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Abstract
Inspired by the success of Contrastive Learning (CL) in com-
puter vision and natural language processing, Graph Con-
trastive Learning (GCL) has been developed to learn dis-
criminative node representations on graph datasets. How-
ever, the development of GCL on Heterogeneous Informa-
tion Networks (HINs) is still in the infant stage. For ex-
ample, it is unclear how to augment the HINs without sub-
stantially altering the underlying semantics, and how to de-
sign the contrastive objective to fully capture the rich se-
mantics. Moreover, early investigations demonstrate that CL
suffers from sampling bias, whereas conventional debias-
ing techniques are empirically shown to be inadequate for
GCL. How to mitigate the sampling bias for heterogeneous
GCL is another important problem. To address the afore-
mentioned challenges, we propose a novel Heterogeneous
Graph Contrastive Multi-view Learning (HGCML) model.
In particular, we use metapaths as the augmentation to gen-
erate multiple subgraphs as multi-views, and propose a con-
trastive objective to maximize the mutual information be-
tween any pairs of metapath-induced views. To alleviate the
sampling bias, we further propose a positive sampling strat-
egy to explicitly select positives for each node via jointly
considering semantic and structural information preserved
on each metapath view. Extensive experiments demonstrate
HGCML consistently outperforms state-of-the-art baselines
on five real-world benchmark datasets. To enhance the repro-
ducibility of our work, we make all the code publicly avail-
able at https://github.com/Zehong-Wang/HGCML.
Keywords: Graph contrastive learning, heterogeneous infor-
mation network, self-supervised learning, graph neural net-
work, multi-view learning.

1 Introduction
Considering the capacity for modeling complex systems,
Heterogeneous Information Networks (HINs) that preserves
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Figure 1: An example of heterogeneous information net-
works.

rich semantics have become a powerful tool for analyzing
real-world graphs. As illustrated in Figure 1, we present
a concise example of a heterogeneous bibliography net-
work with four types of nodes and three types of rela-
tions. Recently, Graph Neural Networks (GNNs) [1] have
emerged as a dominant technique in mining graph structure
datasets, and its variant, Heterogeneous Graph Neural Net-
works (HGNNs) [2, 3, 4, 5, 6, 7], has occupied the main-
stream of HIN analysis. In general, HGNNs are trained in an
end-to-end manner, which requires abundant, various, and
dedicated-designed labels for different downstream tasks.
However, in the majority of real-world scenarios, it is highly
expensive and/or difficult to collect labels.

Contrastive Learning (CL) [8, 9, 10] that automatically
generates supervise signals from data itself is a promising so-
lution for learning representations in a self-supervised man-
ner. By maximizing the confidence (i.e., mutual information)
[11] between positive pairs and minimizing the confidence
between negative pairs, CL is capable to learn discriminative
representations without explicit labels. Inspired by the suc-
cess of CL in computer vision [9, 10], a wide range of Graph
Contrastive Learning (GCL) methods have been proposed.
For example, DGI [8] exploits a contrast between graph
patches (i.e., nodes) and graph summaries, and GRACE [12]
maximizes the mutual information between the same node in
two augmented views. Despite some works generalizing the
key idea of CL to homogeneous graphs, there are still three
fundamental challenges that need to be addressed in explor-
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ing the great potential of CL in heterogeneous graphs:
(1) How to design distinct views? Data augmentation

that creates corrupted views is shown to be an essential tech-
nique to improve the quality of representations [13]. In
GCL, prevalent augmentation methods include edge drop-
ping/adding, node dropping/adding, feature shuffling, and so
forth. Although these methods excel in homogeneous graphs
[12, 14], we believe that they significantly change the la-
tent semantics of HINs. Take a bibliographic network as
an example (Figure 1); if the link between Author 3 (A3)
and Paper 5 (P5) is dropped, the closest path between Au-
thor 3 (A3) and Author 4 (A4) will be changed from 2-hop
(A3-P5-A4) to 6-hop (A3-P3-S3-P4-C2-P5-A4). To prevent
the knowledge perturbation caused by simple augmentation
techniques, we propose to leverage metapaths, the composi-
tion of semantic relations, to augment datasets. By applying
metapaths, we create multiple different yet complementary
subgraphs, referred to as metapath views, without altering
the underlying semantics while also capturing the high-order
relationships on HINs.

(2) How to set proper contrastive objectives? The
choice of contrastive objectives (i.e., pretext tasks) deter-
mines the discriminativeness of representations in down-
stream tasks. For HIN, the standard choice of pretext tasks
is still unclear. Different works present their own solutions.
For example, DMGI [15] proposes to use metapaths to learn
a shared consensus vector as node representation, HeCo
[16] performs contrast between the aggregation of metap-
aths (view 1) and network schema (view 2), and HDMI [17]
and STENCIL [18] iteratively maximize the mutual informa-
tion between a single metapath and the aggregation of them.
Despite these approaches attempting to incorporate the uni-
versal knowledge across all metapaths, we think that they ac-
tually assume metapaths are independent, which is different
from the complementary nature, failing to capture the consis-
tency between metapaths and thus leading to sub-optimality.
To directly model the correlation between metapaths, we
propose an intuitive yet unexplored contrastive objective that
performs contrast between each pair of metapaths. To be spe-
cific, the contrast between two augmented views of a meta-
path (intra-metapath) aims to learn augmentation-invariant
representations, and the contrast between two views gener-
ated from two sources (inter-metapath) ensures the align-
ment across metapaths.

(3) How to mitigate the sampling bias? Sampling bias
indicates that the negative samples, which are randomly se-
lected from the original datasets, are potential to share the
same class with the anchor node (i.e., act as false negatives).
Empirical, the sampling bias will lead to a significant perfor-
mance drop. To prevent the issue, existing works [19, 20]
aim to select or synthesize hard negatives to mitigate the im-
pact of false negatives. However, these methods are demon-
strated to bring limited benefits or even impose adverse im-

pacts on GCL [21, 22]. To alleviate the issue of false nega-
tives, we propose a positive sampling strategy that collabora-
tively considers topological and semantic information across
metapaths to explicitly decide the positive counterparts for
each anchor.

To summarize, we propose a Heterogeneous Graph Con-
trastive Multi-view Learning (HGCML) model to learn in-
formative node representations on HINs. In particular, we
apply metapaths to create multiple views and leverage a
GNN model to encode node representations. Then, we em-
ploy a novel contrastive objective that aims to maximize the
mutual information between any pairs of metapath views (for
both intra-metapath and inter-metapath) to explicitly model
the complementarity among metapaths, which is neglected
in other works. Specifically, we maximize the confidence be-
tween two metapaths at node and graph levels to acquire lo-
cal and global knowledge. To further enhance the expressive-
ness, we propose a positive sampling strategy that directly
picks hard positives for each node based on graph-specific
topology and semantics to mitigate the sampling bias inher-
ent in CL. We highlight the contributions as follows:

• We propose a heterogeneous graph contrastive multi-
view learning framework, named HGCML, to learn dis-
criminative node representations. The model leverages
metapaths in HINs to generate multiple views and em-
ploys a novel contrastive objective to model the consis-
tency between any pairs of metapath views at node and
graph levels.

• We propose a positive sampling strategy, which selects
the most similar nodes as positive counterparts for each
anchor by considering semantics and topology across
metapath views, to remedy the sampling bias.

• We conduct extensive experiments on five real-world
datasets to evaluate the superiority of our model. Exper-
imental results show HGCML outperforms state-of-the-
art (SOTA) self-supervised and even supervised base-
lines.

2 Related Work
Following the message passing paradigm, GNNs [23, 24, 25,
26, 4, 6, 27] have received great attention in recent years
for learning representations of nodes in HINs. For example,
HAN [4] uses attention mechanism to model the correlation
between nodes at both metapath-level and semantic-level and
MAGNN [6] applies metapath encoders to gain fine-grained
knowledge preserved in metapaths. To get rid of the impact
of metapaths, RGCN [3] and its variants [5, 7] directly utilize
type-specific matrices to model the relationships between
different types of nodes in HINs. Despite these models
achieving remarkable performance in mining heterogeneous
graph datasets, they fail to be performed in a self-supervised
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manner.
In another line, GCL that marries the power of GNN

and CL has emerged as an important paradigm to learn rep-
resentations on graphs without annotations. As a pioneering
work, DGI [8] treats node embedding and graph summaries
as positive pairs and utilizes InfoMAX [11] to optimize the
objective. Following this line, MVGRL [28] proposes to use
graph diffusion as an augmentation method to generate mul-
tiple views and GraphCL [14] further analyzes the role of
augmentations in introducing prior knowledge. Inspired by
instance discrimination [29], GRACE [12] and GCA [30]
propose to leverage the node-level objective in contrasting
to preserve node-level discrimination. In addition, BGRL
[31] adopts the key idea of BYOL [32] to perform contrast
without negative samples via bootstrapping to save memory
consumption.

Meanwhile, some studies have generalized the key idea
of GCL on HINs. For instance, HDGI [33] extends DGI
to heterogeneous graphs and DMGI [15] utilizes a metapath
encoder to train consensus vectors as node representations.
CKD [34] models the regional and global knowledge be-
tween each pair of metapaths, failing to capture node-level
properties. CPT-HG [35] applies relation- and subgraph-
level pretext tasks to pre-train HGNN on large-scale HINs,
and HDMI [17] introduces a triplet loss to further enhance
generalization. However, these methods still do not con-
sider the sampling bias inherent in GCL, inevitably leading
to sub-optimality. To mitigate the sampling bias, STENCIL
[18] and HeCo [16] propose to apply metapath similarity to
measure the hardness between nodes to synthesize hard neg-
atives or select semantic positives. However, these models
assume metapaths are independent, and treat the aggregation
of metapath-induced subgraphs as a single contrastive view,
thus failing to model the consistency and complementarity
between metapath views.

Different from the aforementioned methods, our model
keeps three distinct advancements: (i) applying metapaths
as an augmentation approach to generate multi-views for
HINs, instead of treating the aggregation of all metapaths
as a single view, which ensures keeping fine-grained and
complementary properties for each metapath; (ii) performing
contrast between any pairs of metapath-induced subgraphs
to learn augmentation-invariant representations for a single
metapath and to align the consistency between different
metapaths; and (iii) explicitly selecting positive samples for
each node via considering topology and semantics preserved
on metapath views to mitigate sampling bias.

3 Preliminary
DEFINITION 1. Heterogeneous Information Network
(HIN) refers as to a graph consisting of various types of
nodes and edges, represented as G = {V, E , T ,R}, where
V and E are the node set and edge set, respectively, and T

andR denote node types and relation types, associated with
a node mapping function ψ : V → T and an edge mapping
function φ : E → R. Note that |T |+ |R| > 2.

DEFINITION 2. Metapath. Metapath Pm,m ∈ M, is the
composition of relations in HINs, defined as Pm := T0

R0−−→
T1
R1−−→ ...

Rn−−→ Tn+1, whereM is the set of metapaths. For
example, we illustrate three metapaths extracted from DBLP
in Figure 1 (d), which describe co-author (APA), co-subject
(APSPA), and co-conference (APCPA) relationships.

DEFINITION 3. Metapath-based Neighbors. Given a meta-
path Pm, metapath-based neighborsNPm

v is defined as a set
of nodes connected to the target node through metapath Pm.
For example, in Figure 1 (c), the metapath-based neighbors
of Author 1 via metapath APA is Author 2.

4 Heterogeneous Graph Contrastive Multi-view
Learning

In this section, we present a heterogeneous graph contrastive
multi-view learning framework to learn representations of
nodes in HINs. The overview architecture is illustrated in
Figure 2.

4.1 Data Augmentation For HINs, collectively applying
metapaths to construct multi-views is a natural way to sup-
plement the dataset in opposition to simple augmentation
techniques. The created multi-views are actually comple-
mentary with each other because metapaths depict vari-
ous facets of the same HIN. Given a set of metapaths
{P0,P1, ...,P|M|} where |M| is the number of metap-
aths, we extract multiple subgraphs (i.e., metapath views)
{G0,G1, ...,G|M|} from the original graph to sustain the
rich semantics preserved in HINs. For the subgraph Gm
generated through metapath Pm, we construct the direct
neighborhoods for each node v as its metapath-based neigh-
bors NPm

v . Each metapath view is associated with a
node feature matrix Xm and an adjacent matrix Am. We
leverage a GNN encoder f(·) to learn node representation
{H0, ...,Hm, ...,H|M|} from each metapath-induced view,
where Hm = f(Xm,Am). In practice, we leverage ad-
ditional data augmentations (i.e., feature masking and edge
dropping) with specific probabilities pf and pe to further cor-
rupt metapath views to make the task to be more difficult,
which ensures the learned representations to be more dis-
criminative.

4.2 Contrastive Objectives To distill rich semantics in
HINs, we propose a novel contrastive objective to maximize
the correlation between any pair of metapath views. In par-
ticular, the contrastive objective is collaboratively performed
in intra-metapath (i.e., contrast between two corrupted ver-
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Anchor Positives Negatives
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Node-Node Contrast

Node-Graph Contrast

View𝑴 View𝑵

(b) Pretext Task(a) Model Architecture

Any two views

Figure 2: (a) The overview framework of HGCML. Firstly, we generate multi-views via the guide of metapaths (MPs),
then leverage a graph neural network (GNN) f(·) to encode the representations. Following, we employ a novel contrastive
objective to capture the consistency between each pair of metapath views. The contrast performed between two corrupted
versions of a single view is called intra-metapath contrast and the objective applied between two distinct metapath-induced
views is referred to as inter-metapath contrast. (b) The proposed pretext task simultaneously learns from graph patches and
graph summaries to acquire local and global knowledge. Note that the task is performed between any two metapath-induced
views, where M = N denotes intra-metapath contrast and M 6= N indicates inter-metapath contrast. In addition, we
perform positive sampling to enhance the expressiveness of node-node contrast.

sions of a metapath view) and inter-metapath (i.e, con-
trast between two views from different metapaths), demon-
strated in Figure 2(a) with green and red dot lines. We ar-
gue that the intra-metapath contrast independently learns the
augmentation-invariant latent for each metapath view and the
inter-metapath contrast is to align the representations gained
from various sources to acquire the complementarity inher-
ent in metapaths. Thus, we thoroughly gain the underlying
knowledge maintained in individual metapath views and ex-
plicitly model the dependencies between pairs of different
metapath views. In addition, the pretext task between two
views jointly learns from node- and graph-level knowledge
to enhance representativeness, as shown in Figure 2(b). Note
that in the node-level contrasting, we select hard positives via
the proposed sampling strategy to mitigate the sampling bias.

4.2.1 Node-Node Contrast Node-node contrast aims to
learn discriminative node representations to boost node-
level downstream tasks. Specifically, we perform contrast
between the anchor and its positive counterparts in two
views to maximize (resp. minimize) the confidence between
similar (resp. unassociated) nodes:

L(m,n)
local (u,Pu) = −log

(4.1)

∑
v∈Pu

θ(hmu , h
n
v )∑

v∈Pu

θ(hmu , h
n
v ) +

∑
v∈(V\Pu)

θ(hmu , h
m
v ) +

∑
v∈(V\Pu)

θ(hmu , h
n
v )
,

where the values of m and n can be the same, hmu is the
representation for node u in view m, Pu denotes the se-
lected positive samples for u. We use similarity function
θ(hmu , h

n
v ) = eϕ(ρ(h

m
u ),ρ(hn

v ))/τ to compute the distance be-

tween node representations whereϕ(·, ·) measures the cosine
distance between two vectors, ρ(·) denotes a non-linear pro-
jector head that increases the expressiveness, and τ controls
the data distribution. This objective function that pulls se-
mantic similar nodes close and pushes dissimilar nodes away
contributes to the discrimination of node representations.

4.2.2 Node-Graph Contrast Different from node-node
contrast that learns local semantics across multi-views, we
also perform node-graph contrast as an auxiliary task to
facilitate the representation learning by injecting metapath-
specific knowledge. We define the node-graph contrast
objective as follows:
(4.2)
L(m,n)
global(u) = −log(D(h

m
u , sm))− log(1−D(hnu, sm)),

where the value of m and n can be the same, and sm is
the graph summary of metapath view Gm calculated via a
READOUT (·) function (mean pooling in this paper), and
D(h, s) = ω(ρ(h), ρ(s)) where ω(·, ·) is a discriminator
that consists of a bilinear layer BiLinear(·) and a sigmoid
function σ(·). By imparting global knowledge brought by
metapaths, we ensure the representations of nodes are more
informative.

4.2.3 Overall Objective The overall objective J to be
maximized is defined as the aggregation of all pairs of
metapaths, formally given by

(4.3) J =
∑
m∈M

∑
n∈M

∑
u∈V
L(m,n)
local (u,Pu) + L

(m,n)
global(u),

whereM is the set of metapaths. After optimizing the con-
trastive objective, we perform late fusion function η(·) (sum
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Negatives
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Figure 3: The positive sampling strategy where Personalized
PageRank (PPR) is used to measure the topological similar-
ity between nodes, and L2 distance is leveraged to compute
the distance between nodes in semantic space to discover se-
mantic associations.

or concatenation) on node representations learned from mul-
tiple metapath views to obtain the unified node representa-
tions hu for downstream tasks as

(4.4) hu = η ({hmu ,m ∈M}) ,

where hmu denotes the learned representations for node u in
metapath-induced view Gm,M is the metapath set.

4.3 Positive Sampling Strategy Sampling bias is an im-
portant problem in CL since false negatives will generate ad-
verse signals. However, existing debiasing techniques [20]
are theoretically and empirically verified to lead to severer
sampling bias for GCL [22], because the message passing
mechanism smooths the node representations. To overcome
the deficiency, we propose to leverage two different yet re-
ciprocal similarity measurements (i.e., topology and seman-
tics) to define the distance between nodes, as shown in Fig-
ure 3, and explicitly select the most similar nodes as positive
samples.

4.3.1 Topology Positive Sampling To analyze the simi-
larity between nodes based on topological structure, we pro-
pose to use the graph diffusion kernel [36] that assesses the
global node importance to compute the distance between two
arbitrary nodes. In practice, we apply Personalized PageR-
ank (PPR) score Sm to measure the node-level relationship
for each metapath view Gm, which is defined as

(4.5) Sm =

∞∑
k=0

α(1− α)k(AmD−1m )
k
,

where Sm ∈ R|V|×|V|, Am, and Dm are the diffusion ma-
trix, adjacent matrix and diagonal degree matrix for meta-

path view Gm, respectively, and α denotes teleport proba-
bility, whose default is 0.85. Formally, we define the PPR
similarity between two nodes vi and vj under metapath view
Gm as the i-th row and j-th column in the diffusion matrix
PPRm(vi, vj) = Sm[i, j]. The value in fact describes the
stationary probability of starting from vi to reach vj via an
infinite random walk in the metapath view m. Then, we ag-
gregate the PPR scores computed on all metapath-induced
views to determine the topological similarity simt(vi, vj)
for each node pair as

(4.6) simt(vi, vj) =
∑
m∈M

PPRm(vi, vj),

and select the top-k similar nodes for each anchor as the
topology positives Pt.

4.3.2 Semantic Positive Sampling Apart from structural
information, graph datasets also preserve rich semantics on
the node itself. To measure the semantical similarity between
nodes, we propose to utilize a simple metric sims(vi, vj) to
compute the distance between attributes of nodes, which is
defined as

(4.7) sims(vi, vj) = −l2(xi, xj),

where xi and xj denote attributes on nodes vi and vj ,
respectively, and l2(·, ·) measures the L2-distance between
two data points. The attributes for each node will not change
across metapath views, thus we only need to process once
to calculate the distance between pairs of nodes. Finally, we
also select the top-k similar nodes for each anchor as the
semantic positives Ps. At the time, we define the positive
samples Pu for node u across metapath views as

(4.8) Pu = Ptu ∪ Psu.

Note that the positive sampling phase is performed in pre-
processing, so the module will not significantly increase the
computational complexity.

5 Experiments
5.1 Experimental Setup

5.1.1 Datasets and Baselines To demonstrate the superi-
ority of HGCML over SOTA, we conduct extensive exper-
iments on five public benchmark datasets, including ACM,
DBLP, IMDB, Aminer, and FreeBase. We evaluate the
performance of our model against various baselines from
shallow graph representation learning algorithms, includ-
ing DeepWalk [37], Metapath2vec(MP2vec) [38], HIN2vec
[39], HERec [40], to GCL methods (e.g., DGI [8], GRACE
[12], DMGI [15], STENCIL [18], HeCo [16]) to supervised
GNNs, like GCN [24], GAT [26], HAN [4]. Note that
DMGI, STENCIL, and HeCo are dedicated for heteroge-
neous graphs.
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Methods Data Node Classification Node Clustering

ACM DBLP IMDB Aminer FreeBase ACM DBLP IMDB Aminer FreeBase

DeepWalk A 81.78±0.04 88.09±0.07 56.36±0.33 84.93±0.09 69.63±0.05 41.15±0.49 20.13±2.57 5.97±0.23 30.17±2.86 14.56±0.08
MP2vec A 79.82±0.23 87.67±0.12 50.78±0.18 84.14±0.06 69.66±0.11 37.74±0.09 73.77±0.18 2.71±0.34 26.52±0.36 14.93±1.05
HIN2vec A 85.23±0.09 91.40±0.08 50.73±0.23 80.77±0.06 67.42±0.14 40.79±0.49 68.83±1.42 3.88±0.29 23.76±0.64 14.26±2.03
HERec A 67.15±0.85 90.75±0.39 49.12±0.22 80.63±0.10 68.04±0.19 45.39±2.11 70.38±3.29 4.39±1.01 31.05±0.69 15.32±1.05

DGI X,A 88.44±0.30 90.16±0.60 52.00±0.94 83.24±0.19 68.42±0.31 43.47±2.25 54.44±2.07 4.09±1.88 29.80±1.86 15.16±1.13
GRACE X,A 87.64±0.31 91.28±0.07 54.80±0.82 83.43±0.22 69.25±0.14 46.50±4.58 67.98±1.32 1.58±1.12 24.12±5.24 16.23±3.37
DMGI X,A 76.76±1.23 91.60±0.66 51.16±0.63 79.19±0.32 67.69±0.21 52.53±1.73 67.41±0.07 5.45±0.12 28.32±0.44 12.35±0.35
STENCIL X,A 88.23±0.91 92.56±0.22 57.83±0.62 84.61±0.53 68.26±0.21 56.67±2.51 71.40±1.93 8.25±1.09 29.99±2.69 13.19±1.10
HeCo X,A 88.97±1.12 92.24±0.48 52.12±0.72 85.22±0.10 69.02±0.07 56.93±1.59 70.03±1.25 7.41±1.26 30.61±3.81 12.07±1.47
HGCML X,A 91.02±0.13 93.29±0.12 60.75±0.71 86.63±0.11 71.41±0.04 65.13±1.33 73.28±0.76 9.34±0.86 36.10±2.44 15.46±1.65
HGCML-P X,A 91.34±0.17 93.44±0.08 61.02±0.49 87.03±0.06 71.53±0.14 65.75±1.62 74.53±0.48 8.95±1.06 35.62±1.74 16.26±2.56

GCN X,A,Y 89.87±0.79 92.04±1.03 58.42±1.42 85.42±0.48 69.13±2.51 58.14±0.90 77.71±1.35 8.59±0.84 37.80±1.69 15.77±2.97
GAT X,A,Y 88.84±0.61 92.51±1.28 57.97±1.64 84.37±0.42 70.42±0.55 62.22±3.67 72.06±1.61 8.04±1.76 36.81±0.66 15.44±1.32
HAN X,A,Y 89.50±1.21 93.27±0.58 54.78±1.01 85.90±0.43 70.98±1.07 60.98±2.38 78.20±0.83 6.80±2.32 35.37±0.48 16.38±1.73

Table 1: Performance of node classification and clustering on five benchmark datasets in terms of micro-F1 and normalized
mutual information (NMI). Boldfaces and underlines denote the best performance among self-supervised and supervised
methods, respectively. For our model, we use the suffix -P to indicate the positive sampling version.

Intra- Inter- Local Global ACM DBLP IMDB Aminer FreeBase
√

-
√

- 89.20 91.94 58.71 84.95 69.61√
- -

√
83.20 90.95 48.56 83.42 69.38√

-
√ √

90.52 92.52 60.12 86.17 71.16
-

√ √ √
88.32 92.44 59.80 85.92 70.65√ √ √ √
91.02 93.29 60.75 86.63 71.41

Table 2: Ablation study of the proposed HGCML for pretext
tasks on node classification, where the intra- and inter- are
abbreviations of intra-metapath and inter-metapath contrasts,
and local and global indicate node-node and node-graph
contrasts, respectively.

5.1.2 Evaluation Protocol We evaluate HGCML on node
classification and node clustering. For node classification,
we use Micro-F1 as the metric and follow the linear protocol
that utilizes the learned graph encoder as a feature extractor
to train a simple linear classifier with 20% random samples
as the training set. For node clustering, we applyK-means to
generate clusters and utilize Normalized Mutual Information
(NMI) as the metric. To mitigate the impact of initialized
centroids, we perform 10 times clustering and report the
average results. For all baselines, we run 10 times and
present the average scores with standard deviations. For
DGI, GRACE, GCN, and GAT, we create homogeneous
graphs based on metapaths and report the best results.

5.1.3 Implementation Details We leverage a 1-layer
GCN as the encoder for each metapath-induced view. The
parameters are initialized via Xavier initialization and we ap-
ply Adam as the optimizer. We perform grid search to tune
the learning rate from 5e−4 to 5e−3, the value of tempera-
ture from 0.2 to 0.8, the corrupt rate from 0.1 to 0.7, and the
number of positives from 0 to 128. Moreover, we set early
stop to 20 epochs, node dimension to 64, activation function

Topology Pos. Semantic Pos. ACM DBLP IMDB Aminer FreeBase

- - 91.02 93.29 60.75 86.63 71.41√
- 91.17 93.34 59.92 86.88 71.43

-
√

90.88 93.35 58.28 86.91 71.45√ √
91.34 93.44 61.02 87.03 71.53

Table 3: Ablation study of the proposed HGCML for positive
sampling strategies on node classification with four variants;√

denotes the specific type of positives are selected.

to ReLU(·) = max(·, 0), and use concatenation as the fu-
sion function in ACM and DBLP, and summation in other
datasets.

5.2 Quantitative Results We report the quantitative re-
sult of node classification and node clustering with stan-
dard deviations in Table 1. From the table, we observe
that GCL methods generally perform better than shallow
unsupervised baselines, since the instance discrimination
applied on CL captures underlying semantics preserved in
HINs but the graph reconstruction adopted in classical meth-
ods only considers the topological structure. Our models
(HGCML and HGCML-P) consistently outperform SOTA
self-supervised graph learning methods across all datasets
by a large margin on supervised classification and unsu-
pervised clustering tasks, and even achieve competitive re-
sults compared to supervised baselines. Beyond that, the
performance of HGCML-P (positive sampling version) is
commonly better than its vanilla version that performs con-
trast between the same node in different views, demonstrat-
ing the necessity of introducing correlated nodes as posi-
tives to mitigate the sampling bias. Compared with het-
erogeneous graph contrastive learning methods (i.e., DMGI,
STENCIL, and HeCo), our model always acquires higher
scores in both classification and clustering. We assume that
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Figure 4: Hyperparameter sensitivity of positive sampling thresholds on node classification. Note that when no extra
positives are selected (i.e., the left bottom corner), the model picks the anchor node itself as the positive sample.
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Figure 5: Hyperparameter sensitivity of augmentations (edge dropping pe and feature masking pf ) on node classification.

it is because (1) the intra-metapath contrast is performed be-
tween nodes on two corrupted views induced from the same
metapath to learn the discriminative representations and (2)
the inter-metapath contrast captures the complementarity be-
tween metapaths instead of treating the aggregation of them
as a single view under the independent assumption applied
in mentioned baselines.

5.3 Ablation Study

5.3.1 Pretext Task To verify the role of each component
in the contrastive objective, we perform ablation studies, as
shown in Table 2, to compare the performance of multiple
variants on node classification. From the table, we observe
that (1) the node-node contrast provides better discrimina-
tion ability compared with the node-graph contrast since the
fine-grained information (patches) is leveraged in learning
representations. When the node- and graph-level objectives
are jointly optimized, the performance is significantly im-
proved, showing the necessity of simultaneously modeling
local- and global-level dependencies. (2) The intra-metapath
contrast is essential in promoting the learning procedure, re-
flected in the competitive performance obtained in the initial-
ized variant (Intra- & Node) against SOTA self-supervised
baselines. (3) The variant with full components persistently
achieves the best performance since the intra-metapath con-
trast captures the latent semantics of each metapath-induced
view and the inter-metapath contrast aligns the consistency

between metapaths. If one of them is removed, we cannot
thoroughly model the relationship between metapaths, thus
encountering model degradation.

5.3.2 Positive sampling strategy We also conduct exper-
iments to evaluate the impact of positive sampling, as pre-
sented in Table 3. We can find that the selected positives
indeed improve the performance by implicitly defining hard
negatives. In addition, the significance of these two posi-
tive sampling strategies depends on the choice of datasets,
i.e, there is no obvious superiority between topology posi-
tives and semantic positives. However, when they are jointly
leveraged, our model achieves the best scores. The phe-
nomenon demonstrates that the selected positives based on
different strategies are distinct yet complementary.

5.4 Hyperparameter Analysis

5.4.1 Positive Sampling Thresholds In the above section,
we analyze the impact of positive sampling strategies in en-
hancing the quality of representations, here we delve into
the positive sampling thresholds to provide a further exami-
nation, illustrated in Figure 4. As we can see, the best per-
formance is achieved with a large number of semantic posi-
tives and a small number of topology positives (ACM, DBLP,
IMDB). When the number of topology positives is too large,
the performance generally encounters a drop. We assume
the phenomena derive from the inherent property of defined
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Figure 6: Hyperparameter sensitivity of temperature τ in
terms of Micro-F1.

similarity functions. To be specific, the semantical similar-
ity is independently measured on attributes of nodes in the
representation space, whereas the topological similarity is
calculated based on the adjacent matrix, which makes the
function naturally biased to nodes with dense connections.
Thus, when the number of topology positives is too large,
there will contain too many noisy nodes. The Aminer does
not follow the observation on the other datasets, whose best
performance is achieved when the number of semantic and
topology positives are both small. We consider it is because
the attributes on Aminer are generated by DeepWalk, a ran-
dom walk-based algorithm that is biased to hub nodes in the
learning procedure.

5.4.2 Augmentation Probabilities In this section, we
present the impact of two critical data augmentation hyper-
parameters, i.e., edge dropping pe and feature masking pf ,
in Figure 5. We have the following observations. (1) A
relatively low corrupt probability 0.3 is desirable to achieve
competitive results. (2) When the dropping probability is too
large, we face a model degradation because the semantics
and/or structures for each metapath-induced view are signif-
icantly corrupted, failing to preserve enough augmentation-
invariant information. (3) Despite the performance dramat-
ically fluctuating under different probability combinations,
the absolute value between the maximum and minimum is
generally less than 0.5 except ACM, showing the robustness
of HGCML on augmentation probabilities.

5.4.3 Temperature The value of temperature τ deter-
mines the data distribution when measuring the distance be-
tween data points in contrasting. As illustrated in Figure 6,
we can see that our model is not sensitive to the temperature
and have higher scores with lower variance against HeCo,
showing its robustness. In addition, we observe that if the
value of temperature is smaller, the gap between HGCML-P
and HGCML will be larger. It is because the data distribu-
tion between positives and negatives will be smoother with
the increase in temperature. The observation further proves
the effectiveness of the proposed positive sampling strategy,
especially with a small temperature.

(a) MP2vec (b) DMGI (c) HeCo (d) HGCML-P

Figure 7: Visualization of node representations on DBLP.

5.5 Visualization To profoundly study the expressiveness
of HGCML, we visualize the learned node representations of
DBLP through t-SNE. In Figure 7, we visualize node repre-
sentations obtained from four algorithms, including Meta-
path2vec (MP2vec), DMGI, HeCo, and HGCML. As we
can see, DMGI presents blurred boundaries between differ-
ent classes, failing to learn discriminative low-dimensional
node representations. For Metapath2vec and HeCo, despite
some types of nodes being categorized clearly, there still ex-
ists a large proportion of overlapped data points that cannot
be clearly identified. Our model separates nodes into differ-
ent types, achieving the best performance.

6 Conclusion
In this paper, we propose a heterogeneous graph contrastive
multi-view learning framework named HGCML. By treat-
ing metapaths as data augmentation, we create multi-views
without impairing the underlying semantics in HINs. Then,
we propose a novel objective that jointly performs intra-
metapath and inter-metapath contrasts to model the consis-
tency between metapaths. Specifically, we iteratively uti-
lize graph patches and graph summaries to generate super-
vision signals to acquire local and global knowledge. To
further enhance the quality of representations, we employ
a positive sampling strategy that simultaneously considers
node attributes and centrality to explicitly select positive
samples to mitigate the sampling bias. Experimental re-
sults demonstrate the superiority of HGCML across five real-
world datasets on node classification and node clustering.
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