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A Local Search-Based Approach for Set Covering
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Abstract

In the Set Cover problem, we are given a set system with each set having a weight, and

we want to find a collection of sets that cover the universe, whilst having low total weight.

There are several approaches known (based on greedy approaches, relax-and-round, and

dual-fitting) that achieve a Hk ≈ ln k + O(1) approximation for this problem, where the

size of each set is bounded by k. Moreover, getting a ln k − O(ln ln k) approximation is

hard.

Where does the truth lie? Can we close the gap between the upper and lower bounds?

An improvement would be particularly interesting for small values of k, which are often

used in reductions between Set Cover and other combinatorial optimization problems.

We consider a non-oblivious local-search approach: to the best of our knowledge

this gives the first Hk-approximation for Set Cover using an approach based on local-

search. Our proof fits in one page, and gives a integrality gap result as well. Refining

our approach by considering larger moves and an optimized potential function gives an

(Hk − Ω(log2 k)/k)-approximation, improving on the previous bound of (Hk − Ω(1/k8))

(R. Hassin and A. Levin, SICOMP ’05 ) based on a modified greedy algorithm.
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1 Introduction

(Weighted) Set Cover is one of the most important problems in the approximation algorithms

literature. Given a set system (U,S) where each set S ∈ S has weight w(S) > 0, the Set

Cover problem asks to find a subcollection F ⊆ S that covers the universe (i.e., ∪S∈FS = U)

while minimizing the total weight
∑

S∈F w(S). This problem is NP-hard as long as the sets

have size at least three (the edge-cover problem can be solved in polynomial time). As the

flagship problem in two standard textbooks in approximation algorithms [Vaz01, WS11], and

as an abstract setting capturing numerous covering problems, it has always been an important

testbed for new algorithmic techniques.

Let k-Set Cover be the special case of Set Cover where every set has at most k elements.

The simple greedy algorithm that iteratively selects the set maximizing the current density

(i.e., the ratio of the number of uncovered elements in the set to its weight) guarantees an Hk-

approximation, whereHk = 1+1/2+· · ·+1/k = ln k+O(1) is the kth harmonic number [Joh74,

Lov75, Chv79]. It can be analyzed by the dual-fitting method, upper bounding the integrality

gap of the standard LP relaxation by Hk as well. Another proof of the integrality gap comes

via the relax-and-round approach ([You22], see also §B). These algorithms are almost optimal

due to the (1− o(1)) ln n-hardness of Feige [Fei98] and its refinement to the ln k −O(ln ln k)-

hardness for k-Set Cover [Tre01], which even holds against nf(k)-time algorithms for any

computable function f .

How about local search, one of the most intuitive and popular algorithm design techniques?

It maintains a solution (a set cover in this case), and in each iteration, it tries to find a

local move that swaps at most p sets between the current solution and the remaining sets. If

there exists a local move that results in a better set cover, execute the local move; otherwise,

output the current set system. While it has been successfully applied for many problems

including bounded-degree network design [FR92, FR94], Facility Location [KPR00, CG05]

and k-Median [AGK+04, GT08], the local search cannot yield any finite approximation ratio

for Set Cover, at least when the local width is one; simply consider the example where the

universe has k elements, the optimal solution contains k singleton sets of weight ε, but the

current solution consists of the set containing all the elements but has large weight 1. As

ε→ 0 for fixed k, the gap between the two solutions becomes unbounded.

Is there a way to “redeem” local search? One reason that the above example is bad for local

search is that the potential that the standard local search is trying to optimize, which is the

same as the total weight of the current solution, is too rigid; while adding a singleton set

from the optimal solution can be seen as a progress, since the large set is still needed to

cover all elements, adding the singleton set only worsens the total weight and is not executed.

To fix this issue, non-oblivious local search (NOLS) tries to find a local move improving a

carefully designed potential different from the objective function of the problem. Originally

defined by Khanna, Motwani, Sudan, and Vazirani [KMSV98], it has been recently shown

to work well for problems including Submodular Optimization [FW14], Tree Augmentation

and Steiner Tree [TZ22] (which directly inspired this paper), Steiner forest [GGK+18] and

k-Median [CAGH+22]. Our first result is the following “redemption” of local search for Set

Cover showing that NOLS with a natural potential can exactly match the Hk-approximation

guarantee, up to an arbitrarily small constant error ε > 0 that ensures that the local search

terminates in polynomial time.

Theorem 1.1. For any ε > 0, there exists a width-1 non-oblivious local search algorithm that
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can be implemented in time poly(n, 1/ε) and yields an Hk+ ε-approximation for k-Set Cover.

Our proof also shows that any local optimum has weight at most Hk times an optimal solution

to the LP relaxation for set cover, thereby giving yet another proof of its integrality gap.

We then explore the power of NOLS beyond the Hk-approximation. While Trevisan’s (ln k−

O(ln ln k))-hardness shows that we cannot dramatically improve it, there are still unanswered

questions, especially for small values of k, which are important for hardness of other well-

known problems including Steiner Tree [BP89, Thi01]. For unweighted k-Set Cover, there is a

long series of works [GHY93, Hal95, Hal96, DF97, Lev09, ACK09, FY11] giving an (Hk−βk)-

approximation where βk ≥ 0.5 for every k ≥ 3 and approaches to 0.6402. (Some of these

works even use a combination of oblivious local search to solve a packing problem, and greedy

to extend the solution to a matching.)

But the status for weighted k-Set Cover—which is the problem we focus on—is understood far

poorly. The best approximation ratio remains Hk − Ω(1/k8) [HL05], obtained by a variant of

the greedy algorithm. We make progress on this direction, and prove the following improved

approximation guarantees for k-Set Cover.

Theorem 1.2. For any ε > 0, there exist width-2 and width-k non-oblivious local search algo-

rithms for k-Set Cover that yield (Hk−Ω(1/k)+ ε) and (Hk−Ω((log k)2/k)+ ε)-approximations

respectively.

Note that a width-2 local search can be implemented in time poly(n, 1/ε) and a width-k one

can be näıvely implemented in time nO(k) poly(1/ε). We present clean locality gap results for

width 1, 2, and k swaps in Section 2, 3, 4 respectively and show how to implement them in

polynomial time in Section 5. In Section 6, we provide matching lower bounds showing that

these two results are tight for a large class of natural potentials.

2 Set Cover

Consider a weighted set system (U,S) with weights w : S → R
+ where each S ∈ S has

cardinality at most k. Define the downwards closure S↓ of the set system as containing all

sets {T | ∃S ∈ S, T ⊆ S}, where each subset has the same cost as the original set. Letting

S ← S↓ does not change the optimal value, so we assume that S is downwards-closed. With

this assumption, we can further assume the optimal solution F∗ forms a partition of the

universe U , and our algorithms will maintain the solution F that also forms a partition of U .

(Letting S ← S↓ might significantly increase the number of sets. In Section 5, we show how

to efficiently implement it.)

For any collection F of sets that partition U , define the Rosenthal potential [Ros73]:

Φ(F) :=
∑

S∈F

w(S)H|S|. (1)

For each element e, let w̄F (e) :=
w(S)
|S| for the set S ∈ F that covers e. (We omit the subscript

F if it is clear from context.) Then
∑

e w̄(e) = w(F).

2.1 An Hk-competitive Local Search Algorithm

Consider the following single (set) local moves:
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Add in a single set S ∈ S↓, and then for each T ∈ F in the current solution,

replace T by T \ S to get back a new set cover solution that is a partition.

If this move decreases the Rosenthal potential—i.e., if this is an improving local move—we

move to this resulting solution.

Theorem 2.1 (Single-Set Moves). Suppose F is a local optimum, i.e., there are no improving

local moves. Then w(F) ≤ Hk · w(F
∗).

Proof. To show the locality gap, we consider a specific set of local moves (called test moves).

Since there are no improving local moves, each of these test moves do not reduce the potential,

thereby giving us relationships between the costs of some solutions related to the local and

optimal solution. Combining these then proves the theorem.

Indeed, consider using any of the sets in the optimal solution S ∈ F∗ as a local move from F .

The resulting potential function change is

w(S)H|S| −
∑

T∈F

w(T )
[
H|T | −H|T\S|

]
≥ 0.

Since F is a partition of U , the second term on the LHS is

∑

T∈F

|T∩S|−1
∑

i=0

w(T )

|T | − i
≥

∑

T∈F

w(T )

|T |
|T ∩ S| =

∑

T∈F

∑

e∈S∩T

w̄(e) =
∑

e∈S

w̄(e). (2)

Therefore we have for each S ∈ F∗ that

w(S)Hk −
∑

e∈S

w̄(e) ≥ 0. (3)

Summing over all sets in F∗, which we also imagine is a partition, we get

Hk

∑

S∈F∗

w(S) −
∑

e

w̄(e) ≥ 0 =⇒ w(F) ≤ Hkw(F
∗).

2.2 An Integrality Gap Result

A small change bounds the cost against any solution to the standard linear programing re-

laxation:

min
{∑

S

w(S)xS |
∑

S:e∈S

xS ≥ 1, x ≥ 0
}
.

Indeed, suppose x∗ is any feasible solution, and we consider local moves with each of the sets

sets in the support of x∗. Multiplying (3) with x∗S and summing gives

∑

S

H|S|w(S)x
∗
S −

∑

e

w̄(e)
∑

S:e∈S

x∗S ≥ 0. (4)

But
∑

S:e∈S x
∗
S ≥ 1 by feasibility of the LP, so we infer that

∑

e

w̄(e) = w(F) ≤
∑

S∈F∗

w(S)x∗S H|S| ≤ Hk · (w
⊺x∗).
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3 An Improvement Using Double Moves

The above analysis suggests one avenue for improvement: if the move adding set S ∈ F∗

removes more than one element from some set T ∈ F , then the inequality (2) bounds the

decrease in potential by |T∩S|
|T | , whereas the actual decrease is H|T |−H|T\S|, which is possibly

greater. Concretely, if |T | = k and |T ∩S| = 2, then we claim an improvement of 2/k, whereas

the actual improvement is 1/k + 1/k−1. In this section we show how this idea can be used to

get an improvement.

The algorithm is now a natural “width-two” generalization of the above local search:

Add in two sets S, S′ ∈ S↓ to F , and replace each existing set T ∈ F by T \(S∪S′).

If the resulting partition has a smaller potential value, move to it.

We allow S = S′, which captures the case of adding a single set. Hence local optima with

these moves have cost at most Hkw(F
∗) by the previous section; we want to show a better

bound. Let us first do this for a special case, and then show how to remove this assumption

(in Lemma 3.2).

Theorem 3.1 (Double Moves). Consider a solution F that is a local optimum for the above

width-two local search with the Rosenthal potential. Let F1 ⊆ F be the subcollection of sets in

F having unit size, and suppose w(F1) ≤ 0.99w(F). Then

w(F) ≤ Hk(1−Θ(1/k2)) · w(F∗).

Proof. The proof again goes via analyzing a collection of test moves; these try to add in at

most two sets at a time. To get the test moves, consider a bipartite graph whose nodes are

the sets in F∗ and those in F , and there is an edge between S ∈ F∗ and T ∈ F iff S ∩T 6= ∅.

For a vertex S, let NS be the set of its neighbors. There are two kinds of test moves:

1. For a set T ∈ F , let S0, S1, . . . , Sℓ−1 ∈ F
∗ be its neighbors in an arbitrary order. If

ℓ = 1, then try to add in S0 twice. Else, for each index 0 ≤ i < ℓ, try to add in Si and

S(i+1) mod ℓ together.

2. A set S ∈ F∗ is added exactly 2|NS | times above, twice for each T ∈ NS . Add in S

another 2k − 2|NS | number of times.

The local optimality ensures that none of the moves above decreases the potential. Let us

consider the total potential change caused by the above moves. Firstly, each set S ∈ F∗ is

added exactly 2k times, so the total potential increase by adding it is exactly 2kw(S)H|S| ≤

2kHk ·w(S). Moreover, let us consider the potential decrease due to the removal of elements

from each set in F . Indeed, for a set T ∈ F , let ℓ denote its neighborhood size in the bipartite

graph.

• If ℓ = 1, then T is a subset of S0, its only neighbor. Thus the potential from T is

decreased by w(T )H|T | twice, for a total of 2w(T )H|T |. If ℓ > 1, then for each pair

S, S′ added together, the potential from T is decreased by w(T )(H|T |−H|T |−|(S∪S′)∩T |).

Since |(S ∪ S′) ∩ T | = |S ∩ T |+ |S′ ∩ T | ≥ 2, the average per-element decrease,

w(T )(H|T | −H|T |−|(S∪S′)∩T |)

|(S ∪ S′) ∩ T |
,
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is at least what it would be if |(S ∪ S′) ∩ T | = 2, i.e., w(T )(H|T | − H|T |−2)/2. So the

overall decrease is at least

(|(S ∪ S′) ∩ T |) w(T ) (H|T | −H|T |−2)/2.

Since the sum of (|(S ∪ S′) ∩ T |) over all added pairs S, S′ is exactly 2|T |, the overall

potential decrease is at least |T |w(T )(H|T | −H|T |−2).

If |T | = 1, then ℓ = 1 and the potential decrease is 2w(T )H|T | = 2w(T ). If |T | ≥ 2, then

regardless of whether ℓ = 1 or ℓ > 1, the potential decrease is at least |T |w(T )(H|T | −

H|T |−2).

• In total, each S ∈ NT is added exactly 2k times, so each element of T is removed a total

of 2k times. Two of these 2k removals are accounted above, so the remaining potential

decrease over all elements is at least w(T ) · (2k−2) · |T | · (H|T |−H|T |−1) = (2k−2)w(T ).

The total potential decrease, which is at most 0, is at least

∑

T∈F1

2w(T ) +
∑

T∈F\F1

|T |w(T )(H|T | −H|T |−2) +
∑

T∈F

(2k − 2)w(T ) −Hk

∑

S∈F∗

2kw(S), (5)

where F1 is the collection of sets in F of unit size. Observe that

|T |(H|T | −H|T |−2) = |T |

(
1

|T |
+

1

|T | − 1

)

= 2 +
1

|T | − 1
≥ 2 +

1

k − 1
.

By assumption, w(F \ F1) ≥ 0.01w(F), so the potential decrease is at least

∑

T∈F

(

2 +
1

100(k − 1)

)

w(T ) +
∑

T∈F

(2k − 2)w(T ) −Hk

∑

S∈F∗

2kw(S)

=
∑

T∈F

(

2k +
1

100(k − 1)

)

w(T ) −Hk

∑

S∈F∗

2kw(S).

Since this decrease is at most 0, we conclude that

w(F) ≤
2k

2k + 1/(100(k−1))
Hk · w(F

∗) ≤ (1−Θ(1/k2))Hk · w(F
∗).

To get a better-than-Hk approximation for all instances, we can go two ways: the first ap-

proach is to post-process the locally optimal solution F using the following lemma (which we

prove in §A) to handle the case not handled by Theorem 3.1:

Lemma 3.2 (Post-processing). Given any solution F with w(F) ≤ Hkw(F
∗), let F1 be the

subcollection of sets in F of unit size. If w(F1) ≥ 0.99w(F), there is an efficient algorithm

that returns a new solution F ′ with w(F ′) ≤ 0.99Hk · w(F).

Hence, returning the better of the solutions F produced by the local-search procedure, and

F ′ from using Lemma 3.2 applied to F , gives a solution of cost at most

Hk · (1−Θ(1/k2)) · w(F∗).

The second—better and more principled approach—is to modify the potential function, which

we do in the next section.
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3.1 An Improved Analysis using a Custom Potential Function

Let us consider a somewhat generic potential function: define f1 := 1, and let fi ≥ 0 be values

to be fixed later, satisfying fi ≥ fi+1 for all i. Let Fi :=
∑i

j=1 fj, and define the following

potential

Ψ(F) =
∑

S∈F

w(S)F|S|.

We get back the Rosenthal potential by setting fi = 1/i, but now we can optimize over

settings of fi to give better results. We again consider the two-set local search algorithm,

trying to reduce the value of the new potential Ψ(F). The test moves remain unchanged.

Moreover, the calculations remain essentially unchanged beyond replacing Hi by Fi; the ar-

gument about the average per-element decrease being largest for |(S ∪ S′) ∩ T | = 2 follows

from the fi values being non-increasing. Consequently, the total potential decrease, which is

at most 0, is at least

∑

T∈F1

2w(T ) +
∑

T∈F\F1

|T |w(T )(F|T | − F|T |−2) +
∑

T∈F

(2k − 2)|T |w(T )f|T | − Fk

∑

S∈F∗

2k w(S).

(6)

This equation can be compared to (5), where we had used the fact that the Rosenthal po-

tential satisfies ifi = i(1/i) = 1 and simplified the third summation above:
∑

T∈F (2k −

2)|T |w(T )f|T | =
∑

T∈F (2k − 2)w(T ). Let us abstract (6) further: define

αt :=
1

w(F)
·

∑

T∈F :|T |=t

w(T ),

and note that α = (α1, . . . , αk) gives a probability distribution over the set sizes, and hence

belongs to the probability simplex △k. Dividing (6) through by 2k, simplifying slightly, and

using that this decrease is at most zero gives

w(F) ·

(

α1 +
∑

t≥2

t(Ft − Ft−2) + (2k − 2)tft
2k

︸ ︷︷ ︸

=:φt

αt

)

≤ Fk w(F
∗).

Let φ1 := 1 and φt be the coefficient of αt as shown above. Getting the best approximation

becomes an optimization problem: we want to set fi values to minimize maxα∈△k

{
Fk∑
t
φtαt

}
,

or equivalently, to minimize Fk ·maxt
{
1/φt

}
. Recall that we require f1 = 1; we set

ft :=
1

t
−

1

4kt(t− 1)
for t > 1. (7)

Then for t ≥ 3,

t(Ft − Ft−2) = t

(
1

t
−

1

4kt(t− 1)
+

1

t− 1
−

1

4k(t− 1)(t − 2)

)

≥ 2 +
1

t− 1
−

1

2k(t− 1)
≥ 2 +

1

2(t− 1)
,

and the bound t(Ft − Ft−2) ≥ 2 + 1
2(t−1) can be separately verified for t = 2. Observe that
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φ1 = 1 by definition, and for t > 1, we have

φt =
t(Ft − Ft−2) + (2k − 2)tft

2k
≥

1

2k

(

2 +
1

2(t− 1)
+ (2k − 2)

(

1−
1

4k(t− 1)

))

≥ 1.

Hence, the approximation guarantee is at most Fk maxt(1/φt) = Fk. Finally, we bound

Fk ≤ Hk − 1/8k since for i = 2 alone, f2 beats the corresponding term 1/2 from Hk by 1/8k.

Theorem 3.3 (Two-Sets Moves). Any local optimum for the two-sets local search using the

potential Ψ using the fi values from (8) satisfies w(F) ≤ (Hk − 1/(8k)) · w(F∗).

4 Further Improvements: Moves with Width k

We now consider the “width-k” generalization: add in sets S1, S2, . . . , Sk ∈ S
↓ to F , and

replace each existing set T ∈ F by T \ (S1 ∪ · · · ∪ Sk). If the resulting partition has a smaller

potential value, move to it. (Once again, we allow repeats in the sets, or equivalently, we

allow moves of fewer than k sets.)

Intuitively, if we choose sets S1, S2, . . . , Sk that cover a set T ∈ F of size k, then T disappears

from F and the improvement to the Rosenthal potential is 1+ 1/2+ · · ·+ 1/k, or an average of
1/k · (1+ 1/2+ · · ·+ 1/k), which is even better than the average 1/2 · (1/k−1+ 1/k) in the width-2

case. We will actually use a custom potential function as before, but the Rosenthal potential

provides a good baseline intuition.

We now define the test moves. For T ∈ F , let NT := {S ∈ F∗ : |S ∩ T | 6= 0} and similarly,

for S ∈ F∗, let NS := {T ∈ F : |S ∩ T | 6= 0}.

1. For each T ∈ F , add the sets in NT together.

2. For each S ∈ F∗, add S. This move is multiplied by (k − |NS |) times so that each S

participates in exactly k moves.

The local optimality ensures that none of the moves above decreases the potential. Let us

consider the total potential change caused by the above moves. First, each S ∈ F∗ is added

exactly k times, so the total potential increase by adding it is exactly kw(S)F|S|, where we

define the custom potential function fi later.

For T ∈ F , we consider the two types of moves separately.

• For the move when NT is added together, T is removed from F , so the potential from

T is decreased by w(T )F|T |.

• Other than this move, each S ∈ NT is added exactly k − 1 times, so each element of T

is removed k − 1 times more. Therefore, the total potential decrease for such moves is

at least w(T ) · (k − 1) · |T | · (F|T | − F|T |−1).

Therefore, the total potential decrease, which is at most 0, is at least

∑

T∈F

w(T )F|T | +
∑

T∈F

(k − 1)|T |w(T )f|T | − Fk

∑

S∈F∗

k w(S).
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We now follow the recipe from §3.1: dividing by k and defining the probability distribution

αt :=
1

w(F) ·
∑

T∈F :|T |=tw(T ) gives

w(F) ·

(
∑

t≥1

Ft + (k − 1)tft
k

︸ ︷︷ ︸

=:φt

αt

)

≤ Fk w(F
∗).

Let φt be the coefficient of αt as shown above. Getting the best approximation is again an op-

timization problem: we want to set fi values to minimize maxα∈△k

{
Fk∑
t
φtαt

}
, or equivalently,

to minimize Fk ·maxt
{
1/φt

}
. We set

ft :=
1

t
−

log t

8kt
for t ≥ 1. (8)

To verify that maxt{1/φt} ≤ 1, we first bound Ft by

Ft =

t∑

i=1

fi = Ht −
t∑

i=1

log i

8ki
≥ Ht −

∫ t+1

x=1

log x

8kx
dx = Ht −

log2(t+ 1)

16k
≥ Ht −

log(t+ 1)

16

using log(t+ 1) ≤ t ≤ k for the last inequality. Therefore,

kφt = Ft + (k − 1)tft = Ht −
log(t+ 1)

16
+ (k − 1)t

(
1

t
−

log t

8kt

)

≥ (k − 1) +Ht −
log(t+ 1)

16
−

log t

8

≥ k for t ≥ 2.

We can show kφ1 ≥ k separately for t = 1 using F1 = f1 = 1. Therefore, the approximation

ratio is at most Fk = Hk −Θ((log k)2/k).

5 A Polynomial-Time Implementation

There are two issues with the running time of the above algorithms: (a) since we consider

adding sets from the exponentially-large subset-closed family of sets (i.e., we assumed S =

S↓), finding such a feasible local move may not naively be polynomial-time implementable.

Moreover, (b) reaching a local optimum may not be feasible in polynomial time. The second

issue can be handled using the standard technique of stopping when none of the local moves

decrease the potential by more than a δw(F) (see, e.g., [WS11, §9.1]). By setting δ = ε/|U |

and changing the RHS of (3) from 0 to δw(F) and using |F∗| ≤ |U |, we can ensure that

w(F) ≤ Hk

1−ε
w(F ∗) when there is no such improving move. Assuming the initial solution is

poly(n)-approximate, one can ensure that the running time is poly(n, ε).

For issue (a), let S be the original collection of sets, not necessarily downwards closed. Suppose

that we have the current solution F and S1, . . . , Sp ∈ S, and want to find appropriate pairwise

disjoint subsets S′
1 ⊆ S1, . . . , S

′
p ⊆ Sp such that the new solution that adds S′

1, . . . , S
′
p to F

(and subtracts their union from every S ∈ F) has a low potential. We do not know of an

efficient way to compute the optimal choice of S′
1, . . . , S

′
p. (One possible solution is, letting

T1, . . . , Tq ∈ F be the sets intersecting ∪i∈[p]Si (so q ≤ pk), to (1) guess |S′
i| for every i ∈ [p],

and |Tj ∩ (∪iS
′
i)| for every j ∈ [q] that exactly determine the potential change and (2) set up

a network flow testing whether such S′
1, . . . , S

′
p exist, but it takes time kO(pk) poly(n).)

8



A more efficient implementation without necessarily finding the optimal S′
1, . . . , S

′
p is this: in

all our previous proofs, when we considered adding S ∈ F∗ to the solution, the analysis always

used Fkw(S) as (an upper bound on) the increase of the potential by adding S instead of the

exact increase F|S|w(S). This means that we can indeed run more conservative local search;

given S1, . . . , Sp, let A =
∑

i∈[p]w(Si)Fk be the total increase from adding them, compute the

total decrease B caused by removing ∪i∈[p]Si from the current sets in F , and only execute

the local move when A is smaller than B (by δw(F)). All our analyses prove that we achieve

the claimed approximation guarantees even when such a more conservative local move is not

possible. Of course, if S1, . . . , Sp overlap, we can arbitrarily drop elements from them to

ensure that the new solution is a partition as well; this further drops the potential.

6 Tight Lower Bounds

In this section, we show that the approximation ratios of Hk − Θ(1/k) and Hk − Θ((log k)2/k)

achieved by the width-2 and width-k local search respectively are optimal. In fact, they are

optimal under any potential of the form Φ(F) =
∑

S∈F w(S)F|S| where Fℓ = f1 + · · ·+ fℓ for

some f1 ≥ · · · ≥ fk. (We believe that the monotonicity condition is unnecessary, but currently

do not have a formal proof.)

6.1 Width-2 Lower Bounds

We construct a collection of lower bound instances Iℓ, one for each ℓ ∈ [k]. The instance Iℓ
is the following:

1. The universe is U .

2. The optimum F∗ partitions U into sets of size exactly k where each set has cost 1.

3. The local optimum F partitions U into sets of size exactly ℓ where each set has cost αℓ,

to be determined below.

4. The set system is (U,F ∪ F∗).

5. Let Gℓ be a bipartite graph with F and F∗ as two sides, where each element u ∈ U

corresponds an edge connecting the two sets that contain u. We can ensure that the

girth of Gℓ is at least a constant arbitrarily larger than k [FLS+95].

Let us determine the value of αℓ so that F becomes a local optimum. When ℓ = 1, α1 = Fk/k

suffices, which yields the approximation ratio Fk.

For ℓ ≥ 2, there are essentially two kinds of moves: there are width-2 local moves that add

sets S1, S2 ∈ F
∗ such that |(S1 ∪ S2) ∩ T | ≤ 1 for all T ∈ F , or to add two distinct sets

S1, S2 ∈ F
∗ that intersect a common T ∈ F . (The girth condition ensures that there can be

at most one such T , and |S1 ∩ T | = |S2 ∩ T | = 1.

(i) The potential increase due to adding S1, S2 is 2Fk.

(ii) Either each set T ∈ F intersecting S1 ∪ S2 loses one element, or some T loses two

elements and all the other sets intersecting S1 or S2 lose exactly one element. So the

potential decrease due to removing elements from sets in F is

(fℓ + fℓ−1) + (2k − 2)fℓ.

(Here we use the fact that fℓ−1 ≥ fℓ.)
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(iii) Therefore, F is a local optimum as long as

αℓ =
2Fk

(2k − 1)fℓ + fℓ−1
,

and the approximation ratio in this case is

kαk

ℓ
=

k

ℓ
·

2Fk

(2k − 1)fℓ + fℓ−1
=

Fk

ℓ(fℓ + fℓ−1−fℓ/2k)
.

Fixing f1 = 1 and optimizing f2, . . . , fk to minimize the worst-case approximation ratio over

the k instances I1, . . . ,Ik shows that the best possible approximation ratio is determined by

setting

fℓ =
1

ℓ
+

1

2k − 1

(
1

ℓ
− fℓ−1

)

for ℓ = 2, . . . , k. It yields fℓ = 1/ℓ−Θ(1/kℓ2) as in the upper bound proof in Section 3, showing

that no potential can guarantee strictly better than Hk −Θ(1/k).

6.2 Width-p Lower Bounds

The lower bound for the case of width-p follows the same framework. Fix ℓ ∈ [k] and consider

the instance Iℓ defined in Section 6.1 (while ensuring that the girth ≫ p), and determine the

value of αℓ so that F becomes a local optimum. When ℓ = 1, α1 = Fk/k suffices, which yields

the approximation ratio Fk.

For ℓ ≥ 2, let us consider what the best local width-p moves would be. For S1, . . . , Sp from

the optimal solution F∗, consider the bipartite graph where the left vertices are S1, . . . , Sp,

the right vertices are the sets from the current solution F intersecting S1, . . . , Sp, and there

is an edge if two sets intersect. Since the girth of the instance is much larger than W , this

bipartite graph is a tree with exactly Wk edges and Wk + 1 vertices, so the number of right

vertices is P = W (k − 1) + 1. If we let d1 ≥ · · · ≥ dP be the degrees of the right vertices, the

potential decrease from the current set is

P∑

i=1

(Fℓ − Fℓ−di).

Since both P and
∑P

i=1 di = Wk are fixed, the monotonicity of f1 ≥ · · · ≥ fk implies that

the above is when the degree is maximally skewed; defining t ∈ N and 1 ≤ r < ℓ − 1 such

that p − 1 = t(ℓ − 1) + r, we have t right vertices have degree ℓ, one right vertex has degree

r + 1, and the remaining p(k − 1) − t right vertices have degree 1. As a sanity check, note

that t · ℓ+ (r + 1) + p(k − 1)− t = (t(ℓ− 1) + r) + 1 + p(k − 1) = pk.

With this move,

(i) The potential increase due to adding S1, S2, . . . Sp is pFk.

(ii) The potential decrease due to removing elements from sets in F is

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ.
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(iii) Therefore, F becomes a local optimum if

αℓ =
pFk

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ
,

and the approximation ratio in this case is αℓ · (k/ℓ).

Again fixing f1 = 1 and optimizing f2, . . . , fk to minimize the approximation ratio for

I1, . . . ,Ik, yields fℓ = 1/ℓ − Θ(log ℓ/kℓ) just like we used in §4 for the upper bound for k-

moves. Intuitively, setting s = (p−1)/(ℓ−1) so that t(ℓ − 1) + r = s(ℓ − 1), the approximation

ratio α · (k/ℓ) becomes

k

ℓ
·

pFk

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ

≥
k

ℓ
·

pFk

sFℓ + (pk − sℓ)fℓ

=
Fk

ℓ

(

sFℓ

pk
+ (1− sℓ/pk)fℓ

)

=
Fk

Θ(Fℓ

k
) + (1−Θ(1/k))ℓfℓ

,

so that with Fℓ = Θ(log ℓ), the denominator becomes at least 1 when ℓfℓ = (1 − Θ(log ℓ/k)).

Therefore, no potential can guarantee strictly better than Hk −Θ((log k)2/k).
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A The Post-processing Algorithm

Lemma 3.2 (Post-processing). Given any solution F with w(F) ≤ Hkw(F
∗), let F1 be the

subcollection of sets in F of unit size. If w(F1) ≥ 0.99w(F), there is an efficient algorithm

that returns a new solution F ′ with w(F ′) ≤ 0.99Hk · w(F).

Proof. We assume that k ≥ 3, else the resulting edge-cover problem can be solved exactly

in polynomial time. Suppose w(F) ≤ 0.99Hk · w(F
∗), then we are already done, so assume

otherwise. The assumption of the lemma means w(F1) ≥ 0.98Hk · w(F
∗).

Note that adding S ∈ F∗ immediately allows us to remove the singleton sets which are

contained in S. For a collection of sets C ⊆ S, let NC,1 := {T ∈ F1 | T ⊆ ∪S∈CS} be the

collection of singletons from F1 that can be removed from the solution by adding C.

We set up an instance of Knapsack Cover: we seek a collection C ⊆ S with w(C) ≤ w(F∗)

that maximizes the saving w(NC,1). Since F∗ is a feasible solution with saving at least

w(F1) ≥ 0.98Hk ·w(F
∗), we can use an (1−1/e)-approximation algorithm [Svi04] for knapsack

cover to find a feasible solution C having weight at most w(F∗) and savings at least (1− 1/e) ·

0.98Hk · w(F
∗). This means F ∪ C \ NC,1 is a set cover with cost at most

(

1 +Hk(1− 0.98 (1 − 1/e))

)

w(F∗) ≤ 0.99Hkw(F
∗),

for all integers k ≥ 3.

B The Hk Bound via Relax-and-Round

The traditional analysis of relax-and-round achieves a bound of O(ln k) [Hoc82], but one can

tighten the bound to Hk. Consider the following algorithm:

Solve the LP relaxation to get solution x∗. Repeatedly pick sets S1, S2, . . . from

S, each time picking set S with probability
x∗

S∑
T
x∗

T

. Finally, let F be the sets Si

that cover elements not covered by previous sets S1, . . . , Si−1.
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The following claim is proved in lecture notes of Young [You22]:

Theorem B.1. The algorithm above incurs expected cost at most Hk ·
∑

S w(S)x∗S .
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