely used data structures. Compressed data structures store data in a space efficient
way, preferably approaching the information theoretical limit, and support various kinds
of operations without the need to decompress the entire data structure first [29, 1, 25, 58].
There has been intensive previous work on both subjects but, surprisingly, the intersection
leaves big gaps. There is a lot of work on hash tables which need little more space than just
the stored objects themselves [35, 8, 3, 26, 34, 51]. However, all these approaches are only
space efficient for objects of identical size which makes it impossible to compress the objects
with variable bit-length codes. Currently, most hash tables for objects of variable size store
references from table entries to the data which entails a space overhead of at least logN bits
per object, where N is the total size of all objects in the table. Throughout this paper, log x
stands for log2 x. See Section 2 for an introduction of basic techniques and Table 1 for a
summary of the notation.

PaCHash eliminates fragmentation by packing the objects contiguously in memory without
leaving free space. This makes it impossible to use the approach of most previous hash
tables to directly use the hash function value to (approximately) locate the objects. Instead,
PaCHash uses a highly space efficient search data structure that translates hash function
values to memory locations. More precisely, objects are first hashed to bins. The bins are
stored contiguously in m blocks of size B. PaCHash essentially stores one bin index per block
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2 PaCHash: Packed and Compressed Hash Tables

Table 1 Symbols used in this paper

S Set of objects
n Number of objects
N Total size of objects (bits)
p Internal index data structure
a Tuning parameter: Bins per block
m = N/B̄ Number of blocks
B Block size (bits)
B̄ = B− d Payload data per block
d ∈ 0.. log B Encoding-dependent number of bits to store position of first bin of block

using a searchable compressed representation which enables finding the block(s) where a
bin is stored. In Section 4, we describe the data structure in more detail and in Section 5
we analyze it. Basically, for a tuning parameter a, the expected number of block reads to
retrieve an object x of size |x| is about 1 + 1/a + |x|/B while the internal memory data
structure needs 2 + log(a) bits per block. We also discuss even smaller representations.

Even though hash tables like PaCHash have applications in object stores, there is little
previous work on space efficient hash tables for objects of variable size (see Section 3). For
objects of identical size s, the most space efficient previous solutions are based on minimal
perfect hashing (MPH) [20, 7] and require a constant number of bits per object. PaCHash
approximates this when choosing B = s, also needing a (slightly larger) constant number of
bits per object but lower construction time. The picture changes when we look at larger
block sizes B = ks and the corresponding approach of minimal k-perfect hashing (MkPH) [7].
Now, PaCHash still needs only a constant number of bits per block, while there is a lower
bound of Ω(log k) bits per block using MkPH (see Section 5).

Another fundamental data structure related to variable size objects and PaCHash is the
variable-bit-length array (VLA). A VLA is an array that allows direct access to objects of
variable size. Oftentimes, VLAs are used to efficiently access variable-length codes, e.g.,
Elias-γ and -δ codes [19] or Golomb codes [30], see Section 3.

Section 6 describes different implementation variants of PaCHash including fully internal
and fully external versions as well as a variant that is usable as VLA. Section 7 describes
experiments for an external implementation. Section 8 summarizes the results and discusses
possible directions for further research.

Our Contribution. In this paper, we design the new hash table PaCHash. The data
structure supports objects of variable size with space overhead close to competitors that only
support objects of identical size. We analyze it thoroughly in a variant of the external memory
model. Finally, we compare our implementation with competitors from the literature. As
close contenders, we also implement Separator Hashing [31, 39] and Cuckoo Hashing [5, 50]
with adaptions that partially allow variable size objects.

2 Preliminaries

Monotonic Sequences and Bit Vectors. The index data structure of PaCHash mainly
consists of a compressed representation of a monotonically increasing sequence p = 〈p1, . . . , pk〉
of integers in the range 1..U . Searching boils down to predecessor queries in p, i.e., given a
query integer i, the largest sequence element ≤ i is returned.
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A well-known practical solution is Elias-Fano coding [19, 23] which splits each pi. The
log(U/k) least significant bits are directly stored in an array L requiring k log(U/k) bits of
space. The log(k) most significant bits form a monotonic sequence of integersH = 〈u1, . . . , uk〉
in the range 0..k. H is stored in a bit vector of size 2k + 1 where ui is represented as a 1-bit
in position i+ ui. The total space usage therefore is k(2 + log(U/k)) + 1 bits. A predecessor
query in p executes a select0 query in H (finding the i-th 0-bit in H) which locates a cluster
of entries in L that must contain the sought element. Using additional space o(k), select0
queries can be answered in constant time [12]. In contrast to the general case, we will show
that searching the cluster takes expected constant time in our application.

One can also interpret p as the positions of 1-bits in a sparse bit vector which enables even
more compact representations. For example, using Succincter [52], about k(1.44+log(U/k))+1
bits are achievable which is almost information theoretically optimal. In Section 4.2, we give
an even more compact format exploiting additional structure in the bit vector.

Model of Computation. We describe our results in a variant of the external memory
model [57] adapted to a situation where objects are compressed to variable length sequences
of bits. We have a fast memory of size M bits. Accesses to a large external memory are I/Os
to blocks of B consecutive bits. In contrast to the original model, we analyze both I/Os and
internal work. scan(N) denotes the cost (I/Os and internal work) of scanning N bits of
data.1 sort(N) denotes the cost of sorting N bits.2 In particular, we are interested in a high
load factor, which is N divided by the total external space usage.

3 Related Work

The following section introduces related data structures from the literature. Table 2 provides
an overview over the most important parameters. There are close contenders in the form
of object stores from the database literature. BerkeleyDB [48] uses a B+-Tree [15] of order
d, where each node branches between d and 2d times. LevelDB [32] and RocksDB [21] use
a Log-Structured Merge tree [49], which stores multiple levels of a static data structure
with increasing size. Insertions go into the first level and when a level gets too full, it is
merged into the next level. SILT’s LogStore [41], Facebook Haystack [6] and FAWN [2]
simply store a pointer of size Ω(logN) to each object. Real world instances often store very
small objects [47], so the pointers add a considerable amount of overhead.

Sorted Objects. LevelDB’s static part [32] stores objects in key order, enabling range
searches and common-prefix-compression. SortedStore in SILT [41] sorts the objects by their
hashed key and uses entropy coded tries as an index. Pagh [50] proposes to sort the n objects
by a hash function with range ≥ n3. The internal memory stores the first hash function
value mapped to each block. This data structure can be queried using a predecessor data
structure in time O(log logn). A novel idea in PaCHash is that it uses a hash function range
based on the total space N instead of the number of objects n, which enables efficient queries
and compact representation.

1The internal work may depend on the encoding of the data. For example, we may need Θ(N) machine
instructions, or, a faster encoding may enable bit-parallel processing in O(N/ logn).

2This entails (N/B)(1 + dlogM/B(N/M)e) I/Os. In this paper algorithms with linear internal work are
possible exploiting random integer keys. The cost also includes (de)coding overhead as in scan operations.
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Table 2 Space efficient object stores from the literature. To unify the notation, we convert all
values so that they refer to objects of size s = 256 bytes stored in blocks of B = 4096 bytes. Each
block contains B/s = 16 objects. Top: Stores for objects of identical size. Can be used for objects of
variable size by using indirection or for some methods by accepting significantly lower load factors.
Bottom: Dedicated variable size object stores. This table also contains VLAs, even though those
are a slightly different field.

Method Internal memory Load Factor I/Os

fix
ed

si
ze

Extendible Hashing [22] logm bits/block 90% 1
Larson et al. [40] 96 bits/block <96% 1
SILT SortedStore [41] 51 bits/block 100% 1
Linear Separator [38] 8 bits/block 85% 1
Separator [31, 39] 6 bits/block 98% 1
Robin Hood [10] 3 bits/block 99% 1.3
Ramakrishna et al. [54] 4 bits/block 80% 1
Jensen, Pagh [33] 0 bits/block 80% 1.25
Cuckoo [5, 50] 0 bits/block <100% 2
PaCHash, a = 1 2 bits/block 100% 23

PaCHash, a = 8 5 bits/block 100% 1.133

va
ria

bl
e
si
ze

SILT LogStore [41] 832 bits/block 100% 1
Külekci [36] (VLA) 176 bits/block <100% 0–114

SkimpyStash [17] 32 bits/block ≤98% 8
Blandford, Blelloch [9] (VLA) 16 bits/block ≤50% 1
PaCHash, a = 1 2 bits/block 99.95% 2.063

PaCHash, a = 8 5 bits/block 99.95% 1.193

External Hash Tables. In external hash tables, each table cell corresponds to a fixed size
block. A common technique to support variable size objects is using indirection by internally
storing a pointer to the object contents, possibly inlining parts of the objects [41, Section 4].
NVMKV [45] and KallaxDB [11] use an SSD as one large hash table and rely on SSD internals
to handle empty blocks in a space efficient way. Overflowing blocks due to hash collisions
can be handled with perfect hashing [40, 54] or using one of the following techniques.

With Hashing with Chaining, objects of overflowing blocks are stored in linked lists.
SkimpyStash [17] chains objects using an external successor pointer for each object. This
trades internal memory space for latency because of multiple dependent I/Os. Jensen and
Pagh’s [33] data structure reserves parts of the external memory as a buffer to reduce the
need for chaining. Extendible Hashing [22] keeps a balanced tree of blocks. Overflowing
blocks are split into two children indexing one more bit of the hashed key.

Another method for resolving collisions is open addressing, where each object could
be located in multiple blocks. Cuckoo Hashing [51, 18] locates each object in one of two
(or more [26]) independently hashed blocks. Queries can load both blocks in parallel to
reduce latency. With Separator Hashing [31, 39], each object has a sequence of blocks it
could be stored in and a corresponding sequence of signatures. When a block overflows, the
objects with the highest signature values are pushed out to the next block in their respective

3PaCHash performs one I/O of variable size which is faster than the competitors’ multiple I/Os.
4Using 256 byte objects, we have an alphabet size of 28·256, and log log 28·256 = 11.
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sequences. The internal memory stores the highest signature value of the objects placed
in each block. A query follows the object’s sequence of blocks and stops when it finds a
separator that is larger than the corresponding signature. Linear hashing with separators [38]
is a dynamic variant with a linear probe sequence. External Robin Hood Hashing [10] is
similar to linear separator hashing, but it instead pushes out objects that are closest to their
respective home address. For each block, the internal memory stores the smallest distance of
its objects to their respective home address.

Variable-Bit-Length Arrays. Variable-bit-length arrays (VLAs) are arrays containing ob-
jects of variable size. VLAs are closely related to PaCHash, which can be used also as VLA
by using the array index instead of the hash function, see Section 6. Conversely, PaCHash
can be seen as a VLA where each entry stores a PaCHash bin. However, most VLAs have
some limitations that rule out storing the PaCHash bins efficiently. A major difference to all
VLAs described below is PaCHash allowing objects to span over multiple blocks of fixed size.

Navarro [46, Section 3.2] describes several techniques for implementing VLAs. However,
none of them achieves the same favorable space-time trade-off as the PaCHash VLA. The
closest one – sampled pointers – needs N +n log(N)/k bits of space with access cost bounded
by the time needed to skip k objects. Note that this time can be large when large objects
need to be skipped.5 All the other described VLAs need several bits of space overhead per
object (multiplied with a factor that depends on the maximum or average object size).

The VLA introduced by Külekci [36] uses wavelet trees [24] to partition the universe.
This makes the query time depend double logarithmically on the largest element stored in
the VLA, a limitation not existing in PaCHash.

Blandford and Blelloch [9] describe dynamic VLAs and hash tables for variable sized
objects. However, their technique incurs a constant factor of space overhead and is limited to
objects of bounded size. They partition the objects into blocks, but the blocks are generally
only partially filled and do not allow objects crossing block boundaries as in PaCHash.

4 The PaCHash Data Structure

We now present PaCHash in detail – a hash table which considerably improves on the data
structures from the literature. It natively supports variable size objects without the need
for indirection or empty cells. It needs only a few bits of internal memory per block and
still needs only one single I/O operation (of variable length) per query. PaCHash consists
of an external part subdivided into m blocks of exactly B bits each that store the actual
objects and an internal part that allows finding the blocks storing an object. Figure 1 gives
an example for the external and internal memory data structures. We deliberately use the
word object for the stored data because that highlights the flexibility of PaCHash. Naturally,
an object stores a key-value-pair, but it can also store only a value to obtain an external
dictionary data structure. It is even possible to use quotienting by storing the bin index
inside the first object of each bin.

5Space could be reduced to N + n
k (2 + log kN

n ) bit using Elias-Fano coding of the pointers – resulting
in similar space as the PaCHash VLA with B = kN/n but with worse access costs.
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1 2 3 4 5 6 7 8 9 10 11 12

2 3 3 4 6 11

p1

1 4 8

p2 p3

h

4 7 8

Figure 1 Example of PaCHash with n = 9 objects and m = 3 blocks. Using the hash function h,
the objects are mapped to 12 bins shown as colors, i.e., a = 4. The bin content is then contiguously
written to the external memory blocks. The internal memory index p stores the first bin intersecting
with each block. Note that locating bin 8 will return the range 2..3, i.e., block 2 is loaded superfluously
because there is no preceding empty bin that can encode whether it overlaps into the previous block.
All other bins are located optimally.

4.1 External Object Representation
PaCHash stores the objects sorted by a hash function h with a rather small domain, namely
h : K → 1..am, where K is the set of possible keys, m is the number of blocks and a is a
tuning parameter that we assume to be a power of two. The hashes can collide and therefore
group the objects into am bins. The objects are now basically stored contiguously. “Basically”
means that blocks may also contain information needed to find the first object or bin stored in
them. Refer to Section 6 for a discussion of alternative encodings. Our default assumption is
as follows: Each external block stores an offset of size d = log B bits indicating the bit where
the first bin in the block starts. The remaining space stores the objects contiguously where
an object may have an arbitrary size in bits. No space is left between subsequent objects. In
particular, object representations may overlap block boundaries. We assume that objects are
encoded in a self-delimiting way, i.e., when we know where an object starts, we can also find
its end. For example, we could have a prefix-free code for the objects. Construction first
sorts the objects by their hash function value. Then it scans the sorted objects, constructing
both the external and the internal data structure along the way. Refer to Section 5 for more
details. If the internal data structure gets lost, for example due to a power outage, it can be
re-generated using a single scan over the external memory data.

4.2 Internal Memory Data Structure
Given a bin b, the internal memory data structure p can be used to determine a (near-)minimal
range i..j of block indices such that b is stored in that range. When performing a query, that
block range can then be loaded from external memory and scanned for the sought key. In
practice, the resulting latency is often close to that of loading a single block since it includes
only one disk seek. Conceptually, p stores a sequence 〈p1, . . . , pm〉 where pi specifies the first
bin whose data is at least partially contained in block i.6 We can use a predecessor query on
p to determine i. When the predecessor is b itself, we also need to load the previous block.
Another predecessor query or scanning then determines j, as illustrated by the pseudocode

6An alternative would be to store the first bin that starts in each block. This introduces a special case
when a block is fully overlapped by a bin and needs slightly more work when performing queries.



Kurpicz, Lehmann, Sanders 7

Algorithm 1 A query for an object x calls locate(x), loads the returned block range, and scans
the blocks to find the object content. Determining the range boils down to predecessor queries on p.
Function locate(x)

b := h(x)
find i such that pi−1 < b ≤ pi // predecessor query
if pi = b then i := i− 1 // b may start in previous block
find first j such that pj > b // predecessor query or scan
return i..(j − 1)

in Algorithm 1. To get the most out of this specification, we take empty bins into account:
When a bin starts exactly at a block boundary and has an empty predecessor, we store that
predecessor. This implies that if (and only if) a bin b starts at a block boundary and the
previous bin b− 1 is nonempty, retrieving bin b will load one block too much. Note that p
is a monotonically increasing sequence of integers which can be represented with different
methods and trade-offs.

Elias-Fano Coding. A standard technique for storing monotonic sequences is Elias-Fano
coding (see Section 2). A way to interpret the vector H of upper bits of an Elias-Fano
coded sequence is that it stores the number of items having each possible combination of
most significant bits in unary coding. To locate the predecessor of item b = au+ ` in the
sequence, we calculate select0(u − 1) on the upper bits H, which gives us the start of a
cluster of entries that all have most significant bits u. The corresponding index in L can be
calculated by subtracting (u− 1). We scan the cluster to find the largest index i with pi ≤ b.
In our case, this takes constant expected time (see Lemma 5). The internal memory usage is
m(2 + log(a) + o(1)) bits (see Lemma 2).

Bit Vector with Succincter. It is also possible to store p as a bit vector with rank and
select support. An item pi at position i is then represented as a 1-bit in position i + pi.
The position of the predecessor of a bin b can be found in constant time by calculating
select0(b) − b. The actual value can be calculated using a select1 query. Because the bit
vector is sparse, we can use Succincter [52] to compress it and its rank and select structures
down to about m(1.44 + log(a+ 1) + o(1)) bits (see Lemma 3).

Entropy Coding. We observed that in practice, the bit vector is considerably more regular
than a truly random one and thus allows additional compression. This can be made fast by
splitting it into ranges that are compressed individually, e.g., using dictionary compression.
In our experimental evaluation in Section 7.2, we see a space-time trade-off, where we can
achieve internal memory space consumption less than the theoretically best results described
above in Section 4.2.

5 Analysis

We now formalize the properties of PaCHash in Theorem 1 which basically says the following:
External space is just the space needed to store the variable sized objects plus possibly a
few bits per block to know where the first object in the block starts. Internal space is about
2 + log a bits per block where a is a tuning parameter that also shows up in a term adding
1/a expected I/Os to the retrieval cost.
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While proving the theorem, we discuss some variants and implications. Section 5.1
considers construction cost and final space consumption, while Section 5.2 looks at I/Os and
internal work of queries.

I Theorem 1. Consider n objects of total size N bits which are stored in m blocks of size B.
Let d ∈ 0.. log B be an encoding-dependent number of bits needed to specify where the first bin
or object of a block starts and B̄ = B− d be the payload size per block, i.e., m = N/B̄. For a
parameter a, let a random uniform hash function map the objects to am bins.

Then, PaCHash with Elias-Fano coding needs m(2 + log a+ o(1)) bits of internal memory
and N(1 + d/B̄) bits of external memory. The construction cost is the same as that of sorting
the objects using am random integer keys. The expected time for retrieving an object of size
|x| bits is constant plus the time for scanning 1 + |x|/B̄ + 1/a blocks. The unsuccessful search
time is the same except that |x| is replaced by 0.

5.1 Construction

Assuming that the set of input objects is stored in compressed form on external memory, we
mainly need to sort the objects by their hash function value. In our model, this has complexity
sort(N). In most practically relevant situations, this can even be done in O(scan(N)) using
integer sorting, see Section 5.3 for details.

The sorted representation is then scanned and basically copied to the output, only adding
d bits of information within each block, which allow a query to initialize the scanning
operation. What d is depends on the concrete encoding of the data, ranging from d = 0
for objects of identical size or for 0-terminated strings to d = log(B) bits when we explicitly
encode the starting position of an object or bin. Refer to Section 6 for examples.

I Lemma 2. When using Elias-Fano coding to store p, the index needs 2 + log a+ o(1) bits
of internal memory per block and can be constructed in time O(m).

Proof. p consists of k = m integers ≤ am = U . Inserting this into the space usage of
Elias-Fano coded sequences (see Section 2) gives us space(p) = k(2 + log(U/k)) + 1 =
m(2 + log(am/m)) + 1 = m(2 + log a) + 1. The select0 data structure on the upper bits H
can be stored in o(m) bits [12]. Each of the m insertions into the sequence can be done in
constant time while generating the external object representation. The construction of the
select0 data structure takes time O(m). J

I Lemma 3. When using Succincter [52] to store p, the index needs 1.4427+log(a+1)+o(1)
bits of internal memory per block.

Proof. (Sketch, for full proof see Appendix A) Using Succincter, i.e., [52, Theorem 2] with a
length-(a+ 1)m bit vector containing m ones, we can represent the internal memory index
using only log

((a+1)m
m

)
+ o(m) ≤ m (1.4427 + log(a+ 1)) + o(m) bits, which results in the

space mentioned above per external memory block. J

The lower bound for the space usage of a minimum k-perfect hash function for objects of
identical size approaches n · (log(e) + log(k!/kk)/k) [7]. Using Stirling’s approximation, we
derive a new lower space bound that is easier to interpret.
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n·(log(e) + log(k!/kk)/k)

≈ n ·

(
log(e) + log

(√
2πk(k/e)k

kk

)
/k

)
= n ·

(
log(e) + log(

√
2πk(1/ek))/k

)
= n ·

(
log(e) + log(

√
2πk)
k

− log(ek)
k

)
= n ·

(
log(e) + log((2πk)1/2)

k
− log(e)

)
= n

k
· 1

2 log(2πk)

The value n/k is the number of blocks, so MkPHFs need Ω(log k) bits of space per block,
while we show above that PaCHash needs a constant number. In a way, PaCHash therefore
breaks the theoretical lower space bounds of MkPHFs while keeping the same O(1) query
time. Choosing parameter a large can bring the number of I/O operations arbitrarily close
to optimal, independently of k.

5.2 Query
We first show that a query loads a small expected number of blocks, depending only on the
size of that specific object – not the other objects in the data structure. We then show that
the exact blocks to be loaded can be determined upfront without any I/O operations, using
constant time.

I Lemma 4. Retrieving an object x of size |x| from a PaCHash data structure loads
≤ 1 + |x|/B̄ + 1/a consecutive blocks from the external memory in expectation (setting
|x| = 0 if x is not in the table).7

Proof. We first derive the expected number of blocks overlapped by the bin bx = h(x) that
x is stored in. We then analyze the edge case that PaCHash sometimes loads one additional
block unnecessarily even though it is not overlapped.

The expected size E(|bx|) of bx is the sum of |x| and all other objects from the input set
S that are mapped to it:

E(|bx|) = |x|+
∑

y∈S,y 6=x

|y|P(y ∈ bx)

≤ |x|+
∑
y∈S

|y|P(y ∈ bx) = |x|+
∑
y∈S

|y| · 1
am

= |x|+ B̄m · 1
am

= |x|+ B̄
a

Let X denote the number of blocks overlapped by bin bx. Assuming that the block
boundaries and bin boundaries are statistically independent,8 and using the linearity of the
expected value, we get E(X) = 1 + (E(|bx|)− 1)/B̄ = 1 + |x|/B̄ + 1/a− 1/B̄.

At a position i, the sequence p stores the first bin bi that intersects with block i. Most of
the time, this also means that bi extends into block i−1, which is why queries load that block

7Using fewer estimates in the proof one can derive a bound of 1 + |x|−c+1−e−β

B̄ + 1
a where β = nB̄

Na is
the average number of objects per bin and c is the greatest common divisor of B̄ and all object sizes. In
particular, for objects of identical size dividing B, the bound is close to 1 + 1/a.

8We can guarantee the independence by cyclically shifting the data structure, i.e., we set the offset of
the first block to a random number in 0..(B̄− 1) and let the last bins wrap around into the first block.
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as well. When a bin starts exactly at a block boundary, though, the previous block is not
actually needed. Because bin boundaries are statistically independent of block boundaries,
the probability of that happening is 1/B̄.9

We get the result by putting together the expected blocks overlapped by a bin and the
probability for loading one single block too much. For negative queries, we are interested in
the size of the bin that x would be hashed to, so we can simply set |x| = 0. J

I Lemma 5. When using Elias-Fano coding for the index data structure of PaCHash, the
range of blocks containing the bin of an object x can be found in expected constant time.

Proof. A query for an object x consists of four steps. First, we hash x to get the corresponding
bin bx = au+ `, where a is the tuning parameter of PaCHash. We then execute a constant
time [12] select0 query on the upper bits H. That gives us the start of a cluster of entries
in the sequence that all have the same log(m) most significant bits u. We need to iterate
over the cluster entries which are < bx until we find the predecessor. Each cluster entry
corresponds to a stored bin index. Let us bound the expected size E(Yu) of all bins that
have most significant bits u and are < bx.

E(Yu) =
∑
y∈S

|y| · P(h(y) has MSB = u; h(y) < h(x))

≤
∑
y∈S

|y| · P(h(y) has MSB = u) = 1
m

∑
y∈S

|y| = mB̄
m

= B̄

The expected number of cluster entries we need to scan is therefore E(Yu)/B̄ = 1. The
practical implementation then further scans the cluster to find the last block overlapping
bx. This takes non-constant time O(1 + |x|/B̄), which is not a problem since a proportional
number of blocks are loaded anyway. However, we strengthen the lemma by observing that
we can also use another select0 query followed by a backward scan of the cluster. J

5.3 Details on External Sorting
We now show that the external sorting needed during construction of a PaCHash data
structure can be done in scanning complexity using very modest additional assumptions.
First note that the problem of sorting objects during construction is easy when the average
object size exceeds the block size, i.e., N/n > B and thus n < N/B. In that case, a variant of
bucket sort that maps the keys to O(n) buckets runs with linear internal expected work and
O(n+N/B) = O(N/B) I/Os [55, Theorem 5.9].

On the other hand, the average object size N/n must be at least logn since we are looking
at objects with unique keys. For the remaining case logn ≤ N/n ≤ B, we additionally make
a tall cache assumption quite usual for external memory [27] where M > B2. Since the index
data structure has at least N/B bits, we also know that M ≥ N/B. A single scan of the input
can partition it into pieces of size about N

M/B ≤
N

(N/B)/B = B2 ≤ M which fit into internal
memory. Moreover, since the average object size is ≥ logn, we can afford to replace the
objects in an internally sorted fragment of the input by key-pointer pairs which once more
allows us to use bucket sort – this time running in internal memory.

9When the preceding bin b−1 is empty, PaCHash stores that empty bin in p, as described in Section 4.
This means that the probability of unnecessary block loads actually is smaller, namely 1

B̄ (1−P(|b−1| > 0)),
where P(|b−1| > 0) =

(
1− 1

am

)n ≈ e−
n
am is the probability of b−1 being empty.



Kurpicz, Lehmann, Sanders 11

Table 3 External space overhead of d bits per block in order to facilitate scanning that block.
The term +1 when d 6= 0 is needed for the case that no object starts in a block.

d Case Description

0 Identical object sizes, zero terminated strings and analogous cases
dlog(w + 1)e Objects that use variable bit-length encoding with ≤ w ≤ B bits
dlog(W/w + 1)e Objects of size divisible by w with W = min(B,max object size)
dlog(B)e Explicit storage of a starting position of a bin

6 Variants and Refinements

Up until now, PaCHash was described as a static, external hash table for objects of variable
size. The following section describes variants of the scheme.

Object Encoding. Instead of storing objects contiguously with a self-delimiting encoding,
PaCHash allows for a wide range of other options, as shown in Table 3. In general, we have
a trade-off between the space needed to decode the objects in a block and the strength of
assumptions made on object representation. For example, explicitly storing the offsets of
objects in blocks removes the restriction to a self-delimiting encoding, without increasing
the size of the internal data structure. Another important case are objects of identical size
where we can calculate the block offset at query time and therefore need no external space
overhead. When the object size divides the block size, it can be shown that the expected
number of I/O operations is close to 1 + 1/a.

Memory Locations. PaCHash can be stored fully externally. By doing so, the number of
I/Os for a query is increased by three (two I/Os to query the rank and select data structure
on the bit vector of the Elias-Fano coding and one I/O to get the remaining bits). The
number of I/Os can be reduced by interleaving the arrays of the Elias-Fano coding. PaCHash
is also interesting as a purely internal data structure since it allows for configurations that
need less space than any previous approach, even for objects of identical size. A variant that
simplifies the external memory representation is to store the d bits of offsets per block in
an internal memory data structure, possibly interleaved with the Elias-Fano representation.
A variant enabling faster scanning of blocks separates keys and values [43], for example by
storing log B bits of offset for each object.

Functional Enhancements. Because PaCHash sorts objects by their hashed key, range
queries with respect to the original keys are not immediately possible. Litwin and Lomet [42]
implement range queries for hash tables by partitioning the key space into smaller pieces.
An index tree then leads to a number of small (PaCHash) tables that are fully scanned.
Order-preserving hash functions [28] are another alternative. PaCHash can be made dynamic
using standard techniques like a Log-Structured Merge Tree [49, 44]. Merging multiple
PaCHash data structures is possible efficiently. The idea is to construct the hash function
h by first hashing to a larger range and then mapping it linearly to the range am. When
updating h to the new total number of blocks, the objects of both input data structures are
already sorted and can be merged with a linear sweep.
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Figure 2 Dependence of I/O volume and query time on the average object size s. Sizes are normal
distributed with variance s/5, rounded to the next positive integer. Dotted lines show theoretic I/O
volumes, while marks show measurements. Note that the measurements closely match the analysis.
Using other distributions and plotting over the returned objects’ sizes gives equivalent results.

PaCHash as Variable-Bit-Length Array. Since one of PaCHash’s key features is to store
objects of variable size efficiently, it can also be used as variable-bit-length array. To this
end, we simply use the array index as hash function if we also store the number of previously
stored objects. However, we then have to assume that objects stored in the PaCHash VLA
are self-delimiting, as this allows us to identify the objects within a block. Note that this
assumption is satisfied in a lot of applications VLAs are used in, e.g., when storing variable
length codes like Elias-γ and -δ codes [19] or Golomb codes [30]. Alternatively, in external
memory, we can lift the restriction to self-delimiting objects by storing offsets as described
above. The number of previously stored objects is necessary to identify the element within
the block, and requires at most dlogne bits per external memory block.

7 Experiments

The code and scripts needed to reproduce our experiments are available on GitHub under
the General Public License: https://github.com/ByteHamster/PaCHash. The code for the
comparison with competitors (including our competitors’ code with some patches) is available
on GitHub as well: https://github.com/ByteHamster/PaCHash-Experiments. The latter
repository also contains a Docker image that can build and run a simplified version of the
experiments from Figures 2, 4, and 5 in about 30 minutes.

Experimental Setup. We run our experiments on an Intel i7 11700 processor with 8 cores
and a base clock speed of 2.5 GHz. We use a Samsung 980 Pro NVMe SSD with a capacity
of 1 TB. The machine runs Ubuntu 21.10 with Linux 5.13.0. We use the GNU C++ compiler
version 11.2.0 with optimization flags -O3 -march=native. Externally, each block of size
B = 215 bits (4096 bytes) stores a table of 8 byte keys and 2 byte object offsets. During
construction, we sort pointers to the objects using IPS2Ra [4]. Unless otherwise specified,
the index is an Elias-Fano coded sequence based on sdsl’s [29] arrays of flexible bit width
and the select data structures by Kurpicz [37]. For the I/O operations, we use io_uring.
Query operations keep a queue of 128 asynchronous requests in flight.

https://github.com/ByteHamster/PaCHash
https://github.com/ByteHamster/PaCHash-Experiments
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Table 4 Average internal space usage and average query time for different values of parameter a
and normal distributed object sizes. For more information on the query time, which is influenced by
the object size, see Figure 2. Note that the internal space usage does not depend on the object size.

a
avg. internal space

[B/block]
avg. query time

[µs/query]

2 3.01 2.07
4 4.01 1.68
8 5.01 1.50
16 6.01 1.43
32 7.01 1.41

Competitors. To our knowledge, there is no existing implementation of a hash table for
variable size objects that is simultaneously aimed at low internal memory usage and few
I/O operations. As the main competitors, we choose LevelDB [32], RocksDB [21], and
SILT [41]. To abstract from the different implementations of I/O operations, we also extract
the internal memory index (address calculation) from some competitors. Additionally, we
compare PaCHash to std::unordered_map, as well as the perfect hash functions RecSplit [20],
CHD [7, 16], and PTHash [53].Despite std::unordered_map not being tuned for efficiency, it
is a widely available, general purpose hash table that can be seen as baseline for the simple
idea of explicitly storing pointers instead of building a compressed index data structure.10

We also implement Separator Hashing [31, 39] and Cuckoo Hashing [5, 50]. In contrast to
the original papers, our implementations can be used with objects of variable size ≤ B when
setting the load factor low enough. Note that decreasing the load factor increases the number
of blocks and therefore the space needed for indexing. The construction of PaCHash always
succeeds, while it can fail for Separator and Cuckoo Hashing depending on the preselected
load factor or tuning parameter. Refer to Figure 6 for details.

7.1 PaCHash Configurations
The parameter a provides a trade-off between internal space usage and query performance,
see Table 4. Figure 2 plots the bytes read per query, depending on the average object size and
parameter a. It confirms the results of our theoretical analysis in practice. The throughput
of the Elias-Fano representation increases when parameter a gets larger because the SSD
needs to load fewer blocks. We also see that (at least for larger a) query times grow more
slowly with object size than the I/O volume. We choose a = 8 for the comparison with
competitors because it achieves a good balance between space usage (≈ 5 bits/block) and
throughput (≈ 700k Queries/second).

7.2 PaCHash with Real World Data Sets
Figure 3c compares throughput and space usage of PaCHash using real world size distributions
and different index data structures. The Twitter data set contains tweets from 01.08.–
05.08.2021 and has only small objects. The UniRef 50 protein database [56] contains some

10In this setting, general purpose internal memory hash tables do not work well, as they introduce an
overhead of at least logm bits per element to store the positions, and they also have to store the length of
the element.
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Twitter UniRef 50 Wikipedia

Objects n 20 238 968 48 531 431 16 181 427
Average size 115 B 281 B 1731 B
Median size 94 B 194 B 77 B
Maximum size 560 B 45 KB 272 KB
Total size N 2.4 GB 13.2 GB 26.3 GB
Objects > B 0% 0.08% 12%

(a) Twitter, UniRef, and Wikipedia real world data sets we use
for benchmarks. The median of 77 bytes of the Wikipedia data
set is caused by pages that are redirects.
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(c) PaCHash with real world data sets using different index data structures. There is no practical
implementation of Succincter [52], so we only give calculated values and no throughput. The space usage
of Elias-Fano and Succincter is independent of the object size distribution, so we plot only one data set.

Figure 3 Space and query throughput of PaCHash with real world data sets.

objects larger than the block size and the LZ4 compressed [14] English Wikipedia from
November 2021 contains significantly larger objects. See Figures 3a and 3b for details.

The entropy coded bit vector saves up to one bit of internal memory per block for small a.
While it comes with a performance penalty caused by decompression (up to eight times slower
than Elias-Fano), it is fast enough that it can be useful for some applications. Succincter
provides space usage lower than Elias-Fano but has no implementation. Note that for a ≤ 16,
the entropy coded bit vector requires even less space than succincter. Only for a ≥ 64 it
requires more space than Elias-Fano.

7.3 Comparison with Competitors

We compare PaCHash to other hash table data structures – see Table 5 for the exact
configurations used. Figure 4 shows measurements for identical size objects in order to
allow for a large set of competitors. Figure 5 shows measurements for variable size objects
containing fewer data points due to the lack of support for variable size objects by most
competitors. Perhaps the closest contender to PaCHash is the Separator method where our
implementation partially allows variable object size. It needs comparable internal space and
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has faster queries (always a single block access). However, Separator not only has slower
construction, but it also cannot achieve a load factor close to 100% except for objects with
identical size when the block size is divisible by the object size. Figure 6 gives details showing
load factors between 85% and 95% in typical cases.

The perfect hashing methods CHD and RecSplit have similar problems with respect to
variable size objects and are more expensive with respect to internal space and construction
costs. While PTHash offers fast construction and queries, it does not support variable size
objects and needs more internal space. Cuckoo hashing needs no internal space but has more
expensive queries and problems with variable size objects, like Separator or perfect hashing.

The object stores LevelDB, RocksDB, and SILT have much larger internal space re-
quirements and some external overhead. In part this comparison is unfair since they have
additional functionality like dynamic operation. For SILT and LevelDB we have been able
to extract the static part but still get considerably more space and lower performance than
PaCHash. Figures 4 and 5 contain measurements for both the full competitors and their
static parts, so the overhead originating from dynamic operation can be read off them.
Comparing query throughput is complicated because of different file access modes, internal
caching, and history dependent performance for the actual SSD accesses (the controller uses
caching and rearranges data outside the control of the user). We have therefore looked at
two different access methods and also at only the index data structure. However, overall, we
get a consistent picture with Separator being the fastest method followed by PaCHash. A
comparison with the internal hash table std::unordered_map is also instructive. We naturally
get faster construction and high internal space consumption. Surprisingly, access to the
internal data structure is only faster than PaCHash for very small inputs that fit into cache.

While not as surprisingly, it should be noted that all object stores supporting variable
size objects do not show any difference with respect to (internal and/or external) space
requirements, construction and query throughput when storing variable size objects compared
to identical size objects. Thus, all benefits of PaCHash described above hold true for variable
size objects as well.

8 Conclusion and Future Work

With PaCHash, we present a static hash table that can space-efficiently store variable size
(possibly compressed) objects. The objects are stored contiguously without the usual need
for empty space to equalize the nonuniformity in assignment by a hash function. This is
facilitated by an index data structure that needs only a constant number of internal memory
bits per external memory block. In constant expected time, it yields a near-optimal range
of blocks that contain the sought object. Our implementation of PaCHash considerably
outperforms previous object stores for variable size objects and even matches or outperforms
systems that are purely internal memory or only handle objects of identical size.

Future work might include integrating PaCHash into dynamic external memory object
stores, as well as engineering fast and space efficient internal memory variants. On the
theoretical side, we would like to better understand the space requirements and lower bounds
of bit vectors with entropy coding. This includes relations to different variants of perfect
hashing. Although our current analysis assumes random hash functions, PaCHash may also
be provably efficient for more realistic simple hash functions. Further possible space-saving
can use the quotienting idea [35, 8, 3, 13] where some bits of the stored keys are derived
from the (now invertible) hash function value. It is interesting how this works best in the
presence of nonuniformly distributed keys.
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Figure 4 Comparison of object stores using objects of identical size 256 bytes. Keys are 8 byte
random strings.



Kurpicz, Lehmann, Sanders 17

1 2 3 4 5

10−1

100

101

102

Sp
ac

e
in
te
rn
al

[B
/O

bj
ec
t]

1 2 3 4 5
265

270

275

280

Sp
ac

e
ex
te
rn
al

[B
/O

bj
ec
t]

1 2 3 4 5

106

107

C
on

st
ru

ct
io

n
T

hr
ou

gh
pu

t
bu

ffe
re
d
I/
O

[O
bj
ec
ts
/s
]

1 2 3 4 5
0

10

20

30

40

Objects [Millions]

Q
ue

ry
T

hr
ou

gh
pu

t
in
te
rn
al

on
ly

[M
Q
ue

rie
s/
s]

1 2 3 4 5

0

0.2

0.4

0.6

0.8

Objects [Millions]

Q
ue

ry
T

hr
ou

gh
pu

t
di
re
ct

I/
O

[M
Q
ue

rie
s/
s]

1 2 3 4 5

0.5

1

1.5

2

Objects [Millions]

Q
ue

ry
T

hr
ou

gh
pu

t
bu

ffe
re
d
I/
O

[M
Q
ue

rie
s/
s]

CHD (16-perfect) [7] PTHash [53] SILT [41]
Cuckoo (here) PaCHash (here) SILT (Static part) [41]
LevelDB (Static part) [32] RecSplit [20] Separator (here)
LevelDB [32] RocksDB [21] std::unordered_map

Figure 5 Comparison of object stores using objects of uniform random size ∈ [128, 384] bytes
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of identical size natively. We enhanced two of them to partially support variable size objects (see
Section 7).
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Table 5 Configurations of competitors

Competitor Configuration parameters

CHD [7] Load factor 0.98. k = 16 collisions. Bin size 12.
Cuckoo (here, based on [5, 50]) 2 alternative positions for each object, loaded in parallel

to reduce latency. Streamed queries with await any. Load
factor 0.95. Random walk insertion.

LevelDB [32] No compression. Construction using a single, large write
batch. No Bloom filters.

PaCHash (here) a = 8. External blocks store a table of keys and offsets.
Streamed queries with await any.

PTHash [53] “Optimizing the general trade-off” [53] with α = 0.94, c = 7,
D-D Encoding.

RecSplit [20] Leaf size ` = 8. Bucket size b = 2000.
RocksDB [21] Block cache disabled. No memory mapping or WAL.

Queries use batches of size 64. No Bloom filters.
Separator (here, based on [31, 39]) 6 bit separators. Load factor 0.96. Streamed queries with

await any.
SILT [41] testCombi.xml configuration from original repository.
std::unordered_map 8 byte keys. 64 bit pointers to object contents.
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Figure 6 Maximum achievable load factor with different distributions of object sizes of our
implementations of Separator Hashing and Cuckoo Hashing that support variable size objects. For
an average object size s, the normal distribution has a variance of s/5 and the uniform random sizes
are drawn from [0.25s, 1.75s]
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A Space Usage of Succincter

Now, we show in more detail how we can achieve the memory requirements of the internal
memory index of PaCHash using the Succincter rank and select data structure [52].

Proof. (Full Proof of Lemma 3) Remember that the internal memory data structure p of
PaCHash stores m integers in the range 1..am and must support predecessor queries. We
represent all integers in a bit vector of length (a + 1)m, using the same idea used for the
most significant bits in Elias-Fano coding. That is, each of the m integers pi is represented
as a 1-bit in position i+ pi. Answering predecessor queries (which we do not consider here)
becomes harder to analyze, as we have no information about the distribution of 1-bits in the
bit vector.

Using Succincter, we can store a size-u bit vector that contains n ones and supports rank
and select queries using only log

(
u
n

)
+ u

log u + Õ
(
u

3
4

)
bits. Since we have a length-(a+ 1)m

bit vector that contains m ones, we require log
((a+1)m

m

)
+ (a+1)m

log((a+1)m) + Õ
(

((a+ 1)m) 3
4

)
bits of space. We now show the upper bound for required memory using Lemma 7 and
Õ
(

((a+ 1)m) 3
4

)
= o(m).

log
(

(a+ 1)m
m

)
+ o(m) < log
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(a+ 1)
2πam
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(a+ 1)a+1

aa

)m

e−
1
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+ o(m) = m ((a+ 1) log(a+ 1)− a log a) + o(m)

= m
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a log
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+ log(a+ 1)
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+ o(m) ≤ m (1.4427 + log(a+ 1)) + o(m)

The last inequality is due to the fact that a log
(

a+1
a

)
converges to 1.4427 ≈ 1

ln 2 from
below. Overall, we require less than 1.4427 + log(a+ 1) + o(1) bits for each external memory
block. J

I Lemma 6. Using Succincter for representing monotonic sequences is almost space optimal.

Proof. In Lemma 3 we have already seen that Succincter needs close to m(log(e)+log(a+1))
bits of space.

(
am
m

)
is the number of strictly monotonic sequences of m numbers in the range

1..am and thus a lower bound for the number of monotonic sequences. Using Lemma 7 once
more, we get

log
(
am

m

)
≈ m((a− 1) log

(
a

a− 1 + log a
)

bits as a lower bound. Looking at the difference divided by m (i.e. bits per block), we get
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+ log(a+ 1)− (a− 1) log a

a− 1 − log a

=a log a
2 − 1
a2 + log a+ 1

a− 1 = log e
a

+ O
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1
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This difference (obtained using Taylor series development) is much smaller than the
log e + log(a + 1) bits per block needed by the Succincter data structure – at least for
sufficiently large a. J

I Lemma 7. For any c > 1, n > 0, let f(n, c) :=
√
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Proof. We use the identity
(
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)
= (cn)!

n!(cn−n)! as well as Stirling’s approximation
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For the upper bound we get(
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The claim follows by observing that the leftmost and rightmost term in the exponent of e
cancel out in the estimation. The asymptotic expansion of the upper bound can be obtained
using Taylor series expansion.

Similarly, for the lower bound we get(
cn

n

)
= (cn)!

n! ·
1

(cn− n)!

>

√
2πcn

(
cn
e

)cn
e

1
12cn+1

√
2πn

(
n
e

)n
e

1
12n

· 1√
2π(c− 1)n

(
(c−1)n

e

)(c−1)n

e
1

12(c−1)n

=
√

c

(c− 1)2πn ·
(

cc

(c− 1)c−1

)n

· e
1

12cn+1−
1

12n−
1

12(c−1)n

>

√
c

(c− 1)2πn ·
(

cc

(c− 1)c−1

)n

·
(

1− c2 − c+ 1
12c(c− 1)n

)
.

J


	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The PaCHash Data Structure
	4.1 External Object Representation
	4.2 Internal Memory Data Structure

	5 Analysis
	5.1 Construction
	5.2 Query
	5.3 Details on External Sorting

	6 Variants and Refinements
	7 Experiments
	7.1 PaCHash Configurations
	7.2 PaCHash with Real World Data Sets
	7.3 Comparison with Competitors

	8 Conclusion and Future Work
	A Space Usage of Succincter

