
Ranking with submodular functions on the fly∗

Guangyi Zhang† Nikolaj Tatti‡ Aristides Gionis§

Abstract
Maximizing submodular functions have been studied exten-
sively for a wide range of subset-selection problems. However,
much less attention has been given to the role of submodular-
ity in sequence-selection and ranking problems. A recently-
introduced framework, named maximum submodular ranking
(MSR), tackles a family of ranking problems that arise nat-
urally when resources are shared among multiple demands
with different budgets. For example, the MSR framework
can be used to rank web pages for multiple user intents. In
this paper, we extend the MSR framework in the streaming
setting. In particular, we consider two different streaming
models and we propose practical approximation algorithms.
In the first streaming model, called function arriving, we
assume that submodular functions (demands) arrive contin-
uously in a stream, while in the second model, called item
arriving, we assume that items (resources) arrive continuously.
Furthermore, we study the MSR problem with additional con-
straints on the output sequence, such as a matroid constraint
that can ensure fair exposure among items from different
groups. These extensions significantly broaden the range
of problems that can be captured by the MSR framework.
On the practical side, we develop several novel applications
based on the MSR formulation, and empirically evaluate the
performance of the proposed methods.

1 Introduction
Submodular set functions capture a “diminishing-returns”
property that is present in many real-world phenom-
ena [16]. Submodular functions are popular as they ad-
mit a rich toolbox of optimization techniques developed
in the literature. Examples of submodular functions used
in practical problems include document summarization
[19], viral marketing in social networks [12], social wel-
fare maximization [27], and many other. The majority of
existing submodularity-based problem formulations are

∗This research is supported by the Academy of Finland projects
MALSOME (343045), AIDA (317085) and MLDB (325117), the
ERC Advanced Grant REBOUND (834862), the EC H2020
RIA project SoBigData++ (871042), and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

†KTH Royal Institute of Technology. guaz@kth.se
‡HIIT, University of Helsinki. nikolaj.tatti@helsinki.fi
§KTH Royal Institute of Technology. argioni@kth.se

restricted to selecting a subset of items, and completely
disregard the effect of item order. However, the order of
items plays an important role in many applications. In
this paper, we investigate a versatile approach to ranking
items within the submodularity framework.

Creating a sequence of resources to be shared
among multiple demands appears in a broad range of
applications. For example, when ranking web pages in
response to a user query we want to cater for multiple
user intents; when creating a live stream of music content
shared among a group we want to satisfy the tastes of all
listeners; and when selecting advertising for a screen on
public display we want it to be relevant for all passengers.
Typically, each demand has an individual maximum
budget, e.g., in the previous scenario, the budget models
the number of web pages that a user is expected to
browse. The main challenge in these problems is to
find a (partial) ranking of resources that best satisfies
multiple demands with different budgets.

More concretely, the maximum submodular rank-
ing (MSR) formulation [28] deals with resources and
demands. A resource is referred to as an item in a uni-
verse set V . Demands require resources, and the utility
of a demand for a set of resources is characterized by
a non-decreasing submodular set function f : 2V → R+.
The budget of a demand is represented by a cardinality
constraint, i.e., the maximum number of items its cor-
responding function is allowed to take. The objective
is to find a (partial) sequence of items to maximize the
total utility, i.e., the sum of function values. A formal
problem definition is introduced in Section 3.

To capture a wider range of problems and increase
the versatility of the framework, in this paper, we extend
the MSR problem in two natural streaming models,
which we name function arriving and item arriving. In
the function-arriving model, we assume that demands
arrive continuously in an online fashion and one is
unaware of the type and/or volume of future demands.
This model is common in practice; for example, new
audience may join a live stream in any time. In the
item-arriving model, we assume that items arrive in a
stream, and we have to output a sequence of items in one
pass and with limited memory after seeing all the items
in the stream. In other words, we need to process each
item immediately after its arrival. This model offers a

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

30
1.

06
78

7v
1

 [
cs

.D
S]

 1
7

Ja
n

20
23

mailto:guaz@kth.se
mailto:nikolaj.tatti@helsinki.fi
mailto:argioni@kth.se

way to handle the MSR problem when items are arriving
continuously, or are too many to be loaded into memory.

For both of the streaming models we consider we
propose practical approximation algorithms. Besides, we
study the MSR problem with additional constraints on
the output sequence, such as a matroid constraint (see
Section 3) that can ensure fair exposure among items
from different groups.

On the practical side, we propose novel applications
based on the MSR formulation. We highlight here
an application on progressively-diverse personalized
recommendation, while many other interesting ones are
discussed in Section 6, including live streaming and
catalogued viral marketing. A popular approach to
personalized recommendation [22] is to select a succinct
subset S of items that maximizes a weighted sum
(with a trade-off parameterλ) of two submodular terms,
relevance and diversity. Note that for a given value of
the parameter λ, a subset S presents a fixed trade-off
between relevance and diversity. On the other hand,
a user’s need for diversity may be better served in
an adaptive manner. For example, a target user may
appreciate a recommended list having the most relevant
items at the beginning and becoming progressively diverse
down the list. This requirement can be satisfied via an
MSR formulation, by maximizing a weighted sum of
multiple such functions, each with an increasing trade-
off value λ. See Section 3 for a formal definition.

Our contributions in this paper are summarized as
follows.

• We study the maximum submodular ranking (MSR)
problem in two different streaming models, and
devise approximation algorithms for each model.

• In the function-arriving streaming model, we show
that a simple greedy algorithm yields a 2 approxi-
mation for the MSR problem, if an item is allowed
to be used multiple times. This approximation ratio
is tight for the greedy algorithm. We also show that
the problem is inapproximable if every item can be
used at most once.

• We propose a novel reduction that maps the
ranking problem into a constrained subset-selection
problem subject to a bipartite-matching constraint.
An immediate consequence is that there exist
approximation algorithms for the MSR problem
subject to a general p-matroid constraint on the
output sequence. Another consequence is that we
can obtain efficient approximation algorithms for the
MSR problem in the item-arriving streaming model.

• We apply the enhanced MSR framework to several
novel real-life applications, and empirically evaluate

the performance of the proposed algorithms.

The rest of the paper is organized as follows. We
discuss related work in Section 2. A formal problem
definition is introduced in Section 3. We present ap-
proximation algorithms for the function-arriving MSR
problem and the item-arriving MSR problem in Sec-
tions 4 and 5, respectively. Our empirical evaluation is
conducted in Section 6, followed by concluding remarks
in Section 7. Missing proofs and further experimental
details are deferred to the supplementary materials. Our
implementation is made publicly available.1

2 Related work
Submodularity for sequences. The MSR problem
was proposed by Zhang et al. [28], and it was later shown
to be a special case of ordered submodularity, introduced
by Kleinberg et al. [14]. In particular, both formulations
avoid an unnatural postfix monotonicity property, which
is required in prior formulations [1, 26, 29]. Postfix
monotonicity requires a non-decreasing function value
after prepending an arbitrary item at the front of
a sequence. Additionally, the MSR problem can be
seen as a dual problem to the submodular ranking
problem [2], which aims to minimize the total cover
time of all functions in the absence of individual budgets.
No streaming extension has been known for the MSR
problem.
Bipartite matching. Bipartite matching and its many
variants have been extensively studied in the litera-
ture [21]. The offline weighted bipartite matching can
be solved exactly, e.g., via a maximum-flow formula-
tion, while the best-known approximation ratio for the
online variant is achieved by Fahrbach et al. [6]. It is
known that many popular variants can be treated as a
special case of the submodular social welfare problem
[17]. Similar to our reduction in Section 5, some as-
signment or scheduling problems can also be reduced
to a subset-selection problem subjective to a bipartite-
matching constraint [24, 27].
Constrained submodular maximization. In the
offline setting, for a p-matroid constraint, it is well-known
that a greedy algorithm guarantees a p-approximation
for a modular function and a (p+1)-approximation for a
submodular function [10, 15]. Feldman et al. [7] achieve
the best-known (p+ ε)-approximation for submodular
maximization under a p-exchange constraint, which is
more general then a p-matroid. A lower bound of
Ω(p/ ln p) is known for approximating p-dimensional
matching, which is a special case of maximizing a
modular function over a p-matroid [11].

1https://github.com/Guangyi-Zhang/
subm-ranking-on-the-fly

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly
https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly

In regards to the streaming setting, Levin and
Wajc [18] offer a 3 + 2

√
2 ≈ 5.828 approximation

subject to a matching constraint. Under a p-matroid,
a 4p-approximation is obtained by Chakrabarti and
Kale [5], which is inspired by the modular variant in
Badanidiyuru [3]. In terms of lower bounds, the analysis
in Badanidiyuru [3] is shown to be optimal for any online
algorithm (i.e., a streaming algorithm that maintains
only a feasible solution at any moment). Besides, a 2.692-
approximation is impossible even subject to a bipartite
matching constraint, and there exists evidence that the
lower bound can be as high as 3-approximation [9].
For p-matroid constraint, a lower bound of p has been
proven for any streaming algorithm with sub-linear
memory; moreover, any logarithmic improvement over
the best-known 4p-approximation requires memory super
polynomial in p [9].

3 Problem definition
In this section we present the maximum submodular rank-
ing (MSR) problem in two different streaming models.
Afterwards, we introduce a formulation for progressively-
diverse personalized recommendation. Prior to that, we
briefly review notions of submodularity and matroids.

Submodularity. Given a set V , a function f : 2V → R+

is called submodular if for any X ⊆ Y ⊆ V and
v ∈ V \ Y , it holds f(v | Y) ≤ f(v | X), where
f(v | Y) = f(Y + v) − f(Y) is the marginal gain of
v with respect to set Y . A function f is called modular
if f(X)+f(Y) = f(X∪Y) for anyX∩Y = ∅. A function
f is called non-decreasing if for any X ⊆ Y ⊆ V , it holds
f(Y) ≥ f(X). Without loss of generality, we can assume
that function f is normalized, i.e., f(∅) = 0.

Matroid. For a set V , a family of subsetsM⊆ 2V is
called amatroid if it satisfies the following two conditions:
(1) downward closeness: if X ⊆ Y and Y ∈ M, then
X ∈M; (2) augmentation: if X,Y ∈M and |X| < |Y |,
then X + v ∈ M for some v ∈ Y \ X. Two useful
special cases are those of uniform matroid and partition
matroid. The former is simply a k-cardinality constraint,
i.e., M = {S ⊆ V : |S| ≤ k}, and the latter consists
of multiple cardinality constraints, each placed on a
disjoint subset G` of V = ∪`G`, i.e., M = {S ⊆ V :
|S ∩ G`| ≤ k`, for all `}. Given p matroids {Mj}j∈[p],
their intersection is called a p-matroid.

We denote by σ(V) the set of all sequences formed
by items in V . Given a sequence π ∈ σ(V), we write πi
for the i-th item in π, and π + v for the new sequence
obtained by appending item v to π. The length of a
sequence π is denoted as |π|. The set of items in π is
denoted by V (π) ⊆ V . A sequence π being a subsequence
of another sequence π′ is denoted by π � π′. Given an

interval w = [s, e], where s, e are integers, we write
π[w] = π[s : e] = {πs, . . . , πe}. More generally, given a
subset of items R ⊆ V , we write π[R] = {πi | i ∈ R}.

We are now ready to define the MSR problem [28]
and its streaming variants.

Problem 3.1. (Max-submodular ranking (MSR))
Given a set V of n items, a collection of m non-
decreasing submodular functions F = {fi}i∈[m], each
associated with an integer ki, the objective is to find a
sequence solving

(3.1) arg max
π∈σ(V)

∑
fi∈F

fi(π[1 : ki]).

If an additional p-matroid constraint M ⊆ 2V

is imposed on items in a feasible sequence π, i.e.,
V (π) ∈ M, we refer to the problem as MSRp. Such
a p-matroid constraint is useful, for example, to avoid
overrepresentation of some group of items in the returned
sequence. If the functions in F are modular, we refer to
the problem as maximum modular ranking (MMR).

In the function-arriving streaming model, we observe
a set of new functions Ft at time step t, and the objective
is to produce a sequence π in real time, that is, to decide
irrevocably one item in π at each time step. Note that
items that are placed in previous item steps cannot be
used anymore. We assume that we observe the new
functions Ft before deciding the t-th item at step t, and
a function will stay active in subsequent steps after its
arrival until it exhausts its budget. It is also possible
not to place any item at a step (by introducing dummy
items in V). More formally, the MSR problem in the
function-arriving model is defined as follows.

Problem 3.2. (Function-arriving MSR (MSR-F))
Given a set V of n items, and a collection of non-
decreasing submodular functions Ft that arrive at the
beginning of step t, with arrival time τ(f) = t and
integers k(f) for each f ∈ Ft, the objective is to find a
sequence solving

(3.2) arg max
π∈σ(V)

∑
t

∑
f∈Ft

f(π[t : k(f)]),

by irrevocably deciding the t-th item πt at step t.

In contrast, in the item-arriving streaming model, we
have full information about the functions that are used.
Actually, we further allow each function fi to “reserve”
arbitrary ki slots Ri ⊆ [n] in a sequence, instead of
merely the first ki slots [ki] in MSR. When given a
sequence, function fi receives items only from slots Ri.
For example, when deciding showtimes in a cinema, a
user (fi) may only be available during weekends or at

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

specific time of a day. The goal of the item-arriving MSR
problem is to produce a sequence π after processing all
arriving items in one pass and using “small” memory
size. In other words, items that are discarded from the
memory cannot be used later. If there is a slot in the
sequence where no function is available, one is allowed
to not place any item. Formally, the MSR problem in
the item-arriving streaming model is defined as follows.

Problem 3.3. (Item-arriving MSR (MSR-I))
Given a collection of non-decreasing submodular func-
tions F = {fi}i∈[m], each associated with ki available
slots specified by Ri ⊆ [n], and items in V that arrive in
a stream, the objective is to find a sequence in

(3.3) arg max
π∈σ(V)

∑
fi∈F

fi(π[Ri]).

In addition, the number of items one can store at any
moment depends only on {ki} instead of n.

In the offline setting where all items are in place,
we call this variant MSR with availability (MSR-A)
problem. Note that when Ri = [ki] = {1, . . . , ki},
the MSR-A problem becomes equivalent to the original
MSR problem. We also note that when there is a
single function in F , MSR-I generalizes the problem
of streaming submodular maximization for which no
streaming algorithm with sublinear memory in n has an
approximation ratio better than 2 [8].
Progressively-diverse personalized recommenda-
tion. A popular approach to personalized recommenda-
tion [22] is to select a succinct subset S of items that
maximizes a submodular function of the form

fλ,k(S) = (1− λ)
∑
v∈S

rel(v) +
λk

|V |
∑
u∈V

max
v∈S

sim(u, v),

such that |S| ≤ k.(3.4)

Here rel(v) measures the relevance of an item v to the
target user, and sim(u, v) the similarity between two
items u, v. The second term represents one specific
notion of diversity (also known as representativeness or
global coverage), i.e., for every non-selected item u ∈ V ,
there exists some item v ∈ S that is similar enough to u.
To create a recommended list that adaptively serves a
user’s need for diversity, one could maximize a weighted
sum of multiple functions {fλ,k} with increasing trade-
off value λ ∈ [0, 1] and cardinality k, so that the later
suffix of the list will be dominated by functions with
larger λ.

4 Function-arriving MSR
In this section we discuss two scenarios for the function-
arriving MSR (MSR-F) problem, depending on whether

Algorithm 1: Greedy algorithm for Function-
arriving MSR (MSR-F)
1 Initialize an empty sequence π
2 F ← ∅
3 for t = 1, . . . do
4 F ← F ∪ Ft // receive functions Ft
5 A← {f ∈ F : k(f) ≥ t} // active

functions at the t-th step
6 v∗ ← arg maxv∈V

∑
f∈A f(v | π[τ(f) : t− 1])

7 π ← π + v∗

8 return π

items in V can be used at most once, or more than
one time. We show that the problem is inapproximable
in the former case, and we present a 2-approximation
algorithm for the latter case.

To start off our analysis, if the output sequence
is constrained to not contain duplicate items, it can
be shown that the MSR-F problem is inapproximable,
even when all functions are modular. This result, stated
below, follows from the inapproximability of the online-
selection problem, which aims to select the maximum of
an adversarial sequence with no recall [13].

Theorem 4.1. If items can be used at most once, the
MMR-F problem generalizes the online selection problem.
Thus, no randomized algorithm guarantees an o(n)-
approximation for the MMR-F problem.

Given the inapproximability of MMR-F for the case
that the output sequence should not contain duplicates,
we proceed to study the problem when items in V can
be used multiple times. This assumption is reasonable in
many application, for example, a song can be added many
times in a playlist — and notice here that unnecessary
duplicates are discouraged implicitly as their marginal
gain is zero with respect to functions that have included
these items already.

When duplicates are allowed in the output sequence,
we prove that a simple greedy algorithm returns a
solution with a 2-approximation guarantee. The greedy,
which is displayed as Algorithm 1, selects the most
beneficial item with respect to the current set of “active”
functions at each step. A function f is called active if it
has not exhausted its item budget k(f) up to that point.

Theorem 4.2. If items in V can be used multiple
times in the output sequence, Algorithm 1 yields a 2-
approximation solution for the MSR-F problem.

The approximation guarantee of the greedy can be
shown to be tight, as the lower bound provided by Zhang

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

et al. [28] applies to our case, as well. In particular, since
the MSR-F problem generalizes the MSR problem, by
letting all functions to arrive at the beginning, we obtain
the following result.

Remark 4.1. (Zhang et al. [28]) If an item can be
used multiple times in the output sequence, the 2-
approximation solution obtained by Algorithm 1 is tight
for the MSR-F problem.

In the rest of this section, we prove Theorem 4.2,
and the proof of Theorem 4.1 is deferred to Section A.1.

Proof. [Proof of Theorem 4.2] We write At = {f ∈⋃
t′≤t Ft′ : k(f) ≥ t} for the set of active functions

at step t. We denote by π the sequence produced by
Algorithm 1 with objective value ALG, and by π∗ the
optimal sequence with objective value OPT.

By the greedy selection criterion, we know that for
any arbitrary item v ∈ V , it holds that
(4.5)∑
f∈At

f(πt | π[τ(f) : t− 1]) ≥
∑
f∈At

f(v | π[τ(f) : t− 1]).

To simplify the notation, let us write π[f] to mean
π[τ(f) : k(f)].

It is easy to see that ALG is equal to the sum over
t of the left-hand side in Equation (4.5), implying

ALG =
∑
t

∑
f∈At

f(πt | π[τ(f) : t− 1])

(a)

≥
∑
t

∑
f∈At

f(π∗t | π[τ(f) : t− 1])

=
∑
f∈F

k(f)∑
t=τ(f)

f(π∗t | π[τ(f) : t− 1])

(b)

≥
∑
f∈F

k(f)∑
t=τ(f)

f(π∗t | π[f])

(c)

≥
∑
f∈F

f(π∗[f] | π[f])

=
∑
f∈F

f(π[f] ∪ π∗[f])− f(π[f])

≥
∑
f∈F

f(π∗[f])− f(π[f]) = OPT−ALG,

where inequality (a) is by Eq. (4.5), and inequalities (b)
and (c) are due to submodularity.

5 Item-arriving MSR
In this section, we present the reduction that turns
the ranking problem into a subset selection problem

subject to a bipartite matching constraint, and its rich
consequences. A summary of approximation ratios in
different settings is displayed in Table 1, using algorithms
provided in the citations.

Theorem 5.1. For any integer p ≥ 1, the MSR-Ap
problem is an instance of maximizing a non-decreasing
submodular function subject to a (p+ 1)-matroid.

As an immediate consequence of Theorem 5.1, the
item-arriving MSR (MSR-I) can be solved by streaming
algorithms for constrained submodular maximization.

Corollary 5.1. For any integer p ≥ 1, the MSR-Ip
problem is an instance of maximizing a non-decreasing
submodular function subject to a (p+ 1)-matroid in one
pass while remembering O(

∑
i ki) items at any moment.

Moreover, when functions are modular, we can
obtain a stronger result.

Corollary 5.2. For any integer p ≥ 1, the MMR-Ap
problem is an instance of maximizing a modular function
subject to a (p+ 1)-matroid. In particular, the MMR-A
problem is an instance of maximum weighted bipartite
matching.

Proof. [Proof of Theorem 5.1] The main idea of the
reduction is to create an extended universe set V ′, i.e.,

(5.6) V ′ = {(v, t) : v ∈ V, t ∈ [n]},

which can be seen as the edges in a complete bipartite
between items L = V and ranks R = [n]. Let us define
V (S′) = {v : (v, t) ∈ S′} to be the projection of S′
onto V . Let us also write Xv = {(v, t) : t ∈ [n]} and
Yt = {(v, t) : v ∈ V }.

Suppose we are given a p-matroidM⊆ 2V over V .
DefineM′ = A ∩ B ∩ C, where

A = {S′ ⊆ V ′ : V (S′) ∈M},
B = {S′ ⊆ V ′ : |S′ ∩Xv| ≤ 1, for all v ∈ V },
C = {S′ ⊆ V ′ : |S′ ∩ Yt| ≤ 1, for all t ∈ [n]}.

Here, B forces that an item appears only once and C
forces that only one item appears at time t. Conse-
quently, a feasible sequence π can be written as a subset
of V ′ that satisfyM′.

On the other hand, a feasible subset S′ ⊆ V ′ can be
transformed to a sequence by ordering items in V (S′)
according to their associated ranks in S′. If S′ consists
of non-consecutive ranks, one can insert dummy items
(or shifting items forward in MSR) to obtain a sequence,
with no decrease in the objective function.

We claim that M′ is a (p + 1)-matroid. We will
prove the claim by arguing that A ∩ B is a p-matroid

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Summary of approximation ratios for MSR-A and MSR-I

unconstrained p-matroid

MMR-A exact p+ 1 (Korte and Hausmann [15])
MSR-A 2 + ε (Feldman et al. [7]) p+ 1 + ε (Feldman et al. [7])
MMR-I 1/0.5086 (Fahrbach et al. [6]) 2(p+ 1 +

√
(p+ 1)p)− 1 (Badanidiyuru [3])

MSR-I 5.828 (Levin and Wajc [18]) 4(p +1) (Chakrabarti and Kale [5])

(by Lemma A.1 in Section A.2). Then A ∩ B ∩ C is a
(p+ 1)-matroid because C is a matroid.

What is left is to show that the objective func-
tion for MSR-A (Equation 3.3) is non-decreasing and
submodular with respect to the new universe set V ′.
Showing non-decreasing is obvious, so we only elab-
orate on submodularity. Recall that Ri ⊂ [n] con-
sists of available slots for function fi. Let us define
R′i = {(v, t) : v ∈ V, t ∈ Ri}. The objective function
can be now written as g(S) =

∑
fi∈F fi(V (S ∩R′i)). For

any subset S ⊆ W ⊆ V ′, the marginal gain g(· | S) of
including an item (v, t) into S is

g((v, t) | S) =
∑

fi∈F :t∈Ri

fi(v | V (S ∩R′i))

≥
∑

fi∈F :t∈Ri

fi(v | V (W ∩R′i)) = g((v, t) |W),

since V (S ∩ R′i) ⊆ V (W ∩ R′i) and submodularity of
each fi. Hence, the MSR-Ap problem can be cast as
an instance of non-decreasing submodular maximization
under a (p+ 1)-matroid.

6 Experiments
We evaluate our methods on novel use cases that
motivate the MSR-F and MSR-I problems. For each
use case, we simulate a concrete task using real-life data,
and empirically evaluate the performance of the proposed
algorithms. A summary of the datasets can be found in
Table 2. An examination on the running time is deferred
to Section A.4. Our implementation has been made
publicly available.2

6.1 Function-arriving MSR We present two use
cases for the MSR-F problem, live streaming and
catalogued viral marketing, and we evaluate our methods
on relevant datasets.
Algorithms. The proposed greedy algorithm in Al-
gorithm 1 is termed Greedy. Other baselines include
Random, which picks a random item at every step, and
TopK, which selects the top-k items repetitively — in

2https://github.com/Guangyi-Zhang/
subm-ranking-on-the-fly

Table 2: Datasets statistics

Dataset n = |V | m = |F |
Music [4] 61 415 10 000
Github social network [25] 37 700 100
Sogou web pages [20] 725 1 017
Twitter words [23] 10 000 8

our use case this corresponds to playing the most pop-
ular songs in a loop. Note that TopK is omniscient as
it requires information about the item popularity in
advance.
Live streaming. One increasingly popular application
on the internet is live streaming, where a live streamer
performs various shows continuously, while the audience
may join or leave any time. More concretely, we consider
music live streaming, where the live streamer plays
songs continuously. To simulate this application, we
use the Million Song Dataset [4], consisting of triples
representing a user, song, and play count. We assume
that a user likes a song if it is played more than once. We
define user utility to be fractional coverage of the liked
songs, which is a submodular function. We set a random
budget for each user between 1 to a maximum-budget
parameter, i.e., how many songs the user will listen to.
Besides, every user is given a random arrival time over
a long horizon. Our goal is decide a sequence of songs
in real time that maximizes total user utility.
Catalogued viral marketing. For viral-marketing
applications in social networks, the goal is to identify a
small set of seed nodes who can influence many other
users. For popular diffusion models, the number of
influenced nodes is a submodular function of the seed
set [12]. Here, we introduce a generalization of this
classic result to cope with multiple marketing demands
simultaneously, where each demand is only interested
in reaching a specific group of users. For example, an
advertiser may want to influence female users, while
another may want to influence users near a specific city.
Each demand provides a number of product samples to
seed nodes, with the hope to advertise their products by
word of mouth.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly
https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly

10 20
Maximum budget

0

1000

2000

3000
O

bj
ec

ti
ve

Greedy

Random

Top1

Top10

Top20

Top5

(a) Music live streaming

10 20
Maximum budget

0

20

40

O
bj

ec
ti

ve

Greedy

Random

Top1

Top10

Top20

Top5

(b) Catalogued viral marketing in Github

Figure 1: MSR-F. Each demand is given a random
arrival time, and a random budget between 1 to a
parameter of maximum budget. (a) Utility of a user
demand is f(S) = |S∩Slike|/|Slike|, where Slike is the set
of songs the user likes. (b) Utility of a marketing demand
is f(S) = |N(S)∩Sg|/|Sg|, where N(S) is neighborhood
of S and Sg is the target group of nodes in the network.

As a use case for our experimental evaluation,
we consider a platform designed to help with these
marketing demands, and assume that a package of
samples of different products can be sent to one seed
node at each time step. As the marketing demands arrive
in real time, we aim to catalogue unfinished demands
by identifying a seed node that is beneficial to all of
them. Note that samples from one demand should be
distributed as soon as possible after its arrival to the
outgoing packages. To simulate this use case, we use the
GitHub social network [25]. We consider 100 demands,
each targeting a random subset of the network, together
with a random number of samples from 1 to a maximum-
budget parameter, and a random arrival time. Our goal
is to maximize the total utility of demands by sending a
package to one carefully chosen seed node at each time
step.
Results. The result of the simulation is shown in
Figure 1, in which each data point represents an average

20 40
Maximum budget

0

200

400

O
bj

ec
ti

ve

Exc

Greedy-O

Random

Top

(a) Web page ranking in Sogou

20 40
Length of prefix

0.2

0.4

R
el

ev
an

ce
(a

vg
)

20 40
Length of prefix

0.0

0.2

D
iv

er
si

ty

Exc

Greedy-O

Random

Top

(b) Finding synonyms to “Trump” in Twitter

Figure 2: MSR-I. (a) Utility of a user intent is f(S) =
|S ∩ Srel|/|Srel|, where Srel is the set of relevant pages.
Each intent is given a random budget between 1 to a
parameter of maximum budget. (b) Given a sequence,
its relevance and diversity (Equation 3.4) is measured
at every prefix.

of three runs, each with a different random seed. For the
music-streaming task (Figure 1(a)), the Greedy algorithm
outperforms all other baselines by a large margin. This
suggests that for users with diverse preferences in songs,
an algorithm like Greedy, which can adapt to the need of
current active users, is required for good performance.
In the catalogued viral-marketing task (Figure 1(b)),
the Greedy algorithm continues to achieve the best
performance. However, several baselines from TopK come
closer to Greedy as the demand budget increases. This
signifies the existence of a group of influencers who can
collectively reach the most users in the Github network.

6.2 Item-arriving MSR-I. Next we will present
experiments for MSR-I as well as for progressively-
diverse personalized recommendation.
Algorithms. We adopt the state-of-the-art streaming
algorithm in Chakrabarti and Kale [5] as our algorithm,
which greedily assigns each arriving item to one of
ranks in the sequence whenever possible, starting from
rank 1. We call this algorithm Exchange (Exc). If a
rank is occupied by some previous item, Exc replaces

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

it if the current item is twice more valuable than the
existing item. Other baselines include Random, which
produces a random sequence, and Top, which orders
items by non-increasing singleton utility. We also
include an offline baseline, Omniscient Greedy (Greedy-O)
[28], which serves as a tighter estimate for the optimal
value. Greedy-O sequentially selects greedily an item with
respect to the current set of active functions.
Multiple intents re-ranking. In the absence of
explicit user intent for a given query, a search engine
needs to take into account all possible intents when
providing a list of returned web pages. Each intent is
only relevant to a subset of web pages. We represent the
utility of an intent by the fractional coverage of relevant
pages browsed before running out of patience. The goal
is to produce a list of web pages to maximize the utility
over all intents.

In this use case, we extract user intents from the
SogouQ click log dataset [20]. We consider all queries
related to “movie,” and for each such query we collect
all users who issued the query. We also collect the pages
they clicked. We treat each user as an intent, and pages
they clicked as the set of relevant pages. For each intent,
we generate a random number from 1 to a maximum-
budget parameter as user “patience,” i.e., the number of
pages that the user will browse.
Progressively-diverse personalized recommenda-
tion. Next we consider the recommendation task in-
troduced in Section 3. To simulate a concrete task, we
consider the task of finding representative synonyms
with respect to a given keyword. We choose “Trump” as
our keyword. We use the pre-trained word embedding
Glove over the Twitter corpus [23]. Similarity or rele-
vance between any two words is measured by the cosine
similarity minus 0.5 due to dense vectors. The top 10 000
relevant words form our candidate set V , among which
100 random words are chosen as bases to compute the
diversity term (Equation 3.4). Given a maximum length
(k = 40) of the recommended list, we create multiple
functions {fi} (Equation 3.4) for i ≤ 8, where the i-th
function is associated with a weight (1/2)i, a trade-off
value λ = (i−1)/k and a budget of 5i. Thus, function fi
is dominant for the i-th length-5 subsequence, and fi
with a large i favors increasingly diverse items.
Results. The results are shown in Figure 2. Every data
point represents an average of three runs, each with a
different random seed. For the task of web page ranking
(Figure 2(a)), all algorithms except for Random perform
almost equally well. This implies a heavy overlap in
relevant pages among different user intents. For the
task of finding diverse synonyms (Figure 2(b)), the
ranking in terms of the objective is Greedy-O ≈ Exc >
Top > Random (7.139 ≈ 7.136 > 6.652 > 3.527). We

demonstrate two components of the objective, relevance
and diversity, separately in Figure 2(b). Note that the
Random algorithm is a classic method in finding diverse
representatives, while the Top algorithm is optimal if
the objective degenerates into a single modular term of
relevance. The word list returned by the Exc algorithm is
indeed increasingly the most diverse, while it also finds
relevant synonyms at the beginning. The actual word
list returned by Exc is presented in Section A.3.

7 Conclusions
In this paper, we study extensions of the MSR problem
in two streaming models. In the first demand-arriving
model, we show that a greedy algorithm guarantees 2-
approximation, if items can be reused. In the second
item-arriving model, we discover a reduction that turns
the ranking problem into a constrained subset-selection
problem, and inherit approximation guarantees from
standard submodular maximization. The reduction
further allows us to approximate the MSR problem
subjective to additional p-matroid constraints. Finally,
we describe several novel applications for the MSR
problem, and examine empirical performance of the
proposed algorithms.

One limitation of the MSR formulation is that
individual budgets are not always known in some
applications. Another limitation is that it may be
computationally costly if both the number of demands
and items are large, especially for the item-arriving MSR
problem.

With respect to ethical considerations of the work,
our algorithm is a general submodularity-based frame-
work for ranking, which is not dedicated to a specific
application. We cannot identify strong negative societal
concerns. Many of the broader machine-learning issues,
such as misuse of technology, biases in data, effects of
automation in the society, and so on, are relevant to this
work, as well, but in no greater degree than the whole
machine-learning field.

References

[1] S. Alaei, A. Makhdoumi, and A. Malekian. Maxi-
mizing sequence-submodular functions and its appli-
cation to online advertising. Management Science,
2021.

[2] Y. Azar and I. Gamzu. Ranking with submodu-
lar valuations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 1070–1079. SIAM, 2011.

[3] A. Badanidiyuru. Buyback problem-approximate
matroid intersection with cancellation costs. In
International Colloquium on Automata, Languages,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

and Programming, pages 379–390. Springer, 2011.
[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and

P. Lamere. The million song dataset. In Proceedings
of the 12th International Conference on Music
Information Retrieval (ISMIR 2011), 2011.

[5] A. Chakrabarti and S. Kale. Submodular maxi-
mization meets streaming: Matchings, matroids,
and more. Mathematical Programming, 154(1):225–
247, 2015.

[6] M. Fahrbach, Z. Huang, R. Tao, and M. Zadi-
moghaddam. Edge-weighted online bipartite match-
ing. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages
412–423. IEEE, 2020.

[7] M. Feldman, J. S. Naor, R. Schwartz, and J. Ward.
Improved approximations for k-exchange systems.
In European Symposium on Algorithms, pages 784–
798. Springer, 2011.

[8] M. Feldman, A. Norouzi-Fard, O. Svensson, and
R. Zenklusen. The one-way communication complex-
ity of submodular maximization with applications
to streaming and robustness. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1363–1374, 2020.

[9] M. Feldman, A. Norouzi-Fard, O. Svensson, and
R. Zenklusen. Submodular maximization subject
to matroid intersection on the fly. arXiv preprint
arXiv:2204.05154, 2022.

[10] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey.
An analysis of approximations for maximizing sub-
modular set functions—II. In Polyhedral combina-
torics, pages 73–87. Springer, 1978.

[11] E. Hazan, S. Safra, and O. Schwartz. On the com-
plexity of approximating k-set packing. computa-
tional complexity, 15(1):20–39, 2006.

[12] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network.
Theory OF Computing, 11(4):105–147, 2015.

[13] T. Kesselheim. Lecture notes in yao’s principle and
the secretary problem, 2016. URL https://www.
mpi-inf.mpg.de/fileadmin/inf/d1/teaching/
summer16/random/yaosprinciple.pdf.

[14] J. Kleinberg, E. Ryu, and É. Tardos. Ordered
submodularity and its applications to diversifying
recommendations. arXiv preprint arXiv:2203.00233,
2022.

[15] B. Korte and D. Hausmann. An analysis of the
greedy heuristic for independence systems. In
Annals of Discrete Mathematics, volume 2, pages
65–74. Elsevier, 1978.

[16] A. Krause and D. Golovin. Submodular function
maximization. Tractability, 3:71–104, 2014.

[17] B. Lehmann, D. Lehmann, and N. Nisan. Com-
binatorial auctions with decreasing marginal utili-
ties. Games and Economic Behavior, 55(2):270–296,
2006.

[18] R. Levin and D. Wajc. Streaming submodular
matching meets the primal-dual method. In Proceed-
ings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1914–1933. SIAM, 2021.

[19] H. Lin and J. Bilmes. A class of submodular func-
tions for document summarization. In Proceedings
of the 49th annual meeting of the association for
computational linguistics: human language technolo-
gies, pages 510–520, 2011.

[20] Y. Liu, J. Miao, M. Zhang, S. Ma, and L. Ru.
How do users describe their information need:
Query recommendation based on snippet click
model. Expert systems with applications, 38(11):
13847–13856, 2011.

[21] A. Mehta. Online matching and ad allocation.
Foundations and Trends® in Theoretical Computer
Science, 8(4):265–368, 2013.

[22] S. Mitrović, I. Bogunovic, A. Norouzi-Fard, J. Tar-
nawski, and V. Cevher. Streaming robust submod-
ular maximization: A partitioned thresholding ap-
proach. arXiv preprint arXiv:1711.02598, 2017.

[23] J. Pennington, R. Socher, and C. D. Manning.
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[24] M. L. Pinedo. Scheduling, volume 29. Springer,
2012.

[25] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-
scale attributed node embedding, 2019.

[26] M. Streeter and D. Golovin. An online algorithm for
maximizing submodular functions. In Proceedings
of the 21st International Conference on Neural
Information Processing Systems, pages 1577–1584,
2008.

[27] J. Vondrák. Optimal approximation for the submod-
ular welfare problem in the value oracle model. In
Proceedings of the fortieth annual ACM symposium
on Theory of computing, pages 67–74, 2008.

[28] G. Zhang, N. Tatti, and A. Gionis. Ranking with
submodular functions on a budget. Data Mining
and Knowledge Discovery, 36(3):1197–1218, 2022.

[29] Z. Zhang, E. K. Chong, A. Pezeshki, W. Moran,
and S. D. Howard. Submodularity and optimality
of fusion rules in balanced binary relay trees. In
2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), pages 3802–3807. IEEE, 2012.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/summer16/random/yaosprinciple.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/summer16/random/yaosprinciple.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/summer16/random/yaosprinciple.pdf

A Appendix
A.1 Proof of Theorem 4.1

Proof. [Proof of Theorem 4.1] For the online-selection
problem, the input is a sequence of n integer numbers
a1, . . . , an that are revealed one after another. The
problem asks to select exactly one number immediately
after it is revealed, and the goal is to maximize the
value of the selected number. It is well-known that this
problem does not admit a o(n) approximation [13].

We observe that the online-selection problem is
a special case of MMR-F. To see this, consider the
following instance: let the universe set V consisting
of an item v and n − 1 other dummy items. Every
arriving modular function f has an identical form, with
f(v) = a and f(u) = 0 for any item u 6= v. Besides, every
function f is associated with a budget of k(f) = 1. At
the t-th step, a function as defined above with f(v) = at
arrives. It is easy to see that the optimal objective value
of MMR-F is equal to the largest number at. Then,
deciding the rank of item v in the output sequence for
the MMR-F problem is equivalent to deciding which
number in {at} to select for the online-selection problem.
Hence, MMR-F generalizes the online-selection problem.

A.2 Missing proof in Theorem 5.1

Lemma A.1. A ∩ B is a p-matroid.

Proof. SinceM is a p-matroid over V , then we can write
M = M1 ∩ · · · ∩ Mp where Mi a matroid. For each
matroidMi, we construct another system over V ′,

M′i = {S′ ⊆ V ′ : V (S′) ∈Mi} ∩ B
= {S′ ⊆ V ′ : V (S′) ∈Mi, |S′ ∩Xv| ≤ 1, for all v ∈ V }.

Notice that A =
⋂
i{S′ ⊆ V ′ : V (S′) ∈ Mi}, and

A∩B =
⋂
iM′i. We prove that A∩B is a p-matroid by

verifying that eachM′i is a matroid.
To show thatM′i is a matroid, downward closeness

is obvious, and we only verify augmentation. Given
any T,U ∈ M′i such that |T | < |U |, we have that
|V (T)| = |T | ≤ |V (U)| = |U |. Since V (T), V (U) ∈ Mi,
there exists v ∈ V (U) such that v+V (T) ∈Mi. Suppose
(v, t) ∈ U for that particular v, and it is obvious that
(v, t) + T ∈M′i. Hence,M′i is a matroid, implying that
A ∩ B =

⋂
iM′i is a p-matroid.

A.3 Synonyms to “Trump” in Twitter trump
banks warren clinton gates

newman buffett founder reagan carson
ceo appoints butcher duffy carlson
lowe travis costello joins airbnb
company tesla sanford krause dunlap
cassidy does shipbuilding shooter hired
rwanda asml hartman barb grandfather
rig exchanging lowes varela lamontagne

104 106

#items

101

102

103

R
un

ni
ng

ti
m

e
(s

)

102 104

#demands

101

103

R
un

ni
ng

ti
m

e
(s

)

Exc

Greedy

Figure 3: Running time

A.4 Running time To examine the running time of
the proposed algorithms, we generate synthetic data with
an increasing number of items or demands. More specific,
we either fix the number of demands (100) while increase
the number of items, or fix the number of items (1000)
while increase the number of demands. Each demand is
represented by a coverage function of a random subset
of size 100, and is assigned a random budget between 1
to 100. For the MSR-F model (Exc), a random arrival
time is given to each demand.

The results are displayed in Figure 3. Running time
of both Exc and Greedy algorithms increases linearly in
the number of demands. As to an increasing number
of items, running time of both appears to be sub-linear
instead of linear, which is due to the fact that many
items fail to hit any demand subsets.

A.5 Additional experimental details All experi-
ments were carried out on a server equipped with 24 pro-
cessors of AMD Opteron(tm) Processor 6172 (2.1 GHz),
62GB RAM, running Linux 2.6.32-754.35.1.el6.x86_64.
We use Python 3.8.5.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	2 Related work
	3 Problem definition
	4 Function-arriving MSR
	5 Item-arriving MSR
	6 Experiments
	6.1 Function-arriving MSR
	6.2 Item-arriving MSR-I.

	7 Conclusions
	A Appendix
	A.1 Proof of Theorem 4.1
	A.2 Missing proof in Theorem 5.1
	A.3 Synonyms to ``Trump'' in Twitter
	A.4 Running time
	A.5 Additional experimental details

