
Simple Random Order Contention Resolution for Graphic Matroids
with Almost no Prior Information∗

Richard Santiago‡ Ivan Sergeev§ Rico Zenklusen¶

Abstract

Random order online contention resolution schemes (ROCRS) are structured online rounding algo-
rithms with numerous applications and links to other well-known online selection problems, like the
matroid secretary conjecture. We are interested in ROCRS subject to a matroid constraint, which is
among the most studied constraint families. Previous ROCRS required to know upfront the full frac-
tional point to be rounded as well as the matroid. It is unclear to what extent this is necessary. Fu, Lu,
Tang, Turkieltaub, Wu, Wu, and Zhang (SOSA 2022) shed some light on this question by proving that
no strong (constant-selectable) online or even offline contention resolution scheme exists if the fractional
point is unknown, not even for graphic matroids.

In contrast, we show, in a setting with slightly more knowledge and where the fractional point reveals
one by one, that there is hope to obtain strong ROCRS by providing a simple constant-selectable ROCRS
for graphic matroids that only requires to know the size of the ground set in advance. Moreover, our
procedure holds in the more general adversarial order with a sample setting, where, after sampling a
random constant fraction of the elements, all remaining (non-sampled) elements may come in adversarial
order.

1 Introduction
Contention resolution schemes (CRS) are a class of (typically randomized) rounding algorithms to transform
a fractional point from a polyhedral relaxation into an integral one while preserving feasibility. They were
introduced in [CVZ14] motivated by applications to submodular maximization problems, and have proven to
be a versatile tool. Contention resolution schemes were subsequently extended to the online setting [FSZ16],
where elements arrive one by one in an online fashion. (See also [AW18].) They have found applications
in areas such as stochastic probing, posted pricing mechanisms, and prophet inequalities. (For further
information on these areas, we refer the interested reader to the following recent works and references
therein: [ASW16; GN13; GNS16; FTWWZ21] for stochastic probing, [CHMS10; Yan11; KW12] for posted
pricing mechanisms, and [EFGT20; KW12; KW19] for prophet inequalities.)

Formally, we are given a downwards-closed family I ⊆ 2N , a polyhedral relaxation PI thereof,1 and a
vector x ∈ PI . Elements of N arrive one by one. Each element e ∈ N is either active, with probability
xe, or inactive, with probability 1− xe, independently of the other elements. Whether an element is active
is revealed upon its arrival. Moreover, whenever an arriving element e ∈ N is active, the algorithm must
decide irrevocably whether to pick it or not. At all times, the set of currently selected elements T must
satisfy T ∈ I. The goal is to select each element e with probability at least c · xe for c ∈ [0, 1] as large
∗This project received funding from Swiss National Science Foundation grant 200021 184622 and the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 817750).
‡Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: rtorres@ethz.ch.
§Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: isergeev@ethz.ch.
¶Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: ricoz@ethz.ch.
1We call a polyhedron PI ⊆ [0, 1]N a polyhedral relaxation of I if PI ∩ {0, 1}N = {1S : S ∈ I}, where 1S ∈ {0, 1}N is the

characteristic vector of S. Hence, the 0/1-points in PI correspond to I.

1

ar
X

iv
:2

21
1.

15
14

6v
1

 [
m

at
h.

O
C

]
 2

8
N

ov
 2

02
2

mailto:rtorres@ethz.ch
mailto:isergeev@ethz.ch
mailto:ricoz@ethz.ch

as possible. The scheme is then called c-selectable.2 Different models have been studied depending on the
arrival order of the elements. Random order contention resolution schemes (ROCRS) [AW18; LS18] assume
that elements are revealed in uniformly random order, while online contention resolution schemes (OCRS)
[Ala14; FSZ16; LS18] assume the order is fixed by an adversary, typically upfront.3

While offline and online CRS have been studied under several types of constraints, in this work we restrict
our attention to matroid constraints, which is among the most studied constraint classes in this context.4
For matroids it is known that contention resolution schemes with constant-factor guarantees (i.e., c = Ω(1))
exist. They have been developed for the offline setting [CVZ14], the random order setting [AW18; LS18],
and the online (adversarial) setting [FSZ16; LS18].

The above models, however, usually assume prior knowledge of both the matroid M and the point x
to be rounded, where x is required to be in the matroid polytope PM.5 This prior knowledge is exploited
heavily when building and analyzing the respective schemes. A key question is how much prior knowledge
is required to obtain strong guarantees (i.e., constant selectability). This question is motivated by related
problems in the area where existing procedures seem to need too much information to have a chance to be
useful for progress on further known questions. (In Section 1.1 we further expand on this using a connection
to the matroid secretary problem.) In terms of prior knowledge, the following two questions capture central
aspects:

• How much information about the point x to be rounded is known in advance?
• How much of the matroid M is known in advance?

In terms of knowledge of x, the arguably strongest notion of (distribution) obliviousness is that the CRS
does not depend on x whatsoever (and hence, also does not learn x over time). Such a CRS is said to be
oblivious. Hence, whenever an element arrives, the algorithm only learns whether that element is active. In
[CVZ14], an oblivious Ω(1)-selectable CRS for laminar matroids was presented. This raised the question
to what extent such schemes may exist more generally. Very recently, [Fu+22] showed that, unfortunately,
oblivious Ω(1)-selectable CRS (and hence selectable OCRS) do not exist for all matroids; more precisely
neither graphic nor transversal matroids admit them. In addition, they provide an oblivious 1

e -selectable
OCRS for uniform rank-1 matroids.

Our main goal is to show that, despite this negative result, there is hope to obtain strong ROCRS without
having to know the full point x upfront. We say that a ROCRS is distribution unknown if the point x ∈ PM
is not known upfront but rather revealed as elements appear. That is, when an element e is revealed, we
learn whether it is active together with its marginal value xe. Note that this is less restrictive than the
above-mentioned oblivious setting, where no information on x is gained or used throughout the algorithm.
We find the assumption of having access to xe natural as it resembles the input one gets in an online rounding
procedure. In addition, our interest for the problems above partially stems from connections to the matroid
secretary problem (and its fractional variant), where having access to the xe values plays an important role.
We discuss this in more detail in Section 1.1.

Moreover, regarding prior knowledge about the matroid, we call a ROCRS matroid unknown if it only
knows the cardinality of the matroid upfront, and the matroid is revealed as elements appear.6 Finally, we
call a ROCRS distribution and matroid unknown if it is both distribution and matroid unknown.

1.1 Connections to the matroid secretary problem
An instance of the matroid secretary problem MSP [BIKK18] consists of a matroidM = (E, I) and weights
w : E → R≥0. The elements of the matroid are revealed online in uniformly random order. Once an element
e ∈ E arrives, we see its weight we and must decide irrevocably whether to pick it or not. The algorithm
must always output an independent set S ∈ I, and the goal is to maximize (in expectation) its total weight
w(S) :=

∑
e∈S we. It is a major open question whether MSP admits a constant-factor competitive algorithm,

2We note that the term c-balanced has also been used in the literature instead of c-selectable.
3Different types of adversaries have been considered in the literature, such as offline, online, and almighty adversaries.
4A matroid M is a pair M = (E, I) where E is a finite set and I ⊆ 2E is a non-empty family satisfying: 1) if A ⊆ B and

B ∈ I then A ∈ I, and 2) if A, B ∈ I and |B| > |A| then ∃e ∈ B \A such that A ∪ {e} ∈ I.
5The matroid polytope PM ⊆ [0, 1]E of matroidM = (E, I) is the convex hull of all characteristic vectors of independent sets.
6Knowing the cardinality upfront is a very common assumption and necessary to have any hopes for constant-selectable

algorithms to exists. As we see later, this is also implied by a stronger impossibility result of [Fu+22].

2

and the matroid secretary conjecture claims this to be the case.
Interestingly, the matroid secretary conjecture remains open even for sparse weight functions, where

the elements supp(w) := {e ∈ E : w(e) > 0} can be partitioned into constantly many independent sets,
or even just two independent sets. A very related way to phrase the same problem is to assume that we
are given a matroid whose ground set is the union of k independent sets, however the algorithm does not
know the matroid upfront. We denote by MSP(k) this restricted sparse version of MSP. Clearly, if the
matroid was known upfront (and k is constant), it would be trivial to obtain a k-competitive algorithm for
MSP(k) by first partitioning the ground set into k independent sets and selecting uniformly at random all
elements of one of these sets, independently of the revealed weights. We highlight that not knowing the
matroid upfront is a natural assumption, as one can obfuscate an instance by adding 0-weight elements to
the matroid.7 This is also reflected by the currently best Ω(log log(rank))-competitive algorithms for MSP
for general matroids [Lac14; FSZ18], which do not need to know the matroid upfront. Interestingly, despite
the existence of numerous constant-competitive procedures for MSP for specific classes of matroids [BIKK18;
KP09; IW11; Sot13; JSZ13; MTW13; DP12; KRTV13; DK13], even for graphic matroids (and other non-
trivial matroid classes), no constant-competitive procedure is known for MSP(2) when only the cardinality
of the matroid is known in advance and one has access to an independence oracle for elements revealed so
far. The reason is that MSP procedures for specific matroid classes typically assume either full knowledge
of the matroid upfront or that revealing elements also reveal additional information about the matroid, like
the part of an explicit representation of the matroid corresponding to the revealed element.

Note that a matroid unknown constant-selectable ROCRS solves MSP(k) for constant k because we
can run the ROCRS with the uniform point x = (1

k ,
1
k , . . . ,

1
k). As the ground set of the matroid can be

partitioned into k independent sets, the point x lies in the matroid polytope. The ROCRS being constant-
selectable implies that each element will be picked with probability c/k for some constant c ∈ [0, 1], thus
selecting each element with constant probability. In other words, a matroid unknown constant-selectable
ROCRS can solve the following matroid online fair selection problem (MOFS), which implies a constant-
selectable algorithm for MSP(k) (for constant k) and, so we think, is interesting in its own. Assume we are
given a matroid M whose ground set is the union of k independent sets. The matroid is unknown to the
algorithm upfront and reveals one element at a time. Whenever an element reveals, the algorithm has to
decide irrevocably whether to accept it. The task is to select each element with probability Ω(1/k).

We summarize the connections among the problems introduced so far in Fig. 1.

Distribution and matroid unknown ROCRS

Distribution unknown ROCRS Matroid unknown ROCRS

(Standard) ROCRS MOFS

Sparse MSP

Figure 1: Relations between mentioned problems. An arrow from setting A to setting B indicates that a
constant-selectable/constant-competitive algorithm for A implies one for B.

Another related problem is the fractional matroid secretary problem (FMSP).8 An instance of the latter
is almost identical to one of MSP, the only difference being that one can pick elements fractionally, in the
sense that the output is a vector y ∈ PM. The goal is still to maximize the expected weight of the output,
in this case given by w>y. Fractional MSP is clearly no harder than classical MSP. However, even for
fractional MSP, it is unknown whether a constant-competitive algorithm exists.

One arguably natural approach to solve the MSP conjecture is to first solve the (potentially easier)
fractional version, and then look for online rounding procedures that transform an FMSP solution into an
(integral) MSP one, while losing only a constant factor of the objective value. One may wonder whether

7Note that this is not a formal proof of equivalence between the MSP conjecture with known or unknown matroid. However,
especially in general matroids, which is what the MSP conjecture is about, there are many ways to obfuscate an instance by
adding 0-weight elements, which, even if the matroid is known upfront, makes it much harder to exploit this.

8While this problem is known in the community, we are not aware of any previous work on it.

3

a distribution and matroid unknown Ω(1)-selectable ROCRS immediately implies the existence of such a
rounding procedure. Unfortunately the answer is no. The reason is that the output of an FMSP algorithm
may highly depend on the arrival order of the input (i.e., two different arrival orders may lead to outputs
y1, y2 ∈ PM where y1 is not a permutation of y2), while a ROCRS assumes the hidden distribution x is fixed
beforehand, and then revealed to the algorithm in random order. However, any such rounding procedure
that allows for online rounding an FMSP solution into an MSP one is a ROCRS, and, in particular, also
provides a solution to MOFS (and thus to sparse MSP as well).

1.2 Our results
Our main result is a simple Ω(1)-selectable distribution and matroid unknown ROCRS for graphic matroids,
where we assume that, whenever an edge reveals, it reveals its endpoints. We allow graphs to have parallel
edges, and we assume without loss of generality that they do not contain loops. The procedure only needs
to know the cardinality of the ground set upfront, i.e., the number of edges of the graph, so that it can
sample a constant fraction of the elements. We emphasize that we predominantly focus on providing a
simple algorithm and analysis, and make no attempt at optimizing the selectability constant.

Theorem 1.1. Let G = (V,E) be a graph, M = (E, I) its graphic matroid, and PM the corresponding ma-
troid polytope. Then there exists a distribution and matroid unknown 1

96 -selectable random order contention
resolution scheme for PM.

Like many other procedures in this context, ours has first an observation phase, which samples a set
S ⊆ E containing a constant fraction of the elements without picking any. We use this to learn some
structure of the underlying instance, and then run a second phase where elements are selected, which is
the core of our procedure. Our analysis of the second phase does not use the values of the marginals xe
from e ∈ E \ S, nor the assumption that elements from E \ S arrive in uniformly random order. Thus, our
procedure and analysis still hold in the more general adversarial order with a sample setting, where we are
allowed to sample a random constant fraction of the elements and the remaining (non-sampled) elements
arrive in adversarial order. Moreover, for non-sampled elements, we only need to know whether they are
active or not without needing to learn their x-values.

As discussed above, Theorem 1.1 immediately implies the following.

Corollary 1.2. There is a 1
96 -selectable algorithm for MOFS on graphic matroids.

2 Algorithm
Let us first present a canonical way to obtain a constant-selectable procedure if we know the graph G and
the vector x ∈ PM upfront. This is a nice warm-up before we present our ROCRS and, moreover, it allows
us to highlight important hurdles that appear in the matroid and distribution unknown setting when this
prior information is not available.

2.1 Warm up: a simple constant-selectable procedure with prior knowledge
We define a total order on the vertices iteratively, by first identifying the smallest vertex in the ordering,
then the next smallest one and so on. The ordering is obtained by successively picking a vertex v for which
x(δ(v)), i.e., the sum of the x-values on edges incident with v, is smallest, and then deleting it and iterating.
More formally, let Q ⊆ V be the vertices ordered so far. (Hence, we have Q = ∅ at the beginning.) As the
next vertex we pick one minimizing the x-load of edges to vertices in V \Q, i.e., we pick a minimizer of

min
v∈V \Q

x(E(v, V \Q)),

where E(v, V \ Q) are all edges with one endpoint being v and the other one belonging to V \ Q. We call
such an ordering an x-topological ordering and write v ≺ u for v, u ∈ V if v is ordered before u.

Note that the sets
E≺v := {e = {v, u} ∈ δ(v) : v ≺ u},

4

partition all edges E. A constant-selectable random order contention resolution scheme is now obtained by
selecting an appearing edge e = {v, u} ∈ E (say e ∈ E≺v) according to the following rule. If e is active and no
other edge of E≺v has been selected so far, then select e with probability 1/8; otherwise, do not select e. One
can think of this as flipping upfront a biased coin for each edge and declaring it excluded with probability
7/8. We then simply select greedily the first active and non-excluded edge for each E≺v .

First note that this will return a forest due to the following well-known and simple observation.

Observation 2.1. Let G = (V,E) be a graph with a total vertex order ’≺’, and let T ⊆ E with |T ∩E≺v | ≤ 1
for v ∈ V . Then T is a forest.

Indeed, the observation holds because any cycle C in G must contain at least 2 edges from E≺v where v
is the first vertex of C with respect to the vertex order ’≺’.

The crucial property we need of an x-topological ordering to get constant selectability is

x(E≺v) ≤ 2 ∀v ∈ V. (1)

To see that this property holds, let v ∈ V , and we denote by Q := E≺v the vertices considered before v
in the construction of the x-topological ordering ’≺’. Observe first that x(E[V \ Q]) ≤ |V \ Q| − 1, where
E[V \Q] are all edges with both endpoints in V \Q, because x is in the forest polytope. Indeed, no forest
can contain more than |V \Q|−1 edges with both endpoints in V \Q, which immediately bounds the x-value
of any convex combination of forests. Because 2x(E[W]) =

∑
u∈W x(E(u,W)) for any W ⊆ V , which can

be interpreted as a fractional version of the handshaking lemma, we have∑
u∈V \Q

x(E(u, V \Q)) = x(E[V \Q]) ≤ 2|V \Q| − 2,

which implies (1) by an averaging argument, because v minimizes x(E[u, V \Q]) among all vertices u ∈ V \Q.
Now consider the probability of selecting an edge e = {v, u} ∈ E. Edge e will certainly be selected if the

following two conditions hold simultaneously:
(i) e is active and not excluded.
(ii) Each edge in (E≺v ∪ E≺u) \ {e} is either excluded or not active.

Observe that these two events are independent, the first one happens with probability xe/8, and the second
one with constant probability. To see the latter, note that the expected number of active edges in E≺v ∪E≺u
is x(E≺v ∪ E≺u) ≤ x(E≺v) + x(E≺u) ≤ 4 due to (1) and hence

E[|{f ∈ (E≺v ∪E≺u)\{e} : f is active and not excluded}|] = 1
8E[|{f ∈ (E≺v ∪E≺u)\{e} : f is active}|] ≤ 1

2 . (2)

Then applying Markov’s inequality to (2) immediately implies that event (ii) happens with probability
at least 1

2 . Thus the contention resolution scheme has constant selectability. (More precisely, the above
reasonings imply a selectability of 1/16.)

2.2 Our procedure
We show that a simple and canonical extension of the prior knowledge algorithm discussed in Section 2.1
to our setting without this prior knowledge leads to a constant-selectable ROCRS. Although the extended
algorithm may seem straightforward at first, the key challenge lies in its analysis. More precisely, we first
observe a sample S ⊆ E of edges and define an x-topological ordering of the subgraph over only the edges of
S and only using the x-values of those edges (which are known after sampling S). We denote the obtained
ordering ’≺S ’, where the subscript highlights that the x-topological ordering now depends on the sample S.
Then we simply run the same algorithm as in Section 2.1 (albeit with a different probability to exclude edges)
on the remaining edges E \ S using the ordering ’≺S ’. The resulting procedure is presented in Algorithm 1.
Although this algorithm naturally extends the offline procedure, several important questions arise regarding
both its implementation and, most importantly, its analysis. Indeed, even though we can mimic the definition
of E≺v from Section 2.1 and introduce a partitioning of E induced by the order ’≺S ’ via

E≺S
v = {e = {v, u} ∈ δ(v) : v ≺S u},

5

Algorithm 1: Distribution and matroid unknown ROCRS for graphic matroids.
Information known upfront: m = |E|
Information revealed online: For each arriving e ∈ E: its endpoints, xe, and whether e is active
Output: Forest F ⊆ E
Sample s ∼ Binom(m, 1

2), observe the set S ⊆ E of the first s arriving edges
Let ≺S be the x-topological ordering of V with respect to the sample S
for every e = {v, u} ∈ E \ S arriving online do

Without loss of generality assume that v ≺S u (otherwise swap v and u)
if e is active and no edges {v, t} with v ≺S t were previously picked then

Pick e with probability 1
24

it is no longer true that the partitioning defined this way satisfies property (1). (In fact, x(E≺S
v) can even

be super-constant depending on the sampled set S.) Nevertheless, note that Algorithm 1 clearly returns a
forest due to Observation 2.1. We discuss the implementation details first and continue with the analysis of
the algorithm later in Section 3. For ease of notation, we use the shorthand ESv for E≺S

v .
Let us outline the issues that need to be addressed to complete the description of Algorithm 1. First,

recall that here, in contrast to the prior knowledge setting, we cannot access the whole vertex set upfront.
Thus, our algorithm can only define the x-topological order for the vertices that have been seen in the
sampling phase (as endpoints of edges in S) and has to maintain the ordering as more vertices are revealed
over time. In addition, while the procedure from Section 2.1 could break ties between minimizers of x(δ(v))
arbitrarily, in our setting, we handle tiebreaking more carefully, as it may have a non-trivial impact on the
resulting partition and hence the selectability of our algorithm, especially due to the randomness of the
sample set S.

First let us address the questions related to the x-topological ordering by modifying the naive procedure.
To this end, assume for now that a tiebreaking rule is fixed; we will discuss how to properly implement
tiebreaking later. Now, let T be the set of all endpoints of the edges in the sample set S and note that we
have full access to T once S is observed. With that, we can initialize G′ to be the edge-induced subgraph
G[S] = (T, S) of G and apply the usual iterative process to G′ in order to define the x-topological ordering
on T . The remaining vertices (i.e., those not in T) can be added to the x-topological ordering once we
observe them for the first time (as an endpoint of an arriving edge from E \ S) and, in accordance with the
offline method of defining the ordering, such vertices come before T in the ordering and are ordered amongst
themselves as per the tiebreaking rule. More formally, the first time our algorithm receives an edge incident
to a vertex v ∈ V \ T , we set v ≺S t for all t ∈ T and either v ≺S u or u ≺S v according to the tiebreaking
rule for all other previously observed u ∈ V \ T . Thus, given a fixed tiebreaking rule, the x-topological
ordering is uniquely defined in the distribution and matroid unknown setting for all vertices.

Now it only remains to address how to break ties whenever they occur. The property we seek form
a tiebreaking rule is that it is “consistent”, in the sense that it does not depend on the arrival order of
the edges. If the vertex set V was revealed upfront, a canonical way of consistent tiebreaking would be to
arbitrarily label the vertices v1, v2, . . . , vn at the start; then during the procedure we could break ties by
choosing the vertex vj with the lowest index j among all the candidates. However, this method needs to
know V in advance. We overcome this issue by generating a uniformly random labeling on the fly as follows.
Throughout the procedure, maintain a labeling of the vertices seen so far; whenever a new vertex is revealed,
insert it into the labeling at a uniformly random position (and shift the labels of the consequent vertices).
It is not hard to see that this method is equivalent to using a uniformly random vertex labeling that is fixed
upfront, but has the added benefit of not requiring any prior knowledge of the vertex set. In particular, this
implementation of tiebreaking can be used in the distribution and matroid unknown setting. Moreover, it is
clearly a consistent tiebreaking rule. Going forward, we assume that a consistent tiebreaking rule (i.e., the
corresponding vertex labeling) is fixed and used when defining the order ’≺S ’ in Algorithm 1.

6

3 Analysis
We recall that the reason why the analysis of the algorithm in Section 2.1 does not work anymore is because
property (1) fails for the sets

ESv := {e ∈ {v, u} ∈ δ(v) : v ≺S u},

for the ordering ’≺S ’ constructed in Algorithm 1. More precisely, in general, x(ESv) cannot be bounded by a
constant. The bound from Section 2.1 now only applies to the sampled edges (and holds for any realization
of S), i.e.,

x
({
e = {v, u} ∈ δ(v) ∩ S : v ≺S u

})
≤ 2 . (3)

Our main technical contribution is to show that the expected x-values of non-sampled edges in ESv can be
bounded.

Theorem 3.1. The x-topological ordering of V with respect to the sample S constructed in Algorithm 1
satisfies

ES [x(ESv \ S)] ≤ 3 ∀v ∈ V.

We first observe that this is indeed enough to obtain our main theorem. To this end we follow the same
proof strategy as in Section 2.1, where we had prior knowledge of x. The main difference is, because x(ESv \S)
is small in expectation, we use a Markov bound to show that with constant likelihood both endpoints of a
fixed edge e do not contain any other incident edges (except for e) that are both active and non-excluded.

Proof of Theorem 1.1. We already discussed that Algorithm 1 returns a forest. Hence, it remains to show
that each edge e is selected with probability at least xe/96. To this end, let F denote the edges selected by
the ROCRS and let e = {v, u} be an arbitrary edge. Note that a sufficient condition for e to be selected by
Algorithm 1 is that the following three events A, B, and C hold simultaneously:
A: e is active and non-excluded.
B: Each edge in (ESv ∪ ESu) \ (S ∪ {e}) is either excluded or inactive.
C: e 6∈ S.

Note that event A is independent of B and C as it only depends on two coin flips for edge e, one deciding
whether it is active and one deciding whether it is excluded. These coin flips are independent of the set S
and coin flips of other elements. Thus we have

Pr[A ∧B ∧ C] = Pr[A] · Pr[B ∧ C] ≥ Pr[A] · (1− Pr[¬B]− Pr[¬C]), (4)

where the second inequality follows from a union bound. Let DS
e := (ESv ∪ESu)\(S∪{e}). Due to Theorem 3.1,

the expected number of active edges within DS
e is upper bounded by 6. Because each element is excluded

with probability 23/24, the expected number of active and non-excluded elements of DS
e is bounded by 1/4.

Hence, by Markov’s inequality, we have Pr[¬B] ≤ 1
4 . Putting this into (4) together with Pr[A] = xe/24 and

Pr[C] = 1/2, we get Pr[A ∧B ∧ C] ≥ xe/96 as desired.

It remains to show the main technical result, Theorem 3.1. We begin by providing the intuition behind
our proof approach. Ideally, we would like to link the x-load of vertices in ESv \ S to the one of vertices
in ESv ∩ S. Indeed, because we constructed the ordering ≺S with respect to the edges in ESv ∩ S, we have
x(ESv ∩ S) ≤ 2, by the same reasoning as in Section 2.1. A nice and arguably natural property one could
wish to have to link these quantities is that for every node v ∈ V and every incident edge e = {v, u} ∈ δ(v)
the following inequality holds:

Pr
S

[(e /∈ S) ∧ (v ≺S u)] ≤ Pr
S

[(e ∈ S) ∧ (v ≺S u)].

With the above coupling-type property, one would be done immediately, because

ES [x(ESv \ S)] =
∑

e={v,u}∈δ(v)

xe Pr[(e /∈ S) ∧ (v ≺S u)] ≤
∑

e={v,u}∈δ(v)

xe Pr[(e ∈ S) ∧ (v ≺S u)] = ES [x(ESv ∩ S)] ≤ 2.

7

Unfortunately, the above property is too strong and does not hold in general, even for small simple instances.
We provide such an example in Appendix A.

We show that a similar, though weaker, coupling property holds, which is nevertheless sufficient to obtain
the desired bound on the load of the sets ESv \S. The key ingredient is to replace the set of events {S ⊆ E :
(e ∈ S)∧ (v ≺S u)} considered above by a larger family of events given by {S ⊆ E : (e ∈ S)∧ (wS(v) �S u)},
where wS(v) denotes a special node satisfying wS(v) �S v, to be formally defined later. The next result
highlights the two crucial properties we want wS(v) to have.

Theorem 3.2. Let v ∈ V be an arbitrary node, let S ⊆ E be an arbitrary sample set, and let ≺S denote the
x-topological ordering of V with respect to the sample S constructed in Algorithm 1. Then there is a vertex
wS(v) ∈ V with the following properties:

• x
(
{e = {v, u} ∈ δ(v) ∩ S : wS(v) �S u}

)
≤ 3, and

• PrS [(e /∈ S) ∧ (v ≺S u)] ≤ PrS [(e ∈ S) ∧ (wS(v) �S u)] for any edge e = {v, u} ∈ δ(v).

Assuming the above result, the desired bound on the load of the partitions is then immediate.

Proof of Theorem 3.1. We have

ES [x(ESv \ S)] =
∑

e={v,u}∈δ(v)

xe Pr[(e /∈ S) ∧ (v ≺S u)] ≤
∑

e={v,u}∈δ(v)

xe Pr[(e ∈ S) ∧ (wS(v) �S u)]

= ES [x({e = {v, u} ∈ δ(v) ∩ S : wS(v) �S u})] ≤ 3.

Thus, all that remains is to prove Theorem 3.2. To do so, we need the following additional result, which
describes how a given topological ordering ≺S can change when an edge e ∈ E \S is added to the sample S.

Lemma 3.3. Given a sample S (E and an edge e = {v, u} /∈ S, let S̃ = S ∪ {e} and consider the x-
topological orderings ≺S and ≺S̃. Then for all t ∈ V such that t ≺S v and t ≺S u we have t ≺S̃ v and
t ≺S̃ u.

Proof. Note that adding e to the subgraph G[S] induced by S can only increase x(δG[S](v)) and x(δG[S](u)).
Since additionally the tiebreaking rule is fixed, the procedures for determining the x-topological ordering
starting with G[S] and G[S̃] will proceed exactly the same as long as there remains a vertex t such that
t ≺S v and t ≺S u.

We are now ready to prove Theorem 3.2, which completes the proof of our main result, Theorem 1.1.

Proof of Theorem 3.2. Given a sample set S ⊆ E and a vertex v ∈ V , we define wS(v) ∈ V as follows:
• if x(δ(v) ∩ S) ≤ 2, let wS(v) be the vertex such that wS(v) �S u for all u ∈ V ;
• if x(δ(v)∩S) > 2, let wS(v) be the vertex such that after the procedure for determining the x-topological

ordering deletes it, the remaining total x-value of the edges incident to v becomes at most 2.
Note that if x(δ(v)∩S) ≤ 2, then the first statement of the theorem holds by the definition of wS(v). On the
other hand, if x(δ(v)∩S) > 2, then the definition of wS(v) implies that until the procedure for determining the
x-topological ordering deletes it from the graph, the vertex v cannot be removed. In particular, wS(v) ≺S v.
Moreover, by the definition of wS(v) we have

x({e = {v, u} ∈ δ(v) ∩ S : wS(v) ≺S u}) ≤ 2
2 < x({e = {v, u} ∈ δ(v) ∩ S : wS(v) �S u}) ≤ 3, (5)

where the last inequality follows from the fact that the total x-load of all edges with endpoints v and wS(v)
is at most one, because x is in the forest polytope. (Note the difference in the two expressions displayed
above in terms of ’≺S ’ vs. ’�S ’.) This concludes the proof of the first statement of the theorem.

Next we prove the second statement. Observe that since every realization of S is equiprobable and S
contains each edge with probability 1/2 independently, to prove the desired inequality it suffices to show that
there exists an injective map from the set of realizations of S satisfying e /∈ S and v ≺S u to the set of
realizations satisfying e ∈ S and w(v) �S u. To this end, consider any realization of S such that e /∈ S and
v ≺S u and the injective map S 7→ S̃ := S ∪ {e}. We show that wS̃(v) �S̃ u by considering the following
three cases.

8

• Suppose x(δ(v) ∩ S̃) ≤ 2. Then wS̃(v) �S̃ u holds by the definition of wS̃(v).
• Suppose x(δ(v) ∩ S̃) > 2 and x(δ(v) ∩ S) ≤ 2. Additionally, for the sake of deriving a contradiction

suppose that u ≺S̃ wS̃(v). Then

x
({
e′ = {v, t} ∈ δ(v) ∩ S̃ : wS̃(v) �S̃ t

})
≤ x

(
δ(v) ∩ (S̃ \ {e})

)
= x

(
δ(v) ∩ S

)
≤ 2,

which contradicts the definition of wS̃(v), namely the strict inequality in (5). Thus wS̃(v) �S̃ u.
• Suppose x(δ(v)∩S) > 2. Additionally, for the sake of deriving a contradiction suppose that u ≺S̃ wS̃(v).

Our goal is to show that then x({e′ = {v, t} ∈ δ(v) ∩ S̃ : wS̃(v) �S̃ t}) ≤ 2, which violates the strict
inequality in (5). First, note that, since u ≺S̃ wS̃(v) by our assumption, we have

x
({
e′ = {v, t} ∈ δ(v) ∩ S̃ : wS̃(v) �S̃ t

})
= x

({
e′ = {v, t} ∈ δ(v) ∩ S : wS̃(v) �S̃ t

})
. (6)

Second, observe that for any t ∈ V we have

wS̃(v) �S̃ t =⇒ v �S t. (7)

Indeed, the contrapositive holds because if t ≺S v, then, by Lemma 3.3, we have t ≺S̃ u; combining
this with our assumption u ≺S̃ wS̃(v) implies Eq. (7). Finally, we obtain the desired contradiction by
combining the above observations:

x
({
e′ = {v, t} ∈ δ(v) ∩ S̃ : wS̃(v) �S̃ t

})
≤ x

({
e′ = {v, t} ∈ δ(v) ∩ S : v �S t

})
= x

({
e′ = {v, t} ∈ δ(v) ∩ S : v ≺S t

})
≤ 2.

Here the first inequality holds by (6) and (7), the equality holds as v 6= t, and the last inequality holds
by (3).

Finally, we note that the argument used in our proof of Theorem 1.1 is robust with respect to the arrival
order of the edges in E \ S. Indeed, if the events A, B, and C hold, then e is selected in any arrival order
of the elements in E \ S. Hence, Theorem 1.1 holds even in the setting where the algorithm first observes
a sample S ⊆ E containing each edge independently with probability 1/2 and the remaining edges arrive in
adversarial order. Hence, our algorithm also works in the sample-based OCRS setting with at least the same
selectability.

4 Conclusion
In this paper we presented a constant-selectable random order contention resolution scheme for graphic
matroids, in the setting where the matroid and the distribution are not given upfront, but rather revealed
as elements arrive. In fact, our algorithm works in the more restrictive setting where a constant fraction
of the elements of the matroid is given upfront as a random sample and the remaining elements arrive in
adversarial order. In contrast to previous work, we are able to considerably reduce the amount of prior
information required by the algorithm while still achieving constant selectability.

We believe that the distribution and/or matroid unknown ROCRS setting introduced in this paper opens
many avenues for future work. For instance, an immediate natural question is whether one can also obtain
distribution and matroid unknown ROCRS for other classes of matroids admitting an explicit representation
via (hyper) graphs, such as transversal matroids, hypergraphic matroids, and gammoids. On the more
general side, it remains an interesting question whether general matroids admit distribution and/or matroid
unknown constant selectable ROCRS. Ultimately, developing online contention resolution schemes with fewer
and fewer assumptions about the input might eventually lead to an algorithmic reduction from fractional
MSP to MSP.

9

References
[Ala14] S. Alaei. “Bayesian combinatorial auctions: Expanding single buyer mechanisms to many

buyers”. In: SIAM Journal on Computing 43.2 (2014), pp. 930–972.
[ASW16] M. Adamczyk, M. Sviridenko, and J. Ward. “Submodular Stochastic Probing on Matroids”.

In: Math. Oper. Res. 41.3 (2016), pp. 1022–1038. issn: 0364-765X.
[AW18] M. Adamczyk and M. W lodarczyk. “Random order contention resolution schemes”. In: Pro-

ceedings of the 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2018, pp. 790–801.

[BIKK18] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. “Matroid secretary problems”. In:
Journal of the ACM 65.6 (2018), pp. 1–26.

[CHMS10] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. “Multi-Parameter Mechanism Design
and Sequential Posted Pricing”. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC). 2010, pp. 311–320. isbn: 9781450300506.

[CVZ14] C. Chekuri, J. Vondrák, and R. Zenklusen. “Submodular function maximization via the mul-
tilinear relaxation and contention resolution schemes”. In: SIAM Journal on Computing 43.6
(2014), pp. 1831–1879.

[DK13] M. Dinitz and G. Kortsarz. “Matroid Secretary for Regular and Decomposable Matroids”.
In: Proceedings of the 24th Annual ACM -SIAM Symposium on Discrete Algorithms (SODA).
2013, pp. 108–117.

[DP12] N. B. Dimitrov and C. G. Plaxton. “Competitive Weighted Matching in Transversal Ma-
troids”. In: Algorithmica 62.1 (2012), pp. 333–348.

[EFGT20] T. Ezra, M. Feldman, N. Gravin, and Z. G. Tang. “Online stochastic max-weight matching:
Prophet inequality for vertex and edge arrival models”. In: Proceedings of the 21st ACM
Conference on Economics and Computation (EC). 2020, pp. 769–787.

[FSZ16] M. Feldman, O. Svensson, and R. Zenklusen. “Online contention resolution schemes”. In:
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM. 2016, pp. 1014–1033.

[FSZ18] M. Feldman, O. Svensson, and R. Zenklusen. “A Simple O(log log(rank))-Competitive Al-
gorithm for the Matroid Secretary Problem”. In: Mathematics of Operation Research 43.2
(2018), pp. 638–650.

[FTWWZ21] H. Fu, Z. G. Tang, H. Wu, J. Wu, and Q. Zhang. “Random Order Vertex Arrival Contention
Resolution Schemes for Matching, with Applications”. In: Proceedings of the 48th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP). Vol. 198. 2021, 68:1–
68:20.

[Fu+22] H. Fu, P. Lu, Z. G. Tang, A. Turkieltaub, H. Wu, J. Wu, and Q. Zhang. “Oblivious Online
Contention Resolution Schemes”. In: Symposium on Simplicity in Algorithms (SOSA). SIAM.
2022, pp. 268–278.

[GN13] A. Gupta and V. Nagarajan. “A Stochastic Probing Problem with Applications”. In: Pro-
ceedings of 16th International Conference on Integer Programming and Combinatorial Opti-
mization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 205–216. isbn: 978-3-642-
36694-9.

[GNS16] A. Gupta, V. Nagarajan, and S. Singla. “Algorithms and Adaptivity Gaps for Stochastic
Probing”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2016, pp. 1731–1747.

[IW11] S. Im and Y. Wang. “Secretary Problems: Laminar Matroid and Interval Scheduling”. In:
Proceedings of the 22nd Annual ACM -SIAM Symposium on Discrete Algorithms (SODA).
2011, pp. 1265–1274.

10

[JSZ13] P. Jaillet, J. A. Soto, and R. Zenklusen. “Advances on Matroid Secretary Problems: Free
Order Model and Laminar Case”. In: Proceedings of the 16th International Conference on
Integer Programming and Combinatorial Optimization (IPCO). 2013, pp. 254–265.

[KP09] N. Korula and M. Pál. “Algorithms for Secretary Problems on Graphs and Hypergraphs”. In:
Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP). 2009, pp. 508–520.

[KRTV13] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. “An Optimal Online Algorithm for
Weighted Bipartite Matching and Extensions to Combinatorial Auctions”. In: Proceedings of
the 21st Annual European Symposium on Algorithms (ESA). 2013, pp. 589–600.

[KW12] R. Kleinberg and S. M. Weinberg. “Matroid Prophet Inequalities”. In: Proceedings of the 44th
Annual ACM Symposium on Theory of Computing (STOC). New York, NY, USA: Association
for Computing Machinery, 2012, pp. 123–136. isbn: 9781450312455.

[KW19] R. Kleinberg and S. M. Weinberg. “Matroid prophet inequalities and applications to multi-
dimensional mechanism design”. In: Games and Economic Behavior 113.C (2019), pp. 97–
115.

[Lac14] O. Lachish. “O(log log Rank) Competitive Ratio for the Matroid Secretary Problem”. In: Pro-
ceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2014, pp. 326–335.

[LS18] E. Lee and S. Singla. “Optimal Online Contention Resolution Schemes via Ex-Ante Prophet
Inequalities”. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[MTW13] T. Ma, B. Tang, and Y. Wang. “The Simulated Greedy Algorithm for Several Submodu-
lar Matroid Secretary Problems”. In: Proceedings of the 30th International Symposium on
Theoretical Aspects of Computer Science (STACS). 2013, pp. 478–489.

[Sot13] J. A. Soto. “Matroid Secretary Problem in the Random-Assignment Model”. In: SIAM Jour-
nal on Computing 42.1 (2013), pp. 178–211.

[Yan11] Q. Yan. “Mechanism Design via Correlation Gap”. In: Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 2011, pp. 710–719.

A Appendix
In this section we discuss why the inequality PrS [(e /∈ S) ∧ (v ≺S u)] ≤ PrS [(e ∈ S) ∧ (v ≺S u)] where
e = {v, u} ∈ E, which was discussed at the beginning of Section 3, does not hold in general.

We begin by considering the basic instance shown in Fig. 2, where the x-value associated to each edge
is indicated next to it on the figure. Observe that if we compute the x-topological ordering for sample sets
S1 = E \ {e} and S2 = E, we get v ≺S1 u and u ≺S2 v, respectively, regardless of which tiebreaking rule is
used. This observation shows that even if a sample set S ⊆ E satisfies e /∈ S and v ≺S u, then v ≺S∪{e} u
does not necessarily hold.

a b v u c
1.0 0.1 0.5 0.4

Figure 2: Basic instance for constructing examples where PrS [(e /∈ S) ∧ (v ≺S u)] > PrS [(e ∈ S) ∧ (v ≺S u)].

However, we are not quite done yet: one can manually verify that the basic instance shown in Fig. 2
yields PrS [({v, u} /∈ S) ∧ (v ≺S u)] > PrS [({v, u} ∈ S) ∧ (v ≺S u)] only for one of two ways to break
ties between v and u, while the other tiebreaking rule instead results in an equality. In contrast, we are
interested in counterexamples that do not rely on a particular tiebreaking rule to work. Nevertheless, such
counterexamples can be obtained via a modification of the basic instance as we will now demonstrate.
Intuitively, if we modify the basic instance so that with high probability the sampled set looks “similar” to

11

either S1 or S2 described above, then, roughly speaking, we will almost always end up in the case where
v ≺S\{e} u and u ≺S∪{e} v and as a result the original inequality will be broken for any fixed tiebreaking
rule. To this end, we introduce the following modification: replace each edge e′ ∈ E\{e} with k ∈ Z≥1 copies
of it with associated x-values equal to x(e′)

k . We denote the resulting instance Gk and use Ek(a, b), Ek(b, v),
and Ek(u, c) to denote the sets of edges in Gk between a and b, b and v, and u and c, respectively. It is not
difficult to see that for sufficiently large k the Chernoff concentration bound and the union bound ensure
that with high probability we simultaneously have x(Ek(a, b) ∩ S) ∈ [0.41, 1], x(Ek(b, v) ∩ S) ∈ [0.01, 0.1],
and x(Ek(u, c) ∩ S) ∈ [0.11, 0.4]. Conditioned on this event occurring, we get v ≺S\{e} u and u ≺S∪{e} v as
desired. Consequently, for sufficiently large k, the multigraph Gk is indeed a counterexample to the original
inequality irrespective of the chosen tiebreaking rule.

While the above argument already disproves the original inequality, we additionally provide a smaller
counterexample instance in Fig. 3, which avoids the step where we replace edges by parallel copies and use
concentration bounds. This example can be verified manually by computing the x-topological ordering for
all 32 possible realizations of S. More specifically, for realizations of S with {v, u} /∈ S, it turns out that
v ≺S u in 13 cases, while in 2 further cases the ordering depends on the tiebreaking rule. As for realizations
of S with {v, u} ∈ S, we get u ≺S v in 5 cases and in the remaining 11 cases the ordering depends on the
tiebreaking rule. Therefore, regardless of the chosen tiebreaking rule, we get PrS [({v, u} /∈ S) ∧ (v ≺S u)] >
PrS [({v, u} ∈ S) ∧ (v ≺S u)] for this instance.

a b v u c
1.0 0.1 0.5 0.2

0.2

Figure 3: Example instance for which PrS [({v, u} /∈ S) ∧ (v ≺S u)] > PrS [({v, u} ∈ S) ∧ (v ≺S u)] holds.

12

