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Abstract
For a given polygonal region P , the Lawn Mowing Prob-
lem (LMP) asks for a shortest tour T that gets within
Euclidean distance 1 of every point in P ; this is equiv-
alent to computing a shortest tour for a unit-disk cut-
ter C that covers all of P . As a geometric optimiza-
tion problem of natural practical and theoretical impor-
tance, the LMP generalizes and combines several noto-
riously difficult problems, including minimum covering
by disks, the Traveling Salesman Problem with neigh-
borhoods (TSPN), and the ∃R-complete Art Gallery
Problem (AGP). So far, there have only been theoreti-
cal approximation algorithms with worst-case bounds of
2
√

3αTSP ≈ 3.46αTSP, where αTSP is the approximation
factor for the geometric TSP. Here, αTSP = 1+ε is the-
oretically possible by using one of the famous geomet-
ric approximation schemes; however, these methods are
not practically applicable for concrete instances. More-
over, there have not been any exact methods for the
LMP that compute provably near-optimal solutions for
instances of interesting size, owing to the combination
of geometric difficulties, such as a succinct characteri-
zation of optimal solutions, as well as the lack of useful
lower bounds that provide practically small performance
gaps.

In this paper, we conduct the first study of the Lawn
Mowing Problem with a focus on practical computation
of near-optimal solutions. To this end, we provide new
theoretical insights: Optimal solutions are polygonal
paths with a bounded number of vertices, i.e., they do
not have any curved pieces, allowing a restriction to
straight-line solutions; on the other hand, there can be
relatively simple instances for which optimal solutions
require a large class of irrational coordinates. On
the practical side, we present a primal-dual approach
with provable convergence properties based on solving
a special case of the TSPN restricted to witness sets.
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In each iteration, this establishes both a valid solution
and a valid lower bound, and thereby a bound on
the remaining optimality gap. As we demonstrate in
an extensive computational study, this allows us to
achieve provably optimal and near-optimal solutions for
a large spectrum of benchmark instances with up to
2000 vertices.

1 Introduction
There are many facets of theoretical and practical dif-
ficulty of geometric optimization problems. On the
theoretical side, the classic Traveling Salesman Prob-
lem (TSP) is NP-hard, making it unlikely that there
is a polynomial-time algorithm that produces provably
optimal solutions. Moreover, it is unknown how to effi-
ciently evaluate a sum of square roots, so it is unclear
whether the TSP for a set of points in the plane with
Euclidean distances even belongs to NP. For the famous
Art Gallery Problem (AGP) of finding a minimum num-
ber of guards to cover a simple polygon based on visibil-
ity, membership in NP is indeed unlikely, as it belongs
to the class ∃R. Furthermore, problems of optimal cov-
ering are also known to be prohibitively difficult from a
practical perspective: Even the largest square that can
be covered by n unit disks has only been established up
to n = 7.

We consider a geometric optimization problem that
generalizes and combines these challenges. In the Lawn
Mowing Problem (LMP), we are given a (not necessarily
simple or even connected) polygonal region P and a
disk cutter C of radius r; the task is to find a closed
roundtrip of minimum Euclidean length such that the
cutter “mows” all of P , i.e., a shortest tour that moves
the center of C within distance r from every point
in P . The LMP naturally occurs in a wide spectrum of
practical applications, such as robotics, manufacturing,
farming, quality control and image processing, so it is
of both theoretical and practical importance.

Given that the LMP combines the Euclidean TSP,
the AGP, and covering by disks, it is not surprising that
it is also both theoretically and practically difficult: It
is NP-hard (as it generalizes the TSP), membership in
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Figure 1: A sequence of iterations in the primal-dual scheme. (a) An example instance. The blue circle shows
the tool size. (b) A lower bound of 32.4 with coverage of 51 %, arising in iteration 0 from an initial witness set.
(c) A lower bound of 36.56 with coverage of 70 %, arising in iteration 1 from an enhanced witness set. (d) A lower
bound of 42.37 with coverage of 84 %, arising in iteration 7. (e) An upper bound of 65.35 with full coverage,
achieved in iteration 3.

NP is unclear (as it involves evaluating Euclidean dis-
tances); it is also extremely hard from a practical per-
spective (as it comprises covering by disks). In fact, the
only known positive algorithmic result is an approxima-
tion algorithm with a factor of 2

√
3αTSP ≈ 3.46αTSP [7],

where αTSP is the factor for the geometric TSP. So far,
no results aiming at methods with practically good per-
formance are known, in part because of the difficulties
of (I) characterizing optimal solutions (due to the con-
tinuous nature of the LMP) and of (II) providing tight
lower bounds: Neither the area of P nor its diameter can
provide such bounds, as replacing P by a dense subset
of points with zero area does not change the length of
an optimal tour, which can be much longer than the
diameter of P .

1.1 Our contribution We provide a number of theo-
retical and practical results for the Lawn Mowing Prob-
lem.

• We establish a characterization of optimal lawn
mowing tours by proving that an optimal tour
for a polygonal region P consists of line segments
between a finite set of vertices. This allows a focus
on polygonal solutions, and the ensuing primal-dual
scheme.

• On the other hand, we show that even relatively
simple regions P can require LMP solutions with a
wide range of irrational vertices. While this does
not establish ∃R-hardness, it gives some indication
of the underlying difficulty, as it did for the AGP.

• We establish a primal-dual algorithm for the LMP
by iteratively covering an expanding witness set of
finitely many points in P . In each iteration, com-
puting a lower bound involves solving a special case

of a TSP instance with neighborhoods, the Close-
Enough TSP (CETSP) to provable optimality; for
an upper bound, this is enhanced to provide full
coverage. In each iteration, this establishes both a
valid solution and a valid lower bound, and thereby
a bound on the remaining optimality gap. (See Fig-
ure 1 for an illustration.)

• We prove that this discretization method leads to
provably good results: both the uncovered area and
the maximum distance of points from the region
swept by our lower-bound tours converge to zero
as we enhance the witness set.

• We present a comprehensive study to demonstrate
the practical usefulness of our methods, based on
a wide spectrum of benchmark instances with up
to 2000 vertices. The outcomes include provably
optimal solutions, limited optimality gaps, and
improved lower bounds.

1.2 Related work There is a wide range of prac-
tical applications for the LMP, including manufactur-
ing [9, 35, 36], cleaning [17], robotic coverage [19, 20,
33, 38], inspection [27], CAD [26], farming [11, 21, 45]
and pest control [13]. In Computational Geometry,
the Lawn Mowing Problem was first introduced by
Arkin et al. [6], who later gave the currently best ap-
proximation algorithm with a performance guarantee of
2
√

3αTSP ≈ 3.46αTSP [7], where αTSP is the perfor-
mance guarantee for an approximation algorithm for the
TSP; while αTSP may be (1 + ε) in theory, based on the
methods of Arora [10] or Mitchell [42], neither approach
is practically useful. A variant (in which cost was in-
curred both for traveling and covering) was considered
by Fekete et al. [30], who gave a 4-approximation for
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the special case of polyominoes. Closely related is the
TSP with neighborhoods (TSPN), for which it suffices
to visit a neighborhood for each of a given set of discrete
vertices; this was first considered by Arkin and Has-
sin [8], in a graph setting by Gendreau et al. [34], for
“fat” neighborhoods by Mitchell [43] and heuristically
by Yuan and Zhang [48]. A particularly relevant special
case of the TSPN is the Close-Enough TSP (CETSP),
in which it suffices to get within a Euclidean distance
of r, i.e., for which the neighborhood is an r-disk. Du-
mitrescu and Tóth [24] gave an O(1) approximation;
they also provide a broad overview of other theoreti-
cal results for the TSPN. Practical methods were con-
sidered by Mennell [41], Behdani and Smith [14], and
Coutinho et al. [22].

The Art Gallery Problem (AGP) is connected to
our work by a combination of theoretical and practical
issues. Also a problem of optimal geometric covering,
the AGP has to deal with the theoretical difficulties of
possibly irrational coordinates, as shown by Abraham-
sen et al. [1] (answering an open problem by Fekete [3]);
subsequently, this result served as a stepping stone to-
wards a proof of ∃R-completeness [2]. On the practical
side, powerful methods (e.g., by Baumgartner et al. [12],
Kröller et al. [39], or de Rezende et al. [23]) for com-
puting a good set of guards for a polygonal region P
are based on finding solutions for discrete witness sets
within P , leading to a primal-dual optimization method;
see [18] for an animated multimedia description. This
approach is closely related to our primal-dual method
for the LMP.

Optimally covering even relatively simple regions by
a set of n unit disks has received a considerable atten-
tion, but is excruciatingly difficult. For covering rect-
angles by n unit disks, Heppes and Mellissen [37] gave
optimal solutions for n ≤ 5; Melissen and Schuur [40]
extended this for n = 6, 7. See the website by Fried-
man [32] for illustrations of the best known solutions
(only some of which are proven to be optimal) for
n ≤ 12. As early as 1915, Neville [44] computed the
optimal arrangement for covering a disk by five unit
disks, but reported a wrong optimal value; much later,
Bezdek [15, 16] gave the correct value for n = 5, 6. As
recently as 2005, Fejes Tóth [47] established optimal
values for n = 8, 9, 10. The question of incomplete cov-
erings was raised in 2008 by Connelly; Szalkai [46] gave
an optimal solution for n = 3. Progress on covering
by (not necessarily equal) disks has been achieved by
Fekete et al. [28, 29].

1.3 Preliminaries A (simple) polygon P is a (non-
self-intersecting) shape in the plane, bounded by a fi-
nite number n of line segments. The boundary of a

polygon P is denoted by ∂P . A tour is a closed con-
tinuous curve T : [0, 1] → R2 with T (0) = T (1); we
denote the (Euclidean) length of T by `(T ). The cut-
ter C is a disk of radius r, centered in its midpoint.
The Minkowski sum of two sets A,B ⊂ R2 is the set
A ⊕ B = {a + b | a ∈ A, b ∈ B}. The coverage of a
tour T with the disk cutter C is T ⊕ C. The coverage
of a point p ∈ T is {p} ⊕ C. A lawn mowing tour T of
a polygon P with a cutter C is a tour whose coverage
contains P . An optimal lawn mowing tour T ∗ is a lawn
mowing tour of shortest length. For a discrete set of
points P , a tour T traverses P if P ⊂ T , i.e., for each
p ∈ P there is a t ∈ [0, 1] such that T (t) = p.

2 Optimal tours are straight
In general, a lawn mowing tour may consist of line
segments and curved arcs. We show that any optimal
tour mowing a polygon can only contain line segments.

Theorem 2.1. For every polygon P and a circular
cutter, an optimal lawn mowing tour T exclusively
consists of a set of line segments.

2.1 Outline of the proof Because our proof of
Theorem 2.1 is rather technical, we formulate various
lemmata within its context, see Figure 2. By means of
these lemmata, the proof is partitioned as follows.

Lemma 2.1. The key lemma for the proof of Theo-
rem 2.1 is that given an optimal tour, the coverage
of a curved arc cannot contain a region that is cov-
ered more than once.

Lemma 2.2. Based on Lemma 2.1, we show that each
point p from the boundary of an arc t has two
closest points q, r from the optimal tour.

Lemma 2.3. We show that the two closest points q, r
to p lie in a line with p; we call r the successor of q.

Theorem 2.1. Alternately applying Lemmas 2.2
and 2.3 leads to a sequence of successors on a
common line, with a final successor r′ outside
the polygon. This implies that the final successor
lies on an arc that covers a region outside of the
polygon, leading to a contradiction by Lemma 2.1.

2.2 Preliminaries for the proof A (curved) arc is
the image of a smooth function t : [0, 1] → R2 that is
either strongly convex or strongly concave, see Figure 3.
A segment is the image of a linear function t : [0, 1] →
R2. A component t is an arc or a segment. We call
t(0) and t(1) the start and end point of t. Any tour
T : [0, 1] → R2 can be partitioned into a sequence of
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Lemma 2.1 Lemma 2.2 Lemma 2.3 Theorem 2.1

Figure 2: A symbolic overview of our proof that optimal tours only contain line segments.

t

S+

S
S−

p

N(p)

C

Figure 3: The coverage strip S(t) (or S in short)
that results from traversing t with the midpoint of the
circular cutter C. S+ and S− denote the convex, and
concave side, respectively. p is a point in the interior
of S+, and N(p) is its closest point on t.

components t0, . . . , tk−1, such that the end point of ti
equals the start point of ti+1 mod k for i ∈ {0, . . . , k−1}.

For any component t, the coverage strip S(t) is the
region derived as the Minkowski sum C⊕t. The bound-
ary ∂S(t) can be partitioned into four curves as follows,
see Figure 3: For each point p on the boundary, we con-
sider its closest point N(p) on t regarding the Euclidean
metric. The closure of all points p on the boundary such
that N(p) is neither the start nor the endpoint of t is the
union of two way-connected components. In particular,
when following the boundary of S(t) in clockwise orien-
tation, the “convex” component (denoted by S+(t)) has
positive curvature, while the “concave” component (de-
noted by S−(t)) has negative curvature; see Figure 3. If
it is clear from the context, we denote by S+ := S+(t),
S− := S−(t), and S := S(t).

2.3 Details of the proof A simple observation is
that any tour can be partitioned into a set of line
segments and curved arcs. To show that the optimality
of a tour excludes the existence of a curved arc, we
consider for the sake of contradiction an optimal lawn
mowing tour T := {t0, . . . , tk−1} for a circular cutter C
with at least one curved arc t := ti. Note that all our
arguments are independent from the cutter’s radius.

The key lemma for the proof is that “shortcutting”
curved arcs by line segments while maintaining the
coverage of the entire tour reduces its length.

Lemma 2.1. Let ab be a segment inside of the coverage
strip S of a curved arc t, with its end points a, b on the
convex side S+ of S. Let A be the region bounded by ab

and S+. If A does not have to be covered by t (because
it is already covered otherwise), then T is not optimal.

Proof. Let N(a), N(b) ∈ t be the closest points to a, b,
respectively. Replacing the part of t between N(a) and
N(b) by the segment N(a)N(b) results in a shorter tour,
see Figure 4(a). This tour still covers the polygon,
because the arc-segment-arc sequence (t1, N(a)N(b), t2)
covers S, except for the region A that by assumption
does not have to be covered by the sequence. Thus the
tour containing the original arc t was not optimal.

N(a)

N(b)

b

a
A

t

A′

S+

(a) A covered region A.

b A a

N(a)N(b)

B

t

S+

(b) Covering a point with the
cutter.

Figure 4: (a) A region A that does not have to be
covered by the coverage strip of a curved arc t, allowing
a shortcut of t. (b) The intersection of the coverage of
a point with the coverage strip of a curved arc implying
the situation of Figure 4(a).

The following corollary is straightforward.

Corollary 2.1. Let r be a point on the tour T , and t
be an arc of T . If the coverage of r intersects the convex
side S+ of t, then T is not optimal, see Figure 4(b).

Note that in the context of Lemma 2.1 shortcut-
ting t by inserting the segment N(a)N(b) is allowed,
i.e., still maintains a covering tour, because the region A
does not have to be covered by t. Simultaneously, we
obtain another region A′ that is now additionally cov-
ered by the coverage strip of N(a)N(b), see Figure 4(a).
Intuitively speaking, A′ allows for another application
of Lemma 2.1 to another coverage strip, and so on.
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For the remaining details, denote by p an inner
point of the polygon, which lies also in the interior of
the convex side S+, i.e., a point p whose closest point
on t is neither t(0) nor t(1). We show that p needs to
have two closest points on T .

Lemma 2.2. p has at least two closest points on T .

Proof. As p lies in the interior of a convex side, there is
a point N(p) on an arc t and within a distance of 1 to p.
By assumption, p does not lie on the boundary of the
polygon, so there is at least a second point r from which
the cutter covers p, as otherwise there is an uncovered
region, see Figure 5(a). Assume one of these points has
a smaller distance to p, see Figure 5(b). Corollary 2.1
implies that T is not optimal, a contradiction.

tq

ε

p

(a) An uncovered portion.

t

r

q

T

B p

(b) A multi-covered region.

Figure 5: (a) An arbitrarily small area (in pink) around
p and above S+ that is not covered by the tour. (b) If
the point r is closer than a distance of 1 to p, then there
is a region (in dark red) that is covered multiple times.

In the context of Lemma 2.2, we call r the successor
of N(p). As t is smooth, S+ is smooth as well. Hence,
the tangent to S+ in p is well-defined. We say that a
segment lies orthogonal to S+ in p when it intersects
the tangent to S+ in p orthogonally.

Lemma 2.3. The segment between q and its successor r
lies orthogonal to S+ in p.

Proof. Cutter boundaries centered at q and r share at
least the point p. Assume that qr does not intersect
S+ orthogonally in p. This implies that at least
one of the cutters contains another point from the
interior of S+, because p is an inner point of S+, see
Figure 6(a). Corollary 2.1 implies that T is not optimal,
a contradiction.

Combining Lemmas 2.2 and 2.3 yield the following.

Corollary 2.2. p has exactly two closest points on T .

Intuitively, the convex side S+ of t is squeezed
between two cutters centered in q and r. Applying
Lemmas 2.1, 2.2, and 2.3 yields a proof of Theorem 2.1,
which we restate here.

tq

B p

r

(a) Non-orthogonal intersec-
tion.

tq

r

p

(b) Orthogonal intersection.

Figure 6: (a) The situation when qr does not inter-
sect S+ orthogonally in p, i.e., a point from the interior
of S+ lies in the interior of a cutter. (b) The segment qr
intersects S+ orthogonally in p.

Theorem 2.1. For every polygon P and a circular
cutter, an optimal lawn mowing tour T exclusively
consists of a set of line segments.

Proof. Applying Lemmas 2.2 and 2.3 yields the exis-
tence of the successor r of q, such that p, q, and r lie in
a line that intersects S+ of t orthogonally in p.

To ensure that r does not lie on a segment, we
slightly perturb p in the interior of S+, such that r
lies on an arc. In particular, let r1 and r2 be two
successors resulting from two different points p1 and
p2 from the interior of S+, such that r1 and r2 lie on
segments s1 and s2, respectively. s1 lies orthogonal
to r1p1; otherwise Lemma 2.1 implies that the entire
tour is not optimal, see Figure 7(a). Analogously, we
conclude that s2 lies orthogonal to r2p2. Hence, s1 and
s2 are different segments, see Figure 7(b). As the set
of segments is a discrete set, there is a point p in the
interior of S+, such that the resulting successor does
not lie on a segment, as S+ is continuous. An analogous
argument implies that there is a point p in the interior
of S+, such that the successor r is neither a point on a
segment nor a start or endpoint of an arc, i.e., r is an
inner point of an arc.

t
p1

r1

A
q1

(a) Non-parallel segments.

t

p2

q2

r2

p1

r1

q1

(b) Locally parallel segments.

Figure 7: (a) The point r1 lies on a segment that is not
parallel to the tangent in p1. (b) The points r1 and
r2 lie on two distinct segments that are parallel to the
tangents in p1 and p2, respectively.

This argument of the existence of a successor from
the interior of an arc is repeated, resulting in a se-
quence R = {r, . . . , r′} of successors lying on a line.
At some point in this process, a successor r′ is reached,
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fulfilling exactly one of the following cases: (1) Either
the segment qr′ crosses the boundary of the polygon
(see Figure 8(a)), or (2) the convex side of the arc of r′
touches the polygon boundary in a point s (see Fig-
ure 8(b)). This means that the line qr′ lies orthogonal
to the boundary of P . In this situation, we denote the
intersection point of qr′ with the coverage of r′ by s,
which is equal to the intersection between qr′ and ∂P .

t

∂P

A

r

q
p

r′

(a) A successor sequence.

t

∂P

r′′

s

r

q
p

r′

(b) Perturbing the sequence.

Figure 8: (a) The sequence of constructed successors
R := {r, . . . , r′} lying in a common ray intersecting
the boundary of the polygon P inside the coverage
of r′. (b) Perturbing the successors for avoiding a final
successor whose coverage lies tangentially to ∂P .

In the first case, we obtain a region A that must not
be covered by the tour, hence Lemma 2.1 implies that
T cannot be optimal.

In the second case, we perturb p including the
entire constructed sequence R of successors and the
intersection point s of the ray pr′ with ∂P . This results
in the scenario that s is an inner point of P , leading to a
continuation of the construction of successors until the
first case is reached. This concludes the proof.

3 Irrational tour vertices
In the previous section we saw that optimal lawn mow-
ing tours must be polygonal paths. This makes it criti-
cal to characterize coordinates of potential tour vertices.
As we show in the following, irrational coordinates may
be involved in an optimal tour, indicating possible alge-
braic (and hence algorithmic) difficulties.

Theorem 3.1. For any rational number 0 < λ ≤ 2,
there are simple polygons P with rational vertex coordi-
nates for which an optimal lawn mowing tour contains

a vertex with a coordinate of h :=

√
1− (λ/2)

2.

Proof. For 0 < λ ≤ 2, let P = (a, b, c) be the polygon
with a = (0, 0), b = (λ, 0), and c =

(
λ
2 , 2
)
, see Figure 9.

It is easy to see that any lawn mowing tour must have
at least one point that touches the unit circles Ca, Cb,
and Cc that are centered at the vertices of P .

a b

c

q

p
1

λ

h

(a) An optimal tour.

a b

c

q

p
p` pr

λ

(b) A suboptimal tour.

Figure 9: (a) A polygon P = (a, b, c) with the optimal
lawn mowing tour, connecting p and q. (b) A possible
lawn mowing tour without using an irrational point.

We show that the point p on the intersection of Ca
and Cb within P has to be part of the optimal lawn
mowing tour, see Figure 9(a).

Assume that T is an optimal tour, and let q be
some point on T with q ∈ ∂Cc. For the sake of
contradiction, assume that p 6∈ T . Thus, there exist
two points p`, pr ∈ T , with p` ∈ ∂Ca, and pr ∈ ∂Cb,
see Figure 9(b). As T connects p`, pr, and q, the length
of the tour is `(T ) ≥ d(p`, pr) + d(p`, q) + d(pr, q).
Independent of the choice of the points p`, pr, and q,
we observe that d(p`, q) + d(pr, q) > 2d(p, q). Moreover,
T ′ = pqp is a feasible tour with length `(T ′) < `(T ),
contradicting the assumption that T is an optimal tour.

It remains to show that p has an irrational coordi-
nate, and that T ′ is the unique optimal tour. The three
points a, b, and p describe an isosceles triangle of base

length λ, thus the y-coordinate of p is
√

1− (λ/2)
2. The

point q that is closest to p clearly lies on the vertical line
x = λ

2 . It is easy to see that the tour that connects the

points p =

(
λ
2 ,

√
1− (λ/2)

2

)
and q =

(
λ
2 , 1
)
covers P

and has length `(T ′) = 2

(
1−

√
1− (λ/2)

2

)
. Because

p has to be a vertex of the tour, and any other choice of
q results in a longer tour, T ′ is the unique optimal lawn
mowing tour for P .

As a consequence, bounded accuracy in computing
coordinates may become an issue, motivating the con-
cept of ε-robust coverage, for which any point must be
covered by a portion of the cutter C that is at least ε-
interior to C, corresponding to a CETSP solution with
neighborhood size r−ε. Furthermore, the algebraic dif-
ficulty motivates the following.

Problem 1. Is the LMP ∃R-complete?
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4 A primal-dual approach to Lawn Mowing
Now we describe our primal-dual approach to comput-
ing good tours for the LMP, based on (i) iteratively
selecting finite subsets W of points from the uncovered
portion of P , (ii) covering W by an optimal solution
TW for the Close-Enough TSP for W to obtain a lower
bound, (iii) enhancing TW to a feasible covering tour of
P to obtain an upper bound.

In the following, we describe basic mechanisms and
analytical implications; further technical details that
affect the practical performance are described in the
following Section 5.

4.1 Witness sets and Close-Enough TSP At
each stage of our algorithm, we use a finite set W of
witnesses, in P . It is straightforward to see that these
induce lower bounds on the length of an optimal lawn
mowing tour.

Theorem 4.1. For W1 ⊂ W2 ⊂ P , let TW1
, TW2

, and
TP be optimal lawn mowing tours for W1, W2, and P ,
respectively. Then `(TW1

) ≤ `(TW2
) ≤ `(TP ).

Because all points w ∈W are covered by a cutter C
of radius r if and only if the center of C visits all disks
of radius r centered at w, such a Close-Enough TSP
tour for W corresponds to a lawn mowing tour for W ,
and thus a lower bound for the LMP on P . Therefore, a
sequence of enhanced witness sets leads to an increasing
sequence of lower bounds for `(TP ); if some T (Wi) is a
feasible LMP tour for P , it is optimal.

Arkin et al. [6, 7] noted that any LMP tour
may need a pseudopolynomial (but not polynomially
bounded) number of tour vertices even for a square-
shaped lawn with diameter d and d >> r. For ε-robust
coverage (as defined in Section 3), we can establish a fi-
nite upper bound on the number of necessary witnesses
that is independent of n, and holds even for general sets
P ⊂ R2, not necessarily just polygons or connected sets.

Theorem 4.2. Consider a region P ⊂ R2 of diameter
d, a circular cutter C of radius r and some 0 < ε ≤ r

2 .
Then there is a witness set W of size bounded by |W | ≤⌈
2d2

ε2

⌉
∈ O(d2), for which any ε-robust CETSP tour is

also feasible for the LMP.

Proof. A bounding box B of P has dimensions at most
d × d, so we can subdivide B by an orthogonal mesh
of width ε/

√
2, consisting of not more than

⌈
2d2

ε2

⌉
grid

cells, Cij , each of diameter at most ε. Whenever
P ∩ Cij 6= ∅, picking an arbitrary witness point from
P ∩Cij ensures that each such cell (and hence, all of P )
is covered by any ε-robust CESTP tour.

For general (and not just robust) witness sets, it
is easy to see that all extreme points of P must be
contained; if P is a convex polygon, this includes all
n vertices. Thus, no such upper bound exists in terms
of only d and r. For other types of regions P (such as
disks), no finite bound of any kind exists, as the whole
perimeter needs to be contained in a witness set.

Problem 2. For a polygon P with n vertices and di-
ameter d, and a circular cutter of radius r, is there a
witness set W of size polynomial in n, d, 1/r, such that
an optimal CETSP solution for W is a feasible lawn
mowing tour of P?

4.2 Lower bounds: convergence As we enhance
the witness set, we can ensure that the maximum dis-
tance of uncovered points from an ensuing CETSP tour
converges to zero. This can be achieved by a relatively
dense set of witness points (as in Theorem 4.2) or (more
economically) by iteratively reducing this maximum dis-
tance when necessary. We get the following straightfor-
ward implication.

Lemma 4.1. Let W ⊂ P be a finite set of witness
points, such that no point of P has a distance larger
than δ from a witness point, and let TW be a feasible
CETSP tour of W . Then

dmax := max
p∈P

min
q∈TW⊕C

d(p, q) ≤ δ.

In the remainder of this subsection, we will repeat-
edly apply the following theorem.

Theorem 4.3. (Fekete and Pulleyblank [31])
Let E be a connected planar arrangement of edges and
C be a disk of radius r. If L is the total length of the
edges in E, there is a closed roundtrip of length at most
2L+ 2πr that visits all points of the boundary of E⊕C.

In the sequel, E will be the edges of a tour, leading
to the following.

Theorem 4.4. Let W be a witness set, and let TW
be an optimal CETSP tour of W . Let the dis-
tance between uncovered points and covered region
be bounded by the cutter radius r, i.e., dmax :=
maxp∈P minq∈TW⊕C d(p, q) ≤ r. Then P has a lawn
mowing tour of length at most 3`(TW ) + 2πr + 2r.

Proof. By assumption, any uncovered point p ∈ P
is within distance r from the boundary of E ⊕ C.
Therefore, all points that are not covered by TW will
be covered by a tour of the boundary of E ⊕ C; by
Theorem 4.3, there is such a tour of length at most
2`(TW ) + 2πr. Concatenating this tour with TW (at
additional cost at most 2r) achieves full coverage of P
at cost at most 3`(TW ) + 2πr + 2r, as claimed.

Copyright © 2022
Copyright for this paper is retained by authors.



Furthermore, we can conclude the following.

Lemma 4.2. Let W0 ⊂ W1 ⊂ . . . ⊂ Wi ⊂ . . . ⊂ P
be a sequence of witness sets, with TWi

being the corre-
sponding sequence of optimal CETSP tours ofWi. If the
maximum distance d(i)max := maxp∈P minq∈TWi

⊕C d(p, q)
of uncovered points to the covered region converges to
zero, then the area of P \ TWi ⊕ C converges to zero.

Proof. By assumption, the sequence d(i)max converges to
zero, so there is an index k such that d(i)max ≤ r for all i ≥
k. Then by Theorem 4.1, all elements of the sequence
`(TWi

) are lower bounds of any feasible LMP tour, so by
Theorem 4.4, they satisfy `(TWi) ≤ 3`(TWk

) + 2πr+ 2r,
i.e., remain bounded from above. Furthermore, all
points in the set P \ TWi

⊕ C of uncovered points
by TWi

are within distance d
(i)
max of the boundary of

TWi
⊕ C; by Theorem 4.3, this boundary has length

of at most L = 2`(TWi) + 2πr. Moreover, the area of
all points within a distance d(i)max of any curve of length
L is bounded by Ai := (2L + 2π)d

(i)
max, so the total

uncovered area is bounded by Ai ≤ (4`(TWi
) + 4πr +

2π)d
(i)
max ≤ (12`(TWk

) + 12πr + 8r + 2π)d
(i)
max. Because

(12`(TWk
) + 12πr + 8r + 2π) is constant and d

(i)
max by

assumption converges to zero, we conclude that Ai also
converges to zero, implying the claim.

We summarize.

Theorem 4.5. By picking an appropriate sequence of
witness sets Wi, we can guarantee that for the ensuing
sequence of optimal CETSP solutions T (Wi), the fol-
lowing holds.

• The maximum distance of uncovered points to the
covered region converges to zero.

• The total uncovered area converges to zero.

4.3 Solving CETSP instances Solving CETSP in-
stances is more challenging than solving TSP instances.
In 2016, Coutinho et al. [22] proposed an algorithm
based on branch-and-bound and Second-Order Cone
Programming. Each branch-and-bound node is asso-
ciated with a partial tour that visits the given subset
of vertices in particular order. At the root node, the
algorithm chooses three vertices to generate an initial
sequence. The problem of computing the exact coor-
dinates from a predefined sequence can be formulated
as a Second-Order Cone Problem (SOCP). If the solu-
tion at the root node is feasible, the solution is optimal
and the algorithm terminates. Otherwise, the algorithm
branches into three subproblems, one for every edge in

the current solution. At each edge a currently uncov-
ered vertex is inserted. A node is pruned if the cost is
at least equal to the best known upper bound or if its
associated solution is feasible.

minimize
q∑

k=1

zk(4.1)

subject to

xik−1
− xik = wk k = 0, . . . , q(4.2)

yik−1
− yik = uk k = 0, . . . , q(4.3)

x̄k − xk = sk k = 0, . . . , q(4.4)
ȳk − yk = tk k = 0, . . . , q(4.5)

w2
k + u2k ≤ z2k k = 0, . . . , q(4.6)

s2k + t2k ≤ r2k k = 0, . . . , q(4.7)
zk ≥ 0; xk, yk, wk, uk, sk, tk free k = 0, . . . , q

The formulation by Coutinho et al. [22] is based
on work of Mennell [41]. Let S = {i0, . . . , iq}, q < n
be a partial sequence of vertices during the execution
of the branch-and-bound algorithm. The desired so-
lution must provide exact values for the coordinates
(xik , yik), k = 0, . . . , q such that the length of the partial
tour is minimized. Denoting i−1 = iq, the formulation
is as follows.

The SOCP uses variables zk to represent the dis-
tance between subsequent vertices ik−1 and ik in the
given sequence S. To compute the distance, four auxil-
iary variables wk, uk, st, and tk are introduced in Con-
straints (4.2)–(4.5) that represent differences of coor-
dinates that are used to calculate Euclidean distances.
Constraints (4.6) define the length of the edge connect-
ing subsequent vertices. Constraints (4.7) ensure that
the hitting points will lie within their respective circles
around vi. Andersen et al. [5] showed that a SOCP can
be solved in polynomial time. The branch-and-bound
approach of Coutinho et al. [22] makes use of well-known
optimization software that is also capable of addressing
this class of problems.

4.4 Upper bounds: obtaining feasible solutions
Given is a polygon P , a circular cutter C and a
maximum number of iterations. We start by initializing
the witness set W0 with some points p ∈ P .

In each iteration i, we start with generating a
CETSP start tour Ti fromWi; see Figure 15 for families
of examples. If Ti is a feasible LMP tour, it is optimal;
otherwise, we can extract the uncovered regions from
P \ (Ti ⊕ C).
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As shown in Figure 15 for each of the lower bounds,
we then execute the following procedure to modify Ti
until the tour becomes feasible. For every uncovered
region Rj , we construct a witness set WRj

and fix the
closest point pj ∈ ∂Ti to Rj to be visited by a tour Ti
computed by the CETSP solver.

After the tour Ti is computed, we addWRj
to obtain

Wi+1, so that the next start tour covers the points in
WRj

from the beginning. (See Section 5.1 and again Fig-
ure 15 for practical strategies for choosing WRj .) Sub-
sequently, we extend Ti with TRj , by connecting both
tours via the point pj . Once we obtain a feasible tour
Ti (such as in the examples of Figure 15), we can up-
date the best known solution so far and continue with
the next iteration for lower and upper bounds, see Al-
gorithm A.1.
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Figure 10: Distribution of instances, subdivided into
different types. See Figure 17 for an enlarged version of
the small instances in (b).

5 Experiments and evaluations
Now we describe our practical implementation and var-
ious algorithm engineering aspects, along with our ex-
perimental study for demonstrating the practical use-
fulness of our theoretical concept. All experiments were
carried out on a regular desktop workstation with an
AMD Ryzen 7 5800X (8 × 3.8 GHz) CPU and 128 GB
of RAM. The code and data are publicly available1.
Consider Figure 15 for practical illustrations of the pro-
gression of lower bounds for different witness strategies,
and for the corresponding upper bounds. For carry-
ing out our experiments and evaluations, we used the
FPG, SRPG ISO and SRPF OCTA instances from the
Salzburg Database of Geometric Inputs [25]. See Fig-
ure 10 for the overall distribution, and Figure 16 for a
sample of individual instances. We considered polygons

1Source code and data: https://github.com/tubs-alg/
near-optimal-lawn-mowing-tours

with up to n = 2000 vertices, in combination with cut-
ters of varying size. Overall, this resulted in several hun-
dred instances. As it turned out, the parameter relative
area, i.e., the ratio between the areas of the convex hull
of P and the cutter C, was more significant for the diffi-
culty of an instance than the vertex number n, which is
why we mostly focused on the variance in relative area.

5.1 Generating witness sets As we established in
the previous section, enhancing the witness set leads
to convergence of the resulting lower bound tours, at
least in terms of covered area and distance to uncovered
points. In a practical setting, solving the involved
CETSP instances becomes a bottleneck, so it becomes
crucial to achieve good lower bounds with witness sets
of limited size.

For the initial witness set W0, we focus on the
exterior of the polygon, as minimizing the length in
further iterations will automatically pull the CETSP
tour towards the interior; so we choose up to 15
witnesses either from the convex hull, or the boundary
of P . If there are more than 15 candidate points,
we apply a greedy max-min-dispersion to achieve a
well-distributed witness set. This may already lead to
optimal solutions for small instances.

For further iterations, we insert 10 more witnesses
into regions that are not yet covered. For multiple un-
covered regions, we do a random assignment, accord-
ing to region size. Within each uncovered region Rj ,
we select the assigned number of new witnesses either
(i) randomly, (ii) from a grid, or (iii) from the straight
skeleton [4]. To avoid strongly clustered sets (which are
bound to occur for the straight skeleton), we employ a
dispersion technique. To prevent new witnesses from
being close to the boundary but deep inside of the un-
covered regions, we cluster the candidate points using
k-means, and select a random witness from each cluster.

The two strategies for choosing the initial witness
set and the three strategies for extending it result in six
general strategies, some of which are shown in the first
three columns of Figure 15.

5.2 Practical quality of lower bounds In each it-
eration, our algorithm computes an optimal CETSP
tour on the current witness set; this results in an in-
creasing sequence of lower bounds (due to Theorem 4.1),
which are asymptotically tight, at least in terms of
covered area and distance to uncovered points. Thus,
computing exact CETSP solutions becomes critical.
While we could still solve clustered instances with up to
1000 points to optimality, they do not necessarily yield
good lower bounds for the LMP; on the other hand,
well-distributed witness sets much beyond 50 points
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Figure 11: Improvement of lower bound and coverage over iterations, where each iteration extends the witness
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it is still around 93 % of the final lower bound. The larger the instances, the stronger the increase with each
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Figure 12: Comparison of lower bounds based on area or diameter with the lower bounds provided by CETSP for
different witness strategies (left). Up to a relative area of 50, the simple lower bounds are more than 20 % smaller
than the CETSP on the convex hull and random witnesses for all classes of instances. Between the different
witness strategies (right), the deviation is relatively small. Just the strategies that start with a subset of the
convex hull have a small advantage.

were harder to solve optimally, but still yielded better
bounds, illustrating the delicate balance between the
structure of witness sets, CETSP solvability, and qual-
ity of lower bounds.

In the following, we use the best lower bound
obtained within 5 iterations. The calls to the CETSP
solver are limited to 30 min, after which the best lower
bound is returned. Figure 11 shows the progress of lower
bound and coverage. With each iteration, the CETSP
gets harder to solve, and the improvements on lower
bound and coverage decrease. As shown in Figure 12
(left), the resulting lower bound after the final iteration
is notably better than the lower bound derived from the
diameter or area of the polygon. This is true for all three
classes of instances, up to a relative area of about 50,
after which the CETSP strategy gets bogged down by
too many witnesses. The lower bounds of the individual

witness strategies are surprisingly close, as shown in
Figure 12 (right). Starting with the convex hull gives
a small advantage; otherwise, the best strategies vary
strongly for the instances. Example runs of some
strategies over 5 iterations are shown in Figure 15. The
best way to improve these (and other) lower bounds
would be to add further iterations, at the expense of
runtime.

5.3 Practical quality of upper bounds For small
instances, the CETSP procedure frequently returns
feasible (and hence, optimal) LMP tours. Otherwise,
we perform up to 5 iterations in which we add 40
witnesses into each uncovered area and connect the
tour to the previous tour, as described in Section 4.4.
For medium-sized instances, this strategy often leads
to feasible solutions that are significantly better than
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Figure 14: Examples of instances solved to (near) optimality (≤ 3 % above the lower bound).

the approximation algorithm; see Figures 13(a)–13(c)
for an example. For instances up to a relative area
of around 6, we often obtain optimal solutions, or
solutions with a negligibly small gap. For instances
up to a relative area of around 30, we are at most
50 % above the lower bound, and only slightly worse
for 40. For larger instance sizes, Theorem 4.4 still
bounds the relative gap to 200 %, but the CETSP
computation becomes a bottleneck. For instances up
to a relative area of 40, the approximation algorithm
turns out to be relatively stable at 100 % above the
lower bound, which is considerable better than the
classical worst-case approximation guarantee by Arkin
et al. [7], which is at 2

√
3 + ε ≈ 3.46 even when

disregarding some finer technical aspects: That method
is based on combining a proximity approximation for
considering region boundary and interior (incurring an
asmyptotic factor of 3), a grid conversion (incurring a
factor of 2/

√
3), and a TSP approximation (incurring

a theoretical factor of 1 + ε when using a geometric
PTAS, and a larger factor when using a more practical
approximation method); this results in an overall factor

no better than 2
√

3 + ε ≈ 3.46, and even more when
accounting for a non-asymptotic approximation factor
with an additive term (see [7]) and PTAS limitations.
For our experiments, however, the TSP instances in the
approximation algorithm were solved to optimality.

6 Conclusion
The Lawn Mowing Problem generalizes a number of
notoriously difficult geometric optimization problems,
making it both important and highly challenging. We
have provided progress on several aspects of the LMP,
both on the theoretical and the practical side, demon-
strating (for the first time ever) that practically useful
progress may be achievable.

A spectrum of open problems remain. On the theo-
retical side, we already stated Problem 1 and Problem 2.
On the practical side, two critical questions are the de-
velopment of additional approaches for speeding up the
computation of lower bounds, as well as more efficient
ways to compute upper bounds, along with additional
local improvement heuristics. In addition, the concept
of ε-robustness deserves further exploration.
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Figure 15: Examples of different witness placement strategies. The examples show just the first 5 iterations of
the lower bound on the left and of the upper bound on the right. The trajectory is highlighted in blue, the used
witnesses in green. The lower bounds show the covered area in green (lower bound) resp. blue (upper bound) and
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40.94 and the best upper bound 68.16.
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A Pseudocode for the algorithm

Algorithm A.1 Pseudocode for the primal-dual algorithm.
Input: A polygon P , a cutter C with radius r, max iterations maxi
Output: A feasible tour T and a lower bound bl
bl = 0
Tbest = ∅
Initialize W0 with some points
for i← 0, 1, . . . ,maxi − 1 do

if Tbest = ∅ ∨ `(Tbest) > bl then
Solve CETSP for centers Wi and rk = r (0 ≤ k < |Wi|) to get Ti and a lower bound bCETSPl

bl = max{bCETSPl , bl}
Wi+1 = Wi

do
uncoveredRegions = P \ (Ti ⊕ C)
for all Rj ∈ uncoveredRegions do

Initialize WRj
from Rj

p = arg minp∈∂Ti
d(p,Rj)

Solve CETSP for centers WRj ∪ {p} and rk = r,rp = 0 (0 ≤ k < |WRj |) to get
TRj

Wi+1 = Wi+1 ·∪WRj

Connect Ti and TRj
via p

end for
while uncoveredRegions 6= ∅
if Tbest = ∅ then

Tbest = Ti
else

Tbest = arg minT∈{Ti,Tbest} `(T )
end if

end if
end for
return Tbest, bl
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B Illustrations of instances and solution progress

fpg-poly (relative area: 8) fpg-poly (relative area: 8) fpg-poly (relative area: 9) fpg-poly (relative area: 10) fpg-poly (relative area: 10)

fpg-poly (relative area: 11) fpg-poly (relative area: 30) fpg-poly (relative area: 35) fpg-poly (relative area: 39) fpg-poly (relative area: 43)

srpg-iso (relative area: 3) srpg-iso (relative area: 4) srpg-iso (relative area: 5) srpg-iso (relative area: 6) srpg-iso (relative area: 6)

srpg-iso (relative area: 8) srpg-iso (relative area: 11) srpg-iso (relative area: 11) srpg-iso (relative area: 24) srpg-iso (relative area: 53)

srpg-octa (relative area: 3) srpg-octa (relative area: 6) srpg-octa (relative area: 6) srpg-octa (relative area: 6) srpg-octa (relative area: 11)

srpg-octa (relative area: 16) srpg-octa (relative area: 21)

(used in example)

srpg-octa (relative area: 35) srpg-octa (relative area: 53) srpg-octa (relative area: 70)

Figure 16: Examples of the used polygons. The blue circles show the respective tool size; the relative area denotes
the ratio of convex hull area and cutter area.
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Figure 17: Enlarged distribution of instances, subdivided into different types.
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