
ar
X

iv
:2

21
0.

11
78

4v
1

 [
cs

.D
S]

 2
1

O
ct

 2
02

2

A Simple Deterministic Distributed

Low-Diameter Clustering

Václav Rozhoň ∗

ETH Zurich

rozhonv@inf.ethz.ch

r○† Bernhard Haeupler ‡

Carnegie Mellon University & ETH Zurich

bernhard.haeupler@inf.ethz.ch

r○

Christoph Grunau ∗

ETH Zurich

cgrunau@inf.ethz.ch

October 24, 2022

Abstract

We give a simple, local process for nodes in an undirected graph to form non-adjacent clusters
that (1) have at most a polylogarithmic diameter and (2) contain at least half of all vertices.

Efficient1 deterministic distributed clustering algorithms for computing strong-diameter net-
work decompositions and other key tools follow immediately. Overall, our process is a direct
and drastically simplified way for computing these fundamental objects.

1 Introduction

This paper focuses on distributed graph algorithms, particularly on the fundamental problem of de-
terministic and local ways to compute network decompositions and low-diameter clusterings, which
cluster at least half of the nodes in a given graph into non-adjacent clusters with small diameter. In
particular, the paper describes a drastically simplified efficient deterministic distributed construc-
tion for computing such a low-diameter clustering with polylogarithmic diameter in polylogarithmic
rounds of the distributed CONGESTmodel.

Starting with the seminal work of Luby [Lub86] from the 1980’s, fast and simple O(log n)-round
randomized distributed algorithms are known for many fundamental symmetry breaking problems
like maximal independent set (MIS) or ∆ + 1 vertex coloring. For a long time, this was in stark
contrast with the state-of-the-art deterministic algorithms. For multiple decades, it was a major
open problem in the area of distributed graph algorithms to get deterministic algorithms with round

∗Supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (grant agreement No. 853109).

†The author ordering was randomized using https://www.aeaweb.org/journals/policies/random-author-order/generator .
It is requested that citations of this work list the authors separated by \textcircled{r} instead of commas

‡Supported in part by NSF grants CCF-1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan Research
Fellowship, funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (ERC grant agreement 949272), and the Swiss National Foundation (project grant 200021-184735).

1With efficient we mean polylogarithmic rounds in CONGEST [Pel00], i.e., the standard model for distributed
message-passing algorithms.

1

http://arxiv.org/abs/2210.11784v1
https://www.aeaweb.org/journals/policies/random-author-order/generator

complexity poly log(n) for such problems, e.g., MIS or ∆+1 vertex coloring. A recent breakthrough
of Rozhoň and Ghaffari [RG20] managed to resolve this open problem.
In their work, the authors presented the first polylogarithmic-round deterministic algorithm

for network decompositions using a (weak-diameter version of) low-diameter clusterings. Network
decomposition is the object we get by repeatedly finding a low diameter clustering and removing all
the nodes in the clustering, until no node remains. See Section 1.1 for the formal definitions. It was
long known that low-diameter clusterings is the up-to-then-missing fundamental tool required for
a large class of LOCALdeterministic distributed algorithms. The clustering construction of [RG20]
directly implied, among others, first efficient distributed algorithms for MIS (together with the
work of [CHPS17]) and ∆+1 vertex coloring (together with the work of [BKM20]) in the standard
bandwidth-limited CONGESTmodel of distributed computing.
The main difference in the natural low-diameter clustering problem defined above and the weaker

version solved in [RG20] is that clusters are not necessarily connected or induce a low low-diameter
subgraph on their own but instead have low weak-diameter. A cluster has weak-diameter at most
D if any two nodes in the cluster are connected by a path of length at most D in the original graph
G instead of within the cluster itself. Hence, a cluster may even be disconnected. While the weak-
diameter guarantee is enough for derandomizing local computations without bandwidth limitations,
including MIS and ∆+1-coloring, the original – strong-diameter – clustering stated above is clearly
the natural and right object to ask for: It is strictly stronger, easier to define, easier to use in
applications, and requires less and simpler objects and notation. Indeed, in distributed models with
bandwidth limitations, such as the standard CONGESTmodel in which message sizes are restricted,
it is not sufficient that clusters have small weak-diameter but one also needs to guarantee that
there exist so-called low-depth Steiner trees connecting the nodes of each cluster. The collection of
these Steiner-trees must furthermore satisfy additional low-congestion guarantees, i.e., each edge
or each node in the graph is not used by too many trees (as a Steiner node). Algorithms must
also be able to compute the Steiner forest of a weak-diameter clustering efficiently. Lastly, there
are several applications, e.g., low-stretch spanning trees, where strong-diameter clusterings are
strictly required and the weak-diameter guarantee does not suffice [EHRG22]. This motivated the
later works of [CG21, EHRG22] to give low-diameter clustering algorithms with strong-diameter
guarantees, typically first building a weak-diameter clustering and then using this weak-diameter
clustering either for communication or using it as a starting point for building a strong-diameter
clustering out of it recursively. This multi-step process still requires to define and maintain Steiner
forests for weak-diameter clusterings during intermediate steps.
In this work, we show that there is a much simpler and direct way to get strong-diameter

guarantees by designing a natural clustering process that combines key ideas from [RG20] and
[EHRG22].

1.1 Preliminaries: Distributed CONGESTModel and Low-Diameter Clusterings

We will now briefly introduce the standard model for distributed message-passing algorithms – the
CONGESTmodel of distributed computing [Pel00] and also give the definitions of clustering that
we use (see [EHRG22] for more discussion).

CONGEST : Throughout the paper, we work with the CONGESTmodel, which is the standard
distributed message-passing model for graph algorithms [Pel00]. The network is abstracted as an
n-node undirected graph G = (V,E) where each node v ∈ V corresponds to one processor in
the network. Communications take place in synchronous rounds. Per round, each node sends
one O(log n)-bit message to each of its neighbors in G. We also consider the relaxed variant of the
model where we allow unbounded message sizes, called LOCAL . At the end of the round, each node

2

performs some computations on the data it holds, before we proceed to the next communication
round.
We capture any graph problem in this model as follows: Initially, the network topology is not

known to the nodes of the graph, except that each node v ∈ V knows its own unique O(log n)-bit
identifier. It also knows a suitably tight (polynomial) upper bound on the number n of nodes in
the network. At the end of the computation, each node should know its own part of the output,
e.g., in the graph coloring problem, each node should know its own color.
Whenever we say that there is “an efficient distributed algorithm”, we mean that there is a

CONGEST algorithm for the problem with round complexity poly(log n).

Low Diameter Clustering: The main object of interest that we want to construct is a so-called
low diameter clustering, which we formally define after introducing a bit of notation. Throughout
the whole paper we work with undirected unweighted graphs and write G[U] for the subgraph of
G induced by U ⊆ V (G). We use dG(u, v) to denote the distance of two nodes u, v ∈ V (G) in
G. We also simplify the notation to d(u, v) when G is clear from context and generalize it to sets
by defining dG(U,W) = minu∈U,w∈W dG(u,w) for U,W ⊆ V (G). The diameter of G is defined as
maxu,v∈V (G) dG(u, v).
We use the term clustering of G to denote any set of disjoint vertex subsets of G. A low diameter

clustering is a clustering with additional properties:

Definition 1.1 (Low Diameter Clustering). A low diameter clustering C with diameter D of a
graph G is a clustering of G such that:

1. No two clusters C1 6= C2 ∈ C are adjacent in G, i.e., d(C1, C2) ≥ 2.

2. For every cluster C ∈ C, the diameter of G[C] is at most D.

Similarly, we define a low diameter clustering with weak-diameter at most D by replacing the
condition (2) with he requirement that for each cluster C ∈ C and any two nodes u, v ∈ C we have
dG(u, v) ≤ D.
Whenever we construct a low diameter clustering, we additionally want it to cover as many

nodes as possible. Usually, we want to cover at least half of the nodes of G, or formally, we
require that

∣

∣

⋃

C∈C C
∣

∣ ≥ n/2. Sometimes, it is also necessary to generalize (1) and require a larger
separation of the clusters, but this is not considered in this paper.
Let us now give a formal definition of network decomposition.

Definition 1.2 (Network Decomposition). A network decomposition with C colors and diameter D
is a coloring of nodes with colors 1, 2, . . . , C such that each color induces a low-diameter clustering
of diameter D.

Notice that whenever we can construct a low-diameter clustering with diameter D that covers
at least n/2 nodes, we get a network decomposition by repeatedly constructing a low diameter
clustering and removing it from the graph. This way, we achieve a network decomposition with C =
O(log n) and diameter D. Since virtually all deterministic constructions of network decomposition
work this way, we focus on constructing low-diameter clusterings from now on.
The reason why network decomposition is a useful object is that it corresponds to the canonical

way of using clusterings in distributed computing. To give an example, we show how to use it to
solve the maximal independent set problem in the less restrictive LOCALmodel.
Given access to a network decomposition, we iterate over the C color classes and gradually

build independent sets I1 ⊆ I2 ⊆ · · · ⊆ IC where IC is maximal. In the i-th step, each cluster K
of the low-diameter clustering induced by the i-th color computes a maximal independent set in

3

the graph induced by all the nodes in K that are not neighboring a node in Ii−1 and we define Ii
by adding these independent sets to Ii−1. The set IC is clearly maximal. Computing the maximal
independent set inside one cluster K can be done in O(D) rounds of the LOCALmodel as follows:
One node of the cluster collects all the information about G[K] and its neighborhood in G, then
locally computes a maximal independent set, and afterwards broadcasts the solution to the nodes
in the cluster. Hence, the overall algorithm has round complexity O(CD). Hence, given a network
decomposition with C,D = poly(log n), one can compute a maximal independent set in poly(log n)
rounds. Note that this brute-force approach for computing a maximal independent set critically
relies on the fact that the LOCALmodel does not restrict the size of messages.
In the more restrictive CONGESTmodel, computing a maximal independent set inside a low

diameter cluster becomes nontrivial, but one can use the deterministic MIS algorithm of [CHPS17]
with round complexity O(D · poly(log n)) where D is the diameter of the input graph.

1.2 Comparison with Previous Work

We summarize the work on deterministic distributed low-diameter clusterings in the CONGESTmodel
in Table 1.

Paper Fraction of clus-
tered nodes

Diameter of clusters Strong
diameter?

round complexity

[AGLP89] 2−Ω(
√
logn log logn) 2O(

√
logn log logn) X 2O(

√
logn log logn)

[Gha19] 2−Ω(
√
logn) 2O(

√
logn)

X 2O(
√
logn)

[RG20] 1/2 O(log3 n) × O(log7 n)

[GGR21] 1/2 O(log2 n) × O(log4 n)

[CG21] 1/2 O(log2 n) X O(log10 n)

[CG21] 1/2 O(log3 n) X O(log7 n)

[EHRG22] 1/2 O(log2 n) X O(log4 n)

[GGH+22] Ω(1/ log log n) O(log n) X log2(n) · poly(log log n)

[GGH+22] 1/2 O(log n · log log log n) X log2(n) · poly(log log n)

this paper 1/2 O(log3 n) X log6(n)

Table 1: This table shows the previous work on distributed deterministic algorithms for low-diameter clus-
terings. We highlighted the three results relevant for this paper.

There are three highlighted rows in the table, besides our result we highlight the work of [RG20]
and [EHRG22]; The algorithm of this paper combines ideas from both of these papers.
Let us now go through the rows of the table. The first two rows, together with the related

results of [PS92, GP19, GK18] represent the results before the work of [RG20] and are not relevant
to our paper.
Next, there is the work of [RG20] and an improved variant of it by [GGR21]. These were the

first deterministic efficient constructions of low diameter clusterings, however, they suffer from only
providing a weak-diameter guarantee.
Next, the work of [CG21] and [EHRG22] use the algorithm of [GGR21] as a black blox and use

additional ideas on top of the weak-diameter algorithm to create strong-diameter clusterings. The
row with [EHRG22] is highlighted because our algorithm uses an idea similar to theirs.
Finally, a very recent algorithm of [GGH+22] manages to bring down the diameter of the

clusters as well as the round complexity, with a very different technique than [RG20]. However,
their algorithm is very complicated.

4

By far the simplest efficient algorithm from those in the table is the one from [RG20]. We show
that with a small modification to their algorithm in the spirit of the algorithm of [EHRG22], we can
get a very simple algorithm computing strong-diameter clusters. Formally, we show the following
result.

Theorem 1.3. There is a deterministic distributed algorithm that outputs a clustering C of the
input graph G consisting of separated clusters of diameter O(log3 n) such that at least n/2 nodes
are clustered. The algorithm runs in O(log6 n) CONGEST rounds.

Recall that by repeatedly applying above result we get the following corollary.

Corollary 1.4. There is a deterministic distributed algorithm that outputs a network decompo-
sition with C = O(log n) colors and diameter D = O(log3 n). The algorithm runs in O(log7 n)
CONGEST rounds.

Comparison of our algorithm with [RG20]:
We now give a high-level explanation of the algorithm of [RG20] and afterwards compare it to

our algorithm.
In the algorithm of [RG20], we start with a trivial clustering where every node is a cluster. Every

cluster inherits the unique identifier from the starting node. During the algorithm, a cluster can
grow, shrink and some vertices are deleted from the graph and will not be part of the final output
clustering. In the end, the nonempty clusters cluster at least n/2 nodes and their weak-diameter
is O(log3 n).
More concretely, the algorithm consists of b = O(log n) phases where b is the number of bits in

the node identifiers. In phase i, we split clusters into red and blue clusters based on the i-th bit in
their identifier; the goal of the phase is to disconnect the red from the blue clusters by deleting at
most n/(2b) nodes in the graph.
Here is how this is done. The i-th phase consists of O(b log n) steps. In general red clusters can

only grow and blue clusters can only shrink. More concretely, in each step every node in a blue
cluster neighboring with a red cluster proposes to join an arbitrary neighboring red cluster. Now,
for a given red cluster C, if the total number of proposing blue nodes is at least |C|/(2b), then C
decides to grow by adding all the proposing blue nodes to the cluster. Otherwise, the proposing
nodes are deleted which results in C not being adjacent to any other blue nodes until the end of
the phase.
One can see that the number of deleted nodes per phase is only n/(2b) in total, as needed. On

the other hand, each cluster can grow only O(b log n) times until it has more than n nodes, which
implies that the weak-diameter of each cluster grows only by O(b log n) = O(log2 n) per phase.
This concludes the description of the algorithm of [RG20]. Note that the clusters from their

algorithm only have small weak-diameter since the nodes in a cluster can leave it in the future and
the cluster may then even disconnect.
Our strong-diameter algorithm: To remedy the problem with the weak-diameter guaran-

tee, we change the algorithm of [RG20] as follows: Instead of clusters, we will think in terms of
their centers that we call terminals. Given a set of terminals Q such that Q is R-ruling, i.e., for
every u ∈ V (G) we have dG(Q,u) ≤ R, we can always construct a clustering with strong-diameter
R by running a breadth first search from Q. Hence, keeping a set of terminals is equivalent to
keeping a set of strong-diameter clusters.
Our algorithm starts with the trivial clustering where Q = V (G). During the algorithm, we

keep a set of terminals Q and in each of the b phases we delete at most n/(2b) nodes and make
some nodes of Q nonterminals such that those remaining terminals with their i-th bit equal to 0 are

5

in a different component than those that have their i-th bit equal to 1 (see Figure 1). Moreover,
we want that if at the beginning of the phase the set Q is R-ruling, then it is R+O(b log n)-ruling
at the end of the phase (cf. the O(b log n) increase in weak-diameter in the algorithm of [RG20]).
At the beginning of each phase, we run a breadth first search from the set Q, which gives us a

clustering with strong diameter R (see the left picture in Figure 2). We in fact think of each cluster
as a rooted tree of radius R.
We then implement the same growing process as [RG20], but with a twist: whenever a blue

node v proposes to join a red cluster, the whole subtree rooted at v proposes instead of just v (see
the middle picture in Figure 2). This is because rehanging/deleting the whole subtree does not
break the strong-diameter guarantee of blue clusters. If a blue node joins a red cluster, it stops
being a terminal.
The only new argument that needs to be done is that the diameter of red clusters does not grow

a lot, which is trivial in the algorithm of [RG20] and follows by a simple argument in our algorithm.
We note that the algorithm of [EHRG22] also keeps track of terminals. However, to separate the

red and blue terminals in one phase their algorithm relies on computing global aggregates, which
can only be done efficiently on a low-diameter input graph.

2 Clustering Algorithm

In this section we prove Theorem 2.1 given below, which is a more precise version of Theorem 1.3.

Theorem 2.1 (Clustering Theorem). Consider an arbitrary n-node network graph G = (V,E)
where each node has a unique b = O(log n)-bit identifier. There is a deterministic distributed
algorithm that, in O(log6 n) rounds in the CONGESTmodel, finds a subset V ′ ⊆ V of nodes, where
|V ′| ≥ |V |/2, such that the subgraph G[V ′] induced by the set V ′ is partitioned into non-adjacent
disjoint clusters of diameter O(log3 n).

Qi Qi+1

Figure 1: The figure shows one phase of the algorithm from Theorem 2.1. The left figure contains a 3-ruling
set of terminal nodes Qi that we start with at the beginning of phase i. We split Qi into red and blue
terminals according to the (i+1)-th bit of their identifiers. Then, we implement one phase of the algorithm.
As a result, some of the nodes are deleted (grey) and some blue terminals stop being terminals. The set of
remaining terminals Qi+1 is on one hand 6-ruling, on the other hand the blue terminals in Qi+1 are separated
from the red terminals.

6

V
propose

0

F0

F1

Figure 2: This figure explains one step of the algorithm of Theorem 2.1, namely it shows what happens
between the middle and the right picture of Figure 1. The left picture illustrates the beginning of the phase
where we compute a BFS forest F0 from the set Q of terminals. In the first (and any other) step (the middle
picture) we construct a set V propose

0 . Some proposals are accepted and the respective blue nodes join red
clusters, while some proposals are rejected and respective blue nodes are deleted (the right picture).

We start by describing the algorithm outline of Theorem 2.1. The construction has b = O(log n)
phases, corresponding to the number of bits in the identifiers. For i ∈ [0, b−1], we denote by Vi the
set of living vertices at the beginning of phase i. Initially, all nodes are living and therefore V0 = V .
In each phase, at most |V |/(2b) nodes die. Dead nodes remain dead and will not be contained in
V ′. Some of the alive nodes are terminals. We denote the set of terminals at the beginning of phase
i by Qi. Initially, all living nodes are terminals and therefore Q0 = V .
Slightly abusing the notation, we let Vb and Qb denote the set of living vertices and terminals

at the end of phase b−1, respectively. We define V ′ to be the final set of living nodes, i.e., V ′ = Vb,
and each connected component of G[V ′] will contain exactly one terminal in Qb.
For stating the key invariants the algorithm satisfies, we need the following standard definition

of a ruling set:

Definition 2.2 (Ruling set). We say that a subset Q ⊆ V (G) is R-ruling in G if every node
v ∈ V (G) satisfies dG(Q, v) ≤ R.

Construction invariants: The construction is such that, for each i ∈ [0, b], the following three
invariants are satisfied:

I. Ruling Invariant: Qi is Ri-ruling in G[Vi] for Ri = i · O(log2 n).

II. Separation Invariant: Let q1, q2 ∈ Qi be two nodes in the same connected component of G[Vi].
Then, the identifiers of q1 and q2 coincide in the first i bits.

III. Deletion Invariant: |Vi| ≥
(

1− i
2b

)

|V |.

Note that setting V0 = Q0 = V indeed results in the invariant being satisfied for i = 0. In the
end, we set V ′ = Vb. The deletion invariant for i = b states that |V ′| ≥ |V |/2. The separation
invariant implies that each connected component ofG[V ′] contains at most one node ofQb. Together
with the ruling invariant, which states that Qb is Rb-ruling in G[V ′] for Rb = O(log3 n), this implies

7

that each connected component of G[V ′] has diameter O(log3 n). Next, in Section 2.1 we present
the outline of one phase. Afterwards, in Section 2.2 we prove the correctness of the algorithm and
analyse the CONGEST complexity.

2.1 Outline of One Phase

In phase i, we compute a sequence of rooted forests F0, F1, . . . , Ft in t = 2b2 = O(log2 n) steps. At
the beginning, F0 is simply a BFS forest in G[Vi] from the set Qi. At the end, we set Vi+1 = V (Ft)
and Qi+1 is the set of roots of the forest Ft.
Let j ∈ {0, 1, . . . , t − 1} be arbitrary. We now explain how Fj+1 is computed given Fj . In

general, each node contained in Fj+1 is also contained in Fj , i.e., V (Fj+1) ⊆ V (Fj), and each root
of Fj+1 is also a root in Fj . We say that a tree in Fj is a red tree if the (i+1)-th bit of the identifier
of its root is 0 and otherwise we refer to the tree as a blue tree. Also, we refer to a node in a red
tree as a red node and a node in a blue tree as a blue node. Each red node in Fj will also be a red
node in Fj+1. Moreover, the path to its root is the same in both Fj and Fj+1. Each blue node in
Fj can (1) either be a blue node in Fj+1, in which case the path to its root is the same in both Fj

and Fj+1, (2) be deleted and therefore not be part of any tree in Fj+1, (3) become a red node in
Fj+1.
Let V propose

j be the set which contains each node v which (1) is a blue node in Fj , and (2) v is
the only node neighboring a red node (in the graph G) in the path from v to its root in Fj . For a
node v ∈ V propose

j , let Tv be the subtree rooted at v with respect to Fj . Note that it directly follows
from the way we defined V propose

j that v is the only node in Tv which is contained in V propose
j .

Each node in V propose
j proposes to an arbitrary neighboring red tree in Fj . Now, a given red

tree T in Fj decides to grow if

∑

v∈V propose

j
:

v proposes to T

|V (Tv)| ≥
|V (T)|

2b
.

If T decides to grow, then it accepts all the proposals it received, and otherwise T declines all
proposals it received. We now set

V (Fj+1) = V (Fj) \

⋃

v∈V propose

j
,

the proposal of v was declined

V (Tv)

.

Each node in V (Fj+1) \ V
propose
i has the same parent in Fj+1 and Fj , or is a root in both Fj+1

and Fj . Each node in V (Fj+1)∩ V propose
j , i.e., each node whose proposal got accepted by some red

tree T in Fj , changes its parent to be an arbitrary neighboring node in the tree T . Note that if a
red tree T decides to grow, then the corresponding tree in Fj+1 contains at least

(

1 + 1
2b

)

|V (T)|
vertices. Moreover, if T does not decide to grow, then T is also a tree in Fj+1 and is not neighboring
with any blue tree in Fj+1. This follows from the fact that each blue node neighboring a red tree
either becomes a red node or gets deleted.
We now have fully specified how the rooted forests F0, F1, . . . , Ft are computed and recall that

in the end we set Vi+1 = V (Ft) and Qi+1 is the set of roots of the forest Ft.

8

2.2 Analysis

For each j ∈ {0, 1, . . . , t} and u ∈ V (Fj), we define dj(u) as the length of the path from u to its
root in Fj . Note that as F0 is a BFS forest, for any neighboring nodes w, v ∈ V (F0) it holds that
d0(w) ≤ d0(v) + 1.

Claim 2.3 (Ruling Claim). For every i ∈ {0, 1, . . . , t}, the following holds:

Blue Property: Every blue node in Fj satisfies dj(u) = d0(u).

Red Property: Every red node in Fj satisfies dj(u) ≤ d0(u) + 2j.

In particular, this implies that Invariant (I) is preserved.

Proof. The blue property directly follows from the fact that for any blue node the path to its root
in Fj is the same as the path to its root in F0. We prove the red property by induction on j. The
base case j = 0 trivially holds.
For the induction step, consider an arbitrary j ∈ {0, 1, . . . , t− 1}. We show that the statement

holds for j + 1 given that it holds for j.
Consider an arbitrary red node u in Fj+1. We have to show that dj+1(u) ≤ d0(u) + 2(j + 1).

If u is also a red node in Fj , then we can directly use induction. Hence, it remains to consider the
case u is a blue node in Fj .
In that case, there exists a node v ∈ V propose

j such that u ∈ V (Tv) and the proposal of v was
accepted. In particular, v’s parent in Fj+1 is some neighboring node w which is part of some red
tree in Fj (see Figure 3).
The path from u to its root r in Fj+1 can be decomposed into a path from u to v, an edge from

v to w and a path from w to its root r.
The path from u to v in Fj+1 is the same as the path from u to v in F0 and therefore of length

d0(u)−d0(v). The path from w to r in Fj+1 is the same as the path from w to r in Fj and therefore
has a length of dj(w) with dj(w) ≤ d0(w) + 2j according to the induction hypothesis. Moreover,
we noted above that because w and v are neighbors, we have d0(w) ≤ d0(v) + 1. Hence, we can
upper bound the length of the path from u to its root in Fj+1 by

dj+1(u) ≤ (d0(u)− d0(v)) + 1 + (d0(w) + 2j) ≤ d0(u) + 2(j + 1)

which finishes the induction proof. It remains to prove the last part of the claim. To that end,
assume that the ruling invariant is satisfied for i, i.e., Qi is Ri-ruling in G[Vi] for Ri = i ·O(log2 n).
Then, every node u in V (Ft) = Vi+1 satisfies

dG[Vi+1](Qi+1, u) ≤ dt(u) ≤ d0(u) + 2t ≤ i ·O(log2 n) +O(log2 n) = (i+ 1)O(log2 n)

and therefore the ruling invariant is satisfied for i+ 1.

Claim 2.4. (Separation Claim) No red node in Ft is neighboring a blue node in Ft. In particular,
this implies that Invariant (II) is preserved.

Proof. We observed during the algorithm description that each red tree that decides to grow grows
by at least a (1 + 1

2b)-factor in a given step. Our choice of t = 2b2 implies that

9

u

w
v

r

Figure 3: The figure shows the situation in the proof of Claim 2.3. The path from u to r splits into three
parts: from u to v, then to w, then to r. The length of each part is upper bounded separately.

(

1 +
1

2b

)t

=

(

(

1 +
1

2b

)2b
)(t/2b)

> 2t/2b = 2b ≥ n,

and therefore each tree eventually stops growing. However, once a tree decides not to grow, it
is not neighboring with any blue node and therefore no red node in Ft is neighboring a blue node in
Ft. In particular, this implies that each connected component of G[Vi+1] = G[V (Ft)] either entirely
consists of blue nodes in Ft or entirely consists of red nodes in Ft. As the (i + 1)-th bit of the
identifier of each red root in Ft is 0 and the (i + 1)-th bit of the identifier of each blue root in Ft

is 1, we get that each connected component of G[Vi+1] either contains no node in Qi+1 with the
(i + 1)-th bit of the identifier being 0 or no node in Qi+1 with the (i + 1)-th bit of the identifier
being 1, which implies that the separation invariant is preserved.

Claim 2.5 (Deletion Claim). It holds that |Vi+1| = |V (Ft)| ≥
(

1− 1
2b

)

|V (F0)| ≥ |Vi| −
|V |
2b . In

particular, this implies that Invariant (III) is preserved.

Proof. A node u got deleted in step i, i.e., u ∈ V (Fj)\V (Fj+1), because of some tree T in Fj which
decided to stop growing, as

∑

v∈V propose

j
: v proposes to T

|V (Tv)| <
|V (T)|

2b
.

We blaim this tree T for deleting u. Note that T only receives blaim in step j and at most |V (T)|
2b

deleted nodes blaim T . During the algorithm description, we observed that T is not neighboring
any blue node in Fj+1 and therefore T is also a tree in Ft. Hence, each deleted node in V (F0)\V (Ft)
can blaim one tree T in Ft for being deleted in such a way that each such tree gets blaimed by at
most 1

2b |V (T)| nodes, which directly proofs the claim.

Proof of Theorem 2.1. The algorithm has O(log n) phases, with each phase consisting of O(log2 n)
steps. It directly follows from the ruling claim that each step can be executed in O(log3 n)
CONGEST rounds. Hence, we can compute V ′ in O(log6 n) CONGEST rounds, which together with
the previous discussion finishes the proof of Theorem 2.1.

3 Acknowledgments

We want to thank Mohsen Ghaffari for many valuable suggestions.

10

References

[AGLP89] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In Proc. 30th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 364–369, 1989.

[BKM20] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed
coloring with small bandwidth. In Proc. Principles of Distributed Computing (PODC),
pages to appear, arXiv:1912.02814, 2020.

[CG21] Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
PODC’21, page 273–281, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[CHPS17] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. In 31st International Symposium
on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[EHRG22] Michael Elkin, Bernhard Haeupler, Václav Rozhoň, and Christoph Grunau. Deter-
ministic low-diameter decompositions for weighted graphs and distributed and parallel
applications. In Proc. Foundations of Computer Science (FOCS), pages to appear,
arXiv:2204.08254, 2022.

[GGH+22] Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav
Rozhoň. Improved distributed network decomposition, hitting sets, and spanners, via
derandomization. arXiv preprint arXiv:2209.11669, 2022.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic net-
work decomposition. In Proc. of the 32nd ACM-SIAM Symp. on Discrete Algorithms
(SODA), page 2904–2923, USA, 2021. Society for Industrial and Applied Mathematics.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
805–820. SIAM, 2019.

[GK18] Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small
messages: Spanners and dominating set. In 32nd International Symposium on Dis-
tributed Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[GP19] Mohsen Ghaffari and Julian Portmann. Improved network decompositions using small
messages with applications on mis, neighborhood covers, and beyond. In 33rd Interna-
tional Symposium on Distributed Computing, 2019.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036–1053, 1986.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

11

[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for
coloring and network decomposition problems. In Proc. 24th ACM Symp. on Theory of
Computing (STOC), pages 581–592, 1992.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In STOC, 2020.

12

	1 Introduction
	1.1 Preliminaries: Distributed CONGESTModel and Low-Diameter Clusterings
	1.2 Comparison with Previous Work

	2 Clustering Algorithm
	2.1 Outline of One Phase
	2.2 Analysis

	3 Acknowledgments

