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Abstract

Estimating the support size of a distribution is a well-studied problem in statistics.
Motivated by the fact that this problem is highly non-robust (as small perturbations in the
distributions can drastically affect the support size) and thus hard to estimate, Goldreich
[ECCC 2019] studied the query complexity of estimating the ε-effective support size Essε of
a distribution P , which is equal to the smallest support size of a distribution that is ε-far in
total variation distance from P .

In his paper, he shows an algorithm in the dual access setting (where we may both
receive random samples and query the sampling probability p(x) for any x) for a bicriteria
approximation, giving an answer in [Ess(1+β)ε, (1+γ) Essε] for some values β, γ > 0. However,
his algorithm has either super-constant query complexity in the support size or super-constant
approximation ratio 1 + γ = ω(1). He then asked if this is necessary, or if it is possible to get
a constant-factor approximation in a number of queries independent of the support size.

We answer his question by showing that not only is complexity independent of n possible
for γ > 0, but also for γ = 0, that is, that the bicriteria relaxation is not necessary. Specifically,
we show an algorithm with query complexity O( 1

β3ε3 ). That is, for any 0 < ε, β < 1, we

output in this complexity a number ñ ∈ [Ess(1+β)ε,Essε]. We also show that it is possible to

solve the approximate version with approximation ratio 1 + γ in complexity O
(

1
β2ε + 1

βεγ2

)
.

Our algorithm is very simple, and has 4 short lines of pseudocode.
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1 Introduction

Estimating the support size of a distribution is one of the most fundamental problems in statistics
and has been studied over many decades, starting with the paper of Fisher, Corbet, and Williams
[6] in 1943. Estimating the support size in full generality is, however, impossible. This is because
any distribution is infinitesimally close to a distribution with arbitrarily large support. One
common approach is to assume a lower bound on the elements’ probabilities [14, 16, 17, 18].
This assumption is, however, not always reasonable in practice. This motivated Goldreich [8]
to study algorithms for estimating a relaxed quantity known as the effective support size. The
ε-effective support size (abbreviated as Essε) of a distribution P is defined as the smallest n
such that there exists a distribution P ′ supported on n elements that is ε-far in total variation
distance, that is ‖P − P ′‖TV = ε. This problem is also too non-robust to be estimable in
sublinear complexity. However, it leads to a natural bicriteria approximation: we may ask to
find a value in [Ess(1+β)ε, (1 + γ) Essε] for some γ, β > 0.

Support size estimation fits in the general subfield of distribution testing, where the goal is
to test or learn properties of a distribution from samples or queries to the distribution. Various
settings have been considered in the context of distribution testing. One common setting is the
dual access setting [1, 11, 4], where in addition to sampling access to the distribution, we may
ask for the sampling probability p(x) of any item x. Goldreich [8] studied the effective support
size estimation in exactly this setting, and this is also the setting we use in this paper. In [8],

Goldreich gave algorithms that either have super-constant approximation ratio of O
(

log(k)(n/ε)
)

for any fixed constant k, or γ = 0 and query complexity O(log∗(n/ε)/poly(εβ))1. In this paper,
we show that it is possible to get the best of both worlds: query complexity independent of the
support size n in complexity O(poly(1/(εβ))), and having γ = 0. That is, we show that the
bicriteria approximation is not necessary, and that the relaxation of the problem in terms of
β > 0 is sufficient for the problem to be efficiently solvable. This answers positively the following
question posed by Goldreich. Specifically, all of the following questions have a positive answer:

Open Problem 1.10 from [8], Open Problem 100 from [9] (approximators of
the effective support size with performance guarantees that are oblivious of the distri-
bution): For a constant β > 0, does there exist an algorithm that, on input ε > 0 and
oracle access to P , uses s(ε) queries and outputs an f(ε)-factor approximation of the
[ε, (1 + β) · ε]-effective support size of P , where s and f are functions of ε only? If so,
can both functions be polynomials in 1/ε? And, if so, can we have s(ε) = poly(1/ε)
and f = 1?2

Specifically, we give an algorithm for 1 + γ-approximate [ε, (1 + β)ε]-effective support size in

time O
(

1
β2ε

+ 1
βεγ2

)
. How do we decrease the γ to 0? Goldreich proved that one may decrease

the γ to 0, at the cost of an increase in β by a factor of γ/ε (Observation 4). This means we
may compute a βε/2-approximate estimate of the [ε, (1 +β/2)ε] effective support size, which will
also be a 1-approximation of the [ε, (1 + β)ε]-effective support size, as desired. This results in an

algorithm with complexity O
(

1
β3ε3

)
for the unicriterion approximation version of the problem.

1.1 Our techniques.

If our distribution is uniform, it would be natural to sample an item y and return 1/p(y), which
would be equal to the universe size. It is easy to show that this in fact gives an unbiased estimate

1We use log(k)(x) to denote the kth iterated logarithm of x, i.e., log(1)(x) := log x and for k ≥ 2, log(k)(x) :=
log(log(k−1)(x)). We use log∗(x) to denote the smallest nonnegative integer t such that log(t)(x) ≤ 1.

2We remark that we have slightly rephrased their problem: in this paper, we set 1 + β to be what they have
set as β.
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for general distributions:

E
[

1

p(y)

]
=
∑
y∈U

p(y)
1

p(y)
=
∑
y∈U

1 = |U |.

This simple estimator has in fact been used to estimate support size, such as in [4, 13]. Our
estimator uses this observation as a starting point, and bears resemblance to [4, 13].

The ε-effective support size corresponds to ignoring the smallest probability items totaling ε
probability mass. Let us therefore order the universe in order of increasing probabilities. We
may then modify the above estimator as follows. We generate a sufficiently large random sample
of items drawn from P and compute the (1 + β/2)ε-quantile x of the samples with respect to the
order, and define p = P (x). If we sampled enough items, it should hold that PX∼P (X < x) = ε∗,
for ε∗ ≈ (1 +β/2)ε. If all probabilities are distinct, we may then use I[p(X) ≥ p(x)]/p(X), where
X ∼ P , as an unbiased estimate3 of Essε∗ :

E
[
I[p(X) ≥ p(x)]

p(X)

]
=
∑
y∈U

p(y)
I[p(y) ≥ p(x)]

p(y)
=
∑
y∈U

I[p(y) ≥ p(x)] = Essε∗ .

Here, we use I to denote the indicator random variable for an event. The final equality holds
from a known observation (see Observation 3) that if the n heaviest elements in P have total
probability 1− ε, then Essε = n.

We now bound the variance. In some of the cases, we may use a straightforward analysis
that we will now describe; we briefly describe the final and most difficult case at the end of this
subsection.

Specifically, we use the fact that for a random variable X with X ≥ 0 almost surely,
Var[X] ≤ E[X] sup[X], where sup[X] represents the maximum value X may take. Because an
indicator variable is at most 1 and p(X) ≥ p(x) = p whenever the indicator is true, this gives us

Var

[
I[p(X) ≥ p(x)]

p(X)

]
≤ E

[
I[p(X) ≥ p(x)]

p(X)

]
· 1

p
=

Essε∗

p
.

If it were the case that Essε∗ ≥ ε∗β
100p , this would be sufficient, as we could use this to

upper-bound the variance by ≤ 100
ε∗β Ess2

ε∗ which directly leads by Chebyshev’s inequality to an
algorithm with complexity independent of n.

The difficult case is thus when Essε∗ <
ε∗β
100p . The basic idea is that in this case, we can show

that Ess(1−β/4)ε∗ is significantly larger than Essε∗ , meaning that the interval [Essε∗ ,Ess(1−β/4)ε∗ ]
is large. As we are assuming ε∗ ≈ (1 + β/2)ε, any answer in this range is valid. Intuitively
speaking, the fact that the range of valid outputs is large then makes the problem easier.

The items that are counted in Ess(1−β/4)ε∗ but not in Essε∗ have βε∗/4 ≥ βε/4 probability
mass, but each has a probability of being sampled at most p. There are therefore at least
βε/(4p) of them. Hence, Ess(1−β/4)ε∗ ≥ βε/(4p) and p ≥ βε/(4 Ess(1−β/4)ε∗). This also implies

that Ess(1−β/4)ε∗ ≥ 2 Essε∗ , since we know Essε∗ <
ε∗β
100p , and ε∗ ≈ (1 + β/2)ε. We now argue

that we return a value ≤ Ess(1−β/4)ε∗ ≤ Essε. Since each estimate is unbiased with variance at
most Essε∗ /p, by the Chebyshev inequality, if we average this estimate over t samples, with high
probability we return a value that is at most

Essε∗ +O

(
1√
t
·
√

Essε∗ /p

)
≤ Essε∗ +O

(
1√
t
·
√

Essε∗ Ess(1−β/4)ε∗ /(εβ)

)
≤ Ess(1−β/4)ε∗ ≤ Essε .

Above, the first inequality holds by Chebyshev’s inequality, the second inequality holds by
our assumption Ess(1−β/4)ε∗ ≥ βε/(4p), and the last inequality holds by the assumption ε∗ ≈

3The unbiasedness also follows from the fact that this is a special case of the Hansen-Hurwitz estimator [12].
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(1 + β/2)ε. The third inequality holds as long as t ≥ C
εβ for some large constant C, since

Essε∗ ≤ 1
2 · Ess(1−β/4)ε∗ , Importantly, t only needs to depend on β and ε, not on n.

It remains to prove that we return a value that is at least Ess(1+β)ε. Unfortunately, the
variance of our estimator can be arbitrarily large (if one of the probabilities is extremely small),
and we thus cannot use Chebyshev’s inequality to prove that the returned value will be close to
the expectation, and thus not too small. We get around this issue by show a different random
variable that is stochastically dominated4 by our estimator, and whose variance is small enough
and expectation large enough for this argument to work. Since our estimator stochastically
dominates this random variable, it is also not too small with good probability.

1.2 Related work.

The problem of support size estimation has been studied over many decades. To the best of our
knowledge, the problem was first considered in 1943 under parametric assumptions by Fisher
et al. [6]. Under slightly different assumptions, the problem was then considered in 1953 by
Good [10]. A large number of works have since followed (see [7] for a survey). However, no
approach with formal guarantees without parametric assumptions was known until the study of
this problem in the context of distribution testing.

Distribution testing has also enjoyed a long line of research over the past few decades
(see Canonne [3] for a survey). The study of the support size estimation problem in the context
of distribution testing started more recently, with [14] in 2009. Perhaps the most common
parametrization of this problem in distribution testing is by the smallest probability of any item.
That is, one assumes that 1/n ≤ p(x) for any item x in the universe, and n is now no longer
the universe size. In this setting, a line of research [14, 16, 17, 18] lead to an algorithm with
complexity O( n

logn log2(1/ε)) to estimate the support up to additive error ε · n in the setting
when we have sampling access to the distribution.

There are several settings that are commonly studied in distribution testing. Among them are
the dual setting, notably systematically studied by Canonne and Rubinfeld [4], and probability-
revealing samples defined by Onak and Sun [13]. The dual setting has also been considered prior
to [4] in [1, 11]. The dual setting assumes that we may ask for the sampling probability of an
item. In the probability-revealing samples setting, we get with each sampled item, its sampling
probability. The difference is that we may ask the dual oracle for probabilities even of items that
have not been sampled. A related setting is the “learning-based” distribution framework [5],
which is similar to the probability-revealing samples setting except with each sampled item, we
only receive an O(1)-approximation to the sampling probability rather than the exact sampling
probability. In the dual and probability-revealing samples settings, it is possible to get in time
O(1/ε2) an additive ±εn approximation, and in the learning-based setting, it is possible to get
the same approximation in time O(n1−Θ(1/ log ε−1) · log ε−1) [5]. In all of these settings, we again
choose n such that 1/n ≤ p(x) for all x in the universe, which means n can be much larger than
the universe size [4, 13, 5]. This may, however, be a very poor approximation, if some sampling
probabilities are very small. This motivates the notion of effective support size, as this is known
to be optimal [4, 13] and relative approximation is thus not possible in complexity independent
of n.

While effective support size was first defined by Blais, Canonne, and Gur [2] and also studied
in Stewart, Diakonikolas, and Canonne [15], the specific problem of estimating effective support
size was first studied later by Goldreich [8]. The main motivation for this relaxation of the
problem is that it is possible to get a relative approximation to the effective support size, even if
there are no promises on the minimum probability. Specifically, Goldreich shows that for any
ε > 0 and any fixed β > 0, it is possible to get a (1+γ)-approximation to the [ε, (1+β)ε]-effective
support size, in complexity s, for:

4We define stochastic domination in Section 2.
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1. s = O(1/ε) and 1 + γ = O
(
ε−1 log(n/ε)

)
,

2. s = Õ(1/ε) and 1 + γ = O(log(n/ε)).

3. For any constants t, k ∈ N, it holds that s = Õ
(
t/ε1+ 1

k

)
and 1 + γ = Õ(log(t)(n/ε)).

4. For any constant k ∈ N, it holds that s = Õ
(

log∗(n/ε)/ε1+ 1
k

)
in expectation and γ = β.

Simplicity: To our knowledge, the only work to study estimating effective support size is that
of Goldreich [8]. We note that our algorithm not only achieves a better query complexity but is
also substantially simpler and shorter, both in terms of algorithm description and analysis.

2 Preliminaries

2.1 Effective support size and its properties.

The effective support size of a distribution P is defined as follows.

Definition 1 (Definition 1.1 from [8]). The ε-effective support size Essε(P ) is defined as the
smallest n such that P is ε-close in total variation distance to some distribution P ′ whose support
has size n.

As Goldreich [8, Proposition 1.6] proves, it is not possible to efficiently estimate the ε-effective
support size. Instead, one has to use a relaxation of this notion.

Definition 2 (Definition 1.2 from [8]). A value ñ is a (1+γ)-approximate effective [ε1, ε2]-support
size if n ∈ [Essε2 , (1 + γ) Essε1 ].

We prove that, in fact, one does need the error parameter γ in the sense that the problem is
efficiently solvable even for γ = 0.

We now state two observations of Goldreich [8] that we will need. The first says that
ε-effective support size is equal to the support size after removing the least likely elements with
a total mass of ε. The second one says that we may decrease γ to 0 at the cost of an increase in
β by a factor of γ/ε.

Observation 3 (Observation 1.4 in [8]). If P has ε-effective support size n, then P is ε-close
to a distribution that has support that consists of the n heaviest elements in P , with ties broken
arbitrarily.

Observation 4 (Observation 1.5 in [8]). If a random variable X is a (1+γ)-factor approximation
of the [ε1, ε2]-effective support size of P , then X/(1+γ) is an [ε1, ε2 + γ/(1 + γ)]-effective support
size of P . In particular, for γ = βε, we have γ/(1 + γ) < βε. Therefore, if a random variable X
is a (1 + βε)-factor approximation of the [ε, (1 + β)ε]-effective support size of P , then X/(1 + γ)
is an [ε, (1 + 2β)ε]-effective support size of P .

2.2 Distribution testing settings.

The model for a distribution P on a universe U is defined as a pair of oracles (SAMPP ,EVALP )
which are in turn defined as follows. Upon being queried, SAMPP returns a sample from P ,
independent from all previously returned samples. EVALP (x) for x ∈ U returns the probability
p(x) of x being sampled from P .

The probability-revealing samples model was defined by Onak and Sun [13]. For a distribution
P , we define a probability-revealing oracle REVP as an oracle that returns (x, p(x)) for x ∼ P ,
independently of all previous calls of the oracle. The difference between these two settings that
one may also use the EVAL oracle on items that have not been sampled in the dual access model,
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but not in the probability-revealing samples model. Hence, the dual access model in general is
more powerful than the probability-revealing samples model. Our algorithm in fact will only
query probabilities for elements that have already been sampled, so it works both in the dual
access model and the probability-revealing samples model.

We also briefly remark that, while not actually relevant for our upper bounds, for effective
support size estimation, the query complexities in these two models are in fact equivalent. For
symmetric properties, one may assume that we use EVAL either on sampled items, or on items
selected uniformly at random from the not-yet-seen part of the support.5 In addition, if we
want the query complexity to have no dependence on the universe size |U |, sampling uniformly
from the not-yet-seen part of the support is useless because one can make |U | arbitrarily large
by adding elements of probability 0, and sampling uniformly means that with overwhelming
probability we will only see elements with probability 0.

2.3 Notions from probability theory.

First, we note that we use P to denote a distribution, and p(x) to denote the probability of
sampling x from P . We also use I to denote an indicator random variable. In other words, for
an event E, I[E] = 1 if E occurs and I[E] = 0 otherwise.

For a real-valued random variable X, we define sup[X] = supt∈R{t : P(X ≥ t) > 0}:
sup[X] roughly represents the largest real number that X may take. If P(X ≥ t) > 0 for all
t ∈ R, then sup[X] = ∞. In addition, if X is conditioned on some variable Y , we can define
sup[X|Y = y] = supt∈R{t : P(X ≥ t|Y = y) > 0}.

In this paper, we need some common notions from probability theory. Two note-worthy ones
are that of total variation distance and stochastic domination. The total variation distance of
two distributions P1, P2 supported on U can be for finite U written as

‖P1 − P2‖TV =
1

2

∑
x∈U
|p1(x)− p2(x)|

We say that a real random variable X1 stochastically dominates a real random variable
X2 if there exists a coupling (X ′1, X

′
2) such that X ′1 ≥ X ′2 almost surely. We also use an

equivalent definition, which states X1 stochastically dominates X2, iff for any value φ, we have
P[X1 ≥ φ] ≥ P[X2 ≥ φ].

3 Effective support size estimation

We assume an arbitrary total ordering ≤ on the support. This may be assumed WLOG and
without seeing any samples; for instance, each element will have some number or categorical
label associated with it, so we may set ≤ as the natural lexicographic order on the labels.

We then define a total ordering ≺ such that x1 ≺ x2 if p(x1) < p(x2) or if p(x1) = p(x2)
and x1 < x2. (We also define x1 4 x2 to mean x1 ≺ x2 or x1 = x2). We define the ε-quantile
of a distribution P over a universe U to be the xε ∈ U that is smallest w.r.t. ≺ such that
PX∼P (X 4 xε) > ε. One can verify (using Observation 3) that Essε equals the number of
elements that are < xε if xε is the ε-quantile. In addition, if given a sample R from the
distribution, we define the ε-quantile of R w.r.t. ≺ to be the smallest x ∈ U (under the ≺
ordering) such that #{X ∈ R : X 4 x} > ε · |R|.

Finally, for any 0 < ε < 1, define xε as the ε-quantile of P , and pε := p(xε).

5This may be argued roughly as follows: we take a uniformly random permutation π of the universe. By
symmetry, this does not affect correctness. At the same time, no matter the distribution of x that the algorithm
queries, we have EVALπ−1(P )(x) = EVALP (π−1(x)), but π−1(x) has conditional distribution of being uniform
on the not-yet-sampled items. This holds even for adaptive queries, as after each adaptive query we have no
information on π outside of the elements we sampled/queried.
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Given this, we can now describe our algorithm, described in Algorithm 1. Indeed, our
algorithm is very simple and only requires 4 lines of pseudocode description. We will assume
WLOG that β ≤ 0.2 and γ ≤ 0.2 throughout the analysis. In addition, we assume WLOG that
(1 + β) · ε < 1, as if (1 + β) · ε ≥ 1, then any distribution with support 1 (i.e., a point mass on
any element) has total variation distance at most 1 ≤ (1 + β) · ε from P , so we may output 1 as
our estimate of the effective support size.

Algorithm 1: Get a (γ, β)-approximate estimate of the ε-effective support size.

1 R← sample of size 180
β2ε

2 x← (1 + β/2)ε-quantile of R w.r.t. ≺
3 y1, . . . , yt ← sample of size t = 500

εβγ2

4 return (1 + γ/2)S, where S = 1
t

∑t
i=1

I[yi<x]
p(yi)

First, we show that the x created in Algorithm 1 is an approximate ε quantile of P .

Lemma 5. Let x represent the output of the second line of Algorithm 1. With probability at
least 9

10 , there exists ε∗ ∈ [(1 + β/4)ε, (1 + 3β/4)ε] such that x is the ε∗ quantile of P .

Remark. We say “there exists ε∗” as the choice of ε∗ may not be unique. For instance, if P were
a point mass on a single element x, then x is the ε quantile for all 0 < ε < 1.

Proof. Let x(1+β/4)ε represent the (1 + β/4)ε quantile of P . If x ≺ x(1+β/4)ε, then #{X ∈ R :
X 4 x} > (1 + β/2)ε · |R| by definition, so k1 := #{X ∈ R : X ≺ x(1+β/4)ε} > (1 + β/2)ε · |R|.
However, k1 ∼ Bin(|R|, η) where η ≤ (1 + β/4)ε by definition. Hence, the probability that
x ≺ x(1+β/4)ε is at most P (Bin(|R|, (1 + β/4)ε) > (1 + β/2) · |R|), which by the Chernoff bound
is at most

exp
(
−((β/4)/(1 + β/4))2 · |R| · (1 + β/4)ε/3

)
≤ exp

(
−β2 · |R| · ε/60

)
≤ 1/20,

where the first inequality follows since we assumed β ≤ 0.2 and the last inequality follows since
|R| = 180

β2ε
.

Similarly, we let x(1+3β/4)ε represent the (1 + 3β/4)ε quantile of P . If x � x(1+3β/4)ε,
then k2 := #{X ∈ R : X 4 x(1+3β/4)ε} ≤ #{X ∈ R : X ≺ x} ≤ (1 + β/2)ε · |R|. As
k2 ∼ Bin(|R|, η) for some η > (1 + 3β/4)ε, the probability that x � x(1+3β/4)ε is at most
P (Bin(|R|, (1 + 3β/4)ε) ≤ (1 + β/2) · |R|), which by the Chernoff bound is at most

exp
(
−((β/4)/(1 + 3β/4))2 · |R| · (1 + 3β/4)ε/3

)
≤ exp

(
−β2 · |R| · ε/60

)
≤ 1/20.

So, with probability at least 9/10, x(1+β/4)ε 4 x 4 x(1+3β/4)ε. In this case, there must exist
ε∗ ∈ [(1 + β/4)ε, (1 + 3β/4)ε] such that x is the ε∗ quantile of P .

We next prove the following auxiliary lemma.

Lemma 6. For any ε < 1, recall that xε represents the ε quantile of P and pε = p(xε). Then,
for any 0 < ε, α < 1, it holds that Ess(1−α)ε ≥ εα

pε
.

Proof. Assume without loss of generality that the elements are sorted in increasing order
of probability, i.e., p(x1) ≤ p(x2) ≤ · · · ≤ p(xn). We may also assume all elements have
nonzero probability by removing all elements with 0 probability. (Indeed, this does not affect
Ess(1−α)ε or pε.) For simplicity, we define a := x(1−α)ε and b := xε. Then, for X ∼ P ,
P(X ≺ a) ≤ (1 − α)ε < P(X 4 a), and P(X ≺ b) ≤ ε < P(X 4 b). Importantly, this means
P(a 4 X 4 b) = P(X 4 b) − P(X ≺ a) > α · ε. However, p(b) = pε, and p(c) ≤ pε for any
a 4 c 4 b. Thus, (b− a+ 1) · pε ≥ P(a 4 X 4 b) > α · ε, which means that b− a+ 1 > α·ε

pε
.
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Next, we remark that since a is the (1−α)ε quantile of P , the (1−α)ε effective support size
is precisely the number of elements which are < a. Since all elements between a and b in the
order fall in this category, we have that Ess(1−α)ε ≥ b− a+ 1.

To summarize, we have Ess(1−α)ε ≥ b− a+ 1 ≥ α·ε
pε

, which completes the proof.

We are now ready to prove our main result.

Theorem 7. Suppose that 0 < ε < 1 and 0 < β, γ ≤ 0.2. Then, with probability at least 2/3,
Algorithm 1 returns a (1 + γ)-factor approximation to the [ε, (1 + β)ε] effective support size. Its
sample complexity is O( 1

β2ε
+ 1

εβγ2
).

Proof. The sample complexity is clearly as claimed. We thus focus on correctness. Recall that
we may assume WLOG that (1 + β) · ε < 1. We will show that (1 − 0.4γ) Ess(1+β)ε ≤ S ≤
(1+0.4γ) Essε, where S is defined in Line 4 of Algorithm 1. Since our final estimate is (1+0.5γ)S,
and since 1 ≤ (1− 0.4γ) · (1 + 0.5γ) and (1 + 0.4γ) · (1 + 0.5γ) ≤ 1 + γ for γ ≤ 0.2, this implies
our final estimate is in the range [Ess(1+β)ε, (1 + γ) Essε], as desired.

Recall that x is the element generated in Line 2 of Algorithm 1. Define p := p(x), and
let ε∗ be such that x is the ε∗ quantile of P . Let E1 denote the event that we can choose
ε∗ ∈ [(1 + β/4)ε, (1 + 3β/4)ε]. (By Lemma 5, E1 holds with at least 9/10 probability.) Consider
the random variable Y = I[X < x]/p(X) for X ∼ P . We have that

E[Y |ε∗] =
∑
y∈U

p(y)
I[y < x]

p(y)
= #{y ∈ U : y < x} = Essε∗ .

At the same time, note that sup[Y |ε∗] ≤ 1
p (where we recall p := p(x) and x = xε∗) since

I[X < x] = 1 implies p(X) ≥ p. Therefore,

Var[Y |ε∗] ≤ E[Y 2|ε∗] ≤ E[Y |ε∗] sup[Y |ε∗] ≤ Essε∗ /p.

We thus have
E[S|ε∗] = E[Y |ε∗] = Essε∗ ,

recalling that S is an average of t copies of the random variable Y . It also holds that

Var[S|ε∗] = Var[Y |ε∗]/t ≤ Essε∗ /(tp),

where we note that t = 500
εβγ2

depends on ε but not on ε∗. Conditioning on ε∗ ≥ ε (equivalently,

t ≥ 500
ε∗βγ2 , which holds on E1), we have that

Var[S|ε∗, ε∗ ≥ ε] ≤ ε∗βγ2 Essε∗ /(500p).

Therefore, by the (conditional) Chebyshev inequality, assuming E1 and conditioning on ε∗ ∈
[(1 + β/4)ε, (1 + 3β/4)ε], it holds with probability at least 9/10 that

|S − Essε∗ | ≤
√
ε∗ · β · γ2/50 ·

√
Essε∗ /p.

We call the event when this is the case E2.
We split the rest of the analysis into two main cases. The first case is when Essε∗ ≥ ε∗β

8p , and

the second case is when Essε∗ ≤ ε∗β
8p .

We start by the simple case when Essε∗ ≥ ε∗β
8p . In this case, the value Essε∗ is relatively large,

and this already guarantees a good approximation. Since Essε∗ ≥ ε∗β
8p , we have that 1/p ≤ 8 Essε∗

ε∗β .
It therefore holds on E2 that

|S − Essε∗ | ≤
√
ε∗ · β · γ2/50 ·

√
Essε∗ /p ≤ 0.4γ · Essε∗ .
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We now consider the case when Essε∗ ≤ ε∗β
8p . It holds, by Lemma 6, that Ess(1−β/4)ε∗ ≥ ε∗β

4p ,
and it therefore holds Essε∗ ≤ Ess(1−β/4)ε∗ /2. We may thus bound

Essε∗ +
√
ε∗ · β · γ2/50 ·

√
Essε∗ /p ≤Essε∗ +

√
ε∗β/8 ·

√
Essε∗ /p

≤Essε∗ +
√

Essε∗ Ess(1−β/4)ε∗ /2

≤Ess(1−β/4)ε∗ /2 +
√

Ess(1−β/4)ε∗ ·Ess(1−β/4)ε∗ /4

= Ess(1−β/4)ε∗ ≤ Essε

where the last inequality holds on E1.
Next, we need to argue that S ≥ (1 − 0.4γ) Ess(1+β)ε. We do this by defining a random

variable S′ that is stochastically dominated by S, and at the same time it has low enough
variance that we may use the Chebyshev inequality to show that, with high constant probability,
S′ ≥ Ess(1+β)ε. Specifically, we define S′ = 1

t

∑t
i=1 Y

′
i , where

Y ′i :=


1/p(yi) yi < x(1+β)ε

1/p(1+β)ε x 4 yi ≺ x(1+β)ε

0 yi ≺ x,

where we recall that each yi
i.i.d.∼ P . (Recall that x(1+β)ε is the (1 + β)ε quantile of P , and x is

the ε∗ quantile of P .) Note that this also implies each Y ′i is i.i.d.
We now prove that S′ is stochastically dominated by S. The random variable S is average of

t independent copies of Y while S′ is an average of t random variables Y ′i . It is thus sufficient
to prove that Y stochastically dominates Y ′i , since the Y ′i variables are i.i.d. We do this by
demonstrating a coupling between Y and Y ′i in which it always holds Y ≥ Y ′i . Specifically,
consider Y and Y ′i with the same sample y. We have the following three cases.

1. If y < x(1+β)ε, then Y ′i = 1/p(y) = Y , since the indicator of y < x is 1.

2. If x 4 y ≺ x(1+β)ε, then Y = 1/p(y) and Y ′i = 1/p(1+β)ε. However, p(y) ≤ p(x(1+β)ε) =
p(1+β)ε, so 1/p(y) ≥ 1/p(1+β)ε.

3. If y ≺ x, then Y = Y ′i = 0, where Y = 0 since the indicator of y < x is 0.

In all cases, Y ≥ Y ′i , so Y stochastically dominates Y ′i . Thus, S stochastically dominates S′.
At the same time, assuming ε∗ is such that x = xε∗ 4 x(1+β)ε, it holds that

E[Y ′i |ε∗] =
∑
y∈U

y<x(1+β)ε

p(y) · 1

p(y)
+

∑
y∈U

x4y≺x(1+β)ε

p(y) · 1

p(1+β)ε

= #{y ∈ U : y � x(1+β)ε}+
1

p(1+β)ε
· PX∼P (x 4 X ≺ x(1+β)ε)

= Ess(1+β)ε +
1

p(1+β)ε
·
(
PX∼P (X ≺ x(1+β)ε)− PX∼P (X ≺ x)

)
.

Since x is the ε∗ quantile, P(X ≺ x) ≤ ε∗, and since x(1+β)ε is the (1 + β)ε quantile, P(X 4
x(1+β)ε) > (1+β)ε, which means P(X ≺ x(1+β)ε) > (1+β)ε−P(X = x(1+β)ε) = (1+β)ε−p(1+β)ε.
In addition, we also have that P(X ≺ x(1+β)ε)− P(X ≺ x) ≥ 0. Therefore, we have

E[Y ′i |ε∗] ≥ Ess(1+β)ε +
1

p(1+β)ε
max

(
(1 + β)ε− p(1+β)ε − ε∗, 0

)
= Ess(1+β)ε + max

(
βε

4p(1+β)ε
− 1, 0

)
,
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where the last inequality holds on E1, since that implies ε∗ ≤ (1 + 3β/4)ε. Since Ess(1+β)ε ≥ 1,
this means that assuming E1,

E[Y ′i |ε∗] ≥ max

(
Ess(1+β)ε,

βε

4p(1+β)ε

)
.

Next, assuming E1, we have that

Var[Y ′i |ε∗] ≤ E[Y ′i |ε∗] sup[Y ′i |ε∗] = E[Y ′i |ε∗]/p(1+β)ε ≤ 4E[Y ′i |ε∗]2/(βε),

where the last inequality holds because E[Y ′|ε∗] ≥ βε/(4p(1+β)ε). Therefore,

Var[S′|ε∗] ≤ 4E[Y ′i |ε∗]2/(βεt) ≤ γ2E[Y ′i |ε∗]2/125 = γ2E[S′|ε∗]2/125.

By the Chebyshev inequality, we then have with probability at least 9/10, that S′ ≥ (1 −
0.4γ)E[S′|ε∗] = (1− 0.4γ)E[Y ′i |ε∗] ≥ (1− 0.4γ) Ess(1+β)ε. We call the event when this happens
E3.

We have shown that the algorithm gives a correct output on E1 ∩ E2 ∩ E3. It holds that

P[E1 ∩ E2 ∩ E3] =1− P[¬E1 ∪ ¬E2 ∪ ¬E3]

≥1− P[¬E1]− P[¬E2|E1]− P[¬E3|E1] > 2/3,

where the last inequality holds because we bounded above each of the three probabilities by
1/10.

As a direct corollary of combining Theorem 7 with Observation 4, we have the following.

Corollary 8. By setting γ = ε · β in Algorithm 1 and outputting (1 + γ/2)/(1 + γ) · S instead
of (1 + γ/2) · S in the final line of Algorithm 1, we return an [ε, (1 + 2β)ε]-effective support size.
The sample complexity is O( 1

ε3β3 ).
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