
Revisiting Garg’s 2-Approximation Algorithm

for the k-MST Problem in Graphs

Emmett Breen Renee Mirka Zichen Wang David P. Williamson

{ejb284, rem379, zw336, davidpwilliamson}@cornell.edu
Cornell University, Ithaca, NY 14850

Abstract

This paper revisits the 2-approximation algorithm for k-MST presented by Garg
[9] in light of a recent paper of Paul et al. [14]. In the k-MST problem, the goal is to
return a tree spanning k vertices of minimum total edge cost. Paul et al. [14] extend
Garg’s primal-dual subroutine to improve the approximation ratios for the budgeted
prize-collecting traveling salesman and minimum spanning tree problems. We follow
their algorithm and analysis to provide a cleaner version of Garg’s result. Additionally,
we introduce the novel concept of a kernel which allows an easier visualization of the
stages of the algorithm and a clearer understanding of the pruning phase. Other notable
updates include presenting a linear programming formulation of the k-MST problem,
including pseudocode, replacing the coloring scheme used by Garg with the simpler
concept of neutral sets, and providing an explicit potential function.

1 Introduction

Given as input an undirected graph G = (V,E) and non-negative costs ce for each edge
e ∈ E, the goal of the k-MST problem is to find a tree spanning at least k vertices of
minimum total cost. In the rooted case of the problem, a special root vertex r is denoted
which must be contained in the final tree, whereas no such r exists for the unrooted
case. These two cases are equivalent for the k-MST problem: Garg [9] shows that an
α-approximation algorithm for one version can be translated into an α-approximation
algorithm for the other. An α-approximation algorithm for k-MST is a polynomial-time
algorithm which returns a solution at most α times the cost of the optimal tree.

Approximation algorithms have been considered for k-MST since Ravi et al. introduced
the problem [15]. They proved the problem is NP-hard and presented a 3

√
k-approximation

algorithm. Since then, one line of work by numerous authors [4, 6, 8, 3] developed a (2+ϵ)-
approximation algorithm running in time polynomial in ϵ−1 [2]. Currently, the best known
approximation is a 2-approximation algorithm by Garg using primal-dual techniques [9]. A

1

ar
X

iv
:2

30
6.

01
86

7v
2

 [
cs

.D
S]

 1
7

Ju
n

20
23

separate line of work considers a special case of k-MST where the input is given by n points
in the plane with edge costs determined by the Euclidean metric [15, 10, 7, 5, 13, 1, 12].

This paper focuses on Garg’s result. His 2-approximation algorithm is not only the best
known for k-MST, but Garg also shows that his algorithm leads to a 2-approximation algo-
rithm for the k-TSP problem (where one seeks a min-cost tour on at least k vertices instead
of a tree and edge costs satisfy the triangle inequality) and 3-approximation algorithm for
the budgeted version of k-MST (where a budget B is given and one seeks to maximize the
number of vertices in a tree of cost at most B) due to an observation by Johnson et al. [11].
More recently, Paul et al. have extended Garg’s technique to improve the approximation
algorithms for the budgeted prize-collecting traveling salesman and minimum spanning tree
problems [14]. We revisit Garg’s algorithm and analysis in light of the paper of Paul et
al. In particular, we seek to provide a cleaner version of Garg’s algorithm and analysis by
adapting the results of Paul et al. We use Paul et al.’s explicit potential function and use
of neutral sets to replace the coloring scheme used by Garg. Both of these changes improve
the clarity and comprehensibility of the initial analysis. Additionally, and distinct from
both previous papers, we introduce the notion of a kernel in this primal-dual algorithm;
its use in part enables a clearer visualization of the mechanics of the algorithm. We believe
this perspective yields a more accessible version of Garg’s result.

The structure of the paper is as follows. Section 2 introduces a linear programming
formulation of the k-MST problem. Section 3 describes the primal-dual subroutine used by
Garg, and Section 4 provides an overview of the entire algorithm along with a lower bound
on the cost of the optimal tree. In Sections 5 and 6, we describe the details of finding
a specific tree through parameter setting and modifying the results of the primal-dual
subroutine. Finally, Section 7 proves the 2-approximation.

2 Linear Programming Formulation

In this section, we provide a linear programming (LP) relaxation of the k-MST problem.
The constraints in the dual LP will determine when an event happens in the primal-dual
subroutine.

For each S ⊆ V , let variable zS ∈ {0, 1} denote whether S constitutes the vertices of
the spanning tree. For each edge e ∈ E, let variable xe ∈ {0, 1} denote whether edge e is
included in the spanning tree. Then, the following is a linear programming relaxation for
the k-MST problem:

2

minimize
∑
e∈E

cexe

subject to
∑

e:e∈δ(S)

xe ≥
∑

ST :S⊂ST

zST
∀S ⊂ V,

∑
S⊆V

|S|zS ≥ k,

∑
S⊆V

zS ≤ 1,

zS , xe ≥ 0.

The first constraint guarantees that the spanning tree is connected. If S is a strict
subset of the vertices ST of a spanning tree T , then there must be at least one edge across
δ(S), the cut of S. Given there are no negative-cost edges, any optimal integral solution
to the LP will be a tree and have xe ≤ 1 for each e ∈ E, and thus these constraints are
omitted. We shall also be careful with our subsequent approximation algorithm to not
violate these two constraints. We can now write down the dual of this linear program:

maximize λ1k − λ2

subject to
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E,

∑
T⊂S

yT + λ2 ≥ λ1|S| ∀S ⊂ V,

λ1, λ2, yS ≥ 0.

To produce a tree, we use a primal-dual subroutine for these formulations that will be
described in the next section. However, we first observe (similar to Paul et al.) that for any
λ1 and y satisfying the edge constraints, we can find a λ2 value satisfying the subset con-
straints. Particularly, we can let λ2 be the maximum of 0 and maxS⊂V {λ1|S|−

∑
ST⊂S yST

}
and we have a feasible dual solution. Therefore, a key component of this algorithm and
the following analysis is choosing a λ1 value leading to a primal-dual subroutine solution
with a tree of the appropriate size. In what follows, we’ll see that too small of a λ1 value
leads to too few selected edges, whereas a value of λ1 that is too large leads to too many
selected edges. More details are provided in Section 5.

3 Primal-Dual Subroutine

We now present the primal-dual subroutine used by Garg. The algorithm assumes a
fixed λ1 and, instead of explicitly finding the minimal λ2 value, greedily grows a forest

3

with respect to a heuristic function of the dual variables. In our case, the function is the
potential that we define as below.

Definition 1. For any subset S ⊆ V , the potential of S is

π(S) = λ1|S| −
∑

T :T⊂S

yT .

Definition 2. A subset S ⊆ V is neutral if
∑

T :T⊆S

yT = λ1|S|, or equivalently, if yS =

π(S).

Intuitively, each vertex has a budget of λ1, and we spend the budget amassed in con-
necting vertices to cover the costs of the edges. In this way, we are able to consider the
vertices and edges of a set S as a single variable π(S) that measures how much budget we
have left to spend on future edges. The objective is to connect k vertices with the cheapest
possible edge cost; this corresponds well to maximizing the potential.

Algorithm 1 Primal-Dual Subroutine PD(λ1)

yS ← 0
PD ← ∅
C ← {{v} : v ∈ V }
while C ̸= ∅ do
raise all yS corresponding to active components uniformly until either
if yS = π(S) then
C ← C − S

else if
∑

S:e∈δ(S) yS = ce for some e between sets S1, S2 then
PD ← PD ∪{e}
C ← C − S1 − S2

C ← C ∪ {S1 ∪ S2}
end if

end while
return PD

The primal-dual subroutine is given in Algorithm 1. Described in words, initially yS = 0
for all S, and all sets consisting of a single vertex are active. At any stage of the algorithm
with active components, we uniformly increase yS corresponding to all active components
until either a set event or an edge event happens. Here, a set event is a set becoming
neutral, while an edge event is the constraint corresponding to an edge becoming tight
(that is, the dual constraint is met with equality). If a set becomes neutral, then we mark
this set inactive and remove it from the set of active components. If the dual constraint
for an edge between sets S1 and S2 reaches equality, then the edge is tight. We add this

4

edge to the set of selected edges, mark S1 and S2 inactive if not already, and mark S1 ∪S2

active. We’ll sometimes say that we have merged the two sets.
We make a few observations about the structure of the result of the primal-dual sub-

routine. First, the collection S of all sets that are ever active during the subroutine is
laminar ; that is, for any pair of sets A,B ∈ S, either A ⊆ B, B ⊆ A, or A ∩ B = ∅.
Initially, all sets consisting of a single vertex are active. By design, the only way a new,
larger set becomes active is through merging two previously active sets when an edge event
occurs. This maintains the laminar property. Secondly, the subroutine returns a forest.
Each time an edge event occurs, two trees are connected into a larger tree. Furthermore,
no cycles can exist. If an edge (u, v) was added that created a cycle, there must have been
an active set that contained exactly one of u or v. However, since u and v must already be
connected (otherwise this edge would not complete a cycle), any active set that contains u
or v must contain them both. If two edges that would complete a cycle go tight at the same
time, we choose one of the edges through a tie-breaking procedure described in Sections 5
and 6.

We observe that this procedure always maintains a feasible dual solution. Note that all
dual edge constraints are initially satisfied with yS = 0. Furthermore, if an edge becomes
tight, the sets corresponding to the endpoints of the edge are marked inactive, so the
constraint will never be violated.

Active sets play a crucial role in the subroutine, as these are the sets with the capability
for growth. Because of this, we formalize the decomposition of currently-active or once-
active sets into neutral subsets and subsets of always-active vertices through the notion of a
kernel, one of the key points of distinction between our work and Garg’s initial presentation
as well as Paul et al.’s work.

Definition 3. For an active set S corresponding to a tree T in the set of tight edges of
PD, the kernel of S, denoted by K(S), is the smallest cardinality subset of S such that

1. if v ∈ S has always been part of an active set, then v ∈ K(S),

2. K(S) is connected in T , and

3. for every once-active set I ⊂ S either I ⊂ K(S) or I ∩K(S) = ∅.

The kernel of a once-active set S is the kernel at the moment S becomes neutral.

Since initially yS = 0 for all subsets S and all sets consisting of a single vertex are
active, every vertex is the kernel of itself at the start of the primal-dual subroutine. By
the definition of the kernel, we know that the kernel of a once-active (but now inactive)
set is the kernel of the set when it went neutral. It remains to understand how the kernel
changes as active sets grow throughout the primal-dual subroutine. We illustrate this
growth through two possible cases:

1. an active set S merges with an inactive set I or

5

(a) An active and inactive set with their ker-
nels before an edge event occurring at the
dashed edge.

(b) The new active set and its kernel after
the merge.

Figure 1: These figures illustrate how the sets and kernels change when an active set
merges with an inactive set. Sets surrounded by a bold (resp. dashed) line are active (resp.
inactive). Sets with a grey background are the kernel of the smallest active or inactive set
they are contained in.

2. an active set S merges with another active set A.

In the first case, the kernel of S∪I is simply the kernel of S. Since I was inactive at the
time of the merge, every vertex in I has been part of an inactive set. Therefore adding any
vertices of I to K(S) would simply increase the cardinality of the kernel. Since we want the
minimal cardinality set maintaining connectivity (and K(S) is already connnected since it
was previously a kernel), we do not add any of the vertices of I. See Figure 1.

In the second case, the kernel of S ∪A will contain both the kernel of S and the kernel
of A since both of these contain vertices which have always been contained in active sets.
However, we must be careful since the edge event merging S and A may not occur on an
edge connecting the kernel of S to the kernel of A and the resulting set should be connected.
In this case, we must add the fewest possible number of once-active subsets of S and A by
including only the ones on the path from K(S) to K(A). This maintains that K(S ∪A) is
connected in the new tree. See Figure 2.

The kernel is used in the next step of the algorithm after the primal-dual subroutine –
the pruning phase. In this phase, we want to remove sets of vertices that do not help us
achieve our end goal. Particularly, we want to remove neutral sets without disconnecting
any tree in the forest returned by the primal-dual subroutine. We do so by pruning each
tree T , with vertex set ST , in the forest returned by PD to return exactly the edge-set
determined by the kernel of ST . In particular, a pruned tree T is given by E(K(ST)) ∩ T
where E(S) = {(u, v) ∈ E : u, v ∈ S}. The following lemma shows that this has our desired
effect; the proof is delayed until Section 7. For sets S′ ⊂ S ⊂ V , let δK(S)(S

′) = {(u, v) ∈
E(S) : u ∈ S′, v ∈ K(S)− S′}.

6

(a) Two active sets with their kernels before
an edge event occurring at the dashed edge.

(b) The new active set and its kernel after
the merge.

Figure 2: These figures illustrate how the sets and kernels change when an two active sets
merge. Sets surrounded by a bold (resp. dashed) line are active (resp. inactive). Sets with
a grey background are the kernel of the smallest active or inactive set they are contained
in.

Lemma 1. The kernel K(S) of a set S contains no neutral subset N ⊂ K(S) such that
|δK(S)(N)| = 1.

Clearly the size of each tree may decrease during the pruning phase, so measures must
be taken to ensure we have a tree of suitable size at the end of the primal-dual subroutine.
Recalling that we can find a feasible λ2 value for any λ1 and feasible yS solution, we
carefully select λ1 guaranteeing at least one kernel in our primal-dual output forest has at
least k vertices. After pruning, we execute a picking routine to obtain a tree with exactly
k vertices such that the 2-approximation holds. The details of this selection of λ1 and
the picking routine implemented after the primal-dual subroutine and pruning occur are
described in the following sections.

4 Algorithm Overview

In this section, we provide an overview of how the forest from the primal-dual subroutine
is used to construct a feasible k-MST. Assume we have run the primal-dual subroutine with
some value of λ1 to find a feasible dual solution (y, λ1, λ2), though we may not know λ2

exactly. We also have a forest F from which we need to select a tree spanning k vertices.
In order to do so, we need to guarantee that there exists a tree in F containing at least
k vertices after it is pruned. If the fixed λ1 is too small, this may not be the case as a
small λ1 allows sets to become neutral earlier which limits the potential for growth. On the
other hand, if λ1 is too large, the primal-dual subroutine degrades to greedily selecting the
cheapest edges, which is sub-optimal. In order to balance these two scenarios, we search
for an appropriate λ1 value. Specifically, we identify a λ1 value such that PD(λ−

1) returns
a forest where every pruned tree is too small and PD(λ+

1) contains at least one pruned

7

tree large enough. Here x− = x− ϵ and x+ = x+ ϵ, where ϵ is arbitrarily small. Once we
have this threshold value of λ1, we prune our selected tree to return a kernel with at least
k vertices and bounded cost on the corresponding tree. Finally, we select a sub-tree of our
pruned tree containing exactly k vertices.

Before describing how we choose a λ1 value, we derive a lower bound of the cost of the
optimal k-MST in terms of the potential function that works for any choice of λ1. In the
following sections, we will see how to set λ1 to give an upper bound. Together, this will
give us a 2-approximation.

Let S be the laminar set of all once-active sets plus the set of all vertices. Denote T ∗

the optimal k-MST, ST ∗ its set of vertices, and S1 the set with the minimal potential in S
such that ST ∗ ⊂ S1. Since V ∈ S, such an S1 always exists. In general, for a tree, we will
refer to the set of edges by T and the corresponding set of vertices by ST .

Lemma 2. For any S ⊆ V ,
∑

U :U⊆S

yU ≤ λ1|S|.

Proof. If S was once active, then the inequality holds by the design of the primal-dual
subroutine. We prove this by induction. Suppose S1 and S2 merged to form S, and∑

U :U⊆S1

yU ≤ λ1|S1|,

∑
U :U⊆S2

yU ≤ λ1|S2|.

Initially yS = 0, so ∑
U :U⊆S

yU =
∑

U :U⊆S1

yU +
∑

U :U⊆S2

yU + yS

≤ λ1|S1|+ λ1|S2|
= λ1|S|.

We increase yS either until S merges with another active set or until
∑

U :U⊆S

yU = λ1|S| and

S gets marked neutral. In either case, we no longer increase yS , so the claim continues
to hold. For an arbitrary set S, we can partition it into maximal disjoint laminar subsets
S1, S2, ..., Sc ∈ S. Therefore,∑

U :U⊆S

yU =

c∑
i=1

∑
U :U⊆Si

yU ≤
c∑

i=1

λ1|Si| = λ1|S|.

Theorem 1. The minimal spanning tree has cost at least λ1 · k − π(S1).

8

Proof. By the potential definition and Lemma 1,

λ1|S1| =
∑

U :U⊂S1

yU + π(S1)

=
∑

U :U⊆S1−ST∗

yU +
∑

U :U⊂S1
U∩ST∗ ̸=∅

yU + π(S1)

≤ λ1|S1 − ST ∗ |+
∑

U :U⊂S1
U∩ST∗ ̸=∅

yU + π(S1), so

λ1|ST ∗ | ≤
∑

U :U⊂S1
U∩ST∗ ̸=∅

yU + π(S1)

≤
∑

e∈ST∗

∑
U :e∈δ(U)

yU + π(S1)

≤
∑

e∈ST∗

ce + π(S1).

The first inequality follows from Lemma 1. The third inequality says that for every set
that intersects ST ∗ , an edge in its cut must lie in T ∗. Since we only allow edges with
non-negative costs, the spanning tree is minimal when it covers exactly k vertices. By
rearranging, we obtain the claim.

5 Setting λ1

We now describe how to set λ1 to enable us to pick k vertices from a pruned tree in
our primal-dual subroutine forest. Recall x− = x− ϵ and x+ = x+ ϵ, where ϵ is arbitrary
small. We will later use infinitesimal to refer to variables that approximate their originals
as ϵ → 0. We adapt two lemmas from Paul et al. to the k-MST situation. The first tells
us that we can find our desired threshold value λ1.

Lemma 3. In polynomial time, we can find a threshold value λ1 such that all pruned trees
of PD(λ−

1) have less than k vertices and there exists at least one pruned tree in PD(λ+
1)

with at least k vertices.

As the details of this proof closely mirror those of Paul et al., we omit them here and
refer the reader to Lemma 2 [14]. The key idea is that the time for each set and edge event
to occur can be represented as a linear function in λ1; see Figure 3. Then by observing
the threshold λ1 must occur at an intersection of these lines, we can consider smaller and
smaller intervals of λ determined by the intersections until we find our desired value. In
particular, we recurse onto a smaller subinterval where the next event to occur is consistent
throughout the subinterval and consider the possible events that can follow. Eventually,

9

Figure 3: Finding Threshold λ1. Each line represents the time for an event to occur
next in terms of λ1. The bold line shows the next event, where each segment is from a
given subinterval.

there must be a time (intersection) where the difference in next events translates to a
difference in sizes of the resulting kernels; this is where our threshold λ1 occurs. The next
lemma tells us two important properties regarding the primal-dual subroutine for values
around our threshold λ1.

Lemma 4. Throughout the two subroutines PD(λ−
1) and PD(λ+

1), the following two prop-
erties hold:

• All active components are the same except for during infinitesimal time.

• For all S ⊆ V , the difference between y+S and y−S is infinitesimal. Here y+S and y−S
are the dual variables when running PD(λ+

1) and PD(λ−
1), respectively.

Here, again we present an overview of the proof of Lemma 3 [14] with a few minor
changes. The main observation is the claim could only fail if two different events occur at
the same time in PD(λ), and the events cause lasting disparity in PD(λ−

1) and PD(λ+
1).

Furthermore, there are four possible ways that two different events could occur at the same
time:

1. different sets go neutral in PD(λ−
1) and PD(λ+

1),

2. an edge goes tight in PD(λ−
1) while a set goes neutral in PD(λ+

1),

3. a set goes neutral in PD(λ−
1) while an edge goes tight in PD(λ+

1), or

4. different edges go tight in PD(λ−
1) and PD(λ+

1).

10

In the first case, the times for the two sets to go neutral must differ by an infinitesimally
small amount and thus one will go neutral immediately after the other. The second case
cannot occur for this problem since the time for a set to go neutral has a positive slope in
λ1 while the time for an edge to go tight has a negative slope in λ1.

For the third case, if the tight edge has an endpoint in an active set different than the
set going neutral, the edge will still go tight immediately after the set event. If the edge
going tight in PD(λ+

1) merges the set going neutral in PD(λ−
1) and another neutral set,

the merged set must have infinitesimally small potential and will go neutral immediately
after the edge event. This maintains the active sets. Furthermore, if an active set merges
with the set going neutral in the future in PD(λ−

1), the edge will go tight immediately
after, still maintaining the active sets.

Finally, for the fourth case, if the edges are between different components one will go
tight immediately after the other (similar to the first case). Meanwhile, if they are between
the same components, only one will go tight in each subroutine but the resulting active
components will be the same.

The main role of Lemma 4 is insight into the potential differences between PD(λ−
1)

and PD(λ+
1). In particular, there may be subsets marked neutral in PD(λ−

1) but with
infinitesimally small potential in PD(λ+

1) or there may be different edges that went tight
between the same components. If, every time two events tied in PD(λ), we broke the tie
by selecting what PD(λ+

1) would do, we will end up with at least one kernel having at least
k vertices. On the other hand, we can consider breaking ties in favor of PD(λ−

1) one at a
time. By doing so, we will find the smallest i such that if the first i ties are broken according
to PD(λ−

1) and the rest by PD(λ+
1), we return a forest with all kernels containing less than

k vertices. By Lemma 3, the dual variables only change by an infinitesimally small amount,
and the only differences occur during the pruning phase.

In finding this value of i, we have also either identified a neutral subset X such that
if X remained active our forest would contain a kernel of appropriate size, or found two
edges e and f between the same components such that adding f instead of e returns a
forest containing a kernel of appropriate size. These two cases will play a role in picking
our final set of vertices in the next section.

6 Constructing a Tree

Let λ1 be our found threshold value and (y, λ1, λ2) our feasible dual solution acquired
through tie-breaking in the manner described at the end of Section 5. Currently, all kernels
of our primal-dual subroutine output forest have fewer than k vertices, but Section 5 tells us
that either we have identified a neutral subset X such that if X remained active our forest
would contain a kernel with at least k vertices (Case I) or found two edges e and f between
the same components such that adding f instead of e returns a forest containing a kernel
with at least k vertices (Case II). The final construction of our tree depends on which of

11

these cases are present and requires us to pick k vertices. Specifically, pick(X,w, k) returns
a sub-tree of X with k vertices and contains the vertex w. The idea is to inspect the last
two subsets that merged to form the set. Suppose that X1 and X2 merged to form X, with
edge (u, v) connecting them, and that X1 contains w. If X1 contains at least k vertices,
then we invoke pick(X1, w, k). If X1 has less than k vertices, then we pick all vertices in
X1 and continue to pick(X2, v, k − |X1|). We repeat the process recursively until we have
picked exactly k vertices.

Algorithm 2 Pick Routine pick(X,w, k)

let X1 and X2 be the two subsets that merged on edge e = (u, v) to form X
suppose without loss of generality that w ∈ X1

if |X1| > k then
call pick(X1, w, k)

else if |X1| < k then
pick all vertices in X1

call pick(X2, v, k − |X1|)
else
pick all vertices in X1

end if

In Case I, a set goes neutral the same time an edge goes tight; see Figure 4. Let
K(S1) and K(S2) be the two kernels of the merging two subsets S1 and S2. If we break
the tie by choosing the set event, then we would end up with both K(S1) and K(S2)
having less than k vertices. On the other hand, if we break the tie by choosing the
edge event, then the new kernel K(S1 ∪ S2) = K(S1) ∪ N1 ∪ · · · ∪ Np ∪ K(S2) would
have at least k vertices. Here Ni denotes the neutral sets on the path from K(S1) to
K(S2). Now we show how to pick exactly k vertices from this new kernel using the pick
routine. Starting from K(S1), we select neutral sets N1, N2, . . . , Nq−1 until adding another
neutral set Nq will cause K(S1) ∪N1 ∪ · · · ∪Nq to have at least k vertices. Suppose edge
e = (u, v) links Nq−1 to Nq, then pick(Nq, v, r) will pick the remaining vertices needed,

where r = k − |K(S1)| −
∑q−1

i=1 |Ni| is the number of additional vertices we need to pick.
In Case II, two edges go tight simultaneously; see Figure 5. Again, let K(S1) and

K(S2) be the two kernels of the merging two subsets S1, S2. Denote e, f the two edges
both between S1 and S2. If we choose edge e, then the new kernel K(S1 ∪ S2) = K(S1) ∪
N1 ∪ ... ∪ Np ∪ K(S2) would have less than k vertices, where N1, . . . , Np are the neutral
sets between K(S1) and K(S2) using edge e. On the other hand, if we choose edge f ,
then the new kernel K(S1 ∪ S2) = K(S1) ∪ N ′

1 ∪ ... ∪ N ′
q ∪ K(S2) would have at least k

vertices, where N ′
1, . . . , N

′
q are the neutral sets between K(S1) and K(S2) using edge f .

The difference clearly results from the neutral sets in between K(S1) and K(S2). Once
again, we pick K(S1), N

′
1, N

′
2, . . . , N

′
t−1 where picking N ′

t would give at least k vertices and
invoke pick(N ′

t , v, r) to finish the rest (N ′
t , v, r defined similar to Case I).

12

(a) Sets S1 and S2 and their kernels before the edge event causing e to go tight and the set event
causing S2 to go neutral tie in PD(λ1).

(b) Sets S1 and S2 and their kernels after the tie is broken by allowing S2 to go neutral.

(c) Set S1 ∪ S2 and its kernel after the tie is broken by allowing e to go tight.

Figure 4: Case I. S2 goes neutral the same time e goes tight.

13

(a) Sets S1 and S2 and their kernels before the edge events causing e and f to go tight tie in
PD(λ1).

(b) Set S1 ∪S2 and its kernel after the tie is
broken so e goes tight.

(c) Set S1 ∪ S2 and its kernel after the tie is
broken so f goes tight.

Figure 5: Case II. Edges e and f between S1 and S2 go tight at the same time.

14

7 2-Approximation

Now that we have finished describing the mechanics of the algorithm, we can finally
present the proof of the 2-approximation. Let T ′ denote the tree we obtained after pruning
with vertex set (kernel) K ′, T0 ⊆ K ′ the tree of k vertices we obtained by the pick routine,
and ST0 the set of vertices of T0. Further, let v be the vertex in ST0 where the pick routine
terminated. Before proceeding with the necessary lemmas, we present the proof of Lemma
1 from Section 3.

Proof. We prove this by induction on the number of events. In the base case, at the start
of the primal-dual subroutine, every vertex is the kernel of itself and no neutral sets have
appeared yet.

Suppose that for the first k events the claim holds, and we consider the next event. If
the (k + 1)-st event is a set event, then a set S goes neutral. A set going neutral does not
affect its kernel, so as previously, the claim still holds for S; other sets are also unaffected
so the claim holds for them.

If the (k+1)-st event is an edge event, then an edge e between sets S1 and S2 goes tight
and the two sets merge to form a new active set S. First of all, this event does not affect
the kernel of S1, S2, or of any other set besides S, so the claim still holds for all of them.
Since at least one of the merging sets is active, we can suppose without loss of generality
that S1 is active. Then, if S2 is inactive, the kernel of S would be the kernel of S1. For
a neutral set N ⊂ K(S), |δK(S)(N)| = 1 for some N would imply that |δK(S1)(N)| = 1,
which contradicts that the claim holds previously.

If S2 is active, then the kernel of S would be the kernel of S1 and S2, plus some neutral
sets on the path between the two kernels. If N ⊂ K(S), then either N is on the path
between K(S1) and K(S2) or N is a subset of K(S1) or K(S2). But every neutral set N
on the path has |δK(S)(N)| = 2, and by the inductive hypothesis, no neutral subset N of
K(S1) or K(S2) can have |δK(Si)(N)| = 1, i = 1, 2.

Again, we utilize a result by Paul et al. (Lemma 4 in [14]).

Lemma 5. ∑
e∈T0

∑
S:e∈δ(S)

yS ≤ 2
∑

U :U∩ST0
̸=∅

v ̸∈U

yU .

Proof. We will prove the inequality for any arbitrary iteration in the primal-dual algorithm.
Consider an iteration in which we let C be the current set of components C such that
|δ(C) ∩ T0| ≥ 1. We can partition C into active components CA and inactive components
CI . Let v be the final vertex picked and Cv be the unique set in C containing v.

We claim that if Cv ∈ CA, then
∑

C∈CA |δ(C) ∩ T0| ≤ 2|CA| − 2, otherwise if Cv ∈ CI ,
then

∑
C∈CA |δ(C)∩T0| ≤ 2|CA|−1. Suppose for now that the claim is true. We now prove

15

the inequality in Lemma 4 by induction on the algorithm. At the start of the algorithm,
with yS = 0 for all S, both sides of the inequality are equal to 0. At each iteration, let
ϵ be the amount that we raise yC for each active component C ∈ CA. The LHS of the
inequality increases by

∑
C∈CA |δ(C) ∩ T0|ϵ, while the RHS of the inequality increases by

either 2|CA|ϵ (if Cv ∈ CI) or 2(|CA| − 1)ϵ = (2|CA| − 2)ϵ (if Cv ∈ CA). Then given the claim,
the inequality continues to hold inductively. Thus the lemma statement will hold at the
end of the algorithm.

To prove the claim, first suppose that Cv is inactive. By Lemma 1, all other neutral
subsets of ST0 have degree at least 2. Since v is the last vertex added, Cv is the only
inactive component such that possibly |δ(Cv) ∩ T0| = 1. Thus we have∑

C∈CI

|δ(C) ∩ T0| ≥ 2|CI | − 1.

Note that edges of T0 link components in C to form a tree, so∑
C∈CA

|δ(C) ∩ T0|+
∑
C∈CI

|δ(C) ∩ T0| ≤ 2|CA|+ 2|CI | − 2.

Then the last two inequalities imply∑
C∈CA

|δ(C) ∩ T0| ≤ 2|CA| − 1,

and the claim holds for this case.
Now consider the case where Cv ∈ CA. By a similar logic, there is no component C ∈ CI

such that |δ(C) ∩ T0| = 1, and therefore∑
C∈CI

|δ(C) ∩ T0| ≥ 2|CI |, implying

∑
C∈CA

|δ(C) ∩ T0| ≤ 2|CA| − 2,

and the claim holds for this case, so the proof of the lemma is complete.

The result of Lemma 5 allows us to prove the following upper bound on the cost of our
tree.

Theorem 2. The picked tree has cost at most 2(λ1 · k − π(S2)), where S2 is the maximal
potential set that contains the picked tree.

Proof. By the pick procedure, vertices in S2−ST0 are either (i) in a pruned neutral subset
N ′

i or (ii) in the subset Np where we started our pick procedure. Thus, we have S2 =⋃
N ′

i ∪ (Np − ST0) ∪ ST0 . Since N ′
i are neutral, we have

λ1| ∪N ′
i | =

∑
U :U⊆∪N ′

i

yU .

16

Np is also neutral, and we can partition its subsets into two types: ones that contain
vertices in Np − ST0 and ones that do not. Then we have

λ1|Np| =
∑

U :U⊂Np

U∩(Np−ST0
)̸=∅

yU +
∑

U :U⊆Np∩ST0

yU ≤
∑

U :U⊆Np

U∩(Np−ST0
)̸=∅

yU + λ1|Np ∩ ST0 |

by Lemma 1 which implies

λ1|Np − ST0 | ≤
∑

U :U⊆Np

U∩(Np−ST0
)̸=∅

yU .

Combining with Lemma 5, this gives us

λ1|S2| =
∑

U :U⊂S2

yU + π(S2)

≥
∑

U :U∩ST0
̸=∅

v ̸∈U

yU +
∑

U :U⊂Np

U∩(Np−ST0
)̸=∅

yU +
∑

U :U⊆∪N ′
i

yU + π(S2)

≥ 1

2

∑
e∈T0

∑
S:e∈δ(S)

yS + λ1|Np − S0|+ λ1|
⋃

N ′
i |+ π(S2).

Rearranging gives λ1|ST0 | ≥ 1
2

∑
e∈T0

ce + π(S2).

Combining our lower bound from Theorem 1 with the upper bound in Theorem 2, we
achieve the 2-approximation.

Theorem 3. The tree returned by the picked routine has at most twice the cost of the
optimal spanning tree of k vertices, that is∑

e∈T0

ce ≤ 2
∑
e∈T ∗

ce.

Proof. Recall from Theorem 1 we have that∑
e∈T ∗

ce ≥ λ1 · k − π(S1),

where S1 is the set with minimal potential in S that contains ST ∗ . Since we include the
set of all vertices V (G) in S, the fact that both ST ∗ and ST0 are subsets of V (G) implies
that π(S2) ≥ π(V (G)) and π(S1) ≤ π(V (G)). Thus we have∑

e∈T0

ce ≤ 2(λ1 · k − π(S2)) by Theorem 2

≤ 2(λ1 · k − π(S1))

≤ 2
∑
e∈T ∗

ce.

17

References

[1] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems, in Journal of the ACM, 45 (1998), pp. 753–782.

[2] S. Arora and G. Karakostas, A 2+ ϵ approximation algorithm for the k-MST problem,
in Mathematical Programming Series A, 107 (2006), pp. 491–504.

[3] S. Arya and H. Ramesh, A 2.5-factor approximation algorithm for the k-MST problem,
Information Processing Letters, 65.3 (1998), pp. 117–118.

[4] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen, in Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, 1995, pp. 277–
283.

[5] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the
k-MST problem in the plane, in Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, 1995, pp. 294–302.

[6] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for
the k MST problem (Extended Abstract), in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, 1996, pp. 442–448.

[7] D. Eppstein, Faster geometric K-point MST approximation, in Comput. Geom., 8
(1997), pp. 231–240.

[8] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proceedings
of 37th Conference on Foundations of Computer Science, 1996, pp. 302–309.

[9] N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, in
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005,
pp. 396–402.

[10] N. Garg and D. S. Hochbaum, An O(log k) approximation algorithm for the k mini-
mum spanning tree problem in the plane, in Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing, 1994, pp. 432–438.

[11] D. S. Johnson, M. Minkoff, and S. Phillips, The prize collecting Steiner tree problem:
theory and practice, in Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, 2000, pp. 760–769.

18

[12] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: a sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems, in SIAM Journal on Computing, 28 (1999), pp. 1298–1309.

[13] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala, A constant-factor approx-
imation algorithm for the geometric k-MST problem in the plane, SIAM Journal on
Computing, 28.3 (1998), pp. 771–781.

[14] A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P. Williamson, Budgeted prize-
collecting traveling salesman and minimum spanning tree problems, Mathematics of
Operations Research, 45 (2020), pp. 576–590.

[15] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning
trees short or small, in SIAM Journal on Discrete Mathematics, 9 (1996), pp. 178–200.

19

	Introduction
	Linear Programming Formulation
	Primal-Dual Subroutine
	Algorithm Overview
	Setting parameters
	Constructing a Tree
	2-Approximation

