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Abstract
Preferential attachment lies at the heart of many network models aiming to replicate features of
real world networks. To simulate the attachment process, conduct statistical tests, or obtain input
data for benchmarks, efficient algorithms are required that are capable of generating large graphs
according to these models.

Existing graph generators are optimized for the most simple model, where new nodes that arrive
in the network are connected to earlier nodes with a probability P (h) ∝ d that depends linearly
on the degree d of the earlier node h. Yet, some networks are better explained by a more general
attachment probability P (h) ∝ f(d) for some function f : N → R. Here, the polynomial case
f(d) = dα where α ∈ R>0 is of particular interest.

In this paper, we present efficient algorithms that generate graphs according to the more general
models. We first design a simple yet optimal sequential algorithm for the polynomial model. We then
parallelize the algorithm by identifying batches of independent samples and obtain a near-optimal
speedup when adding many nodes. In addition, we present an I/O-efficient algorithm that can even
be used for the fully general model. To showcase the efficiency and scalability of our algorithms, we
conduct an experimental study and compare their performance to existing solutions.
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Supplementary Material The internal memory algorithms are maintained at https://github.
com/massive-graphs/nonlinear-preferential-attachment. The implementation of the dynamic
weighted sampling data structure of [29] is independently maintained as the Rust crate https:
//crates.io/crates/dynamic-weighted-index. The external memory algorithms are available at
https://github.com/massive-graphs/extmem-nlpa. An archive containing the frozen source code
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1 Introduction

Networks govern almost every aspect of our modern life ranging from natural processes in our
ecosystem, over urban infrastructure, to communication systems. As such, network models
have been studied by many scientific communities and many resort to random graphs as the
mathematical tool to capture them [12, 4, 8].

A well-known property of observed networks from various domains is scale-freeness,
typically associated with a powerlaw degree distribution. Barabási and Albert [9] proposed a
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2 Algorithms for Non-Linear Preferential Attachment

simple random graph model to show that growth and a sampling bias known as preferential
attachment produce such degree distributions.

In fact, a plethora of random graph models rely on preferential attachment (e.g., [17, 13,
26, 24, 22, 19, 27]). At heart, they grow a graph instance, by iteratively introducing new
nodes which are connected to existing nodes, so-called hosts. Then, preferential attachment
describes a positive feedback loop on, for instance, the host’s degree; nodes with higher
degrees are favored as hosts and their selection, in turn, increases their odds of being sampled
again.

Most aforementioned models use linear preferential attachment and, consequently, sam-
pling algorithms are optimized for this special case [10, 30, 34, 2, 7, 3] (see also [31] for a
recent survey). Some observed networks however, can be better explained with polynomial
preferential attachment [27].

In this paper, we focus on efficient algorithmic techniques of sampling hosts for non-linear
preferential attachment. Hence, we assume the following random graph model but note that
it is straight-forward to adopt our algorithms to most established variants1.

I Definition 1 (Preferential attachment). We start with an arbitrary so-called seed graph
G0 with n0 nodes and m0 edges. We then iteratively add N new nodes vn0+1, . . . , vn0+N and
connect each to ` ≤ n0 different hosts. The resulting graph GN has n = n0 +N nodes and
m = m0 +N` edges.

The probability to select a node h with degree d as host is governed by P (h) ∝ f(d). In
the case where f(d) = dα for some constant α ∈ R>0, we speak of polynomial preferential
attachment, and if α = 1, of linear preferential attachment.

Related Work
A wide variety of algorithms have been proposed for the linear case. Brandes and Batagelj
gave the first algorithm to run in time linear in the size of the generated graph [10]. Their
algorithm exploits a special structure of linear preferential attachment: given a list of the
edges in the graph, we may simply select an edge e = {u, v} uniformly at random and then
toss a fair coin to decide on either u or v as host. [34] gave a communication-free distributed
parallelization of the algorithm, and [30] proposed a parallel I/O-efficient variant for use in
external memory. A different shared memory parallel algorithm was also proposed by [7],
and [2, 3] gave algorithms for distributed memory.

Note that we may simulate preferential attachment by using a dynamic data structure
that allows fast sampling from a discrete distribution. While rather complex solutions for
this more general problem exist (e.g. see [32, 20, 29]), none provide guarantees on their
performance in external memory, and we are not aware of any parallelization that is practical
for our use case.

Our contribution
We first present a sequential algorithm for internal memory (see Section 2). Our algorithm
runs in expected time linear in the size of the generated graph and can be used for any case
P (h) ∝ dα where α ∈ R≥0. It builds on a simple data structure for drawing samples from
a dynamic distribution that is especially suited to the structure of updates in preferential
attachment but may be of independent interest.

1 In particular, we forbid loops and multi-edges, e.g. our algorithms generate simple graphs.
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In Section 3, we show how to identify batches of independent samples for the polynomial
model. As independent samples can be drawn concurrently, we may use this technique to
parallelize a sequential algorithm for the model. Consequently, we apply this technique to
our sequential algorithm and obtain a shared memory parallel algorithm with an expected
runtime of O((

√
N +N/P) logP).

For the external memory setting (Section 4), we extend the algorithm of [30] by using a
two-step process: in the first phase, we sample the degrees of the hosts of each node, and in
the second phase, we sample the hosts of the nodes. Our algorithm requires O(sort(n0 +m))
I/Os and even applies to the most general case where P (h) ∝ f(d) for any f : N→ R.

In an empirical study (Section 6), we demonstrate the efficiency and scalability of our
algorithms. We find that our sequential algorithms incur little slowdown over existing
solutions for the easier linear case. In addition, our parallel algorithm obtains speed-ups over
the sequential algorithm of 32 to 46 using 63 processors.

Preliminaries and notation

Given a graph G = (V,E) and a node v ∈ V , define the degree dG(v) = |{u : {u, v} ∈ E}| as
the number of edges incident to node v, and let ∆G = maxv∈V dG(v) denote the maximum
degree in G. For a sequence of graphs G1, . . . , GN , we also write dGi(v) as di(v) and ∆Gi as
∆i or drop the subscript if clear by context.

We analyze our parallel algorithm using the CREW-PRAM model (see [23]) on P
processors (PUs). This machine model allows concurrent reads of the same memory address
in constant time, but disallows parallel writes to this same address. Potentially conflicting
writes to the same addresses can, however, be simulated in time O(logP) per access [23]. We
use two methods of conflict resolution, namely minimum (storing the smallest value written
to an address) and summation (storing the sum of values); both are practical, since they are
either directly supported by modern parallel computers or can be efficiently simulated.

For the analysis of our external memory algorithms we use the commonly accepted
I/O-model of Aggarwal and Vitter [1]. The model features a memory hierarchy consisting
of two layers, namely the fast internal memory holding up to M items, and a slow disk of
unbounded size. Data between the layers is transferred using so-called I/Os, where each
I/O transfers a block of B consecutive items. Performance is measured in the number of
I/Os it requires. Common tasks of many algorithms include: (i) scanning n consecutive
items requires scan(n) := Θ(n/B) I/Os, (ii) sorting n consecutive items requires sort(n) :=
Θ
(
(n/B) · logM/B(n/B)

)
I/Os, and (iii) pushing and popping n items into an external priority

queue requires O(sort(n)) I/Os [6].

2 Sequential Algorithm

In this section, we describe a sequential internal memory algorithm for polynomial preferential
attachment, i.e. the probability to select node h as host is P (h) ∝ d(h)α for a constant
α ∈ R≥0. A parallelization is discussed in Section 3. To simplify the description, we assume
that new nodes only select one host (` = 1); generalization is straight-forward by drawing
multiple hosts per node and rejecting duplicates.

We also note that the algorithm can in principle be used for any function f(d) that is
non-decreasing. However, analyzing the runtime for other f(d) is not trivial. In particular,
Lemma 2 requires the pre-asymptotic degree distribution of the generated graphs to have
certain properties, but the exact distribution is not known even in the polynomial case.
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2.1 Sampling Method
To simulate preferential attachment, we require an efficient sampling method which selects a
host in each step. Depending on the seed graph and parameters chosen, the host distribution
P (h) may also undergo significant changes as more and more nodes are added to the graph2.
Therefore, the method used should be capable of adapting to these changes in order to be
efficient for adding any number of nodes to a graph.

Our sampling method builds on rejection sampling, a general technique for sampling from
a target distribution by using an easier proposal distribution. To showcase rejection sampling,
we consider a simple but suboptimal scheme for polynomial preferential attachment. Let
the graph be given as an array of edges E = [e1, . . . , em] in arbitrary order. Now, sample
an edge ei = {u, v} uniformly at random, then, randomly choose either u or v using a fair
coin. Based on the observation that node h with degree d(h) appears d(h) times in E, we
propose h with probability d(h)/2m. Now, if α < 1, accept h with probability (1/d(h))1−α,
or, if α ≥ 1, accept h with probability (d(h)/∆)α−1, otherwise, restart with a new proposal.

Observe that this scheme implements rejection sampling with the host distribution of
linear preferential attachment as proposal distribution. It can be shown that this scheme
provides samples in constant time if n0 = O(1) as n→∞ by using known properties of the
asymptotic degree distributions for α < 1 and α ≥ 1. However, the scheme is inefficient if
we wish to add only a few nodes to a larger seed graph. For instance, consider running the
scheme for α = 2 on a seed graph of one node with degree √n0 − 1 and n0 − 1 nodes with
degree 1. It is straightforward to check that this results in an initial acceptance probability
of O

(
1/√n0

)
. The issue is that the seed graph degree distribution differs significantly from

the limit degree distribution, which causes the acceptance probability to be small until we
have added many times over the initial number of nodes.

To remedy this issue, we combine rejection sampling with a dynamic proposal distribution
that adapts to the target distribution. To this end, let S = {1, . . . , n} be a set of indices we
wish to sample from and let f : S → R≥0 be a function giving the weight of each element, i.e.
the distribution on S is f(i)/W where W =

∑
j∈S f(j) gives the proper normalization. The

initial construction of our data structure is comparable to a variant of the alias method [14].
We first initialize an empty list or array3 P , and then for each element i ∈ S, add i exactly
c(i) = df(i)n/W e times to P . We call c(i) the count of i. As P is used to maintain the
proposal distribution, we refer to P as the proposal list4. Having constructed P , it is easy to
verify that we may sample an element according to the target distribution by first selecting
a uniform random element i from P , and then accepting with probability proportional to
f(i)/c(i). If the distribution changes, we update P as follows: to add a new element i, we
calculate c(i) as during the construction phase and add i exactly c(i) times to P . If the weight
of an existing element i increases, we recalculate its count c(i) and add i to P accordingly.

2.2 SeqPolyPA
Our SeqPolyPA algorithm implements Section 2.1 as detailed in Algorithm 1. First initialize
the proposal list P0 by setting the count of each node v of the seed graph to the optimal

2 We refer the interested reader to [25] for an analysis of the degree distributions of non-linear preferential
attachment graphs.

3 An efficient implementation requires fast sampling from P and inserting into P ; an array with table
doubling (e.g. [16]) is an easy choice with constant expected/amortized time per operation.

4 We may also think of P as a compression of the target distribution. Rejection sampling then serves the
purpose of correcting any errors caused by the loss of information.
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Algorithm 1 SeqPolyPA

Data: Seed graph G0 = (V0, E0), with n0 = |V0|, m0 = |E0|, requested nodes N ,
parameter α > 0

1 P0 ← [v1, . . . , vi, . . . , vi︸ ︷︷ ︸
dd0(vi)αn0/W0e times

, . . . , vn0 ];

2 for i ∈ [1, . . . , N ] do // Add new node
3 repeat // Sample a host
4 Select candidate h uniformly from Pi−1;
5 Accept with probability wi−1(h)/maxv∈Vi−1 wi−1(v) where

wi−1(v) := di−1(v)α/ci−1(v) and ci−1(v) := #occurences of v in Pi−1;
6 until accepted;
7 Vi ← Vi−1 ∪ {vn0+i} ; // Update graph
8 Ei ← Ei−1 ∪ {{vn0+i, h}};
9 Pi ← Pi−1 + [vn0+i] ; // Update P

10 while wi(h) > Wi/ni do
11 Pi ← Pi + [h];

12 Return GN = (VN , EN );

count c(v) = dd0(v)αn0/W0e. Now, in each step i, a new node vn0+i arrives and has to be
connected to the graph by linking it to some earlier node h. To this end, select a candidate h
uniformly at random from Pi−1. Then, accept h with probability wi−1(h)/maxv∈Vi−1 wi−1(v)
where wi−1(v) = di−1(v)α/ci−1(v), otherwise, reject h and restart with a new proposal. Once
a host h has been accepted, add the new node vn0+i to Vi−1, and add the edge {vn0+i, h}
to Ei−1 to obtain the new graph Gi = (Vi, Ei). To reflect the new distribution induced
by Gi, adjust P as follows: first, add vn0+i to Pi−1 to obtain Pi, then, add h to Pi until
wi(h) ≤Wi/ni.

In the following, we establish that SeqPolyPA produces the correct output distribution.

I Theorem 1. SeqPolyPA samples host h ∈ V with probability d(h)α/W .

Proof. The probability p(h) that node h is accepted after a single proposal is

p(h) = c(h)
|P |︸︷︷︸

propose h

w(h)
maxv∈V w(v)︸ ︷︷ ︸

accept h

= d(h)α

|P |maxv∈V w(v) .

Let W ′ := |P |maxv∈V w(v). Then, we have

W ′ = |P |max
v∈V

w(v) ≥
∑
v∈V

c(v)w(v) =
∑
v∈V

d(v)α = W.

With the remaining probability q = 1−W/W ′, the first proposal is rejected, and another
node is proposed. Thus, the overall probability of sampling node h is

p(h) + p(h)q + · · · = p(h)
∞∑
k=0

qk = p(h) 1
1− q = d(h)α

W

as claimed. J

Next, we show that SeqPolyPA runs in expected time linear in the size of the generated
graph. We first analyze the memory usage.
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I Lemma 2. Given a seed graph G0 = (V0, E0) with n0 = |V0| nodes, SeqPolyPA adds N
new nodes to G0 using a proposal list P of expected size O(n0 +N) if α ≤ 1 or α > 1 and
n0 = O(1)5.

Proof. The initial size of P is at most

|P0| =
∑
v∈V0

⌈
d0(v)αn0

W0

⌉
≤
∑
v∈V0

(
1 + d0(v)αn0

W0

)
= 2n0.

Then, in each step i, the size of P increases by 1 for the new node and by the increase in the
count of the host node h. The increase in the count is

max
{

0,
⌈
di(h)αni
Wi

⌉
−
⌈
dj(h)αnj
Wj

⌉}
where j < i is the last step in which node h was sampled.

Now, we distinguish two cases. For α ≤ 1, we have di(h)α = (dj(h) + 1)α ≤ dj(h)α + 1,
and using ni/Wi ≤ 1 and Wi > Wj , we obtain⌈

di(h)αni
Wi

⌉
−
⌈
dj(h)αnj
Wj

⌉
< 2 + dj(h)α

Wi
(ni − nj) .

Now, observe that dj(h)α/Wi is the probability that h is sampled in step i, and as W is
non-decreasing, the probability that h is sampled in each step between j and i is at least
dj(h)α/Wi. Thus, the expected length of a run until h is sampled is at most Wi/dj(h)α, and
as by definition, i− j is the length of this run, we have E[i− j] = E[(n0 + i)− (n0 + j)] =
E[ni − nj ] ≤Wi/dj(h)α. Therefore, the expected increase is only constant, which shows the
claim.

The other case is α > 1 and n0 = O(1). In this case as a single node emerges which
obtains almost all links and has expected degree ∆ = Θ(n) as n→∞ [25]. In each further
step i we then have Wi/ni = Ω(∆α/ni) = Ω(nα−1

i ) and the increase in the count of the
chosen host node h is⌈

di(h)αni
Wi

⌉
−
⌈
dj(h)αnj
Wj

⌉
= O

(
di(h)α − dj(h)α

nα−1
i

)
.

In addition, we have di(h) = dj(h) + 1 < ni + 1, and it is straightforward to check that
(x+ 1)α = xα +O

(
xα−1) for any x > α > 1, so it follows that

di(h)α − dj(h)α

nα−1
i

<
(ni + 1)α − nαi

nα−1
i

= O(1) .

This implies that in each further step, the increase in |P | is only constant, and thus we have
|P | = O(n). J

We now show the main result of this section.

I Theorem 3. Given a seed graph G0 = (V0, E0) with n0 = |V0| nodes, SeqPolyPA adds N
new nodes to G0 in expected time O(n0 +N).

5 We remark that this is a correction over the conference version of the article [5] in which the condition
n0 = O(1) if α > 1 was missing.
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Proof. The initialization in line 1 of Algorithm 1 takes at most time O(|P0|) = O(n0) (see
Lemma 2). The outer loop in lines 2− 13 terminates after N steps. The first inner loop in
lines 3− 6 terminates once a node is accepted. Reusing definitions of Thm. 1, the expected
number of proposals until a node is accepted in step i is

E[T ] = 1
1− q =

W ′i−1
Wi−1

=
|Pi−1|maxv∈Vi−1 wi−1(v)

Wi−1
.

Recall that a weight w(v) can increase only if node v is accepted, at which point, we add
v to P until w(v) ≤W/n. Then we have maxv∈Vi−1 wi−1(v) ≤Wj/nj where j < i is the last
step in which the node with the maximum w(v) was accepted, and we obtain

E[T ] ≤ Wj

nj

|Pi−1|
Wi−1

= O
(
Wj

nj

ni−1

Wi−1

)
where the last equality follows from the upper bound on |P | given by Lemma 2.

Now if Wj/nj ≤ Wi−1/ni−1, then E[T ] = O(1) as desired. The other case is Wj/nj ≥
w(v) > Wi−1/ni−1. In this case, we can show that v is sampled again adjusting its weight
before E[T ] grows too large. Note that since Wi−1/ni−1 < w(v) ≤Wj/nj , there has to be
some step j < k ≤ i − 1 with Wk/nk < w(v) < Wk−1/nk−1. Since w(v) = d(v)α/c(v) >
Wk/nk implies that d(v)α > Wk/nk, the probability of sampling v in step k is at least 1/nk.
In addition, since W/n has to decrease for E[T ] to increase, we still have w(v) > Wl/nl in
some step l > k with nl = Cnk for some C > 1. This implies that the probability of sampling
v in step l is at least 1/nl = 1/Cnk. We now examine the expected number of times that v
is sampled between step k and l and find

1
nk

+ 1
nk+1

+ · · ·+ 1
Cnk

= HCnk −Hnk−1

where Hi denotes the i-th harmonic number. Using HCnk −Hnk−1 = ln(C) + o(1), we find
that for C = e node v is expected to be sampled once, and thus in expectation, E[T ] cannot
grow larger than

E[T ] = O
(
enk
nk

)
= O(1) .

For the second inner loop in lines 10− 12, it suffices to use the bound on |P | given by
Lemma 2. As the bound gives |PN | = O(n0 +N) after N steps, and each iteration of the
loop increases the size of P by 1, the total time spent in this loop is O(n0 +N). J

3 Parallel Algorithm

In this section, we describe an efficient parallelization of the SeqPolyPA algorithm given in
Section 2.2. The parallel algorithm ParPolyPA builds on the following observation.

I Observation 1. Let G0, . . . , GN be a sequence of graphs generated with polynomial prefer-
ential attachment for some α ∈ R>0 as per Definition 1, and let Wi =

∑
v∈Vi di(v)α denote

the sum of the node weights after step i. Then, we have

Wi+1 −Wi

Wi+1
=
{
O(1/ni) if α ≤ 1.
O(1/∆i) if α > 1.
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Algorithm 2 ParPolyPA

Data: Seed graph G = (V,E), with n0 = |V |, m0 = |E|, requested nodes N , α > 0
1 for 1 ≤ p ≤ P do in parallel // Init P

2 Pp ← [v (p−1)n0
P

, . . . , vi, . . . , vi︸ ︷︷ ︸
dd0(vi)αn0/W0e

, . . . , v pn0
P

]

3 s← n0;
4 while s < N + 1 do // Start new batch
5 l← N + 1;
6 for 1 ≤ p ≤ P do in parallel
7 H ← []; // Phase 1
8 for i ∈ [s+ p, s+ p+ P, . . . , l] do
9 with prob. W ′i−Ws

W ′
i

, l← min{i, l};
10 Sample h with P1(h) = ds(h)α/Ws;
11 H ← H + [(vn0+i, h, i)];
12 barrier; // Phase 2
13 for (v, h, i) ∈ H where i < l do
14 V ← V ∪ {v}, E ← E ∪ {{v, h}};
15 Pp ← Pp + [v];
16 while w(h) > Ws/ns do
17 Pp ← Pp + [h];

18 barrier; // Phase 3
19 if p responsible then
20 with prob. Wl−Ws

W ′
l
−Ws

, Sample h with P2(h) = (dl(h)α − ds(h)α)/(Wl −Ws)
else with P3(h) = dl(h)α/Wl;

21 V ← V ∪ {vl}, E ← E ∪ {{vl, h}};
22 Pp ← Pp + [vl];
23 while w(h) > Wl/nl do
24 Pp ← Pp + [h];

25 s← l;
26 Return G = (V,E);

Observation 1 suggests that a sample drawn in step i+ 1 is independent from any changes to
the distribution caused by step i with a rather large probability. Extending this principle to
a batch of √ni or

√
∆i samples, we see that all samples in the batch are independent from

changes to the distribution caused within the same batch with a non-vanishing probability.
Thus, we may draw all samples in a batch independently in parallel until the first dependent
sample, which gives an efficient parallelization for P = Θ(

√
n) processors if α ≤ 1, and

P = Θ(
√

∆N ) if α > 1.

3.1 ParPolyPA

We now describe the parallel algorithm in detail, see also Algorithm 2. First, let P denote
the number of PUs (processors), and let 1 ≤ p ≤ P denote the p-th PU. Then, PU p adds
all new nodes at positions n0 + kP + p and all new edges at positions m0 + kP + p where
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0 ≤ k ≤ N/P6. Before any samples are drawn, PU p receives an n0/P share of the nodes in
the seed graph, and initializes a proposal list Pp for its nodes as described in Section 2.2.

Next, all PUs enter the sampling stage. Sampling is done in batches, where each batch
ends if a dependent sample is found. We indicate this event by an atomic variable l that is
initially set to l← N + 1, but may be updated with decreasing indices of dependent samples
during the batch. We also let s denote the index of the first sample in each batch. Each
batch consists of three phases. Note that the phases are synchronized, e.g. no PU may
proceed to the next phase until all PUs have finished the current phase.

In the first phase, each PU draws its samples independently and stores them in a list of
its hosts for this batch, but does not yet add any nodes or edges to the graph. Before sample
i, PU p flips a biased coin that comes up heads with probability Ws/W

′
i where

W ′i =
{
Ws + 2(i− s) if α ≤ 1
Ws + 2 ((∆s + i− s)α −∆s

α) if α > 1

gives an upper bound onWi. If the result is heads, then we know that the sample has to come
from the old distribution, i.e. node h should be sampled with probability P1(h) = ds(h)α/Ws.
To this end, the PU draws two uniform random indices r ∈ {1, . . . ,P} and c ∈ {1, . . . ,S}
where S = maxp |Pp|, and requests the c-th entry of list Pr of PU r. Note that it is possible
for this request to fail if c > |Pr|, and in this case, two new indices are sampled. Once a
candidate node h is found, h is accepted or rejected as in the sequential case, and once a
sample is accepted, it is added to the list of hosts. If however, the result is tails, then the
sample may have to come from new distribution, so the batch has to end before drawing
this sample. Therefore, the PU atomically checks variable l, and if i < l, updates the lower
bound by setting l ← i. The PU terminates the first phase if i ≥ l or all nodes have been
processed; otherwise it continues with its next node.

In the second phase, each PU adds its new nodes and sampled edges to the graph, and
updates its list P by adding its nodes, and any increase in the counts of its hosts caused by
its edges.

In the third phase, the PU that found the first dependent sample l draws this sample
(if any). Recall that we overestimated the probability that the sample was dependent by
using the upper bound W ′l . To correct for this, we first flip a coin that comes up heads
with probability (Wl −Ws)/(W ′l −Ws). If the result is heads, the responsible PU draws the
sample only from the weight added in the batch, i.e. node h is sampled with probability
P2(h) = (dl(h)α − ds(h)α)/(Wl −Ws). To this end, it selects a candidate node from one of
the lists P , but only considers positions added during the batch. Consequently, a candidate
is accepted with probability proportional to the increase in its weight divided by the increase
in its count. Otherwise, if the result is tails, the sample is drawn from the new distribution
with probability P3(h) = dl(h)α/Wl. Once the PU sampled a host, it adds the node and
edge to the graph and updates its list P . Then, all PUs enter the next batch, or exit, if all
N samples have been drawn.

We now prove the correctness of the necessary modifications to obtain ParPolyPA from
SeqPolyPA.

I Theorem 4. ParPolyPA samples host h ∈ V with probability d(h)α/W .

Proof. We distinguish three cases to sample node h. Either (1) h is sampled as independent
sample with probability P1(h) = ds(h)α/Ws, or (2) as dependent sample with probability

6 For simplicity, we assume that P divides n0 and N .
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P2(h) = (dl(h)α − ds(h)α)/(Wl −Ws), or (3) as sample from the new distribution with
probability P3(h) = dl(h)α/Wl. Thus, the overall probability of sampling h is given by

P (h) = Ws

W ′l
P1(h) + Wl −Ws

W ′l
P2(h) + W ′l −Wl

W ′l
P3(h)

= ds(h)α

W ′l
+ dl(h)α − ds(h)α

W ′l
+ W ′l −Wl

W ′l

dl(h)α

Wl

= dl(h)α

W ′l
+ W ′l −Wl

W ′l

dl(h)α

Wl

= dl(h)α

Wl
.

It only remains to show that W ′l is an upper bound on Wl. We first consider the case
where α ≤ 1. Observe that in each step, Ws increases by 1 for the new node and by
(d(h) + 1)α − d(h)α ≤ 1 for the host h. Thus, the overall increase after l − s steps is at
most 2(l − s), and Wl ≤ Ws + 2(l − s) = W ′l as claimed. In the other case, where α > 1,
Ws similarly increases by 1 for the new node and by (d(h) + 1)α − d(h)α for the host h. In
addition, it is easy to verify that (d(h) + 1)α − d(h)α is maximized if d(h) = ∆. Thus, we
have

Wl ≤Ws + l − s+ (∆s + l − s)α −∆α
s

≤Ws + 2((∆s + l − s)α −∆α
s )

= W ′l

as claimed. J

The following theorem shows that ParPolyPA yields a near-optimal speed-up if α ≤ 1 or
α > 1 and N is large.

I Theorem 5. Given a seed graph G0 = (V0, E0) with n0 = |V0|, ParPolyPA adds N new
nodes to G0 in expected time O

(
(
√
N +N/P) logP

)
if α ≤ 1 or α > 1 and N = ω(n0).

Proof. ComputingW0 and initializing the lists P1, . . . , PP in parallel takes timeO(n0/P log(P)).
In the following, we show that the remainder of ParPolyPA can be implemented to

process a batch of length R in time O((1 +R/P) logP). By Observation 1 and ∆N = Θ(n)
if N = ω(n0), we expect E[R] = Θ(√ni) resulting in O

(√
N
)
batches which, in combination,

establishes the claim.
In the first phase, all samples are drawn independently and affect only each PU’s local

state. The only concurrent writes happen to the global variable l for which we use minimum
as conflict resolution. Thus, the first phase can be executed in time O((1 +R/P) logP).

The runtime of the second phase is dominated by the concurrent writes to the shared data
structuring maintaining the counts c(·) of the proposal list. Parallel writes to the same counter
are summed up. There at most Θ(R) such updates, accounting for O((1 +R/P) logP) time
per batch.

Finally, in the third phase, only one PU draws one sample which takes constant time. J

4 I/O-Efficient Algorithm

In this section, we extend the I/O-efficient algorithm of [30] to the general case. The algorithm
transfers the main idea of [10] to the external memory setting. Rather than reading from
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Algorithm 3 EM-GenPA

Data: Seed graph G = (V,E), with n0 = |V |, m0 = |E|, requested nodes N
1 foreach v ∈ V do // Init
2 PQM .push(ExMsg〈d0(v), 0, v〉)
3 cd0(v) ← cd0(v) + 1
4 foreach i ∈ [1, . . . , N ] do // Phase 1
5 PQM .push(ExMsg〈`, `(i+ 1), vn0+i〉)
6 foreach j ∈ [1, . . . , `] do
7 repeat
8 Sample degree d := d(h) of host h proportionally to cdf(d)
9 Accept with prob. (cd−sd)/cd

10 until accepted;
11 sd(h) ← sd(h) + 1
12 Store HostReq〈vn0+i, j, d(h)〉
13 Update counters cd with changes sd
14 Sort requests ascendingly by (degree, node)
15 for increasing degree d do // Phase 2
16 Rmin ← 0, Rmax ← 1
17 foreach HostReq〈vn0+i, j, dj〉 with dj=d do
18 t← `i+ j

19 while ExMsg〈d′, t′, v〉 ← PQM .top() where d′ = d and t′ < t do
20 Rv ← uniformly from [Rmin, Rmax]
21 PQU .push(Rv, v)
22 PQM .pop()
23 (Ru, u)← PQU .pop()
24 Rmin ← Ru
25 E ← E ∪ {{vn0+i, u}}
26 Empty PQU

random positions of the edge list, it emulates the same process by precomputing all necessary
read operations and sorts them by the memory address they are read from. As the algorithm
produces the edge list monotonously moving from beginning to end, it scans through the
sorted read requests and forwards still cached values to the corresponding target positions
using an I/O-efficient priority-queue.

In order to extend the algorithm to the general case, we split the sampling of hosts into a
two-step process, see also Algorithm 3. First, for each new node vn0+i we only sample the
degrees of the ` different hosts and collectively save this information for the second phase,
e.g. that node vn0+i requested a host with degree d. By postponing the actual sampling
of the hosts, we can bulk all nodes with the same degree and therefore distribute them
I/O-efficiently to the incoming nodes.

As the first phase only samples node degrees, it suffices to group nodes with the same
degree d and represent each group by their counter cd and weight cd ·f(d). Therefore, initially
each seed node v ∈ V0 contributes weight f(d0(v)) to the overall weight of its corresponding
group. A host request for degree d is then sampled proportionally to cd · f(d). To reflect
the actual generation process, we remember the number of sampled hosts sd from degree
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d arising from a new node vn0+i. This is necessary, as any subsequent host request needs
to seek a different node to faithfully represent the model. By adding rejection sampling we
correct the probability distribution a posteriori, i.e. if degree d is sampled we finally accept
with probability (cd − sd)/cd and restart otherwise. After generating all ` host requests we
update the corresponding counters (cd, cd+1) to (cd − sd, cd+1 + sd) for at most ` degrees.
While sampling these requests we generate tuples HostReq〈vn0+i, j, dj〉 for j ∈ {1, . . . , `}
representing that node vn0+i requested as j-th host a node with degree dj .

After collecting all host requests, we sort all requests by host degree first and new node
second. Subsequently in the second phase, we fulfill each request for a host of degree d by
uniformly sampling from the set of existing nodes with degree d at that time using two
I/O-efficient priority-queues PQU and PQM employing standard external memory techniques
[28]. While PQU is simply used as a means to retrieve uniform samples of its currently held
messages, PQM is used to gather all matching nodes. To initialize, given the seed graph
G0 we insert for each node v ∈ V0 a message ExMsg〈d0(v), 0, v〉 into PQM reflecting the
information that at time t = 0 node v has degree d0(v) in G0. Similarly, we insert messages
ExMsg〈`, `(i+ 1), vn0+i〉 into PQM for all i ∈ {1, . . . , N}, hinting that at time `(i+ 1), after
its addition, node vn0+i indeed has ` neighbors. We then process requests ascendingly by
degree.

When processing host request HostReq〈vn0+i, j, dj〉 we compute t = `i+ j and push all
vertices of messages from PQM with degree dj and time t′ < t into PQU . More concretely,
when processing all requests with degree d it is necessary to keep two values Rmin and Rmax
and insert nodes into PQU with a weight drawn uniformly at random from [Rmin, Rmax].
After all suitable nodes have been inserted into PQU , we pop the node with smallest weight
R and connect vn0+i to it7. Now that all remaining nodes in PQU have a weight of at least
R, we update Rmin ← R to preserve uniformity for any following node. Essentially, for a
request targeted at time t and degree d we provide all nodes that exist as nodes with degree
d up to time t and uniformly sample from them. After fulfilling the request with node u,
we forward u as a potential partner to requests for hosts with degree d + 1 by adding a
message ExMsg〈d+ 1, `(i+ 1), u〉 into PQM . All remaining unmatched nodes in PQU will
stay unmatched, hence PQU is simply emptied and the algorithm proceeds to requests for
the next larger degree.

By lazily resolving the actual hosts in the second step and only sampling the degrees
in the first, the algorithm only needs to keep the set of currently existing degree groups in
internal memory, i.e. the respective degree and its multiplicity in the current graph. Note
that a graph represented by its set of unique degrees D has Ω(|D|2) edges which even under
pessimistic assumptions amounts to an output graph with more than 1 PB of size [21].

I Lemma 6. Processing the host requests sorted ascendingly by degree first and new node
second correctly retains the output distribution.

Proof. Let M(d, t) be the set of nodes with degree d after time t where M(d, 0) is given by
the nodes of the seed graph G0 with degree d. Processing a host request HostReq〈vn0+i, j, d〉
of node v for degree d at time t = `i + j uniformly samples a node u of M(d, t − 1) and
forwards it to the next degree group reflecting the equalities M(d, t) = M(d, t− 1) \ {u} and
M(d+ 1, t) = M(d+ 1, t− 1) ∪ {u}.

7 Due to interchangeability, all inserted nodes have equal probability to have minimum weight and are
thus sampled uniformly at random.
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Figure 1 Dependency graph of direct dependencies where the degrees (3, 1, 2, 2, 1, 3, 2, 3, 1) are
requested in order from left to right.

Therefore, when considering two requests HostReq〈vn0+a, j, d〉 and HostReq〈vn0+b, j
′, d′〉

where the first is generated before the second, it is clear that the latter can only depend
on the former when d ≤ d′, implying a DAG of dependencies of the degree requests. In
particular, it is only necessary to consider direct dependencies, see Figure 1 for an example.

Processing the requests is correct as long as it conforms to the DAG of dependencies,
i.e. is equivalent to any topological ordering of the requests. Naturally, processing requests
ascendingly by time, is therefore correct. However, the order given by ascendingly sorting by
degree first and time second also corresponds to a topological ordering proving the claim.

In Figure 1 both approaches are easily visualized. Processing by time corresponds to
fulfilling the requests from left to right while processing by degree first and time second
corresponds to fulfilling the requests from top to bottom, where early requests are prioritized
if the degree is matching. J

I Theorem 7. Given a seed graph G0 = (V0, E0) with n0 = |V0|, EM-GenPA adds m new
edges to G0 using O(sort(n0 +m)) I/Os if the maximum number of unique degrees fits into
internal memory.

Proof. The first phase produces Θ(m) many host requests incurring Θ(scan(m)) I/Os where
the sampling can be done efficiently using a dynamic decision tree. Sorting the requests then
takes O(sort(m)) I/Os.

In the second phase, each request is read in ascending fashion requiring a single scan,
incurring Θ(scan(m)) I/Os. Fulfilling the host requests is done iteratively for increasing
target degree. If a node is matched with a request for degree d, it is forwarded in time to
requests for degree d + 1 or cleared otherwise. Thus, each node v in the output graph is
inserted at least once and reinserted at most O(dN (v)− d0(v)) times into the priority-queues.
Hence, in total O(n0 +m) messages are produced incurring O(sort(n0 +m)) I/Os when
implementing the priority-queues using Buffer Trees as the underlying data structure [6]. J

5 Implementations

5.1 Implementation for Internal Memory
We implement SeqPolyPA, ParPolyPA, and MVNPolyPa (see below) in the programming
language Rust8 and almost exclusively use the safe language subset and avoid hardware-
specific features.

For comparison with the state of the art, we consider the generator MVNPolyPa which
relies on the first algorithm proposed in [29]. This data structure samples weighted items from
a universe of size N in expected time O(log∗N) and supports updates in time O

(
2log∗N).

8 https://rust-lang.org; performance roughly on par with C.

https://rust-lang.org


14 Algorithms for Non-Linear Preferential Attachment

While the authors propose further asymptotical improvements, preliminary experiments sug-
gest that these translate into slower implementations. We consider the final implementation
well tuned and added a few asymptotically sub-optimal changes (e.g. exploiting the finite
precision of float point numbers and removing the hash maps originally used) that improve
the practical performance significantly. The code is designed as a standalone crate9 and
will be made independently available to the Rust-ecosystem for general sampling problems.

All implementations share a code base for common tasks. Non-integer computations
are based on double-precision floating-point arithmetic. Repeated expensive operations (e.g.
evaluating dα for small degrees d) are memoized. The sampling of ` different hosts per new
node is supported by rejecting repeated hosts. Additionally, we investigate MVNPolyParemove,
which temporarily removes hosts from the data structure.

Our ParPolyPA implementation uses parallel threads operating on a shared memory.
Synchronization is implemented via hurdles barriers10. All concurrently updated values are
accessed either via fetch-and-add or compare-exchange primitives using the acquire-release
semantics [15]. In contrast to the description in Algorithm 2, the code uses a single proposal
list which is implemented as a contiguous vector. To avoid overheads and false-sharing, each
threads reserves small blocks to write. It is also straight-forward to merge the third phase
with the first phase of the next batch. This allows us to reduce the number of barriers
required to two.

Observe that SeqPolyPA and ParPolyPA use contiguous node indices and that each
connected node has at least one entry in the proposal list. This allows us to store the first
entry of each node only implicitly, at least halving the memory size and number of access to
the proposal list P (see Figure 2).

5.2 Implementation for External Memory

We implement EM-GenPA in C++ using the STXXL11 library [18] which offers tuned external
memory versions of fundamental operations like scanning and sorting. It additionally provides
many implementations of different external memory data structures.

Since the degrees change incrementally where all incoming nodes have initial degree `,
we use a hybrid decision tree for the first phase. More concretely, we manage the smallest
degrees in the range of [1, P (

√
n)] statically and any larger degree dynamically where P (x)

is the smallest power of two greater or equal to x. Even for n0 + n = 240 this amounts to
less than 50MB of memory for the statically managed degrees.

For the second phase we use the external memory priority-queues provided by STXXL
based on [33].

6 Experiments

In this section, we study the previously discussed algorithms empirically. All generators
produce simple graphs according to the preferential attachment model in Definition 1. To
focus on this process, we compute the results but do not write out the graph to memory.

9 Roughly speaking, the Rust equivalent of a software library.
10 https://github.com/jonhoo/hurdles
11We use a fork of STXXL that has been developed ahead of master https://github.com/bingmann/

stxxl.

https://github.com/jonhoo/hurdles
https://github.com/bingmann/stxxl
https://github.com/bingmann/stxxl
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Figure 3 Runtime per sample tPA/(N`) for different algorithms as function of N , `, and α.

6.1 Internal Memory Algorithms
All internal memory experiments use the implementations described in Section 5.1 and
are build with rustc 1.66.0-nightly (f83e0266c 2022-10-03)12 on an Ubuntu 20.04
machine with an AMD EPYC 7702P processor with 64 cores and 512GB of RAM. To focus
our measurements on the sampling phase, we use small 1-regular seed graphs with n0 = 10`
which have a negligible influence on the runtime and the structure of the resulting graph.
We report the wall-time of the preferential-attachment process tPA excluding initial setup
costs (e.g. seed graph, initial allocation of buffers, et cetera); this leads to negligible biases
between algorithms.

6.1.1 Sequential performance
In Section 2.1, we bound the expected size of the proposal list to be linear in the graph
size. This analysis is consistent with Figure 2 (Appendix), which reports the proposal size
divided by N . We observe no dependency in N over several orders of magnitude and find
the proportionality factor to be upper bounded from above by 1 (recall that we store the
first entry of each node only implicitly).

Figure 3 summaries the scaling behavior of SeqPolyPA, ParPolyPA, and MVNPolyPa in
N . It reports the average time tPA/(N`) to obtain a single host for various combinations of `
and α. Despite near-constant asymptotic predictions, all implementations show a consistent

12 See Cargo.lock for the exact versions of all dependencies.
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Figure 4 Strong scaling of ParPolyPA as speed-up over SeqPolyPA for N = 109, ` = 1, and
0.5 ≤ α ≤ 1.5.

deterioration of performance for larger instances. We attribute this to unstructured accesses
to a growing memory area causing measurable increases in cache misses and back-end stalls.
The additional steep rises in some of MVNPolyPa’s plots are due to deeper recursions in the
sampling data structure.

While our proposal list-based algorithms are fastest for α ≤ 1, MVNPolyPa performs well
for sequential super-linear preferential attachment. This is due to the expected formation of
Θ(`) high-degree nodes in this regime. These nodes have similar weights and are grouped
together by MVNPolyPa which leads to high locality and very few cache misses during
sampling.

Observe that it is trivial to hard-code this partition into SeqPolyPA and ParPolyPA
to achieve similar performance. We opted against it in favor of cleaner measurements
that describe the actual performance of the proposal list. These results are especially
representative if the seed graph has a significant contribution to the resulting graph, i.e. if
n0/N is non-vanishing.

For ` = 10, SeqPolyPA and ParPolyPA need to reject hosts that have been sampled multi-
ple times. This incurs a small slow-down of less than 1.5×. In this context, MVNPolyParemove

exploits its fully dynamic sampling data structure to temporarily remove hosts (i.e. it explic-
itly samples without replacement). This is slightly beneficial in the super-linear regime with
high locality, while rejection sampling is faster otherwise.

6.1.2 Parallel performance

In Observation 1, we motivate our parallelization by establishing that the number of batches
(corresponding to the number of explicit synchronization points) scales as a square root of
the graph size / maximum degree. This is supported by Figure 5, which almost perfectly
matches this prediction.

Figure 4 reports the results for ParPolyPA with N = 109 as the speed-up over the
sequential implementation SeqPolyPA. For α ≤ 1, we observe a near linear scaling with a
speed-up of up-to 46 on 63 threads, dropping to 32 for α = 1.5.

This is despite a comparable number of batches (see Figure 5). Instead we —slightly
counter-intuitively— attribute the effect to the increased locality of the super-linear regime, as
concurrent updates on high degree nodes lead to more frequent cache-invalidations. This can
be mitigated using default techniques including randomized update sequences or hierarchical
updates. Similarly to [11, Sec. 5], one can also merge a small number batches into an epoch,
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and only update shared data at the epoch’s end, leading to a trade-off between increased
local overheads and reduced shared updates.

6.2 External Memory Algorithms

In order to assess the computational overhead given by the two-phase sampling, we compare
the state-of-the-art sequential external memory algorithm TFP-BA [30] for the linear case to
our implementation where we simply set f(d) = d. As an additional reference we consider a
fast sequential internal memory implementation of the algorithm of Brandes and Batagelj [10]
provided by NetworKit [35] which we refer to by NK-BA. Analogously to the experiments
presented in [30], we use a small ring graph with n0 = 2` nodes as the seed graph for both
algorithms and compare their running times for an increasing number of incoming nodes N .
The benchmarks are built with GNU g++-9.4 and executed on a machine equipped with an
AMD EPYC 7302P processor and 64GB RAM running Ubuntu 20.04 using four 500GB
solid-state disks.

As illustrated in Figure 6, the performance of EM-GenPA is less than a factor of 2.32
slower than TFP-BA in the linear case and seems to be independent of M . Furthermore,
this discrepancy becomes smaller when including writing the result to disk. Naturally, for
graphs that fit into internal memory NK-BA is the fastest algorithm but becomes infeasible
as soon as the edge list exceeds the available internal memory.

To study the influence of f on the running time of EM-GenPA, we additionally consider
two polynomial models with exponent α ∈ {0.5, 1.5}. In Figure 7 we see that EM-GenPA
performs similarly well for all three models. However, it is noticeable that EM-GenPA
performs better for models with a larger exponent α due to the increasingly more skewed
degree distributions.
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7 Conclusions

We present the sequential algorithm SeqPolyPA and the first efficient parallel algorithm
ParPolyPA for polynomial preferential attachment. Furthermore, we present the first I/O-
efficient algorithm EM-GenPA for general preferential attachment.

For a comparison with the state of the art, we engineer a sequential solution MVNPolyPa
that relies on the fully dynamic sampling data structure proposed by [29]. We find that
SeqPolyPA performs better or similarly well as MVNPolyPa; only for α > 1 and adding many
nodes, we find that the latter exhibits slightly better memory behavior due to the degenerate
nature of the degree distribution in the limit. In addition, our parallel algorithm ParPolyPA
obtains a speed-up of 46 for α ≤ 1 and 32 for α > 1. We expect further improvements by
using longer batches that may include multiple dependent samples.

Our experiments suggest that EM-GenPA performs similarly well to the external memory
state-of-the-art algorithm TFP-BA for the linear case. Additionally, we investigate the
performance of EM-GenPA for different polynomial models. For larger exponents, EM-
GenPA performs better due to more favorable output degree distributions enabling more
cache-efficient degree sampling and incurring less I/Os from the underlying priority-queues.
While EM-GenPA is feasible for virtually any set of realistic input parameters it would still
be interesting to lift the restriction that the degrees are kept internally.
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