
Voting algorithms for unique games on complete graphs

Antoine Méot∗ Arnaud de Mesmay† Moritz Mühlenthaler∗

Alantha Newman∗

Abstract

An approximation algorithm for a constraint satisfaction problem is called robust
if it outputs an assignment satisfying a (1− f(ε))-fraction of the constraints on any
(1− ε)-satisfiable instance, where the loss function f is such that f(ε)→ 0 as ε→ 0.
Moreover, the runtime of a robust algorithm should not depend in any way on ε. In
this paper, we present such an algorithm for Min-Unique-Games(q) on complete
graphs with q labels. Specifically, the loss function is f(ε) = (ε+ cεε

2), where cε is a
constant depending on ε such that limε→0 cε = 16. The runtime of our algorithm is
O(qn3) (with no dependence on ε) and can run in time O(qn2) using a randomized
implementation with a slightly larger constant cε. Our algorithm is combinatorial
and uses voting to find an assignment. It can furthermore be used to provide a PTAS
for Min-Unique-Games(q) on complete graphs, recovering a result of Karpinski and
Schudy with a simpler algorithm and proof. We also prove NP-hardness for Min-
Unique-Games(q) on complete graphs and (using a randomized reduction) even in
the case where the constraints form a cyclic permutation, which is also known as
Min-Linear-Equations-mod-q on complete graphs.

1 Introduction

As defined by Zwick [Zwi98], an approximation algorithm for a constraint satisfaction
problem (CSP) is called robust if it outputs an assignment satisfying a (1−f(ε))-fraction
of the constraints on any (1−ε)-satisfiable instance, where the loss function f is such that
f(ε) → 0 as ε → 0. Moreover, the runtime of the algorithm should not depend in any
way on ε. Robust algorithms for CSPs have been studied extensively [GZ11, KOT+12,
BK16, DKK+19]. For example, the famous random hyperplane rounding algorithm
for the maximum cut problem yields a robust approximation for the complementary
minimization problem [GW95] and is essentially optimal [OW08].

Let us call an approximation algorithm super robust if the loss function has the
form f(ε) = ε + O(ε2). Such super robust algorithms are relevant in the design of
approximation algorithms because, as we will discuss later on, if one has a super robust
algorithm for the min version of a problem and a polynomial time approximation scheme
(PTAS) for the complementary max version, then we can derive a PTAS for the min
version as well. Note that the existence of a PTAS does not imply the existence of a super
robust algorithm. There is a wide range of techniques to obtain a PTAS for the max

∗Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France
†LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

1

ar
X

iv
:2

11
0.

11
85

1v
2

 [
cs

.D
S]

 8
 N

ov
 2

02
2

versions of various constraint satisfactions problems on dense graphs (see e.g., [AKK99]).
In contrast, we are not aware of super robust algorithms for CSPs or similar problems,
even on dense graphs.

In this article we investigate super robust approximation algorithms for Unique-
Games on complete graphs, which are CSPs. We now define the problems under con-
sideration. Let G = (V,E) be a complete graph with an arbitrary linear order on the
vertices, let q be a positive integer (where q ≤ poly(n)) and let [q] = {0, . . . , q − 1}.
(Note that G is simple and therefore does not contain any multi-edges or self-loops.)
Let n denote the number of vertices and m the number of edges in G (i.e., n = |V | and
m =

(
n
2

)
). We use uv = vu to refer to an edge in E and (u, v) to refer to an ordered

pair or arc. An assignment is a map x : V → [q] giving a label xv to each vertex v. For
each ordered pair of vertices (u, v) there is a permutation πuv : [q] → [q]. This permu-
tation is interpreted as a constraint as follows: an assignment x satisfies the constraint
if xv = πuv(xu). This is equivalent to the constraint xu = πvu(xv) since we require
πvu = π−1uv . A set of constraints is satisfiable if there exists an assignment satisfying all
of them. Then the Min-Unique-Games(q)-Full problem is the following.

Problem 1 (Min-Unique-Games(q)-Full). Given a complete graph G, a positive in-
teger q and a permutation πuv : [q] → [q] for each ordered pair of vertices (u, v) with
u < v (such that πvu = π−1uv), find a minimum cardinality subset of edges of G whose
deletion results in a satisfiable set of constraints.

In a special case of this problem, each permutation is cyclic. Specifically, for each
ordered pair of vertices (u, v) there is a given integer cuv ∈ [q] (symmetrically, cvu = q−
cuv mod q). For each edge uv ∈ E with u < v, there is a constraint xu−xv ≡ cuv mod q.
(Observe that xv − xu ≡ cvu mod q is an equivalent constraint.) In general graphs,
this problem is also known as Min-Linear-Equations-mod-q, which we abbreviate to
Min-Lin-Eq(q).

Problem 2 (Min-Lin-Eq(q)-Full). Given a complete graph G, a positive integer q
and a constraint xu − xv ≡ cuv mod q for each ordered pair of vertices (u, v) with u < v
(such that cvu = q−cuv), find a minimum cardinality subset of edges of G whose deletion
results in a satisfiable set of constraints.

We refer to the general versions of Problems 1 and 2 (i.e., when G is not necessarily
a complete graph) as Min-Unique-Games(q) and Min-Lin-Eq(q), respectively, and to
the complementary versions (i.e., when one aims at maximizing the number of satisfied
constraints) as Max-Unique-Games(q) and Max-Lin-Eq(q). Although it might seem
like an easier problem, a constant factor approximation for Max-Lin-Eq(q) yields a
constant factor approximation for Max-Unique-Games(q) [KKMO07].

Our results. In this paper, we first present a super robust algorithm for Min-Lin-
Eq(q)-Full. Specifically, the runtime of our algorithm is O(qn3) in the RAM model
(with no dependence on ε) and the loss function is f(ε) = (ε+cεε

2), where cε is a constant
depending on ε such that limε→0 cε = 16. A randomized implementation with a slightly
larger constant cε in the loss function runs in time O(qn2). We show that our algorithm
can be extended to the so-called everywhere dense case, which is where every vertex has
degree at least (1− δ)(n− 1) for some constant density parameter δ ∈ (0, 1) [AKK99].

2

Our algorithm is very simple, purely combinatorial and uses voting to find an as-
signment. First, we find an initial assignment using a pivot algorithm in the spirit of
[ACN08], which is a 3-approximation in the case of Min-Lin-Eq(q)-Full (Section 2).
Then we improve this solution according to “votes” of the other vertices based on their
initial assignments (Section 3). We discuss the extension to the dense case, whose details
can be found in Appendix B. When the alphabet size is constant, we can couple our ro-
bust algorithm with classical approximation algorithms for the complementary problem
to obtain a PTAS for Min-Unique-Games(q)-Full (and thus Min-Lin-Eq(q)-Full).
This is explained in Section 4, and recovers a result of Karpinski and Schudy [KS09], with
a simpler proof. Recall that given a (1− ε)-satisfiable instance, we can find a (1 +O(ε))-
approximation via an algorithm whose running time is independent of ε. To obtain such
a guarantee via the algorithm of Karpinski and Schudy, we would need to exhaustively
search for an assignment on a sample of size Ω(1/ε2), which leads to a running time of
Ω(q1/ε

2
). Thus finding an algorithm that skips this exhaustive assignment step typical

of a PTAS is the key to obtaining a super robust algorithm.

We also consider the hardness of Min-Unique-Games(q)-Full (Section 5). In the
case of q = 2, the NP-hardness for Min-Lin-Eq(q)-Full follows from the NP-hardness
of Correlation-Clustering with two clusters (i.e., MinDisAgree[2]) due to Giotis
and Guruswami [GG06]. For q ≥ 3, the hardness of Min-Unique-Games(q)-Full does
not appear to be explicitly considered anywhere in the literature and thus its complexity
status was open. Therefore, we prove NP-hardness for Min-Unique-Games(q)-Full for
q ≥ 3. For Min-Lin-Eq(q)-Full, we prove NP-hardness under the weaker assumption
that NP (BPP. Our reduction is similar to the hardness reductions for Feedback-
Arc-Set-Tournaments [ACN08, Alo06, CTY07] and for fully-dense problems [AA07]
but is not directly implied by them since, for example, the latter result only holds for
fully-dense CSPs on a binary domain. Both proofs are deferred to Appendix C.

Background on Unique-Games. Unique-Games is one of the most important
problems in approximation algorithms due to its direct connection with the famous
Unique Games Conjecture of Khot [Kho02], which has wide-ranging implications in the
hardness of approximation. Roughly speaking, the conjecture states that there is no
constant-factor approximation algorithm for Max-Unique-Games(q). It is not hard to
see that there is an algorithm with approximation factor 1/q. Many approximation algo-
rithms, which beat this factor, have been developed, although none give constant-factor
approximations. Some of these use semidefinite programming (SDP) [Kho02, Tre05,
CMM06, Rag08], and some use linear programming (LP) [GT06]. It is known that one
can find a constant factor approximation for Max-Unique-Games(q) in subexponential
time [ABS15, BRS11, BBK+21]. See [Kho10, BS14] for surveys on the Unique Games
Conjecture.

Applications. In addition to its theoretical significance, Unique-Games is closely
related to angular synchronization and phase reconstruction problems with applications
in many fields including computer vision [ARC06] and optics [Wal63, Mil90, RW01]. The
models considered in these applied settings are usually constructed by fixing a satisfiable
instance and adding noise from some specified distribution to each constraint [BSA13,
BBS17, ZB18, GZ19, IPSV20]. (This corresponds to perturbing each cuv.) The goal

3

is exact recovery of the original (satisfiable) instance. Another, more combinatorial,
model corresponds more closely to the statement of the Unique-Games problem. In
this setting, we begin with a satisfiable instance and for each constraint, with some spec-
ified probability, noise from a known distribution is added [Sin11]. Notice that in this
setting, not all constraints are necessarily perturbed. Thus, under certain parameters
(e.g., small probability of perturbing a constraint and uniform noise), the solution to
the original input instance is the solution to the instance of Unique-Games problem
corresponding to the perturbed instance. Both models have been studied on complete
graphs [Sin11, GZ19, FKM21]. Since the noise is generated from some particular distri-
bution, the problem instance is not a worst-case or adversarially perturbated instance,
and the analysis of the recovery procedures usually requires knowledge of the specific
perturbation model. Nevertheless, an algorithm with a worst-case performance guar-
antee, such as ours, can be applied to instances belonging to this model. In practical
settings, the simplicity and implementability of our algorithm are desirable properties.

Previous results. In terms of a robust algorithm for Min-Unique-Games(q),
there is an algorithm based on semidefinite programming with loss function f(ε) =√
ε log q [CMM06]. This is not really a robust algorithm for Min-Unique-Games(q)

since the loss function depends on q and not solely on ε, and q could be a function
of n. Robust algorithms for Constraint Satisfaction Problems have been studied in
depth [GZ11, KOT+12, BK16, DKK+19]. Min-Unique-Games(q) has also been studied
on expanders [AKK+08], and this work gives an algorithm with loss function O(ελ log λ

ε),
where λ is the second smallest eigenvalue of the normalized Laplacian of the input graph
G. This algorithm is robust in the case of complete graphs, since λ = 1 for a complete
graph. In [GS11], the stated loss function for a graph with λ = 1 is f(ε) = (3 + η)ε,
which is achieved in time nO(2/η). Perhaps a more careful analysis of these algorithms
can yield a slightly better loss function in the case of complete graphs. In any case, these
loss functions correspond to constant factor approximations and are therefore worse than
the one we present in this paper by an order of magnitude, and for example, they cannot
be leveraged to obtain a PTAS as in Section 4. Moreover, it is somewhat interesting
that our loss function can be achieved using combinatorial methods rather than relying
on tools from semidefinite programming as is the case in [AKK+08] and on semidefinite
hierarchies as in [GS11]. We remark that the Unique Games Conjecture is equivalent
to the conjecture that a basic assignment-based semidefinite program is the best tool
for solving an instance of Max-Unique-Games(q) [Rag08]. Thus, it is reasonable to
consider different algorithmic tools. We note that the algorithm of [AKK+08] can be
interpreted as a pivot algorithm and we discuss this connection in Section 2.

Min-Unique-Games(q) has also been studied on dense graphs and there is a PTAS

with stated runtime O(n2) + 2O(1
ε
) [KS09]. This algorithm, based on a combination of

random sampling and voting, is not robust as the runtime depends on ε. Notice that this
runtime assumes that both q and the density parameter δ are fixed (i.e., the dependence
on q and δ occur in the exponent but are not stated explicitly in the runtime).

Finally, we remark that many combinatorial optimization problems have been specif-
ically studied on complete graphs or tournaments. For example, Feedback-Arc-Set-
Tournaments has a much better approximation guarantee than is currently known
for the general case, but is still NP-hard [ACN08]. Another well-studied example is

4

the special case of Correlation-Clustering known as MinDisagree on complete
graphs [BBC04, CGW05, GG06, ACN08, CMSY15]. The latter problem is APX-hard [CGW05],
so it is unlikely to have a super robust approximation (see Section 4). Although Feedback-
Arc-Set-Tournaments has a PTAS [KMS07], it also does not seem to have a known
super robust approximation algorithm.

2 Pivot Algorithm for Min-Lin-Eq(q)-Full

In a given instance of Min-Lin-Eq(q)-Full on a graph G, each cycle in G is either
consistent or inconsistent. A cycle is consistent (inconsistent) if it is satisfiable (unsat-
isfiable, respectively). Observe that a feasible solution to Problem 2 is a hitting set for
the set of inconsistent cycles. The following algorithm outputs a vertex labeling such
that the unsatisfied edges form a hitting set for the inconsistent cycles.

Pivot Algorithm

Input: An instance of Min-Lin-Eq(q)-Full on a graph G = (V,E).

1. Pick a pivot p ∈ V uniformly at random and label p with 0.

2. For each vertex v ∈ V \ p, assign v label corresponding to the constraint on edge pv.
(Specifically, `(v) = cvp.)

On an input for Min-Unique-Games(q)-Full, the algorithm can be modified to
test each possible label in [q] for the pivot chosen in Step 1.

Theorem 2.1. The Pivot Algorithm is a 3-approximation algorithm for Problem 2.

The proof of Theorem 2.1 follows almost directly from the analysis of the KwikSort
Algorithm for Feedback-Arc-Set-Tournaments [ACN08]. For completeness, the
proof can be found in Appendix A. We also give an example showing that this analysis
is tight. We remark that for a satisfiable instance of Unique-Games, one can choose
any spanning tree and “propagate” the values along the spanning tree, resulting in an
optimal solution. The pivot algorithm is also a type of spanning-tree algorithm, since
it determines the assignments by using the edges incident to the pivot, which form a
star-shaped spanning-tree.

2.1 Pivot Algorithm and SDP Rounding

In [AKK+08], they first solve a semidefinite program and then they use its solution to
produce a new set of permutations {σuv} for each edge uv ∈ E. Suppose that initial
instance (on which the SDP is solved) is on a complete graph and is (1−ε)-satisfiable. If
the new instance (using the σ-permutations) is also (1− ε)-satisfiable (e.g., if σuv = πuv
for every edge), then their algorithm produces the same output as the Pivot Algorithm
and the loss function f(ε) = 3ε. The analysis used in [AKK+08] does not seem sufficient
to show that the new instance on the σ-permutations is actually a (1 − ε′)-satisfiable

5

instance for some ε′ < ε. Thus, it seems that new analysis or modifications of the
algorithm is necessary to obtain an improved loss function.

3 The Voting Algorithm

In this section we present the voting algorithm for Min-Lin-Eq(q)-Full, and show that
this algorithm is a super robust approximation algorithm for Min-Lin-Eq(q)-Full. The
idea is to begin with the pivot algorithm from the previous section and use the resulting
labels as “temporary” labels. Then, we “correct” this labeling: each vertex (except
the pivot) casts a “vote” for the label of every other vertex according to the relevant
constraint. The votes are tallied for each vertex by a plurality rule: the final label of a
vertex is one that occurs most often in the list of its votes. The algorithm, which we call
the Voting Algorithm is presented formally in Section 3.1. The runtime of the Voting
Algorithm is O(n3). In Section 3.2, we present an algorithm that is equivalent to the
Voting Algorithm in that it produces the same output assignment. In Section 3.3, we
present a randomized version of the Voting Algorithm with running time O(n2) and a
slightly worse approximation guarantee.

3.1 The Voting Algorithm for Min-Lin-Eq(q)-Full

Voting Algorithm

Input: An instance of Min-Lin-Eq(q)-Full.

1. Pick a pivot p ∈ V . Label p with 0 and label each vertex v ∈ V with temporary label
TEMP(v), which is chosen according to the constraint on edge (p, v). (Specifically,
TEMP(v) = cvp.)

2. For each vertex v, each neighboring vertex u 6= p votes for a label for v, where u’s
vote is based on its temporary label TEMP(u). (Specifically, the vote of u for v is
(cvu + TEMP(u)) mod q.)

3. Then each v is assigned a final label FINAL(v) according to the outcome of its n−2
votes (with a plurality rule). Ties are resolved arbitrarily.

4. Output the best FINAL solution over all choices of p in Step 1.

Notice that for technical reasons, we do not let the pivot p vote in Step 2.

Theorem 3.1. On a (1−ε)-satisfiable instance of Min-Lin-Eq(q)-Full, for 0 ≤ ε < 1
2 ,

the Voting Algorithm returns a solution with at most (ε+ cεε
2)m unsatisfied constraints

where limε→0 cε = 16.

An intuition of the proof is as follows. After Step 2., it is easy to see that an
assignment is obtained where an ε fraction of the vertices are incorrect (compared to the
optimal solution). This does not ensure that a small enough fraction of the edges are
incorrect (i.e., unsatisfied), which is our goal. Therefore, we add the voting step in Step

6

p

Figure 1: Green and red edges are those satisfied and unsatisfied, respectively, in OPT.
Green and red vertices are good vertices and rogue vertices, respectively.

3., which drastically reduces the number of unsatisfied edges towards our stated goal.
This works because in order for a vote to produce a wrong assignment at a vertex, there
needs to be a sizable number of either incorrect voters or incorrect adjacent edges, which
we can control using a simple charging scheme.

We prove Theorem 3.1 via the following lemma.

Lemma 2. The Voting Algorithm returns a solution with at most (ε+2ε2ν(2+ν)+o(1))m
unsatisfied constraints, where ν = 2/(1− 2ε).

Fix an optimal solution OPT and denote by OPT(v) the label it gives to a vertex v.
In this fixed optimal solution, there are satisfied edges, which we call green edges and
unsatisfied edges, which we call red edges.

Since ε = OPTval /m, the number of red edges incident to p is at most ε(n − 1) for
some choice of p. We analyze the voting algorithm for this choice of p. Without loss of
generality, we assume that OPT(p) = 0. This means that at least (1− ε)(n− 1) vertices
have TEMP(u) = OPT(u); we call these good vertices (i.e., incident to green edges),
while the other ones are rogue vertices (i.e., incident to red edges). See Figure 1 for an
illustration.

The plan is to analyze how much the outcome of the voting algorithm differs from
OPT. A vertex is flipped if FINAL(v) 6= OPT(v). For a vertex to be flipped, it must be
badly influenced by its neighbors. Let δ(v) ⊂ E denote the edges incident to vertex v.
Observe that all good vertices adjacent to v via a green edge in δ(v) vote correctly with
respect to vertex v (i.e., they vote for label OPT(v)).

The two types of vertices that can vote incorrectly for v’s label (i.e., they might
not vote for label OPT(v)) are (i) rogue vertices incident to green edges in δ(v), and
(ii) vertices incident to red edges in δ(v). The number of vertices falling into the first
category is at most the number of rogue vertices (i.e., at most ε(n− 1)). The number of
vertices falling into the second category is at most the number of red edges incident to
v. Hence we say that a vertex v is flippable if the number of red edges incident to v is
at least (n− 1)/2− ε(n− 1).

Lemma 3. If a vertex v is not flippable, it is not flipped (i.e., FINAL(v) = OPT(v)).

Proof. A non-flippable vertex v has at least (n− 1)/2 + ε(n− 1) + 1 incident green edges
(since by definition the number of incident red edges is at most (n−1)/2− ε(n−1)−1).
At least (n− 1)/2 + 1 of these edges are incident to good vertices. (Recall a vertex u is
good if TEMP(u) = OPT(u).) Thus all of these good vertices vote for v to be labeled
OPT(v), and they will win the vote since they form an absolute majority.

7

p

v

p

RRGG GR RGv

Figure 2: There are n− 2 vertices that vote for the label of v. They are partitioned into
four sets: GG are good vertices incident to green edges in δ(v); GR are good vertices
incident to red edges in δ(v); RG are rogue vertices incident to green edges in δ(v); RR
are rogue vertices incident to red edges in δ(v).

Lemma 4. There are at most ενn flippable vertices.

Proof. By definition, there are OPTval = εm red edges. Denote by f the number of
flippable vertices. Summing the red degree around each flippable vertex gives f · ((n −
1)/2− ε(n− 1)) ≤ 2εm implying the lemma.

At the end of the algorithm (i.e., according to the labels {FINAL(v)}), if an edge
is unsatisfied, then either it is red, or it is green and at least one of its endpoints got
flipped. In the latter case, we charge that edge positively to (one of) the endpoint(s) that
got flipped. Similarly, if an edge is satisfied, then either it is green, or it is red and at
least one of its endpoints got flipped. In the latter case, we charge that edge negatively
to (one of) the endpoint(s) that got flipped.

Lemma 5. The charges on a flipped vertex v at the end of the algorithm are at most
2ε(n− 1) + ενn.

Proof. For a given vertex v, each neighbor u votes for vertex v to have the label vote(u→
v), where vote(u→ v) is equal to TEMP(u) modified according to the constraint on the
edge uv. A coalition is a maximal set of neighboring vertices C adjacent to v that vote
unanimously: for all u ∈ C, vote(u → v) has the same value. All the vertices adjacent
to v get partitioned into coalitions, and the winning coalition is one with the largest
cardinality.

A flippable vertex v gets flipped if the winning coalition CWIN is not the coalition
COPT (where COPT is the coalition that votes for OPT(v)). Observe that COPT contains
the subset of good vertices that are incident to green edges in δ(v). Call this subset GG.
(See Figure 2.) The winning coalition CWIN is formed of good vertices incident to
red edges in δ(v) (call this subset WGR), rogue vertices incident to green edges in δ(v)
(call this subset WRG), and rogue vertices incident to red edges in δ(v) (call this subset
WRR). (Observe that WGR ⊆ GR,WRG ⊆ RG and WRR ⊆ RR. Moreover, note that
there might be some vertices in V \ {p, v} that belong to neither COPT nor to CWIN .)

Since the winning coalition wins the vote, |COPT | ≤ |CWIN |. Thus,

|GG| ≤ |WGR|+ |WRG|+ |WRR| ≤ |WGR|+ ε(n− 1).

8

The positive charges are upper bounded by |GG| + |RG|. (This is not an equality as
these edges might end up satisfied if their other endpoint is flipped as well.) The negative
charges are at least |WGR| minus those whose other endpoint has been flipped as well.
For the other endpoint to be flipped, it needs to be flippable, so the total number of
negative charges is at least |WGR| − ενn.

So the total charge is at most:

|GG|+ |RG| − (|WGR| − ενn) ≤ |WGR|+ ε(n− 1) + |RG| − |WGR|+ ενn

= ε(n− 1) + |RG|+ ενn

≤ 2ε(n− 1) + ενn,

where we used the fact that RG is a subset of the rogue vertices and therefore has
cardinality at most ε(n− 1).

Denote by VAL the number of unsatisfied edges at the end of the algorithm.

Lemma 6. VAL−OPTval ≤ (1 + o(1)) ·OPTval ·2εν(2 + ν).

Proof. This difference is exactly the number of green edges (i.e., satisfied in OPT) which
become unsatisfied in VAL minus the number of red edges (i.e., unsatisfied in OPT)
which become satisfied in VAL. This difference is exactly controlled by the charging
scheme. Combining with Lemmas 4 and 5, the sum of all charges is at most

ενn(2ε(n− 1) + ενn) = 2ε2νn(n− 1) + ε2ν2n2

= 2νε2
n(n− 1)

2
(2 + ν

n

n− 1
)

= ε
n(n− 1)

2
(4νε+ 2ν2ε

n

n− 1
)

= OPTval ·2εν(2 + ν(1 +
1

n− 1
))

≤ OPTval ·2εν(2 + ν) · (1 +
1

n− 1
).

We note that Lemma 2 is implied by Lemma 6.

3.2 Equivalent Implementation of Voting Algorithm

We now give an equivalent interpretation of the Voting Algorithm. Recall that G =
(V,E) is a simple, complete graph. We define the multigraph G2

mult to be a graph that
contains n − 2 edges connecting u and v, each edge corresponding to a path uwv for
w ∈ V \ {u, v}. Each new edge corresponding to a path uwv inherits a cuv value from
this path (i.e., cuv = (cuw + cwv) mod q). Now we create a simple, complete graph G2

?

on the vertex set V in which the edge label cuv for edge uv is determined by taking the
most popular cuv value from the n− 2 values in G2

mult (ties broken arbitrarily). Notice
that it takes O(n3) time to construct the instance G2

? of Min-Lin-Eq(q)-Full, since it
takes O(n) time to compute the constraint value on an edge.

9

Now we can run the Pivot Algorithm from Section 2 on the input instance G2
?, which

takes O(n) time to output an assignment and takes O(n2) time if try every vertex as a
pivot. Notice that the best output of the Pivot Algorithm on G2

? (over all pivots) is the
same as the output of the Voting Algorithm on G.

3.3 A Faster Randomized Voting Algorithm

Instead of trying all vertices to be the pivot in Step 1. of the Voting Algorithm, we
simply choose a single pivot uniformly at random. We refer to this as the Randomized
Voting Algorithm.

If we choose a vertex v at random, by Markov’s Inequality, it has probability at least
1/2 of being incident to at most 2εn red edges in a fixed optimal solution. Thus, we
execute the analysis used in Section 3 replacing ε with 2ε which leads to the following
theorem.

Theorem 3.7. On a (1−ε)-satisfiable instance of Min-Lin-Eq(q)-Full, for 0 ≤ ε < 1
2 ,

with probability at least 1/2, the Randomized Voting Algorithm returns a solution with
at most (ε+ cεε

2)m unsatisfied constraints where limε→0 cε = 32.

3.4 Extension to Min-Unique-Games(q)-Full

In the more general setting of Min-Unique-Games(q)-Full, we cannot assume that
for any vertex v there is an optimal solution that assigns the label 0 to v. We modify
the Voting Algorithm from Section 3 slightly to take this into account and obtain the
following result, which differs from the case of Min-Lin-Eq(q)-Full (i.e., Theorem 3.1)
only in the runtime.

Theorem 3.8. On a (1− ε)-satisfiable instance of Min-Unique-Games(q)-Full, for
0 ≤ ε < 1

2 , the Voting Algorithm returns a solution with at most (ε+ cεε
2)m unsatisfied

constraints where limε→0 cε = 16. The runtime of the algorithm is O(qn3).

The only necessary modification of the Voting Algorithm is in Step 1. For each label
` ∈ [q] and each pivot choice p, the algorithm assigns label ` to p and then computes
the TEMP and FINAL labels as before (see Steps 1.–3. of the Voting Algorithm). The
algorithm returns the FINAL labels with the fewest violated constraints. Thus, the
runtime is multiplied by a factor of q. The analysis of the modified voting algorithm is
identical to the analysis presented in Section 3, once we fix a pivot p with label `, such
that the number of red edges incident to p is at most ε(n− 1).

3.5 Extension to Everywhere-Dense Case

For a graph G = (V,E), let d(v) denote the degree of a vertex v. Following [AKK99],
we define an everywhere (1− δ)-dense graph G = (V,E) to be a graph in which d(v) ≥
(1− δ)(n− 1) for each vertex v ∈ V . We can extend the Voting Algorithm to this case.
The algorithm is slightly modified.

10

Voting Algorithm for Everywhere-Dense Graph

Input: An instance of Min-Lin-Eq(q) on a (1− δ)-everywhere dense graph G = (V,E).

1. Pick a pivot p ∈ V . Label p with 0, and label each vertex v ∈ V adjacent to p
with temporary label TEMP(v), which is chosen according to the constraint on edge
(p, v). (Specifically, TEMP(v) = cvp.)

2. For each vertex v, each neighboring vertex u with a TEMP label votes for a label for
v, where u’s vote is based on its temporary label TEMP(u). (Specifically, the vote
of u for v is (cvu + TEMP(u)) mod q.)

3. Then each v is assigned a final label FINAL(v) according to the outcome of the votes
it received (with a plurality rule). Ties are resolved arbitrarily.

4. Output the best solution over all choices of p in Step 1.

Notice that in contrast to the Voting Algorithm on a complete graph, p also votes in
Step 2. The algorithm would also work if p does not vote, but the analysis turns out to
be cleaner if p votes.

Let OPTval denote the value of an optimal solution (i.e., the minimum number of
unsatisfied constraints) and let OPTval = εm (i.e., ε = OPTval /m). The proof of
Theorem 3.9 is very similar to that of Theorem 3.1 and the details can be found in
Appendix B.

Theorem 3.9. On a (1 − ε)-satisfiable, (1 − δ)-everywhere-dense instance of Min-
Unique-Games(q), for 0 ≤ ε < 1

2 , the Voting Algorithm returns a solution with at most
m(ε + cεε

2)/(1 − δ) unsatisfied constraints where limε→0 cε = 16. The runtime of the
algorithm is O(qn3).

4 PTAS

The Voting Algorithm from Section 3 provides a good approximation to Min-Unique-
Games(q)-Full when the value of an optimal solution is small. In the opposing regime,
when the value of an optimal solution is large, we can obtain a good approximation
for this solution by solving approximately the complementary problem Max-Unique-
Games(q)-Full, which is the problem of maximizing the number of satisfied constraints.
This complementary problem is the maximization version of a Constraint Satisfaction
Problem, and, when the alphabet size is constant, those admit very efficient approxima-
tion algorithms on dense graphs using sampling techniques, and thus also on complete
graphs.

In order to obtain a (randomized) polynomial-time approximation scheme (PTAS)
for Min-Unique-Games(q)-Full we rely on the following theorem, where we emphasize
that q is considered a constant (i.e., the O(·) notation hides an unspecified dependency
on q). Note that the algorithm underlying this theorem (e.g., in [MS08]) is a very simple
greedy algorithm (but the analysis is not that simple).

11

Theorem 4.1 ([KS09, Theorem 7]). For any Max-2-CSP and any τ > 0 there is a
randomized algorithm which returns an assignment of cost at least OPT−τn2 in runtime
O(n2) + 2O(1/τ2).

A MAX-2-CSP is a CSP where each constraint involves two variables. When the
alphabet size is not constant, a general purpose PTAS for Max-CSPs on complete graphs
is ruled out under Gap-ETH, see Romero, Wrochna and Živný [RWŽ21, Corollary E.5].
Whether a PTAS exists for Max-Unique-Games(q)-Full when the alphabet size is
not constant seems to be open.

Our PTAS is then as follows.

Theorem 4.2. When the alphabet size q is constant, for any τ > 0, we can compute a
(1 + τ)-approximation for the problem Min-Unique-Games(q)-Full in time O(n3) +
2O(1/τ4).

Note that the runtime in Theorem 4.2 is O(n2) + 2O(1/τ4) if we use the Randomized
Voting Algorithm. This is similar to a result of Karpinsky and Schudy [KS09], with a
simpler algorithm.

Proof of Theorem 4.2. Let OPT denote the optimal value of the problem. If 2ν(2 +
ν)(OPT/m) < τ , where ν = 2/(1− 2OPT/m), then by Lemma 2 we get the needed ap-
proximation. Otherwise, since ν ≥ 2, we have OPT ≥ τm/16, and thus m ≤ 16OPT/τ .

In this case, we compute a τ ′-approximation to the complementary problem using
Theorem 4.1, for τ ′ = τ2/32. This provides us with a solution where the number of
satisfied edges is at least (m − OPT) − τ ′n2, and thus the number of unsatisfied edges
is at most OPT + τ ′n2 ≤ OPT + 32τ ′OPT/τ ≤ OPT (1 + τ).

The argument in the proof of Theorem 4.2 can be generalized as follows.

Observation 3. Let Min-CSP denote a constraint satisfaction problem where the objec-
tive is to minimize the number of violated constraints, while Max-Comp-CSP denotes
the complementary problem of maximizing the number of satisfied constraints. If there
exists a PTAS for Max-Comp-CSP and a super robust algorithm for Min-CSP, then
there exists a PTAS for Min-CSP.

Proof. As in the previous proof, we use one algorithm or the other depending on OPT ,
the optimal value of Min-CSP. We denote by C the number of constraints and write
ε = OPT/C.

We fix any τ > 0, and if ε < τ , then a super robust algorithm computes a solution of
value (ε+O(ε2))C ≤ OPT (1 +O(τ)), i.e., up to rescaling τ by a constant factor we get
the required approximation guarantee. Otherwise, we have τ ≤ ε, and running the PTAS
for Max-Comp-CSP with a target approximation factor of τ ′ = τ2 yields a solution of
value at least (C − OPT)(1 − τ2), and thus the number of unsatisfied constraints is at
most OPT + Cτ2 ≤ OPT + CτOPT/C ≤ OPT (1 + τ).

As a corollary of this observation, since the special case of Correlation Cluster-
ing known as MinDisagree on complete graphs is APX-hard and its complementary

12

max version admits a PTAS [BBC04], it is very unlikely to admit a super robust algo-
rithm.

5 NP-Hardness

In this section we prove the following hardness results. First, we prove standard NP-
hardness for the more general problem of Min-Unique-Games(q)-Full. The proof for
this theorem is similar in spirit to the hardness reductions of MinDisAgree[k] by Giotis
and Guruswami [GG06].

Theorem 5.1. Min-Lin-Eq(q)-Full is NP-hard for q = 2, and Min-Unique-Games(q)-
Full is NP-hard for any value of q.

While we do expect Min-Lin-Eq(q)-Full to be NP-hard for values of q ≥ 3, this
does not seem to follow from these proof techniques, which leverage the use of non-cyclic
permutations. Theorem 5.2 provides a hardness proof for Min-Lin-Eq(q)-Full using
randomized reductions. Notice that Theorems 5.1 and 5.2 are incomparable.

Theorem 5.2. Unless NP ⊆ BPP, Min-Lin-Eq(q)-Full has no polynomial-time algo-
rithm.

To prove Theorem 5.2, we follow the general approach used for Feedback-Arc-
Set-Tournament in [ACN08, Alo06, CTY07] and for fully-dense CSPs on a binary
domain [AA07]. The proofs of both Theorem 5.1 and Theorem 5.2 are deferred to
Appendix C.

References

[AA07] Nir Ailon and Noga Alon. Hardness of fully dense problems. Information
and Computation, 205(8):1117–1129, 2007.

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms
for unique games and related problems. Journal of the ACM, 62(5):1–25,
2015.

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent
information: Ranking and clustering. Journal of the ACM, 55(5):1–27, 2008.

[AKK99] Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time ap-
proximation schemes for dense instances of NP-hard problems. Journal of
Computer and System Sciences, 58:193–210, 1999.

[AKK+08] Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur
Tulsiani, and Nisheeth K. Vishnoi. Unique games on expanding constraint
graphs are easy. In Proceedings of the 40th annual ACM Symposium on
Theory of Computing (STOC), pages 21–28, 2008.

[Alo06] Noga Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics,
20(1):137–142, 2006.

13

[ARC06] Amit Agrawal, Ramesh Raskar, and Rama Chellappa. What is the range
of surface reconstructions from a gradient field? In European conference on
computer vision, pages 578–591. Springer, 2006.

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine learning, 56(1):89–113, 2004.

[BBK+21] Mitali Bafna, Boaz Barak, Pravesh K. Kothari, Tselil Schramm, and David
Steurer. Playing unique games on certified small-set expanders. In Proceed-
ings of the 53rd annual ACM SIGACT Symposium on Theory of Computing,
pages 1629–1642, 2021.

[BBS17] Afonso S. Bandeira, Nicolas Boumal, and Amit Singer. Tightness of the max-
imum likelihood semidefinite relaxation for angular synchronization. Math-
ematical Programming, 163(1):145–167, 2017.

[BK16] Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction
problems. SIAM Journal on Computing, 45(4):1646–1669, 2016.

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefi-
nite programming hierarchies via global correlation. In Proceedings of 52nd
annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 472–481, 2011.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest to-
ward optimal algorithms. In Proceedings of the International Congress of
Mathematicians (ICM), 2014.

[BSA13] Nicolas Boumal, Amit Singer, and P.-A. Absil. Robust estimation of rota-
tions from relative measurements by maximum likelihood. In Proceedings
of 52nd Annual IEEE Conference on Decision and Control (CDC), pages
1156–1161, 2013.

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering
with qualitative information. Journal of Computer and System Sciences,
71(3):360–383, 2005.

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-
optimal algorithms for unique games. In Proceedings of the 38th annual
ACM Symposium on Theory of Computing(STOC), pages 205–214, 2006.

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory
Yaroslavtsev. Near optimal LP rounding algorithm for correlation cluster-
ing on complete and complete k-partite graphs. In Proceedings of the 47th
annual ACM Symposium on Theory of Computing (STOC), pages 219–228,
2015.

[CTY07] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback
arc set problem is NP-hard for tournaments. Combinatorics, Probability and
Computing, 16(1):1–4, 2007.

14

[DKK+19] Vı́ctor Dalmau, Marcin Kozik, Andrei Krokhin, Konstantin Makarychev,
Yury Makarychev, and Jakub Opršal. Robust algorithms with polynomial
loss for near-unanimity CSPs. SIAM Journal on Computing, 48(6):1763–
1795, 2019.

[FKM21] Frank Filbir, Felix Krahmer, and Oleh Melnyk. On recovery guarantees
for angular synchronization. Journal of Fourier Analysis and Applications,
27(2):1–26, 2021.

[GG06] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a
fixed number of clusters. Theory of Computing, 2(13):249–266, 2006.

[GS11] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher
eigenvalues, and approximation schemes for graph partitioning and quadratic
integer programming with PSD objectives. In Proceedings of 52nd annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2011.

[GT06] Anupam Gupta and Kunal Talwar. Approximating unique games. In Pro-
ceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 99–106, 2006.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM, 42(6):1115–1145, 1995.

[GZ11] Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximabil-
ity of almost-satisfiable Horn SAT and exact hitting set. In Proceedings of
the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1574–1589. SIAM, 2011.

[GZ19] Tingran Gao and Zhizhen Zhao. Multi-frequency phase synchronization.
In Proceedings of the 36th International Conference on Machine Learning
(ICML), pages 2132–2141, 2019.

[IPSV20] Mark A. Iwen, Brian Preskitt, Rayan Saab, and Aditya Viswanathan. Phase
retrieval from local measurements: Improved robustness via eigenvector-
based angular synchronization. Applied and Computational Harmonic Anal-
ysis, 48(1):415–444, 2020.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceed-
ings of the 34th annual ACM Symposium on Theory of Computing(STOC),
pages 767–775, 2002.

[Kho10] Subhash Khot. Inapproximability of NP-complete problems, discrete Fourier
analysis, and geometry. In Proceedings of the International Congress of
Mathematicians 2010 (ICM 2010), 2010.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Op-
timal inapproximability results for MAX-CUT and other 2-variable CSPs?
SIAM Journal on Computing, 37(1):319–357, 2007.

15

[KMS07] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In
Proceedings of the 39th annual ACM symposium on Theory of Computing,
pages 95–103, 2007.

[KOT+12] Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan
Zhou. Linear programming, width-1 CSPs, and robust satisfaction. In Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference
(ITCS), pages 484–495, 2012.

[KS09] Marek Karpinski and Warren Schudy. Linear time approximation schemes
for the Gale-Berlekamp game and related minimization problems. In Proceed-
ings of the 41st annual ACM Symposium on Theory of Computing (STOC),
pages 313–322, 2009.

[Mil90] Rick P. Millane. Phase retrieval in crystallography and optics. Journal of
the Optical Society of America, 7(3):394–411, 1990.

[MS08] Claire Mathieu and Warren Schudy. Yet another algorithm for dense Max
Cut: go greedy. In Proceedings of the 19th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 176–182. SIAM, 2008.

[OW08] Ryan O’Donnell and Yi Wu. An optimal SDP algorithm for max-cut, and
equally optimal Long Code tests. In Proceedings of the fortieth annual ACM
symposium on Theory of Computing (STOC), pages 335–344, 2008.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for
every CSP? In Proceedings of the 40th annual ACM Symposium on Theory
of Computing (STOC), pages 245–254, 2008.

[RW01] J. Rubinstein and G. Wolansky. Reconstruction of optical surfaces from ray
data. Optical review, 8(4):281–283, 2001.

[RWŽ21] Miguel Romero, Marcin Wrochna, and Stanislav Živnỳ. Treewidth-pliability
and PTAS for max-CSPs. In Proceedings of the 32nd annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 473–483, 2021.

[Sin11] Amit Singer. Angular synchronization by eigenvectors and semidefinite pro-
gramming. Applied and computational harmonic analysis, 30(1):20–36, 2011.

[Tre05] Luca Trevisan. Approximation algorithms for unique games. In Proceed-
ings of 46th annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 197–205. IEEE, 2005.

[Wal63] Adriaan Walther. The question of phase retrieval in optics. Optica Acta:
International Journal of Optics, 10(1):41–49, 1963.

[ZB18] Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase synchro-
nization. SIAM Journal on Optimization, 28(2):989–1016, 2018.

[Zwi98] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the 30th
annual ACM Symposium on Theory of Computing (STOC), pages 551–560,
1998.

16

A Analysis of Pivot Algorithm

In a given instance of Min-Lin-Eq(q)-Full on a graph G = (V,E), each cycle in G
is either consistent or inconsistent. Let I denote the set of inconsistent cycles and let
T ⊆ I denote the set of inconsistent triangles in G. Observe that a feasible solution to
Problem 2 is a hitting set for the set of inconsistent cycles. Consider the following linear
programming relaxation of Problem 2 and its dual.

min
∑
e∈E

xe∑
e∈C

xe ≥ 1 for all cycles C ∈ I,

xe ≥ 0. (PUG)

max
∑
C∈I

yC∑
C∈I:e∈C

yC ≤ 1 for all e ∈ E,

yC ≥ 0. (DUG)

Claim 1. Any fractional packing of inconsistent triangles in G is a lower bound on the
optimal value of PUG.

Proof. The optimal value of PUG is lower bounded by a fractional packing of inconsistent
cycles (i.e., a feasible solution for DUG). A fractional packing of inconsistent triangles is
a lower bound on a fractional packing of inconsistent cycles. 3

Theorem 2.1. The Pivot Algorithm is a 3-approximation algorithm for Problem 2.

Proof. The Pivot Algorithm assigns a label `(v) ∈ [q] to each v ∈ V . Each edge uv ∈ E
whose constraint is unsatisfied by the labels `(u) and `(v) is added to the “deletion set”
F ⊂ E. Let G′ be the graph consisting of the remaining edges (i.e., G′ = (V,E \ F)).
The following claim follows directly from the definition of G′.

Claim 2. G′ contains no inconsistent cycles.

Let t = {i, j, k} be an inconsistent triangle in G and let At denote the event that
p ∈ {i, j, k}. Let pt be the probability of event At. Then,

E[Number of deleted edges] =
∑
t∈T

pt. (1)

Claim 3. Setting y′C = y′t = pt
3 if C = t ∈ T and y′C = 0 otherwise is dual feasible.

Proof. Let Be be the event that edge e was deleted by the algorithm. Let Be ∧ At be
the event that edge e was deleted due to At. Given event At, each edge in t is equally

17

likely to be deleted. So we have

Pr(Be ∧At) = Pr(Be|At)Pr(At)

=
1

3
× pt

=
pt
3
.

Note that for any t 6= t′ ∈ T such that e ∈ t and e ∈ t′, Be ∧At and Be ∧At′ are disjoint
events. Hence,

∑
t:e∈t

Pr(Be ∧At) ≤ 1. This implies that, for all e ∈ E:

∑
C:e∈C

y′C =
∑
t:e∈t

pt
3
≤ 1.

We can therefore conclude that {y′C} is a dual-feasible solution. 3

From Claim 3 and (1), we can conclude that the pivot algorithm has an approximation
ratio of 3.

To derandomize the pivot algorithm, observe that we can run the algorithm n times,
each time choosing a different vertex as pivot. Consider some fixed optimal solution
OPT that violates exactly ε

(
n
2

)
= εm = OPTval constraints. For some choice of pivot,

the number of labels the algorithm incorrectly assigns is at most ε(n− 1). Since each of
these vertices is incident to at most (n− 1) edges, the total number of incorrect edges is
at most

εm+ ε(n− 1)2 ≤ 3εm = 3 ·OPTval .

A.1 Tight example

We can show that the analysis yielding a 3-approximation ratio is tight. Imagine that we
have a complete graph such that all edges except those in a Hamilton cycle are associated
with the constraint xu − xv ≡ 0 mod q. The edges in the Hamilton cycle are associated
with the constraint xu − xv ≡ 1 mod q. Notice that all pivots lead to the same number
constraints being (un)satisfied. An optimal solution can satisfy

(
n
2

)
− n constraints and

leaves n constraints unsatisfied. Let p be the pivot and let p − 1 and p + 1 be its two
neighbors on the Hamilton cycle. Then the following edges are unsatisfied:

1. The n− 4 edges in the Hamilton cycle with neither endpoint in {p− 1, p, p+ 1}.

2. The n− 4 edges not in the Hamilton cycle with endpoint p− 1.

3. The n− 4 edges not in the Hamilton cycle with endpoint p+ 1.

So, asymptotically, we have 3n unsatisfied edges, while an optimal solution leaves
only n edges unsatisfied.

18

B Analysis of Voting Algorithm in Everywhere-Dense Case

In this section, we prove the following theorem.

Theorem 3.9. On a (1 − ε)-satisfiable, (1 − δ)-everywhere-dense instance of Min-
Unique-Games(q), for 0 ≤ ε < 1

2 , the Voting Algorithm returns a solution with at most
m(ε + cεε

2)/(1 − δ) unsatisfied constraints where limε→0 cε = 16. The runtime of the
algorithm is O(qn3).

For convenience, we restate the algorithm. For simplicity, it is stated for Min-Lin-
Eq(q). It can be extended to Min-Unique-Games(q) on everywhere-dense graphs by
trying all labels in the first step (see Section 3.4).

Voting Algorithm for Dense Case

Input: An instance of Min-Lin-Eq(q) on a (1− δ)-everywhere dense graph G = (V,E).

1. Pick a pivot p ∈ V . Label p with 0, and label each vertex v ∈ V adjacent to p
with temporary label TEMP(v), which is chosen according to the constraint on edge
(p, v). (Specifically, TEMP(v) = cvp.)

2. For each vertex v, each neighboring vertex u with a TEMP label votes for a label for
v, where u’s vote is based on its temporary label TEMP(u). (Specifically, the vote
of u for v is (cvu + TEMP(u)) mod q.)

3. Then each v is assigned a final label FINAL(v) according to the outcome of the votes
it received (with a plurality rule). Ties are resolved arbitrarily.

4. Output the best FINAL solution over all choices of p in Step 1.

Note that p also votes in Step 2. As mentioned earlier, the analysis turns out to be
cleaner if p votes (i.e., does not abstain).

Let OPTval denote the value of an optimal solution (i.e., the minimum number of
unsatisfied constraints) and let OPTval = εm (i.e., ε = OPTval /m).

Lemma 1. The Voting Algorithm on an everywhere (1 − δ)-dense graph gives a (1 +
2ν(2 + ν)ε/(1− δ))-approximation of the optimal solution, where ν = 2

1−2ε−2δ .

Fix an optimal solution OPT, and denote by OPT(v) the label it gives to a vertex
v. In this optimal solution, there are satisfied edges, which we call green edges and
unsatisfied edges, which we call red edges.

Since ε = OPTval /m, the number of red edges incident to p is at most ε · d(p) for
some choice of p. We analyze the voting algorithm for this choice of p. Without loss of
generality, we assume that OPT(p) = 0. This means that at least (1−ε)d(p) vertices have
TEMP(u) = OPT(u); we call these nice vertices. The ones with TEMP(u) 6= OPT(u)
are rogue vertices. The remaining vertices with no TEMP label (because the edge is
missing) are abstaining vertices. Observe that there are at most ε · d(p) rogue vertices
and n− d(p)− 1 ≤ δ(n− 1) abstaining vertices. By convention, we say that p itself is a
nice vertex.

19

Let r denote the number of rogue vertices (so r ≤ ε · d(p)). Let ∆(v) ⊂ E denote the
edges incident to vertex v. Let d̄(v) denote the number of neighbors of vertex v that are
non-abstaining. Notice that d̄(v) is the number of votes that vertex v 6= p receives.

The plan is to analyze how much the outcome of the voting algorithm differs from
OPT. A vertex is flipped if FINAL(v) 6= OPT(v). For a vertex to be flipped, it must be
badly influenced by its neighbors. Observe that all nice vertices adjacent to v via a green
edge in ∆(v) vote correctly with respect to vertex v (i.e., they vote for label OPT(v)).

The two types of vertices that can vote incorrectly for v’s label (i.e., they might
not vote for label OPT(v)) are (i) rogue vertices incident to green edges in ∆(v), and
(ii) vertices incident to red edges in ∆(v). The number of vertices falling into the first
category is at most the number of rogue vertices (i.e., at most r). The number of vertices
falling into the second category is at most the number of red edges incident to v. Hence
we say that a vertex v is flippable if the number of red edges incident to v is at least
d̄(v)/2− r.

Claim 2. If a vertex v is not flippable, it is not flipped (i.e., FINAL(v) = OPT(v)).

Proof. If v is not flippable, it has at least d̄(v)/2 + r + 1 incident green edges (since
by definition the number of incident red edges is at most d̄(v)/2 − r − 1). At least
d̄(v)/2 + 1 of these green edges are incident to nice vertices. (Recall a vertex u is nice if
TEMP(u) = OPT(u).) Thus all of these nice vertices vote for v to be labeled OPT(v),
and they will win the vote since they form an absolute majority, since the maximum
possible number of votes is d̄(v). 3

Claim 3. There are f ≤ ενn flippable vertices.

Proof. By definition, there are OPTval = εm red edges. Denote by f the number of
flippable vertices. For a flippable vertex v, we need at least d̄(v)/2 − r ≥ (1 − 2δ)(n −
1)/2− r red edges in ∆(v). Since m ≤ n(n− 1)/2, we have

f · ((1− 2δ)(n− 1)/2− r) ≤ 2εm ≤ εn(n− 1).

Recall r ≤ ε · d(p) ≤ ε(n− 1) which implies

f ≤ 2εn(n− 1)

(1− 2δ)(n− 1)− 2r

≤ 2εn(n− 1)

(1− 2δ)(n− 1)− 2ε(n− 1)

≤ 2εn

1− 2δ − 2ε
.

implying the lemma. 3

At the end of the algorithm (i.e., according to the labels {FINAL(v)}), if an edge
is unsatisfied, then either it is red, or it is green and at least one of its endpoints got
flipped. In the latter case, we charge that edge positively to (one of) the endpoint(s) that
got flipped. Similarly, if an edge is satisfied, then either it is green, or it is red and at
least one of its endpoints got flipped. In the latter case, we charge that edge negatively
to (one of) the endpoint(s) that got flipped.

20

Claim 4. The charges on a flipped vertex v at the end of the algorithm are at most
2r + f ≤ 2ε(n− 1) + ενn.

Proof. For a given vertex v, each non-abstaining neighbor u votes for vertex v to have
the label vote(u → v), where vote(u → v) is equal to TEMP(u) modified according to
the constraint on the edge uv. A coalition is a maximal set of neighboring vertices C
adjacent to v that vote unanimously: for all u ∈ C, vote(u→ v) has the same value. All
the non-abstaining vertices adjacent to v get partitioned into coalitions, and the winning
coalition is one with the largest cardinality.

A flippable vertex v gets flipped if the winning coalition CWIN is not the coalition
COPT (where COPT is the coalition that votes for OPT(v)). Observe that COPT contains
the subset of nice vertices that are adjacent to v via green edges. Call this subset WGG.
The winning coalition CWIN is formed by nice vertices adjacent to v via red edges (call
this subset WGR), rogue vertices adjacent to v via green edges (call this subset WRG),
and rogue vertices adjacent to v via red edges (call this subset WRR). (Note that there
might be some vertices in V \ v that belong to neither COPT nor to CWIN , nor to any
coalition if they are abstaining vertices.)

Since the winning coalition wins the vote, |COPT | ≤ |CWIN |. Thus,

|WGG| ≤ |WGR|+ |WRG|+ |WRR| ≤ |WGR|+ r.

The positive charges are upper bounded by |WGG| + |WRG|. (This is not an equality
as these edges might end up satisfied if their other endpoint is flipped as well.) The
negative charges are at least |WGR|+ |WRR| minus those whose other endpoint has been
flipped as well and those incident to rogue neighbors (i.e., WRR). For the other endpoint
to be flipped, it needs to be flippable, so the total number of negative charges is at least
|WGR| − f .

So the total charge is at most:

|WGG|+ |WRG| − (|WGR| − ενn) ≤ |WGR|+ r + |WRG| − |WGR|+ f

= r + |WRG|+ f

≤ 2r + f,

where we used the fact that WRG is a subset of the rogue vertices and therefore has
cardinality at most r. 3

Denote by VAL the number of unsatisfied edges at the end of the algorithm.

Claim 5. VAL−OPTval ≤ OPTval ·2εν(2 + ν)/(1− δ) + ε2ν2n.

Proof. This difference is exactly the number of green edges (i.e., satisfied in OPT) which
become unsatisfied in VAL minus the number of red edges (i.e., unsatisfied in OPT)
which become satisfied in VAL. This difference is exactly controlled by the charging
scheme. Combining with Claims 3 and 4, the sum of all charges is at most

(2r + f)f ≤ (2ε(n− 1) + ενn)ενn (2)

= (2ε(n− 1) + εν(n− 1) + εν)ενn (3)

= ε2νn(n− 1)(2 + ν) + ε2ν2n (4)

≤ OPTval ·
2εν(2 + ν)

1− δ
+ ε2ν2n. (5)

21

Above we use the fact that

OPT = εm ≥ εn(1− δ)(n− 1)/2.

3

C Hardness proofs

In this section, we provide the proofs of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. We start with the NP-hardness of Min-Lin-Eq(q)-Full for q =
2. In that case, we observe that the problem directly reduces from Correlation-
Clustering with a number of clusters fixed to be 2, which was studied by Giotis
and Guruswami [GG06]. Precisely, Giotis and Guruswami study the problem MinDis-
Agree[k], where one is given a complete graph on n nodes with each edge labelled by
either + or −. The task is to partition the vertices into exactly k clusters so as to
minimize the number of + edges between vertices in different clusters, plus the number
of − edges between vertices in the same cluster. For the special case k = 2, this can
be easily encoded as a Min-Lin-Eq(q)-Full constraint in the following way. Following
the notation in the introduction, edges labelled + get assigned an integer cuv = 0, while
edges labelled − get assigned an integer cuv = 1. Then, + edges in different clusters and
− edges in the same cluster directly translate into linear equations being violated, which
concludes the proof.

For the Min-Unique-Games(q) problem on complete graphs, we start with the same
reduction, and pad it using additional quite trivial groups of nodes. More precisely, let
H be an instance of MinDisAgree[2] on n vertices, to which we add q − 2 collections
G3, . . . , Gq of M vertices each, where M is to be determined later. We denote by τ iq the
cyclic permutation of order q mapping j to j+ i modulo q, and by σ a fixed permutation
on q − 1 letters without fixed points. The edges and their constraints are as follows,
where the vertices of H and Gi are numbered arbitrarily:

• Between two vertices u and v of H, we choose πu,v to permute the first two coordi-
nates if the edge is a −, or to be the identity on these two coordinates if the edge
is a +. The rest of the permutation is the identity.

• Between two vertices u and v of the same collection Gi, we choose πu,v to be so that
πu,v(i) = i, and πu,v = σ for the other q − 1 values (with the ith value skipped).

• Between two vertices u and v of different collections Gi and Gj , we choose πu,v to

be τ j−iq .

• Between two vertices u and v, where u is in H and v is in Gi, we choose πu,v to be
τ iq for half of the v in Gi, and τ i−1q for the other half.

We claim that the optimal solution1 to this Min-Unique-Games(q) instance is as-
signing xu = i for each vertex in Gi, and assigning xu = 0 for the vertices in one

1There are actually two different solutions here, depending on which cluster gets labelled 0 and 1.
They have the same cost and by a slight abuse, we consider them to be the same.

22

cluster of the MinDisAgree[2] instance in H, and xu = 1 for the other cluster. Denot-
ing by c the cost of the MinDisAgree[2] instance, the cost of this solution is exactly
OPT := c+ nM(q − 2)/2, with c bounded by

(
n
2

)
.

The proof that any minimal solution has this structure is as follows. Let ` be a
labeling for a minimal solution. We first claim that for any collection Gi, all the vertices
in Gi have the same label. For each j ∈ [3, q], let Sj denote the biggest set of vertices
of Gj having the same label. Note that any Sj has size at least M/q, and thus all the
vertices in Sj must be labeled by j since otherwise the labels between them are violated
(as σ has no fixed points), yielding M2/q2 violated constraints, which is bigger than
OPT for M = Ω(q2n2). Similarly, the size of the second biggest label in a Gi is at most
M/100q. If u is a vertex in Gi that is not labelled i, all the constraints between u and
all the Sj are violated, and changing the label of u so that it matches that of Si fixes at
least these (q − 3)M/q constraints, breaks at most (q − 3)M/100q constraints between
the Gi, and breaks at most n constraints with vertices in H. So the number of violated
constraints is reduced if 99(q − 3)M/100 > n, contradicting the minimality of `.

We now claim that the vertices in H are labeled 0 or 1. Let u be a vertex in H that is
not labeled 0 or 1. Then all of its constraints with all the Gi are violated. Replacing its
label by a 0 or 1 label might break up to n−1 constraints (within H) but fixes exactly half
of the constraints with all the Gi, which gives a better solution for M(q − 2)/2 > n− 1.

Since all the vertices in H are labelled 0 or 1, the optimal solution corresponds
directly to the optimal MinDisAgree[2] instance on H, which concludes the proof.

The proof of Theorem 5.2 proceeds by “blowing up” an instance by replacing each
vertex with k copies. It starts with the following lemma, describing a particular bipartite
gadget for each non-edge.

Lemma 1. For any positive integers q and `, where ` > q and ` is a multiple of q, there
exists an instance of Min-Lin-Eq(q) on the complete bipartite graph K`,` such that for

any vertex labeling of K`,`, the total number of satisfied equations is at least `2/q−Θ(`
3
2)

and at most `2/q + Θ(`
3
2).

Proof. We orient all edges from one side of K`,` to the other side. For each of the `2

arcs, we choose a label from [q] uniformly at random. Notice that there are q2` possible
vertex labelings.

For any fixed labeling, the expected number of satisfied constraints is µ = `2/q. For
a fixed labeling, let Xuv denote the random variable which is 1 if arc (u, v) is satisfied
by the randomly chosen arc label (w.r.t. the fixed vertex labeling) and 0 otherwise and
let X =

∑
uv∈E(K`,`)

Xuv.

Recall some standard Chernoff bounds:

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 and Pr[X ≤ (1− δ)µ] ≤ e−

δ2µ
2 .

Let B1 be the (bad) event that there is some vertex labeling for which the number of
satisfied constraints exceeds (1 + δ)µ, and let B2 be the (bad) event that there is some
vertex labeling for which the number of satisfied constraints is less than (1− δ)µ.

23

We have µ = `2

q . Setting δ =
√

c·q log q
` , where c = 60, we have:

Pr

[
X ≥

(
1 +

√
c · q log q

`

)
`2

q

]
≤ e

−
(
c·q log q

`
`2

3q

)

Pr

[
X ≥ µ+

√
c · log q

`3/2
√
q

]
≤ e−20`·log q.

Pr

[
X ≤

(
1−

√
c · q log q

`

)
`2

q

]
≤ e

−
(
c·q log q

`
`2

2q

)

Pr

[
X ≤ µ−

√
c · log q

`3/2
√
q

]
≤ e−30`·log q.

Now we take a union bound over all q2` vertex labelings. We have

Pr[B1] + Pr[B2] ≤
e2` log q

e20·` log q
+

e2` log q

e30·` log q
=

1

e18` log q
+

1

e28` log q
< 1

Thus, we can conclude that there is a positive probability that the number of satisfied
constraints is within the desired range and therefore the necessary gadget exists.

Proof of Theorem 5.2. We begin with an arbitrary instance of Min-Lin-Eq(q) on the
graph G = (V,A). (We can think of G as an oriented graph.) For each arc (u, v) ∈ A,
we have a constraint xu − xv ≡ cuv mod q. We pick an integer k = poly(n) whose exact
value is determined later and where n = |V | and k is a multiple of q. We construct a
new “blown-up” graph Gk = (V k, Ak ∪Bk ∪ Ck) as follows:

V k = {vi | v ∈ V, i ∈ {1, . . . , k}},
Ak = {(ui, vj) | (u, v) ∈ A, i, j ∈ {1, . . . , k}},
Bk = {(ui, vj) | (u, v) /∈ A, i, j ∈ {1, . . . , k}},
Ck = {(ui, uj) | u ∈ V, i 6= j ∈ {1, . . . , k}}.

For a vertex u ∈ V , we refer to the corresponding k copies {u1, . . . , uk} in V k as a
“cloud”. For an arc (ui, vj) ∈ Ak we use same constraint as (u, v). For an arc (ui, uj) ∈
Ck (i.e., an arc in a cloud), we can use the constraint cuiuj = 0. For an arc (ui, vj) ∈ Bk,
we use the bipartite gadget constructed in Lemma 1.

Let B denote the set of non-arcs in G (i.e., |B| =
(
n
2

)
− |A|). Let val(H) denote the

minimum number of unsatisfied constraints inH over all assignments V (H)→ {1, . . . , q}.
We now relate the values val(G) and val(Gk). We set k = Ω(n6). Notice that in this

case, k
3
2 · |B| = o(k2).

We define Gk? to be the “blow-up” of G, which is a subgraph of Gk. Specifically,
Gk? = (V k, Ak ∪ Ck). We can use val(Gk) to estimate val(Gk?) via the following claim,
which follows from Lemma 1.

24

Claim 2. ∣∣∣∣val(Gk)− val(Gk?)− k2 · |B| · q − 1

q

∣∣∣∣ = O(k
3
2 · |B|).

Now we need to use val(Gk?) to compute val(G).

Claim 3.
val(Gk?) ≤ k2 · val(G).

Proof. Consider an optimal vertex labeling for G that leaves val(G) constraints unsat-
isfied. We can construct a solution for Gk? with the claimed upper bound. For each
vertex in V , assign the same label to each vertex in the corresponding cloud in V k. Each
satisfied constraint in G corresponds to k2 satisfied constraints in Gk?. Each unsatisfied
constraint in G corresponds to k2 unsatisfied constraints in Gk?. Moreover, each cloud in
Gk has only satisfied constraints and contributes zero to val(Gk). 3

Claim 4.
k2 · val(G) ≤ val(Gk?).

Proof. Consider an optimal vertex labeling for Gk? that leaves val(Gk?) constraints unsat-
isfied. We can construct a vertex labeling for G with the claimed upper bound. To do
this, for each vertex v ∈ V , we sample a label uniformly at random from the k vertices
in v’s cloud. Call this labeling r : V → {1, . . . , q}. Then E[valr(G)] ≤ val(Gk?)/k

2. (In
fact, E[valr(G)] = val(Ak)/k2.) We can conclude that val(G) ≤ val(Gk?)/k2. 3

In conclusion, we can use val(Gk) to determine val(G).

25

	1 Introduction
	2 Pivot Algorithm for Min-Lin-Eq(q)-Full
	2.1 Pivot Algorithm and SDP Rounding

	3 The Voting Algorithm
	3.1 The Voting Algorithm for Min-Lin-Eq(q)-Full
	3.2 Equivalent Implementation of Voting Algorithm
	3.3 A Faster Randomized Voting Algorithm
	3.4 Extension to Min-Unique-Games(q)-Full
	3.5 Extension to Everywhere-Dense Case

	4 PTAS
	5 NP-Hardness
	A Analysis of Pivot Algorithm
	A.1 Tight example

	B Analysis of Voting Algorithm in Everywhere-Dense Case
	C Hardness proofs

