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Abstract

In the Directed Detour problem one is given a digraph G and a pair of vertices
s and t, and the task is to decide whether there is a directed simple path from s to t
in G whose length is larger than distG(s, t). The more general parameterized variant,
Directed Long Detour, asks for a simple s-to-t path of length at least distG(s, t) + k,
for a given parameter k. Surprisingly, it is still unknown whether Directed Detour
is polynomial-time solvable on general digraphs. However, for planar digraphs, Wu and
Wang [Networks, ’15] proposed an O(n3)-time algorithm for Directed Detour, while
Fomin et al. [STACS 2022] gave a 2O(k)·nO(1)-time fpt algorithm for Directed Long De-
tour. The algorithm of Wu and Wang relies on a nontrivial analysis of how short detours
may look like in a plane embedding, while the algorithm of Fomin et al. is based on a reduc-
tion to the 3-Disjoint Paths problem on planar digraphs. This latter problem is solvable
in polynomial time using the algebraic machinery of Schrijver [SIAM J. Comp., ’94], but
the degree of the obtained polynomial factor is huge.

In this paper we propose two simple algorithms: we show how to solve, in planar
digraphs, Directed Detour in time O(n2) and Directed Long Detour in time
2O(k) · n4 log n. In both cases, the idea is to reduce to the 2-Disjoint Paths problem
in a planar digraph, and to observe that the obtained instances of this problem have a
certain topological structure that makes them amenable to a direct greedy strategy.
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1 Introduction

The complexity status of Directed Detour is arguably one of the most tantalizing open
questions within the area of graph algorithms. The problem asks to decide, for a given digraph
G and two terminals s and t, whether there is a simple path in G from s to t that is not
the shortest — has length strictly larger than distG(s, t). It is still unknown whether this
problem is polynomial-time solvable on general digraphs. See the work of Fomin et al. [3] for
a discussion of relevant literature.

Given this state of the affairs, it is interesting to study Directed Detour on restricted
classes of digraphs, in hope for finding more positive results or useful insight. In this vein,
a particularly well-motivated idea is to consider the class of planar digraphs. The reason for
this is that in planar digraphs, the k-Disjoint Paths problem — decide the existence of
disjoint directed paths linking given k pairs of terminals — is polynomial-time solvable for
every fixed k [8], and even fixed-parameter tractable when parameterized by k [2]. This is
not the case in general digraphs, where the problem is NP-hard already for k = 2 [5]. This
can be used for Directed Detour. Namely, Fomin et al. [3] showed that the more general
parameterized version of the problem — Directed Long Detour, where we look for a
simple s-to-t path of length at least distG(s, t) +k, for a given parameter k — can be reduced
(with a 2O(k) · nO(1) multiplicative overhead in the complexity) to 3-Disjoint Paths, which
can be solved in polynomial time in planar digraph using the algorithm of Schrijver [8]. This
of course applies also to the basic Directed Detour problem by setting k = 1, but even
earlier Wu and Wang [9] gave a direct O(n3)-time algorithm for this case.

While the reduction of Fomin et al. [3] is actually quite simple, the algorithm of Schri-
jver [8] for 3-Disjoint Paths in planar digraphs is not, as it relies on an involved algebraic
framework. In particular, the degree of the polynomial bounding the running time is at least
a two-digit number. On the other hand, the cubic algorithm of Wu and Wang [9] is also quite
complicated and relies on an analysis of different planar configurations that may occur.

In this work we propose two simple algorithms: one for Directed Detour and one for
Directed Long Detour, both in planar digraphs. These are summarized below.

Theorem 1.1. Directed Detour in planar digraphs can be solved in time O(n2).

Theorem 1.2. Directed Long Detour in planar digraphs can be solved in time 2O(k) ·n4

by a Monte Carlo algorithm, or deterministically in time 2O(k) · n4 log n.

The main idea in the proof of Theorem 1.1 is to perform a reduction to the 2-Disjoint
Paths problem, roughly similarly as in the work of Fomin et al. [3]. However, we observe that
if this reduction is performed carefully, then one essentially obtains an instance of 2-Disjoint
Paths where three out of four terminals lie on one face, say the outer face. Such instances
can be solved very easily: one of the paths — the one with both terminals on the outer face
— can be chosen greedily so that it leaves the maximum possible space for the other path.
Then the other path can be found by a simple reachability check.

For Theorem 1.2, as in Fomin et al. [3], we use the result of Bezáková et al. [1] that the
Exact Directed Long Detour problem — finding a shortest s-to-t path of length exactly
distG(s, t) + k — can be solved in time 2O(k) · n2, even on general digraphs. This allows us
to assume, when solving Directed Long Detour, that there are no s-to-t paths of length
between distG(s, t)+k and distG(s, t)+3k. Having this assumption, the proof of Theorem 1.2
proceeds by expanding the basic idea behind Theorem 1.1 with color coding.
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We believe that compared to [3, 9], our algorithms provide a simpler explanation for the
tractability of Directed (Long) Detour in planar digraphs. While we do not expect that
the gained insight will be directly applicable to the case of general digraphs, we hope that
it might be a better starting point for generalizations to less restrictive topological graph
classes, for instance to digraphs of bounded genus or digraphs whose underlying undirected
graphs exclude a fixed minor.

2 Preliminaries

Graphs. In this paper we consider planar directed graphs G = (V (G), E(G)). For the
purposes of our problem, we can assume that the input graphs are simple, that is, they do
not have self-loops or multiple arcs connecting two vertices in the same direction. Moreover,
we assume that G is weakly connected, that is, the underlying undirected graph is connected.
For convenience, we set n = |V (G)| and m = |E(G)|. Since G is planar and simple, we have
that m ∈ O(n).

Given an arc e = uv ∈ E(G), we say that u is the tail of e and v is the head of e. Here,
we consider e incident to both u and v. A sequence v1v2 . . . vk of vertices is called a walk in
G if for each i ∈ {1, . . . , k − 1}, vivi+1 is an arc in G. The vertex v1 is called the origin of
the walk, while vk is its destination. If the vertices of a walk are pairwise different, the walk
is a path. Given two walks W1, W2, if the destination of W1 coincides with the origin of W2,
then we define W1 ◦W2 as the concatenation of both walks. The length of a path P , denoted
length(P ), is the number of arcs it contains. Given a path P and two of its vertices x and
y, we denote by P [x→ y] the subpath of P which starts at x, goes along the arcs of P , and
ends in y.

Given a pair of vertices u, v ∈ V (G), the distance from u to v in G is the length of the
shortest u-to-v-path in G and is denoted by distG(u, v). If there is no directed path from u
to v in G, we put distG(u, v) = +∞. If the graph G is known from the context, we may omit
G from the notation and simply write dist(u, v).

Plane embeddings. Given a planar graph G, its embedding into the plane is a mapping
of the vertices of G to pairwise distinct points in the plane and the arcs of G to plane curves,
so that:

• each arc uv ∈ E(G) is mapped to a plane curve whose endpoints coincide with the
images of u and v, and such that no other vertex of G is mapped to a point on the
curve; and

• the images of the edges of G are pairwise internally disjoint.

A plane graph is a planar graph together with a fixed embedding of the graph into the plane.
Such an embedding splits the plane in a number of regions, called faces. One of the faces
is unbounded and called the outer face. Given a face F , its boundary ∂F can be described
as a cyclic sequence of arcs bounding F (assuming G is connected). If ∂F is isomorphic to
a simple polygon (ignoring the orientations of the arcs), we say that F is simple.

For algorithmic purposes, we represent planar embeddings combinatorially: each vertex v
of the graph stores the anti-clockwise ordering of all arcs of G incident to v. Given a planar
graph G, its combinatorial embedding can be computed in time linear with respect to the
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Figure 1: (a) Three (v, w)-grounded paths. We have P1 ≺lex P2 ≺lex P3, P1 ≺top P2, P1 ≺top

P3, but P2 6≺top P3. (b) A (v, w)-grounded path P and its left area ΓL(P ) (filled in blue).

size of the graph [6]. Note that the combinatorial embedding uniquely determines the faces
of the planar graph, however, it does not designate the outer face of the embedding. Hence,
in our algorithms, we may elect any face to be the outer face.

Comparing paths in plane graphs. Let G be a plane graph and F be its outer face.
Assume that F is simple. We say that a path P in G is v-grounded (with respect to F ) if its
origin v is a vertex of F . Moreover, we say that P is (v, w)-grounded (with respect to F ) if
both its origin v and its destination w are vertices of F . We now present two ways to compare
(doubly) grounded paths in G. We note that the following definitions are standard.

Definition 2.1. Assume that P1 and P2 are two different v-grounded paths with respect to a
face F in a plane graph G. We say that P1 is lexicographically left of P2 (denoted P1 ≺lex P2)
if one of the following conditions holds:

• P1 is a prefix of P2; or

• consider a plane graph Gv created by taking G, together with its planar embedding, and
adding a fresh vertex v′ and a fresh arc v′v, mapped to the plane so that the image of
v′ is placed outside of F (i.e., so that v′ is not enclosed by the boundary of F ). Let P ′1
and P ′2 be paths in Gv, constructed by prepending v′ to P1 and P2, respectively. Let q be
the last vertex of the longest common prefix of P ′1 and P ′2, p be the vertex preceding q on
the common prefix, and r1 6= r2 be the vertices succeeding q on P ′1 and P ′2, respectively.
Then, the arcs pq, qr1 and qr2 are embedded clockwise in this order around q.

Intuitively, P1 ≺lex P2 if at the end of the common prefix of P1 and P2, the path P1

terminates or branches off left of P2 (Figure 1(a)). Observe that ≺lex induces a linear order
on all paths grounded at a vertex v ∈ V (F ). Thus, given any vertex w ∈ V (G) reachable
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from v in G, we define Lvw, the lexicographically leftmost path from v to w, as the unique
minimal path from v to w with respect to ≺lex. Given a combinatorial embedding of G, we
can compute the lexicographically leftmost path from v to w in time O(n): it suffices to run
a depth-first search of G in which each vertex considers all its neighbors in the left-to-right
order.

We follow with a more restrictive way of comparing paths in G. Given a (v, w)-grounded
path P , we define the area left of P , denoted ΓL(P ), as the region of the plane whose anti-
clockwise boundary is the closed walk defined as the concatenation of P and the anti-clockwise
segment of the boundary of F from w to v (Figure 1(b)). Note that the interior of ΓL(P )
may be disconnected if P internally intersects the boundary of F .

Definition 2.2. Given two (v, w)-grounded paths P1 and P2, we say that P1 is topologically
left of P2 (denoted P1 ≺top P2) if ΓL(P1) ( ΓL(P2).

Note that if P1 ≺top P2, then P1 ≺lex P2. Thus, ≺top is a partial order on the set of
all (v, w)-grounded paths, and ≺lex restricted to those paths is a linear extension of ≺top.
It is straightforward to observe that the lexicographically leftmost path from v to w — the
minimum (v, w)-grounded path in ≺lex — is also the unique minimum (v, w)-grounded path
in ≺top. So if both v and w lie on F , we call Lvw simply the leftmost path from v to w.

Analogously, we define the (lexicographically) rightmost path from v to w, denoted Rvw,
and the area right of a (v, w)-grounded path P , denoted ΓR(P ). Note that each (v, w)-
grounded path P splits the graph into two parts: the area ΓL(P ) left of P and the area ΓR(P )
right of P , with both areas intersecting only at P .

Simplifying the outer face. Both the lexicographical and the topological comparisons
of grounded paths require the outer face F of a plane graph G to be simple. However, this
precondition might not be satisfied in the setting of our problem. To alleviate this issue, we
show how to simplify the outer face by adding two directed arcs to the plane graph.

Let u and v be two vertices of F . The (u, v)-simplification of the outer face in G, denoted
Simplify(G, u, v), is the digraph obtained from G by adding two arcs f1, f2, each from u to v.
Both arcs are embedded in the outer face F of G, so that the outer face of Simplify(G, u, v) is
bounded by f1 and f2 (see Figure 2). Thus, the outer face of Simplify(G, u, v) is simple and
contains two vertices, u and v. We remark that Simplify(G, u, v) is not necessarily a simple
digraph; however, this does not pose a problem since after the simplification, the number of
edges of the graph is still linearly bounded in the number of vertices of the graph.

Cutting arcs of plane graphs. We finally describe an operation on plane graphs that
introduces new vertices to the outer face F of the embedding. Assume that F is simple. Take
two vertices u ∈ V (F ), v /∈ V (F ), both incident to an arc e ∈ E(G). An operation of cutting
the graph along e produces a new graph Ge which is the result of the following process (see
Figure 3):

1. Enumerate all arcs incident to u in anti-clockwise order: e1, e2, . . . , ek, where e1, ek ∈
E(F ).

2. Let ` ∈ {2, 3, . . . , k − 1} be such that e` = e.

3. Remove u from the graph, along with all arcs incident to u.

4
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Figure 2: An example plane digraph (left) and its (u, v)-simplification (right).

v

u

e

P

(a)

v

u2u1

(b) (c)

Figure 3: (a) A directed plane graph G. (b) The result of cutting G along e. (c) The result
of cutting G along P .

4. Introduce two new vertices u1, u2 to the graph. For each i ∈ {1, 2, . . . , `}, add to the
graph a new arc e1i which is obtained from the arc ei by replacing the endpoint u with u1.
Similarly, for each i ∈ {`, `+ 1, . . . , k}, add to the graph a new arc e2i which is obtained
from the arc ei by replacing the endpoint u with u2.

Intuitively, Ge is produced by drawing the graph G on a piece of paper and cutting the
piece of paper along e. Note that after this operation, the resulting graph is still planar
(Figure 3). Moreover, the outer face Fe of Ge is simple, and V (F ) \ V (Fe) = {u} and
V (Fe) \ V (F ) = {u1, v, u2}. That is, v now lies on the outer face of the new graph.

We can generalize this procedure to paths instead of just edges. Assume that P =
v1v2 . . . vk is a v1-grounded path which is disjoint with V (F ) except for v1. Then, cutting the
graph along P entails cutting the graph along the arcs v1v2, v2v3, . . . , vk−1vk, in this order.
This way we obtain a plane graph where the destination of the path lies on the outer face.
See Figure 3 for an illustration.

It is immediate that given the combinatorial embedding of a plane graph G, one can
compute a plane embedding of the graph obtained by cutting G along a path P in time linear
with respect to the size of the graph. Thus we again obtain a plane graph.
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3 Directed Detour

In this section we prove Theorem 1.1.
Let G be a plane digraph, and let s, t ∈ V (G) be a pair of vertices. Recall that we assume

G to be weakly connected and we fix the plane embedding of G. Therefore, from now on
for simplicity we identify features in G (vertices, edges, paths, etc.) with their images under
the embedding. Our goal is to decide whether there is an s-to-t path in G of length at least
distG(s, t) + 1. We are going to reduce this question to solving a set of instances of the 2-
Disjoint Paths problem. The reduction is similar to the algorithm of Fomin et al. [3] for
Directed Long Detour.

First, we run breadth-first search (BFS) starting from s in G. Let Li denote the i-th layer
of this BFS, that is, Li = {v ∈ V (G) | distG(s, v) = i} for i ∈ {0, 1, . . . , n}.

Suppose now that the instance (G, s, t) is a yes-instance, and let P be an s-to-t path
witnessing this fact. Since P is a non-shortest path from s to t, there is an index p ∈
{0, 1, . . . , n} such that the layer Lp contains at least two vertices of P . Let us choose p to
be the smallest such an index. Let G>p be the plane digraph obtained from G by removing
all the vertices in L0 ∪ L1 ∪ . . . ∪ Lp−1. We may assume that G>p is weakly connected, for
otherwise we discard all of its weakly connected components that do not contain the vertex t.

Claim 1. All vertices of Lp lie on one face of G>p.

Proof. Consider any vertex v of Lp and any shortest path Q from s to v in G. Observe that
all vertices of Q except for v lie in layers L0, L1, . . . , Lp−1, hence they are removed when
constructing G>p from G. We conclude that v lies on the boundary of the (unique) face of
G>p that contains s.

Denote by x and y, respectively, the first and the second vertex on the path P that lie in
the layer Lp. In our algorithm we iterate over all possible choices for the vertex y. Note that
the choice of y determines the value of p, because y ∈ Lp. Observe that if we guess the vertex
y correctly, then in order to find a non-shortest path from s to t it is enough to find a vertex
x ∈ Lp (x 6= y) and three paths Pstart, Pmiddle and Pend such that

• Pstart is a shortest path from s to x in G; and

• Pmiddle, Pend are two internally vertex-disjoint paths in G>p going respectively from x
to y and from y to t.

Note that y might be equal to t and then Pend is a trivial path only consisting of the single
vertex t.

On one hand, vertices x and y divide P into subpaths Pstart, Pmiddle, and Pend satisfying the
properties stated above. On the other hand, if we find a vertex x and paths Pstart, Pmiddle, Pend

satisfying the above, then their concatenation forms a valid solution. This is because the
path Pstart goes consecutively through layers L0, L1, . . . , Lp due to being a shortest path,
and thus it is internally vertex-disjoint from Pmiddle and Pend. Also, the concatenation of
Pstart, Pmiddle, Pend is a non-shortest path from s to t due to containing at least two different
vertices from layer Lp.

It would be natural to also iterate through all possible choices for x, but for the sake of
optimizing the running time we do the following instead. Construct a digraph H from the
digraph G>p by adding to it a vertex xsuper together with arcs xsuperu for all u ∈ Lp \ {y}.
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Claim 2. H is a planar digraph and its implicit embedding can be obtained from the implicit
embedding of G>p in linear time.

Proof. It suffices to extend the implicit embedding of G>p by embedding xsuper anywhere in
the unique face whose boundary contains all vertices of Lp (which exists by Claim 1) and
draw arcs connecting xsuper with vertices of Lp \ {y} within this face. It is straightforward to
see that this can be done in the setting of implicit embeddings in linear time.

Observe that pairs (P1, P2) of internally vertex-disjoint paths going respectively from xsuper
to y in H and from y to t in H correspond one-to-one to pairs (Pmiddle, Pend) of internally
vertex-disjoint paths going respectively from some vertex x ∈ Lp (x 6= y) to y in G>p and
from y to t in G>p. We may additionally assume that the face of H containing both xsuper
and y is the outer face of H. This way we reduced our original problem to a set of at most n
instances (one instance per each choice of the vertex y) of the following problem:

Problem A

Input: A plane digraph H and three vertices x, y, t ∈ V (H), where x and y lie on the
outer face of H.

Question: Are there two internally vertex-disjoint paths P1 and P2 such that P1 is
an x-to-y path and P2 is a y-to-t path in H?

So to conclude Theorem 1.1 it is enough to show the following lemma.

Lemma 3.1. Problem A can be solved in time O(n).

Proof. Let H? be a (y, x)-simplification of the outer face of H. Naturally, the outer face of H?

is simple. Moreover, (H?, x, y, t) is a yes-instance if and only if (H,x, y, t) is a yes-instance:
H? is exactly the graph H with two additional yx arcs, which plainly cannot be a part of the
sought solution.

Suppose now that (H?, x, y, t) is a yes-instance, and let (P1, P2) be a pair of paths in H?

that form a solution to Problem A on H?. P1 connects x to y which lie on the outer face
FO of H? (which is a simple cycle), thus it is (x, y)-grounded with respect to FO. Therefore,
it splits the whole digraph H into two parts, the area ΓL(P1) left of P1 and the area ΓR(P1)
right of P1, with both areas intersecting only at P1. Since P2 is internally disjoint with P1, it
must be entirely contained within ΓL(P1) or ΓR(P1); without loss of generality assume that
P2 is contained in the latter. Then, let Lx,y be the leftmost path from x to y in H?.

Claim 3. (Lx,y, P2) is also a valid solution to Problem A.

Proof. By the definition of the leftmost path we know that ΓL(Lx,y) ⊆ ΓL(P1), that is, Lx,y

cannot use any vertex lying on the right side of P1. Since all vertices of P2 (apart from y) lie
on the right side of P1 we conclude the claim.

An analogous argument shows that if P2 is contained in ΓL(P1), then (Rx,y, P2) is a valid
solution to Problem A, where Rx,y is the rightmost path from x to y in H?. By the
observation above, we know that in order to verify whether (H?, x, y, t) is a yes-instance it is
enough to find Lx,y and Rx,y as candidates for P1, and to check for each candidate whether
the vertex t is reachable from y in H? − (V (P1) \ {y}). All these checks can be done in time
O(n) by running a proper depth-first search algorithm.
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4 Directed Long Detour

In this section we prove Theorem 1.2.
We are given a plane digraph G, two vertices s, t ∈ V (G) and an integer k ∈ N. As in

Section 3, we assume that G is weakly connected, and we fix the plane embedding of G. We
need to decide whether there is an s-to-t path in G of length at least distG(s, t) + k. We are
going to reduce this question to solving a set of instances of the 2-Disjoint Paths problem
(with some additional requirements).

We begin with running the algorithm of Bezáková et al. [1] to check whether there is
an s-to-t path of length distG(s, t) + l for some l ∈ {k, k + 1, . . . , 3k − 1}. From now on, we
assume there is no such s-to-t path.

As in Section 3, we run a BFS starting from s in G and set Li = {v ∈ V (G) | distG(s, v) =
i} for i = 0, 1, . . . , n. For i = 1, 2, . . . , n, let G>i be the plane digraph obtained from G by
removing all the vertices in L0 ∪ . . .∪Li−1. Again, without loss of generality, we assume that
G>i is weakly connected.

Now, we iterate through all values for p = 1, 2, . . . , n, and through all choices for x, y ∈ Lp,
where x 6= y (there are at most n2 choices for (p, x, y)). Recall from Section 3 (Section 1)
that both x and y lie on the outer face of G>p. Next, let Gx,y

>p be the (y, x)-simplification of
the outer face of G>p. We are now going to search for three paths Pstart, Pmiddle and Pend

satisfying the conditions:

(a) Pstart is a shortest s-to-x path in G;

(b) Pmiddle is an (x, y)-grounded path in Gx,y
>p of length at least 2k;

(c) Pend is a y-to-t path in Gx,y
>p ;

(d) paths Pmiddle and Pend are internally vertex-disjoint; and

(e) if Pend ⊆ ΓR(Pmiddle), then there is no (x, y)-grounded path P ′middle in Gx,y
>p of length at

least k such that P ′middle ≺top Pmiddle; and if Pend ⊆ ΓL(Pmiddle), then there is no such
path with Pmiddle ≺top P ′middle.

We remark that the two yx arcs added in the process of (y, x)-simplification of G>p cannot
be a part of any of the paths Pstart, Pmiddle, Pend and hence their existence can be safely ignored
in the following series of claims.

First, we show that the procedure described above is actually equivalent to solving the
Directed Long Detour problem on the instance (G, s, t, k).

Claim 4. Assume that the paths Pstart, Pmiddle and Pend satisfy the properties (a) – (d) above.
Then the concatenation

P = Pstart ◦ Pmiddle ◦ Pend

forms a valid solution for the Directed Long Detour problem.

Proof. First, P is a simple s-to-t path. Indeed, Pmiddle and Pend are internally vertex-disjoint
by property (d). Moreover, since the path Pstart is a shortest s-to-x path in G, it does not use
any vertex of Lp∪ . . .∪Ln = V (G>p) apart from x, and thus Pstart is internally vertex-disjoint
from Pmiddle and Pend as well.

8



By property (b) the length of P is at least

distG(s, x) + 2k + distG(y, t) = distG(s, y) + 2k + distG(y, t) > distG(s, t) + 2k,

which finishes the proof.

Claim 5. If (G, s, t, k) is a yes-instance, then there exist an integer p ∈ N and vertices
x, y ∈ Lp for which there are paths Pstart, Pmiddle and Pend satisfying the properties (a) – (e).

Proof. Assume that (G, s, t, k) is a yes-instance. Let P be an s-to-t path witnessing this fact.
If there are many such paths, we choose P to be a shortest one. As we established that there
is no s-to-t path of length distG(s, t) + l for any l ∈ {k, k + 1, . . . , 3k − 1}, we may assume
that the path P is of length at least distG(s, t) + 3k. Since P is a non-shortest s-to-t path,
we may define p ∈ {1, 2, . . . , n} to be the smallest index such that Lp contains at least two
vertices of the path P . Let x and y be, respectively, the first and the second vertex on the
path P that lie in the layer Lp.

By definition of p, the subpath P [s → x] is a shortest s-to-x path, and thus we may set
Pstart := P [s → x]. We also set Pend := P [y → t]. We will choose Pmiddle later in the course
of the proof.

Let us observe that the length of the subpath P [x → y] is at least 2k: otherwise, we
consider the path P ′ being the concatenation of a shortest s-to-y path in G and the subpath
P [y → t]. As in Claim 4, we argue that P ′ is a simple s-to-t path in G, and the length of P ′

is

distG(s, y) + length(P [y → t]) = distG(s, x) + length(P [y → t])

= length(P )− length(P [x→ y])

> (distG(s, t) + 3k)− 2k = distG(s, t) + k.

Hence, P ′ is also a valid solution for our instance (G, s, t, k) that is shorter than P , which is
a contradiction.

Since P [x→ y] is an (x, y)-grounded path in Gx,y
>p and is internally disjoint from P [y → t],

we may assume that P [y → t] ⊆ ΓR(P [x→ y]) in Gx,y
>p ; the case P [y → t] ⊆ ΓL(P [x→ y]) is

symmetric.
Observe now, that if we set Pmiddle := P [x→ y], then the properties (a) – (d) are satisfied.

If the condition (e) holds as well, then we are done. Otherwise, we define Pmiddle as a minimal,
with respect to ≺top, (x, y)-grounded path in Gx,y

>p of length at least 2k. Then, Pmiddle ≺top

P [x → y], and consequently Pmiddle is internally vertex disjoint from Pend = P [y → t] as we
have P [y → t] ⊆ ΓR(P [x→ y]).

It remains to show that the pair (Pmiddle, Pend) satisfies the property (e). By the definition
of Pmiddle we know there is no (x, y)-grounded path of length at least 2k which is topologically
left of Pmiddle. Suppose now that there exists an (x, y)-grounded path P ′middle in Gx,y

>p such
that P ′middle ≺top Pmiddle and length(P ′middle) ∈ [k, 2k − 1]. Consider the following walk P ′:

P ′ = P [s→ x] ◦ P ′middle ◦ P [y → t].

P ′ is a simple path as in G>p we have P ′middle ≺top Pmiddle ≺top P [x → y] and P [y → t] ⊆
ΓR(P [x→ y]), therefore P ′middle is internally vertex-disjoint from both P [s→ x] and P [y → t].
Moreover, the length of P ′ is at least

distG(s, x) + length
(
P ′middle

)
+ distG(y, t) =

distG(s, y) + distG(y, t) + length
(
P ′middle

)
> distG(s, t) + length

(
P ′middle

)
> distG(s, t) + k.
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Consequently, P ′ is a valid solution for the instance (G, s, t, k). Finally, since length(P ′middle) <
2k 6 length(P [x→ y]), the path P ′ is shorter than the path P which is a contradiction.

It remains to show how we can find paths Pstart, Pmiddle and Pend satisfying the above-
mentioned conditions. Let us assume that we guess the values of p, x and y correctly. By
Claim 4, we know that Pstart can be set to any shortest s-to-x path, and we see that in order
to find the desired paths Pmiddle and Pend we can restrict ourselves to the digraph Gx,y

>p . Let
us call a pair of paths (Pmiddle, Pend) special for (Gx,y

>p , x, y, t, k) if they satisfy the properties
(b) – (e) stated above. This reduces our instance of the Directed Long Detour problem
to solving the set of at most n2 instances (one for each choice of x and y) of the following
problem (with H := Gx,y

>p ).

Problem B

Input: A plane digraph H, three vertices x, y, t ∈ V (H), and an integer k ∈ N, where
x and y lie on the outer face of H. The outer face of H is simple and contains only the
vertices x and y.

Question: Does there exist a special pair of paths (P1, P2) for (H,x, y, t, k)?

To finish the proof of Claim 1.2 it is enough to show the following lemma.

Lemma 4.1. Problem B can be solved in time 2O(k) · n2 by a Monte Carlo algorithm, or
deterministically in time 2O(k) · n2 log n.

Proof. We use a variant of the standard color coding technique [4]. Let us color independently
every vertex of H with one of two colors, say green and blue, each with probability 1

2 .
Assume for now that (H,x, y, t, k) is a yes-instance, and let (P1, P2) be a special pair of

paths for our instance. As per our previous considerations, we know that P2 ⊆ ΓL(P1) or
P2 ⊆ ΓR(P1). Without loss of generality assume that P2 ⊆ ΓR(P1). Recall that length(P1) >
2k. Therefore, we may define x′ to be the k-th vertex on P1 and y′ to be the k-th vertex
from the end of P1. Then, length(P1[x→ x′]) = length(P1[y

′ → y]) = k − 1 and the paths
P1[x→ x′] and P1[y

′ → y] are vertex-disjoint.
Suppose that the colors are assigned in such a way that all vertices of the path P1[x→ x′]

are green, and all vertices of the path P1[y
′ → y] are blue. The probability of such an event

occurring is (1/2)2k. Let G be the set of green vertices of H in the random coloring. Note
that we assume that V (P1[x→ x′]) ⊆ G.

Claim 6. P1[x → x′] is the lexicographically leftmost x-to-x′ path in H entirely contained
in G.

Proof. Suppose that there is an x-to-x′ path Q in H, entirely contained in G, such that
Q ≺lex P1[x → x′]. Let q ∈ V (H) be the vertex for which path P1[x → q] is the longest
common prefix of P1 and Q. Also, let r be the first vertex on Q[q → x′], not including q,
such that r ∈ V (P1). Here, r is well-defined as the vertex x′ belongs to both Q[q → x′] and
P1. Since r lies on Q, we necessarily have that r is green. Thus, r 6∈ V (P1[y

′ → y]) since
P1[y

′ → y] consists only of blue vertices. Hence, the following walk P ′1:

P ′1 = Q[x→ r] ◦ P1[r → y]

10



is an (x, y)-grounded path in H of length at least

length
(
P1[y

′ → y])
)

+ 1 = k.

Recall that Q ≺lex P1 in H. By the definition of r we observe that Q[x→ r] ≺top P1[x→ r].
Hence, P ′1 ≺top P1. We conclude that the path P ′1 has length at least k and is left of P1,
which contradicts the property (e) of the pair (P1, P2).

Note that the path P1[x→ x′] is disjoint from the set of vertices on the outer face of H,
apart from its first vertex x. This allows us to define Hcut as the plane digraph obtained from
H by cutting along the path P1[x → x′]. Next, let Z ⊆ V (Hcut) be the set of new vertices
introduced to H ′ by this operation. Let H ′ be a (y, x′)-simplification of the outer face of
Hcut.

Claim 7. P1[x
′ → y] is the leftmost path in H ′ among all the paths between x′ and y which

do not contain any vertex of Z.

Proof. Suppose that there is an x′-to-y path Q in H ′ which avoids Z and satisfies Q ≺lex

P1[x
′ → y]. Let q ∈ V (H) be the vertex of H such that Q[x′ → q] is the longest common

prefix of Q and P1[x
′ → y]. Let r be the first vertex on Q[q → y] (not including q) such that

r ∈ V (P1).
Analogously as in the proof of Claim 6, we show that the walk P ′1 defined in H as follows:

P ′1 = P1[x→ x′] ◦Q[x′ → r] ◦ P1[r → y]

is a simple path of length at least k that lies lexicographically left of P1 in H. This leads to
a contradiction to property (e) of (P1, P2).

The observations above lead to an algorithm for Problem B. First, consider the case
where in the solution (P1, P2), we have that P2 ⊆ ΓR(P1). After the random assignment of
colors to vertices of H, we iterate through all vertices u ∈ V (H) \ {x, y, t} as candidates for
the vertex x′. Then, we find the leftmost path S from x to u in H whose all vertices are
green. Next, we construct Hcut and H ′, and find the leftmost path T from u to y in H ′ that
avoids any new vertices introduced to H ′ by the split. Finally, we set P1 = S ◦ T . Then it
only remains to verify whether there exists any path P2 from y to t in H that is internally
disjoint with P1. All these checks can be done by running proper depth-first searches in total
linear time.

Next, we consider the case where P2 ⊆ ΓL(P1). Hence, we repeat all the above steps with
any leftmost paths in H replaced with the corresponding rightmost paths. To obtain the
constant probability of error, we repeat the entire process above 2O(k) times.

To derandomize this algorithm, instead of assigning the colors to vertices at random, we
construct and use an (n, 2k)-universal set [7]. In our case this universal set is a family U of
subsets of V (H) such that for any subset A of V (H) of size 2k the family {A ∩ U | U ∈ U}
contains all 22k subsets of A. We interpret each element of U as a single coloring, that is, a
subset A ∈ U corresponds to the coloring c which assigns color green to the vertices of A, and
blue to the rest.

We know that there is such family U of size 2O(k) · log n and it can be constructed in
time 2O(k) ·n log n [7]. We construct it once in the algorithm, and instead of drawing random
colorings, we iterate through all elements of the constructed universal set U . By the property
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of U there is an element U ∈ U such that V (P1[x → x′]) ⊆ U and V (P1[y
′ → y]) ∩ U = ∅

because |V (P1[x → x′]) ∪ V (P1[y
′ → y])| = 2k. This guarantees the correctness of our

deterministic algorithm.

Acknowledgement. The authors thank Olek  Lukasiewicz for pointing us to the work of
Wu and Wang [9].
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