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Abstract

Dynamic algorithms come in three main flavors: incremental (insertions-only), decremental
(deletions-only), or fully dynamic (both insertions and deletions). Fully dynamic is the holy
grail of dynamic algorithm design; it is obviously more general than the other two, but is it
strictly harder?

Several works managed to reduce fully dynamic to the incremental or decremental mod-
els by taking advantage of either specific structure of the incremental/decremental algorithms
(e.g. [HK99, HdLT01, BKS12, ADK+16, BS80, OL81, OvL81]), or specific order of inser-
tions/deletions (e.g. [AW14, HKNS15, KPP16]). Our goal in this work is to get a black-box
fully-to-incremental reduction that is as general as possible. We find that the following condi-
tions are necessary:

• The incremental algorithm must have a worst-case (rather than amortized) running time
guarantee.

• The reduction must work in what we call the deletions-look-ahead model, where the order
of deletions among current elements is known in advance. A notable practical example is
the “sliding window” (FIFO) order of updates.

Under those conditions, we design:

• A simple, practical, amortized-fully-dynamic to worst-case-incremental reduction with a
log(T )-factor overhead on the running time, where T is the total number of updates.

• A theoretical worst-case-fully-dynamic to worst-case-incremental reduction with a polylog(T )-
factor overhead on the running time.
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†Supported by NSF CCF-1954927, and a David and Lucile Packard Fellowship.
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1 Introduction

A dynamic algorithm is a data structure that maintains certain properties (e.g. shortest paths) of
a ground set that is subject to a sequence of updates (e.g. insertions/deletions of edges), and the
goal is to minimize the (total) update time. A fully dynamic algorithm supports both insertions
and deletions of the ground set elements, while an incremental algorithm restricts the updates to
be insertion-only and a decremental algorithm handles deletion operations only.

A fully dynamic algorithm clearly benefits from handling more general updates, but the at the
same time, it is expected to be much harder than incremental/decremental algorithms. Meanwhile,
several existing works have exploited special structure ([HK99, HdLT01, BKS12, ADK+16, BS80,
OL81, OvL81]) or specific order of update sequence ([AW14, HKNS15, KPP16]) and reduce fully
dynamic to incremental or decremental algorithm. This motivates one to ask

Can a generic reduction transform an incremental algorithm into one that handles both insertions
and deletions?

Perhaps surprisingly, we find that once the order of deletions of current elements is known
to the algorithm (deletions-look-ahead), one can translate an incremental algorithm with worst
case guarantee to a fully dynamic algorithm with worst case guarantee, with only polylogarithmic
overhead.

Theorem 1.1 (Reduction, worst case to worst case). Let T ≥ 1 be the total number of updates.
Suppose there exists a dynamic algorithm in the incremental setting with query time Γq and worst
case update time Γu, then there is a dynamic algorithm for deletions-look-ahead setting with query
time Γq and worst case update time1 O(Γu log

2(T )).

Our reduction requires the incremental algorithm to have worst case (rather than amortized)
runtime guarantee, and most importantly, the relative order of deletions of current elements must be
known.2 The latter assumption is satisfied by well-studied models including sliding window (FIFO)
model [ELVZ17, EMMZ22, DGIM02, BDM+20, WZ22], where only most recent insertion updates
are of interests, as well as offline/look-ahead model [KMW98, SM10, vdBNS19, CGH+20, AW14],
where the entire sequence of updates is known in advance. These models are of interests to both
theoretical and empirical community [HHS22]. Furthermore, the sliding window model is often used
as a benchmark for empirical investigation of fully dynamic algorithms (e.g. [WLFT18, LMNF+20,
HN21]). To complement our results, we also prove that both conditions are indeed indispensable
for a black box reduction (see Section 5).

If one only aims for algorithms with amortized runtime guarantee, we have a reduction with
improved update time. We believe it could be of independent interests due to its simplicity and
could be beneficial for empirical implementation.

Theorem 1.2 (Reduction, amortized to worst case). Let T ≥ 1 be the total number of updates.
Suppose there exists a dynamic algorithm for incremental setting with query time Γq and worst case
update time Γu, then there is a dynamic algorithm for deletions-look-ahead setting with query time
Γq and amortized update time O(Γu · log(T )).

On the technical side, Theorem 1.2 exploits the ideas of rewinding the incremental algorithm
(e.g. [AW14, HKNS15, KPP16]), and in particular achieves only logarithmic overhead by rewinding

1We believe that the update time can be improved at least to O(Γu log(T ) log log(T )) at the expense of a more

complicated algorithm.
2Equivalently, one can assume there exists an oracle that outputs the deletion order of existing ground set elements.
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2i insertions every Θ(2i) updates (e.g. [HK99, HdLT01, BKS12, ADK+16]). To achieve the worst
case guarantee, Theorem 1.1 additionally requires amortizing this rewinding of 2i insertions over
Θ(2i) updates; this is a little trickier because we have to start re-inserting elements in advance
before all the elements we would want to insert have arrived.

We demonstrate the power of our reduction in Section 4 by providing applications on dynamic
submodular maximization, dynamic Depth first search (DFS) tree and dynamic All-Pair Shortest-
Paths (APSP).

Related work A systematic study of black box reduction for dynamic algorithms has been ini-
tiated by the seminal work of [BS80], which shows how to make a static data structure support
insertions for “decomposable search problem”. The ideas of rewinding incremental algorithm and
the logarithmic scheduling have been studied in different problem specific context [AW14, HKNS15,
KPP16, HK99, HdLT01, BKS12, ADK+16, BS80, OL81, OvL81, DS91, Cha12]. Our deletion-look-
ahead model has also been considered in the computational geometry literature, and it is one variant
of the semi-online model (see [DS91] for a detailed discussion). The work of [Cha12] is closely related
to us, it presents a worst-case to amortized-case reduction, when the exact deletion time is known.
The result is (almost) equivalent to Theorem 1.2.3 It differs from Theorem 1.1 as our reduction is
worst-case to worst-case.

Notation Let [n] = {1, 2, . . . , n} and [n1 : n2] = {n1, n1+1, . . . , n2}. For any ground set elements
e1 and e2, we say e1 is younger than e2 if e1 would be deleted earlier than e2. An element is of rank
r if it is the r-th youngest of the current elements. For an ordered set A, we use A[n1 : n2] to denote
the youngest n1-th to n2-th elements of A. For any t ∈ [T ], let k(t) be the largest integer such
that t is exactly a multiple of 2k(t). In our pseudocode, Insert refers to the insertion procedure of
the incremental algorithm (hence taking O(Γu) time), while adding/removing elements to a set A
operates only over the the set (hence taking O(1) time).

2 Reduction – Amortized to worst case

We start by providing the amortized to worst case reduction and prove Theorem 1.2. It also serves
as a warm up for the worst case to worst case reduction. Our key idea is to re-order current elements
in reverse order of deletions, this ensures a deletion update takes only O(Γu) time by rewinding
the computation. Of course, maintaining the reverse order could be expensive as the new-coming
element could be deleted last (e.g. the sliding window model). Instead, we only maintain a partial
reverse order – we re-insert the last O(2i) elements in reverse order in every 2i updates. This suffices
to handle fully-dynamic updates and brings O(log(T )) computation overhead on average.

The reduction is formally depicted in Algorithm 1. The current elements are distributed to
m+ 1 = ⌈log2 T ⌉+ 1 buckets B0, . . . , Bm. At the t-th update (t ∈ [T ]), the algorithm first handles
the update (insertion or deletion) on B0 and it is guaranteed by our algorithm that a deletion
occurs on B0. The algorithm then rewinds the computation to B = Bm . . . Bk(t)+2 (Line 3) and
then Insert elements of B0 ∪ · · · ∪ Bk(t)+1 in the reverse order (Line 8). Algorithm 1 re-arranges
buckets as follows: It keeps buckets Bm, . . . , Bk(t)+2 unchanged, it puts the youngest [2i : 2i+1 − 1]
elements in B to bucket Bi (i ∈ [0 : k(t)]) and the remaining elements to Bk(t)+1 (see Line 6 – 7).

For any t ∈ [T ], let Et be all existing elements at the end of t-th update, and let Et,r be the
youngest r elements in Et (when there are less than r elements in Et, we take Et,r = Et). The
following lemma formalizes the main invariant for Algorithm 1.

3We thank Timothy Chan for pointing out this connection after we published the first version.
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Algorithm 1 Reduction – Amortized to worst case

1: Initialize Bi ← ∅ (i ∈ [0 : m]) ⊲ m = ⌈log2 T ⌉
2: for t = 1, 2, . . . , T do

3: Rewind the computation to Bm . . . Bk(t)+2

4: Add/remove the element in B0 ⊲ Deletion is guaranteed to occur in B0

5: B ← B0 ∪ · · · ∪Bk(t)+1

6: Bi ← B[2i : 2i+1 − 1] (i ∈ [0 : k(t)]) ⊲ Bi contains the youngest [2i : 2i+1 − 1] elements
7: Bk(t)+1 ← B \ (B0 ∪ · · · ∪Bk(t))
8: Insert Bk(t)+1, . . . , B0 ⊲ Elements are inserted in reverse order of deletion
9: end for

Lemma 2.1. At the end of t-th update (t ∈ [T ]), one has

• |B0 ∪ · · · ∪Bk(t)+1| ≤ 2k(t)+2 + 2k(t);

• Et,2i+1−1 ⊆ B0 ∪ · · · ∪Bi for any i ∈ [0 : k(t)].

Proof. For the first claim, at the end of (t− 2k(t))-th update, Line 6 of Algorithm 1 guarantees that
|Bi| ≤ 2i holds for any i ∈ [0 : k(t)+ 1] as (t− 2k(t)) is a multiple of 2k(t)+1. Since there are at most
2k(t) insertions between the (t− 2k(t))-th and t-th update, we have

|B0 ∪ · · · ∪Bk(t)+1| ≤ 2k(t) +

k(t)+1∑

i=0

2i ≤ 2k(t)+2 + 2k(t).

We prove the second claim by induction. The case of t = 1 holds trivially and suppose the
induction holds up to t− 1. Then we know that

Et−2k(t),2k(t)+2−1 ⊆ B0 ∪ · · · ∪Bk(t)+1

at the end of (t− 2k(t))-th update as (t− 2k(t)) is a multiple of 2k(t)+1. As a consequence, one has

Et−2k(t) \ Et−2k(t),2k(t)+2−1 ∩Et,2k(t)+1−1 = ∅

as there are at most 2k(t) deletions between the (t−2k(t))-th and t-th update, and 2k(t)+2−1−2k(t) ≥
2k(t)+1 − 1. At the same time, new elements arrive between the (t− 2k(t))-th and t-th update and
they are all contained in B0∪· · · ∪Bk(t)+1, hence, we conclude that Et,2k(t)+1−1 ⊆ B0∪· · · ∪Bk(t)+1.
By Line 6 of Algorithm 1, we have Et,2i+1−1 ⊆ B0 ∪ · · · ∪Bi for any i ∈ [0 : k(t)]. We conclude the
proof here.

The correctness of Algorithm 1 follows immediately from the correctness of the incremental
algorithm because the set B0 always contains the youngest element. It remains to bound the
amortized running time.

Lemma 2.2. The amortized update time of Algorithm 1 is at most O(Γu · log(T )).

Proof. Line 4 takes constant time since B0 has constant size. By Lemma 2.1, |B0 ∪ · · · ∪Bk(t)+1| ≤
2k(t)+2+2k(t), the rewinding step (Line 3) takes at most O(2k(t)Γu) time and we make O(2k(t)) calls
to Insert at Line 8. The allocation step (Line 6) takes no more than O(2t(k)) time, since the bucket
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Bi has already been sorted (i ∈ [0 : k(t)+ 1]) and it remains to merge them. The total update time
equals

T∑

t=1

O(2k(t)Γu) =
m∑

k=0

O(2kΓu) · T/2k = O(Γu · T log(T )).

We conclude the proof here.

Remark 2.3 (Implementation of rewinding). We work in the RAM model and perform reversible
computation. One simple way of implementing reversible computation (e.g. [Ben73]) is to write
down the change to memory cell in every step. The forward computation time only slows down by a
constant factor and the backward (rewind) computation time equals the forward computation time.
In practice for specific problems there may be faster ways to implement rewinding.

3 Reduction – Worst case to worst case

We next dedicate to prove Theorem 1.1, which translates the worst case guarantee from the incre-
mental model to the deletions-look-ahead model. The major difference with the amortized reduction
is that one cannot re-order/re-insert a large block of elements at once. A natural idea is to prepare
the re-order/re-insertion in advance and split the cost. This brings new challenges as (unknown)
future insertions/deletions interleave with the preparation step and one does not know the exact
set of elements beforehand. To resolve it, we maintain multiple threads, and each thread further
divides the preparation step into epochs of geometrically decreasing size.

The high-level idea is presented in Algorithm 2 with implementation details deferred to the proof
of Lemma 3.2. Algorithm 2 maintains m + 1 threads and m + 1 buckets B0, . . . , Bm. During the
execution of the algorithm, all existing elements are distributed over B0, . . . , Bm, and ideally, the
i-th bucket Bi should be of size O(2i) and B0∪ · · ·∪Bi should contain the youngest Ω(2i) elements.
This guarantees the insertion/deletion of an element can be resolved in O(Γu) time since one only
needs to re-insert elements in B0.

The crucial part is to maintain the ordered buckets B0, . . . , Bm, for which Algorithm 2 maintains
m threads; the i-th thread (i ∈ [m]) prepares the re-order/re-insertion ahead of 2i updates. Precisely,
the i-th thread re-starts every 2i+1 updates and operates over the upcoming 2i updates (Line 12
– 28). It first rewinds the computation status to Bm . . . Bi (Line 14), which is prepared by the
(i + k(τ))-th thread and then re-inserts elements of B0 ∪ · · · ∪ Bi−1 (Line 16 – 24). Concretely,
the re-insertion procedure is further divided into i epochs, where epoch j (j ∈ [i − 1]) lasts for
2j updates and epoch 0 lasts for 2 updates. Let t(i, τ, j) := 2iτ +

∑i−1
r=j+1 2

r denote the end of
epoch j + 1 in the (τ/2 + 1)-th outer-for-loop-iteration of the i-th thread. During epoch j, the i-th
thread leaves alone the youngest 2j+2 elements at the beginning of epoch j to B(i) and Insert the

remaining elements B
(i)
j over the upcoming 2j updates (i.e. [t(i, τ, j) + 1 : t(i, τ, j) + 2j ]-th update,

see Line 18). Meanwhile, the set B(i) is updated and elements are added and removed (Line 20).

Finally, at the end of t-th update (t ∈ [T ] and k(t) ≥ 1), Algorithm 2 resets Bj to B
(k(t))
j for every

j ∈ [0 : k(t)− 1] (Line 26) and this step takes O(log T ) time as we only change the pointer of Bj .
Recall Et,r denotes the youngest r elements and Et denotes all elements at the end of t-th

update. We use Bt,j and B
(i)
t,j to denote the status of Bj and B

(i)
j at the end of t-th update. We

first formalize the main invariant for Algorithm 2.

Lemma 3.1. For any thread i ∈ [m], outer-for-loop-iteration τ ∈ {0, 2, . . . , T/2i}, at the end of the
(2iτ)-th update, we have

5



Algorithm 2 Reduction – Worst case to worst case
⊲ Variables with superscript (i) internal to Thread(i)
⊲ Thread(i) only uses information from bigger threads (aka Thread(j) for j > i)
⊲ In particular, Thread(i)’s Insert and rewind do not affect the state seen by bigger threads
⊲ The output of the algorithm is maintained by Thread(0)

1: Initialize Bi ← ∅ and run Thread(i) (i ∈ [0 : m]) ⊲ m = ⌈log2 T ⌉
2:

3: procedure Thread(0)
4: for t = 1, 2, . . . , T do

5: Add/remove the element in B0 ⊲ t-th update (deletions guaranteed to be from B0)
6: Rewind the computation to Bm . . . B1 ⊲ State prepared by Thread(k(t − 1))
7: Insert B0

8: end for

9: end procedure

10:

11: procedure Thread(i) ⊲ i ∈ [1 : m]
12: for τ = 0, 2, 4, . . . , ⌊T/2i⌋ do ⊲ Restart every 2i+1 updates
13: B(i) ← B0 ∪ · · · ∪Bi−1

14: Rewind the computation to Bm . . . Bi ⊲ State prepared by Thread(i + k(τ))
15:

16: for j = i− 1, i − 2, . . . , 1 do ⊲ j-th epoch, amortized over 2j updates

17: B
(i)
j ← B(i)[2j+2 + 1 :] ⊲ Oldest Θ(2j) elements in B(i)

18: Insert B
(i)
j

19: B(i) ← B(i)\B(i)
j

20: Add/remove elements in B(i) ⊲ Updates [t(i, τ, j) + 1 : t(i, τ, j) + 2j ]
21: end for

22: Add/remove elements of B(i) in the remaining 2 updates ⊲ Epoch 0

23: B
(i)
0 ← B(i)

24: Insert B
(i)
0

25:

26: Bj ← B
(i)
j (∀j ∈ [0 : i− 1])

27: Do nothing for 2i updates
28: end for

29: end procedure
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• E2iτ,2j+2 ⊆ B2iτ,0 ∪ · · · ∪B2iτ,j,

• |B2iτ,j| ≤ 3 · 2j+1

holds for any j ∈ [i− 1]. For j = 0, we have |B2iτ,0| ≤ 12 and E2iτ,4 ⊆ B2iτ,0.

Proof. We prove the first bullet by an induction on i (in the reverse order). The base case of i = m
holds trivially as all buckets are empty at the beginning.

Suppose the induction holds up to the (i + 1)-th thread. For any outer-for-loop-iteration τ ∈
{2, . . . , T/2i}, at the end of 2iτ -th update, the buckets B0, . . . , Bi−1 are reset by the (i + k(τ))-th

thread, hence, it suffices to prove E2iτ,2j+2 ⊆ B
(i+k(τ))
2iτ,0

∪ · · · ∪ B
(i+k(τ))
2iτ,j

(∀j ∈ [i − 1]). By the

inductive hypothesis of the (i+ k(τ))-th thread, we know that

E2iτ−2i+k(τ),2i+k(τ)+1 ⊆ B
(i+k(τ))

2iτ−2i+k(τ) = B2iτ−2i+k(τ),0 ∪ · · · ∪B2iτ−2i+k(τ),i+k(τ)−1,

that is, the youngest 2i+k(τ)+1 are contained in B(i+k(τ)) initially. We prove the desired claim by
contradiction and assume for some j ∈ [0 : i − 1], there exists an element e such that e ∈ E2iτ,2j+2

but e /∈ B
(i+k(τ))
2iτ,0

∪· · ·∪B(i+k(τ))
2iτ,j

. This can only happen if (1) the element e is inserted before epoch

j + 1; and (2) it is removed from B(i+k(τ)) at some epoch γ ≥ j + 1. The reason for (1) is that

elements inserted on/after epoch j + 1 would ultimately be included in B
(i+k(τ))
2iτ,0

∪ · · · ∪ B
(i+k(τ))
2iτ,j

;

the reason for (2) is similar.
Since the element e is removed from B(i+k(τ)) at epoch γ, we have that

e /∈ Et(i+k(τ),τ/2k(τ)−1,γ) \ Et(i+k(τ),τ/2k(τ)−1,γ),2γ+2 .

There are at most 2 +
∑γ

r=1 2
r = 2γ+1 deletions since epoch γ, the rank of e can be improved to

at most 2γ+2 − 2γ+1 = 2γ+1, hence we have e /∈ E2iτ \ E2iτ,2γ+1 and therefore e /∈ E2iτ \ E2iτ,2j+2

(γ ≥ j + 1), this contradicts with the assumption.
For the second bullet, for any i ∈ [m] and τ ∈ {2, . . . , T/2i}, consider the (i + k(τ))-th thread.

After executing Line 19 in the (j + 1)-th epoch of Algorithm 2, we have that

|B(i+k(τ))

t(i+k(τ),τ/2k(τ)−2j+1,j)
| ≤ 2j+3

For the rest of the epoch, there can be at most 2j+1 insertions, hence:

|B(i+k(τ))

t(i+k(τ),τ/2k(τ) ,j)
| ≤ 2j+3 + 2j+1

Finally, after executing Line 17 in the j-th epoch, we have:

|B(i+k(τ))

t(i+k(τ),τ/2k(τ),j),j
| ≤ 2j+3 + 2j+1 − 2j+2 = 3 · 2j+1.

We have proved the first claim for j ∈ [i− 1], the case of j = 0 follows similarly.

We next bound the worst case update time.

Lemma 3.2. The update time per operation is at most O(Γu · log2(T )).

7



Proof. By Lemma 3.1, the size of B0 is O(1) and it contains the youngest 2 elements, hence the
rewinding and Insert step (Line 7) can be performed in O(Γu) time per update. The major
overhead comes from maintaining m threads, and we bound the runtime of each thread separately.

For any thread i and outer-for-loop-iteration τ ∈ {0, 2, . . . , T/2i}, due to Line 17 of Algorithm
2, we have

|B(i)
t(i,τ,j−1),j| ≤ |B

(i)
t(i,τ,j)| ≤ 2j+3 + 2j+1 ∀j ∈ [i− 2]

and by Lemma 3.1,

|B(i)
t(i,τ,i−2),i−1

| ≤ |B2τ i,0 ∪ · · · ∪B2τ i,i−1| ≤
i−1∑

r=0

3 · 2r+1 ≤ 3 · 2i+1.

We analyse the update time step by step.
We first come to the rewinding step (Line 14). Unlike the amortized case, we cannot simply

rewind by the reversible computation since we maintain multiple threads that need to access the
state of the incremental algorithm with different sets of elements, in parallel. Instead, when we

call Insert of each block B
(i)
j , we maintain a dictionary that records the location/value of changed

memory cell. The construction of dictionary only incurs constant overhead. By doing this, during
the execution of Algorithm 2, one can access any memory cell by looking up to at most O(log(T ))
dictionaries (note the lookup path is known to Algorithm 2) and find the last time it has been
changed. Naively, looking up the memory updates in each dictionary takes O(log(ΓuT )) time. This
brings an O((log(T ) log(ΓuT ))) total overhead for every operation of Insert. Except for this, Line
14 essentially comes for free.

A more careful implementation leads to only O(log(T )) overhead. We maintain an additional
data structure, which links each memory cell of the incremental algorithm to m+1 lists, where the
i-th list records the changes made by the i-th thread in chronological order. The maintenance of the
data structure slows down the forward computation of Insert by a constant factor. At the same
time, in order to search the content of a memory cell, we only need to search through the lists (note
again the look-up path is known), which takes O(1) time per list and O(log(T )) in total. Hence, it
brings an O((log(T )) total overhead for every operation of Insert.

Algorithm 2 updates B(i) and B
(i)
j at the beginning of epoch j (Lines 17 and 19). We do not

rewrite, but instead, we copy B(i) and B
(i)
j to new memory cells. Since both sets are of size O(2j),

the copy operation can be done in the first 1
4 · 2j updates during epoch j and has O(log(T )) cost

per update using Binomial heap.

Algorithm 2 calls at most O(2j) times Insert during epoch j (Line 18). Since elements in B
(i)
j

are known at the beginning so these operations can be averaged over the following 3/4 · 2j updates
of epoch j and take O(Γu log(T )) time per update.

The set B(i) receives new elements as well as removes old elements in epoch j (Line 20). We
buffer the changes in the first 1

4 ·2j updates (as the “new” set B(i) is not yet ready) and add/remove

elements during the following 3/4 · 2j updates. The size of B(i) is O(2j) during epoch j, so the
update cost is O(log(T )) per update.

Finally, we note (1) Lines 22 – 24 takes only O(Γu log(T )) time in total; (2) Line 13 can be done
similarly to Line 17; (3) Line 26 resets Bj (j ∈ [0 : i− 1]) by changing the pointer, so it incurs only
O(log T ) cost.

Overall, Algorithm 2 has worst case update time O(Γu log(T )) per thread and O(Γu · log2(T ))
in total.
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Proof of Theorem 1.1. The worst case guarantee has already been established in Lemma 3.2, it
remains to prove the correctness of Algorithm 2.

By Lemma 3.1, the youngest 2 elements are always contained in B0, hence insertions/deletions
are operated correctly, i.e., the removal step (Line 5) indeed removes element in B0. It remains
to prove each thread operates normally, i.e., for any thread i and outer-for-loop-iteration τ , the
removal operation would only remove elements in B(i) during epoch j (j ∈ [i − 1]). It suffices to

prove that Et(i,τ,j),2j+2 ∈ B
(i)
t(i,τ,j). We prove by induction. This is true in epoch i − 1 by Lemma

3.1. Suppose it holds to epoch j + 1, i.e., Et(i,τ,j+1),2j+3 ∈ B
(i)
t(i,τ,j+1), since there are at most 2j+1

deletions in epoch j + 1, we have that Et(i,τ,j+1),2j+2 ∈ B
(i)
t(i,τ,j). We complete the proof here.

4 Application

We provide a few applications of our reduction.

4.1 Submodular maximization

Dynamic submodular maximization In a submodular maximization problem, there is a ground
set N = [n] and a set function f : N → R

+. The function is said to be monotone if f(A) ≥ f(B)
for any B ⊆ A ⊆ N and it is said to be submodular if f(A ∪ {u}) − f(A) ≤ f(B ∪ {u}) − f(B)
for any B ⊆ A ⊆ N and element u. The task of submodular maximization under a cardinality
constraint refers to maxS⊆[n],|S|=k f(S) for some parameter 1 ≤ k ≤ n, and the task of submod-
ular maximization under a matroid constraint M refers to maxS⊆M f(S). Finally, in a dynamic
submodular maximization problem, the ground set can be inserted and deleted, and the goal is to
maintain a good solution set S.

[FLNF+22] provides an 0.3178-approximation algorithm (with a matroid constraint) under
streaming setting, and one can adapt it to a dynamic algorithm with worst case update time under
incremental setting.

Theorem 4.1 (Adapt from [FLNF+22]). For any n, k > 0, under the incremental update, there
exists a dynamic algorithm that maintains an 0.3178-approximate solution for monotone submodular
maximization under a matroid constraint of rank k and makes poly(k, log n) queries per iteration.

The sliding window model is of interests to the community [ELVZ17]. The algorithm of [ELVZ17]
maintains an 1/2-approximation solution with polylogarithmic updates time for dynamic submodu-
lar maximization under cardinality constraints. Our reduction gives the first constant approximation
algorithm for a matroid constraint.

Theorem 4.2 (Dynamic submodular maximization). For any n, k > 0, there exists a dynamic
algorithm that achieves 0.3178-approximation for the problem of submodular maximization under a
matroid constraint using poly(k, log n) queries per update under the sliding window model.

4.2 Depth first search (DFS) tree

Dynamic DFS Given an undirected graph G = (V,E) with |V | = n, |E| = m, the task is
to maintain a depth first search (DFS) tree under edge insertion/deletion. In the incremental
model, [BCCK16] obtains a dynamic algorithm with O(n(log n)3) worst case update time, and it
is improved to O(n) by [CDW+18]. While in the fully dynamic model, the current best known
algorithm [BCCK16] has Õ(

√
mn) update time.
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Theorem 4.3 ([BCCK16, CDW+18]). Given a graph G = (V,E), with |V | = n, |E| = m. There
is a dynamic algorithm that maintains a DFS tree with O(n) update time in the incremental model.

Using our reduction, one can immediately obtain

Theorem 4.4 (Dynamic DFS). Given a graph G = (V,E), with |V | = n, |E| = m. There is a
dynamic algorithm that maintains a DFS tree with Õ(n) worst case update time in the offline model.

4.3 All-Pair Shortest-Paths (APSP)

Dynamic APSP The APSP problem has been a central topic of graph algorithm. In a dynamic
APSP problem, there is a undirected weighted graph G = (V,E) (|V | = n, |E| = m) that subjects
to edge insertion and deletion, The goal of the algorithm is to maintain an estimate δ(u, v) for
every pair of node u, v ∈ V that approximates the shortest path distance between u and v. In the
incremental setting, [CGH+20] obtains an O(1)-approximate algorithm with no(1) worst case update
time.

Theorem 4.5 (Theorem 3.1 in [CGH+20]). Let G = (V,E) be a undirected weighted graph, there
exists an incremental deterministic All-Pair Shortest-Paths algorithm that maintains O(1) approx-
imate shortest path in no(1) worst case update time.

The offline model is of interest and it is already pointed out in [CGH+20] that their data structure
can be adapted to the offline model (but in a problem specific way). With Theorem 1.1 in hand,
we can recover Theorem 4.8 of [CGH+20].

Theorem 4.6 (Dynamic APSP). Let G = (V,E) be a undirected weighted graph, there exists a
deterministic All-Pair Shortest-Paths algorithm that maintains O(1) approximate shortest path in
no(1) worst case update time under the offline model.

5 Impossibility of general reduction

We prove both conditions (worst case guarantee and known deletion order) are indeed necessary to
obtain a black box reduction.

Worst case guarantee is necessary A black box reduction is generally impossible if one only has
amortized guarantee of incremental model. An example is the dynamic submodular maximization
problem, where unconditional lower bound is known.

Theorem 5.1. Let T ≥ 1 be the total number of updates. There exists a problem such that it is
possible to have a dynamic algorithm with amortized update time Γu in the incremental model, but

any algorithm in the deletions-look-ahead model takes at Ω
(

T
log4(T )

)
· Γu amortized update time.

Proof. Let [n] be the ground set and the total number of update be T = O(n). By Theorem 1.3 of
[CP22], there exists an algorithm with O(log(k/ǫ)/ǫ2) amortized query complexity and maintains
an (1 − 1/e − ǫ)-approximate solution for dynamic submodular maximization. While in the fully
dynamic model (with known deletion order), by Theorem 1.2 of [CP22], no algorithm could maintain
an 0.584-approximation with o(n/k3) amortized queries whenever k = Ω(log n). Taking k = C log n
for some constant C > 0 exhibits a Ω(T/ log4(T )) separation.
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Known deletion order is necessary If the deletion order is not known in advance, there exists
a separation between the fully-dynamic and incremental model.

Theorem 5.2. Let T ≥ 1 be the total number of updates. There exists a problem such that it is
possible to have a dynamic algorithm with worst case update time O(1) in the incremental model,

but any algorithm in the fully dynamic model has amortized running time Ω
(

T
log(T )

)
.

Proof. Let N = [n] be the ground set element and T = 2n be the total number of updates. We
first formalize the oracle model. For any subset of elements A ⊆ N , let S(A) ∈ S be the transcript
on A and Q(A) ∈ {0, 1} be the answer to Query. There exists an oracle O : S ×N → S × {0, 1},
it takes input of a transcript S(A) ∈ S and an element e ∈ N , and returns the next transcript
S(A ∪ {e}) ∈ S and the answer Q(A ∪ {e}) ∈ {0, 1}, i.e.,

O(S(A), e) = (S(A ∪ {e}), Q(A ∪ {e})).
The oracle outputs empty when the input is invalid and we assume the oracle takes unit time.

It is clear that it takes only 1 oracle call per update in the incremental model. For the fully
dynamic model, consider the update sequence of first inserting all elements in N and delete them
in random order. We prove Ω(n2/ log n) oracle calls are necessary. For any t ∈ [0 : n/100 log n],
let Nt be the set of elements remain after deleting 4t log n elements and N0 = N . It suffices to
prove the algorithm needs to make at least Ω(n) oracle queries between Nt and Nt+1. Suppose
the algorithm has the transcript S(A1), . . . S(Aℓ(t)) at the beginning of the (n+4t log n)-th update,
where Ai ⊆ [Nt] and |Ai| ≥ n/2 (i ∈ [ℓ(t)]). We know that ℓ(t) ≤ n2. After deleting the next 4 log n
elements (at random), the probability that Ai ⊆ Nt+1 is at most 1/n4. Taking an union bound,
with probability at least 1−1/n2, none of the set satisfies Ai ⊆ Nt+1. Then we conclude that to get
the transcript of S(Nt+1), the algorithm needs at least |Nt+1| − n/2 = Ω(n) queries. We conclude
the proof here.
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