
ar
X

iv
:2

21
1.

04
68

5v
1

 [
cs

.D
S]

 9
 N

ov
 2

02
2

Tight Bounds for Vertex Connectivity in Dynamic Streams

Sepehr Assadi∗ Vihan Shah†

Abstract

We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a
(nearly) optimal space bound: for any n-vertex graph G and any integer k > 1, our algorithm with high

probability outputs whether or not G is k-vertex-connected in a single pass using Õ(kn) space1.

Our upper bound matches the known Ω(kn) lower bound for this problem even in insertion-only
streams—which we extend to multi-pass algorithms in this paper—and closes one of the last remaining
gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel
analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015]

who obtained an Õ(k2n) space algorithm for this problem. This also gives a model-independent algorithm
for computing a “certificate” of k-vertex-connectivity as a union of O(k2 log n) spanning forests, each on
a random subset of O(n/k) vertices, which may be of independent interest.

Contents

1 Introduction 1

2 Preliminaries 3

3 A Certificate of Vertex Connectivity 3

3.1 Proof of Lemma 3.4 . 6

3.2 Proof of Lemma 3.5 . 8

4 The Dynamic Streaming Algorithm 9

5 The Lower Bound 9

A An Insertion-Only Streaming Algorithm 13

B Mader’s Theorem 15

∗(sepehr@assadi.info) Department of Computer Science, Rutgers University. Research supported in part by a NSF CAREER
Grant CCF-2047061, a Google Research gift, and a Fulcrum award from Rutgers Research Council.

†(vihan.shah98@rutgers.edu) Department of Computer Science, Rutgers University. Research supported in part by a NSF
CAREER Grant CCF-2047061.

1Throughout the paper, we use Õ(f) := O(f · poly log f) to hide poly-logarithmic factors.

http://arxiv.org/abs/2211.04685v1
mailto:sepehr.assadi@rutgers.edu
mailto:vihan.shah98@rutgers.edu

1 Introduction

The vertex connectivity of an undirected graph G = (V,E), with n vertices and m edges, is the size of the
smallest vertex cut in G, defined as the minimum number of vertices whose removal disconnects the graph
(or turns it into a singleton vertex). Finding the vertex connectivity of a graph is a fundamental problem in
combinatorial optimization and has been extensively studied in the literature; see, e.g., [Kle69,Pod73,ET75,
BDD+82,LLW88,HRG00,LNP+21]. This problem can be solved in “polylogarithmic max-flow time” via a
result of [LNP+21], which combined with the recent breakthrough improvement for max-flow computation
in [CKL+22], leads to an m1+o(1) time algorithm for vertex connectivity.

We study the vertex connectivity problem in dynamic streams. In this model, the edges of the input
graph G are presented to the algorithm as a sequence of both edge insertions and deletions. The goal is to,
given an integer k at the start of the stream, process the stream with limited space and at the end output
whether or not the graph is k-vertex-connected, namely, its vertex connectivity is at least k. In fact, in our
algorithm, we focus on not only deciding if the graph is k-vertex connected or not, but also outputting a
certificate of k-vertex-connectivity defined as follows:

Definition 1.1. For any graph G = (V,E), a certificate of k-vertex-connectivity for G is a subgraph on
the same vertex set H = (V,EH) such that G is k-vertex-connected if and only if H is k-vertex-connected.

A certificate of k-vertex-connectivity needs Ω(kn) edges since any k-vertex-connected graph has at least
kn/2 edges, as it needs to have a minimum degree of at least k. Mader’s theorem (see Proposition A.2)
implies that there is also always a certificate with O(kn) edges although we will not use this result directly
in our dynamic streaming algorithm.

In insertion-only streams with no edge deletions, it has been known since the introduction of the model
in [FKM+05], that one can find a certificate of k-vertex connectivity in Õ(kn) space using the sparsification
techniques of [CKT93] or [EGIN97]2, which is nearly optimal. Moreover, [SW15] proved that Ω(kn) space
is needed even for the original (decision) problem, thus settling the space complexity of the problem in
insertion-only streams, up to logarithmic factors. But when it comes to dynamic streams, the best upper
bound achieves Õ(k2n) space [GMT15] with no better known lower bounds. We close this gap in this paper.

Our main result is a general (model-independent) approach for computing a vertex connectivity certificate.

Result 1 (Formalized in Theorem 1). For any graph G and integer k > 1, let H be a subgraph of G
with O(kn logn) edges obtained as a union of O(k2 logn) spanning forests, each on a random subset
of O(n/k) vertices chosen independently of the others. Then, with high probability, H is a certificate
of k-vertex-connectivity for G. This certificate also preserves all vertex cuts of size up to k and can
determine if any two given vertices are k-vertex-connected or not.

Result 1 reduces the problem of finding a certificate of k-vertex-connectivity to computing spanning
forests on random subsets of vertices. This gives a general approach for solving k-vertex-connectivity across
different models that can be of its own independent interest. In particular, Result 1 immediately leads
to a dynamic streaming algorithms for k-vertex-connectivity when combined with the dynamic streaming
algorithms of [AGM12a] for computing spanning forests.

Result 2 (Formalized in Theorem 2). There is a randomized single-pass Õ(kn) space algorithm that solves
k-vertex-connectivity with high probability in dynamic streams.

Result 2 also closes one of the last remaining gaps in understanding of dynamic versus insertion-only
streams. Starting with the breakthrough of [AGM12a] that initiated the study of dynamic graph streams,
various graph problems such as cut sparsifiers [AGM12b], spectral sparsifiers [KLM+17], densest sub-
graph [MTVV15], subgraph counting [AGM12b], and (∆+1)-vertex coloring [ACK19] were shown to admit
algorithms in dynamic streams with similar guarantees as those of insertion-only streams. In particular, for
the closely related problem of k-edge-connectivity, it was shown already by [AGM12a] how to obtain similar

2While this connection has been observed in several places, e.g., in [SW15,GMT15], we are not aware of a concrete reference
that includes this proof in the streaming model and thus provide a self-contained proof in Appendix A for completeness.

1

bounds in dynamic streams as insertion-only streams. For a few other problems such as maximum matchings
and minimum vertex cover, strong separations between the two models were proven in [Kon15,AKLY16] (see
also [DK20,AS22,NS22]); a conjectured separation for the shortest path problem also appears in [FKN21].
Before our Result 2 however, it was not clear vertex connectivity belongs to which family of these problems.

As a secondary result, we also extend the previous Ω(kn) lower bound of [SW15] to multiple passes.

Result 3 (Formalized in Theorem 3). Any randomized p-pass streaming algorithm that solves k-vertex-
connectivity with constant probability even in insertion-only streams, needs Ω(kn/p) space.

Result 3 is proven by lower bounding the communication complexity of k-vertex-connectivity problem
with Ω(kn) bits. This also answers an open problem of [BBE+22] in negative that asks whether recent
equivalences between vertex connectivity and vertex-capacitated max-flow in [LNP+21] in classical setting
also extends to communication complexity model (a recent result of [BBE+22] shows that vertex-capacitated

max-flow (unit capacity) can be solved with Õ(n) communication, while our communication lower bound
in general implies an Ω(n2) lower bound for determining the vertex connectivity of a graph, thus ruling
out such an equivalence). We remark that our Result 3, similar to the previous lower bound for streaming
vertex connectivity in [SW15], holds on multi-graphs (with at most two parallel edges per pairs of vertices);
our algorithm in Result 2 also works for multi-graphs. It remains an interesting open question to prove any
streaming lower bound for vertex connectivity on simple graphs as well (even for single-pass algorithms).

Our techniques. Result 1 (and by extension Result 2) is obtained via a novel and improved analysis of
the dynamic streaming algorithm of [GMT15] (with minor modifications), that leads to an improved bound
on the size of the certificate3. [GMT15] presented algorithms for two relaxations of the vertex connectivity
problem in dynamic streams:

• k-vertex-query-connectivity problem: the algorithm is additionally given a set X of size at most k
after the stream and the goal is to determine whether removing X from G disconnects the graph or not
(this is similar to the vertex-failure connectivity oracle problem studied in [LS22]). [GMT15] showed

that this problem can be solved in Õ(kn) space (and that this is also nearly optimal for this problem).

• promised-gap k-vertex-connectivity problem: the algorithm is given a parameter ε ∈ (0, 1) at the
start of the stream and the goal is to determine whether the vertex connectivity of the input graph
G is at least k or at most (1 − ε) · k. [GMT15] showed that this problem could be solved in Õ(kn/ε)
space (using an algorithm quite similar to the one for the previous case).

Both these algorithms work roughly as follows (think of ε = Θ(1) for the second one in this context): for

Õ(k2) times in parallel, sample Õ(n/k) vertices from the input graph uniformly at random and maintain a
spanning forest on these vertices using the dynamic streaming algorithm of [AGM12a] (this is basically the
same approach taken in our Result 1). Then, solve the problem on these stored set of edges at the end of the

stream. This approach can be implemented in Õ(k2) · Õ(n/k) = Õ(kn) space and [GMT15] proves, using a
somewhat different analysis, that this solves the problem in each case with high probability.

One can solve the original k-vertex-connectivity problem using this approach as follows. For the query
problem, boost the probability of success of the algorithm to 1 − n−k by running the algorithm in parallel
Θ(k logn) times; this allows for taking a union bound over at most

(
n
k

)
possible choices for the query set X

and testing whether removal of any of them can disconnect the graph. For the promised-gap problem, we
can set ε = 1/k which allows us to distinguish between graphs with vertex connectivity k versus k − 1 and
thus solve the k-vertex-connectivity problem. Nevertheless, as is apparent, either of these solutions leads to
an algorithm with Õ(k2n) space which is sub-optimal.

The key novelty in our work is another analysis of essentially the same vertex-sampling plus spanning
forest computation approach of [GMT15]. This analysis allows us to “beat the union bound” over all possible
k-subsets of vertices as candidate choices for the vertex cut, that was the source of the additional factor k
in space in the algorithm of [GMT15]. In particular, our analysis consists of two parts. We first show that
all pairs of vertices with sufficiently “high” vertex connectivity, say, at least 2k, remain at least k-vertex-
connected even over the stored edges of the sampling approach (this part is quite similar to the guarantee

3The algorithm in [GMT15] is presented as a streaming algorithm but it implicitly gives a certificate with O(k2n logn) edges.

2

of promised-gap algorithm of [GMT15]). We then prove that all edges in the input graph with “low” vertex
connectivity between their endpoints, say, less than 2k, are recovered by this sampling approach entirely4.
Finally, we combine these two parts to argue that the sampled set of edges is a certificate for k-vertex-
connectivity of the input graph and conclude the proof. This proof more generally shows that all minimum
(global) vertex cuts as well as all s-t vertex cuts of size up to k are preserved in this sampling process.

2 Preliminaries

Notation. For a graph G = (V,E), we use deg(v) and N(v) for each vertex v ∈ V to denote the degree and
neighborhood of v, respectively. For a subset F of edges in E, we use V (F) to denote the vertices incident
on F ; similarly, for a set U of vertices, E(U) denotes the edges incident on U . We further use G[U] for any
set U of vertices to denote the induced subgraph of G on U . For any two vertices s, t ∈ V , we say that a
collection of s-t paths are vertex-disjoint if they do not share any vertices other than s and t.

We use the following standard forms of Chernoff bounds.

Proposition 2.1 (Chernoff bound; c.f. [DP09]). Suppose X1, . . . , Xm are m independent random variables
with range [0, b] each for some b > 1. Let X :=

∑m
i=1 Xi and µL 6 E [X] 6 µH . Then, for any ε > 0,

Pr(X > (1 + ε) · µH) 6 exp

(
−

ε2 · µH

(3 + ε) · b

)
and Pr(X < (1− ε) · µL) 6 exp

(
−

ε2 · µL

(2 + ε) · b

)
.

We use the term “with high probability” to mean with probability at least 1−1/nc for some large constant
c > 0, which can be made arbitrarily large by increasing the space of our algorithms with a constant factor.

Dynamic graph streams. The dynamic graph streaming model is defined formally as follows.

Definition 2.2. A dynamic stream σ = (σ1, . . . , σN) defines a multi-graph G = (V,E) on n vertices. Each
entry of the stream is a tuple σk = (ik, jk,∆k) for ik, jk ∈ [n] and ∆i ∈ {−1,+1}. The multiplicity of an
edge (u, v) is defined as:

A(u, v) =
∑

σk:ik=u ∧ jk=v

∆k.

The multiplicity of every edge is required to be always non-negative.

The goal in this model is to design algorithms that can process a dynamic stream using limited space
and at the end of the stream, output a solution to the underlying problem for the (multi-)graph defined by
the stream. Throughout the paper, we measure the space of the algorithms in bits.

We use the algorithm of [AGM12a] that can find a spanning forest of a graph in a dynamic stream.

Proposition 2.3 ([AGM12a]). There is an algorithm that given any N -vertex graph G in a dynamic stream
and δ ∈ (0, 1), computes a spanning forest T of G with probability at least 1− δ in O(N log3(N/δ)) space.

3 A Certificate of Vertex Connectivity

We present a certificate of k-vertex-connectivity in this section, formalizing Result 1. Our algorithm is
virtually identical (up to changing constants and ignoring implementation details in dynamic streams) to the
algorithm in [GMT15] for the k-vertex-query-connectivity problem mentioned in the introduction. However,
we provide an improved analysis showing that it also works for the k-vertex-connectivity problem.

4The fact that the number of these edges itself is sufficiently small is a direct corollary of Mader’s theorem (Proposition A.2)
that states that every graph with O(kn) edges has a (2k)-vertex-connected subgraph. This theorem is at the heart of existing
(near) optimal algorithms for vertex connectivity in insertion-only streams (see Appendix A). Nevertheless, since our proof
requires additionally recovering these edges via a particular sampling method, it does not rely on Mader’s theorem, and instead,
as a corollary, implies a weaker variant of Mader’s theorem (with O(kn logn) edges instead) via a probabilistic argument quite
different from the standard proofs of this theorem (Appendix B).

3

Algorithm 1. An algorithm for computing a certificate of k-vertex-connectivity.

Input: A graph G = (V,E) and an integer k.

Output: A certificate H for k-vertex-connectivity of G.

1. For i = 1, 2, . . . , r :=
(
200k2 lnn

)
do the following:

• Let Vi be a subset of V where each vertex is sampled independently with probability 1/k.

• Let Gi = G[Vi] be the induced subgraph of G on Vi.

• Compute a spanning forest Ti of Gi.

2. Output H := T1 ∪ T2 ∪ . . . ∪ Tr as a certificate for k-vertex-connectivity of G.

The following theorem proves the main guarantee of this algorithm.

Theorem 1. Algorithm 1, given any graph G = (V,E) and any integer k > 1, outputs a certificate H of
k-vertex-connectivity of G with O(kn · logn) edges with high probability.

The analysis in the proof of Theorem 1 is twofold. We first show that pairs of vertices that are at least
2k-vertex-connected in G stay k-vertex-connected in H . Secondly, we show that edges whose endpoints are
not 2k-vertex-connected in G will be preserved in H . Putting these together, we then show that H is a
certificate for k-vertex-connectivity of G and has at most Õ(kn) edges.

We start by bounding the number of edges of the certificate H . We first show that the sum of sizes of Vi

is O(kn log n) with high probability.

Claim 3.1.
∑r

i=1 |Vi| = O(kn · log n) with high probability.

Proof. For any iteration i ∈ [r], the graph Gi has n/k vertices in expectation. We have r = O(k2 lnn)
iterations so

∑r
i=1 |Vi| = O(kn · log n) in expectation. We prove this is the case with high probability as well.

For i ∈ [r], let Xi be the random variable denoting the number of vertices in Vi. We know that 0 6 Xi 6 n
(the inequalities are tight when Vi = ∅ and Vi = V). Let X =

∑
iXi be the random variable governing

the sum of sizes of Vi’s. We have E [Xi] = n/k implying E [X] = µ = r · (n/k). Using a Chernoff bound
(Proposition 2.1) with parameters b = n and ε = 1 we get:

Pr(X > 2µ) 6 exp

(
−µ

4b

)
= exp

(
−r · (n/k)

4n

)
= exp(−50k lnn) 6 n−50.

Thus, we get that the
∑r

i=1 |Vi| 6 2µH = O(kn · logn) with high probability as well.

Lemma 3.2. The certificate H in Algorithm 1 has O(kn · logn) edges with high probability.

Proof. Each spanning forest Ti has at most |Vi| edges. Thus, the total number of edges in H can be bounded
by

∑r
i=1 |Vi| = O(kn · logn) with high probability (by Claim 3.1).

We now prove the correctness of this algorithm in the following lemma.

Lemma 3.3. Subgraph H of Algorithm 1 is a certificate of k-vertex-connectivity for G with high probability.

Lemma 3.3 will be proven in two steps. We first show that every pair of vertices that have at least 2k
vertex-disjoint paths between them in G have at least k vertex-disjoint paths in H with high probability5.

Lemma 3.4. Every pair of vertices s, t in G that have at least 2k vertex-disjoint paths between them in G
have at least k vertex-disjoint paths in H with high probability.

5By Menger’s theorem (Proposition A.1), this is equivalent to saying any pair of vertices that are (2k)-vertex-connected in
G remain at least k-vertex-connected in H. However, we do not need to explicitly use Menger’s theorem in our proofs.

4

We then show that every edge whose endpoints have less than 2k vertex-disjoint paths between them in
G will belong to H as well.

Lemma 3.5. Every edge (s, t) ∈ G that has less than 2k vertex-disjoint paths between its endpoints in G
belongs to H also with high probability.

The proofs of these lemmas appear in the next two subsections. We first use these lemmas to prove
Lemma 3.3 and conclude the proof of Theorem 1.

Proof of Lemma 3.3. We first condition on the events in Lemma 3.4 and Lemma 3.5 both of which happen
with high probability. We also condition on the event that H has the same set of vertices as G. This event
also happens with high probability because the probability that a given vertex is not in H is (1 − 1/k)r 6

exp(−200k · lnn) = n−200k and hence by a union bound, all vertices in G are also in H with high probability.
All in all, by a union bound, all the above events happen together with high probability.

We need to show that H is k-vertex-connected iff G is k-vertex-connected. If H is k-vertex-connected
then G is also k-vertex-connected simply because H is a subgraph of G (and crucially on the same set of
vertices, namely, it is a spanning subgraph).

We now assume towards a contradiction that G is k-vertex-connected, but H is not. This means that
there is a vertex cut X of size at most k − 1 such that there is a partition (S,X, T) of V with no edges
between S and T in H (so that removing X disconnects H). Since G is k-vertex-connected, X cannot be a
vertex cut in G and thus G has an edge e = (s, t) between S and T (see Figure 1).

S T

ts
X

e ∈ G−H

Figure 1: An illustration of the partition (S,X, T) of vertices of G and H . There are no edges between S and T in
H , while G has at least one edge e = (s, t) between S and T , to ensure its k-vertex-connectivity as |X| < k.

We now consider two cases.

• Case 1: s and t have at least 2k vertex-disjoint paths between them in G.
By conditioning on the event of Lemma 3.4, we can say that s and t have at least k vertex-disjoint
paths in H . Deleting X can remove at most |X | 6 k − 1 of these paths in H −X . This implies that
there is still an s-t path in H−X and thus there is an edge between S and T in H−X , a contradiction.

• Case 2: s and t have less than 2k vertex-disjoint paths between them in G.
Since there are fewer than 2k vertex-disjoint paths between s and t in G, by conditioning on the event
of Lemma 3.5, e would be preserved in H , a contradiction with H having no edge between S and T .

In conclusion, we get that H is a certificate of k-vertex-connectivity for G with high probability.

Theorem 1 now follows immediately from Lemma 3.2 and Lemma 3.3.

Before moving on from this section, we present the following corollary of Algorithm 1 that allows for
using this algorithm for some other related problems in dynamic streams as well.

Corollary 3.6. The subgraph H output by Algorithm 1 with high probability satisfies the following guaran-
tees:

(i) For any pair of vertices s, t in G, there are at least k vertex-disjoint s-t paths in G iff there at least k
vertex-disjoint s-t paths in H (this holds even if G is not k-vertex-connected).

5

(ii) Every vertex cut of H with size less than k is a vertex cut in G and vice versa (this means all vertex
cuts of G are preserved in H as long as their size is less than k).

The proof of this corollary is identical to that of Lemma 3.3 and is thus omitted.

3.1 Proof of Lemma 3.4

We prove Lemma 3.4 in this part following the same approach as in [GMT15]. For this proof, without loss
of generality, we can assume that k > 1: for k = 1, each graph Gi is the same as G and thus the algorithm
in Proposition 2.3 computes an s-t path which will be added to H , trivially implying the proof.

Fix any pair of vertices s, t with at least 2k vertex-disjoint paths between them. We choose an arbitrary
set X of vertices with size k− 1, and the goal is to show that s and t remain connected in the graph H −X
with very high probability. We do so by showing that out of the at least k vertex-disjoint paths between s
and t in G−X , with probability 1 − n−Θ(k), at least one of them is entirely sampled as part of the subset
of Gi’s for i ∈ [r] that do not contain any vertex from X . This will be sufficient to prove existence of a s-t
path in H −X . A union bound over the

(
n

k−1

)
choices of X and

(
n
2

)
pairs s, t concludes the proof.

Fix X as a set of k − 1 vertices that contains neither s nor t. Define:

I(X) := {i ∈ [r] : Vi ∩X = ∅} ; (1)

that is, the indices of sampled graphs in G1, . . . , Gr that contain no vertex from X . We first argue that
|I(X)| is large with high probability.

Claim 3.7. Pr(|I(X)| 6 r/8) 6 n−5k.

Proof. Fix any index i ∈ [r] and a vertex v ∈ X . The probability that v is not sampled in Vi is (1− 1/k) by
definition and thus,

Pr(Vi ∩X = ∅) = (1− 1/k)k−1
> 1/4,

given that k > 1 (as argued earlier) and the choice of vertices is independent in Vi. Therefore, we have,

E |I(X)| = r · (1− 1/k)k−1
> r/4.

By an application of the Chernoff bound (Proposition 2.1) with µL = r/4 and ε = 1/2, we have,

Pr(|I(X)| 6 r/8) 6 exp(−r/4 · 1/10) < n−5k.

In the rest of the proof we condition on the event that |I(X)| > r/8. To continue, we need some definitions.
There are more than k vertex-disjoint paths between s and t in G − X since there were 2k of them in G
and only k− 1 vertices (set X) are deleted. Choose k of them arbitrarily denoted by P1(X), . . . , Pk(X). For
each path Pj(X), let aj be the edge incident to s, Bj be the remaining path until the final edge cj which is
incident to t – it is possible for ai and ci to be the same and Bi be empty (see Figure 2 for an illustration).

s t
a2 B2

.

.

.

c2

a1

B1

c1

ak

Bk

ck

Figure 2: An illustration of the s-t paths P1(X), P2(X), . . . , Pk(X). Each Pj(X) consists of an edge aj from s, a
path Bj until the last edge cj to t.

We define the notion of “preserving” a path.

Definition 3.8. Let GX := ∪i∈I(X)Gi be the union of graphs indexed in Eq (1). We say that a path P in
G−X is preserved in GX iff for every edge e ∈ P , there exists at least one i ∈ I(X) such that e ∈ Gi; in
other words, the entire path P belongs to GX .

6

We are going to show that with high probability, at least one path Pj(X) for j ∈ [k] is preserved by GX .
Before that, we have the following claim that allows us to use this property to conclude the proof.

Claim 3.9. If any s-t path Pj(X) for j ∈ [k] is preserved in GX then s and t are connected in H −X.

Proof. Given that P := Pj(X) is preserved, we have that for any edge e = (u, v) ∈ P , there is some graph
Gi for i ∈ I(X) that contains e. This means that u, v are connected in Gi which in turn implies that the
spanning forest Ti of Gi contains a path between u and v. Moreover, since i ∈ I(X), we know that Gi and
hence Ti contain no vertices of X and thus u and v are connected in Ti−X as well. Stitching together these
u-v paths for every edge (u, v) ∈ P then gives us a walk between s and t in H −X , implying that s and t
are connected in H −X .

We will now prove that some path Pj(X) for j ∈ [k] is preserved with very high probability.

Claim 3.10. Conditioned on |I(X)| > r/8, the followings three probabilities are each at most n−2k:

1. Pr(aj /∈ GX for at least k/3 values of j ∈ [k]);

2. Pr(Bj 6⊆ GX for at least k/3 values of j ∈ [k]);

3. Pr(cj /∈ GX for at least k/3 values of j ∈ [k]).

Proof. To start the proof, note that even conditioned on a choice of I(X), the vertices in each path Pj(X)
appear independently in each graph Gi for i ∈ I(X). This is because these paths do not intersect with X
and by the independence in sampling of each graph Gi for i ∈ [r]. Moreover, given that these paths are
vertex-disjoint (although share s and t), the choices of their inner vertices across each graph Gi for i ∈ [r],
are independent. We crucially use these properties in this proof.

An edge is present in Gi if both of its endpoints are sampled which happens with probability 1/k2.
Thus, each edge in Bj is not present in Gi with probability (1− 1/k2) and hence is not present in GX with
probability (1− 1/k2)|I(X)|. Hence, by the union bound,

Pr(Bj 6⊆ GX) 6 |Bj | ·
(
1− 1/k2

)|I(X)|
6 n ·

(
1− 1/k2

)r/8
6 n · exp

(
−200k2 lnn/8k2

)
= n−24.

Finally, note that since the paths Bj for j ∈ [k] are vertex-disjoint, the probability of the above event is
independent for each one. Thus,

Pr(Bj 6⊆ GX for at least k/3 values of j ∈ [k]) 6

(
k

k/3

)(
n−24

)k/3
6 2k · n−8k

6 n−7k.

As such, the entire path Bj will lie inside GX for at least 2k/3 values of j ∈ [k] with very high probability.

The analysis for aj ’s and cj ’s is slightly different since one of their endpoints, namely, s and t, respectively,
is shared across all of them. But the proofs for aj’s and cj’s are entirely symmetric, so we just consider aj ’s.
Consider the set of indices

Is(X) := I(X) ∩ {i ∈ [r] : s ∈ Gi} ;

that is the graphs in I(X) which additionally contain the vertex s. For i ∈ Is(X), the graph Gi contains
the vertex s and but no vertex from X . We know that E |Is(X)| = |I(X)| /k since probability of sampling
vertex s in any Gi is 1/k. By an application of the Chernoff bound (Proposition 2.1) with ε = 0.5, we have,

Pr(|Is(X)| 6 |I(X)| /2k) 6 exp(− |I(X)| /10k) 6 exp(−200k2 lnn/80k) = n−2.5k.

Moreover, for any i ∈ Is(X), the probability that aj is in Gi is 1/k. Thus, for any fixed j ∈ [k],

Pr(aj /∈ GX) = (1− 1/k)|Is(X)|.

Combining the above two equations, we have,

Pr(aj 6∈ GX for at least k/3 values of j ∈ [k])

7

6 Pr
(
|Is(X)| 6 |I(X)| /2k

)
+ Pr

(
aj 6∈ GX for at least k/3 values of j | |Is(X)| > |I(X)| /2k

)

(by the law of total probability)

6 n−2.5k +

(
k

k/3

)(
(1− 1/k)|I(X)|/2k

)k/3

6 n−2.5k + 2k ·
(
exp

(
−200k2 lnn/16k2

))k/3
< n−2k.

The same property also holds for cj ’s by symmetry, concluding the proof.

By union bound over the events of Claims 3.7 and 3.10, we have that there exists an index j ∈ [k] such
that the path Pj(X) is preserved in GX . Thus, by Claim 3.9, for a fixed choice of X , and s, t, the probability
that s and t are not connected in H −X is at most 4n−2k. A union bound over the choices of X and s, t,
then implies that the probability that even one such choice of X and s, t exists is at most

(
n

k − 1

)
·

(
n

2

)
· 4n−2k

6 nk+1 · 4n−2k = 4n−k+1 < 4n−1,

since k > 2. This completes the proof of Lemma 3.4.

3.2 Proof of Lemma 3.5

We now prove Lemma 3.5. For this proof also, without loss of generality, we can assume that k > 1: for
k = 1, each graph Gi is the same as G and thus the algorithm in Proposition 2.3 computes the only s-t path,
namely, the edge (s, t) (as s and t can only be 1-connected through the edge (s, t)) which will be added to
H , thus trivially implying the proof. We now consider the main case.

Fix any pair of vertices s, t ∈ G which have less than 2k vertex-disjoint paths between them. We know
that deleting the edge (s, t) and some set of vertices X of size less than 2k should disconnect s and t. For
any i ∈ [r], we call the graph Gi good if it samples both s and t and does not sample any vertex from X .
See Figure 3 for an illustration.

Gi∗

ts X

e

...

Figure 3: An illustration of a good graph Gi∗ wherein both vertices s and t are sampled and all the vertices in set
X are not. Thus, none of the s-t paths, except for the edge e, exist in Gi∗ since they all pass through X. Therefore,
the spanning forest Ti∗ necessarily contains the edge e = (s, t).

We have,

Pr(Gi is good) = 1/k2 · (1− 1/k)2k−1
> 1/8k2. (as k > 2 so (1 − 1/k)2k−1 > (1/2)3)

Given the independence of choices of Gi for i ∈ [r], we have,

Pr(No Gi is good) 6 (1 − 1/8k2)r 6 exp
(
−200k2 lnn/8k2

)
= n−25.

Therefore, there is a graph Gi∗ for i∗ ∈ [r] where s and t are sampled but X is not (see Figure 3). This
means that the spanning forest Ti∗ has to contain the edge (s, t) as there is no other path between s and t
(we have effectively “deleted” X by not sampling it). Thus, the edge (s, t) belongs to H with probability at
least 1− n−25. A union bound over all possible pairs s, t ∈ G concludes the proof.

8

4 The Dynamic Streaming Algorithm

We present our single pass dynamic streaming algorithm for k-vertex-connectivity in this section. The
algorithm outputs a certificate of k-vertex-connectivity for the input graph at the end of the stream. Thus,
by the definition of the certificate, to know whether or not the input graph is k-vertex-connected, it suffices
to test if the certificate is k-vertex-connected, which can be done at the end of the stream using any offline
algorithm. The following theorem formalizes Result 2.

Theorem 2. There is a randomized dynamic streaming algorithm that given an integer k > 1 before the
stream and a graph G = (V,E) in the stream, outputs a certificate H of k-vertex-connectivity of G with high
probability using O(kn · log4 n) bits of space.

This algorithm is just an implementation of Algorithm 1 in dynamic streams. We fix the vertex sets Vi in
Algorithm 1 before the stream so the only thing we need to specify is how we compute the spanning forests
during the stream. We compute a spanning forest Ti of Gi in the stream using the dynamic streaming
algorithm in Proposition 2.3 with parameters N = |Vi| and δ = n−4. After the stream, we output the
certificate H . This completes the description of the streaming algorithm.

We start by bounding the space of this algorithm.

Lemma 4.1. This algorithm uses O(kn · log4 n) bits of space with high probability.

Proof. During the stream, we run a spanning forest algorithm for each graph Gi for i ∈ [r]. The algorithm
of Proposition 2.3 with parameters N = |Vi| and δ = n−4 takes at most c |Vi| · log

3(n4 |Vi|) bits of space for
some absolute constant c. We store r = O(k2 lnn) spanning forests so the total space taken is

r∑

i=1

c |Vi| · log
3(n4 |Vi|) 6 c log3(n5)

r∑

i=1

|Vi| = O(kn log4 n),

where the first inequality uses |Vi| 6 n and the second one uses
∑r

i=1 |Vi| = O(kn log n) (by Claim 3.1).

We are now ready to prove Theorem 2.

Proof of Theorem 2. By Lemma 4.1, this algorithm uses O(kn · log4 n) bits of space with high probability.
The high probability guarantee can be even moved from the space bound to the correctness in the following
way: if the space of the algorithms at any point increases beyond this high-probability bound guarantee, we
simply terminate the algorithm and output “fail”. This happens with negligible probability by Lemma 4.1.
The algorithm is also correct with high probability by Theorem 1. Moreover, none of the spanning forest
algorithms of Proposition 2.3 fail with high probability (by a union bound over the failure probabilities of
the r spanning forest algorithms). Thus, the streaming algorithm (deterministically) uses O(kn · log4 n) bits
of space and, by union bound, with high probability outputs a certificate of k-vertex-connectivity.

5 The Lower Bound

In this section, we extend the prior single-pass lower bound of [SW15] for vertex connectivity to multi-pass
algorithms. The following theorem formalizes Result 3.

Theorem 3. For any integer p > 1, any randomized p-pass insertion only streaming algorithm that given
an integer 1 6 k 6 n/2 before the stream and an n-vertex (multi-)graph G = (V,E) in the stream, outputs
whether G is k-vertex connected with probability at least 2/3, needs Ω(kn/p) bits of space.

We use the standard approach of proving lower bounds on the space of streaming algorithms via com-
munication complexity (this is further spelled out in the proof of Theorem 3). The communication lower
bound itself is proven using a reduction from the well-known set disjointness problem defined as follows.

9

Definition 5.1 (Set Disjointness (DISJN)). For any integer N > 1, DISJN is defined as follows: Alice

and Bob are given length N binary strings x ∈ {0, 1}N and y ∈ {0, 1}N , respectively. They can communicate
back and forth and need to output “No” if there exists an index i ∈ [N] such that xi = yi = 1 and “Yes”
otherwise. We assume both players have access to a shared source of randomness.

We use the following standard lower bound on the communication complexity of this problem.

Proposition 5.2 ([KS92,Raz90,BYJKS04]). For any integer N > 1, any two-way randomized protocol for
DISJN that errs with probability at most 1/3 needs Ω(N) bits of communication.

We use this result to prove a communication complexity lower bound for vertex connectivity.

Proposition 5.3. For any integers n, k > 1 such that 1 6 k 6 n/2 the following is true. Any randomized
communication protocol wherein Alice and Bob receive edges of an n-vertex (multi-)graph G = (V,E) parti-
tioned between the two, and can output whether or not G is k-vertex-connected with probability at least 2/3
requires Ω(kn) bits of communication.

Proof. We start with a high level sketch of the proof. We use a reduction from the DISJN communication
problem for N = Θ(kn). Alice and Bob construct a bipartite graph G on n fixed vertices and pick their
edges based on the values in their input strings x and y in DISJN . G will be constructed in a way that if x
and y are disjoint, then G will contain a complete bipartite graph and has vertex connectivity k; otherwise,
at least one edge is missing and the graph has vertex connectivity strictly less than k. Thus, solving k-vertex
connectivity also solves DISJN implying the space lower bound. We now formalize this idea.

To prove the bound for parameters n and k, we start with an instance of DISJN such that N = k ·(n−k).
Alice and Bob construct an n-vertex bipartite graph G = (L⊔R,E) with k vertices on L and n− k vertices
on R as follows:

• Vertices: the vertices in L are u1, u2, . . . , uk and the vertices in R are v1, v2, . . . , vn−k.

• Edges: the indices of Alice’s string x and Bob’s string y can be expressed using coordinates i ∈ [k] and
j ∈ [n− k] (since N = k · (n− k)). If xi,j = 0 then Alice has an edge (ui, vj) and if yi,j = 0 then Bob
has an edge (ui, vj) (this way, there can be up to two edges between any pairs of vertices).

The following claim is the key part for establishing the correctness of our reduction.

Claim 5.4. G is k-vertex connected iff x and y are disjoint.

Proof. If x and y are disjoint, then for every i ∈ [k], j ∈ [n − k] either xi,j = 0 or yi,j = 0 and thus edge
(ui, vj) exists in G. Thus, G contains a complete bipartite graph. Deleting any set X of k− 1 vertices leave
at least one vertex ui ∈ L and one vertex vj ∈ R. Since ui and vj are connected, and any vertex in L is
connected to vj and any vertex in R is connected to ui, we have that G −X is connected. Therefore, G is
k-vertex-connected.

If x and y are not disjoint, then there are indices i∗ and j∗ such that xi∗,j∗ = 1 and yi∗,j∗ = 1 implying
that edge (ui∗ , vj∗) does not exist in G. Deleting all vertices in L except ui∗ disconnects vj∗ from the rest of
the graph. Thus, there is a vertex cut of size k− 1 implying that G is not k-vertex connected. Claim 5.4

The proof of Proposition 5.3 now follows from Proposition 5.2: Alice and Bob, given any instance (x, y) of
DISJN , can construct the graph G in the reduction without any communication and run the protocol for k-
vertex-connectivity on G. If the protocol returns G is k-vertex-connected, they return “Yes” and otherwise
they return “No”. The correctness follows from Claim 5.4. This implies that the k-vertex-connectivity
protocol needs Ω(N) = Ω(kn) communication by Proposition 5.2, concluding the proof.

We can now obtain Theorem 3 as a standard corollary of Proposition 5.3.

10

Proof of Theorem 3. Given a p-pass streaming algorithm for the k-vertex-connectivity problem, Alice and
Bob can use the algorithm to solve the communication problem as follows. Alice treats her edges in the
communication problem as the first part of the stream and Bob treats his edges as the second part of the
stream. The players run the streaming algorithm on this stream by communicating the memory content
whenever they finish running that pass of the algorithm on their input. This requires sending the memory
content for 2p− 1 times until Bob can compute the answer of the streaming algorithm.

Assuming we start with a p-pass streaming algorithm that uses only o(kn/p) bits of space, the above
approach gives us a communication protocol with o(kn) communication for k-vertex-connectivity, with the
same probability of success as the streaming algorithm. This contradicts Proposition 5.3, and concludes the
proof of Theorem 3.

Acknowledgements

We are grateful to Zachary Langley and Michael Saks for helpful conversations about certificates of vertex
connectivity and to the anonymous reviewers of SOSA 2023 for their useful comments on the presentation
of the paper.

References

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex coloring.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 767–786, 2019. 1

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459–467, 2012. 1, 2, 3

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages
5–14, 2012. 1

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arling-
ton, VA, USA, January 10-12, 2016, pages 1345–1364, 2016. 2

[AS22] Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching
in dynamic streams. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 2

[BBE+22] Joakim Blikstad, Jan van den Brand, Yuval Efron, Sagnik Mukhopadhyay, and Danupon
Nanongkai. Nearly optimal communication and query complexity of bipartite matching. arXiv
preprint arXiv:2208.02526. To appear in FOCS 2022, 2022. 2

[BDD+82] Michael Becker, W Degenhardt, Jürgen Doenhardt, Stefan Hertel, Gerd Kaninke, W Keber,
Kurt Mehlhorn, Stefan Näher, Hans Rohnert, and Thomas Winter. A probabilistic algorithm
for vertex connectivity of graphs. Information Processing Letters, 15(3):135–136, 1982. 1

[BYJKS04] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. 10

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. arXiv preprint
arXiv:2203.00671. To appear in FOCS 2022., 2022. 1

11

[CKT93] Joseph Cheriyan, Ming-Yang Kao, and Ramakrishna Thurimella. Scan-first search and sparse
certificates: an improved parallel algorithm for k-vertex connectivity. SIAM Journal on Com-
puting, 22(1):157–174, 1993. 1, 13, 14

[Die05] Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173:33, 2005. 13, 15

[DK20] Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in
dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity Confer-
ence, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 2

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis
of randomized algorithms. Cambridge University Press, 2009. 3

[EGIN97] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Sparsification—a
technique for speeding up dynamic graph algorithms. Journal of the ACM (JACM), 44(5):669–
696, 1997. 1, 13, 14

[ET75] Shimon Even and R Endre Tarjan. Network flow and testing graph connectivity. SIAM journal
on computing, 4(4):507–518, 1975. 1

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005. 1, 13

[FKN21] Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph spanners by sketching in dynamic
streams and the simultaneous communication model. In Dániel Marx, editor, Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, pages 1894–1913. SIAM, 2021. 2

[GMT15] Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge connectivity in
dynamic graph streams. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 241–247, 2015. 1, 2, 3, 6, 14

[HRG00] Monika R Henzinger, Satish Rao, and Harold N Gabow. Computing vertex connectivity: new
bounds from old techniques. Journal of Algorithms, 34(2):222–250, 2000. 1

[Kle69] Daniel Kleitman. Methods for investigating connectivity of large graphs. IEEE Transactions on
Circuit Theory, 16(2):232–233, 1969. 1

[KLM+17] Michael Kapralov, Yin Tat Lee, CN Musco, Christopher Paul Musco, and Aaron Sidford. Single
pass spectral sparsification in dynamic streams. SIAM Journal on Computing, 46(1):456–477,
2017. 1

[Kon15] Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 840–
852, 2015. 2

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of
set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992. 10

[LLW88] Nathan Linial, Laszlo Lovasz, and Avi Wigderson. Rubber bands, convex embeddings and graph
connectivity. Combinatorica, 8(1):91–102, 1988. 1

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 317–329, 2021. 1,
2

[LS22] Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure connectivity
oracles. arXiv preprint arXiv:2205.03930, 2022. 2

12

[MTVV15] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph in
dynamic graph streams. In Mathematical Foundations of Computer Science 2015 - 40th Inter-
national Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II, pages
472–482, 2015. 1

[NS22] Kheeran K. Naidu and Vihan Shah. Space optimal vertex cover in dynamic streams. In Amit
Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022,
University of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs,
pages 53:1–53:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 2

[Pod73] VD Podderyugin. An algorithm for finding the edge connectivity of graphs. Vopr. Kibern,
2(136):2, 1973. 1

[Raz90] Alexander A Razborov. On the distributional complexity of disjointness. In International
Colloquium on Automata, Languages, and Programming, pages 249–253. Springer, 1990. 10

[SW15] Xiaoming Sun and David P Woodruff. Tight bounds for graph problems in insertion streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015. 1, 2, 9,
14

[Wes01] Douglas Brent West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, 2001. 13

A An Insertion-Only Streaming Algorithm

We describe the insertion-only streaming algorithm for k-vertex-connectivity here. This algorithm has been
folklore in the literature already since the introduction of graph streaming model in [FKM+05] (but we are
not aware of any explicit reference for this result). Several references in the past attribute the algorithm
to [EGIN97] but in fact, it appears that [CKT93] also has almost the complete proof which they present as
an online algorithm that outputs a certificate of vertex-connectivity (as in Definition 1.1)6. We provide the
algorithm and its analysis in the insertion-only streaming model in this appendix for completeness.

Preliminaries. Before we present the algorithm we mention two important propositions which will be
useful in the analysis of the algorithm. The first is Menger’s theorem which gives an equivalent definition of
k-vertex-connectivity via vertex-disjoint paths.

Proposition A.1 (Menger’s Theorem; c.f. [Wes01, Theorem 17]). Let G be an undirected graph and s and
t be two non-adjacent vertices. Then the size of the minimum vertex cut for s and t is equal to the maximum
number of vertex-disjoint paths between s and t.
Moreover, a graph is k-vertex-connected if and only if every pair of vertices has at least k vertex-disjoint
paths in between.

The next is Mader’s theorem on existence of k-vertex-connected subgraphs on sufficiently dense graphs.

Proposition A.2 (Mader’s Theorem; c.f. [Die05, Theorem 1.4.3]). For any k > 1, if an undirected graph
has at least 2k−1 vertices and at least (2k−3)(n−k+1)+1 edges, it contains a k-vertex-connected subgraph.

Unlike Menger’s theorem, there are not many sources that contain a complete proof of Mader’s theorem
in the above formulation and with the given parameters (despite being a well-known result mentioned in
various sources, e.g., with a different formulation in [Die05, Theorem 1.4.3]). Thus, we also present a simple
proof of this theorem in Appendix B for interested readers.

6To the best of our knowledge, the first version of [CKT93] is a technical report in 1991 which predates the conference
version of [EGIN97] from 1992.

13

The insertion-only streaming algorithm. We will reprove the following folklore theorem.

Theorem 4 (cf. [CKT93, EGIN97, SW15,GMT15]). There is a deterministic insertion-only streaming al-
gorithm that given an integer k > 1 before the stream and a graph G = (V,E) in the stream, outputs a
certificate H of k-vertex-connectivity of G using O(kn logn) bits of space.

The algorithm is very simple: when an edge (u, v) arrives in the stream, store the edge if and only if the
number of vertex-disjoint paths between u and v is less than k.

Algorithm 2. An insertion-only streaming algorithm for k-vertex connectivity.

Input: A graph G = (V,E) specified in a stream and an integer k specified at the beginning of the stream.

Output: A certificate H for k-vertex connectivity of G.

1. Let F = ∅. When any edge e = (u, v) arrives, if the maximum number of vertex-disjoint paths
between u and v in (V, F) is less than k, update F ← F ∪ {e} (otherwise, F remains unchanged).

2. When the stream ends output H := (V, F) as a certificate for k-vertex connectivity of G.

We start by proving the correctness of the algorithm.

Lemma A.3. Subgraph H output by Algorithm 2 is a certificate for k-vertex-connectivity of G.

Proof. We need to show that H is k-vertex-connected iff G is k-vertex-connected. If H is k-vertex-connected
then G is k-vertex-connected since H is a subgraph of G on the same set of vertices.

Suppose now towards a contradiction that G is k-vertex connected, but H is not. This means that there
is a vertex cut X of size at most k − 1 such that S,X, T is a partition of V and there are no edges between
S and T . Since G is k-vertex-connected, it has an edge e = (u, v) between S and T . Edge e is not stored in
H by Algorithm 2 and so u and v have at least k vertex disjoint paths between them. But this means that
deleting X , a set of at most k − 1 vertices, cannot disconnect S and T , leading to a contradiction.

We now prove the following claim which will be helpful in proving the space bound.

Claim A.4. The certificate H of Algorithm 2 does not contain any subgraph that is (k+1)-vertex connected.

Proof. Assume for contradiction that H contains a subgraph J that is (k+1)-vertex connected. Let e = (u, v)
be the last edge added to J by Algorithm 2. By Proposition A.1, this means u and v have at least k + 1
vertex-disjoint paths between them in J and thus have at least k vertex disjoint paths between them in
J −{e}. Therefore, when e arrives in the stream, it is not stored since u and v already have k vertex disjoint
paths between them in H − {e}. But this is a contradiction with e being in H .

Finally, we prove that H contains at most 2kn edges.

Lemma A.5. The certificate H of Algorithm 2 contains at most 2kn edges.

Proof. If n < 2k − 1 then H contains at most n(n − 1)/2 6 2kn edges proving the claim. Thus, consider
n > 2k − 1. If H has more than 2kn edges then by Proposition A.2 it contains a (k + 1)-vertex connected
subgraph. But H cannot contain any subgraph that is (k + 1)-vertex connected by Claim A.4.

We can now conclude the proof of Theorem 4.

Proof of Theorem 4. Lemma A.3 proves that H is a certificate for k-vertex-connectivity of G. Lemma A.5
proves that H contains at most 2kn edges implying that Algorithm 2 uses O(kn log n) bits of space.

14

B Mader’s Theorem

We present a self-contained proof of Mader’s theorem in this section for the interested reader. Consider the
following restatement of the proposition.

Proposition A.2 (Mader’s Theorem; c.f. [Die05, Theorem 1.4.3]). For any k > 1, if an undirected graph
has at least 2k−1 vertices and at least (2k−3)(n−k+1)+1 edges, it contains a k-vertex-connected subgraph.

Proof. We fix a value of k and prove the proposition by induction on n, the number of vertices. Our induction
hypothesis is as follows: For any t > 2k, if an undirected graph has t−1 vertices and at least (2k−3)(t−k)+1
edges then it contains a k-vertex connected subgraph.

Base case: when t = 2k.

We havem > (2k−3)(k)+1 = 2k2−3k+1. A clique on 2k−1 vertices has (2k−1)(2k−2)/2 = 2k2−3k+1
edges. Thus, the only graph on 2k−1 vertices that satisfies the edge lower bound is a clique that is k-vertex-
connected and thus has subsets that are k-vertex-connected.

Induction step: We assume the hypothesis for integers up to t and prove it for t+1, that is if an undirected
graph has t vertices and at least (2k−3)(t−k+1)+1 edges then it contains a k-vertex-connected subgraph.

Assume towards a contradiction that there is a graph G with t vertices and at least (2k−3)(t−k+1)+1
edges which contains no k-vertex connected subgraph. We first show that G has a large minimum degree.

Claim B.1. G has minimum degree δ > 2k − 2.

Proof. Consider a vertex v with minimum degree δ. Removing v leaves the graph with t−1 > 2k−1 vertices
and m′ > (2k− 3)(t− k+1)+ 1− δ edges. If m′ > (2k− 3)(t− k) + 1 then G contains a k-vertex-connected
subgraph by induction; thus, we need to have δ > 2k − 2.

We know that G is not k-vertex-connected which implies there is a vertex cut X with at most k − 1
vertices which when deleted disconnects G into components S and T := V −X − S. By Claim B.1, for any
vertex u ∈ S, deg(u) > 2k − 2. Moreover, since there are no edges between S and T , any vertex u ∈ S has
neighbors only in X and S. Thus, since |X | < k, we need S to have at least k − 1 vertices other than u to
satisfy the degree requirement of u, which implies |S| > k. By symmetry, we also have |T | > k.

Let G1 be the induced subgraph of G on S ∪X with n1 vertices and let G2 be the induced subgraph of
G on T ∪X with n2 vertices. Both G1 and G2 do not contain any k-vertex-connected subgraphs and have
at least 2k− 1 vertices, so they have strictly fewer than (2k− 3)(n1− k+1)+ 1 and (2k− 3)(n2− k+1)+1
edges, respectively. We now sum the number of edges m1 of G1 and m2 of G2:

m1 +m2 6 (2k − 3)(n1 − k + 1) + (2k − 3)(n2 − k + 1)

= (2k − 3)(n1 + n2 − 2k + 2)

6 (2k − 3)(t− k + 1)

< m (Since m > (2k − 3)(t− k + 1) + 1)

But we know m1 +m2 > m because G1 and G2 cover all edges of G (and can even over count some edges,
namely, those with both endpoints in X). Thus, we arrive at a contradiction and such a graph G cannot
exist. Therefore, we have shown the induction step and proved the proposition.

15

	1 Introduction
	2 Preliminaries
	3 A Certificate of Vertex Connectivity
	3.1 Proof of Lemma
	3.2 Proof of Lemma

	4 The Dynamic Streaming Algorithm
	5 The Lower Bound
	A An Insertion-Only Streaming Algorithm
	B Mader's Theorem

